
A FRAMEWORK FOR COMPOSING SECURITY-TYPED LANGUAGES

APPROVED BY SUPERVISING COMMITTEE:

Jeffery von Ronne, Ph.D., Chair

Ram Krishnan, Ph.D.

Jianwei Niu, Ph.D.

Ravi Sandhu, Ph.D.

Xiaoyin Wang, Ph.D.

Gregory B. White, Ph.D.

Accepted:
Dean, Graduate School

Copyright 2013 Andreas Gampe

All rights reserved.

DEDICATION

It’s been a long road,

Getting from there to here.

It’s been a long time,

But my time is finally near.

Diane Warren, Faith of the Heart

This dissertation is dedicated to all the friends and family who accompanied me along the long

and winding road.

A FRAMEWORK FOR COMPOSING SECURITY-TYPED LANGUAGES

by

ANDREAS ROBERT GAMPE, B.Sc.

DISSERTATION

Presented to the Graduate Faculty of

The University of Texas at San Antonio

In Partial Fulfillment

Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

College of Sciences

Department of Computer Science

December 2013

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3607558
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3607558

ACKNOWLEDGEMENTS

Many people over the years have shared my road with me, influenced me in my direction, and

shaped my future. To all I am deeply grateful, and I could never hope to have a complete list here.

I am deeply indebted to my academic advisors Wolfram Amme and Jeffery von Ronne. Wol-

fram was the one who originally woke the researcher in me, and introduced me to the field of

programming languages and compilers. Most importantly, he convinced me to follow that direc-

tion and pursue a Ph.D. degree - without him this dissertation would not exist. I am even more

grateful to Jeff, who took a chance on a young(-ish) foreigner with the dream of a doctoral degree.

He stood by me for over half a decade, teaching me how to become an independent researcher and

guiding me through graduate life. Jeff is perhaps the smartest and most integrous person I know,

and I have greatly benefited in so many ways.

I want to thank my committee members Ram Krishnan, Jianwei Niu, Ravi Sandhu, Xiaoyin

Wang, and Gregory White for spending their precious time with my dissertation, asking critical

questions and giving helpful suggestions on how to improve the quality of the thesis.

I am most grateful for my best friend and colleague Omar Chowdhury. Looking back at our

first meeting, our first day at UTSA, always makes me smile. Omar has been the greatest help

and inspiration. He is the wall I can bounce ideas off, he is the one who grounds me with his vast

knowledge of and experience with algorithms. Omar always had an open ear for my concerns and

helped me overcome many obstacles.

I would like to thank the myriad of friends and colleagues I met at and through UTSA, in no

particular order: Giovanni Del Valle, Keith Harrison, Samira Khan, Bazoumana Kone, Apostolos

Kotsiolis, Jean-Michel Lehker, Jane Liang, Jeff McAdams, Arsen Melkonyan, Keyvan Nayyeri,

Murillo Pontual, Hui Shen, Rocky Slavin & family, Arpine Soghoyan, Elvira Teran, Yingying Tian,

and Emanuelle Vasconcelos. Good times we had, good memories we made. I deeply appreciate

their company and support.

Finally, I want to thank my family. To my parents, for their unconditional love and guidance.

iv

Without their sacrifices and attention to my needs, I would not be here. To my sister for the

competition: First!

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance

with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-

toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters

Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements

explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-

sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a

full introduction and literature review, and a final overall conclusion. Additional material (proce-

dural and design data as well as descriptions of equipment) must be provided in sufficient detail to

allow a clear and precise judgment to be made of the importance and originality of the research

reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include

as chapters authentic copies of papers already published, provided these meet type size, margin,

and legibility requirements. In such cases, connecting texts, which provide logical bridges between

different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the

student is required to make an explicit statement in the introductory material to that manuscript

describing the students contribution to the work and acknowledging the contribution of the other

author(s). The signatures of the Supervising Committee which precede all other material in the

Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

December 2013

v

A FRAMEWORK FOR COMPOSING SECURITY-TYPED LANGUAGES

Andreas Robert Gampe, Ph.D.

The University of Texas at San Antonio, 2013

Supervising Professor: Jeffery von Ronne, Ph.D., Chair

Ensuring that software protects its users’ privacy has become an increasingly pressing chal-

lenge. Requiring software to be certified with a secure type system is one enforcement mechanism.

Protecting privacy with type systems, however, has only been studied for programs written entirely

in a single language, whereas software is frequently implemented using multiple languages spe-

cialized for different tasks.

We present a framework that facilitates reasoning over composite languages. In it, guarantees

of sufficiently related component languages can be lifted to the composed language. This can sig-

nificantly lower the burden necessary to certify that such composite programs are safe. Our simple

but powerful approach relies, at its core, on computability. We argue that a composition is secure

when we can show that an equivalent single-language program is secure. This reasoning can be ap-

plied to noninterference, the standard notion of language-based security, as well as declassification,

which is a weaker security guarantee necessary for practical uses.

We introduce Security Completeness as the main technical tool to satisfy our framework re-

quirements. Informally, a security-typed languages is security-complete if every secure and com-

putable function can be implemented as a well-typed program in the language. We formally study

security completeness and derive sufficient , and in some cases necessary, requirements for a lan-

guage to be security-complete. A case study of three seminal languages from the literature inves-

tigates the three main paradigms of secure languages: imperative, functional and object-oriented

languages. We show that, with reasonable assumptions, all case studies are security complete.

To demonstrate the applicability of this framework, we completely show that a standard secure

while language satisfies all necessary requirements of a composition host, and present an expres-

sive, security-typed fragment of SQL for embedding.

vi

We finish the thesis with an investigation of dynamically loaded code. A special interpretation

of the framework allows it to be used to lift guaranties to programs containing components that

are incrementally loaded and verified. This has three benefits. First, incremental loading means a

lower start-up time for programs, as the full program is not necessary to start executing. Second,

only code that is really necessary for the current computation will be loaded. This results in

a decreased bandwidth or time requirement for the application. Third and finally, incremental

verification distributes the verification time over the runtime of the program.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Figures . xiii

Chapter 1: Introduction . 1

1.1 Thesis Statement . 6

1.2 Contributions . 7

1.2.1 Composition Framework . 7

1.2.2 Security Completeness . 7

1.2.3 Security Type Systems for SQL and a dynamic object-oriented language . . 8

1.2.4 Incremental loading and verification of security-typed code 9

1.3 Structure of this dissertation . 10

Chapter 2: Background . 11

2.1 Domain-Specific Languages . 11

2.2 Information Flow Control . 14

2.2.1 Lattice-based Security . 17

2.2.2 Noninterference . 18

2.2.3 Declassification . 20

2.2.4 Enforcement Mechanisms . 25

2.3 Proof Approaches for Type System based Security 29

2.3.1 Mixed Syntactical-Semantical . 30

2.3.2 Purely Syntactical . 31

viii

Chapter 3: Framework . 33

3.1 Introduction . 33

3.2 Motivational Example . 34

3.3 Proof Manipulation vs Framework Approach . 36

3.4 Framework for Composition . 38

3.4.1 Eval Setup . 38

3.4.2 Simulation . 41

3.4.3 Typability . 43

3.4.4 Replacement . 44

3.4.5 Completing the Framework Approach . 46

3.5 Applicability . 47

3.6 Case Study . 48

3.6.1 Host: WHILE . 48

3.6.2 Embedded Language: SQL . 50

3.6.3 Composed Language . 50

3.6.4 Proofs . 52

Chapter 4: Security Completeness . 61

4.1 Introduction . 61

4.2 Approach . 62

4.2.1 Basic Approach . 62

4.2.2 Termination Sensitivity . 64

4.3 Formalization . 68

4.3.1 Definitions & Requirements . 68

4.3.2 Revised Theorem & Proof . 74

4.3.3 Sufficient vs. Necessary Conditions . 75

4.4 Datatypes . 77

ix

4.4.1 Assumptions . 77

4.4.2 Limitations . 79

4.4.3 Security-typed Simulation with Datatypes 85

4.4.4 Nonrecursive Datatypes . 86

4.4.5 Proof of Nonrecursive Case . 89

4.4.6 Example . 94

4.4.7 Recursive Datatypes . 95

4.4.8 Proof of Recursive Case . 98

4.5 References & Objects . 101

4.5.1 Objects & Heaps . 102

4.5.2 Reachability, Equivalence & Indistinguishability 103

4.5.3 Computation . 104

4.5.4 Security-typed Simulation with Heap Objects 105

4.5.5 Formalization . 106

4.5.6 Proof . 109

4.6 Example Languages . 115

4.6.1 Volpano, Smith & Irvine . 115

4.6.2 FlowML . 117

4.6.3 Banerjee & Naumann . 117

Chapter 5: Extensions . 118

5.1 Nondeterminism . 118

5.1.1 Determinization . 118

5.2 Declassification . 124

5.2.1 Delimited Release . 125

5.2.2 Robust Declassification . 125

x

Chapter 6: Security-typed Embedded Languages . 136

6.1 OO . 137

6.1.1 Introduction . 137

6.1.2 Example . 139

6.1.3 Base Calculus . 140

6.1.4 Type System . 143

6.1.5 Noninterference . 145

6.1.6 Inference . 151

6.2 SQL . 153

6.2.1 Language . 153

6.2.2 Proofs . 157

Chapter 7: Incremental Loading . 161

7.1 Formalization . 165

7.1.1 Definitions . 165

7.1.2 Noninterference proof . 168

7.1.3 Evaluation instead of Loading . 172

7.2 Nested Control Regions . 172

7.2.1 Register-based IR . 173

7.2.2 Control Regions . 173

7.2.3 Placeholders . 178

7.2.4 Instruction Set . 178

7.2.5 Prototype Implementation . 179

7.3 Information Flow Control with NCR . 179

Chapter 8: Related Work . 185

8.1 Framework . 185

8.1.1 Language Composition . 185

xi

8.1.2 System Composition . 185

8.2 Security Completeness . 186

8.3 Extensions . 188

8.3.1 Nondeterminism . 188

8.3.2 Declassification . 188

8.4 Languages . 189

8.4.1 Object-oriented calculus . 189

8.4.2 SQL . 190

8.5 Implementation . 192

8.5.1 Intermediate Representations . 192

8.5.2 Secure Information Flow . 193

Chapter 9: Conclusion . 196

9.1 Summary . 196

9.2 Future Directions . 200

Bibliography . 202

Vita

xii

LIST OF FIGURES

Figure 3.1 select simulation . 54

Figure 3.2 insert simulation . 54

Figure 3.3 update simulation . 54

Figure 3.4 delete simulation . 54

Figure 4.1 Simple Program with Security Context . 64

Figure 4.2 Dual-Output Program with Security Context 65

Figure 4.3 Example Termination-Insensitive Program 69

Figure 4.4 Noninterference . 70

Figure 4.5 Example Pair-Result Program . 87

Figure 6.1 Extended Syntax . 142

Figure 6.2 Reduction (without errors) . 142

Figure 6.3 Reduction (errors) . 143

Figure 6.4 Subtyping . 144

Figure 6.5 Typing Rules . 145

Figure 6.6 Constraint Rules . 151

Figure 7.1 Example Irreducible Control Flow Graph 162

Figure 7.2 Syntax . 165

Figure 7.3 Semantics . 167

Figure 7.4 Type System . 168

Figure 7.5 Precise and imprecise approximation of dominator relationship 176

Figure 7.6 SE region implementation . 183

xiii

Chapter 1: INTRODUCTION

This thesis is, at its core, concerned with a mismatch between software engineering practice and

security theory. Software has become more and more complex over the decades. Large software

projects can routinely reach hundreds of thousands or more lines of code. To manage the rising

complexity of creating software, systems are created out of (mostly) independent components

where each component can be specified, implemented and verified separately. This divide-and-

conquer approach is beneficial in multiple ways. For one, it divides a complex problem into smaller

chunks, each of which might be easier to solve, and can be solved concurrently to other sub-

problems. Second, each sub-problem may be specified, implemented and verified with its own

technique, as the specialized problem domain might call for specialized approaches. This, in a

sense, is a matter of allowing choice of tools for each separated problem. Last, but not least,

by separating sub-problems and developing them indepedently, assumptions and guarantees are

established at their boundaries, which allows switching actual implementations as long as they

satisfy all the necessary guarantees.

Different fields of computer science have taken up the task to support component-based archi-

tectures. We specifically focus on the field of programming languages. Several techniques and

paradigms are available to support component-based software that can be broadly categorized into

two classes.

Intra-Language Components. On the one hand, there are techniques that allow software sys-

tems to be assembled from components that are all written in a single language. This can be done

through module support extensions to a core language, as for example in ML. The core of ML is a

typed lambda calculus, and is a complete language by itself. The module system allows decompos-

ing software into structures of related values and types, commonly called abstract data types. The

three main parts of its module system are signatures, structures and module functors. Signatures

are interface descriptions which defines and gives the types of entities that should be provided

1

by modules. Structures are collections of types, values and sub-structures that may satisfy said

signatures. Finally, functors are functions from structures to structures, which can be used to for

example implement generic data types.

A second example is the encapsulation and abstraction provided in object-oriented program-

ming languages. In these languages, an (abstract) base class describes the minimum functionality

of a component and thus establishes and interface given by the name and types of methods and

fields. Sub-classes must implement this interface and are thus components satisfying the given

specification.

Inter-Language Components. Another class of compositionmechanisms supports building soft-

ware systems out of components written in different languages. The composition can be shallow

or deep. An example of a deep composition is the embedding of a program fragment of one lan-

guage into a program of another. A prominent example of this technique is the embedding SQL,

a domain specific language for querying a relational database, into a web-processing language,

for example PHP. In this case, the software has a logic layer and a storage layer, where the logic

component communicates with the storage component over a well-defined protocol given by the

query language.

Three examples of coupling are common runtimes, e.g., the Java and .Net runtimes, that al-

low multiple source languages to be compiled to a common intermediate representation that can

directly interoperate; foreign-function interfaces that establish how object code of different lan-

guages inter-operates; and message-passing, as for example, in inter-process communication.

In our work, we focus on the inter-language component architecture, since it can be used to

describe a variety of common settings: from very deeply coupled software made up of object

code from different languages, over simple interactions like configuration files, to embeddings of

(domain-specific) languages for computation or communication.

2

In parallel with the need to cope with this rising complexity, privacy is becoming an increasingly

important property of software: More and more software handles confidential data and is intercon-

nected over the Internet. The list of prominent examples is ever expanding, but for illustration we

will briefly describe two examples here:

Hospitals must manage the confidential private health information of their patients. To improve

interaction, availability and efficiency, traditional paper-based storage methods are commonly re-

placed with Electronic Health Record (EHR) systems, software that must manage and store pa-

tients’ confidential data. An impermissable release of information can lead to heavy financial

penalties as mandated by, for example, the Health Insurance Portability and Accountability Act

(HIPAA) in the United States. It would be prudent for a hospital to ensure that their EHR system

complies with the privacy regulations of HIPAA.

The second example revolves around the ever more-ubiquitous mobile devices in our lifes.

Smartphones have become very commonplace and store huge amounts of personal data of their

users. For example, emails, text messages, contacts and calendars are commonly stored on them,

and the user would likely prefer them to be protected. At the same time, mobile devices support

software ecosystems designed around so-called app stores that sell (mostly) inexpensive apps to

expand the functionality of the device. It is interesting to note that all three major smartphone op-

erating systems have facilities to separate an app from the storage layer by means of an embedded

language: LINQ to SQL in the case of Windows Phone, and SQL to a native SQLite database in

both iOS and Android. The prevalent security model of app stores is manual inspection or very

coarse-grained permissions. A more fine-grained approach is necessary that can reliably guarantee

useful security properties.

A commonly used security property in the area of language-based security is noninterference

[43]: program runs differing only in confidential inputs cannot be distinguished by their public out-

puts. This ensures that an attacker who can only observe public data cannot infer any information

about the confidential input values. Typically, this is approximated and enforced as a dependency

relation, or more specifically, a lack thereof: there is no dependency of the public output on the pri-

3

vate input. Two different high-level goals of security can be formulated through noninterference:

confidentiality and integrity. A system ensures confidentiality of data if information can only be

read and used by authorized agents (processes or users). It controls where information flows to.

Here public and confidential represent the notion of secrecy of the data. A system ensures integrity

of data if information can only be altered by authorized agents. It controls where information flows

from. Here public and confidential represent the notion of trust into the data. Overall, systems

thus generally control the flows of information (information flow control, IFC). Note that it is stan-

dard to only investigate confidentiality because integrity is a dual [19]. As noninterference is the

common property enforced in language-based security, in this dissertation, whenever we mention

“secure” or “secure systems,” we mean this to be “noninterfering” or “noninterferent system.”

Two main approaches have been developed to secure traditional monolithic or modular pro-

grams. Runtime monitoring performs checks during the execution of a program and stops the

execution when a disallowed operation is performed. Two disadvantages of this approach are the

potentially significant overhead incurred for the security checks, and label creep, the potential lack

of precision due to the locality of checks at runtime that leads to overly restrictive enforcement.

Static enforcement, for example static analyses or type systems, approximates the program’s be-

havior ahead of time and a program will only be executed if all checks are known to succeed. While

potentially not as precise as runtime monitoring, since actual runtime values are not available at

analysis time, static enforcement has the advantage of no (or nearly no) runtime overhead.

Security type systems are a successful and efficient way to guarantee noninterference. There

are many proposals for security-typed languages in the literature (e.g., [89, 46, 66, 93, 14, 47, 48],

for a slightly dated overview see [78]), starting with the seminal work by Volpano et al.[89] for a

simple while language, and all major programming paradigms have been covered. The approach

has even been extended to cover entire distributed systems [61].

The two main draws of type systems are (1) that they are a form of static enforcement at

compile time, which means low overhead and guidance for a software developer, and (2) they

can be formalized and proven secure. All the languages and their type systems refered to above

4

support compilers that will fail insecure programs, and all have formal proofs of their type systems’

soundness, that is, if a program passes the type checker, it is guaranteed secure.

In all of this work, however, exactly one language is treated, while we argued earlier that

it is common case in today’s software engineering practice to use many languages and compo-

nents. There are certainly other approaches that already facilitate securing composed software.

For example, information flow control on the operating system level [94, 88, 95] can transparently

enforce security properties over the communication of processes. However, these approaches treat

programs as black boxes, as an analysis of arbitrary programs is not feasible. The granularity is

then confined to whole memory regions (e.g., pages) and processes and enforcement must be dy-

namic, whereas language-based approaches can reason at the level of individual variables and can

be static. The generality of the secure OS approach thus comes with a huge lack of precision and

severe overhead.

This thesis argues that instead of treating composed programs as black boxes, in many common

cases we can do better. It is often possible to mirror the composition process on the type system

level. We propose to start with the reasonable assumption that there are security type systems for

all languages involved in a composition. (If that is only partially the case, then it is still easier

to derive a sound type system for a component language instead of for the complex composed

language.) We then extend the host language type system to impose constraints on the embedding

of the embedded language.

We show that this simple and straightforward construction is often enough to generically lift

the security statements of the component languages to the composed language: If a composed

program is well-typed, it is secure.

Our approach is based on the novel property of Security Completeness. A language is security-

complete iff there exist typable programs for all noninterfering computations in a language. Infor-

mally, for every possible computation that respects confidentiality, one can find a valid program

that will (a) perform this computation and (b) will pass the type checker of the security type system

and can thus be verified to be secure.

5

In general, security type systems are known to be rather restrictive. As noninterference is a non-

trivial property, the problem of checking a program for noninterference is undecidable. Security

type systems, on the other hand, need to be decidable to be practical. To resolve this mismatch,

type systems either need to accept some insecure programs and become unsound, or reject secure

programs and be inprecise. To allow any useful statements, the latter choice is made and the type

system restricts the set of secure programs.

It is thus surprising that the requirements for security completeness turn out to be rather easy

to fulfill. As this thesis will show, all security type systems known to us are security-complete for

computations over integers or similar primitive types, that is, computations with inputs and outputs

made up of integers or similar atomic types. For compound types, it is necessary to reject certain

abnormal types that are syntactically valid, but do not have a reasonable semantic meaning.

Turning back to language composition, given a security-complete host language and the con-

straints imposed on embedding constructs, we can transform a composed program into a purely

host language program. This program can be shown to have the same meaning and be typable, so

that it is guaranteed to be secure.

On the practical end of the spectrum, we show how to use and extend this setup to secure

incrementally loaded code. It is possible to use a structured intermediate code representation and

extend it with “holes” into which further code can be embedded. If the holes have to be typed

ahead of time, this corresponds tightly to the framework setup described above. On the other hand,

we can relax this requirement: we can type-check the incremental code upon reception under the

context of the hole’s position. If this typing succeeds, it is a valid program fragment to fill the hole

and security will be preserved in this case, too.

1.1 Thesis Statement

It is feasible to control information flow in composed languages with a modular, type-

theoretic framework.

6

1.2 Contributions

The contributions of this thesis are four-fold.

1.2.1 Composition Framework

We detail a formal framework for the composition of security-typed languages. The framework

outlines a sufficient process to prove the composition secure under the assumption that the compo-

nent languages are secure.

To show the practicality of the framework, we formally instantiate the framework for a while

language from the literature [89]. We provide all the proofs to complete the framework process

and thus show any composition of noninterference-ensuring embedded languages with this while

language secure. To demonstrate, we embed a secure SQL fragment to represent a two-tiered

software system with a separate storage layer.

1.2.2 Security Completeness

We define a novel property, Security Completeness, for security-typed languages. In short, a lan-

guage is security-complete iff there exist typable programs for all noninterfering computations

in a language. If a language is security-complete, it automatically provides some of the proofs

necessary for the composition framework.

Besides the definition of security completeness, we investigate sufficient and necessary prop-

erties for a language to be security-complete. Our approach is constructive: if a language fulfills

our requirements, we show how to generically transform any noninterfering (but not necessarily

typable) program such that the resulting program is both typable and performs an equivalent com-

putation. In case of a Turing-complete language, the sufficient properties are also shown to be

necessary.

We formally study three security-typed programming languages under the viewpoint of security

completeness. We chose our case studies such that they cover three major programming paradigms:

7

[89] for procedural programming, [72] for functional programming, and [13] for object-oriented

programming.

All languages are shown to be complete with respect to primitive-valued computations. In the

case of the latter two, compound types have to be restricted. As a contribution, we formally prove

that this restriction is necessary: we formulate a computation using a disallowed type in the system

of [72]. This computation is noninterfering, but we prove that it cannot be represented by a typable

program in their language.

1.2.3 Security Type Systems for SQL and a dynamic object-oriented language

Domain-specific languages, the main languages to be embedded, have been neglected in the lan-

guage-based security community. We are not aware of any literature on security type systems

for such languages. To show the practicality of our proposed approach, we develop security type

systems for two languages typifying two classes of languages that are being embedded in other

languages in current software engineering practice.

SQL We investigate an expressive SQL fragment. Our fragment supports arbitrary tables, stan-

dard projection, selection, and table joins.

As SQL was our canonical motivating example, we show that it is possible to enforce a security

type system regime while supporting most of the features of the data manipulation language part.

We formalize the fragment with straightforward syntax and semantics and formally prove that our

security type system is sound.

Dynamic object-oriented language We study information flow control for a dynamic object-

based language.

We note that a serious complication with type-checking modern scripting languages is the high

dynamicity of objects in those languages. In fact, many common idioms are built around the ability

to dynamically change the structure of objects at runtime. If a type system is unable to precisely

mirror and abstract those changes, it will not be feasible in practice, as it will fail to type practical

8

programs. As security type systems are simply extended type system, this applies to the security

domain as well.

As our part of improving the applicability of a type system-based approach to security, we

investigate the security implications of so-called method-not-found errors, which may occur when

a non-existing member of an object is invoked. This can be used as a leaking channel.

There are two ways to handle this: the type system could reject the program, if it cannot show

that the call always succeeds or always fails, or it can track the information flow of this termination

channel. We pursue the latter approach and develop a security type system that enforces security

even in the presence of such errors. This reduces the pressure on the type system to be as precise

as possible with respect to the structure of objects, and will allow it to type more programs.

1.2.4 Incremental loading and verification of security-typed code

We describe the design and implementation of a novel intermediate code representation (IR) called

Nested Control Regions (NCR). This is a low-level structured IR specifically designed to be ver-

ified in linear time in a single pass. We provide a compiler from Java to NCR, but the format is

independent of the specific input language. On top of the basic representation we layer pluggable

type systems [24].

We use this intermediate representation to implement information flow control with dynamic

loading. Our security type system is that of [66] based on [67]. Typable programs of [66] can thus

be represented by NCR. To support dynamic loading, we extend basic NCR with the concept of

holes and a client-server infrastructure to request code to plug a hole when execution reaches that

point. The type checker of the NCR runtime support will dynamically check the loaded code and

ensure that all safety guarantees remain valid.

As part of the contribution, we formally prove that the approach is sound in an idealized lan-

guage with dynamic code loading.

9

1.3 Structure of this dissertation

This dissertation is split into the following chapters. Chapter 2 summarizes required knowledge

of domain-specific languages, information flow control, and approaches to formally prove security

type systems sound. In Chapter 3, we describe our composition framework, compare it against

more traditional approaches, and formally show an instantiation on the case of the embedding of

SQL into a standard while language. Following that, in Chapter 4, we define and investigate the

key technical tool of Security Completeness. We formalize the property and derive sufficient con-

ditions for primitive languages as well as languages with datatypes and objects & references. The

chapter closes with an investigation of three seminal security-typed languages which all turn out to

be security-complete. In Chapter 5, we extend the framework and security completeness to cover

both nondeterministic languages as well as languages that support two notions of declassification.

Chapter 6 describes our efforts to security-type typical embedded languages: both a SQL fragment

and an object calculus are furnished with a security type system which are each proven sound.

In the following chapter, we explain how the framework approach can be used to facilitate infor-

mation flow control over incrementally loaded code. We introduce Nested Control Regions, an

intermediate representation targetted for simple and efficient verification, and show how to extend

it to support incremental loading and verification. Chapter 8 compares our contributions against

prior work from the literature.

10

Chapter 2: BACKGROUND

2.1 Domain-Specific Languages

Most embedded languages are domain-specific, that is, they are each languages made for a partic-

ular problem domain or problem representation. This is different from general-purpose languages,

which are abstract and always general enough to handle any problem, since they are Turing-

complete 1. Thus they are normally categorized between tiny languages and scripting languages,

though the borders are somewhat blurry.

The advantages of restricting a language to a problem domain are three-fold:

Domain-Specific Notation. Since the language is tailored towards a specific domain, problems

in that domain can be expressed in a clearer and more concise way. The primitives in the language

are geared towards the problem domain, which allows the reuse of rich domain-specific notations.

As an example, a language for mathematical expressions can introduce symbols for sum, prod-

uct, derivation and integration to allow a more natural way of writing down expressions in a pro-

gram. With the advent of Unicode, many of these symbols are available natively.

Concise & High-Level. With the domain-specific notation, the abstraction level is adapted to the

problems. Grammar and symbols can allow a shorter and more precise specification of a problem,

because the language works on a high level and low-level details are omitted.

On the example of the mathematical expression language, a summation symbol Σ is a conve-

nient and concise abbreviation for a regular sum, as is Π for regular products.

End-User Programming. Domain-specific languages may allow more people to create pro-

grams. The specialization on a domain and the use of well-known notation allow people not

formally trained in programming, but familiar with the domain, to write software.

1Note that, however, some embedded languages are Turing-complete and thus general-purpose,e.g., Javascript for

NoSQL.

11

Mathematics is the basis of many science disciplines, and as such many people understand

and use math notation. While these people may not be trained programmers, a domain-specific

expression language will ease any programming efforts necessary for them.

Domain-specific languages can be used standalone or in concert with other domain-specific or

general-purpose languages. In standalone settings, the compiler provides an environment to form

whole programs. Sometimes sets of domain-specific languages are used, where each language

performs one part of the task of a system. For example, a program might be broken up into a user

interface description, a part for interaction with a database, and finally a central part specifying the

business processes. Such sets or part thereof are known as fourth-generation languages (4GL), a

description commonly used in the eighties.

In many practical instances, domain-specific languages are embedded into a host general-

purpose language. The most prominent examples are querying and interface description languages.

Querying languages allow to specify questions or queries to data stored either in the program itself

or in the environment. The prototypical example is SQL, which describes queries in a relational

database. When embedded in a host language, SQL then forms a connection to an external re-

source. The exact query syntax can be generalized to also apply to other data sources, for example

XML documents and even in-memory arrays, as has been done with LINQ.

A key difference between LINQ and SQL is the standard style of embedding. SQL is tradition-

ally handled in string variables that are handed of to special-purpose commands that execute the

query. An example in PHP might look like this:

$sql = "SELECT * FROM table";

if (condition) {

$sql = $sql + " WHERE column > value";

}

$res = mysql_query($sql);

This example also shows an advantage of string-based embedding: The embedded code can be

12

programmatically created and manipulated, which endows the developer with a high flexibility

when writing a program. However, this flexibility comes at the price of static checkability. Other

popular querying languages often used in string-based embeddings are XPath and XQuery, which

describe queries over XML documents.

To overcome the absence of static checks, several techniques try to integrate the embedded

language closer into the host language. The Cω project introduces streams into a simplified variant

of C#, with the techniques finally being integrated into mainline C# under the name of Language-

integrated Native Queries (LINQ). LINQ syntax is somewhat modeled after SQL and directly

integrated into the host language, so that the compiler understands the query.

A stream is a sequence values. Streams are flat, that is, streams are never nested. Operations

over values are lifted to streams by application to all elements. In this case, operations also include

member selection in records and objects, as well as conditionals for filtering elements. This gener-

alizes the access of various kinds of semi-structured data like relational databases and documents.

Streams can be typed, similar to arrays (the Cω notation for a stream with elements of type int

is ∗int). This allows the validity of operations on streams to be checked. For example, members

can’t be selected on a stream of int, and arithmetic operations can’t be performed on a stream of

strings.

An advantage of integration into the host language is the ability to perform static checks at

compile-time: the sub-program can be syntactically checked as well as type-checked for a (simple)

check of well-formedness.

Not only domain-specific languages can be embedded into a host language. It is common to use

scripting languages for extensibility in a software architecture. Another use is for executable con-

figuration, where a script programmatically configures a program, instead of the program parsing

some configuration files. Furthermore, recently general-purpose scripting languages (or subsets

thereof) have been suggested for querying in NoSQL databases. For example, both MongoDB and

CouchDB can use Javascript for queries and map-reduce operations.

Most scripting languages are categorized as dynamically typed. As such, establishing a static

13

type discipline can be hard. Considerable work has been invested to study several scripting lan-

guages, most of which are object-oriented. A small list of examples follows.

Diamondback Ruby (DRuby) is a static type discipline for Ruby. It supports type annotations

as well as type inference. Supported kinds of types are intersection and union types, simple object

and method types, self types and parametric polymorphism. DRuby supports a profile-guided

typing mode and dynamic checks for the highly dynamic features of Ruby like eval.

Several techniques have been studied for restricted subsets of the Python programming lan-

guage. RPython is used in the PyPy compiler and fully type-inferable. A similar project is

Starkiller. Shed Skin compiles a subset of Python to C++, using type inference for optimizations.

Several approaches try to type significant parts of Javascript. Anderson’s inference [8] is an

extension of approaches developed for primitive object calculi like [1]. [96] extends the approach

with singleton types, while [45] use a recency abstraction to increase precision.

2.2 Information Flow Control

Many programs handle sensitive data, for example in banking, health care and military environ-

ments. Early on, the need for security properties was recognized. Three properties are usually used

to describe safety:

• Confidentiality or privacy describes the secure release of information. Systems only make

data available to agents authorized to access it. A common example is the value of a person’s

bank account. The bank server needs to make this information available to the account

holder, and possibly bank employees that work with the account holder, but not to any other

client of the bank.

• Integrity ensures that data is not compromised and only modified by authorized agents. Con-

tinuing with the banking example, a bank balance is only effected by logged, auditable, au-

thorized transactions. That may be as the result of an action authorized by the account holder.

For example, the holder may directly withdraw money, or set up automatic payments. On

14

the other hand, the bank is authorized to impose fees and deposit interest to the accounts. A

second, unrelated account holder, however, should never be able to change the first’s bank

balance without express permission.

• Availability or reliability ensures the continued service of a program. A system should be

accessible for as much time as possible.

As is usual, only confidentiality and integrity are studied here. Furthermore, as explored by [19],

confidentiality and integrity are dual. For the main part of our study concerning noninterference,

it thus suffices to focus on confidentiality. Robust declassification in Chapter 5, however, relies

on the interplay between integrity and confidentiality, and we will handle both in that part of this

thesis. Two orthogonal problems arise for confidentiality: modeling access rights, i.e., a policy,

and enforcement of that policy.

Three main access control models exist. In discretionary access control (DAC), the owner of

an object decides who is allowed to access the object. Furthermore, having access to an object

implies being able to obtain a copy of said object under one own’s control. In mandatory access

control (MAC), the system determines the policy instead of the owner of an object. Subjects and

objects have labels, and rules over labels define access rights. In role-based access control (RBAC),

subjects perform roles which endow them with sets of permissions for performing certain actions.

While DAC is the current standard in consumer-grade operating systems, MAC or RBAC are

necessary for stronger guarantees. This is the case because DAC does not protect data after the

owner allowed another subject access to the information. For stronger security, information needs

to be protected even after being initially released to a subject. This is called information flow

control (IFC), because full flows from source to eventual sinks are traced and controlled.

Several categories of information flows have been defined. Direct flows exist because of

straight-up data transfer, as for example in assignments:

a := b;

Here, information flows from b to a because of a direct data dependency.

15

Information can also be transferred through control dependencies, for example, conditional

execution. This is usually called an indirect flow. An example is the following:

b := 0;

if (a > 0) then

b := 1;

end;

In that case, one bit of information about a is transferred indirectly to b through the seemingly

innocuous values 0 and 1. Several other reasons for indirect flows exist if the language contains

more complex structures, for example, dispatch of virtual methods and control flow induced by

exceptions.

Other examples of flows are termination and timing. A termination flow or channel exists in the

case that confidential data determines if a program terminates or not - an attacker able to observe

the program may be able to tell the difference. An example of this is a potentially infinite loop:

while (a > 0) do

nop

In the case that a is greater than zero, the program will not terminate. Thus the termination gives

one bit of information.

Timing channels rely on the attacker being able to observe the program and have the ability to

distinguish time. Thus differences in computations may be observed, even though the end result is

the same. Examples for this are simple repeated computations, e.g., repeat a computation in a loop

decrementing a confidential counter:

tmp = a;

while (tmp > 0) do

compute

tmp--

16

or more advanced flows based on hardware properties, e.g., caching behavior and the resulting

differences in memory access response times.

Termination and timing flows are usually either low bandwidth or hard to exploit. Further,

correctly handling either without being excessively conservative is, not surprisingly, very hard. As

such, most research focuses exclusively on the different forms of direct and indirect flows.

The goal for information flow control is to define valid flows and enforce that only valid flows

are possible in a program. A standard way to define valid flows is lattice-based security [32].

2.2.1 Lattice-based Security

A lattice (S,⊑) is a partially ordered set in which every two elements have a least upper bound

(join, or supremum) and a greatest lower bound (meet, or infimum). Elements of the lattice can

be seen as security levels. The partial order defines in which direction information may flow. For

example, assume that ℓ1, ℓ2 ∈ S and ℓ1 ⊑ ℓ2. The meaning of this is that ℓ2 is at least as restrictive

as ℓ1, and so information is allowed to flow from ℓ1 to ℓ2.

A standard security lattice that is minimal and still meaningful is based on the two-element set

LH = {L,H}. Here L stands for low confidentiality or public, and H for high confidentiality or

private. Thus the partial (and in this case total) order of elements is L ⊑ L, L ⊑ H , H ⊑ H , but

H 6⊑ L. This lattice allows flows in a security level, and from public to private, but not private to

public. Often, proofs derived using this specific lattice can be generalized to generic lattices.

While the simplicity of the LH lattice makes it a prime target for theoretical developments,

more complex lattices have been proposed in the literature as well as are being used in practice.

A prominent example is the Distributed Label Model [67], which is the security lattice used for

JFlow [66] and its extensions, e.g., [61].

Given a security lattice, all entities (e.g., values, storage areas, computations, channel sources

and sinks) are labeled with lattice elements. In case of dynamic enforcement, actual runtime

elements like values are labeled. For example, a normal summation 3 + 5 will be extended to,

e.g., 3L + 5H = 8H . For static enforcement, it often suffices to label static parts of a program,

17

e.g., variables and program code, but erase those labels before running the program under a basic

semantics. The label of the variable is assumed/guaranteed to be an upper bound on the intended

labels of values that will be stored in said variable. That is, we might have xL := 3L; yH :=

5H ; zH := x+ y, which resolves to x; = 3; y; = 5; z := x+ y at run time.

A limitation of lattice-based security definitions is that it cannot directly incorporate notions of

declassification. Lattices are based on partially ordered sets, so element ordering is transitive. That

is, if ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3, then it must be the case that ℓ1 ⊑ ℓ3. It follows that there cannot be an

allowed transition from a secret level to a public level, as this would close a cycle. As an example,

assume that information might flow from ℓ1 to ℓ2, from ℓ2 to ℓ3, and from ℓ3 being declassified to

ℓ1. In that case, if the elements are supposed to form a lattice, then all three elements are equivalent:

as we have ℓ1 ⊑ ℓ2 ⊑ ℓ3 ⊑ ℓ1, for example, it follows ℓ1 ⊑ ℓ3 and ℓ3 ⊑ ℓ1, which by antisymmetry

constraints on partial orders implies ℓ1 = ℓ3.

2.2.2 Noninterference

A common goal for policies is to establish noninterference. Informally, noninterference states that

confidential inputs do not influence non-confidential outputs of a program. In flow notation, this

is equivalent of no flows from confidential inputs to non-confidential outputs. This formalizes the

expectation that a secure system must not allow an attacker to deduce any confidential information

stored or handled in the system, under the assumption that the attacker can only observe public

information and behavior.

Formalized noninterference statements have different shapes depending on the setting they are

used in. In trace-based settings, for example, the notion of noninterference is based on the closure

of the set of traces under the deletion of confidential events/states.

We are interested in language-based noninterference. In this context, noninterference state-

ments connect input and output states. If two inputs are indistinguishable, then the outputs must

be indistinguishable. Typically, ∼ is used for denoting a indistinguishability relation. Indistin-

guishability can be defined by choosing a lattice element ℓa as the attacker/observer level. Two

18

states are indistinguishable iff all elements that are below or equal to level ℓa are equivalent.

Equivalence can have different meanings depending on the language features. In a simple

while language, variables store single integers, and integers have a simple equivalence relation

given by = (structural equivalence). As an example, given a state which comprises storage for

variables a and b, where a is public and b is private. Then states 〈a : 1, b : 2〉 and 〈a : 1, b : 3〉

are indistinguishable for an attacker at level L, but states 〈a : 1, b : 2〉 and 〈a : 2, b : 3〉 are

distinguishable.

In languages with first-order computational elements, like lambda expressions in functional

programming, structural equivalence can potentially be relaxed to observational equivalence. This

would indicate that attackers are not able to inspect a lambda expression directly, but may invoke

and check its results. Under structural equivalence, the two expressions λx.x and λx.2×x−x are

not the same, as the term x is not equivalent to the term 2×x−x. Under observational equivalence,

these expressions are equivalent, however: for any input value v, both functions return the same

value v.

Finally, in languages with a heap, e.g., most object-oriented languages, heaps must be related

accordingly. Typically it is assumed that references are opaque entities from a user’s point of view.

If this is not the case, there are very strict requirements on the heap cell allocator to ensure that no

leaks through addressing appear. Even if the references are opaque, for a noninterference statement

it is necessary to relate states with different allocated cells. A simple example of two allocation

sequences will demonstrate the problem.

Assume a simple sequential language with an alloc construct that reserves the next free heap

cell, and let heap cells be indexed by natural numbers. We inspect runs of the following program,

where variables called x are public and y confidential. x1 := alloc; if (y1 > 0) then y2 :=

alloc end; x2 := alloc. Let us start with a state where all variables are initialized to zero2.

Then the result of the program is the state 〈x1 : 1, x2 : 2, y1 : 0, y2 : 0〉, denoting that space

for x1 was reserved in cell 1, and space for x2 in cell 2. If we, however, start with a state where

2For x1/2 and y2 this denotes a null pointer.

19

y1 = k > 0, the result is 〈x1 : 1, x2 : 3, y1 : k, y2 : 2〉, where the space for y2 is allocated before the

respective space for x2. Note that for an attacker this difference is not visible, but a simple value

comparison will distinguish those states. A general technique is to declare states distinguishable if

there are bijections (mappings) β between memory cells, such that the states become equivalent.

For example, such a mapping would be β ≡ 1 7→ 1, 2 7→ 3. Mappings between inputs and outputs

must then be suitably related.

2.2.3 Declassification

Note that in practice, noninterference is often infeasible. A limited amount of information leaks is

necessary for correct system operation. The traditional example is a login process.

A login process takes a username and password as input. It is then supposed to compare this

input against some internal database. For simplicity, the process should output a simple “Yes” or

“No” depending on the result, indicating whether the login succeeded.

As a user is not authenticated in the beginning, the login process is a public service, so inputs

should be considered public. The internal database should be restricted, as it stores the confidential

passwords of registered users. The output needs to be reported back to the as-of-yet unauthenti-

cated user. It should thus be public.

The correct answer for the login process depends on both the input and the internal state, as the

answer should be “Yes” if and only if public input and private state agree. With noninterference, the

login process could not report success or failure of an authentication, i.e., if a username-password

combination was correct.

Here it is obvious that to be functional, some systems need to have leaks. Such leaks will

declassify confidential data to non-confidential data. Other examples for systems that need this

functionality are auditing systems (e.g., the last four digits of credit cards on receipts) and encryp-

tion (where an encrypted text is assumed not to allow deduction of its confidential input).

For such cases, policies may allow limited forms of declassification, which transform con-

fidential data to non-confidential data. As a system with declassification operations cannot be

20

guaranteed to be noninterfering in general, two interesting questions arise.

Validity of Declassification. If a program can arbitrarily use declassification operations, no se-

curity guarantees could be established, as any confidential input could be declassified and printed

to a public output channel.

There is no general or “best” notion of declassification in the literature. Sabelfeld and Sands

[80] survey and classify several versions of declassification. The categories are the orthogonal

axes “what,” “who,” “when,” and “where.” The what category describes which data is allowed

to be declassified. The who category describes restrictions to which principals may be allowed to

declassify or influence (e.g., through control flow) declassification. The when category ties timing

into declassification and restricts for example by ordering or external time events. Finally, the

where category restricts declassification to certain parts of a program source or the location of a

principal.

Security Guarantees of Declassification. Given the validity of declassification operations in a

program, the immediate follow-up is what formal security guarantees can actually be established.

This is often a modified, relaxed form of noninterference.

For our investigations, we will focus on two forms of declassification from the literature. De-

limited release [79] is an example of the what axis (cf. [80], Section 2.1). Robust declassification

[92, 68] is an example of the who axis (cf. [80], Section 2.2).

Delimited Release. Delimited release defines declassification operations declassify(e, ℓ). The

meaning of this operation is to evaluate expression e and declassify the resulting value to security

level ℓ3. Expressions e that are parameters to a declassify are called escape hatches, as information

in e is allowed to “leak.”

3The paper fits into the language-based security category. The runtime meaning of declassify is thus simply to

evaluate its expression e.

21

The security guarantee is a weakened noninterference statement. Instead of guaranteeing in-

distinguishable outputs for all indistinguishable inputs, delimited release requires a side condition:

all escape hatches declassifying to an observable security level must have the same value for re-

spective input states. Formally, a program p satisfies delimited release at level ℓ iff

∀µ1, µ2, µ
′
1, µ

′
2.

µ1 ;p µ
′
1 ∧ µ2 ;p µ

′
2 ∧ µ1 ∼ℓ µ2 ∧ ∀i.(ℓei ⊑ ℓ =⇒ µ1(ei) = µ2(ei))

=⇒

µ′1 ∼ℓ µ′2

,

where µ denotes states,; is a relation connecting input states to output states parameterized over

programs p, ei are the escape hatches in p with respective declassification to ℓei , and µ(e) denotes

the evaluation of e under state µ. Note that the only difference to a standard termination-insensitive

noninterference statement is the term ∀i.(ℓei ⊑ ℓ =⇒ µ1(ei) = µ2(ei)), which ties in the values

of the escape hatches at program start.

In [79], Sabelfeld and Myers show how to use an extended security type system to enforce

delimited release in a while language with declassification.

Robust Declassification. In [92], Zdancewic and Myers define robustness as the property of a

system under attack. A system is robust if an active attacker cannot gain more information than

a passive attacker. That is, if a passive attacker cannot distinguish two states, e.g., by running the

system over them and not being able to find differences, then an active attacker that can influence

the states or behavior of the system cannot, either.

In [92], systems are described as state-based transition systems. Equivalence relations ≈, or

views in their terminology, describe the ability of an attacker to distinguish states. Traces τ , that

is, connected sequences of states, are system runs and a view ≈ induces canonical traces τ/ ≈

defined by the equivalence classes of states induced by the view. An observation O(σ,≈) is the

set of all canonical traces under the given view starting at a specific state. This formalizes the

notion that an attacker does not necessarily have perfect knowledge of a system: A canonical trace

22

is an equivalence class for concrete traces induced by a view, and given one such concrete trace,

an attacker with the observational power given by the view cannot distinguish said trace from any

other trace represented by the canonical one; an observation gives all canonical traces starting with

a specific state and thus all runs (with respect to observable behavior) that can be distinguished

starting at said state. Note that a sequence of equivalent states is taken to be equivalent to a single-

state trace with said state. This means all definitions and guarantees assume equivalence under

stuttering.

Observations themselves induce views S[≈] over a system S: under this view two states are

equivalent if their respective observations are the same. This is a formalization of observational

equivalence. If the observations are the same, then for each concrete trace starting at the first state,

it is possible to find a concrete trace starting at the second state such that both traces are equivalent

under the given view. As such, an attacker is unable to deduce the concrete start state given a

program run.

A passive attacker is an attacker who can run the system. Informally, he is able to compute the

observation-induced view. This is used to define basic security of a system: A system S is secure

under a view ≈ iff a passive attacker cannot gain information, that is, if two states are equivalent

under said view, then their respective observations under the view are the same:

∀σ1, σ2.σ1 ≈ σ2 =⇒ σ1S[≈]σ2

In the transition-system setting, active attackers are allowed to influence the system by adding

state transitions. This formalizes the notion that an active attacker can influence the execution of

a program. Note that the state space itself is assumed to be invariant - the attacker may only add

new transitions between alreay existing states.

To curb the power of the attacker, [92] restricts added transitions to be, by themselves, secure.

The authors argue that this is a reasonable and practical restriction. One can interprete the restric-

tion as the base system being open, e.g., a system that can load plugins, but not executing arbitrary

23

code. In said system, all dynamically loaded code could be checked to be secure by itself, for

example by static analysis or through certificates. The question of robustness is then whether an

attacker can use this facility to gain information.

Formally, robustness is then a comparison between observation-induced views of the original

system and the system under attack. If two status are equivalent in the original system, a robust

system does not allow them to be distinguished even when attacks are performed. Formally, let

S be the original system and A an attack, that is, an additional system over the states of S that is

secure with respect to ≈. Then a robust system satisfies

∀σ1, σ2.σ1S[≈]σ2 =⇒ σ1(S ∪A)[≈]σ2

where S ∪ A denotes the system under attack, which is the set of states of S and all transitions

from S and A.

In [68], Myers et al. translate the transition-based definition of [92] to a language-based setting.

A simple while language is extended with a declassification operation and “holes.” A program

with a hole is a context into which other code can be embedded. A context thus defines a family of

related programs. Once all holes in a context are filled, the whole program can be executed.

The basic security guarantee in [68] is noninterference. Attack code is thus program code that

is noninterfering. Robustness is translated to comparing the runs of programs under substitution of

holes with different attacks: if two runs over some start states cannot be distinguished under attack

a, they cannot be distinguished under any other attack a′, either.

∀c,M1,M2, a, a
′.〈M1, c[a]〉 ≅ 〈M2, c[a]〉 =⇒ 〈M1, c[a

′]〉 ≈ 〈M2, c[a
′]〉,

where 〈M1, c1〉 ≅ 〈M2, c2〉 iff the executions of both configurations are both terminating and

indistinguishable. On the other hand, ≈ relaxes ≅ so that configurations are also equivalent if

either or both configurations diverge, that is, do not terminate.

Note that there are two differences between the robustness definitions of [92] and [68]. The

24

first one is nondeterminism. The transition-system based definition in [92] inherently allows non-

determinism. Observations are sets of canonical traces, which themselves stand for potentially

many different concrete traces. The definition and base language of [68], on the other hand, are

purely deterministic.

The second difference concerns termination-sensitivity. The definition of [92] is termination-

sensitive: if an observation with visibly-changing states can be made from one state, the second

state must exhibit an equivalent trace. Thus, non-termination is not generally compatible with

another terminating trace, and so the definition in [92] is termination-sensitive. On the other hand

noninterference and robustness in [68] are explicitly termination-insensitive: two configurations

are ≈-equivalent if either both converge and the constructed traces are equivalent, or one or both

diverge.

To enforce the language-based robustness definition, [68] proposes a type system enforcing

both confidentiality and integrity at the same time. Further, declassification can only be performed

in a high-integrity environment, attacks cannot change high-integrity state, and holes do only ap-

pear in low-confidentiality environment. Under these restrictions, enforced by the security type

system, the authors stipulate that programs are guaranteed to be robust4.

2.2.4 Enforcement Mechanisms

Enforcement mechanisms can be broadly categorized as static or dynamic. Dynamic enforcement

monitors a program at runtime and performs checks before sensitive actions. Static enforcement

analyzes a program before it is being run - either at compile-time or at load-time - and ensures that

no matter what the program inputs are, no execution will ever perform an unallowed operation.

Dynamic enforcement has the advantages of flexibility and precision, since runtime values can be

inspected. However, that means a certain runtime overhead for security checks is involved. Static

enforcement, on the other side, ensures that a program can never fail and has no (or no significant)

overhead at runtime.

4The proofs outlined in the appendix of [68] have a flaw applying an inductive hypothesis when not all prerequisites

are satisfied: in fact, the main issue is one of termination-sensitivity.

25

Several systems have been proposed for dynamic enforcement. They include monitors that

check single applications, up to whole operation systems like HiStar and Flume. The main disad-

vantage of runtimemonitoring is the overhead incurred due to runtime checks. Runtimemonitoring

needs to find a balance between checks and precision. Either all operations are checked and the se-

curity information has very fine granularity, or multiple operations are combined and checks only

occur at the block boundaries, which lowers the precision. Further, without a preceding detailed

static analysis (or prior knowledge of a program’s structure), runtime monitoring is prone to label

creep.

Static enforcement tries to verify a program at some time prior to execution. Only verified

programs are ever executed, and guaranteed to comply with a given policy. Security verification

can be done traditionally, for example, with logics (e.g., extended Hoare logic) or model checking.

A static analysis can overapproximate all flows of information of a program. An extended type

system can give a compiler enough information to check programs before compiling them to actual

code.

Examples for logic-based approaches are [6, 7]. A proof of noninterference is established by

extending logic primitives to statements over multiple runs of programs, and showing that the

runs agree on the values of non-confidential variables. For example, 1 a in a pre-condition states

the assumption that the value of variable a is not distinguishable to an attacker in two runs of a

program, i.e., it is a confidential input. If the proof rules of the logic then allow to establish the

post-condition1b, b can be a public output, because it cannot be distinguished over different runs.

The logic-based approach inherits the difficulties of theorem proving from Hoare logic, though.

Currently, program verification needs a non-trivial amount of human intervention in proof con-

struction for any non-trivial program.

Information flows describe a set of dependencies. As such, static dependency analysis can be

used to compute an approximation of all possible flows in a system. To be safe, the approximation

needs to be conservative and overapproximate the flows. An additional, unrealizable flow will in

the worst case reject a program, but a missed flow might result in a leak.

26

A static analysis can be potentially very precise. However, analysis time and modularity are two

significant problems. A recent example for a static analysis-based approach is [27], which analyzes

Javascript code. The analysis is constraint-based. Set constraints of dependences are established

through a pass over the representation of the program, and a constraint solver finds a solution

satisfying the constraints. The constructed sets are then checked for violations of noninterference.

A significant problem is the runtime of the constraint solver. In fact, in the proposed system, the

constraint solving is delegated to a dedicated server. Only a lightweight verification of very simple

syntactical checks is done in the browser, which does not give the same security guarantees on the

client side as the algorithm on the server.

The other problem is modularity of analysis and verification of results. Modularity is important

because most software is composed of libraries. A full analysis may require access to the library

code5, which is not always available, for example, in the case of proprietary commercial libraries.

Summaries may be used to alleviate the need, but this has a severe negative impact on precision.

Related to modularity, highly precise static analyses cannot be easily verified. For example, many

analyses gain precision by repeatedly analyzing a method if it is called from different callsites. This

context-sensitivity avoids summaries that have to unite information from potentially very different

circumstances. However, now each callsite needs to re-verify a called method, too.

Extended type systems can be used to enforce security on the language level. The seminal

work in that area is [89], which is based on lattice-based security by [32]. Types and typing rules

allow a compiler to infer or verify that a program does not violate confidentiality constraints. In

most cases, the security type systems are based on traditional type systems, which are annotated

with security information. For example, a type intL might describe values of type integer that are

public, while StringH describes strings which may be confidential. Typing rules or judgments

then enforce that confidential variables are not used in computations stored in public memory.

Type systems have the advantage of (relatively) simple verification and easy integration into

compilers. This allows for usually fast checks at compile time and programmer support at the

5Analysis is significantly harder on the binary level.

27

IDE level. Negative points are a somewhat increased verbosity, because type inference is an open

problem and so programmers need to use annotations in source programs; and a certain lack of

precision compared to static analyses (see above), because types summarize behavior and precise

summaries require very complex type systems.

Several proposals for research and practical security-typed languages exist. Of great practical

importance are JIF [66] and FlowML [72], two extensions of mainstream languages for software

development (Java and ML, respectively). At the moment, language-based systems are the state-

of-the-art in matters of practicality and verifiability. For these reasons, the contributions of this

dissertation are focused on language-based approaches to information-flow control.

[89] describe a type system for a simple WHILE language. The language contains variables,

number literals, arithmetic operations, comparison operations, conditionals and a while loop el-

ement. An extension describes how to correctly handle procedures. From that point, over the

last two decades numerous languages have been treated with security extensions. A small num-

ber of examples follow. For an older survey we refer to [78]. The SLam calculus [46] treats

functional languages in a theoretical manner, while FlowML [72] extends a practical functional

language (ML). Object-oriented programming and security type systems have been studied in

[16, 66, 15, 13]. JIF [66] is the extension of Java with security annotations.

As mentioned earlier, most language-based security is based on a lattice model of security

levels. Types are extended to include security labels, with the intuitive meaning that the label is an

upper bound on the labels of values inhabiting that type. For example, 5L is a member of intL, as

well as intH , while “Hello World”H is not a member of StringL. This meaning lifts the lattice

order to a subtyping relationship in the type system, and is formalized as a subsumption rule in the

security type system.

Further rules besides subtyping capture the semantics of all syntactical elements in the lan-

guage. In the case of imperative languages, a simple example would be the assignment rule:

Γ ⊢ a : intφ Γ ⊢ b : intψ ψ ⊑ φ

Γ ⊢ a := b : OK

28

In this rule, several conventions for security type systems are shown. Typing rules usually derive

judgments under certain assumptions, here shown by Γ. A collection of such assumptions is typi-

cally called an environment. Usual environments are, for example, variable mappings that store the

current types of local variables, and heap mappings that store the types of heap cells. The first two

judgments Γ ⊢ a : intφ and Γ ⊢ b : intψ in the premise derive security types for the expressions

used in the assignment statement, where metavariables φ and ψ range over security labels. Variable

a should be typable as intφ, that is, it stores integers with security at most φ. Variable b is similar

with an upper bound of ψ. Finally, ψ ⊑ φ formalizes that values can only be stored in variables

with types at least as restrictive as the value. This prevents direct flows, that is, leaks by directly

storing confidential information in public memory.

Many of the languages are accompanied by proofs that guarantee the safety of the type sys-

tem: if a program is well-typed, that is, there exist type environment and type such that a typing

judgment of the program can be derived, then it has the property of noninterference. This is one

of the practical strengths of security type systems: a typing is a certificate for a formal guarantee

that a well-typed program is secure. Security type systems, under this viewpoint, can be seen as

instantiations of proof-carrying code [69]. In the next section, we will sketch the approaches to

formalize and establish the theoretical foundations.

2.3 Proof Approaches for Type System based Security

There are two commonly used techniques to establish noninterference results. The older one, first

used in [89], can be classified as a hybrid syntactical and semantical approach. Noninterference

is split into two properties that together imply noninterference. The second one pioneered in [72]

is syntactical and adapts the approach of Wright and Felleisen [91] to noninterference. Here, one

estables progress and preservation lemmas and deduces noninterference from them.

There are other approaches mentioned in the literature, for example logical relations as used in

[46, 13]. We only outline the major approaches here, but note that the shortcommings extend to

other approaches, as well.

29

2.3.1 Mixed Syntactical-Semantical

Volpano et al. [89] derive the properties of Simple Security ([89], Lemma 6.3) and Confinement

([89], Lemma 6.4), that together imply noninterference. Both can be seen as traditional properties

from [17, 53] adapted to the language-based security setting. Simple Security states that if an

expression e has been typed at level ℓ, then all variables or locations used in e have a level at or

below ℓ with respect to the typing environment:

Γ ⊢ e : ℓ =⇒ ∀v ∈ e.Γ(v) ⊑ ℓ ∧ ∀l ∈ e.Γ(l) ⊑ ℓ

This is roughly equivalent to the same-named Simple Security property of Bell & LaPadula, which

is commonly summarized as “no read up:” a subject at a a given security level may not read an

object at a higher level.

Confinement states that if a statement c is typed at level ℓ, then all assignments in c are to

variables v or locations l with at least level ℓ:

Γ ⊢ c : ℓ cmd =⇒ ∀v ∈ assignv(c).Γ(v) ⊒ ℓ ∧ ∀l ∈ assignl(c).Γ(l) ⊒ ℓ

This is roughly equivalent to the ∗-property of Bell & LaPadula, which is commonly summarized

as “no write down:” a subject at a given security level may not write to an object at a lower level.

Both Simple Security and Confinement are proved for the security type system by inductions

over the structure of the given expression or command, that is, one inspects the expression or

command and analyzes a case for each possible constructor. As an example, structural induction

on a statement c needs to have cases for assignment, conditional, while loop and sequencing.

The final soundness theorem, stipulating noninterference in the case of typed statements, is

proved by induction on the structure of the derivation of a program run. In that case, the induction

needs to have cases for every semantic rule of the language. For [89], this means the induction

needs cases for variable update (for assignment statements), true and false branches (for condition-

30

als), iteration and termination (for loops), and “sub-executions” (for sequences).

2.3.2 Purely Syntactical

Wright and Felleisen [91] proposed a purely syntactical approach to traditional type soundness:

one first establishes progress and preservation lemmas, and then uses those to argue that the result

of a computation satisfies the required constraints.

Progress stipulates that a typed expression or statement is either a value, that is, cannot be

reduced further, or progress can be made, that is, the term is not stuck and thus does not denote an

error state. A sample formulation is

∀e,Γ, τ : Γ ⊢ e : τ =⇒ (∃v.e = v) ∨ (∃e′.e; e′)

Preservation, on the other hand, states that if a term is typed and reduced for one step, then the

reduct can be typed with the same term. That means that the new term has the same properties (as

abstracted by the type) as the original term. A sample formulation is

∀e, e′,Γ, τ : Γ ⊢ e : τ ∧ e; e′ =⇒ Γ ⊢ e′ : τ

Both statements are commonly proven by inductions. As both concern single steps, they are usually

either over the structure of the term or the structure of the derivation of the typing.

Traditional soundness states that typed terms do not go wrong, that is, they do not get stuck

during reduction. Given progress and preservation lemmas, this result can be deduced by induction

over the length of the reduction sequence. If the sequence has length zero, then the term must be

a value. Otherwise one must be able to reduce it by progress lemma, and the sequence could not

have length zero. If the sequence is not empty, then it has a head and a tail. For the head step, we

invoke preservation. This yields that the first element of the tail is typable with the same type. We

can now invoke the inductive hypothesis.

Pottier and Simonet [72, 73] adapt this method to information flow control. The key difference

31

between traditional soundness and noninterference is that noninterference talks about two runs that

cannot be distinguished. To make this syntactical, Pottier and Simonet extend Core ML, the base

language they are treating which is based on ML, to Core ML2, which has a bracket construct 〈, 〉

that stands for two different computations at once. Now one can show progress and preservation

over Core ML2. Given a typing that says an expression is public, by progress and preservation a

final result value must also be public. Brackets, however, cannot by typed low. It follows that the

two encoded computations cannot have different results.

32

Chapter 3: FRAMEWORK

The content of this chapter is based on [40].

3.1 Introduction

To manage the rising complexity of creating software, systems are routinely created out of (mostly)

independent components where each component can be specified, implemented and verified sepa-

rately. In the language domain, one example for this is the composition of fragments from different

languages into a complete program. A standard use case is the separation of storage and program

logic concerns by embedding SQL queries into program code.

In parallel with the need to cope with this rising complexity, privacy is becoming an increas-

ingly important property of software. Utilizing a security type system is one way to formally and

soundly verify software against privacy policies and enforce properties like noninterference [43].

Noninterference ensures that any compliant program cannot leak private information to public

channels. Many such type systems exist (e.g., [89, 46, 66, 93, 14, 48], for an overview see [78])

and the approach has been extended to cover entire distributed systems [61]. In all of this work,

however, exactly one language is treated.

In contrast, how can we (statically) guarantee the safety of programs that are composed from

elements in different languages? We propose to compose security-typed languages into composed

languages, such that well-typed programs in a composed language can be guaranteed to comply

with noninterference. This chapter studies an approach that, under certain assumptions, makes it

possible to leverage proofs of non-interference of well-typed host language and well-typed em-

bedded language programs to prove noninterference of well-typed composed language programs.

In order to generalize this composition over security-typed host and security-typed embedded lan-

guages that use different proofs that well-typed programs are noninterferent, our approach relies

on host languages being complete with respect to being able to compute any noninterferent func-

tion over its data types. This allows us to establish that executing noninterferent code does not

33

introduce any behaviors that could not be observed in the host language.

This chapter also validates the approach on a composition of a security-typed while language

and a simple security-typed SQL fragment. We demonstrate a constructive technique to prove

completeness with respect to noninterfering computations on the example of the while language,

and formally prove all requirements to complete our framework approach.

The contributions of this chapter include the description of a general framework for compo-

sition of security-typed languages, such that noninterference of the composed language can be

established from the proofs of noninterference of the component languages; showing how two

notions of declassification fit into and can be enforced by the framework; and demonstrating the

framework on a composition of a security-typed while language.

This chapter is structured as follows. In Section 3.2 we detail our goals of composition on

the example of a student information system. Our framework approach is outlined in Section 3.4.

Section 3.6 describes a case study, in which we compose a while language with a security-typed

SQL fragment.

3.2 Motivational Example

Our ultimate goal is to prove safe the composition of practical languages. We use the example of

a system composed of application logic and backend storage here. The application logic is written

in an imperative language, while the storage is accessed with queries written in a SQL dialect. For

example, imagine a university system that stores students’ data. We can model this with a table

that stores a record for each student, e.g., the student’s name, room number, and several grades.

Mandated by law, the grades are private information and must not be shared with unauthorized

personnel, while room numbers can be used in a university directory. We can model this security

by assigning low confidentiality to the name and room number, and high confidentiality to the

grades. Now general staff can be classified as low, too, so to be able to access a student’s room

number. We can write a program that reads the database and writes this information to a low output,

e.g., a generally accessible website. Note that eval will process the nested query and return the

34

result. In a more practical language, the explicit use of this construct may be hidden by a layer of

syntactic sugar.

Program list-students;

Schema: students: name=L, room=L, grade1=H;

Code:

length{L} = eval("SELECT count(*) FROM students");

i{L} = 0;

while i < L do

name{L},room{L},grade1{L} = eval("SELECT name,room, grade1

FROM students LIMIT $x,$x",i);

print-public name, room, grade1

i++;

This program should be rejected because of the leak of the grade, namely that the level in the host

language(L) does not correspond with the level in the embedded language(H). However, if that

part is removed, the program is valid and should pass the information flow checker. Similarly,

updates in the database need to be protected, e.g., the following program needs to be rejected.

Program update-room;

Schema: students: name=L, room=L, grade1=H;

Code:

grade1{H} = eval("SELECT grade1 FROM students WHERE name=’...’");

if grade1>3 then

eval("UPDATE room=3 WHERE name=’...’");

Assume that our SQL dialect is proven secure (see Section 6.2), as well as the While language

(e.g., [89]). We would now like to prove that the composed language is also secure.

35

3.3 Proof Manipulation vs Framework Approach

Traditional approaches to prove the soundness of a security type system, that is, the formal guaran-

tee that a typable program is secure, have been outlined in the chapter on background material. A

first question that this dissertation intends to answer is whether there are shortcomings in the tradi-

tional approach when applied to composed languages. Our positive answer will be the motivation

to introduce a composition framework.

Given a concrete host language and a concrete embedded language that we want to compose, at

a first glance the problem seems to be straightforward: we first need to define how an embedding

syntactically appears in the (extended) host language and then how it semantically interacts with

the other constructs. For simplicity, we introduce a new constructor for an abstract syntax element,

and give it intuitive semantics and typing rules.

The interesting part is now the formal proof of noninterference for our extended language. In

the first and better case, we have a complete formal proof for the host language available. We can

then study the proof approach. It is likely to include several inductions, both in the main statement

and several auxiliary lemmas (see Background). If the induction is related to the program in any

way, either directly by being over the structure of a program, or indirectly by being over entities

connected to a program like typings or semantics, then we need to extend the cases handled by the

induction.

If the statements are known ahead of time, for example, the statement of progress and preser-

vation have a default form, then we might try to generically create the induction case for the eval

constructor. This seems possible as we define syntax, semantics and typing for that element.

There are two technical problems with this approach. They both arise from it being possible

that simply adding another case to this induction does not form a valid, complete proof.

Auxiliary Lemmas The approach breaks down once auxiliary lemmas are used. It is in general

impossible to know ahead of time what auxiliary statements the main proof needs. A common

lemma is Substitution, arguing that the substitution of a variable for a typed term of the same type

36

preserves the typing. This should be itself an induction again, so a case for eval is again necessary.

However, other lemmas may be necessary. [72], for example, also requires at least a weakening

and a projection lemma, whereas [89] uses, among others, lemmas that establish state invariants

like domain preservation.

Nested Case Analysis or Induction Under a certain viewpoint, lemmas are modular compo-

nents for the whole proof to improve reuse and readability. One might argue that lemmas could

thus be “inlined” into the main proof. If the lemmas are inlined, we do not have the problem of

unknown lemma statements that cannot be handled without detailed proof knowledge and under-

standing.

However, inlining lemmas will lead to problems of the second category: nested case analysis.

If we, for example, inline a substitution lemma, all top-level induction cases that used this lemma

will now explicitly include a nested induction. This means that cases are not cleanly isolated

anymore: it is not enough to simply add the eval case. All other cases need to be inspected and

potentially fixed up, if the new eval construct might appear.

Please note that inlining lemmas is not required to raise this problematic case. The problem

already appears if there is a rule for the host language that inspects the children of an element,

that is, if it doesn’t treat the child elements opaquely. This can for example happen if the abstract

syntax is not flat, that is, it contains wrapper elements.

Even if we could solve these technical problems, two challenges remain: First, it is necessary to

understand the proofs of host language and embedded language noninterference. As such formal

proofs are intricate and specialized, we expect only a small number of people, experts in the domain

of security-typed languages, to be able to make the necessary extensions.

Second, we now have a formal proof of the composition of host language A and embedded lan-

guage B. It is not obvious if and how much of that effort can be reused when combining language

A with another embedded language C.

As a result, it seems impossible to devise a generic proof manipulation strategy that works in

37

all cases; and there is considerable overhead and required knowledge involved in concrete proof

manipulation that this approach seems not practical.

Our solution is to treat the original proofs as a black box, and derive a proof independently.

But note that we do not have to re-prove everything. Instead, we try to reuse the already proven

statements about the component languages The trick lies in reducing the composed problem to a

purely-host problem, and argueing in the host-language space.

3.4 Framework for Composition

To establish that well-typed composite program are secure, that is, noninterfering, we view com-

posite programs as host-language contexts (a context is a program with holes), where all holes have

been filled with some eval statements. Our goal is to show that we can fill the context with well-

typed host program fragments such that each fragment matches the effect of the corresponding

function implemented in the embedded language, and the new complete program remains well-

typed. If this is possible, then the composite program has an equivalent well-typed host program,

which is guaranteed to be noninterfering by the host-level type system guarantees. It follows that

the composite program must be noninterfering, too. The following subsections describe sufficient

requirements guaranteeing such a transformation.

3.4.1 Eval Setup

For our framework we assume a certain computational setup for the composed language. The flow

of computation is, in idealized form, as follows.

1. A host parameter is evaluated and reduced to a value

2. The host value is translated to an embedded value

3. The embedded computation is run with the embedded value as input

4. The output of the embedded computation is translated to a host result

38

We can formalize this in a functional interpretation as γ◦fE◦α◦fH , where fH is the host parameter

evaluation, fE is the embedded computation, and α and γ are so-called transfer functions. Transfer

functions translate values between the two languages: α in a forward (host→ embedded) direction,

and γ in a backward (embedded→ host) direction.

We also require a certain shape of typing of an eval statement or expression. Informally, an

eval should be typable only if the embedded computation can be typed with types corresponding

to the host’s input and output types. An abstract formalization that covers all type systems seems

not possible, as they differ too widely in syntax and semantics, and the specific side conditions to

enforce noninterference.

As such, we only give an incomplete example here. Following the above computational view

of feval = γ ◦ fE ◦ α ◦ fH , we assume that a typing is established by feval : τi → τo = (γτ :

τr → τo) ◦ (fE : τe → τr) ◦ (ατ : τh → τe) ◦ (fH : τi → τh). The functions α
τ and γτ are type

transfer functions: they relate types (or just security levels) of the host language and the embedded

language.

For a type-based enforcement, transfer functions and type transfer functions need to be suitably

related.

Requirement 1 (Transfer Functions Requirement). The transfer functions α and γ and type trans-

fer functions ατ and γτ of a language composition need to satisfy the following constraints.

(a) The type transfer functions are monotonous.

∀τ1, τ2. τ1 ⊑H τ2 =⇒ ατ(τ1) ⊑E ατ (τ2)

∀τ1, τ2. τ1 ⊑E τ2 =⇒ γτ (τ1) ⊑H γτ (τ2)

(b) Composition of type transfer functions is non-decreasing.

∀τ. τ ⊑ (γτ ◦ ατ)(τ)

∀τ. τ ⊑ (ατ ◦ γτ)(τ)

39

(c) Transferred values can be typed according to the transferred type.

∀v, τ. ⊢H v : τ =⇒ ⊢E α(v) : ατ(τ)

∀v, τ. ⊢E v : τ =⇒ ⊢H γ(v) : γτ (τ)

(d) If input values are indistinguishable, then transferred values are indistinguishable.

∀v1, v2, τ. v1 ∼τ v2 =⇒ α(v1) ∼ατ (τ) α(v2)

∀v1, v2, τ. v1 ∼τ v2 =⇒ γ(v1) ∼γτ (τ) γ(v2)

The requirement 1(a) ensures that if a type is considered more confidential in the source lan-

guage than another, then the corresponding target language type is also more confidential than the

other. Otherwise, a translation to the other language would be a declassification. The requirement

1(b) ensures that just passing a value around cannot inadvertently launder, that is, declassify it.

Requirement 1(c) ensures typability of transferred values. Without this requirement, type-based

enforcement is not possible. Finally, requirement 1(d) ensures that transferring values preserves

indistinguishability. Else a simple transfer will leak information.

These requirements are carefully chosen. In a composed language with transfer functions and

type transfer functions that satisfy requirement 1 we can abstractly show the following lemma.

Lemma 2 (Transfer Functions Imply Noninterference). Given a typed eval statement with a func-

tional interpretation and typing given by feval : τi → τo = (γτ : τr → τo) ◦ (fE : τe → τr) ◦ (ατ :

τh → τe)◦(fH : τi → τh), and the transfer functions and type transfer functions satisfy requirement

1, then the eval statement is noninterfering.

∀v1, v2. v1 ∼τi v2 =⇒ feval(v1) ∼τo feval(v2)

Proof. The proof of this is straightforward. The functional interpretation of eval is γ ◦fE ◦α◦fH .

By typing and host-level noninterference, we have vh1 = fH(v1) ∼τh fH(v2) = vh2 . By requirement

40

1, it follows that ve1 = α(vh1) ∼ατ (τh)=τe α(v
h
2) = ve2. As the embedded computation fE is typed,

embedded-level noninterference applies. This yields vr1 = fE(v
e
1) ∼τr fE(v

e
2) = vr2. Finally,

again by requirement 1, we have vo1 = γ(vr1) ∼γτ (τr)=τo γ(vr2) = vo2. As vo1 = feval(v1) and

vo2 = feval(v2), this concludes the proof.

3.4.2 Simulation

Simulation is sufficient to find a host-language fragment that matches the effects of embedded

language programs. Simulation requires that for each each function of interest computed in the

embedded language, there exists a program in the host language that simulates its behavior. If

I ⊆ LE is the class of programs of interest, a subset of all programs of the embedded language, LH
is the class of all host programs, and [·] is the computed function of a program, we may formalize

this as ∀p ∈ I. ∃p′ ∈ LH . JpK ≡ Jp′K, where ≡ defines some equivalence over semantic functions.

In short, the host language is computationally at least as powerful as the embedded language.

In practice, we consider host languages that are Turing-complete, that is, every Turing-com-

putable function can be computed using a single security level, and the embedded language might

be Turing-computable, that is, every embedded-language program computes a Turing-computable

function. Then the host language can obviously simulate any embedded-language program. Note

that any other specific level of computability is acceptable, as long as it allows covering all

embedded-language behaviors.

For security-typed composite languages we are only interested in the class of noninterfering

computations of the embedded language. If a composed program is typed, then the definition of

eval and its typing rules ensure that the embedded code fragment is typable in the embedded

language. This means that the embedded program is noninterfering by virtue of the embedded

language’s noninterference statement. Now since the simulation is required to compute an equiv-

alent function, and noninterference is a semantic property that only relies on inputs and outputs,

the simulation is also noninterfering. Note that this of course only holds if the interface estab-

lished by eval satisfies constraints about the values and types involved, for example, preserving

41

indistinguishability of values.

Finally, note that only this step is specific to a certain composition. For each composition,

it needs to be ensured that the embedded language is at most as powerful as the host language.

All following steps are specific to the host language and can be reused for other compositions.

However, we think that the simulation step is broadly applicable, because most host languages

are expected to be Turing-complete general-purpose languages that are at the top of any realistic

computability hierarchy.

Formalization

We start formalizing our simulation requirements by defining simulations.

Definition 3 (Simulation). A simulation S is a function mapping eval statements to pure-host

statements. We write S[c] for the simulation of eval statement c.

Informally, a simulation is correct if it maps an eval statement to a functionally equivalent

pure-host statement. The eval statement and pure-host statement are formally related by an encodes

predicate connecting a partial host state and the embedded state. This abstracts that a simulation

needs to encode the embedded state. Correctness then maps execution of the original eval state-

ment and the simulation.

Definition 4 (Correct Simulation). A simulation S is correct iff encodes is a bisimulation: Given µ,

µ′, ν, ν ′ and eval statement c where µ, ν, c ⇓ µ′, ν ′, there exist µe and µ′e such that encodes(µe, ν),

µ⊕ µe, S[c] ⇓ µ′ ⊕ µ′e and encodes(µ′e, ν
′).

Finally, the framework requirement is that there is a correct simulation.

Requirement 5 (Correct Simulation). There exists a correct simulation S for the composed lan-

guage.

42

3.4.3 Typability

While we now know that the simulation itself is noninterfering, it remains to be seen whether this

holds for the whole program the simulation is a part of. We reduce this problem to two steps, the

first of which is typability. If we can show that the simulation is typable, host-level noninterference

will apply and secure the computation.

Note that the framework is a theoretical tool to prove composed languages secure. As such,

the actual simulation is not important for running the composed program. This means that we can

use any simulation that is equivalent to the embedded code fragment, no matter how complex, if it

helps us find a typing.

Definition 6 (Environment Mapping). An environment mapping is a function T from embedded-

language typing environments∆ to host-language typing environments Γ.

Definition 7 (Type-Correct Simulation). A simulation S with associated encoding encodes is type-

correct with respect to environment mapping T iff

1. ∀µ, ν,∆. ∆ ⊢ ν ∧ encodes(µ, ν) =⇒ T (∆) ⊢ µ

2. ∀Γ,∆, c. Γ,∆ ⊢ c : τ =⇒ Γ⊕ T (∆) ⊢ S[c] : τ

Definition 8 (Indistinguishability-Preserving Encoding). An encoding encodes is indistinguish-

ability-preserving with respect to environment mapping T iff indistinguishable state pairs are

mapped to indistinguishable state pairs:

∀∆, µ1, µ2, ν1, ν2. encodes(µ1, ν1) ∧ encodes(µ2, ν2) =⇒ (µ1 ∼T (∆) µ2 ⇐⇒ ν1 ∼∆ ν2)

We call a simulation S indistinguishability-preserving if its encoding is indistinguishability-pre-

serving.

Definition 9 (Typable Encoding). An encoding µe of ν (i.e., encodes(µe, ν)) is typable with Γe

with respect to ∆ iff ∆ ⊢ ν and Γe ⊢ µe and for all ν ′ such that ∆ ⊢ ν ′ and ν ∼∆ ν ′ we have for

all µ′ with encodes(µ′, ν ′) that Γe ⊢ µ′ and µe ∼Γe
µ′.

43

This definition ensures that a typable encoding complies with the indistinguishability of the

embedded state. Informally, a pair of indistinguishable embedded-level states should be simulated

by a pair of indistinguishable host-level states.

Definition 10 (Typable Simulation). A correct simulation S is typable with respect to T , denoted

by ST , iff S is type-correct and indistinguishability-preserving with respect to T .

Finally, the framework requirement is that there is a typable simulation.

Requirement 11 (Typable Simulation). The correct simulation S of the framework is typable.

For technical reasons, it can be easier to actually show a stronger property for the host language.

Definition 12 (Security Completeness). A security-typed language L is security-complete if and

only if for every program c that computes a function f , where f is noninterfering with respect to

security signature S, there exists a program c′ that also computes f and is typable corresponding

to S.

In the case of a security-complete host language, the typability step is immediately obvious: A

correct simulation preserves noninterference. In a security-complete language, this guarantees the

existence of a typable simulation. The While language we investigate here is security-complete, as

we will show in Theorem 71.

Note that all practical general-purpose security-typed languages seem to be security-complete

for functions over integers. In Chapter 4 we study the limits of security-completeness and basic re-

quirements on a security type system. There we show sufficient conditions for versions of security-

completeness for functional languages with nonrecursive and recursive algebraic datatypes, as well

as languages with heaps and side effects including a simple class-based object-oriented language.

3.4.4 Replacement

Last, if we can replace all instances of eval in the composite program with the corresponding

simulations, and can show that typings and meaning are properly preserved, we have found a pure

44

host-language program that is host-typable, which implies its noninterference. Again, noninterfer-

ence can then be reflected onto the composite program, which is functionally equivalent. This is

the third step, which is also only host-language specific.

Note that this is not a traditional substitution lemma. Standard substitution lemmas are con-

cerned with replacing a variable with a term, and preserving a typing in the process. In our case, a

whole construct, namely eval, must be replaced, and the typing of the replaced term may be under

a different environment to account for the possible temporaries and side effects of the simula-

tion. Furthermore, one has to show that the programs before and after substitution are functionally

equivalent. However, as mentioned, this has to be proven only once and can be reused for other

compositions involving this host language.

Formalization

Requirement 13 (Replacement Semantics). If c = E[−→e] with −→e eval statements, and −→s are

correct simulations of −→e , then

∀µ, µ′, µe, µ′e, ν, ν.

µ, ν, E[−→e] ⇓ µ′, ν ′ ∧ encodes(µe, ν) ∧ encodes(µ′e, ν
′) =⇒

µ⊕ µe, E[−→s] ⇓ µ′ ⊕ µ′e

This requirement formalizes the notion that replacing all eval instructions should create a sim-

ulation of the whole composed program, that is, the transformed program satisfies the correctness

requirements.

Requirement 14 (Replacement Typing). If c = E[−→e], Γ,∆ ⊢ c : τ and for all elements of −→e we

have Γi,∆ ⊢ ei : τi in the derivation of Γ,∆ ⊢ c : τ , then for all−→s and Γ′ with Γi⊕Γ′,∆ ⊢ si : τi
for all elements si of

−→s we have Γ⊕ Γ′,∆ ⊢ E[−→s] : τ .

This requirement formalizes our extended substitution. If one replaces an eval statement under

an environment extended with the encoding environment, the program remains typed.

45

Requirement 15 (Reduction to Host). If Γ,∆ ⊢ c : τ , and c does not contain eval statements,

then Γ ⊢ c : τ .

Finally, to be able to argue with host-level noninterference for a pure-host composed-language

program, we have to be able to derive a host-level typing. Note that this requirement is easily

shown if the composed language was generated as in Section 3.4.1.

3.4.5 Completing the Framework Approach

Finally, we show abstractly how the previous requirements ensure that soundness of the composed

language.

Theorem 16 (Framework Correctness). If a composed language satisfies requirements 5, 11, 13,

14, and 15, then its security type system is sound.

Proof. Assume Γ,∆ ⊢ c : τ . Let S be the correct, typable simulation guaranteed by requirements

5 and 11. If c does not contain eval statements, then by Requirement 15 we have Γ ⊢ c : τ , so c

is noninterfering by host language noninterference.

Now assume that c does contain eval statements. Let −→e denote the list of evals, and let E[•]

be the context such that E[−→e] = c. As c is typed, each eval in c is typed. Then by definition of

correctness, we have a list −→s of simulations generated by S. Let Γe be the typing of the encoding

as given by simulation typability. Note that Γe is shared by all elements of −→s , as they are typed

over the same embedded state typing ∆. By simulation typability, for all corresponding elements

ei and si = S[ei] we have that if Γ′,∆ ⊢ ei : τi, then Γ′ ⊕ Γe,∆ ⊢ si : τi. By requirement 14,

this implies Γ ⊕ Γe,∆ ⊢ E[−→s] : τ . That is, replacing all eval statements with corresponding

simulations yields a typable program, where the typing is related to the original judgment. Now

according to requirement 15, as all eval statements have been replaced, it follows that we have a

pure host-level typing judgment Γ⊕ Γe ⊢ E[−→s] : τ . Thus, the program with simulations E[−→s] is

guaranteed to be noninterfering by the host-level noninterference statement.

Analogously, requirement 13 ensures that the program with simulations E[−→s] performs a re-

46

lated computation. The requirement guarantees that

∀µ, µ′, µe, µ′e, νν ′. µ, ν, c ⇓ µ′, ν ′∧encodes(µe, ν) =⇒ µ⊕µe, E[−→s] ⇓ µ′⊕µ′e∧encodes(µ′e, ν ′)

As the simulation program E[−→s] is noninterfering, computes a related function, and encodes pre-

serves indistinguishability, it follows that the composed program c is noninterfering.

3.5 Applicability

One might ask if embedding has a purpose if the embedded code is required to be able to be simu-

lated in the host. In practice many embedded languages are only powerful in certain domains (i.e.,

domain specific languages) and excel in conciseness and expressivity there, while general-purpose

languages are usually Turing-complete and can do the same work. Most embedded languages

show their advantages in the conciseness and expressivity in just this limited domain. For exam-

ple, SQL is a query language for databases and is (in its basic incarnation) not Turing-complete,

but can describe a complex set of relational queries with a relatively small amount of code. The

SQL semantics could be simulated precisely in a general-purpose language, albeit with a lot of

simulation overhead. Thus, SQL can clarify the meaning and intention of some part of a program,

improving that and only that part over a general-purpose implementation. Furthermore, most host

languages are general-purpose languages that are Turing-complete and thus as powerful as realis-

tically possible.

Though we require a simulation exists, we would like to stress that its efficiency does not effect

the practicality of out framework. The simulation is a tool for guaranteeing noninterference of the

extended semantics of the composed language. Thus, the size of the simulation would not matter,

since it would not be used in practice.

Another relevant question is whether our requirements are too strong. Namely, we require non-

interferent input programs. Type systems are still important once one already knows that a function

complies with noninterference. For example, a typing can act as a certificate for a program, such

47

that remote clients can check for actual noninterference. Also, our overall goal tries to formally es-

tablish the safety of a composed language from its components. Typing for a known noninterferent

embedded program still needs to be liftable to the overall language, which our approach provides.

3.6 Case Study

This section formalizes a case study for applying our framework. In Subsection 3.6.1 we introduce

While. The following subsection sketches our fragment of SQL, gives its type system, and states

noninterference. Subsection 3.6.3 formalizes the composed language. In the last subsection, a full

development of the proofs required for applying the framework to the composed language can be

found.

3.6.1 Host: WHILE

We base our exposition on a simplified version of the while language in [89]. This is a simple

While language, with the following expressions and statements.

e ::= n | x | e⊙ e c ::= x := e | c; c′ | if e then c else c′ | while e do c

The language only supports integer values. A state µ binds variables to integers. We use a natural

semantics. Expressions are assumed side-effect free, and evaluated by µ(e).

µ(e) =

n e = n

µ(x) e = x

µ(e1)J⊙Kµ(e2) e = e1 ⊙ e2

48

As is usual, µ[x := v] denotes the state µ′ that is identical to µ except for mapping x to v:

µ[x := v](y) =

v y = x

µ(y) else

The semantics connects an input state and a statement with an output state and is fully standard.

µ, x := e⇒ µ[x := µ(e)]
S-Ass

µ, c⇒ µ′ µ′, c′ ⇒ µ′′

µ, c; c′ ⇒ µ′′
S-Seq

µ(e) 6= 0 µ, c⇒ µ′

µ, if e then c else c′ ⇒ µ′
S-IfT

µ(e) = 0 µ, c′ ⇒ µ′

µ, if e then c else c′ ⇒ µ′
S-IfF

µ(e) 6= 0 µ, c⇒ µ′ µ′,while e do c⇒ µ′′

µ,while e do c⇒ µ′′
S-WhileT

µ(e) = 0

µ,while e do c⇒ µ
S-WhileF

Since the language only supports integers, it is not necessary to have a ground type system. A

typing environment Γ binds variables to security levels. Judgments have the form Γ ⊢ e : ℓ and

Γ ⊢ c : ℓ ok and are also standard.

Γ ⊢ n : ℓ
T -Lit

Γ ⊢ x : Γ(x)
T -V ar

Γ ⊢ e : ℓ Γ ⊢ e′ : ℓ
Γ ⊢ e⊙ e′ : ℓ T -Exp

Γ ⊢ e : ℓ ℓ ⊑ ℓ′

Γ ⊢ e : ℓ′ T -ESub

Γ ⊢ x : ℓ Γ ⊢ e : ℓ′ ℓ′ ⊑ ℓ
Γ ⊢ x := e : ℓ

T -Ass
Γ ⊢ c : ℓ ok Γ ⊢ c′ : ℓ ok

Γ ⊢ c; c′ : ℓ ok T -Seq

Γ ⊢ e : ℓ Γ ⊢ c : ℓ ok Γ ⊢ c′ : ℓ ok
Γ ⊢ if e then c else c′ : ℓ ok

T -If Γ ⊢ e : ⊥ Γ ⊢ c : ℓ ok
Γ ⊢ while e do c : ℓ ok

T -While

Γ ⊢ c : ℓ ok ℓ ⊑ ℓ′

Γ ⊢ c : ℓ′ ok T -SSub

49

Two states are indistinguishable if they agree on all observable variables: µ1 ∼Γ,ℓ µ2 ⇐⇒

∀x.Γ(x) ⊑ ℓ =⇒ µ1(x) = µ2(x). Noninterference states that a typed computation, when

started with indistinguishable states, results in indistinguishable states. For a proof we refer to [89]

or the sketches in the background chapter.

∀ℓ,Γ, c, µ1, µ2, µ
′
1, µ

′
2.Γ ⊢ c : ℓ ok ∧ µ1 ∼Γ,ℓ µ2 ∧ µ1, c⇒ µ′1 ∧ µ2, c⇒ µ′2

=⇒ µ′1 ∼Γ,ℓ µ
′
2

3.6.2 Embedded Language: SQL

As an embedding, we use an expressive fragment of SQL, the Structured Query Language. The

language, its syntax and semantics and its secure type system are detailed in Section 6.2.

For composition purposes, the details of said language are not important. We only stress two

points here. First, terms and variables in the language are denoted by ċ and ẋ, with the dot clearly

separating them from host-level statements and variables. The embedded state is denoted by ν,

and a typing environment by ∆.

Second, the embedded type system makes judgments of the form ∆ ⊢ ċ : ℓℓr• /ℓs ok. The type

ℓℓa• /ℓs is to be read as:

• The result of this query are rows with columns typed according to ℓ•, that is, column one is

typed according to ℓ1, column two is typed according to ℓ2, and so on.

• The overall result is typed additionally with a confidentiality level of ℓr.

• The query has side effects with a lower bound of ℓs.

3.6.3 Composed Language

This section formalizes the extension of the host language, to create a composed language of

WHILE and SQL. This consists of adding an evaluation statement type, extending the semantics,

and giving it a typing that allows reasoning from the components’ noninterference theorems. We

50

restrict ourselves to transfer simple integers. We add the statement x1, . . . , xn := eval x′ in ċ for

evaluation, where xi designate the variables that will hold the result, and x
′ is a host-level variable

that is a parameter for the embedded computation ċ. We will use x• to denote a list of variables.

We extend the host semantics in the following two ways. First, the embedded state ν is threaded

through the original reduction rules, which do not update the embedded states themselves. In the

case of WHILE, this is unambiguous. As an example, the sequence rule update looks like the

following.

µ, c1 ⇒ µ′ µ′, c2 ⇒ µ′′

µ, c1; c2 ⇒ µ′′ →
µ, ν, c1 ⇒ µ′, ν ′ µ′, ν ′, c2 ⇒ µ′′, ν ′′

µ, ν, c1; c2 ⇒ µ′′, ν ′′

In languages with multiple nested reductions this threading will induce a certain evaluation order.

Second, reduction of eval is given by the following new rules.

ν, ċ[ẋ := µ(x′)]⇒ ν ′, ∅
µ, ν, x• := eval x′ in ċ⇒ µ[x1 := 0][. . .][xn := 0], ν ′

ν, ċ[ẋ := µ(x′)]⇒ ν ′, s s 6= ∅ s(0) = (n1, . . . , nn)

µ, ν, x• := eval x′ in ċ⇒ µ[x1 := n1][. . .][xn := nn], ν
′

Typing rules are changed accordingly. That is,∆ is threaded through the original typing rules, and

statement types are extended by the lower bound of changes in the embedded state. Furthermore,

we add the following typing rule for eval.

Γ ⊢ x′ : ℓ ∆, [ẋ : ℓ] ⊢ ċ : ℓℓ2• /ℓs ok ∀i.ℓi ⊔ ℓ2 ⊑ Γ(xi)

Γ,∆ ⊢ x• := eval x′ in ċ : (
d
Γ(xi)) ⊓ ℓS ok

Indistinguishability is lifted component-wise, that is, µ1, ν1∼̈Γ,∆,ℓµ2, ν2 ⇐⇒ µ1 ∼Γ,ℓ µ2 ∧

ν1∼̇∆,ℓν2. This suffices because SQL values, that is, result sets, do not occur as values in the

51

composed language. Then noninterference is stated analogously to the WHILE case.

∀ℓ,Γ, c, µ1, ν1, µ2, ν2, µ
′
1, ν
′
1, µ

′
2, ν
′
2.

Γ ⊢ c : ℓ ok ∧ µ1, ν1 ∼̈Γ,∆,ℓ µ2, ν2 ∧ µ1, ν1, c⇒ µ′1, ν
′
1 ∧ µ2, ν2, c⇒ µ′2, ν

′
2

=⇒ µ′1, ν
′
1 ∼̈Γ,∆,ℓ µ

′
2, ν
′
2

3.6.4 Proofs

This section applies our framework approach outlined in section 3.4 and formally verifies that

the composition of While and SQL from the previous section is safe, that is, typable composed

programs are noninterfering. For this, recall the main steps:

1. Embedded-language programs can be simulated in the host (Requirement 5)

2. The simulation is noninterferent and can be typed (Requirement 11)

3. Replace embeddings with the simulation; the now pure-host program is typable, implying

noninterference of the composed program (Requirements 13 & 14)

Simulation

For the first step, we need to establish that the host language is computationally at least as powerful

as the embedded language. In our case, we note that WHILE is Turing-complete, and SQL is

Turing-computable. Thus, any program ċ can be simulated by a program c.

For the further steps, we also need to argue about the shape of the simulation. This is important

because the simulation works with encodings, at least of the embedded-level state. Most generally,

the database might be encoded into a single integer. Then functionally, the embedded part of eval

corresponds to an integer function with two inputs and two outputs. However, WHILE’s type

system cannot give the database, thus encoded, a correct type, as all columns are collapsed into a

single number.

Instead, we use multiple integers to encode the embedded state. Namely, each column is en-

52

coded into an integer. For example, we could use Church’s encoding of lists into nested pairs, and

then a pairing function like that of Cantor. The number of necessary integers is known statically,

since the database “schema” is known. Now each column representation can be given the level of

the corresponding column in the database.

Traversing the database can be implemented as iterative decoding and unpacking of the head

pair, and other list manipulations can be implemented in that fashion, too. select can be imple-

mented by traversing the database, evaluating the condition, potentially computing and adding the

result. update iterates, checks the condition and updates the current pair. insert can simply add a

new entry at the head of the lists, since the order does not matter, while delete deletes correspond-

ing elements in all columns.

Formalization For simplicity, we assume that for any given composed program, the names of

the columns, as described by ∆, do not appear in the program. We can then define the encoding

µe of embedded state ν as µe(t.c) = encode-column(ν, t, c), where t ranges over table names and

c over respective columns. µe also contains space for temporaries necessary in the simulation of

operations.

The code fragments in Figure 3.1 through Figure 3.4 show the simulations of SQL statements.

The first simulation (Figure 3.1) is of a simple select statement of the form select ė from ṫwhere ė′

over our encoding. The code assumes that table ṫ has columns c1,. . . ,cn. empty_list is the integer

value encoding an empty list, while head, tail and append are macros for the list operations over

an encoding. Finally, expr is a macro for SQL expression evaluation. As our languages agree on

integer computations, this is a straightforward translation, replacing column references with the

corresponding temporary variables, e.g., c1 with h_c1.

The second code fragment (Figure 3.2) simulates insertion. The code follows our semantics,

where one column is filled with the given value, and all other columns of the new row are ini-

tialized to zero. The third code fragment (Figure 3.3) simulates update. The code iterates over

the encoding, rebuilding the storage and updating a column when necessary. The fourth and last

53

r e s u l t := emp t y _ l i s t ;

tmp_c1 := t _ c 1 ; tmp_c2 := t _ c 2 ; . . .

whi l e tmp_c1 <> emp t y _ l i s t do

h_c1 := head (tmp_c1) ; h_c2 := head (tmp_c2) ; . . .

tmp_c1 := t a i l (tmp_c1) ; tmp_c2 := t a i l (tmp_c2) ; . . .

tmp_e ′ := expr (ė′ , h_c1 , h_c2 , . . .) ;

i f tmp_e ′ <> 0 then

tmp_e := expr (ė , h_c1 , h_c2 , . . .) ;

r e s u l t := append (r e s u l t , tmp_e) ;

Figure 3.1: select simulation

tmp_e := expr (ė) ;
t _ c i := append (t _ c i , tmp_e) ;

t _ c 1 := append (t _ c 1 , 0) ; . . .

Figure 3.2: insert simulation

tmp_c1 := t _ c 1 ; tmp_c2 := t _ c 2 ; . . .

t _ c 1 := emp t y _ l i s t ; t _ c 2 := emp t y _ l i s t ; . . .

whi l e tmp_c1 <> emp t y _ l i s t do

h_c1 := head (tmp_c1) ; h_c2 := head (tmp_c2) ; . . .

tmp_c1 := t a i l (tmp_c1) ; tmp_c2 := t a i l (tmp_c2) ; . . .

tmp_e ′ := expr (ė′ , h_c1 , h_c2 , . . .) ;

i f tmp_e ′ <> 0 then

h_c i := expr (ė , h_c1 , h_c2 , . . .) ;

t _ c 1 := append (t _ c 1 , h_c1) ; . . .

Figure 3.3: update simulation

tmp_c1 := t _ c 1 ; tmp_c2 := t _ c 2 ; . . .

t _ c 1 := emp t y _ l i s t ; t _ c 2 := emp t y _ l i s t ; . . .

whi l e tmp_c1 <> emp t y _ l i s t do

h_c1 := head (tmp_c1) ; h_c2 := head (tmp_c2) ; . . .

tmp_c1 := t a i l (tmp_c1) ; tmp_c2 := t a i l (tmp_c2) ; . . .

tmp_e ′ := expr (ė , h_c1 , h_c2 , . . .) ;

i f tmp_e ′ == 0 then

t _ c 1 := append (t _ c 1 , h_c1) ; . . .

Figure 3.4: delete simulation

54

fragment (Figure 3.4) simulates deletion. Similar to update, the code iterates over the encoding,

rebuilding the storage and skipping rows where the expression evaluates to a non-zero value.

It is straightforward to show that the simulations are correct on states that are encodings derived

with encode-column. The mapping S of SQL statements ċ to the corresponding programs above

is that a correct simulation and satisfies Requirement 5.

Noninterference

The second step of our approach is split into two parts: noninterference and typability. Noninter-

ference of the simulation is derived from the conditions of the eval.

In our case, both α and ατ are simply identity functions. Integers of the while language are

translated to equivalent integers of SQL: α(n) = n. Similarly, we assume the same lattice for host

and embedded language, so we translate a level from the host to the same level in the embedding:

ατ (ℓ) = ℓ.

γ takes a list of tuples and projects it such that the result is the first tuple, if such exists, or zeros

otherwise.

γ(ν) =

(0, . . . , 0) ν = ∅

ν(1) else

γτ takes the element and length labels of SQL and combines them into their upper bound to account

for the type of the data values, as well as for the result being empty or not: γτ (ℓℓt• /ℓs)(i) = ℓi ⊔ ℓt.

The join ⊔ is monotonous, so γτ is. Indistinguishability of two lists of tuples implies that they

are either both empty or agree on their first element (or observable components thereof). Thus,

indistinguishable results sets will be projected to indistinguishable tuples at the host level.

With these definitions, noninterference applies as established by Lemma 2.

Noninterference is a semantical property defined over inputs and outputs. Since the simulation

is functionally equivalent, that is, produces the same outputs for the same inputs, the simulation is

also noninterferent.

55

Typing

Now that we have shown that there exists a simulation of the embedded program, we need to show

that the simulation is typable with respect to the types of the eval.

We start by giving an environment mapping T . Given a typing environment∆ of the embedded

language, giving security levels ℓc to columns c, we define T (∆)(t_c) = ∆(c). We will show

typability of S with respect to this mapping.

Part one of the Type-Correct Simulation Requirement requires that typed embedded states are

mapped to typed host-level encodings. This is trivially given. States are typable if they structurally

conform to the typing environment: all and only those columns mapped in the environment exist

in the state. As columns are encoded into variables, and those variables are mapped in T (∆), it

follows that when the embedded state is typed with respect to ∆, then the encoded state is typed

with respect to T (∆).

Part two requires that whenever an eval statement is typed with respect to environments Γ and

∆, then the simulation is typed with respect to Γ and T (∆). For our simulation, this is given as our

helper macros head, tail and append are generic over one level, and inputs and outputs are at that

level in all simulation fragments. Furthermore, expr computes the exact same integer expression of

ė, and column/variable levels are identical. As integer expressions have the same typing judgments

in our while and SQL languages, expr can be typed, too. Thus, the code fragments are all typable

with respect to T (∆).

Next, we need to show that the encoding is fine-grained enough, that is, indistinguishability is

preserved. For clarity, we will assume a simple table instead of a set of tables. We have µ1 ∼Γ,ℓ

µ2 ⇐⇒ ∀x.Γ(x) ⊑ ℓ =⇒ µ1(x) = µ2(x) and ν1 ∼∆,ℓ ν2 ⇐⇒ ∆(table) ⊑ ℓ =⇒ ↓∆ℓ (ν1) =

↓∆ℓ (ν2), where Γ = T (∆). Let us consider ∆(table) ⊑ ℓ, as the other case is trivial. Here ↓∆ℓ (ν)

erases columns where ∆(c) 6⊑ ℓ. So if ν1 ∼∆,ℓ ν2, then for all c such that ∆(c) ⊑ ℓ and all rows

i ν1(i).c = ν2(i).c. As the equality rows for all rows, it follows that the encodings of the columns

are also equivalent, since encodings must be bijections. Thus, µ1(vc) = µ2(vc) for all column

56

variables vc such that ∆(c) ⊑ ℓ. Thus, for all v such that Γ(v) ⊑ ℓ we have µ1(v) = µ2(v),

and thus µ1 ∼Γ,ℓ µ2. This derivation guarantees that the encoding is both indistinguishability-

preserving and typable.

It thus follows that the simulation is typable with respect to T , satisfying requirement 11.

Replacing eval

The last step of our approach ties the previous subsections together and shows how to replace the

eval for the simulation. We first need a technical lemma about typing judgments of extended typing

environments.

Lemma 17 (Weakening). Given typing environments Γ and Γ′ such that Γ′ is an extension of Γ,

then for all statements c and levels ℓ, if Γ ⊢ c : ℓ ok, then Γ′ ⊢ c : ℓ ok.

Proof. This is a standard lemma. First, we show by induction of on the derivation an equivalent

statement for expressions: if Γ ⊢ e : ℓ, then Γ′ ⊢ e : ℓ.

Case T -Lit is immediate.

Case T -V ar. As Γ′ is an extension of Γ, it agrees with Γ on x. Thus, an we can appeal to

T -V ar which yields Γ′ ⊢ x : Γ(x) = Γ′(x) = ℓ.

Case T -Exp. We have Γ ⊢ e1 : ℓ and Γ ⊢ e2 : ℓ. By inductive hypothesis, Γ′ ⊢ e1 : ℓ and

Γ′ ⊢ e2 : ℓ. An application of T -Exp yields the result.

Case T -ESub is analogous to the previous case.

The main proof proceeds by induction on the derivation of Γ ⊢ c : ℓ ok.

Case T -Ass. Then Γ ⊢ x : ℓ, Γ ⊢ e : ℓ′ and ℓ′ ⊑ ℓ. By the previous statement about

expressions, Γ′ ⊢ x : ℓ, Γ′ ⊢ e : ℓ′. An application of T -Ass yields the result.

Case T -Seq. Then Γ ⊢ c : ℓ ok and Γ ⊢ c′ : ℓ ok. By inductive hypothesis, Γ′ ⊢ c : ℓ ok and

Γ′ ⊢ c′ : ℓ ok. Thus by T -Seq Γ′ ⊢ c; c′ : ℓ ok.

57

Cases T -If , T -While and T -SSub are analogous to the previous case.

Lemma 18 (Substitution Typable). Given an eval statement, let ceval be its typable host simulation.

Assume a context E[•], that is, a composed program with a statement hole. Furthermore assume

an x := eval x′ in ċ, Γ, ∆ and ℓ such that Γ,∆ ⊢ E[x := eval x′ in ċ] : ℓ ok. Then there exists an

extension Γ′ of Γ such that Γ′,∆ ⊢ E[ceval] : ℓ ok.

Proof. First note that this is not a traditional substitution lemma, since the substituted element is

not just a variable. Furthermore, the typing environment is actually growing since we need to type

the temporaries of the simulation. The proof is an induction over the derivation of the typing of

E[x := eval x′ in ċ].

E = •: Then the statement is correct by the proofs in the previous subsections.

E = x := e or E = x := eval x′ in ċ Vacuous, no nested (composed-level) statement.

E = c;E ′ or E = E ′; c: In both cases typing ends with the sequencing rule, which yields that

both c and E ′[x := eval x′ in ċ] are typed under Γ and ∆. By inductive hypothesis, E ′[ceval]

is typed under a Γ′ and∆, where Γ′ is an extension of Γ. By Lemma 17, c can be typed under

Γ′. By the sequencing rule, we gain a complete typing of the sequence again. The cases for

conditionals if e then c elseE ′/if e thenE ′ else c and loop while e doE ′ are analogous.

We can use this lemma to iteratively replace all eval statements in the original composed pro-

gram with their respective simulations. The result is a typing of a pure-host statement under the

composed-language rules. The next lemma states that such a typing induces the corresponding

host-level typing of the statement.

Lemma 19 (Eval-free Composed To Host). If a statement c that does not contain eval is typed

under Γ and ∆ as Γ,∆ ⊢ c : ℓ ok, then c can be typed as Γ ⊢ c : ℓ ok.

58

Proof. By induction on the derivation of Γ,∆ ⊢ c : ℓ ok. Since c does not contain eval, no sub-

statement contains an eval, either. Thus the inductive hypothesis applies. Furthermore, the eval

typing rule cannot appear in the derivation, because it only appears to eval. We can thus reconstruct

a host-level typing corresponding to the (copied) composed-level typing rule.

Corollary 20 (Simulation Pure-Host Typable). If c is a composite program that is typable as

Γ,∆ ⊢ c : ℓ ok, then there exists an extension Γ′ of Γ that encodes ∆ such that the simulation

program ceval, where all eval statements have been substituted for their simulation, is typable as

Γ′ ⊢ ceval : ℓ ok.

This formally proves that the simulation program is noninterferent by noninterference of typed

host-language programs. Now, the final step needs to formally show that the simulation program

is equivalent to the original program. This is obviously modulo the behavior of temporaries of the

simulation, which are exposed to the host.

Theorem 21 (Simulation Equivalence up to Γ). Given an eval statement, let ceval be its typable

host simulation. If Γ,∆ ⊢ c : ℓ ok, then there exists an extension Γ′ such that Γ′ ⊢ ceval : ℓ ok,

and for all µ1, µ
′
1, ν, ν

′, µ2 where Γ ⊢ µ1 ok, Γ
′ ⊢ µ2 ok and µ2 is an extension of µ1 such that

the extension encodes ν, and µ1, ν, c ⇒ µ′1, ν
′, then there exists µ′2 an extension of µ′1 such that

µ2, ceval ⇒ µ′2 and the extension encodes ν
′.

Proof. We find Γ′ by Lemma 18. Now induction on the derivation of µ1, ν, c ⇒ µ′1, ν
′. We show

select cases.

c ≡ x := e. This base case results in ceval = c, as c does not contain an eval statement. Then

we can set µ′2 = µ2[x := µ2(e)], which is an extension of µ′1 = µ1[x := µ1(e)], because e is

restricted to variables in µ1 and µ2 agrees with µ1 on those. The extension also encodes ν ′

correctly, because ν = ν ′ and x is the only changed mapping.

c ≡ while e do c′. We treat the case that µ1(e) 6= 0 (S-WhileT), the other is analogous and

simpler. First, ceval = while e do c′eval. e can only refer to variables in the domain of µ1

59

because of c being well-typed. µ2 agrees with µ1 on all variables in µ1. Thus µ2(e) =

µ1(e) 6= 0. Now, by inductive hypothesis, because µ1, ν, c
′ ⇒ µ′′1, ν

′′ and c is typed, there

exists µ′′2 such that µ2, c
′
eval ⇒ µ′′2, where µ

′′
2 is an extension of µ′′1 that encodes ν ′′. Also,

by inductive hypothesis, because µ′′1, ν
′′,while e do c′ ⇒ µ′1, ν

′, there exists µ′2 such that

µ′′2,while e do c
′
eval ⇒ µ′2, where µ

′
2 is an extension of µ′1 that encodes ν

′. The cases for if

and sequence are similar.

c ≡ x := eval e in ċ. Then ceval = c′; x := x′, where c′ is the simulation of eval and the

assignment writes back the value from temporary x′. By the properties of the simulation we

have that µ′′2, the state after evaluating c
′, is identical to µ1 on the domain of µ1, because the

pure simulation is constructed to not affect original variables. The extension part however

encodes ν ′ by property of being a simulation. Finally, µ′2 = µ′′2[x := µ′′2[x
′]], and we have

µ′′2[x
′] = µ′1[x] by virtue of the simulation. Thus, the extension part of µ′2 over µ

′
1 encodes

ν ′, and µ′2 agrees with µ
′
1 on the domain of µ′1.

Corollary 22 (Replacement). For a typable composed program c, the program ceval created by

replacing all eval statements with a corresponding simulation, is typable and functionally equiv-

alent to c.

This proves the requirements 13 and 14. This concludes all steps of our framework. Formally,

we have proven all the requirements of Theorem 16. This means that the theorem applies, and

guarantees the soundness of the security type system of the composed language. Any typable

program composed of While and SQL code is guaranteed to be noninterfering.

60

Chapter 4: SECURITY COMPLETENESS

The content of this chapter is based on [41].

4.1 Introduction

The previous chapter introduced our framework approach to proving security-typed composed lan-

guages secure under certain assumptions to the composition. The framework, informally, replaces

all embedded programs with simulations and then argues over a pure host-language program. One

of the requirements is that the simulation of an embedded program fragment is typable with respect

to the embedded program’s original typing.

In this chapter, we introduce and study Security Completeness. If a security-typed language is

security-complete, all noninterfering computations have a typable representation. Thus a security-

complete language satisfies the typability requirement trivially, as simulations are proven nonin-

terfering by Lemma 2 and simulation correctness.

Suppose one has a noninterferent function f(x, y) that produces a public output from public

input x and secret input y. To obtain a typeable version f ′ of f , one can first define a function g

to be the same function as f , but type both of g’s inputs as public, and its output also as public.

Intuitively, assuming that the underlying language is Turing complete, and that any function that

involves only a single security level is typeable, g can be expressed and typed. Now, one can define

f ′(x, y) = g(x, c), for some suitable constant c, which is well-typed since, usually, constants are

public. A typical noninterference theorem guarantees that f(x, y1) = f(x, y2), for all y1, y2, which

ensures that f = f ′.

This basic argument may seem trivial; actually showing that it holds for classes of languages

providing operations over certain classes of data types (rather than a specific language with integer

data) brings up several issues. Our basic approach for establishing this property is first described

in Section 4.2 and formalized in Section 4.3. We then, in Sections 4.4 and 4.5, show how more

complex data types and references can be supported, which adds additional requirements on the

61

host language that would generally be expected to be satisfied by languages that support such

entities. Note that the current work does not support extending the types of inputs and outputs

to functions. Finally, in Section 4.6, we show that the requirements placed on host languages are

reasonable by showing how three languages, the system of [89], FlowML [72], and the work in

[14] satisfy the requirements.

In this chapter we show how arbitrary noninterferent functions can be computed in certain

classes of security-typed languages, and show that these classes of languages are reasonable.

4.2 Approach

This section details our approach in the simplified case of output indistinguishability being output

equivalence. This is, for example, the case if the output is just a single integer value that is as-

sumed to be public, which is a common form to formalize noninterference (e.g., [72]). We will

formalize this setting in the next section, and the following sections will detail generalizations to

more complicated values. A subsection treats the differences between termination-sensitive and

termination-insensitive noninterference.

4.2.1 Basic Approach

If a function f is computable, then there exists a program p that computes f , that is, the output of

p agrees with f under the same inputs for the right meaning of inputs and output. Noninterference

is a dependency problem, If a program is noninterferent, then the (low) result does not depend

on high inputs. This means that, for any high inputs, the low output value will be the same. We

are thus able to substitute arbitrary constants for those inputs when computing only low outputs.

However, we need to prove the existence or wellformed-ness of said program. We approach this

from a computability direction, where constant functions and function composition are guaranteed

by primitive recursion.

We prefer a composition requirement over more direct manipulations because it abstracts the

exact syntax and semantics of the language involved. Note that we do not need to inspect programs

62

at all, as required by, for example, a slicing approach. Instead, we show the existence of some sep-

arate program that is typable and computes an equivalent function. This allows us a generalization

that can accept, for example, both imperative and functional languages. Note that it is important to

find an equivalent function: for our simulation argument, it is not enough to compute correctly up

to indistinguishability.

The final step is showing typability according to the noninterference signature of this intuitive

construction. We observe that, trivially, every function is noninterferent if all inputs are considered

public - noninterference resolves to determinism (or some similar notion in the case of nondeter-

ministic languages). This generalizes to any single security level. It seems reasonable to require

that a non-trivial security-type system should be able to type a program with a security typing

assigning a single level to everything. This is our first requirement for a security-typed language.

Next, projection and constant functions should be typable at the respective levels. Under pro-

jection we understand here functions of multiple inputs that return one of those inputs. For exam-

ple, projection π1(x, y) = x should be typable as ℓx × ℓy → ℓx for any ℓx and ℓy. The constant

function is noninterferent no matter the security typing, since the output is always the same and

does not depend on the inputs. Our requirement is that it can be typed with any result level, includ-

ing public.

Last, we require that composition is typable if the components are typable and agree on input

and output types. By construction, the input types of the composition agree with the security typing

for the original program, and the output type with the output type of said program. Then a typing

states the same (or extended) noninterference property that we intended for the original program,

and the construction guarantees functional equivalence.

A demonstration is shown in Figure 4.1. The original is shown in part 4.1a: it is the program

p = a := (x + y) − (y − x) computing f(x, y) = 2x. The result of the transformation is shown

in part 4.1b. The first block projects x, the second block is the constant 0 function, the third block

represents the original program in a low-typable version, and the fourth block is the final result. The

overhead comes from the necessity of renaming variables when composing in imperative languages

63

Program Typing

a := (x + y)− (y − x); [x : L, y : H, a : L]

(a) Original Program

Code Typing High-level equivalent

tx1 := x; ty1 := y; to1 := tx1; [tx1 : L, t
y
1 : H, t

o
1 : L] to1 = π1(x, y)

tx2 := x; ty2 := y; to2 := 0; [tx2 : L, t
y
2 : H, t

o
2 : L] to2 = c0(x, y)

tx3 := to1; t
y
3 := to2; [tx3 : L, t

y
3 : L, t

o
3 : L] to3 = pL(to1, t

o
2)

to3 := (tx3 + ty3)− (ty3 − tx3); = pL(x, 0)

a := to3;

(b) Transformed Program

Figure 4.1: Simple Program with Security Context

to prevent side effects. The original program is not typable under the signature that assumes x low

and y high, because the assignment cannot be typed. The new construction, however can be typed

and computes essentially the same function.

Amore complicated example is shown in Figure 4.2. Here we have a programwith two outputs,

one public and one confidential. In that case essentially we run the program twice, once for each

output level. The first run computes for the public output. As before, by noninterference the public

part of the output will be computed correctly. The confidential output, however, is not guaranteed

to be correct. This is the reason we run the original program another time. This time we treat

all inputs as confidential. Then we can run a single-level version with level H . All outputs of

this run will be confidential. We ignore the formerly public output and only extract the originally

confidential output. Combining the public result from the first run and the confidential result from

the second run yields the final result.

4.2.2 Termination Sensitivity

The development in the previous subsection only holds if we consider termination-sensitive non-

interference. In that case, two runs on indistinguishable inputs have to agree on their termination

64

Program Typing

if y > 0 then [x : L, y : H, a : L b : H]
a := 0; b = 1;

else

a := 0; b = 2;

(a) Original Program

Code Typing High-level equiv.

tx1 := x; ty1 := y; to1 := tx1; [tx1 : L, t
y
1 : H, t

o
1 : L] to1 = π1(x, y)

tx2 := x; ty2 := y; to2 := 0; [tx2 : L, t
y
2 : H, t

o
2 : L] to2 = c0(x, y)

tx3 := to1; t
y
3 := to2; [tx3 : L, t

y
3 : L, t

o
3 : L, t

p
3 : L] to3 = pL(to1, t

o
2).a

if ty3 > 0 then = pL(x, 0).a
to3 := 0; tp3 = 1; tp3 = pL(to1, t

o
2).b

else = pL(x, 0).b
to3 := 0; tp3 = 2;

tx4 := x; ty4 := y; to4 := ty4; [tx4 : L, t
y
4 : H, t

o
4 : H] to4 = π2(x, y)

tx5 := to1; t
y
5 := to4; [tx5 : H, t

y
5 : H, t

o
5 : H, t

p
5 : H] to5 = pH(to1, t

o
4).a

if ty5 > 0 then = pH(x, y).a
to5 := 0; tp5 = 1; tp5 = pH(to1, t

o
4).b

else = pH(x, y).b
to5 := 0; tp5 = 2;

a := to3;
b := tp5;

(b) Transformed Program

Figure 4.2: Dual-Output Program with Security Context

65

behaviour, that is, the first run terminates if and only if the second run terminates. Termination-

insensitive noninterference, on the other hand, only makes a statement over two terminating runs.

The assumption underlying termination-insensitive noninterference is that an attacker might not be

able to observe (non-)termination, or that the one bit of information leaked through termination is

acceptable. In that case, the approach outlined in the previous subsection cannot be guaranteed to

simulate correctly only up to termination, because termination may depend on the high input, and

thus the choice of constants.

The construction outlined above, however, can be extended so that the constructed code cor-

rectly mimics termination-insensitive noninterfering programs. Our solution imposes further re-

quirements that allow the application of a standard technique in computability: dovetailing (inter-

leaving computations). If we require the set of values valid for the high inputs to be recursively

enumerable, we can test the function on all possible inputs. For this test to succeed, we have to

be able to simulate the function in a stepwise manner, e.g., as in a small-step semantics. We will

interleave the simulations of the different input values, such that if there is at least one value that

forces termination, we will find that case. As an example, assume that fk(x) denotes a computation

of f(x : N) for k steps. Then an interleaving could be f1(0), f2(0), f1(1), f3(0), f2(1), f1(2),

If for any x, f(x) = v is defined, there is a k such that fk(x) = v, and the interleaving contains

this computation.

Such an interleaving will terminate if there is at least one terminating high value. To complete

correctness with respect to the original, we compute the original function in a high setting in

sequence. This will ensure that the simulation does not terminate when it should not.

We demonstrate this approach in Figure 4.3. To interleave computations, our “state” is a pair of

natural numbers 〈ty, tn〉, where ty denotes the input to the program and tn denotes the number of

steps to execute the program. We will use the Cantor pairing function to encode this pair of natural

numbers into a single natural number (in the program denoted by ti). The function is defined as

C(x, y) =
1

2
(x+ y)(x+ y + 1) + y

66

and its inverse is

C−1(z) = 〈w − z + w2 + w

2
, z − w2 + w

2
〉, where w =

⌊
√
8z + 1− 1

2

⌋

The Cantor pairing function has three properties that are important for our application:

• It is computable, that is, there are while programs computing the numbering.

• It is reversible and the reverse is computable.

• The pairing is bijective, i.e., each pair is mapped to one natural number, and each natural

number corresponds to one pair.

These properties allow us to use the single counter ti to exhaustively search the space of all pairs.

We use cantor1 to denote a macro of the first component of the reverse mapping, and cantor2 to de-

note a macro for the second component. An implementation can be derived from the mathematical

notation above.

We assume step-wise simulation is given by a macro sim with six parameters: an encoding of

the program to run, the two program inputs, the number of steps to simulate, the potential result

variable, and a flag variable to denote whether the run was complete after the indicated number of

steps.

Note that such a program is guaranteed to exist as the while language is Turing-complete:

There is a general Turing machine that can be used to simulate any Turing machine. Accordingly,

any Turing-complete language has a general evaluation program that can simulate any (sufficiently

encoded) program in the language. This reasoning can be extended to step-wise simulation: The

general Turing machine can be extended by another tape with a unary encoding of the number

of steps, and the transition function can be extended such that simulation steps only happen as

long as the counter tape hasn’t run out of steps. Again by Turing-completeness this implies that a

corresponding evaluation program for the while language exists, and we denote it by sim.

The transformation is shown in Figure 4.3. The first part gives the original program. The

67

typable simulation is given in the second part. The first three blocks iteratively compute the values

of the program for increasing values of y, where we use sim to simulate the given program for tn

steps and assign ts = 0 if the program finished. If the loop terminates, a result for some y will be

in to2. Note that the loop only involves L variables and can thus be typed as L. The following three

blocks compute an H version of the program for termination correctness: The original program

would not terminate for any input y > 10, but the simulation so far will find that the program

terminates for input y = 0. So to make the simulation non-terminating in such cases, we run anH

version of the original program over the complete original input (but will not use its output). The

last block assigns the result of the low simulation as the overall result.

4.3 Formalization

In this section we formalize the approach and requirements outlined in the previous section. We

start by introducing generic notation for the security-typed language and its security-type system,

and formally defining our requirements in the first subsection. In the second subsection, we for-

mally show how these requirements lead to our revised hypothesis.

Note that in this section we restrict ourselves to functions with a single output. The following

sections will generalize to nonrecursive and recursive datatypes, covering functions with multiple

outputs by functions with tuple outputs.

4.3.1 Definitions & Requirements

We assume a security-typed language L and its security-type system T with associated lattice S.

The languages provides a set of values, ranged over by v, a set of programs, ranged over by p, and

state or input, ranged over by µ. The language has associated semantics that reduces a program and

state to a value and state. We denote the semantics by (p, µ) s (v, µ
′). We define ⇓ to include

nontermination, such that (p, µ) ⇓ (v, µ′) if (p, µ) s (v, µ
′), and (p, µ) ⇓ (⊥,⊥), if there is no

such (v, µ′).

We connect the semantics to a functional interpretation through two predicates defined by the

68

Program Typing

a := x; [x : L, y : H, a : L]
while y 6= 10 do

a := x; y := y + 1;

(a) Original Program

Code Typing High-level equiv.

tx1 := x; ty1 := y; to1 := tx1 [tx1 : L, t
y
1 : H, t

o
1 : L] to1 = π1(x, y)

ti := 0; ts := 1; [ti : L, ts : L]

while ts > 0 do
cantor1(t

i, ty2); [ty2 : L, t
n : L] C−1(ti) = 〈ty2, tn〉

cantor2(t
i, tn);

tx2 := to1; [tx2 : L, t
o
2 : L] pL(tx2, t

y
2)→(tn) to2 ?

sim(pL, tx2, t
y
2, t

n, to2, t
s);

ti := ti + 1;

tx3 := x; ty3 := y; to3 := tx3; [tx3 : L, t
y
3 : H, t

o
3 : H] to3 = π1(x, y)

tx4 := x; ty4 := y; to4 := ty4; [tx4 : L, t
y
4 : H, t

o
4 : H] to4 = π2(x, y)

tx5 := to3; t
y
5 := to4; [tx5 : H, t

y
5 : H, t

o
5 : H] to5 = pH(x, y)

to5 := tx5;
while ty5 6= 10 do

to5 := tx5; t
y
5 := ty5 + 1;

a := to2;

(b) Transformed Program

Figure 4.3: Example Termination-Insensitive Program

69

ni(f, τ1 × · · · × τn → τr) ⇐⇒

∀l ∈ S.top(τr) ⊑ l =⇒
∀x11, x21 : τ1, x12, x22 : τ2,

(∀i.top(τi) ⊑ l =⇒ x1i = x2i) =⇒
f(x11, . . .) = f(x21, . . .)

Figure 4.4: Noninterference

language. A program p computes function f(x1, . . . , xn), if for all µ such that inp,f(x1, . . . , xn, µ),

and (p, µ) ⇓ (v, µ′), we have f(x1, . . . , xn) = resp,f(v, µ
′), where in and res abstract how a

language defines input and output in program p with respect to function f 1. We denote this by

comp(p, f).

The type system provides a set of types, ranged over by τ , and type judgements of the form

Γ ⊢s p : τ , Γ ⊢s v : τ 2and Γ ⊢s µ. Note that for our purposes, it is not necessary to explicitly

include a program counter in the notation. If a specific language needs a pc, it can be treated as

part of Γ or τ . Security completeness is about whole programs, so low side effects are permissible

as long as the resulting function is noninterferent3. We can extract a type level l ∈ S from a

type τ through the function top. We use two predicates to connect a type judgment and function

signature, similar to the semantic connection. A judgment Γ ⊢s p : τ is typed according to f with

signature S = τ1 × · · · × τn → τr, if in
t
p,f(Γ, τ, τ1, . . . , τn) and τr = restp,f(Γ, τ). We denote this

as typed(p, f, S,Γ, τ).

Our definition of noninterference ni for a function f with respect to (security) signature τ1 ×

· · · × τn → τ can be found in Figure 4.4. A program p is noninterferent with respect to f and a

signature τ1 × · · · × τn → τr, if p computes f and f is noninterferent. The type system guarantees

that a typable program is noninterferent with respect to all functions it computes and is typed

1For an example, recall how in the example of Figure 4.1 the inputs were bound to variables x and y and the output

to variable a.
2Note that values v are not required to be programs, but need a type judgment.
3This is sufficient since security completeness is about the function represented by the beginning and ending states

of a program; it does not need to explicitly consider low side-effects that do not change the final result. The pc, thus,

does not need to be considered explicitly in the general results on noninterference.

70

accordingly4:

Γ ⊢s p : τ ∧ comp(p, f) ∧ typed(p, f, S,Γ, τ) =⇒ ni(f, S)

Associated with the security-typed versions we expect ground-typed versions, denoted by a g sub-

script or by ⌊•⌋ (which can be seen as an erasure function removing all security annotations),

that is, the security-typed language is based on a standard language and type system with regular

soundness guarantees, that is, ground-typed programs do not go wrong.

We require the following manipulation functions for annotations.

Requirement 23 (Erasure & Lift). There exist an erasure function ⌊•⌋ and a lift function ⌈•⌉l such

that

∀p, v, µ ∈ L,Γ, τ ∈ T .⌊p⌋ ∈ ⌊L⌋, ⌊v⌋ ∈ ⌊L⌋, ⌊µ⌋ ∈ ⌊L⌋,⊢ Γ⇒⊢ ⌊Γ⌋, ⌊τ⌋ ∈ ⌊T ⌋

∀pg, vg, µg ∈ ⌊L⌋,Γg, τg ∈ ⌊T ⌋, l ∈ S.⌈pg⌉l ∈ L, ⌈vg⌉l ∈ L, ⌈µg⌉l ∈ L,⊢ Γg ⇒⊢ ⌈Γg⌉l,

⌈τ⌉l ∈ L

∀τg, l ∈ S.top(⌈τg⌉l) = l

We define a complete relabeling [•]l = ⌈⌊•⌋⌉l. The identity τ = [τ]top(τ) is required to hold.

We use the requirements on relabeling to form a partial order on types lifted from their security

levels.

τ1 ⊑ τ2 ⇐⇒ ∃τ ∈ T , l1, l2 ∈ S.l1 ⊑ l2 ∧ τ1 = [τ]l1 ∧ τ2 = [τ]l2

Security and ground languages are suitably related:

4The notion that a programmight compute multiple functions might be surprising. But computation here is defined

with respect to what parts of the output state are of interest. For example, consider projection π1(x, y) = x in a WHILE

language.

71

Requirement 24 (Security to Ground.).

∀p, v, µ, µ′,Γ, τ.

Γ ⊢s p : τ =⇒ ⌊Γ⌋ ⊢g ⌊p⌋ : ⌊τ⌋

Γ ⊢s v : τ =⇒ ⌊Γ⌋ ⊢g ⌊v⌋ : ⌊τ⌋

Γ ⊢s µ =⇒ ⌊Γ⌋ ⊢g ⌊µ⌋

(p, µ) s (v, µ
′) =⇒ (⌊p⌋, ⌊µ⌋) g (⌊v⌋, ⌊µ′⌋)

Furthermore, it holds that

typed(p, f : τ1 × · · · × τn → τ,Γ, τ) =⇒

typed(⌊p⌋, f : ⌊τ1⌋ × · · · × ⌊τn⌋ → ⌊τ⌋, ⌊Γ⌋, ⌊τ⌋)

and comp(p, f) =⇒ comp(⌊p⌋, ⌊f⌋).

Furthermore, we can gain security-type system judgments from ground-type judgments for any

security level from S.

Requirement 25 (Single-Level.).

∀l ∈ S.Γg ⊢g pg : τg =⇒ ⌈Γg⌉l ⊢s ⌈pg⌉l : ⌈τg⌉l

∀l ∈ S.Γg ⊢g vg : τg =⇒ ⌈Γg⌉l ⊢s ⌈vg⌉l : ⌈τg⌉l

∀l ∈ S.Γg ⊢g µg =⇒ ⌈Γg⌉l ⊢s ⌈µg⌉l

∀l ∈ S.(pg, µg) g (vg, µ
′
g) =⇒ (⌈pg⌉l, ⌈µg⌉l) s (⌈vg⌉l, ⌈µ′g⌉l)

Furthermore, it holds that

typed(pg, fg, S = τ1 × · · · × τn → τ,Γg, τg) =⇒

typed(⌈pg⌉l, fg, ⌈S⌉l = ⌈τ1⌉l × · · · × ⌈τn⌉l → ⌈τ⌉l, ⌈Γg⌉l, ⌈τg⌉l)

and comp(pg, fg) =⇒ comp(⌈pg⌉l, fg).

Similar to the base cases of primitive recursive functions. we need programs that compute

72

projection and constants.

Requirement 26 (Projection). Let πni (x1, . . . , xn) = xi be the i-th projection function of n inputs.

Let πni : τ1 × · · · × τn → τi be a signature of πni . Then there exists a program pni , a Γ and τ such

that

Γ ⊢s pni : τ ∧ comp(pni , πni)∧

typed(pni , π
n
i : τ1 × · · · × τn → τi,Γ, τ)

Requirement 27 (Constant Function). Let cx,li (x1, . . . , xn) = x be the x-constant function of n

inputs. We have τ1 × · · · × τn → τr a signature of cx,li , that is x : τr and τr = [τi]
l
. Then there

exists a program px, a Γ and τ such that

Γ ⊢s px : τ ∧ comp(px, cx)∧

typed(px, cx,li : τ1 × · · · × τn → τr,Γ, τ)

Note that the existence of constant functions is necessary. Security completeness stipulates the

existence of a functionally equivalent program for a given noninterfering computation. A program

computing a constant does not follow from erasure and single-level lifting of constant ⌈⌊x⌋⌉l, as

this is a value and not necessarily a program. The program requirement is important, since only

programs need to be able to be composed. This restriction allows us to easily include imperative

languages into the framework.

Finally, we want to compose typed programs. We decided to formulate a general composition

requirement, instead of a special-cased one.

73

Requirement 28 (Composition).

∀p•, p.

∀1 ≤ i ≤ n.Γi ⊢s pi : τ i ∧ comp(pi, fi)∧

typed(pi, fi : τ1 × · · · × τn → τ ir ,Γi, τ
i)

∧

Γ ⊢ p : τ p ∧ comp(p, f)∧

typed(p, f : τ ′1r × · · · × τ ′mr → τr,Γ, τ
p)

∧

∀1 ≤ i ≤ n.τ ir ⊑ τ ′ir

=⇒

∃pc,Γc, τc.
Γc ⊢s pc : τc ∧ comp(pc, f ◦

−→
fi)∧

typed(pc, f ◦
−→
fi : τ1 × · · · × τn → τr,Γc, τc)

where (f ◦ −→fi)(x1, . . . , xn) = f(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)).

4.3.2 Revised Theorem & Proof

Theorem 29 (Security-Typability Completeness). Assume a languageL and corresponding ground

language that fulfill requirements 23, 24, 25, 26, 27, and 28. Such language is security-complete.

Proof. Assume p a program that computes noninterferent f : τ1 × · · · × τn → τ . Since p is

ground-typable, we have pg = ⌊p⌋ such that there is a ground typing Γg ⊢g pg : τg, such that

typed(pg, f : ⌊τ1⌋ × · · · × ⌊τn⌋ → ⌊τ⌋,Γg, τg) by requirement 24. Let l = top(τ). Define g• as

gi =

πni : τ1 . . . τn → τi if top(τi) ⊑ l

cxi,li : τ1 . . . τn → [τi]
l

else, with arbitrary xi : [τi]
l

which exist by requirements 26 and 27. Noninterference of f with respect to signature τ1 × · · · ×

74

τn → τ and level l states that

∀x11, x21 : τ1, . . . , x1n, x2n : τn.

(∀i.top(τi) ⊑ l =⇒ x1i = x2i) =⇒

f(x11, . . .) = f(x21, . . .)

Take any set of inputs x• for f . Let y• be defined as yi = gi(x1, . . . , xn). Then ∀i.top(τi) ⊑ l =⇒

xi = yi by construction. Now, by noninterference, we have

f(x1, . . . , xn) = f(y1, . . . , yn) = f(g1(x1, . . . , xn), . . . , gn(x1, . . . , xn))

By requirements 26 and 27, there exist p•, Γ• and τ
f
• such that

∀i.Γi ⊢s pi : τ gi ∧ comp(pi, gi)∧

typed(pi, gi : τ1 . . . τn → τ i,Γi, τ
g
i).

Furthermore, by construction we have ∀i.τ i ⊑ [τi]
l
, by requirements 23 and 27.

By the Single-level requirement, we can lift the typing of pg such that ⌈Γg⌉l ⊢s ⌈pg⌉l : ⌈τg⌉l

and comp(⌈pg⌉l, f) and typed(⌈pg⌉l, f : [τ1]
l × · · · × [τn]

l → [τ]l , ⌈Γg⌉l, ⌈τg⌉l). This allows us

to use the Composition requirement, composing p• into ⌈pg⌉l, which is functionally equivalent to

composing g• into f . This results in a program pc and typingΓc ⊢s pc : τc such that comp(pc, f◦−→gi)

and typed(pc, f ◦ −→gi : τ1 × · · · × τn → [τ]l ,Γc, τc). Previous deductions and identity requirement

on relabeling permit us to simplify this to comp(pc, f) and typed(pc, f : τ1×· · ·× τn → τ,Γc, τc).

Thus, the program pc is typable with the required signature and computes f , which concludes the

proof.

4.3.3 Sufficient vs. Necessary Conditions

Our derivation in the previous subsections concludes that the requirements established are suffi-

cient for a language to be security-complete. The requirements are, however, not generally neces-

75

sary for security completeness. The leeway that the definition of security completeness allows us,

i.e., that another equivalent program exists that is typable, makes a reverse deduction impossible

in general.

In the special case of a Turing-complete language, we can show that a slight weakening of

requirement 25 leads to a set of necessary conditions. The weakening is straightforward:

Requirement 30 (Single-Level, weak).

∀l ∈ S.Γg ⊢g pg/vg/µg : τg =⇒

∃p′g.⌈Γg⌉l ⊢s ⌈p′g/vg/µg⌉l : ⌈τg⌉l

∀l ∈ S.(pg, µg) g (vg, µ
′
g) =⇒

(⌈p′g⌉l, ⌈µg⌉l) s (⌈vg⌉l, ⌈µ′g⌉l)

Furthermore, it holds that

typed(pg, fg : τ1 × · · · × τn → τ,Γg, τg) =⇒

typed(⌈p′g⌉l, fg : ⌈τ1⌉l × · · · × ⌈τn⌉l → ⌈τ⌉l, ⌈Γg⌉l, ⌈τg⌉l)

and comp(pg, fg) =⇒ comp(⌈p′g⌉l, fg).

This states that we can find an alternate program (p′g) that computes the same value, but is

typable. Note how this definition is closer to the intention behind security completeness.

The basic set of requirements is now necessary: Projections and constants are guaranteed

members of a Turing-complete language, and are, with the right signature, noninterfering. Thus,

requirements 27 and 26 must hold in a Turing-complete and security-complete language. Also,

composition is a guaranteed operator for Turing-complete languages, and the definition of com-

position preserves noninterference. Thus, requirement 28 must hold in a Turing-complete and

security-complete language. Now finally, take an arbitrary computable function. That function

is noninterfering under the assumption of a signature with just one single level ℓ. By Turing-

completeness, there exists a program that computes said function. By Security completeness, there

76

must exist a typable program then that computes said function. As the signature must match, this

program is typed with the single level ℓ. This means the Turing-complete and security-complete

language satisfies requirement 30 (but not necessarily requirement 25).

4.4 Datatypes

We can extend the formalization of the previous section to data types. For security-typed lan-

guages, compound values imply the possibility of more complicated indistinguishability relations,

e.g., different parts of a value may have different security levels and need to be treated differently.

A statement of noninterference may then use this complex indistinguishability both for inputs and

outputs. That is, noninterferent programs create outputs that agree on low parts if the low input

parts are equivalent. A simple case for demonstration follows. Assume that the language in ques-

tions supports pairs. Let f(x, y) = 〈x, y + 1〉, where x and the first component of the output

pair are public, and y and the second component of the output pair are confidential. A sample

noninterference statement for this function is

∀x, y1, y2, x′1, x′2, y′1, y′2. f(x, y1) = 〈x′1, y′1〉 ∧ f(x, y2) = 〈x′2, y′2〉 =⇒ x′1 = x′2.

This is equivalent to an indistinguishability relation for pairs that only forces equivalence on the

public component:

〈x1, y1〉 ∼ 〈x2, y2〉 ⇐⇒ x1 = x2

Notice that the construction in the previous subsection required the whole output to be equivalent,

whereas now only the public part is. Also, the confidential output may depend on the confidential

input, as in the given example function.

4.4.1 Assumptions

We assume some structure of complex values. First, complex values can be described as algebraic,

that is, are of the form v = c v1, . . . , vn for an n-ary constructor c. Note that we require values

77

to be made up of sub-values. To ensure termination of our recomputation, we require all treated

values to be finite. We require typing to structurally match values: if a value v = c v1, . . . , vn can

be typed as τ under Γ, then there are types τ1, . . . , τn such that v1, . . . , vn are typed under Γ, and

for all v′1, . . . , v
′
n typable in that way, c v

′
1, . . . , v

′
n can be typed as τ . This is a standard consequence

in rule-based type systems.

Matching

Furthermore, we need functions to decompose values to their components. To unify product and

variant treatment, we assume a matching construct in the language. Formally, if a type system can

type values vi = ci v
i
1, . . . , v

i
ni

with ci 6= cj (for i 6= j) as τ , where vik can be typed with τ ik, then

there exist matching functions with the signaturematch : τ → (τ 11 × · · · × τ 1n1
→ τ ′)→ · · · → τ ′

for all τ ′, with the semantics thatmatch(ci v
i
1, . . . , v

i
ni
, f1, . . . , fm) = fi(v

i
1, . . . , v

i
ni
).

Definition 31 (Exhaustive). Sequences c• and n• are called exhaustive for type τ iff all and only

those values that are typable as τ have a constructor in c•, and n• gives the arity of the corre-

sponding constructors.

∀v. ⊢ v : τ =⇒ ∃i, v1, . . . , vni
. v = ci v1, . . . , vni

∀i ∈ dom(c•). ∃v1, . . . , vni
. ⊢ ci v1, . . . , vni

: τ

Requirement 32 (Matching).

∀τ.
(

∃c•, n•, v••, τ •• .∀i, j. ⊢ ci vi1, . . . , vini
: τ ∧ ⊢ vij : τ ij

)

=⇒

∀τ ′.∃match. match : τ → (τ 11 × · · · × τ 1n1
→ τ ′)→ · · · → τ ′ ∧

match(v, f1, . . . , fn) =

f1(v
1
1 , . . . , v

1
n1
) if v = c1 v

1
1, . . . , v

1
n1

...

fn(v
n
1 , . . . , v

n
nn
) if v = cn v

n
1 , . . . , v

n
nn

where c• and n• are exhaustive for τ .

78

This is standard for pattern-matching languages, and can be simulated in languages without

explicit pattern matching (e.g., by branching on tag values encoding variants). We will use the

common syntax, that is, “λx . . . ” for functions and “match x with . . . ” for matching.

Note that this existential requirement is very weak: to compute with datatypes, one form or

another of matching is required. In the case of standard encoding of algebraic datatypes into

lambda calculus, the value itself is a matching construct. In the case of higher level languages like

ML and Haskell, matching functionality can be given as a construct or on the function definition

level.

We assume that each type τ involved has one immediate security-level annotation, which we

denote by tp(τ). Multiple immediate annotations can be handled by complex security lattices. For

matching, we require match to be typable, if tp(τ) ⊑ tp(τ ij) for all i and j, that is, the immediate

annotations on sub-values are above the immediate annotations on the value, tp(τ) ⊑ tp(τ ′), and

all fi are typable according to the signature of match. This might seem restrictive, but is powerful

enough to capture all cases outside the limitations outlined in the following subsection.

Indistinguishability

We also need to make minimum requirements on what indistinguishability means for values of a

type τ and observer level φ. Our single requirement is that if two values v1 and v2 of type τ are

indistinguishable at level φ, and tp(τ) ⊑ φ, then both values have the same root constructor, and

all immediate sub-values are indistinguishable with respect to their corresponding types at level φ.

4.4.2 Limitations

It turns out that our approach to proving security completeness is not generally applicable to lan-

guages with complex datatypes.. As an example, take a language with pairs which have three

security annotations: one for each component and one to signal the security level of the identity of

the pair. Now take a pair that has a public and a private component, and is itself private. This leads

to the public component not being accessible by an attacker (cf. [72, 14, 66]). Indistinguishability

79

might thus be defined as:

〈x1, y1〉 ∼ 〈x2, y2〉 at 〈φ1, φ2〉φ3 ⇐⇒

φ3 = H ∨

(φ1 = L =⇒ x1 = x2)∧

(φ2 = L =⇒ y1 = y2)

With this, the following computation is noninterferent:

i f h > 0 t h e n 〈3, 5〉 e l s e 〈4, 5〉 : H → 〈L,H〉H

However, this computation has a dependency between high input h and the low output component.

We argue that this is a degenerate case. While the label on the component might be public, for

all intents and purposes the pair behaves like it is typed all-confidential. There is no way, neither

on the language level, nor the semantics or indistinguishability definition, to access the public

component and retain its security level. As such, that typing is syntactically valid, but semantically

not meaningful.

Note that there are two obvious problems to overcome. First, one might try to include more

context in typing judgments: if the type system knew that one has a dependency between a confi-

dential input and a nominally public output, where the output will be embedded into a confidential

container, then one could allow this dependency. However, this seems to break locality and mod-

ularity of the type system. Even if this problem can be overcome, more complex systems present

aliasing problems on top of the modularity: just because a local container reference is confidential

does not automatically imply that all references to the same container in the program are also con-

fidential. If there is even one alias that is public (so that the local alias is typed by subsumption),

then allowing the assignment constitutes a definite leak.

We are not aware of a security-typed language that can handle these problems in general, and

specifically the above program. In fact, in the following we will show that FlowML, a practical

non-trivial security-typed language, cannot type any program that computes this function. We thus

limit the theorems to security types such that levels of sub-types are at least as high as those of

80

enclosing types.

Requirement 33 (Sublevel Monotonicity).

∀τ, τ ′.τ ′ ∈ τ =⇒ tp(τ) ⊑ tp(τ ′),

where • ∈ • describes the structural relationship of types.

FlowML

For details of the setup of FlowML we refer to [72, 73]. We only show the proof regarding the

limitation here.

FlowML does not annotate pairs. For the proof, we will thus use sums, which does not change

the overall implications. We use a sum of two integers. Instances of sum types are created with the

constructors inj1 for the left sub-type and inj2 for the right sub-type. This means we are looking

for a Core ML expression e with free variable h such that:

Requirement 34 (Core ML Expression).

• e[h/0]/∅ ∗ inj10/µ′

• e[h/1]/∅ ∗ inj11/µ′′

• ∃M.L, [h : intH],M ⊢ e : (intL + intL)H

As outlined in Chapter 2, FlowML uses a syntactic approach to prove soundness. Two Core

ML runs are encoded into one Core ML2 run by the syntactic construct of brackets 〈, 〉. Each

component of the bracket is computed separately.

By soundness and completeness of Core ML2 our setup implies that e[h/〈0, 1〉]/∅

∗ 〈inj10, inj11〉/µ′′′. Note how the separate inputs (h/0 ≡ h = 0 and h/1 ≡ h = 1) to e are

encoded into the substitution h/〈0, 1〉, and the different outputs into the bracket 〈inj10, inj11〉.

We denote e[h/〈0, 1〉] by eh. By substitution, we have ∃M.L, ∅,M ⊢ eh : (intL+intL)H . We

assume that the heap does not contain brackets in the beginning. This can be argued from the Core

81

ML nature of e and common semantics - the Core ML2 heap can be represented without brackets

because all mapped values are the same in the beginning for both executions. In the remaining

part, we will ignore the heap when it is not touched.

We will now show that a typing implies that e is not part of Core ML. Namely, if e satisfies all

conditions above, it must contain a 〈, 〉 bracket. First an auxillary lemma.

Lemma 35 (Bracket Source). If e ∗ v, then if v has brackets, then e has brackets.

Proof. By simple inspection of the semantics. No rule explicitly introduces brackets.

To actually prove our statement, we need a stronger hypothesis. Let τ ↑ denote type τ where

we know that security annotations are non-decreasing in type components. For example, τ =

(intL + intH)L is τ ↑. On the other hand, a type is τ ↓ if it is not τ ↑, that is, there is a component

type relation such that the child has level L and the parent has level H .

Lemma 36 (e 6∈ CoreML). If h : τ ↑i ⊢ e : τ ↓, ⊢ v1 : τ ↑i and ⊢ v2 : τ ↑i , v1 differs from v2 in the

high part, ⊢ v′1 : τ ↓ and ⊢ v′2 : τ ↓, v′1 differs from v′2 in the low part protected by the high part, µ is

↓-free, and eh = e[h/〈v1, v2〉]/mu < v′1, v
′
2 >, then e contains 〈, 〉.

Proof. The proof proceeds by induction over the length of a derivation of eh/µ
∗ 〈v′1, v′2〉/µ′′′.

Case Reflexivity of : Then eh is a value. The proof proceeds by inspection of all cases of

typing for eh. The literal cases contradict the execution requirements. The variable case

contradicts typing, since τ ↑i 6= τ ↓. The bracket case means that either e is a bracket, or

e = h, which contradicts typing. For complex values, we inspect the value at the position of

the decreasing type. Then at the decreasing type, the component needs to be typed low. If

it is typed as a non-bracket, then it violates the execution requirements. If it is a bracket, it

violates typing, for brackets are always typedH .

Case β: Then eh is of the shape (fix f.λx.e
′)v and reduces to e′[x/v][f/fix f.λx.e′]. It follows

that e is of the shape (fix f.λx.e′′)v′. By rules of substitution, we have e′[x/v][f/fix f.λx.e′] =

82

e′′[x/v′][f/fix f.λx.e′′][h/〈v1, v2〉]. By inductive hypothesis, e′′[x/v][f/fix f.λx.e′′] con-

tains a bracket. Then there is a bracket in e′′ or in v. But then there was a bracket in e.

Case ref & assign: Then eh is of the shape ref v orm := v. Then either v contains a bracket,

or this contradicts the execution requirements.

Case deref: Then the heap must have contained 〈v′1, v′2〉, which is a contradiction to our as-

sumption of a ↓-bracket-free heap at the start of execution.

Case proj: Then eh is of the form projj(v1, v2). Then e is of the form projj(v
′
1, v
′
2). By rules

of substitution, we have vj = v′j [h/〈v1, v2〉]. By inductive hypothesis, this means that v′j

contains a bracket (see first case), which means that e contains a bracket.

Case case: Then eh is of the form (injjv) case x ≻ e1 e2, which means that e is of the form

(injjv
′) case x ≻ e′1 e

′
2, and eh reduces to ej [x/v]. By the rules of substitution, we have

ej [x/v] = e′j [x/v
′][h/〈v1, v2〉]. By inductive hypothesis, there is a bracket in e′j [x/v′], which

means there is a bracket in e′j or v
′. But that means there is a bracket in e.

Case let: Then eh has the shape let x = v in e′ and reduces to e′[x/v]. Then e has the form

let x = v′ in e′′. By the rules of substitution, we have e′[x/v] = e′′[x/v′][h/〈v1, v2〉]. By

inductive hypothesis, there is a bracket in e′′[x/v′], which means there is a bracket in e′′ or

v′. But that means there is a bracket in e.

Case bind: Like the let case.

Case handle: Then eh = raise ǫ v handle ǫ x ≻ e′ and reduces to e′[x/v]. Then e is of the

form raise ǫ v′ handle ǫ x ≻ e′′ and e′ = e′′[h/〈v1, v2〉]. Then, by rules of substitution,

e′[x/v] = e′′[x/v′][h/〈v1, v2〉], so that the inductive hypothesis can be applied and yields that

e′′[x/v′] contains a bracket. Then e′′ or v′ contain a bracket, which means that e contains a

bracket.

83

Case handle− done: Then eh = raise ǫ v handle e′ done and reduces to e′. Then e is of the

form raise ǫ v′ handle e′′ done and e′ = e′′[h/〈v1, v2〉]. Then by inductive hypothesis e′′

contains a bracket, so that e contains a bracket.

Case handle− raise: Contradicts the semantical requirement that execution does end in a

value.

Case finally: Then eh = a finally e′ and reduces to e′; a. Note that e′ may not raise an

exception, or the semantical requirements would be violated. Thus, a = 〈v′1, v′2〉. Then e

must be of the form a finally e′′, or substitution with h cannot match. But then e includes a

bracket.

Case pop: Then a must be 〈v′1, v′2〉 by semantical requirements. But then eh = E[a] contains

brackets which cannot be from substituting h for 〈v1, v2〉. Thus, e contained a, which has

brackets.

Lifting: A careful inspection shows that the brackets in the specialized lifting cases that match

in eh cannot be from substituting h in e, since the typing does not match. But then e contains

brackets.

Case lift− context: Note that no other sequencing case is allowed to be applicable. Then eh

is either a handle or a bind context. Assume first that eh is a handle context E[〈a1, a2〉], that

is, eh = 〈a1, a2〉 handle ǫ x ≻ e′, eh = 〈a1, a2〉 handle e′ done, eh = 〈a1, a2〉 handle e′ raise,

or eh = 〈a1, a2〉 finally e′. Note that pop does not apply, so eh handles a1 or a2, so

∃j.aj = raise ǫ v. Then e cannot be of the form E[h], or else substitution of h would

not match, so e is of the form e = 〈a1, a2〉 handle ǫ x ≻ e′′, e = 〈a1, a2〉 handle e′′ done,

e = 〈a1, a2〉 handle e′′ raise, or e = 〈a1, a2〉 finally e′′. But then e includes a bracket.

Analogously, if eh is a bind context, then eh is of the form bind x = 〈a1, a2〉 in e′, and

since bind does not apply, 〈a1, a2〉 cannot be a value, so at least one aj is a raise ǫ v. Then

84

e cannot be of the form E[h], or else substitution of h would not match, so e is of the form

bind x = 〈a1, a2〉 in e′′. But then e includes a bracket.

Case context: Then eh = E[e1] and reduces to E[e2], where e1 reduces to e2. We only show

the bind case here, the handle cases are analogous. We have eh = bind x = e1 in e
′ reduces

to bind x = e2 in e′. Then e is of the form bind x = e′1 in e′′ with e1 = e′1[h/〈v1, v2〉]

and e′ = e′′[h/〈v1, v2〉]. By typing of bind, and subject reduction, e2 does not contain a free

h. Thus, e2[h/〈0, 1〉] = e2. So E[e2] = (bind x = e2 in e′′)[h/〈v1, v2〉]. By inductive

hypothesis, e2 or e
′′ contain brackets. If e′′ contains brackets, we are immediately done.

Now, since E[e2] : τ
↓ by subject reduction, we have e2 : τ2 for some τ2. Either τ

↑
2 or τ ↓2 . In

the first case, we can use this with the reduction of e′, which yields by induction brackets in

e′, which is a contradiction. In the second case, we can use the inductive hypothesis on the

nested execution e′1[h/〈v1, v2〉] → e2. This results in brackets in e′1, which means there was

a bracket in e.

Case bracket: Analogously to values, it follows that e is a bracket or e = h.

This proves that, to satisfy all requirements, e must be a proper Core ML2 expression including a

bracket.

A simple corollary of Lemma 36 is now that there is no CoreML expression that satisfies all

requirements, that is, is security-typability and semantically equivalent.

Corollary 37 (No Typable Program). There is no typable CoreML program that takes anH integer

as input and produces a sum-value output satisfying requirement 34.

4.4.3 Security-typed Simulation with Datatypes

The intuition behind our approach is to split computations by output level, allowing a level-

separated computation. The final result then needs to be composed from the parts. Separability is

a known result for trace-based security. We re-use and extend it to complex datastructures.

85

In a language-based environment, directly separating by security level is complicated. Since

levels are connected to types, which are connected to the structure of values, we instead separate

structurally, which implies a level separation. E.g., with the example above, we will find a program

that represents f(x, y) as a composition of computations for each pair component:

f(x, y) = match fL(x, y) with 〈xt, yt〉 ⇒ 〈f 1(x, y), f 2(x, y)〉

where f 1(x, y) = π1(f(x, y)) and f
2(x, y) = π2(f(x, y)). Intuitively, the matching will compute

a single (sub-)value at the level of the immediate annotation of that type. Noninterference will

enforce that at least the variant chosen is correctly computed at this level. The corresponding

matched case will re-compute all sub-values, at their correct levels, and reconstruct the correct

value in a typable fashion.

An example of this construction is given in Figure 4.5. The program p on top computes

f(x, y) = 〈x, y + 1〉, but is not typable. In the transformed program, for brevity we use π to

extract components of a pair. The first four blocks compute the low component, while the next

three blocks compute the high component, and finally the pair is reconstituted. Note the con-

ceptual similarity to [33]. They perform a similar process at runtime to enforce noninterference,

compared to our approach of showing typability in the case when noninterference is given.

4.4.4 Nonrecursive Datatypes

For nonrecursive datatypes, a type τ can be matched statically to any value v it types. We will

recompute a (sub-)value corresponding to the structure of its (sub-)type, ensuring typability along

the way.

We can recursively generate a function for this whole computation. Note that underlined func-

tions are meta-level functions defining a language-level construct - in a sense they are macros to

construct the language-level computation. Assume that f is noninterferent with respect to signa-

ture τ i → τ . Here, we assume τ i is not complex to simplify the presentation. Also, let fφ denote

86

Program Typing

if y = 0 then a := 〈x, y〉 [x : L, y : H, a : L×H]
else a := 〈x + 0, y + 1〉;

(a) Original Program

Code Typing High-level equiv.

tx1 := x; ty1 := y; to1 := tx1 [tx1 : L, t
y
1 : H, t

o
1 : L] to1 = π1(x, y)

tx2 := x; ty2 := y; to2 := 0; [tx2 : L, t
y
2 : H, t

o
2 : L] to2 = c0(x, y)

tx3 := to1; t
y
3 := to2; [tx3 : L, t

y
3 : L, t

o
3 : L×L] to3 = pL(to1, t

o
2)

if ty3 = 0 then to3 := 〈tx3, ty3〉
else to3 := 〈tx3 + 0, ty3 + 1〉;

to4 := π1 t
o
3; [to4 : L]

tx5 := x; ty5 := y; to5 := ty5; [tx5 : L, t
y
5 : H, t

o
5 : H] to5 = π2(x, y)

tx6 := to1; t
y
6 := to5; [tx6 : H, t

y
6 : H, t

o
6 : H×H] to6 = pH(to1, t

o
5)

if ty6 = 0 then to6 := 〈tx6, ty6〉
else to6 := 〈tx6 + 0, ty6 + 1〉;

to7 := π2 t
o
6; [to7 : H]

a := 〈to4, to7〉;
(b) Transformed Program

Figure 4.5: Example Pair-Result Program

87

the function that results from single-level typing as outlined in the previous section. p is a path to a

sub-value/sub-type, which is encoded by a list of pairs for the choice of constructor and immediate

sub-value. We denote the type in τ relative to path p by τ ′. Note that the concept of paths is purely

meta-level, since nonrecursive types can be fully statically described - we only need it to describe

the computation recursively.

l e t τ ′ = nes t edSubTree (p , τ)

matchf(p, τ) = λx : τ i. extractf(p, τ) f tp(τ
′)(x) / / i f τ ′ i s no t a d a t a t y p e

matchf(p, τ) = λx : τ i. / / e l s e

match (extract(p, τ) f tp(τ
′)(x)) with

...

ci t
i
1, . . . , t

i
ni
⇒ ci (matchf (p++(i, 1), τ) x), . . . ,

(matchf (p++(i, ni), τ) x)

The key point of match is the recomputation of f at the level of the currently inspected sub-

value denoted by p. To avoid inspection of f , we do a full recomputation, which then requires

to extract the sub-value in question - this is the job of extract. With the restrictions on τ and

indistinguishability, it follows that this recomputation is correct up to the choice of constructor,

but not necessarily the sub-values ti1, . . . , t
i
ni
. We thus recompute the sub-values recursively by

extending the path for match.

Extraction itself does not need to recompute at each step. To be typable as needed, extract

refers to a default value vdef for type τ
′ when the given path does not lead to such a case (we use

“default” to stand for the finite number of other cases).

extract((), τ) = λx : τ. x

extract((i, j) :: p, τ) = λx : τ. match x with

ci t
i
1, . . . , t

i
ni
⇒ extract(p, τ ij) tij

d e f a u l t ⇒ vdef

88

We can now formalize our conjecture for nonrecursive datatypes.

Theorem 38 (Nonrecursive Datatypes). Assume a language L and corresponding ground lan-

guage that fulfill requirements 23, 24, 25, 26, 27, 28 and additionally requirements 32 and 33.

This language is security-complete.

4.4.5 Proof of Nonrecursive Case

We need a range of auxillary predicates and functions. First, to generically handle datatypes we

need the following:

Datatype Predicate: dt(τ) is true if τ is representing a datatype

Root Constructor: rt(c t1, . . . , tn) = c, the root constructor of a datatype term

Parameters: par(c t1, . . . , tn) = (t1, . . . , tn) and par(k, c t1, . . . , tn) = tk

To argue over the structure and execution of the recursive constructions of extract and match, we

also need predicates and functions over paths and datatypes. Recall that paths are sequences (lists)

of choices. A choice is a pair, where the first component denotes the choice of constructor/subtype,

and the second component the component thereof. For example, in a value, (1, 2) is the choice of

constructor c1, and parameter 2 thereof. Thus, (1, 2) would match, for example, c1 x, y, z (more

specifically, the y of it), but not c2 a. Note that all following definitions are constrained to types τ

that are datatypes.

Valid paths: We use the following predicate to denote valid paths in a type or value. Valid paths

describe an acceptable sequence of choices. For types, we have

vp((), τ)

vp((i, j) :: r, τ) ⇐⇒ dt(τ) ∧ i ∈ {1, . . . , n} ∧ vp(r, τ cij)

89

For values, we have

vp((), t)

vp((i, j) :: r, t) ⇐⇒ t : τ ∧ dt(τ) ∧ t = cτi t1, . . . , tn ∧ vp(r, tj)

Type at path: A valid path in a type denotes a subtype. This can be extracted by the following

function:

pt((), τ) = τ

pt((i, j) :: r, τ) = pt(r, τ cij)

Value at path: Analogously, a valid path in a value denotes a sub-value. (Note that the sub-term is

a value by requirements on treated values.)

pv((), t) = t

pv((i, j) :: r, ci t1, . . . , tn) = pv(r, tj)

We first prove some auxillary lemmas for extract.

Lemma 39 (Typing of extract). ∀τ, p.vp(p, τ) =⇒ extract(p, τ) : τ → pt(p, τ)

Proof. By induction on the length of p.

Empty path: This is the identity function and obviously typed.

p = (i, j) :: p′: The path p is valid in τ . Thus, (i, j) is a valid choice, making the extraction

case a valid pattern in the match construct. Furthermore, p′ is a valid path in τ cij , so that

by inductive hypothesis the type of the nested extract(p′, τ cij) : τ
ci
j → pt(p′, τ cij), which by

definition is the same as τ cij → pt(p, τ). Furthermore, by requirement on typing of datatype

values, we have tj : τ
ci
j , so that the whole pattern case has type pt(p, τ). Finally, the default

case is a constant of type pt(p, τ), such that by requirements on match typing, the match

can be typed with result type pt(p, τ). Thus, extract(p, τ) : τ → pt(p, τ).

90

In the following, for brevity, we will abbreviate language-level executions and use functional

notation. For example, extract(p, τ) t denotes the result of executing extract(p, τ) with input t.

Lemma 40 (Valid-Path Extraction).

∀τ, p, t : τ.vp(p, t) =⇒ extract(p, τ) t = pv(p, t)

Proof. By induction on the length of p.

Empty path: Then pv(p, t) = t and extract(p, τ) = id, so that extract(p, τ) t = t.

p = (i, j) :: p′: Then vp(p′, τ cij), t = ci t1, . . . , tni
, vp(p′, tj), and tj : τ

ci
j . By inductive hy-

pothesis, extract(p′, τ cij) tj = pv(p′, tj). By construction of pv and semantics of matching,

we have extract(p, τ) t = extract(p′, τ cij) = pv(p′, tj) = pv(p, t).

Next, we prove some auxillary results for noninterference that we need for proofs aboutmatch.

Recall that we require for values of type τ to be indistinguishable at level l that ∀v1, v2 : τ.v1 =

c t1, . . . , tn ∼τ,l c′ t′1, . . . , t′n′ = v2 ∧ tp(τ) ⊑ l =⇒ c = c′ ∧ n = n′ ∧ ∀i.ti ∼ti,l t′i.

Lemma 41 (Valid-Path Noninterference).

∀v1, v2 : τ, p, l.vp(p, τ) ∧ tp(pt(p, τ) = τ ′) ⊑ l ∧ vp(p, v1) =⇒ vp(p, v2)∧

pv(p, v1) ∼τ ′,l pv(p, v2)

Proof. By induction on the length of p, “adding” at the tail.

Empty path: Then we have tp(τ ′ = τ) ⊑ l, pv(p, v1) = v1, vp(p, v2), and pv(p, v2) = v2.

Now the basic noninterference definition applies and yields the indistinguishability result.

p = p′ ++(i, j): Then p′ is a prefix and thus valid in τ and v1. Furthermore, by restrictions

on types, namely that security levels are increasing, tp(pt(p′, τ) = τ ′′) ⊑ l. It follows that p′

is valid in v2 and v
′
1 = pv(p′, v1) ∼τ ′′,l pv(p′, v2) = v′2.

91

We know that dt(τ ′′) (else p would not be valid). That means that the requirement above

applies and rt(v′1) = rt(v′2) = ci, making p valid for v2, and ∀k.par(k, v′1) ∼τ ′′k ,l par(k, v′2),

especially for k = j. A case decision on dt(τ ′) to check possible paramaters and arguing

with tp(τ ′) ⊑ l concludes.

Lemma 42 (Valid Paths in Single-Level). Let f : τ i → τ be noninterferent.

∀x : τ i, p.vp(p, τ) ∧ pt(p, τ) = τ ′ =⇒ vp(p, f(x)) ⇐⇒ vp(p, f tp(τ
′))(x)

Proof. By the above lemma. Instantiate v1 = f(x) and v2 = f tp(τ
′). Use noninterference of f and

definition of •l to gain v1 ∼τ,tp(τ ′) v2. Now use the lemma to prove both directions.

Lemma 43 (Roots at a Path). Let f : τ i → τ be noninterferent. Then for all x : τ i and p,

vp(p, τ) ∧ pt(p, τ) = τ ′ ∧ vp(p, f(x)) =⇒ rt(pv(p, f(x))) = rt(pv(p, f tp(τ
′)(x)))

Proof. Simple corollary of the above.

Last, we prove two auxillary lemmas for match. Note that we assume f : τ i → τ here, and

denote pt(p, τ) with τ ′.

We begin by arguing that we can allow proofs by structural induction on types. Namely, we

can establish a partial order on datatypes by the length of the longest valid path in them, and then

do an induction on the length of such paths.

Lemma 44 (Typing of match). Let f : τ i → τ a noninterfering function satisfying the require-

ments of Theorem 38. Let τ ′ be the type denoted by a path p in τ . Then ∀p.vp(p, τ) =⇒

matchf(p, τ) : τ i → τ ′

Proof. By induction on τ ′.

92

¬dt(τ ′): Since p is valid in τ , by Lemma 39 we have extract(p, τ) : τ → τ ′. By single-

level typing, we gain extract(p, τ) : [τ]tp(τ
′) → [τ ′]tp(τ

′) = [τ]tp(τ
′) → τ ′. By construction,

f tp(τ
′) : τ i → [τ]tp(τ

′)
. Thus, by composition, extract(p, τ) : τ i → τ ′.

dt(τ ′): Analogously to before, and with composition, we gain a typing of the matched ex-

pression as extract(p, τ) f tp(τ
′)(x) : [τ ′]tp(τ

′)
. Thus, all matching cases apply, since they

were generated for τ ′.

Take an arbitrary pattern in match(p, τ). For each parameter, we have p + +(i, j) is a valid

path in τ . Furthermore, pt(p++(i, j), τ) = τ ci + j denotes a smaller type than τ ′. Thus the

inductive hypothesis applies, and we gain a typingmatch(p+ +(i, j), τ) : τ i → τ cij . By re-

quirements on typing of complex values, namely that any set of typable parameters makes the

construction typable, we have ci (match(p++(i, j), τ) x), . . . (match(p++(i, ni), τ) x) :

τ ′. Thus, by typing ofmatch, we have match(p, τ) : τ i → τ ′.

Lemma 45 (Result of Match).

∀f : τ i → τ, x : τ i.ni(f) =⇒

∀τ ′.∀p.vp(p, τ)) ∧ pt(p, τ) = τ ′ ∧ vp(p, f(x)) =⇒ match(p, τ) x = pv(p, f(x))

Proof. Fix f and x. Now induction on τ ′.

¬dt(τ ′): Since p is valid in τ and f(x), By Lemma 42, p is valid in f tp(τ
′)(x). By Lemma 40,

match(p, τ) x = extract(p, τ) f tp(τ
′)(x) = pv(p, f tp(τ

′)(x)). By Lemma 41, this is indistin-

guishable to pv(p, f(x)). Since τ ′ is not a datatype, this means the values are equivalent.

dt(τ ′): Fix a valid p. By Lemma 42, p is valid in f tp(τ
′)(x). By Lemma 40,match(p, τ) x =

extract(p, τ) f tp(τ
′)(x) = pv(p, f tp(τ

′)(x)) = c t1, . . . , tn : τ ′. Since p is valid in f(x), we

have pv(p, f(x)) = c′ t′1, . . . , t
′
n′ : τ ′. By Lemma 43, c = c′ and n = n′.

93

By definition of match and semantics of match, we have match(p, τ) x = c (match(p +

+(i, 1), τ) x), . . . , (match(p + +(i, n), τ) x). It remains to show that the parameters are

equivalent to their respective t′j . Take an arbitrary j. Then by construction, p++(i, j) is valid

in τ . Also, as seen above, p++(i, j) is valid in f(x). Furthermore, pt(p++(i, j), τ) = τ ′′ is

smaller than τ ′. Thus, the inductive hypothesis applies and yiels match(p ++(i, j), τ) x =

pv(p++(i, j), f(x)) = tj .

Now the proof of Theorem 38 is a simple corollary of Lemma 45, instantiated with p = () and

τ ′ = τ .

4.4.6 Example

Here we will give a simple example of the construction. We assume a functional, ML-style lan-

guage with let and match (inML syntax “case of”) constructs and integers and sums. Anonymous

functions are created with fn. Let f be a noninterfering function with signatureL×H → (L+H)L,

that is, it takes a public and a confidential input, and produces a public disjoint sum of a public and

a confidential option. Elements of sum type are either inl or inr . We annotate local variables with

their types for exposition.

fn (x : L) (y :H) =>

l e t f 01 : (L+ L)L = (fn x => x) f (x , 0) in

case f 01 of

i n l =>

l e t m = fn (x :L) (y :H) =>

l e t e = fn (z : (L+ L)L) =>

case z of

i n l r => (fn x => x) r

| i n r => 0

94

in e f (x , 0)

in m x y

i n r =>

l e t m = fn (x :L) (y :H) =>

l e t e = fn (z : (H +H)H) =>

case z of

i n l => 0

| i n r r => (fn x => x) r

in e f (x , y)

in m x y

4.4.7 Recursive Datatypes

The approach of the previous section can be extended to recursive datatypes. Recursive datatypes

complicate the recomputation process. Namely, the structure of a value cannot exactly be matched

statically to the type. Instead, certain structures may be repeated. The key difference is that now

the path in a value needs to be handled dynamically. We can model the path with a list of integers,

which is a recursive type and thus allowed by the language in question. We use µ types to guide

the construction of the corresponding code. µ types allow a binding construct µ x.τ , where x may

appear in τ . A common interpretation is that µ types are finite representations of regular trees that

are generated when “unfolding” µ types, i.e., replacing x with µ x.τ in τ . µ types are not explicitly

labeled. They inherit to label of τ , such that the tree interpretation is unambiguous. Thus, all

“recursions” of a binder have the same security level.

We capture the recursive nature of values with a recursive recomputation in the language. Given

a µ type with binders exhibiting variables x1, . . . , xn (for simplicity we assume all variables are

unique), we create functions to recompute values of the corresponding µ type. For example, for

t = µ x1.int ∗ x1 + (µ x2.bool + x2), we generate mutually recursive functions fx1 and fx2

95

to compute the corresponding parts. To distinguish the current part under computation, these

functions take as a parameter a path to the component. Different from the nonrecursive case, this

path must actually be maintained at runtime. We can model the path with a list of integers, a list

being a recursive type and thus allowed by the language in question. To make the construction

typable, a (mutually) recursive construction needs to be typable if calls are made with the right

signatures.

Extraction has to follow the path parameter. To ensure minimum typability requirements, i.e.,

involved functions can be monomorphically typed, we create specialized mutually recursive func-

tions for each start and end type. The start type denotes the type of the input value, while the end

type denotes the type of the overall result, i.e., at the end of the path. For example, with t as above,

we create extraction functions for x1 → x1, x1 → x2, and x2 → x2.

The actual recomputation for each component now follows the nonrecursive case: extract the

value based on the path to the recursive component and inside it, recompute sub-components,

create the compound value and return. The only difference now is that in case of a recursive-type

sub-component we call the corresponding fx function with an updated path.

Formalization

For the following definition, we distinguish static, non-recursive paths pc from recursive paths pr.

We also denote recursive types by their variables in the corresponding µ type. The construction

here is for one recursive (sub-)type τ r of the overall type τ t. As before, let τ ′ denote the subtype

in τ r at path pc.

rmatchr(p
c) = λpr. λx : τ i. | i f τ ′ i s no t a d a t a t y p e

extract(pc, τ r) (extractt→r p
r f tp(τ

′)(x))

rmatchr(p
c) = λpr. λx : τ i. | i f pc = () or τ ′ no t r e c u r s i v e

match extract(pc, τ r) (extractt→r p
r f tp(τ

′)(x)) with

...

ci t
i
1, . . . , t

i
ni
⇒ ci (rmatch(pc ++(i, 1)) pr x), . . . ,

96

(rmatch(pc ++(i, ni)) p
r x)

rmatchr(p
c) = λpr. λx : τ i. | i f pc 6= () and τ ′ = τ s r e c u r s i v e

fs (pr ++encode(pc, τ r)) x

where fs = rmatchs(()) for all recursive variables s in the µ type. Note that we use an encoding

of paths pc to integers to simplify language requirements. Since we require finite formulations,

there are only a finite number of paths in a recursive type to a recursive sub-type, which can be

easily specified as integers. Recursive extraction is similarly extended to yield (mutually) recursive

functions, but needs to decode the integer describing the inner path.

extractr→s = λpr. λx : τ r.

match pr wi th

() ⇒ if r == s then x else vsdef

k :: p′ ⇒ mkExt(τ r, τ s) k p′ x

end

where

mkExt(τ r, τ s) = λk. λpr. λx : τ r.

for each path encoding k′ in τ r :

i f k==k ’ t h en

let p′= decode(k′, τ r) and the denoted type be τ q

extractq→s p
r (extract(p′, τ r) x)

e l s e vsdef

We need a final requirement to ensure typability of this construction. Informally, given a set of

program fragments p• computing functions f• with signature type τ•, and given that each program

fragment is typable with its corresponding type under the assumption that all the other program

fragments are typable, then the whole program is typable.

97

Requirement 46 (Mutually Recursive Typing).

∀p•, f•, τ•, k. (∀i.JpiK = fi : τi ∧ p1 : τ1, · · · ⊢ pi : τi) =⇒ ⊢ pk[p1, . . . , pn] : τk

Theorem 47 (Recursive Datatypes). Assume a language L and corresponding ground language

that fulfills requirements 23, 24, 25, 26, 27, 28, 32, 33 and additionally 46. Also assume a pro-

gram p in the security-typed language that computes a function f , that is ground-typable, but not

necessarily security-typable. Furthermore, assume that f is noninterferent with respect to security

signature τ i → τ , where τ fulfills the requirements of this section. Let τ be µ t.τ ′, i.e., recursive

with variable t. Then the program corresponding to the collection of fs = rmatchs(()) for all s

appearing in τ , all corresponding extractions extractr→s, and starting with recomputation for the

root type is security-typable and computes f .

4.4.8 Proof of Recursive Case

We extend the set of predicates and their definitions from the nonrecursive part in the following

way. Note that all definitions here are with respect to a µ typing (short µ) that we leave implicit.

Recursive Type: rec(τ) if τ corresponds to a recursive type in µ.

Paths: We extend the definitions of the predicate vp and functions pt and pv to allow paths made

up of encodings of recursive descents and explicit choices. We omit the obvious definitions

here.

We follow the same structure as in the nonrecursive case, starting with a set of lemmas.

Lemma 48 (Typing of mkExt). If all extractr→s are typable as extractr→s : Pℓ → τ r → τ s for

all r and s in µ, thenmkExt(τ r, τ s) : intℓ → Pℓ → τ r → τ s for all r and s.

Proof. Follows directly by composition and rules of matching.

Lemma 49 (Typing of extractr→s). ℓ ⊑ tp(τ s) =⇒ extractr→s : Pℓ → τ r → τ s

98

Proof. First, ℓ ⊑ tp(τ s). Thus, from the security viewpoint, the match is well-formed. We now

inspect the patterns. For the case of an empty pr, this is either identity or a default value. Both can

be typed as τ s (by the constraints). If pr is not empty, then k has a security value of ℓ, and p′ : Pℓ.

By Lemma 48 and composition,mkExt(τ r, τ s) k p′ x : τ s.

Lemma 50 (Valid-Path Extraction (2)).

∀τ r, τ s, pr, t.vp(pr, t) ∧ pt(pr, τ r) = τ s =⇒ extractτr→τs p
r t = pv(pr, t)

Proof. By induction on the execution of extractr→s p
r t.

pr = (): Then τ r = τ s by valid path definition, so r = s. Then extractr→s pr t =

if r == s then t else vsdef = t = pv((), t).

p = k :: p′: Since p is a valid path, k encodes a valid non-recursive path pc in τ r to some

τ q, and p′ is valid in τ q. Then extractr→s p t = mkExt(τ r, τ s) k p′ t = extractq→s p
′

(extract(pc, τ r) x) by composition semantics. By Lemma 40, we have extract(pc, τ r) x =

pv(pc, x) = pv(k, x) = x′. By inductive hypothesis, extractq→s p
′ x′ = pv(p′, x′). By

construction of pv, this is equivalent to pv(p, x).

Noninterference lemmas carry over directly from the nonrecursive part and are not repeated

here.

Last, we prove two auxillary lemmas for rmatch. Again, assume f : τ i → τ , and denote with

τ ′ the type at then end of the path given in the lemma.

Lemma 51 (Typing of rmatch). ∀pc.vp(pc, τ r) =⇒ rmatchr(p
c) : Pℓ → τ i → τ ′

Proof. Under the assumption that all rmatch-calls can be typed as above, this follows by inspection

of the cases:

• In the first case, by composition and typing of extract and extract→.

99

• In the second case, by composition, typing ofmatch, and type of an extended rmatch. Note

that the security level of the matched expression is below the pattern computations.

• In the third case, by recursive assumption.

Thus, by recursive typing constraints, rmatch is typable.

Lemma 52 (Result of rmatch).

∀f : τ i → τ r, x : τ i. ∋ f =⇒

∀pr, pc.vp(pr ++pc, τ r) ∧ pt(pr, τ r) = τ s ∧ vp(pr ++pc, f(x)) =⇒

rmatchs(p
c) pr x = pv(pr ++pc, f(x))

Proof. Fix f and x. Let pt(pr + +pc, τ r) = pt(pc, τ s) = τ ′. Now induction on the evaluation of

rmatchs(p)p
cs pr x.

¬dt(τ ′): Since pr + +pc is valid in τ r, pr is valid in τ r, and since pr + +pc is valid in

f(x), pr is valid in f(x). By Lemma 42, pr + +pc is valid in f tp(τ
′)(x), and thus pr is also

valid in f tp(τ
′)(x). By Lemma 50, extractr→s p

r f tp(τ
′)(x) = pv(pr, f tp(τ

′)(x)) = x′. By

construction, pc is valid in x′. By Lemma 40, extract(pc, τ s) x′ = pv(pc, x′). By construc-

tion, this is equivalent to pv(pr + +pc, f tp(τ
′)). By Lemma 41, this is indistinguishable to

pv(pr ++pc, f(x)). Since τ ′ is not a datatype, this means the values are equivalent.

dt(τ ′), and not recursive: Analogously to the previous case, we can establish extract(pc, τ s)

(extractr→s p
r f tp(τ

′)(x)) = pv(pr++pc, f tp(τ
′)(x)) = ci t1, . . . , tn ∼τ ′,l pv(pr++pc, f(x)),

meaning that they have the same root constructor. It remains to show that the parameters are

equivalent to the corresponding values.

Take an arbitrary j. It follows that pr + +(pc + +(i, j)) is valid in τ r and f(x). Then by

inductive hypothesis we have rmatchs(p
c ++(i, j)) pr x = pv(pr ++pc ++(i, j), f(x)).

dt(τ ′), and recursive: Since pr + +pc is valid, and pc denotes a recursive sub-type τ q in τ s,

there is an encoding k of pc such that pr + +k has the same meaning as pr + +pc and is

100

valid. Now, rmatchs(p
c) pr x = fq (p

r + +k) x = rmatchq(()) (p
r ++k) x. By inductive

hypothesis, rmatchq(()) (p
r ++k) x = pv(pr ++k, f(x)) = pv(pr ++pc, f(x)).

Now the proof of Theorem 47 is a simple corollary of Lemma 52, instantiated with pc = (),

pr = (), and τ ′ = τ .

4.5 References & Objects

We will treat an object-oriented language with references here. Object-oriented languages intro-

duce additional constructs that need to be handled. While record-like behaviour can already be

handled, in general OO is stateful and requires references. This complicates matters and requires

further restrictions on languages that our technique can support.

For one, most languages with references only allow limited interactions with references. Allo-

cation of new locations can usually not be influenced directly on the language level. This makes

exact recomputation impossible. Our technique can thus only simulate correctly up to renaming of

heap locations. This implies that the identity function cannot be simulated correctly: while input

and output would themselves be functionally equivalent, the simulation would return a new heap

location. We see this as a minor disadvantage. We want to use the simulation to replace an embed-

ded program that is cleanly separated from the host. It seems reasonable to require that any objects

returned from the embedded program are independent of the inputs. This is usually the case when

the embedded program cannot “call back” into the host program.

Any recomputation in parts will repeatedly invoke the original computation at certain levels.

This may create several temporary objects polluting the heap, which, of course, do not appear in

the original computation. Our technique is thus only correct up to locations reachable from the

result of the function.

Also, stateful computation allows side effects. In this case, a side effect may change the input

values. We can contain side effects if we can create temporary “clones” of the relevant inputs and

101

use those for computations. This means that the language needs to guarantee that two suitably

related inputs, e.g., clones, compute suitably related outputs. We formalize this as the shape of the

part of the heap reachable from the inputs, which corresponds to the first restriction. This, however,

forbids any reflective language constructs.5

Last, one main principle of object-oriented programming is encapsulation, or hiding of state.

This collides with our approach - to correctly recompute an object, all hidden state needs to be

recomputed. This means it needs to be accessible. We do not care about the concrete form of

accessing state, both accessor methods and direct field accesses are fine. While this might seem

like a big restriction, we argue that in practice all state can be made accessible, and still maintain

the same functional program (e.g., through principled access). Thus, a simulation in possible, and

will guarantee noninterference even for now accessible state. Overall, the simulation is only a

theoretical vehicle, and implies that the original embedding with state restrictions is safe, too.

4.5.1 Objects & Heaps

We formalize state through the concept of heaps. Heaps, denoted byH, are mappings of locations,

denoted by ℓ, to values. Values are extended to include locations. nil is a special value that is not

mapped by any heap. Typings may contain a heap typing that assigns types to locations. Reference

types are composed of the type of values that can be stored at the location, as well as the security

level of location value itself.

We formalize objects along the lines of [14]. This is a class-based setting. All objects belong

to a class which defines which methods and fields are available in the object. Thus, object values

can be interpreted as a record of a class tag and fields. Classes induce class types. We only allow

primitive types (e.g., int) and class types. Objects are stored as references, i.e., a class-type field

in an object record contains a location value. We assume that objects can be initialized with default

types. We leave it open whether this happens implicitly (as in [14]), or if constructors need explicit

values (which we can provide: simple values for primitive types and nil for objects). We use

5Note that we are not aware of any security-type systems for reflection.

102

new C to denote object creation. As mentioned, we assume objects are mutable so that we can

incrementally update state. We denote accessing state with the typical field syntax o.f , but note

that there is no technical difference to accessor methods or other techniques. As in [14], we assume

that there is a ground type system that ensures that well-typed programs do not go wrong, that in

well-typed programs and heaps references always contain location values pointing to values in the

heap of the corresponding type, and no runtime exceptions happen.

We assume a simple typing of classes: all fields, method parameters and method result types

are security types. Classes contain an annotation that defines the security level of self-references.

Methods contain an annotation that bounds the side effect of that method. We assume methods

are typable with respect to their annotated signature: here we focus on the typability of a whole

program. Wrapping methods, which needs careful isolation of side effects, is future work.

We assume the language may support inheritance/subtyping. In this case, we expect a matching-

like construct that enables us to handle specific objects according to their actual class, similar to

variants for datatypes (we will reuse this notation). For example, dynamic casts and instanceof

expressions allow this functionality. To have a precise and complete recomputation, this requires a

closed world with a known class hierarchy.

We also assume that the language allows a “main” program fragment that defines a program’s

behaviour. This might be a specific method in a specific class, e.g., the main method in a Java

program, or a simple fragment that does not need to be wrapped in a class.

4.5.2 Reachability, Equivalence & Indistinguishability

As outlined above, we restrict our attention to languages that restrict computation to reachable

values. We formalize reachability as a set parameterized over a heap and starting location in said

heap. The reachable setR ofH and ℓ is the smallest set closed under the following rules:

1. ℓ ∈ R

2. if ℓ ∈ R and H(ℓ) = o an object of class C, then for all class-typed fields fof C we have

103

o.f ∈ R

For our treatment, we requireR to be finite.

To define equivalence for computations, we inspect inputs and results. These are pairs of a

heap and an object, which define a reachable portion of the heap. The actual locations are not

important for our equivalence. We only want to require the reachable heap parts to be isomorphic,

and primitive-typed fields to be equivalent. We can formalize this with respect to a bijection ρ

between locations. Two primitive values of type τ are equivalent if they are identical. Two object

values o1 and o2 of class type C are equivalent with respect to ρ if they agree on all primitive-typed

fields, and if for all class-typed fields f we have o1.f ρ o2.f . Two heap-object pairs (H1, o1) and

(H2, o2) are equivalent if there exists a bijection ρ over the reachable locationsRH1,o1 andRH2,o2

such that o1 is equivalent to o2 with respect to ρ, and for all locations ℓ1 ρ ℓ2, H1(ℓ1) is equivalent

toH2(ℓ2) with respect to ρ. We denote equivalence by ≡.

If two locations are indistinguishable with respect to bijection ρ and level φ and their level is at

most φ, then they are in relation with respect to ρ. If two object values are indistinguishable with

respect to bijection ρ and level φ, then all fields are indistinguishable at φ with respect to ρ. These

are standard. Now, along the lines of datatypes we require that if two references to objects of class

C are indistinguishable with respect to φ and ρ, and the security annotation is at most φ, then the

classes of both objects are identical. We require that indistinguishability for heaps is with respect

to its reachable part. That is (H∞, o1) is indistinguishable to (H∈, o2) at level φ if there exists a

bijection ρ between the reachable sets and o1 and o2 are indistinguishable with respect to ρ.

4.5.3 Computation

We define as a computation a function from a heap H and object in the heap, to a result heap H′

and result object. A program computes f if reduction of the main fragment with variables bound

to the input object and given heap results in the result heap and result object. As mentioned above,

we assume correct executions. Thus we will leave typing constraints implicit here. All definitions

are predicated on heaps and input objects correct with respect to f , that is H etc. range only over

104

valid input states for f .

We formalize our requirements on the treated programs in the following way. A function f is

ok, if:

• ∀H,H′, o, o′.f(H, o) = (H′, o′) =⇒ RH,o ∩RH′,o = ∅

• ∀H1, o1,H2, o2.(H1, o1) ≡ (H2, o2) =⇒ f(H1, o1) ≡ f(H2, o2)

We define a simulation g to be correct for f , if ∀H, o.f(H, o) ≡ g(H, o).

4.5.4 Security-typed Simulation with Heap Objects

We start from the approach for recursive datatypes outlined in Section 4.4.7. Namely, starting from

the result object, we walk the reachable parts of the heap. At each step we recompute the current

object in question under the reference’s security level. By requirements on indistinguishability,

the extracted object will now be of the exact class, such that matching allows us to decide what

to recompute. Primitive fields can be computed immediately. References are resolved recursively,

extending the current path. Since the reachable part of the heap is required to be finite, this process

will terminate. There are several noteworthy details that need to be carefully crafted.

Recomputation at a level requires two things. First, we need a copy of the program with all

annotations at that level. This means all classes have to be duplicated. Typing is guaranteed since

ground typing can be inferred from the original output, and new annotations are typable by single-

level requirement. Second, the input has to be duplicated at the current level. This requires a walk

and inspection of security levels. Since we only need to duplicate values up to the level, this is

typable. We can construct a bijection ρ while copying, associating each original object with its

copy. We end up with an extended heapH′ and input object o′ such that (H, o) is indistinguishable

to (H′, o′), which implies the required noninterference.

A heap may contain cyclic structures. A walk needs to detect cycles to terminate. The process

is complicated by the fact that the original result will be recomputed in every step. Our solution is

to store a list of objects seen when extracting the current object from the result along the current

105

path. This list can be typed with a single level, since the result object and heap are typed at a

single level. A “back edge” is detected when the current extracted object is present in the list. To

also detect “cross edges”, we must also walk all completed paths again. This can be implemented

through a deterministic processing order of fields in objects.

To break the cycle, we return the object constructed earlier. This is the main reason why the

treatment of datatypes (value is created late) differs from objects (value is created early). However,

it remains to be seen that we can find the constructed object in a typable manner. Our solution is

to extend the list structure for cycle detection. Not only do we store the object, but also the path

that reached it. Since the result is at a single level, this path is a single-level list at that level. If we

update objects early, that is, a child adds itself to its parent, and have access to the root, we can use

the path to retrieve the recomputed object in a typable way.

4.5.5 Formalization

Different from the previous treatment, we only present high-level pseudo-code here, since there

are too many details for a detailed exposition. We assume there is an encoding of field descriptors,

for example, into integers. Paths can then be defined as lists over this encoding. For clarity, we

will use names f .

We start with the actual recomputation.

Req : ℓ0 ⊑ ℓA ⊑ ℓ ⊑ ℓ′

omatchA.fp→B,ℓ,ℓA (p : Pa th
ℓ , x : τ i , startcopy : Ob j ec t ℓ0 , parent :AℓA) :Bℓ

wi th s i d e e f f e c t s ℓ

Obj ec t ℓ start := f ℓ(x)

DoneLi s t ℓ done := new DoneLi s t

Ob j ec t ℓ cur := e x t r a c t ℓ(p, start, startcopy, done)

f o r 〈 Obj ec t ℓ oorig , Ob j ec t ℓ ocopy 〉 i n done :

i f cur == oorig t h e n

106

parent . fp := (B)ocopy

r e t u r n (B)ocopy

i f cur i n s t a n c e o f B1 t h e n

Bℓ
1 copy := new B1

parent . fp := copy

f o r a l l p r i m i t i v e f i e l d s f : Cℓ′ i n B1 :

Pa th ℓ
′

p′ := p ++ f

copy.f := extract′ℓ(p
′, f ℓ

′

(x), f ℓ
′

(x), done)

f o r a l l non−p r i m i t i v e f i e l d s f : Cℓ′ i n B1 ,

o r d e r e d by ≺ :

Pa th ℓ
′

p′ := p ++ f

omatchB1.f→C,ℓ′,ℓ(p
′, x, startcopy, copy)

r e t u r n copy

e l s e i f . . .

A specialized version needs to start the copy at an empty path. This definition needs several

auxillary algorithms we describe in the following.

e x t r a c t ℓ (p : Pa th
ℓ , start : Ob j ec t ℓ , startcopy : Ob j ec t ℓ ,

done : DoneLi s t ℓ) : Ob j ec t ℓ wi th s i d e e f f e c t s ℓ

i f p i s empty t h en

r e t u r n start

e l s e

107

add start / startcopy t o done

F i e l d f := head of p

Pa th ℓ p′ := t a i l o f p

e x t r a c t a l l f i e l d s o f start / startcopy b e f o r e f and below ℓ

i n t o done

i f f == f1 t h e n / / f i r s t f i e l d o f start

i f start i n s t a n c e o f C1 t h e n

r e t u r n e x t r a c t ℓ(p
′, ((C1)start).f, ((C1)startcopy).f, done)

e l s e i f start i n s t a n c e o f C2 t h e n

r e t u r n nil

e l s e i f . . .

e l s e i f . . . / / second , t h i r d , . . . f i e l d o f start

r e t u r n nil

The extraction of all previous fields is a simple inspection of the current object’s class to find all

fields below the given level, and do an unconditional recursion into those fields. The two branches

for type checking represent matching all classes in the program and show the two possible cases:

in the first case, C1 has a field named f1 at or below ℓ, and we recurse; in the second case, C2 either

does not have this field, or it is not below ℓ. Last, finding an object from a start object is basically

extraction without the done-list.

f i n d ℓ (p : Pa th
ℓ , start : Ob j ec t ℓ) : Ob j ec t ℓ wi th s i d e e f f e c t s ℓ

i f p i s empty t h en

r e t u r n start

e l s e

108

F i e l d f := head of p

Pa th ℓ p′ := t a i l o f p

i f f == f1 t h e n / / f i r s t f i e l d o f start

i f start i n s t a n c e o f C1 t h e n

r e t u r n f i n d ℓ(p
′, ((C1)start).f)

e l s e i f . . .

e l s e i f . . . / / second , t h i r d , . . . f i e l d o f start

r e t u r n nil

Note that in extractℓ, omatch and findℓ, type matching is ordered such that subclasses are tested

before superclasses. Thus, matches will be precise.

Note that omatch depends on a total ordering≺ of fields of a class. The only constraint on this

ordering is that fields are ordered such that if an object o is reachable from two fields f1 and f2

with paths p1 and p2, respectively, then if the level at the end of p1 is less than the level at p2, then

f1 ≺ f2. This ensures that the depth-first approach is correctly typed.

Theorem 53 (Objects). Assume a language L and corresponding ground language that fulfill all

the requirements of the previous sections, as well as the requirements in this section. Also assume

a program p in the security-typed language that computes a function f , that is ground-typable,

but not necessarily security-typable. Furthermore, assume that f is ok and noninterferent. Then

the program corresponding to the computation outlined above is security-typable and simulates f

correctly.

4.5.6 Proof

We will start with typability.

Lemma 54 (Typability of extract & find). The functions extractℓ and findℓ can be typed for all ℓ.

109

Proof. Note that all storage (variables and heap locations) are uniformly typed at ℓ. Also, the re-

cursive calls are made with parameters of the exact types of the signature, which implies ground

typability. Thus, by single-level requirement, the functions are typable according to their signa-

tures.

Lemma 55 (Typability of omatch). The set of function omatch corresponding to all combinations

of parent classes, fields and respective children, is typable.

Proof. Assume that the functions are typable. We will show that under this assumption, all omatch

functions are typable. We pick an arbitrary function with A, fp and B, such that the level require-

ments are fulfilled.

• startcopy’s level is at ℓ0 ⊑ ℓ and can be raised to ℓ. Now the operations in the first two blocks

(recomputation of f at level ℓ, loop check) are typed at a single level, ℓ. This is possible by

single-level requirement.

• Each type check, object creation and parent update are done at level ℓ. This is possible by

single-level requirement.

• All fields f inB or any of its subclasses have security levels ℓ′ ⊒ ℓ by requirement on treated

types. Thus, p′ is an upgrade of p and thus typable. Now the call to the recursive omatch is

according to its signature, that is typable. Its side effect is at ℓ′ ⊒ ℓ.

Thus, omatch is typable, with side effects at ℓ or above.

Next we will show that the recomputation is correct. We start with termination (assuming that

f terminates for x).

Lemma 56 (Termination of extract & find). If p is not cyclic and finite, then extractℓ and findℓ

terminate for all inputs.

Proof. We begin with findℓ. Since p is not cyclic and finite, every recursive call decreases the

length of the path to look for by one. Thus, in a finite amount of steps, either the base case will be

110

reached and end the computation, or an incorrect field for the current object is found and terminates

the computation.

The argument for extractℓ is similar for the recursive calls. Furthermore, we have to show

that previous-field extraction terminates. This is the case because 1) the reachable heap is finite by

requirement, and 2) each extracted element is put into the done-list, so that each element is only

handled at most once.

Lemma 57 (Extraction result is finite). The done-list result of extractℓ is finite, if it starts finite.

Proof. By Lemma 56, extractℓ terminates in a finite amount of steps. In each step, only a finite

amount of object pairs is added to the done-list. Thus, the resulting list remains finite.

Lemma 58 (Termination of omatch). If p is not cyclic and finite, then omatch terminates for all

inputs.

Proof. By assumption, f(x) terminates, thus, by noninterference, f ℓ(x) terminates. Furthermore,

by requirements, it leaves the heap reachable from x intact, so that this is an invariant over all calls.

The result of extractℓ is finite by Lemma 57. Thus, there is a finite amount of object pairs to iterate

over and compare. If the current object was handled before, this is detected correctly by Lemma

61. Thus, omatch recreates each object and recurses on it at most once. If no original object

matches the current object, omatch compares against a finite number of classes (finite, closed-

world assumption). In case there is a match for class Bi, the algorithm iterates over all fields of

classBi, of which there is a finite amount. For each field, it extends the current path. This increases

the part of the heap marked done with respect to extract. Since the reachable heap is finite, this

means each recursive step decreases the size of the heap not recomputed yet. After a finite amount

of steps, all the heap is touched and recomputed. The algorithm will then terminate.

Last, we will show correctness.

Definition 59 (Valid Path (OO)). A path p is valid with respect to object o, if p is the empty path

(), or p is f :: p′, where f is a valid field of o, and p′ is valid in o.f .

111

Lemma 60 (Paths are valid). In a computation starting with p = (), all intermediate paths are

valid, that is, describe a valid path in the heap.

Proof. Obviously, p = () is valid for any recomputation. Now do an induction on the execution. By

construction, the paths p′ constructed before recursion are valid in the heap reachable from start,

since p is valid and denotes cur, and cur has field f . Now, the recursive step is recomputed at level

ℓ′ ⊒ ℓ, yielding start′. All references along p′ are at level ℓ′ or below. Thus, by noninterference,

the heap starting from start′ is equivalent on path p′. Thus, p′ is valid from start′.

Lemma 61 (Loop-Detection is correct). Loop detection is correct in omatch, that is, the loop in

the second block finds a matching object if and only if an object at the same location has been

handled before (or is still being handled).

Proof. By Lemma 60, in any step p is valid in the heap reachable from start. Furthermore, by

ordering of the field traversal, we have that each object reachable from f(x) is handled first with a

path po such that the level ℓ is minimal.

A loop means that there are at least two paths from f(x) to the same location, w.l.o.g. we

restrict to exactly two. Let ℓ1 and ℓ2 be the levels of references at the end of the corresponding

paths p1 and p2. Then by requirements, we have ℓ1 ⊑ ℓ2 or ℓ2 ⊑ ℓ1. Then by ordering, ℓ1 is

handled before ℓ2. Since ℓ2 ⊒ ℓ1, and p1 is at ℓ1, p1 is valid with respect to start2, and valid in

f(x). Then p1 is picked up in extractℓ2 , either as a prefix of p2 or a predecessor. Thus, the loop is

detected, and the right element is returned.

On the other hand, if a loop is detected, it means that extractℓ2 picked up an object reachable

along either the prefix of p, or along a previously handled field. Thus, since the object locations

match, there are two paths toward the current object. Since the reachable heap up to ℓ2 is correct

with respect to f(x), this means there is a loop in f(x), too. Thus, the detection is correct.

Lemma 62 (Correctness of find). If p is a valid path, then findℓ(p, start) = pv(p, start).

Proof. By induction on p. If p is empty, then the statement is trivially true. If p = f :: p′,

then because p is valid, start is of a class C that has a field f . Thus, one of the type checks

112

will be true. Since they are ordered in reverse order, C will match before any superclass of C.

Thus, the right case will match. Now, by definition, p′ is valid in start.f . So, findℓ(p, start) =

findℓ(p
′, start.f) = pv(p′, start.f) = pv(p, start).

Definition 63 (Handled nodes). Let p be a valid path in o. The the set of objects o′ such that there

is a path p′ ≺ p that is valid in o and pv(p′, o) = o′ is called the handled nodes of o up to p. We

denote this set by H(o, p).

Definition 64 (Correct up to path). If p is a valid path in an object o and an object o′, then o is

correct up to p with respect to o′ if the graphs induced by H(o, p) and H(o′, p) are isomorphic

(preserving the reaching paths) and related objects are of the same class.

Lemma 65 (Correctness of extract). If p is a valid path for start, and startcopy is correct up to p,

then

1. extractℓ(p, start, startcopy, done) = pv(p, start), and

2. for all valid paths p′ ≺ p with tp(pt(p′, τ)) ⊑ tp(pt(p, τ)), pv(p′, start) ∈ done after

extractℓ(p, start, statcopy, done)

3. for all valid paths p′ ≺ p with tp(pt(p′, τ)) ⊑ tp(pt(p, τ)), pv(p′, startcopy) ∈ done after

extractℓ(p, start, statcopy, done)

Proof. All at the same time by induction on p. If p is empty, then the statement is trivially true. If

p = f :: p′′, then because p is valid, start is of a class C that has a field f , and startcopy is of class

C because it is correct up to p. Thus, p′′ is valid in both start.f and startcopy.f .

1. Thus, some of the type checks will be true, and it will be cases with a recursion. Since they

are ordered in reverse order, C will match before any superclass of C. Thus, the right case

will match. So, extractℓ(p, start, done) = extractℓ(p
′, start.f, done′) = pv(p′, start.f) =

pv(p, start).

113

2. Since p′′ is valid in start.f , for all p′′′ ≺ p′′ and valid in start.f , pv(p′′′, start.f) ∈ done

after the recursive call (see 1.). Now, by definitions of ≺ and validity, we can extend each

such p′′′ to f :: p′′′. Then f :: p′′′ ≺ f :: p′′ = p, and pv(p′′′, start.f) = pv(f :: p′′′, start) ∈

done. Now, the only other ≺ paths are by construction the ones starting with f ′ such that

f ′ ≺ f . These are collected in the extraction-of-fields-before block.

3. Analogously to the previous case, with the argument that startcopy is correct up to path p.

Lemma 66 (Correctness of omatch up to path). If p is a valid path for f(x), and startcopy is correct

up to p, and p = p′ + +f and pt(p′, τ) = A and pt(p, τ) = B, and let ℓA and ℓB be the corre-

sponding levels of the references. Then after omatchA.f→B,ℓB,ℓA(p, x, startcopy, pv(p
′, startcopy),

startcopy is correct up to all valid cyclic-free extensions of p.

Proof. By induction on the execution of omatch. If omatch returns with a detected loop, then

there are no cycle-free extensions of p. If there is no cycle, then cur is indistinguishable from

pv(p, f(x)) = cur′ by noninterference. This means that cur is of the same class as cur′. It follows

that the newly created object copy is of the same class as cur′. Furthermore, by correctness up to p

and p′ ≺ p, pv(p′, startcopy) is related to pv(p′, f(x)). We connect copy to pv(p′, startcopy). Now

startcopy is correct up to p++f ′ for f ′ minimal in B. Now inspect each iteration of the loop over

the fields. Before an iteration for f ′, we have startcopy correct up to p++f ′. Furthermore, p++f ′

is valid. Thus, by inductive hypothesis, after the recursive call, startcopy is correct up to all valid

cyclic-free extensions of p++f ′. This means it is correct up to p++f ′′ where f ′′ is the next field.

Thus, when the loop concludes, startcopy is correct up to all valid cyclic-free extensions of p.

Lemma 67 (Correctness of omatch). Execution of omatch is correct for f .

Proof. Simple corollary of Lemma 66, since the start is instantiated with p = (), and any path is

an extension of ().

114

4.6 Example Languages

This section briefly describes three case studies which demonstrate that our formalization and

requirements permit such different paradigms as imperative, functional and object-oriented lan-

guages.

4.6.1 Volpano, Smith & Irvine

VSI [89] is based on a simpleWHILE language based on integers. It fits the development in Section

4.3. Erasure and lifting functions are straightforward for VSI, since only types are annotated. We

will show Requirements 25 and 28 in more detail.

Requirement 25 follows from the polymorphic setup of the type rules and can be formally

proved by induction.

Lemma 68 (While Single-level Typability). For all programs c and expressions e and security

levels ℓ, there is Γℓ such that Γℓ ⊢ c : ℓ ok and all variables are mapped to ℓ in Γℓ.

Proof. Let V be the set of variables mentioned in c or e. Then define Γℓ as mapping all variables

in V to ℓ. Now proceed by structural induction on c and e. We show select cases.

Literal: The typing rule is polymorphic in the security level. Thus, typing at ℓ is permissible.

Variable: The variable x is an element of V . Thus, Γℓ(x) = ℓ.

Assignment: By inductive hypothesis, the expression can be typed as ℓ. Furthermore, anal-

ogously to the previous case, the variable is typed as ℓ. Thus, assignment is permissible at

ℓ ok.

Condition: By inductive hypothesis, the condition as well as the branches are typable at ℓ.

Thus, if is typable at ℓ ok.

115

Variable assignment represents the projection function of requirement 26, typable by the as-

signment rule. Assignment of an integer literal represents the constant function of requirement 27,

and can be typed at the output variable level.

Lemma 69 (Assignment Typings). For all variables x and x′ and security level ℓ, if Γ(x) ⊑

Γ(x′) = ℓ, then Γ ⊢ x′ := x : ℓ ok.

Proof. By T -V ar, Γ ⊢ x : Γ(x) and Γ ⊢ x′ : Γ(x′). By assumption, Γ(x) ⊑ Γ(x′). With ℓ = Γ(x′)

and ℓ′ = Γ(x), an application of T -Ass yields the result.

The next lemma states the existence of a typed program that computes the composition of two

given typed programs.

Lemma 70 (While Composition). Given two programs ca and cb that are typed under Γa and Γb

and compute fa and fb, respectively, where outputs of cb agree with inputs of ca, there exists a

program ca◦b that is typed under Γa◦b and computes fa◦b = fa ◦ fb. Furthermore, Γa◦b agrees with

Γa and Γb under respective renamings of variables.

Proof. For simplicity we assume that ca and cb agree on the variables that are used to pass results,

that is, outputs of cb with respect to fb are named the same as inputs of ca with respect to fa. We

denote those variables by−→y . No other variables are shared. Note that this can be accomplished by

consistently renaming variables. Now Γa(x) = Γb(x) for all variables x in −→y .

Let Γa◦b(x) be Γa(x) if x appears in ca, and let Γa◦b(x) be Γb(x) if x appears in cb. Let

ca◦b = cb; ca. Inspection of the semantic rule for sequencing shows that this program fulfills the

functional requirements, that is, computes fa◦b.

By construction, ca and cb can be typed under Γa◦b. Namely, Γa◦b is a weakening of both Γa

and Γb. Thus, by inspection of the typing rule for sequencing ca◦b is typable under Γa◦b.

We thus have as a corollary to Theorem 29 that While is security-complete.

Corollary 71 (While Security Completeness). If a function f is computable in WHILE, and nonin-

terferent under a signature given by Γ, then there exists a WHILE program c that is typable under

a typing environment Γ′ that is an extension of Γ.

116

4.6.2 FlowML

FlowML [72, 73] is based on a core functional ML fragment including references, pairs, sums

and exceptions. For simplicity of the functional interpretation we do not treat exceptions and

references here. FlowML fits the development in Section 4.4.4. Lifting, erasure and single-level

typing follow from the polymorphic setup of the rules. Projection is provided by a simple variable,

while constants can be freely formed. Composition is provided by variable substitution, which

may be combined with renaming and weakening to fulfill the requirements. Extraction for pairs is

provided by typed projection, and a case construct allows to distinguish variants. However, basic

noninterference cannot be lifted to abstractions, so that we cannot support arrow types (c.f. [46]).

4.6.3 Banerjee & Naumann

It is easy to extend the work in Section 4.5 to a class-based setting. We study the work in [14]. Ad-

ditional treatment over pure references is necessary for encapsulation, which we solve by making

all fields accessible through accessor methods. This does not change the computation. Single-

level requirements can be ensured by complete copies of all classes and setting all annotations at

the requested level. Projection, constant functions, and composition can be handled as in VSI.

Furthermore, we need a matching construct to match objects to their respective classes. This can

be realized with instanceof and dynamic casts provided by the language. Note that these

constructs have the same security level as their inputs, so that they are typable as required.

117

Chapter 5: EXTENSIONS

This chapter contains content based on [40].

5.1 Nondeterminism

We study the case of possibilistic noninterference of the embedded language, embedded into a

deterministic host language. We adapt our simulation technique by restricting the nondeterminism

such that a deterministic simulation can be constructed that is in a sense functionally equivalent.

Definition 72 (Deterministic Simulation). A deterministic language Ld simulates a nondetermin-

istic language Ln iff for all program pn ∈ Ln there exists a program pd ∈ Ld such that for all input

states µ and values vn, (pn, µ) n vn if and only if there exists an i such that (pd, i, µ) d vn.

Given a deterministic simulation, we can easily lift noninterference. If a program pn is possi-

bilistic noninterferent in Ln with respect to signature τ1 × · · · × τn → τ , then pn is noninterferent

in Ld with respect to signature τ1 × · · · × τn × intL → τ . At this point, security completeness

as defined before applies and we can embed a host-level simulation of pn with the deterministic

semantics and add a determinism variable corresponding to i, which will capture all and only those

behaviors of pn of the nondeterministic semantics. We now show a broadly applicable procedure

for constructing deterministic simulations of programs in non-deterministic languages.

5.1.1 Determinization

For the construction of a deterministic simulation we use the following notations. Inference rules

for semantics are of the shape P ⇒ C1 → C2, where P is a set of constraints, and C1 and C2 are

configurations (or configuration templates). All may contain free metavariables.

A rule R ≡ P ⇒ C1 → C2 applies to a pair of concrete configurations c1 and c2 if there is a

substitution σ of all free variables of P , C1 and C2 such that σC1 = c1 and σC2 = c2, and for all

constraint templates p ∈ P , σp is true (we use σP to abbreviate).

118

A semantics S is given as a finite set of inference rules. We require that for any concrete

configuration and rule P ⇒ C1 → C2, there is a finite number of substitutions σ such that c2 =

σC2 and the rule applies to c1 and c2. We assume a predicate F that categorizes a configuration as

final. We assume that if F(c1), then there is no c2 such that any rule applies. We define→∗ as the

transitive closure of the relation implied by the inference rules. We define as the subset of→∗

where the range is final.

There are two sources of nondeterminism. The first is applicability of multiple inference rules.

Given a concrete configuration c1, multiple rule constraints P and associated configuration tem-

plates C may apply. In the deterministic simulation, this situation has to be resolved such that

exactly one of the rules applies. The second source is with respect to a single rule. As rules may

include meta-variables, which make them templates, and those meta-variables are implicitly uni-

versally quantified, different valuations for those meta-variables are possible. After choosing a rule

in the first step, a deterministic language has to resolve the mapping of those metavariables. We

tackle both issues by transforming the rules. First, the constraints of original rules are extended

to decide whether a rule is enabled, that is, chosen in the first step. Then a function is used in

the constraints to map the meta-variables to valuations. One may visualize this as implicitly trans-

forming the original rule into a finite set of new rules, one for each valuation of the meta-variables.

Both new constraints take advantage of the explicit randomness source to define whether a rule is

chosen, and which meta-variable mappings should be used. We will use meta-variables i to denote

this source.

We adapt an overline convention to separate original and simulation. Let C ::= (C, i) and

define F(C) = F(C). We translate each rule R ≡ P ⇒ C1 → C2 of S to a rule R ≡ P ⇒

C1 → C2 in the following way: (1) Give the rule a unique number n. (2) Extend the templates of

C1 and C2 to be pairs with metavariables i and i′ for the randomness source. (3) Add the constraint

rule-selected(R, i, ir), where ir fresh. (4) For V = fv(P) ∪ fv(C2) \ fv(C1), add a constraint

(v1, v2, . . . , iv) = select-vV (P,C1, ir), where ir is fresh. Now let the current ic be iv. (5) For all

original constraint templates p ∈ P : If p contains C → C ′, then add ic to C, and add i
′ a fresh i to

119

C ′. Now let ic be i
′. All other constraints add without change. This threads the randomness source

through the inference rule. (6) Add constraint ic = i′.

As an example, take a language with a choice assignment, that is, including reduction rules like

µ, x := e1|e2 → µ[x 7→ µ(e1)]
R1

µ, x := e1|e2 → µ[x 7→ µ(e2)]
R2

In our notation, those rules can be written as ∅ ⇒ (µ, x := e1|e2) → (µ[x 7→ µ(e1)], skip) and

∅ ⇒ (µ, x := e1|e2)→ (µ[x 7→ µ(e2)], skip). For simplicity assume we number the first rule with

1, and the second rule with 2. Then the transformation leads to the following new rules:

rule-selected(R1, i, ir)

∧ ir = i′
⇒ ((µ, x := e1|e2), i)→ ((µ[x 7→ µ(e1)], skip), i

′)

rule-selected(R2, i, ir)

∧ ir = i′
⇒ ((µ, x := e1|e2), i)→ ((µ[x 7→ µ(e2)], skip), i

′)

where we elided select-v as there are no free variables to be bound.

To define the predicates rule-selected and select-v we need some auxilliary definitions. LetR

be the set of all rules with an arbitrary order. We use square brackets [] to index into the set. Then

define EQ[C] with Q ⊆ R to be the formula

EQ[C] = (∀Ri∈Q. (C = Ri.C
′ ∧ Ri.P

′)) ∧
(

∀Rj∈R\Q. ¬(C = Rj.C
′ ∧Rj .P

′)
)

where the prime notation denotes a consistent renaming of meta-variables to fresh ones. Given a

concrete configuration c such that c = σC for some substitution σ, σEQ[C] is true if and only if

all rules in Q are applicable to c, and all remaining rules are not. We can use this formula with a

120

free meta-variable to count the applicable rules:

nrules(C, n) =

n = 1 ∧
∨

Q⊆R∧|Q|=1

EQ[C]

 ∨

n = 2 ∧
∨

Q⊆R∧|Q|=2

EQ[C]

 . . .

We will write n = nrules(C) to denote the binding of n in nrules(C, n). A similar formula allows

to derive the (zero-based) position of R in the set Q that applies. We denote this formula by

irule(R, ind) or the functional binding ind = irule(R). Now we can define rule-selected as

rule-selected(R, i, ir) ≡ n = nrules(R.C) ∧ ind = irule(R) ∧ ind = next(i, n) ∧ ir = rest(i, n)

Here we use next to extract randomness from our randomness source i. We require that next(i, n) ∈

{0, . . . , n − 1} and onto, that is, forall j ∈ {0, . . . , n − 1} there exists i such that next(i, n) = j.

Only then is it guaranteed that all new rules can be selected. Similarly, rest “advances” the random-

ness source, and again we require that forall j there exists i such that rest(i, n) = j. An example

for a randomness source and associated functions satisfying those conditions are natural numbers

with next(ii, ni) = (ii%ni) and rest(ii, ni) = ii/ni, but we leave the exact nature abstract.

For select-vV , we know that there are only a finite number of instances to consider (by the

requirement on substitutions). Let this collection be VC , and have an arbitrary order. Then define

select-v(C, i) = (VC [next(i, |VC |)], rest(i, |VC |))

Lemma 73 (Determinism). For any configuration c, there is at most one rule that applies, and if

it applies, there is only one substitution σ for it.

The first part derives from the unique numbering, while the second is by induction on the

derivation.

Lemma 74. Assume a pair of configurations ca and cb. Assume that rule R = P ⇒ Ca → Cb is

applicable to ca and cb, that is, there is a substitution σ such that σCa = ca, σCb = cb and σP .

121

Then

1. There is Q ⊆ R with R ∈ Q such that for an extension σ′ of σ, σ′EQ[Ca].

2. For each i′, there exists i such that rule-selected(R, i, i′).

Proof. For the first part, we let Q = {R|R ∈ R ∧ ∃σR. σRR.C1 = ca ∧ σRR.P}. Obviously,

R ∈ Q as σ is evidence. Let σR denote the substitution guaranteed to exist by Q for R ∈ Q.

Let σ′R denote the substitution that results under the renaming of variables as in EQ[Ca]. Then the

domains of all σ′ and σ are pairwise disjunct, and for all R we have σ′RR.C
′
1 = ca∧σ′RR.P ′. Then

the join σ′ of all substitutions σ′R with σ satisfies the requirements.

The second part follows by inspection of rule-selected. As R applies, nrules(R.C) > 0 and

irule(R) exists. Then by onto-requirements of rest, there exists an i for all i′.

Lemma 75. Given a pair of configurations ca and cb, and also that rule R = P ⇒ Ca → Cb is

applicable to ca and cb, that is, there is a substitution σ such that σCa = ca, σCb = cb and σP , let

R be the rule in S corresponding to R. Then for each i′, there exists i such that select-v(Ca, i) =

(w1, . . . , i
′) where σvi = wi, where vi the free variables of P and Cb.

Proof is by properties of next and rest.

Lemma 76. Given a pair of configurations ca and cb of S, and given that ca → cb by rule R =

P ⇒ Ca → Cb, for any i
′ ∈ N there is a i ∈ N such that (ca, i)→ (cb, i′) in S by the rule

R = P ⇒ (Ca, ia)→ (Cb, ib) corresponding to R.

Proof. Proof follows from determinism and an induction in the derivation of ca → cb, using prop-

erties of next and rest.

If R applies, then there exists a substitution σ such that σCa = ca, σCb = cb and σP . Proof is

by induction on the derivation of application of R.

First, consider the case that there is no constraint p in P that describes a nested reduction,

that is, is of the form C1 → C2. We will show by contradiction that there exists a σ such that R

applies to (ca, i)→ (cb, i′) by σ. Assume there is no σ such that σia = i for some i and σib = i′

122

and σP . Thus, either there is no i such that σia = i and σrule-selected(R, ia, ir), or some other

constraint cannot be satisfied at the same time. By Lemma 74 and the existence of σ it follows

that there exists an i for any ir such that rule-selected(R, i, ir). Thus, another constraint must be

unsatisfiable.

Now, either there is no ir such that σ [(v1, . . . , iv) = select-v(Ca, ir)], or some other constraint

cannot be satisfied. By Lemma 75 and the existence of σ it follows that there exists an ir for any

iv such that select-v(ca, ir) = (σv1, . . . , iv).

Note that all unmodified constraints in P can be satisfied by σ, and iv = ib can be satisfied by

setting σiv = i′. Thus, there is an extension of σ that satisfies R and assigns the value i′ to ib.

Now consider the case that there is some constraint p that contains C1 → C2. Up to such a

constraint, reasoning carries over from the previous case. Then by inductive hypothesis, there is

an ii for any io such that (σC1, ii)→ (σC2, io). This concludes the proof.

Lemma 77. Given a pair of configurations ca and cb of S and integers ia and ib such that

(ca, ia)→ (cb, ib) in S , then ca → cb in S.

Proof. Proof follows from determinism and an induction in the derivation of (ca, ia)→ (cb, ib),

using properties of next and rest.

Since (ca, ia)→ (cb, ib) in S, there is (by Lemma 73) a unique ruleR = P ⇒ (Ca, i)→ (Cb, i′)

and substitution σ such that σ(Ca, i) = (ca, ia), σ(Cb, i
′) = (cb, ib) and σP . Let σx = σx for all

non-i variables. Now proof by induction on the derivation of (ca, ia)→ (cb, ib).

First, consider the case where there is no constraint p in P that contains (C1, i1)→ (C2, i2).

Since σP , we have that σrule-selected(R, ia, ir) and σ [(v1, . . . , iv) = select-v(Ca, ir)]. By defi-

nition, that means there is a substitution σ such that σP (rule-selected) and σvi = σvi (select-v).

But then σCa = ca and σCb = cb. Thus σ applies to R, the rule R was derived from. So ca → cb

in S.

Now consider the case that there is a constraint p in P that contains (C1, i1)→ (C2, i2). We

have the same deduction of σ as before. Now also σ(C1, i1)→ (C2, i2). By inductive hypothesis,

123

this means that σC1 → σC2 in S. Since σ agrees on all variables of r with σ, σC1 = σC1 and

σC2 = σC2. Thus, the constraint p corresponding to p is satisfied. It follows that r is applicable,

and thus ca → cb in S.

Theorem 78 (S simulates S.). c1 c2 ⇐⇒ ∃i.(c1, i) (c2, 0)

Proof. Follows by inductions on the length of and −→ , respectively.

1. ⇒: By induction on the length of the derivation of c1 c2. Base case is c1 → c2. Then by

Lemma 76, there is an i for any i′ such that (c1, i)→ (c2, i′). Choosing i
′ = 0 concludes the

base case.

For the inductive step, assume c1 → c′ and c′ c2. Then by inductive hypothesis, there is

an i′ such that (c′, i′) (c2, 0). Furthermore, by Lemma 76, there is an i for this i′ such that

(c1, i)→ (c′, i′). Thus, (c1, i) (c2, 0).

2. ⇐: Analogous to⇒. Substitute Lemma 76 with Lemma 77.

5.2 Declassification

In practice noninterference is too strong a property to enforce. A canonical example is a login

process, which compares a given string to a stored password and allows access if they are identical.

However, this constitutes a leak from the viewpoint of noninterference.

Declassification is necessary for intentional information release, relabeling data so that it be-

comes accessible. This is required when a system needs to leak information to function, the

canonical example being a login process. The main questions are under what circumstances a

declassification should be allowed and what security guarantee this entails. For a general overview

and classification we refer to [80]. There is no generally agreed-upon best definition. We will

demonstrate how two examples can be integrated into our framework.

124

5.2.1 Delimited Release

In Delimited Release [79], declassification expressions define escape hatches. A program is secure

iff for any observer level, the program produces indistinguishable outputs given any pair of indis-

tinguishable inputs for which all expressions declared as hatches declassifying to the observer’s

level evaluate to the same value. Sabelfeld and Myers [79] show how a type-and-effect system can

be used to enforce delimited release. The effects here are variables used in declassifaction (D),

and variables modified (U). A program is guaranteed to be secure, if D ∩ U = ∅.

Given two languages with such type-and-effect systems, we can extend the typing of an em-

bedding to also encompass effects. An example is

Γ ⊢ e : ℓ,De ∆, [ẋ : ℓ] ⊢ ċ : ℓv/ℓs, Dċ, Uċ ℓv ⊑ Γ(x) Dẋ =

V ars(e) ẋ ∈ Dċ

∅ else

Γ,∆ ⊢ x := eval e in ċ : Γ(xi) ⊓ ℓS, De ∪Dċ ∪Dẋ, Uċ ∪ {x}

In words, the declassification effect of an eval encompasses the declassification in the parameter

expression and the embedded declassification effect. Also, if the embedded effect contains the

embedded parameter, then all variables in the parameter expression are involved in declassification.

Similarly, the modified variables are made up of the variables modified in the embedded fragment,

and the result variable at the host level.

5.2.2 Robust Declassification

Robust declassification [92] informally defines a system potentially including declassification to

be robust if an attacker cannot deduce additional information when attacks are applied. This is

an example of the who dimension of declassification, as the attacker does not have influence over

what gets declassified.

In [68], a type system is proposed that enforces a variant robust declassification. A secure

While language with both confidentiality and integrity is extended with a declassification expres-

125

sion and holes. Attacks are defined to be noninterfering programs that cannot influence high-

integrity variables. A program is complete when holes are filled with attacks. The type system

then enforces that for a typable program with holes, for any two derived complete programs and

all inputs, if an attacker cannot distinguish runs of the first program, then she cannot distinguish

runs of the second.

To show how two languages enforcing robust declassification can be composed, we first ab-

stract the guarantees of the language of [68], transposing them to requirements on traces in a state

transition system. We call this property step-wise robustness. We then show that a system satis-

fying the requirements is robust with respect to the definition in [92]. Finally, given two systems

guaranteeing step-wise robustness, we show that the disciplined composition given by typed em-

bedding continues to be step-wise robust.

Let S = (Σ, 7→, L,D,A,E,Γ) be an (annotated) state transition system, where states are tuples

of the form σ = (σHH , σHL, σLH , σLL, l) with l denoting an abstract location from L. 7→ is a

binary relation over states,D is a predicate describing which locations may declassify data, that is,

over which 7→ is not required to be noninterference-preserving. A is a predicate describing which

locations denote attacks,E maps locations to exit points of single-exit regions of which the location

is a part, and Γ is a mapping of locations to security levels, that is, Γ is an abstract representation

of knowledge encoded in the code part of a program’s configuration, for example, the knowledge

of branch outcomes given the current program location, while E encodes knowledge about the

structure of a program and is used to allow downgrading of the context label given by Γ whenever

it can be guaranteed that code flows reconverge. Traces τ are (possibly empty) sequences of states

such that τ(0) 7→ τ(1) 7→ We define τ.e as the last state of τ if τ is finite and ⊥ otherwise.

Traces (and states) are concatenated with ⊕.

A system S is valid iff properties V1 through V5 hold for Γ and E, namely

V1. ∀σ 7→ σ′. ∃k ≥ 0. E(σ.l) = Ek(σ′.l) ∧ ∀0 ≤ i < k. Γ(σ.l) ⊑ Γ(Ei(σ′.l))

V2. ∀l.Γ(E(l)) ⊑ Γ(l)

126

V3. ∀σ1 7→ σ′1, σ2 7→ σ′2.σ1 ≈I/C σ2∧σ1.l = σ2.l∧σ′1.l 6= σ′2.l =⇒ Γ(σ′1.l) ∈ HI/C∧Γ(σ′2.l) ∈

HI/C .

V4. ∀l.D(l) =⇒ Γ(l) ∈ HI ∧ Γ(l) ∈ LC

V5. ∀l.A(l) =⇒ Γ(l) ∈ LC

where E0(l) = l and Ek+1(l) = Ek(E(l)), and subscripts X/Y are an abbreviation for separate

identical rules with subscripts X and Y . Here LI/C are the low-integrity/low-confidentiality levels,

and HI/C correspondingly. We define confidentiality-indistinguishability satisfying σ ≈C σ′ =⇒

σLH = σ′LH ∧ σLL = σ′LL, and analogously integrity-indistinguishability satsifying σ ≈I σ′ =⇒

σLH = σ′LH ∧ σHH = σ′HH . The reverse direction is required to hold whenever also σ.l = σ′.l; or

Γ(σ.l) ∈ H , Γ(σ′.l) ∈ H and for the smallest k and k′ such that Ek(σ.l) ∈ L and Ek′(σ′.l) ∈ L

the elements Ek(σ.l) and Ek′(σ′.l) are the same; or Γ(σ.l) ∈ H , Γ(σ′.l) ∈ L and σ′.l = Ek(σ.l) is

minimal in k such thatEk(σ.l) ∈ L; or the symmetric case of the last one. For termination-sensitive

noninterference, ⊥ is only equivalent to itself, while for termination-insensitive noninterference ⊥

is low-equivalent with every state.

We model attacks as part of S, that is, 7→A⊆7→, where a single transition captures the whole

attack. The requirements on 7→A then are that attacks are noninterferent computations, thus in-

distinguishable inputs to an attack lead to indistinguishable outputs; attacks do not change the

high-integrity parts of a state; and start in a low-confidentiality locations, that is ∀l.A(l) =⇒

Γ(l) ∈ LC . These are the standard definitions from [68]. Further, attacks are only allowed at

specific locations denoted by A, and for all attacks σ1 7→A σ2 and σ′1 7→ σ′2 where σ1.l = σ′1.l

we have σ2.l = σ′2.l. Last, to capture that attacks stand for (terminating) computations, we require

they satisfy a closure property: all states with locations A(l) have an attack transition, and only

such relations.

A system S is step-wise robust with respect to attacks 7→A iff

S1. S is valid and deterministic in non-attack transitions/locations

127

S2. ∀σ1, σ′1, σ2. σ1 ≈I σ2∧σ1 7→ σ′1 =⇒ ∃τ ′2. τ ′2(0) = σ2∧∀i < len(τ ′2). τ
′
2(i) ≈I σ2∧τ ′2.e ≈I

σ′1

Given two integrity-indistinguishable states, a step of one can be matched by zero or more

steps of the other so that the result remains integrity-indistinguishable.

S3. ∀σ1, σ′1, σ2. σ1 ≈C σ2 ∧ σ1 7→ σ′1 ∧¬D(σ1) =⇒ ∃τ ′2. τ ′2(0) = σ2 ∧ ∀i < len(τ ′2). τ
′
2(i) ≈C

σ2 ∧ τ ′2.e ≈C σ′1

Given two confidentiality-indistinguishable states and the first is not declassifying, a step

of the first can be matched by zero or more steps of the second so that the result remains

confidentiality-indistinguishable.

S4. ∀σ1, σ2. σ1 ≈I/C σ2∧D(σ1) =⇒ ∃τ ′2. τ ′2(0) = σ2∧∀i < len(τ ′2). τ
′
2(i) ≈I/C σ2∧D(τ ′2.e)

If a state is marked as declassifying, then a declassification must be reachable from all

integrity-equivalent/confidentiality-equivalent states.

S5. ∀σ, σ′. σ 7→ σ′ ∧D(σ) =⇒ σLL = σ′LL

Declassification does not influence the LL part of a state.

The language in [68] is a structured and well-behaved While language with small-step semantics

defined over heapsM and statements c. Given a typed program Γ, pc ⊢ c[•], we can translate it to

a corresponding transition system S. This system satisfies that for any attack a and intermediate

state 〈M, c′〉 such that 〈M0, c[a]〉 →∗ 〈M, c′〉, 〈M, c′〉 ≡ σ 7→ σ′ ≡ 〈M ′, c′′〉 can be matched to a

(multi-)step 〈M, c′〉 →∗ 〈M ′, c′′〉. With this we can derive the following theorem.

Theorem 79 (Language-robust implies step-wise robust). If Γ, pc ⊢ c[•], then there exists S that

is (a) able to simulate all runs of c under any attack a and (b) S is step-wise robust.

We require two auxiliary lemmas.

Lemma 80 (Single Exit). For all states σ in a valid system S with Γ(E(σ.l)) < Γ(σ.l), it holds for

all traces τ ∈ T (S, σ) generated from σ that one of the following is satisfied

128

• ∀i ≤ len(τ). pcE < Γ(τ(i).l)

• τ = τ1 7→ σE 7→ τ2, ∀i ≤ len(τ1). pcE < Γ(τ1(i).l), and σE .l = E(σ.l)

where pcE = Γ(E(σ.l)).

Proof. Let τ be a trace generated by σ. Let l = σ.l and lE = E(σ.l). Let ℓ = Γ(l). Note that

pcE < ℓ. Let k be the first index in τ such that ℓ 6⊑ Γ(τ(k).l).

If such a k exists, it must be k > 0. Now for the prefix of τ made up of the first k − 1

elements, we have that ∀i < k.ℓ ⊑ Γ(τ(i).l). We apply V1 iteratively to the prefix. Let l1 be the

location before a step, and l2 be the location after the step. Then before a step, we have l1 6= lE ,

ℓ ⊑ Γ(l1), and ∃j. Ej(l1) = lE ∧ ∀0 ≤ i < j.ℓ ⊑ Γ(Ei(l1)). By V1, ∃m ≥ 0.E(l1) = Em(l2) and

∀0 ≤ i < m. Γ(l1) ⊑ Γ(Ei(l2)). If m = 0, then we have l2 = E(l1). Now also ℓ ⊑ Γ(l2). Thus

l2 6= lE , so ∃j.Ej(l2) = lE and ∀0 ≤ i < j.ℓ ⊑ Γ(Ei(l2). Ifm = 1, then the property is preserved

immediately. If m > 1, then Γ(E(l1)) ⊑ Γ(l1) (V2) and Γ(l1) ⊑ Γ(E(l2)) and Γ(l1) ⊑ Γ(l2)

(V1), so by transitivity the property is preserved. We thus have τ1 = τ(0) 7→∗ τ(k − 1) with

∀i ≤ len(τ1) = k − 1. pcE < ℓ ⊑ Γ(τ1(i).l).

Now inspect τ(k − 1) 7→ τ(k). Again part 1 of validity applies. It cannot be the case that

m ≥ 1, as then k was not minimal. So m = 0. Then τ(k).l = E(τ(k − 1).l). From the above

property of τ1, we have that ∃j. Ej(τ(k − 1).l) = lE ∧ ∀0 ≤ i < j.ℓE < Γ(Ei(τ(k − 1).l). It

follows that j = 1, as all other cases are contradictory: j = 0 implies τ(k− 1).l = lE and so k not

minimal; j > 1 implies ℓE < Γ(E(τ(k − 1).l)) = Γ(τ(k).l). So τ(k).l = lE .

The case when k does not exist follows the derivation of τ1 above.

Lemma 81 (Translation is valid). The translation of Γ, pc ⊢ c[•] is valid.

Proof. Validity is defined as:

V1. ∀σ 7→ σ′. ∃k ≥ 0. E(σ.l) = Ek(σ′.l) ∧ ∀0 ≤ i < k. Γ(σ.l) ⊑ Γ(Ei(σ′.l))

Let l = σ.l and l′ = σ′.l. 7→ is generated by the small-step semantics. Induction over

(unrolled) semantic rules. We show select cases.

129

• [x := a]l; [c]l
′ → [c]l

′

.

Then E(l) = E(l′) and Γ(l) = Γ(l′) and case k = 1 applies.

• [if e then [c1]
l1 else [c2]

l2 end]l; [c3]
l3 → [c1]

l1 ; [c3]
l3 , where e ⇓ true and Γ(e) = H .

Then Γ(l1) = H and E(l1) = l3 and E(l) = E(l3). Thus case k = 2 applies.

• [c1]
l1 ; [c3]

l3 → [c3]l3 (continued from above).

Then, as l3 = E(l1), the case k = 0 applies.

V2. ∀l.Γ(E(l)) ⊑ Γ(l)

Let c′ be the control structure immediately enclosing l. Then the pc of c′ is lower or equal to

the pc at l and equal to the one at E(l). Thus, Γ(E(l)) ⊑ Γ(l).

V3. ∀σ1 7→ σ′1, σ2 7→ σ′2.σ1 ≈I/C σ2∧σ1.l = σ2.l∧σ′1.l 6= σ′2.l =⇒ Γ(σ′1.l) ∈ HI/C∧Γ(σ′2.l) ∈

HI/C .

The only way that successor locations can vary is if l = σ1.l = σ2.l denotes a control struc-

ture. If different confidentiality/integrity-equivalent lead to different branches, the condition

must depend on the hi-confidentiality/lo-integrity part of the state. Then, since the program

is typed, the pc at σ′1.l and σ
′
2.l must be hi-confidential/lo-integrity.

V4. ∀l.D(l) =⇒ Γ(l) ∈ HI ∧ Γ(l) ∈ LC

This follows immediately from the typing rules.

V5. ∀l.A(l) =⇒ Γ(l) ∈ LC

This follows immediately from the typing rules.

Now we can show Theorem 79.

Proof. We first note that we investigate a termination-sensitive version of [68]. We feel this is valid

because, in fact, proofs to the soundness of the type system proposed in [68] are only correct if the

type system is termination-sensitive.

130

For the first part, let lc be the location assigned to c[•]. Take an arbitraryM0 and a, and generate

the (deterministic) execution started by 〈Mo, c[a]〉.

Proceed by induction on the length of an execution prefix. For all steps 〈M1, c1〉 → 〈M2, c2〉

that are not part of executing a, the result follows immediately since 7→ is generated by the small-

step semantics. So assume c1 is part of executing a. Then there is a (possibly empty) prefix

of the computation such that the prefix ends just before executing a, that is, 〈M ′, a; c′〉. This

prefix is matched by σ′. Since a is an attack, it is a noninterfering, high-integrity-preserving, non-

declassifying computation. Thus, if a terminates, there exists σ′′ such that σ′ 7→A σ′′ and σ′′ is

updated with the effect of a on σ′. Complete the execution of a in c1, that is, 〈M ′′, c′〉, as we

assumed that a terminates onM ′. Then it follows that 〈M ′′, c′〉 ≡ σ′′, as c′ is the successor of the

hole in c[•]. On the other hand, if a does not terminate, then there won’t be a transition from σ′,

and also c[a] does not terminate. The stuck state simulates this non-termination.

For the second part, we first note that S is valid by the previous lemma. Further, all attacks

(7→A) that were added are noninterfering, high-integrity preserving computations. This satisfies the

first two attack properties. Now take two C-indistinguishable states σ1 and σ2 so thatA(σ1.l). Then

its label l1 = σ1.l denotes a hole in c, and Γ(l1) is low-confidential. To be C-indistinguishable,

l2 = σ2.l must be either = l1 or ∃k. l1 ∈ Ek(l2) such that for all indices i < k Γ(l1) < Γ(Ei(l2)).

In the first case, there must be an attack transition. In the second case, if the computation starting

with σ2 terminates, it must reach l1, at which point there is an attack.

For non-attack transitions, we check each part of step-wise robustness.

S2. ∀σ1, σ′1, σ2. σ1 ≈I σ2∧σ1 7→ σ′1 =⇒ ∃τ ′2. τ ′2(0) = σ2∧∀i < len(τ ′2). τ
′
2(i) ≈I σ2∧τ ′2.e ≈I

σ′1.

If the input states are indistinguishable, then either l1 = σ1.l = σ2.l = l2, or ∃k1, k2. Ek1(l1) =

Ek2(l2) where all smaller indices are not in LI . In the first case, both states denote the same

program location. As the program is typed, we can apply to Theorem 2 of [68]. The second

case has three sub-cases. If l2 = E(l1), then τ = ∅ is the solution. If l1 = Ek2(l2), then we

can use Lemma 80 to reduce to the first case, and otherwise we apply Lemma 80 twice to

131

reduce to the first case.

S3. ∀σ1, σ′1, σ2. σ1 ≈C σ2 ∧ σ1 7→ σ′1 ∧¬D(σ1) =⇒ ∃τ ′2. τ ′2(0) = σ2 ∧ ∀i < len(τ ′2). τ
′
2(i) ≈C

σ2 ∧ τ ′2.e ≈C σ′1

Analogous to the first case. As ¬D(σl), the location does not denote a declassification, and

we can appeal to Theorem 1 of [68].

S4. ∀σ1, σ2. σ1 ≈I/C σ2∧D(σ1) =⇒ ∃τ ′2. τ ′2(0) = σ2∧∀i < len(τ ′2). τ
′
2(i) ≈I/C σ2∧D(τ ′2.e)

Declassification is required to be in a low-confidentiality, high-integrity context by typing

rules. Any equivalent state is either at the same location, or the declassification is the exit.

We conclude with Lemma 80.

S5. ∀σ, σ′. σ 7→ σ′ ∧D(σ) =⇒ σLL = σ′LL

We declassify high-integrity-high-confidentiality data to high-integrity-low-confidentiality

data.

Next we show that step-wise robustness is a meaningful declassification guarantee by showing

that it implies robustness as adapted from [92]. Let 7→skip⊆7→A such that for all σ 7→skip σ
′ we have

the four non-location components equivalent. A system restricted to those attack transitions can be

considered not under attack. Informally, trace-based robustness states that if two starting states are

observationally equivalent in the base system, then they are observationally equivalent when under

attack, where observational equivalence is the equivalence of the sets of traces generated starting at

the start states modulo indistinguishability. Formally, Oσ(S,≈) = {τ/ ≈ |τ ∈ T (S, σ)} and S is

robust with respect to attack A iff for all σ and σ′, Oσ(S,≈) = Oσ′(S,≈) =⇒ Oσ(S ∪ A,≈) =

Oσ′(S ∪ A,≈). The requirements for step-wise robustness allow to derive the following theorem.

Theorem 82 (Step-wise robust implies robust). If S = (Σ, 7→, D) is step-wise robust with respect

to 7→A, then (Σ, 7→ \ 7→A ∪ 7→skip) is robust with respect to A and ≈C .

132

We require some auxilliary notation and lemmas for this proof. Let S be S without 7→A, and

S ∪A′ be the system when adding 7→A′ to S .

Lemma 83. If σ1 and σ2 are observationally equivalent under ≈C , σ1 ≈I σ1, and σ2 ≈I σ2, then

σ1 and σ2 are observationally equivalent under ≈C .

Proof. Observational equivalence can be stated as ∀τ 1 ∈ T (S, σ1).∃τ 2 ∈ T (S, σ2). τ 1/ ≈C =

τ 2/≈C . Induction on the length of τ 1. Assume τ 1 = σ1 7→ τ ′1 and let σ′1 = τ ′1(0). Case decision

on D(σ1).

If σ1 cannot declassify, then by step-wise robustness ∃τ ′2 with τ ′2(0) = σ2 such that τ
′
2 preserves

indistinguishability and τ ′2.e ≈C σ′1. By step-wise robustness, ∃τ1, τ2 with τ1(0) = σ1 and τ2(0) =

σ2, τ1 and τ2 preserve C-indistinguishability and τ1.e ≈I σ′1 and τ2.e ≈I τ ′2.e. As σ1 and σ2

are observationally indistinguishable, all corresponding reachable states must be, too. Thus τ1.e

is observationally equivalent to τ2.e. By induction hypothesis, σ′1 is observationally equivalent to

τ ′2.e. Thus for all traces generated by σ′1 there exists a trace generated by τ ′2.e that is equivalent.

Thus, there exists τ ′′2 starting from τ ′2.e such that τ
′
1/≈C = τ ′2/≈C . Concatenation concludes.

Now assume σ1 can declassify. Then by step-wise robustness exists τ1 such that τ1(0) = σ1, τ1

preserves indistinguishability and τ1.e can declassify. Further, there exists σ′1 such that τ1.e 7→ σ′1,

σ′1 ≈I σ′1, τ1.eLL = σ′1LL and σ1LL = σ′1LL. As σ1 ≈C σ2, σ2 can reach a declassification through

a trace τ 2 preserving indistinguishability on the way, where we let σ′2 = τ 2.e. As before, this can

be matched by τ2 with τ2(0) = σ2, where we let σ
′
2 = τ2.e.

Now we have σ′1 ≈I σ′1 ≈C σ′2 ≈I σ′2, and furthermore σ′1LL = σ′2LL as result of ≈C followed

by declassification. As σ′1 ≈C σ′2 and σ′1/2LH = σ′1/2LH , it follows that σ
′
1 ≈C σ′2. We conclude as

in the non-declassifying case.

We can now prove the theorem.

Proof of Theorem 5. Given two states σ1 and σ2 that are observationally equivalent under attack

A1, we will show that these states are also observationally equivalent under attack A2. Let τ
1 ∈

T (S ∪A2, σ1). Divide τ
1 into segments (states connected by non-attack transitions) connected by

133

attack transitions: τ 1 = τ 11 7→A2
τ 12 7→A2

. . . . We will show that there exists τ 2i for each τ 1i such

that τ 1i /≈C = τ 2i /≈C and τ 21 starts with σ2, by induction on the number of segments.

In the base case, there is just one segment, i.e., τ 1 = τ 11 . As there are no A2 transitions,

we have that τ 1 ∈ T (S ∪ A1, σ1). Since σ1 and σ2 are observationally equivalent, there exists

τ 2 ∈ T (S ∪ A1, σ2) such that τ 1/ ≈C= τ 2/ ≈C . We can construct τ ′ a prefix of τ 2 such that

τ 1/ ≈C = τ ′/ ≈C and τ ′ does not contain A1 transitions: Assume there are such transitions.

Then let τ ′ be the prefix up to and excluding the first A1 transition. As it is a prefix of τ 2, and

τ 2 is equivalent to τ 1, there must be a prefix of τ 1 that is equivalent to τ ′. By the closure rules

on attacks, either τ ′ = τ 1, or all states up to the end of τ 1 are equivalent to the end of τ ′. Thus,

τ ′/≈C = τ 1/≈C . The trace τ ′ does not contain A1 transitions. It is thus a trace of T (S ∪A2, σ2).

Now assume we have segments τ
1/2
1 , . . . , τ

1/2
i such that τ 1j / ≈C = τ 2j / ≈C , τ 1/2j 7→A2

τ
1/2
j+1,

τ 1i .e ≈I σ1
i ≈C σ2

i ≈I τ 2i .e, where σ1
i is observationally equivalent to σ2

i in S ∪ A1, and τ
1
i 7→A2

τ 1i+1. We first note that, as τ 1i /≈C = τ 2i /≈C , if there is no attack transition from τ 2i .e directly,

then there exists an extension that preserves indistinguishability and ends in such a state. Thus,

w.l.o.g., ∃σ2
i+1.τ

2
i .e 7→A2

σ2
i+1. Let σ

1
i+1 = τ 1i+1(0). We have that τ 1i .e ≈I σ1

i+1 ≈C σ2
i+1 ≈I τ 2i .e

as an attack transition connects them. Thus σ
1/2
i ≈I σ

1/2
i+1. By Lemma 83, σ1

i+1 and σ2
i+1 are

observationally equivalent in S ∪ A1, and τ
1
i+1 ∈ T (S ∪ A1, σ

1
i+1). Analogous to the base case,

there is a 7→A1
-free τ 2i+1 with τ 2i+1(0) = σ2

i+1 such that τ 1i+1/ ≈C = τ 2i+1/ ≈C . Thus τ 2i+1 ∈

T (S ∪ A2, σ
2
i+1). The concatenation of the segments concludes the proof.

Finally, we apply step-wise robustness to composition. Given systems S1 and S2, we create a

composed system by defining S = (Σ = Σ1 × Σ2 × L, 7→, L = L1 ∪ L2, D = D1 ∪ D2, A =

A1 ∪ A2, E = E1 ∪ E2,Γ = Γ1 ∪ Γ2)) and (σ1, σ2, s) 7→ (σ′1, σ
′
2, s
′) only if (1) s = l1, s

′ = l′1

and σ1 7→1 σ
′
1 and σ2 = σ′2 where σ1.l = l1 and σ

′
1.l = l′1, (2) s = l2, s

′ = l′2 and σ1 = σ′1 and

σ2 7→2 σ
′
2 where σ2.l = l2 and σ′2.l = l′2, (3) s = l1, s

′ = l2, σ1 = σ′1, σ1.l = l1 corresponds

to x1, . . . , xn := eval x′ in ċ and σ′2 is an update of σ2 corresponding to α(σ1(x
′)) and σ′2.l = l2

corresponds to ċ, or (4) s = l2, s
′ = l1, σ2 = σ′2, there is no successor to σ2 in S2, σ2.l = l2, σ1

corresponds to x1, . . . , xn := eval x′ in ċ, σ′1 corresponds to the successor of σ1 and is an update of

134

σ1 corresponding to γ(σ2(ċ)) with σ
′
1.l = l1. These four options correspond to either pure-host or

pure-embedded computation ((1) and (2)), or invoking and returning from an eval.

For security, we straightforwardly lift ≈C and ≈I to the composition. If S1 and S2, the com-

posite program is typed, and the embedded program is terminating if the eval is typed under high

pc, then we can show the following theorem.

Theorem 84 (Composition is step-wise robust). Given step-wise robust systems S1 and S2, and a

composition S constructed as above, then the composition S is step-wise robust.

Proof. Step-wise robustness is defined as the set of five properties S1 through S5. We have to show

validity of the composed system (S1), and then the other four (core) properties.

We start by noting that eval itself is noninterfering, non-declassifying, and by typing, pcs

increase. We enforce a single-entry single-exit regime for eval. It is thus easy to show that the

validity requirements V1 through V4 hold for systems describing simple eval executions. Then

composed-system validity follows trivially by the single-entry single-exit nature, deterministic and

noninterfering behavior of eval.

For the other step-wise robustness properties, we note that S4 does not apply to eval, and thus

immediately carries over from the constituent systems. For all other properties, whenever σ1.l and

σ2.l belong to one language mode, the properties either carry over directly (embedded mode) or

are follow immediately from the constituent and the validity of simple eval executions. We will

detail the arguments for σ1.l and σ2.l not denoting the same language mode on the example of S2.

We have to show that ∀σ1, σ′1, σ2. σ1 ≈I σ2 ∧ σ1 7→ σ′1 =⇒ ∃τ ′2. τ ′2(0) = σ2 ∧ ∀i <

len(τ ′2). τ
′
2(i) ≈I σ2 ∧ τ ′2.e ≈I σ′1. Note that as σ1 and σ2 denote different language states, l1 =

σ1.l 6= σ2.l = l2. Then ∃k1, k2.Ek1(l1) = Ek2(l2). If l1 = Ek2(l2), then by validity l2 can complete

the eval and reach l1, from which a step is possible. If otherwise Ek1>0(l1) = Ek2(l2), then the

step of l1 can be matched by a zero-step of l2. The properties S3 through S5 are analogous.

135

Chapter 6: SECURITY-TYPED EMBEDDED LANGUAGES

The content of this chapter is based on [39] and [40].

This chapter describes the work on two type systems for languages that are likely to be embed-

ded.

The first is our contribution towards checking a dynamic object-based calculus. We note that

a serious complication with type-checking modern scripting languages is the high dynamicity of

objects in those languages. In fact, many common idioms are build around the ability to dynami-

cally change the structure of objects at runtime. If a type system is unable to precisely mirror and

abstract those changes, it will not be feasible in practice, as it will fail to type practical programs.

As security type systems are simply extended type system, this applies to the security domain, as

well.

As a contribution to the effort of improving the applicability of a type system-based approach

to security, we investigate the security implications of so-called method-not-found errors, which

may occur when a non-existing member of an object is invoked. This can be used as a leaking

channel.

o := emp ty_ob j ec t

i f (h >0) {

o .m := λ x . p r i n t x

}

o .m(0)

In the case of h = 0, the program will terminate with a method-not-found error and thus the

attacker gains one bit of knowledge.

There are two ways to handle this: the type system could reject the program, if it cannot show

that the call always succeeds or always fails, or it can track the information flow of this termination

channel. In Section 6.1 we pursue the latter approach.

In Section 6.2 we investigate an expressive SQL fragment. Our fragment supports arbitrary

136

tables, standard projection, selection, and table joins. We do not address nested queries, because

the literature explains how nested queries can be simulated (e.g., [57]), and handling such queries

is tedious but technically insignificant.

As SQL was our canonical motivating example, we show that it is possible to enforce a security

type system regime while supporting most of the features of the data manipulation language part.

We formalize the fragment with straightforward syntax and semantics and formally prove that our

security type system is sound.

6.1 OO

6.1.1 Introduction

There are two main approaches to enforce noninterference: one is static and the other is dynamic.

Both control the ways information is allowed to flow in the program and are called static and

dynamic information flow control, respectively.

In the dynamic approach, all information is labeled at runtime. Whenever information is used,

labels on the results are set accordingly. Only low-labeled results are allowed to be sent to low

outputs. Besides a difficulty with certain forms of hidden flows, there can be significant overhead

in the label computations (cf. [12]).

In the static context, a type regime is established. Types are annotated with conservative ap-

proximations of the labels of runtime values. Type checking will enforce the correct handling of

data. A big advantage is the low overhead at runtime. It is also possible to retain the annotation of

source programs and use these for a lightweight verification of the programs on a user’s computer.

Several languages have been proposed for static information flow control. Where proofs have

been given, they are usually established in the standard manner of progress and subject reduction

(or preservation). The underlying type system is either proven sound in the process, or assumed

so: any program that can be typed in the underlying program cannot produce errors during execu-

tion. Thus it is unnecessary to include errors in the information flow control layer on top of the

137

underlying type system.

In the object-oriented setting, this means there are no message-not-found errors at runtime.

This is a strong guarantee, which is hard to prove for many practical, dynamically-typed languages.

In fact, recent empirical studies [74] showed that in the case of Javascript, most of the simplifying

assumptions made in state-of-the-art work are violated in practice. A general type system that does

not reject a significant number of practical programs seems out of reach at the moment. How is it

then possible to prove noninterference statically?

We propose to explicitly handle the case of method-not-found errors in the computation. In

this model, it is acceptable if a program fails because a method is to be called that the target object

does not possess. However, errors cannot be allowed to transport information about private inputs.

We adopt the first-order version Ob1≤ of the Object Calculus of Abadi and Cardelli [1]. This

calculus is centered around objects as the only primitives. The allowed operations are object for-

mation, method invocation, and method override. We extend the semantics to also allow method

extension (i.e., adding new methods) and make errors explicit. Differing from previous work how-

ever, our target is not type soundness in the usual sense. Our types are overapproximations of the

interface of an object. If an object can be typed, it will have a subset of the methods. Thus the

meaning of an object type is that the invocation of a method either returns an object of the given

method return type, or results in a method-not-found error. This allows us to control the invocation

even of methods that do not exist, in a principled manner. If such a method is added through ex-

tension, it needs to agree with the previously stored type. Therefore, old judgments are still valid.

To make the scheme work, we allow errors to be subtypes of all types.

This section is structured as follows: Section 6.1.2 gives an intuition about our long-term goal,

using simple examples. In Section 6.1.3 we define the syntax and semantics of our calculus.

Section 6.1.4 describes the type system we employ to enforce noninterference. A proof of nonin-

terference for our calculus is given in Section 6.1.5, while Section 6.1.6 shows how to infer type

annotations.

138

6.1.2 Example

In this section, we give a high-level example of what we are trying to accomplish. For simplicity,

we assume a simple, imperative, object-based language that supports method extension. Then we

could write a program like

o = ...

o.m()

With a standard type system, it might not be possible to establish that method m is defined when

execution reaches the second line. Thus a standard type system approach will reject this program.

However, a missingmethod does not necessarily mean that there is a malicious flow of informa-

tion, the usual suspect just being a bug. We propose to ignore the responsibilities of the underlying

type system (i.e., ensuring the absence of method-not-found errors) and focus on information flow

control even in the presence of such errors. There are two ways the program above might be safe:

if we know that there is a method m, regardless of what high-level input the program received, or if

we know there is no such method. In the first case, the computation will continue (possibly failing

inside the call). In the second case, no matter the input, computation will fail at the second line.

Thus, an attacker cannot gain more information than already available at that point.

Furthermore, if we cannot prove a method’s existence or non-existence, but can show that

that decision is only influenced by low conditions, a fail or successful call also does not leak

information. Take for example the following program:

o = ...

if (b)

o.n = function()...

o.n()

139

If the condition b is low, i.e., it is not confidential, an attacker will already know if the call will fail

or not 1.

We propose a type system similar to a conservative analysis: types overapproximate the set of

methods of a value. This allows us to type incomplete objects. In comparison to work in that area

(see Related work, Section 8.4.1), we are more lenient with respect to method calls. For safety,

previous work only allows a method call if it is statically known the method exists. We however

do allow calls to all methods, since we do want to allow method-not-found errors. The reduction

will terminate in an error state in the case of a missing method.

Different from the work on incomplete objects, we cannot allow an object’s type to “forget”

methods by subsumption. For our approximation to be safe, we can only increase the approxima-

tion.

In this work, we develop a type system in a simple first-order object calculus. In an imper-

ative setting, information can be leaked through control flow structures and needs to be handled

specially. In a functional setting, there are no control structures. Information gained through con-

ditional execution (encoded through method calls) is transferred in the current object and never-

decreasing. This eases the exposition of the idea, because if a call may fail in a high setting, the

overall result of the program had to be high, too. For an imperative setting, it is necessary to also

track side effects (e.g., [89, 11]).

6.1.3 Base Calculus

As mentioned, we adopt the first order calculus of Abadi and Cardelli [1]. This calculus is func-

tional and centered around primitive objects. The calculus consists essentially of four elements:

variables, object literals, method invocations and method overrides.

Object literals are records with method names and method bodies. Bodies are functions that

take the object itself as their single argument (self-application semantics). Method bodies are only

processed when invoked. The syntax uses the ς binder instead of λ to signal this late-binding

1If the call is made in a high environment, though, information would be leaked. A program position is in a high

environment, if reaching this location depends on some confidential data. This is loosely related to [11].

140

semantics.

Method invocation selects a method by name from an object, and substitutes the self-parameter

with the object in the method body. Method override replaces the function stored in an object.

In Abadi’s calculus, method override is restricted to replacing an already existing method. We

add method extension to allow the extension of an object with new methods, which is a common

feature in practical dynamic object-based languages.

This simple calculus does not allow method parameters besides the self-parameter. However,

multi-argument functions can be emulated through additional methods that stand for parameters.

Method override of those methods will emulate parameter passing. The same technique can also

be used to encode the simple lambda calculus in the object calculus. The calculus does not directly

support delegation and prototypes. However, a form of delegation can also be encoded. Alterna-

tively, the calculus can be extended, as for example done in [8]. For a more detailed account of the

encodings we refer to [1].

For information flow control, we assume the simple security lattice [32] (L,⊑) with bottom

element⊥ and join operation ⊔. Elements of the lattice are used as annotated labels in the calculus

and represent confidentiality levels. Labels are ranged over by φ and ψ. The partial order ⊑ then

orders the labels with respect to the sensitivity of the information: If φ ⊑ ψ, then any value labeled

φ is assumed less confidential than a value labeled ψ, and any value tagged with φ can be used in

places where a value with label ψ is needed. As an example, take L = {l, h} with the meaning

that l = ⊥ stands for low=public information, and h for high=private. Then l ⊑ h, so that 5l is less

confidential than 4h.

The syntax is given in Figure 6.1. We add security annotations to most of the syntactic el-

ements. The security annotations, denoted by φ, describe the confidentiality of the expression

they are attached to, and will be preserved (or increased) during execution. The elements can

be categorized into four traditional classes: variables, denoted by s; object literals of the form

[mi = ς(si)ei]
φ
i∈I , which define objects with methods mi having bodies ei with a bound self vari-

able si; method invocation denoted by “.”; and object extension or method override denoted with

141

o ::= s Variable

[mi = ς(si)ei]
φ
i∈I Object

o.φm Method invocation

o←φ m = ς(s)o′ Method override or extension

err Error constant

Figure 6.1: Extended Syntax

(With o = [mi = ς(si)oi]
φ
i∈I)

(Red-Inv)
o.φmj → oj{sj := o} j ∈ I

(Red-Over)
o←ψ mj = ς(sj)o

′ → j ∈ I
[mi = ς(si)oi, mj = ς(sj)o

′]φi∈I\{j}

(Red-Ext)
o←ψ mj = ς(sj)o

′ → j 6∈ I
[mi = ς(si)oi, mj = ς(sj)o

′]φi∈I

Figure 6.2: Reduction (without errors)

←. We include an explicit element for error. This element is not intended to be used by the

programmer.

We extend the purely reduction-based semantics of [1] to retain annotations. Furthermore,

our calculus allows the addition of methods. The reduction rules (Red-Over) and (Red-Ext) are

applied depending on the shape of the object being extended. In the inherited case, (Red-Over)

applies when the object already has a method of the given name. Otherwise, (Red-Ext) will

add the method to the object. Since the calculus is functional, a new object will be returned in

either case. It is noteworthy that both cases will be handled by a single typing rule. There is no

reduction rule for variables (they are discharged through substitution), and no rule that reduces an

object literal. All other terms are erroneous and will reduce to err. The non-error reduction rules

are listed in Figure 6.2. The error reduction rules are listed in Figure 6.3. Evaluation is derived

from reduction by contracting the leftmost, outermost redex. This simplifies the exposition and

corresponds to the regular evaluation strategy of [1].

142

(With o = [mi = ς(si)oi]
φ
i∈I)

(Red-NotFound) o.φmj → err j 6∈ I
(Red-ErrInv) err.φmj → err
(Red-ErrOver) err←ψ mj = ς(sj)o

′ → err

Figure 6.3: Reduction (errors)

6.1.4 Type System

The goal of our type system is to enforce noninterference, not the absence of runtime errors (e.g.,

method-not-found errors). Thus it works in an irregular fashion more reminiscent of a conservative

analysis. Types are ranged over by τ and σ, and are labeled. An object type [mi : τi]
φ
i∈I describes

objects with an annotation at most φ and a subset of the methods mi. Thus, all possible callable

methods are contained in the type. We made errors explicit with the error constant err. The type

of errors is E. Since an object type is an over-approximation of an object’s interface, we include a

subtyping relationship of E with every type. Thus, any method may potentially return err 2. This

makes the approximation safe with respect to the reduction. The type E and the error element err

are implicitly labeled with ⊥ and not a valid type for components of an object type. We use the

notation τ⊔φ for the type that results from τ by replacing the label with the join of the old label and

φ, e.g., (intL)⊔H = intL⊔H = intH .

Type environments Γ store assignments of types to variables in the usual way. The error type

is not allowed in a type environment.

We have the usual judgments:

Γ ⊢ ∗ Well-formed environment

⊢ τ Well-formed type

⊢ τ1 ≤ τ2 Subtypes

Γ ⊢ o : τ Term has type

2In a sense, this is similar to null and the null-type in practical languages.

143

(Sub-Refl) (Sub-Trans)

⊢ τ
⊢ τ ≤ τ

⊢ τ ≤ σ ⊢ σ ≤ τ ′

⊢ τ ≤ τ ′

(Sub-Err) (Sub-Partial)

⊢ τ
⊢ E ≤ τ

⊢ [mi : τi]
φ
i∈I φ ⊑ ψ

⊢ [mi : τi]
φ
i∈I ≤ [mi : τi]

ψ
i∈I

(Sub-Ext)

⊢ [mi : τi, mj : τj]
φ
i∈I,j∈J

⊢ [mi : τi]
φ
i∈I ≤ [mi : τi, mj : τj]

φ
i∈I,j∈J

Figure 6.4: Subtyping

Well-formedness is defined in the usual way. Note that we do not need the type environment for

type-related judgments, since we do not support type variables.

We add subtyping rules that correspond to our semantics of types. If an object is of a type with

a set of methods, it is also of a type with the same list of methods, extended by a new method.

This unusual subtyping is safe because of the object-has-subset semantics. Furthermore, we lift

the partial order of the security lattice to subtyping. We finalize subtyping with the usual reflexivity

and transitivity. The subtyping rules are shown in Figure 6.4.

The typing rules are an adapted version of the Object Calculus’. Projection types variables

according to the type environment. A subsumption rule is defined in the standard way. The rule

(T -Obj) types an object literal. We can type an object with type τ , if τ contains at least all

the methods in the body, and we can type all method bodies under the assumption that the self

parameter is of type τ . The (T -Inv) rule types an invocation if we can type the receiver with

a type that contains the method. The (T -Over) rule is used both for extension and override. In

the type system, they are identical. To extend a method means to replace an (“abstract”) method

already contained in the type. The typing rules are listed in Figure 6.5.

144

(T -Prof) (T -Sub)
Γ, s : τ,Γ′ ⊢ ∗

Γ, s : τ,Γ′ ⊢ s : τ
Γ ⊢ o : σ ⊢ σ ≤ τ

Γ ⊢ o : τ

(T -Obj)

τ = [mj : σj]
φ
j∈J I ⊆ J ∀i ∈ I. Γ, si : τ ⊢ oi : σi
Γ ⊢ [mi = ς(si)oi]

φ
i∈I : τ

(T -Inv)

Γ ⊢ o : [mi : τi]
φ
i∈I j ∈ I

Γ ⊢ o.ψmj : τ
⊔ψ⊔φ
j

(T -Over)

τ = [mi : τi]
φ
i∈I Γ ⊢ o : τ Γ, sj : τ ⊢ oj : τj j ∈ I
Γ ⊢ o←ψ mj = ς(sj)oj : τ

⊔ψ

Figure 6.5: Typing Rules

6.1.5 Noninterference

We proceed to establish noninterference along the following lines: First, we show subject reduction

for our type system. Next, we show that reduction and substitution are orthogonal. Then we show

that low-typed terms in high environments are either values or can be reduced. Finally, we can

establish a version of noninterference.

For this treatment, we need a helper function for labels of types and type environments. toplabel(τ)

is the outermost annotation of type τ . The judgment toplabel(Γ) 6⊑ φ is defined as ∀(s : τ) ∈

Γ.toplabel(τ) 6⊑ φ. Informally that means that all variables bound in the type environment are

more confidential than the given label.

The proof of subject reduction structurally follows [1]. However, our semantics is small-step.

We start with three standard auxiliary lemmas that are straightforward by induction and definition

of the calculus.

Lemma 85 (Generation). If Γ ⊢ [mi = ς(si)oi]
φ
i∈I : τ , then there exists a type σ = [mj : τj]

φ
j∈J

with I ⊆ J , such that ∀j ∈ I. Γ, sj : σ ⊢ oj : τj and Γ ⊢ [mi = ς(si)oi]
φ
i∈I : σ and ⊢ σ ≤ τ .

145

Lemma 86 (Weakening). If Γ, s : τ,Γ′ ⊢ o : σ and ⊢ τ ′ ≤ τ are derivable, then also Γ, s : τ ′,Γ′ ⊢

o : σ.

Lemma 87 (Substitution). If Γ, s : τ,Γ′ ⊢ o : σ and Γ ⊢ p : τ are derivable, then also Γ,Γ′ ⊢

o{s := p} : σ.

We are now able to prove the subject reduction property.

Theorem 88 (Subject Reduction). If Γ ⊢ o : τ and o→ o′, then Γ ⊢ o′ : τ .

Proof. By induction on the derivation of Γ ⊢ o : τ .

Case (T -Prof)

In that case, o is a variable and there is no reduction.

Case (T -Sub)

The inductive hypothesis applies to the first premise. Another application of (T -Sub) yields

the result.

Case (T -Obj)

Object literals are values and cannot be reduced.

Case (T -Inv)

Then o = p.φmj . There are three sub-cases.

Error

If p is an error or a constant, then the term is reduced to err. The result is obtained by

application of (T -Sub).

Not a value

If p is not a value, the inductive hypothesis applies to the first premise and p → p′.

Thus, o′ = p′.φmj can be typed with τ .

146

Value

In case p is a value, i.e., an object literal, there are two cases. If j is not a valid index,

the term is reduced to err and subtyping will give the right result. If j is a valid index,

then by the first premise we have a typing of the object. This allows us to apply the

generation lemma, which yields Γ ⊢ p : σ and Γ, sj : σ ⊢ oj : τj . From the substitution

lemma it follows that Γ ⊢ oj{sj := p} : τj . The result follows by subtyping.

Case (T -Over)

Then o = p←φ mj = ς(sj)oj . Again, we have the three cases for p, where the error/constant

and non-value cases are analogous to (T -Inv). In the case that p is a value, we have a typing

for the literal by the first premise. Applying the generation lemma gives us typings of the

already established methods with a type σ ≤ τ . We can use the weakening lemma with the

second premise of (T -Over) and receive a typing of the new method with respect to σ. We

can combine all those results to type the object literal that is the result of either (Red-Over)

or (Red-Ext), according to whether a method was already there. Subtyping completes the

case.

We now show that reduction and substitution are orthogonal.

Lemma 89 (Subst Eval). If Γ, s : σ ⊢ o : τ , o→ o′, and Γ ⊢ p : σ, then o{s := p} → o′{s := p}.

Proof. By induction on the derivation of Γ, s : σ ⊢ o : τ . Most cases are either vacuous or

straightforward. We show the case of (T -Inv), where o = q.φmk and q is an object literal with

method mk. Then o
′ = ok{sk := q} and o{s := q} = (q{s := q}.φmk. The substitution does not

change the set of methods, so (Red-Inv) can be applied. We need to distinguish the cases s = sk

and s 6= sk when we apply the reduction. Finally, rewriting the term according to the standard

substitution rules results in ok{sk := q}{s := p}.

The next to last step is progress of lowly-typed terms in high environments.

147

Lemma 90 (Low Progress). If Γ ⊢ o : τ with toplabel(Γ) 6⊑ toplabel(τ), then either o is a value

(object literal, constant or err), or there is an o′ so that o→ o′.

Proof. By induction on the derivation of Γ ⊢ o : τ .

Case (T -Prof)

In that case, o is a variable and (o = s : τ) is part of the type environment. Thus,

¬(toplabel(Γ) 6⊑ toplabel(τ)), so the second premise of the lemma is not fulfilled.

Case (T -Sub)

Subtyping maintains the partial order of security labels. Thus the inductive hypothesis ap-

plies to the first premise. So there exists an o′ such that o→ o′.

Case (T -Obj)

Object literals are values, which fulfills the lemma.

Case (T -Inv)

Then o = p.φmj . There are three sub-cases.

Error

If p is an error or a constant, then the reduction p.φmj → err applies.

Not a value

If p is not a value, the inductive hypothesis applies to the first premise (same type, same

environment) and p→ p′. Thus, p.φmj → p′.φmj .

Value

In case p is a value, i.e., an object literal, there are two cases. If j is not a valid index, the

reduction that applies is o → err. If j is a valid index, then we can apply (Red-Inv).

Thus we get o→ oj{sj := p}.

148

Case (T -Over)

Then o = p ←φ mj = ς(sj)oj . Again, we have the three cases for p, where the error and

non-value cases are analogous. In the case that p is a value, we can either apply (Red-Over)

or (Red-Ext), depending on the existence ofmj in p.

Finally, we approach noninterference. In the original calculus there are only primitive objects.

To state noninterference, we need to define an equivalence relation on objects with respect to a

given labeling. A simple definition is observational equivalence, where an attacker is allowed to

invoke only low-typed methods, which corresponds to the ability of an attacker to inspect low-

typed heap elements in an imperative model. The definition is slightly complicated by the fact that

methods in literals are not annotated with types.

Let ⇓ denote the “big-step” closure of the reduction, i.e., o ⇓ v iff v is a value and o →∗ v.

Note that the reduction rules are deterministic, so there is at most one value v. Furthermore, let

o ⇓ ⊥ stand for an infinite, non-terminating computation, i.e., there is no value v such that o→∗ v.

Definition 91 (Object Equivalence). Two objects o1 and o2 are equivalent with respect to security

level φ, written as o1 ∼φ o2, iff for all types τ = [mi : τi]
ψ
i∈I with ψ ⊑ φ, ∅ ⊢ o1 : τ and ∅ ⊢ o2 : τ :

For all methodsmi with toplabel(τi) ⊑ φ:

1. If o1.
⊥mi ⇓ v1, then for some v2, o2.

⊥mi ⇓ v2 and v1 ∼φ v2.

2. If o2.
⊥mi ⇓ v2, then for some v1, o1.

⊥mi ⇓ v1 and v1 ∼φ v2.

Now we can state our non-interference theorem.

Theorem 92 (Noninterference). If s : σ ⊢ o : τ (where toplabel(τ) = φ) with toplabel(σ) 6⊑ φ,

∅ ⊢ p : σ and ∅ ⊢ p′ : σ, then either both computations o{s := p} and o{s := p′} diverge, or both

computations return results equivalent with respect to φ.

149

Proof. If toplabel(σ) 6⊑ toplabel(τ), we can apply the low-progress lemma to o. With subject

reduction, we can repeat the process. This results in a chain of reductions o → o′ → o′′ → . . . ,

that is either finite and ends with a value (by the low-progress lemma), or that is infinite, i.e., the

computation diverges.

We can now apply the subst-eval lemma to this chain for both p and p′. The result is, that the

computations for o{s := p} and o{s := p′} diverge exactly if the computation of o diverges.

Now we can handle the case of converging computations. By subst-eval, the computations are

o ⇓ v, o{s := p} ⇓ v{s := p} and o{s := p′} ⇓ v{s := p′} for some v. To show equivalence,

we use bisimulations, or more precisely the technique of strong bisimulations up to ∼ [65]. We

choose the following binary relation:

Sφ =

(q{s := p},

q{s := p′})

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∃τ, σ. s : σ ⊢ q : τ ∧

⊢ p : σ∧ ⊢ p′ : σ

toplabel(σ) 6⊑ φ ∧

toplabel(σ) 6⊑ toplabel(τ)

We need to show that Sφ is closed under invocation of low-typed methods, that is, if (q{s :=

p}, q{s := p′}) ∈ Sφ, and s : σ ⊢ q : [mi : τi]
ψ
i∈I , then for all mi with toplabel(τi) ⊑ φ with

q{s := p} ⇓ v and q{s := p′} ⇓ v′ we have (v, v′) ∈ Sφ.

The approach is similar to the one above. First, since toplabel(τi) ⊑ φ, toplabel(σ) 6⊑

toplabel(τi). Thus we can apply low-progress, subject reduction and subst-eval. As above, either

both computations return results or diverge. If they converge, the computations are q.⊥mi ⇓ v0,

q{s := p}.⊥mi ⇓ v0{s := p} and q{s := p′}.⊥mi ⇓ v0{s := p′} for some v0. Now s : σ ⊢ v0 : τi,

⊢ p : σ, ⊢ p′ : σ, toplabel(σ) 6⊑ φ and toplabel(σ) 6⊑ toplabel(τi). Thus, (v, v′) ∈ Sφ. This

concludes the proof.

Note that err is different from all other elements. Thus, if one computation fails with an error,

so must the other. It is not possible to use the message-not-understood error to gain information

150

x is a variable:

x ≤ [[x]]

[mi = ς(xi)oi] is a literal:
[mi : [[oi]]] ≤ [[[mi = ς(xi)oi]]]
xi = [[[mi = ς(xi)oi]]]

o.mi is invocation:

[mi : 〈o.mi〉] ≤ [[o]]
〈o.mi〉 ≤ [[o.mi]]

o← mi = ς(xi)oi is method extension/override:

[[o]] ≤ [[o← mi = ς(xi)oi]]
[mi : [[oi]]] ≤ [[o]]
[[o]] = x

Figure 6.6: Constraint Rules

about the input.

6.1.6 Inference

It is possible to adopt the work of Palsberg [71] for type inference 3. The inference algorithm is

constraint-based, and works by reducing constraints first to a graph and then an automaton. The

language accepted by the automaton for different start states describes the types of the correspond-

ing expressions.

Because of our changed typing rules, and most significantly the change in the subtyping re-

lationship, compared to the original object calculus, a modification of the constraint rules is nec-

essary. The adapted rules are given in Figure 6.6, where changes to Palsberg’s work have been

underlined. With those changes, it is easy to prove that a system of constraints generated by an ex-

pression has a solution if and only if the expression is typeable, and the solution for the expression

is a valid type (cf. Lemma 4.2 in [71]).

The system of constraints is then translated into an equivalent graph representation. Types

and expressions become nodes. Constraints establish directed ≤-labeled edges, while types also

3In our context, typing, since we do not use explicit method parameter annotations.

151

introduce method-labeled edges. The graph is closed for ≤ edges, that is, edges for reflexivity and

transitivity of ≤ are added. Furthermore, since the type system only supports width-subtyping,

edges are included to enforce this property4. A solution of the graph is a mapping of variable

nodes to types, such that the subtyping on edges is satisfied. It is obvious that a solution to a

constraint system exists if and only if a solution to the corresponding graph exists (cf. Theorem

5.2 in [71]).

Finally, the graph is used to derive an automaton with the method names as alphabet and states

corresponding to the nodes of the graph. All states are accepting. The automaton has transitions

between states with ǫ if there’s a ≤-labelled edge, and with the name of the method on a method-

labelled edge. However, since our subtyping relation is inverse to that of Abadi and Cardelli, and

the typing rules usually establish lower bounds, we inverse the direction of the ≤-edges, e.g., a

constraint a ≤ b induces an a
≤←− b, which defines a transition b

ǫ−→ a.

The language L(s) is defined as all the words accepted when starting from state s. It can be

shown that L is a solution for the graph (cf. Theorem 6.5 in [71]). The proofs in [71] have to

be adapted for the reversed subtyping relationship, but are structurally the same. If the language

L is finite for the top-level expression, the types are finite and can be expressed in our system.

Otherwise, recursive types are necessary.

From this basic inference of the structure of types, we can iteratively propagate labels from

free variables, which need to be defined in a type environment, to obtain a complete typing. All

types are initially assumed to be low. If a type mapping contains a high label, it is joined, into

the enclosing expression according to the type rules. Then the process is repeated, until either the

propagation finishes or a contradiction is found.

4Note that the closure is changed in direction to account for our subtyping.

152

6.2 SQL

We only sketch our security-typed fragment of SQL here. States are sets of named tables of integer

data. The syntax of the fragment is given by

t̂ ::= ṫ | ṫ join ṫ′ on i = i′ ė ::= ṅ | i | ẋ | ė⊕ ė′

ċ ::= select ė1, . . . , ėn from t̂where ė′ | insert i = ė into ṫ |

update i = ė in ṫwhere ė′ | delete from ṫwhere ė

The semantics is straightforward. We add a security-type system with judgments relative to

environments ∆ that map table columns to security labels. The type judgment has the form

∆, Γ̇ ⊢ ċ : (ℓ1, . . . , ℓn)
ℓ′/ℓs ok, where ℓi are the levels of the result columns, ℓ′ is the level of

the whole result and ℓs is a lower bound on the side effect of ċ. States are indistinguishable with

respect to ∆ and ℓ if the erasure of columns not typed at or below ℓ is equivalent. Typable queries

can be shown to be noninterfering.

Theorem 93 (SQL Noninterference).

∀∆, ℓ•, ℓ′, ℓ′′, ℓx, c, µ1, µ2, µ
′
1, µ

′
2, ṅ1, ṅ2, s1, s2.

∆, x : ℓx ⊢ c : ℓℓ′• /ℓ′′ ok ∧ µ1∼̇∆,ℓoµ2 ∧ ṅ1∼̇ℓx,ℓoṅ2 ∧ µ1, c[x := ṅ1]⇒ µ′1, s1∧

µ2, c[x := ṅ2]⇒ µ′2, s2

=⇒ µ′1∼̇∆,ℓoµ
′
2 ∧ s1∼̇ℓℓ′• ,ℓos2

6.2.1 Language

We formalize a simplified version of the data retrieval and manipulation fragment of SQL. We

allow (finitely many) named tables of integer data. Names ṫ are drawn from a set T . The set of

tables is static and finite for a particular program: we do not allow table creation or deletion. Tables

have a finite number of columns Iṫ, where we assume for simplicity that column names are distinct

between tables. We use i to range over all column names. We have the following syntax, where

153

we use a dot to distinguish from the WHILE syntax.

t̂ ::= ṫ | ṫ join ṫ′ on i = i′ ė ::= ṅ | i | ẋ | ė⊕ ė′

ċ ::= select ė1, . . . , ėn from t̂where ė′ | insert i = ė into ṫ |

update i = ė in ṫwhere ė′ | delete from ṫwhere ė

A table state T is represented as a finite map of naturals to records r, which are a total map of

column names to integers. Note that we identify states up to an order-preserving remapping. A

database state ν is a finite map of table names to table states. For simplicity of handling table joins

we extend the set of table names by table expressions, e.g., if A and B are table names and i and i′

column names, then A joinB on i = i′ is a table name.

Expressions can be evaluated for a record, denoted by r(ė), in the obvious way. Expressions

do not change the database. Table expressions project and manipulate table states from a database

state in the obvious way. Table projection and manipulation is formally defined in the following

way:

r ⊕ r′ = λi.

r.i i ∈ dom(r)

r′.i i ∈ dom(r′) ∧ i 6∈ dom(r)

⊥ Otherwise

ν(t̂) = ν(ṫ) if t̂ = ṫ

ν(ṫ join ṫ′ on i = i′) = λn.

r ⊕ r′ r = ν(ṫ)(n/|ν(ṫ)|).i ∧ r′ = ν(ṫ′)(n%|ν(ṫ)|) ∧ r.i = r′.i′

⊥ Otherwise

A natural semantics reduces a statement and database state to a result and a state. We use the

154

following auxiliary definitions.

T∧ė = λn.

r T (n) = r ∧ r(ė) 6= 0̇

⊥ otherwise

T∨ė = λn.

r T (n) = r ∧ r(ė) = 0̇

⊥ otherwise

(i1 : ṅ1, . . .).ij ← ṅ′ = (i1 : ṅ1, . . . , ij : ṅ
′, . . .)

T←i,ė,ė′ = λn.

r.i← r(ė) T∧ė′ (n) = r

T (n) otherwise

Here T∧ė restricts the domain of T to the records satisfying ė, while T∨ė restricts to the opposite.

Finally T←i,ė,ė′ computes a new map where columns i of records r that satisfy ė′ are updated to r(ė).

Now with the intent that ⊥(ė) = ⊥ the semantic rules are defined as follows.

ν, select ė1, . . . , ėk from t̂where ė′ ⇒ ν, λn.
(

ν(t̂)
∧

ė′(n)(ė1), . . . , ν(t̂)
∧

ė′(n)(ėk)
)

ν, insert ij = ṅ into ṫ ⇒ ν[ṫ := ν(ṫ) + (i1 : 0̇, . . . , ij−1 : 0̇, ij : ṅ, ij+1 : 0̇, . . .)], ∅

(where + extends ν(ṫ)′s domain)

ν, update i = ė in ṫwhere ė′ ⇒ ν[ṫ := ν(ṫ)
←

i,ė,ė′], ∅

ν, delete from ṫwhere ė ⇒ ν[ṫ := ν(ṫ)
∨

ė], ∅

We assign security levels to tables for two functions. First, all tables have a simple level that

describes the confidentiality of the table itself. Observers not at or above this level cannot access

a table at all. Second, we assign security levels to columns, that is, all records have the same

security level for the corresponding columns. We denote the mapping of column names of a table

to security levels by δ, and ℓδ =
d
δ(i). For simplicity, we map the table security level to the

synthetic column name table.

155

For typing purposes, we collect all δ in ∆ which maps from table names. For table expression

names, we define the following evaluation.

∆(ṫ1 join ṫ2 on i1 = i2) =

λi.

⊔

i∈{1,2}

(

∆(ṫi)(table) ⊔∆(ṫi)(ii)
)

i = table

∆(ṫ1)(i) i ∈ ∆(ṫ1)

∆(ṫ2)(i) i ∈ ∆(ṫ2) ∧ i 6∈ ∆(ṫ1)

⊥ else

The type system is defined by the following sets of rules, where Γ̇ is a typing environment mapping

variables to security levels. Note that typing of expressions refers to a table typing δ, whereas

statement typing uses ∆. Well-formedness requirements for δ and ∆ are standard.

δ, Γ̇ ⊢ ṅ : ℓ δ, Γ̇ ⊢ i : δ(i) δ, Γ̇ ⊢ ẋ : Γ̇(ẋ)

δ, Γ̇ ⊢ ė : ℓ1 δ, Γ̇ ⊢ ė′ : ℓ2
δ, Γ̇ ⊢ ė⊕ ė′ : ℓ1 ⊔ ℓ2

δ, Γ̇ ⊢ ė : ℓ ℓ ⊑ ℓ′

δ, Γ̇ ⊢ ė : ℓ′

δ = ∆(t̂) ∀i.δ, Γ̇ ⊢ ėi : ℓi δ, Γ̇ ⊢ ė′ : ℓ ℓ ⊔ δ(table) ⊑ ℓ′

∆, Γ̇ ⊢ select ė1, . . . , ėn from t̂where ė′ : (ℓ1, . . . , ℓn)
ℓ′/⊤ ok

δ = ∆(ṫ) δ, Γ̇ ⊢ ė : ℓ ℓ ⊑ δ(i)

∆, Γ̇ ⊢ insert i = ė into ṫ : ⊥⊥/ℓδ ok
δ = ∆(ṫ) δ, Γ̇ ⊢ ė : δ(table)

∆, Γ̇ ⊢ delete from ṫwhere ė : ⊥⊥/ℓδ ok

δ = ∆(ṫ) δ, Γ̇ ⊢ ė : ℓ1 δ, Γ̇ ⊢ ė′ : ℓ2 ℓ1 ⊔ ℓ2 ⊑ δ(i)

∆, Γ̇ ⊢ update i = ė in ṫwhere ė′ : ⊥⊥/δ(i) ok

For SQL we have to formalize to notions of indistinguishability. We use a projection to erase all

156

information in a record that is not typed at or below ℓ, and lift it to sequences.

↓δℓ(r).i =

r.i δ(i) ⊑ ℓ

0 otherwise

↓δℓ(f) = λn.↓δℓ(f(n))

We define two result sets as indistinguishable with respect to a type ℓℓ
′

• (where ℓ• defines a se-

quence of labels), abusing notation of projection, as s1∼̇ℓℓ′• ,ℓos1 ⇐⇒ (ℓ′ ⊑ ℓo =⇒ (|s1| = |s2|∧

↓ℓ•ℓo(s1) = ↓
ℓ•
ℓo
(s2)

))

. Projection is also used to define indistinguishability of two table states, which

are indistinguishable with respect to observer level ℓ if they agree on all columns at most ℓ:

T1∼̇δ,ℓT2 ⇐⇒ δ(table) ⊑ ℓ =⇒ ↓δℓ(T1) = ↓δℓ(T2). Finally, indistinguishability of table

states is lifted component-wise to database states: ν1∼̇∆,ℓν2 ⇐⇒ ∀t ∈ T .ν1(t)∼̇∆(t),ℓν2(t)

6.2.2 Proofs

The proof of SQL noninterference relies on two auxiliary lemmas about table projections. The first

one formulates a statement for restrictions in indistinguishable inputs.

Lemma 94 (Restriction Indistinguishability). If δ, ℓe ⊑ ℓo, ℓx, T1, T2, ṅ1, ṅ2, and ė such that δ, [ẋ :

ℓx] ⊢ ė : ℓe, T1∼̇δ,ℓoT2, and ṅ1∼̇ℓx,ℓoṅ2, then T1
∧
ė[ẋ:=ṅ1]∼̇δ,ℓoT1∧ė[ẋ:=ṅ2] and T1

∨
ė[ẋ:=ṅ1]∼̇δ,ℓoT1∨ė[ẋ:=ṅ2].

Proof. First consider the case that δ(table) ⊑ ℓo, the other case is trivial. Then ↓δℓo(T1) = ↓δℓo(T2).

Next, either ė does not contain ẋ, or ℓx ⊑ ℓe. In the latter case, ṅ1 = ṅ2. So always ė[ẋ := ṅ1] =

ė[ẋ := ṅ2] = ė′. Now for each n ∈ dom(T1) = dom(T2), we have T1(n)(ė
′) = T2(n)(ė

′), because

the records must agree on the columns referenced in ė′ by ↓. Thus, a record gets selected for T1
∧
ė′

if and only if it gets selected for T2
∧
ė′ , and selected for T1

∨
ė′ if and only if it gets selected for T2

∨
ė′ .

Since the records are not modified otherwise, it follows that T1
∧
ė′∼̇δ,ℓoT1∧ė′ and T1∨ė′∼̇δ,ℓoT1∨ė′ .

This lemma states that typed table joins from indistinguishable inputs create indistinguishable

outputs.

Lemma 95 (Join Noninterference). If∆, ℓo, ν1 and ν2 such that ν1∼̇∆,ℓoν2, then ν1(t̂)∼̇∆(t̂),ℓoν2(t̂).

157

Proof. By analysis of t̂.

t̂ = ṫ. Follows by the definition of ∼̇∆,ℓo .

t̂ = ṫ1 join ṫ2 on i1 = i2. Let δ1 = ∆(ṫ1), δ2 = ∆(ṫ2), T
1
1 = ν1(ṫ1), T

1
2 = ν1(ṫ2), T

2
1 =

ν2(ṫ1), and T
2
2 = ν2(ṫ2). Furthermore, let δj = ∆(t̂) and T 1

j = ν1(t̂) and T
2
j = ν2(t̂).

Let δj(table) ⊑ ℓo, the other case is trivial. Then by construction δ1(table) ⊑ ℓo and

δ2(table) ⊑ ℓo. Thus ↓δ1ℓo(T 1
1) = ↓δ1ℓo(T 2

1) and ↓δ2ℓo(T 1
2) = ↓δ2ℓo(T 2

2). We need to show that

T 1
j ∼̇δj ,ℓoT 2

j . First note that δj agrees on the levels with δ1 and δ2 for the respective columns.

Next, selecting records to join in ⊕ happens at δ1(i1) and δ2(i2). By this case, these are

δ1(i1) ⊑ ℓo and δ2(i2) ⊑ ℓo. Thus the original values are retained in ↓δjℓo(. . .), which by

indistinguishabilitymeans that the respective tables have equivalent values in those columns.

Thus corresponding records are merged for both inputs. Pick a generated record. For any

column typed at or below ℓo, we have that the corresponding column from T 1 or T 2 is also

typed at or below ℓo by construction of join. Thus, the corresponding values in T1 and T2

are equivalent, which means that the column in the joined records are equivalent. Thus,

↓δjℓo(T 1
j) = ↓

δj
ℓo
(T 2

j).

Finally, the proof of SQL noninterference is a case analysis, invoking the previous two lemmas

in the case of select queries.

Theorem 96 (SQL Noninterference).

∀∆, ℓ•, ℓ′, ℓ′′, ℓx, c, µ1, µ2, µ
′
1, µ

′
2, ṅ1, ṅ2, s1, s2.

∆, x : ℓx ⊢ c : ℓℓ′• /ℓ′′ ok ∧ µ1∼̇∆,ℓoµ2 ∧ ṅ1∼̇ℓx,ℓoṅ2∧

µ1, c[x := ṅ1]⇒ µ′1, s1 ∧ µ2, c[x := ṅ2]⇒ µ′2, s2∧

=⇒ µ′1∼̇∆,ℓoµ
′
2 ∧ s1∼̇ℓℓ′• ,ℓos2

158

Proof. By case analyis for c. We use the following definitions where applicable: δ = ∆(ṫ),

T1 = ν1(ṫ), T
′
1 = ν ′1(ṫ), T2 = ν2(ṫ) and T

′
2 = ν2(ṫ).

select ė• from t̂where ė′. The semantics of select shows that database states remain unchanged,

i.e., ν1 = ν ′1 and ν2 = ν ′2. Thus, by premises, the output states are indistinguishable at ℓo.

Now a case decision on the typing of the result sets. If ℓ′ 6⊑ ℓo, then the results are au-

tomatically indistinguishable by construction. So assume that ℓ′ ⊑ ℓo. Let T1 = ν1(t̂),

T2 = ν2(t̂), and δ = ∆(t̂). By Lemma 95, it follows that T1∼̇δ,ℓoT2. Next, by Lemma 94, we

have that T1
∧
ė′[ẋ:=ṅ1]∼̇δ,ℓoT2∧ė′[ẋ:=ṅ2]. This means that the same number of records gets selected

from each table, which means that the outputs have the same number of elements, that is,

|s1| = |s2|.

Now assume also that ℓi ⊑ ℓo. Then either ėi does not include ẋ, or ℓx ⊑ ℓo. So, ėi[ẋ :=

ṅ1] = ėi[ẋ := ṅ2]. Furthermore, it follows that ėi only uses columns typed at or below ℓo.

As derived above, T1
∧
ė′[ẋ:=ṅ1]

∼̇δ,ℓoT2∧ė′[ẋ:=ṅ2]
, or ↓δℓo(T1∧ė′[ẋ:=ṅ1]

) = ↓δℓo(T2∧ė′[ẋ:=ṅ2]
). Thus, the

selected records agree on columns at or below ℓo. Then the evaluation of ėi[ẋ := ṅ1/2] will

create the same result for corresponding records. Thus, the projected records have the same

values for the result of ėi. It follows that ↓ℓ•ℓo(s1) = ↓
ℓ•
ℓo
(s2).

update i = ė in ṫwhere ė′ For an update, the result sequences are obviously equivalent and

thus indistinguishable. Assume that δ(table) ⊑ ℓo, the opposite case is trivial. First, only

the table ṫ is potentially modified. All other tables remain the same. Second, the size of ṫ

doesn’t change, only record data is modified. Now several case decisions on whether (1)

ℓ1 ⊑ ℓo and (2) ℓ2 ⊑ ℓo.

FF,FT,TF. Then δ(i) 6⊑ ℓo. It follows that since ↓δℓo(T1) = ↓δℓo(T2) we have ↓δℓo(T ′1) =

↓δℓo(T ′2).

TT. Then neither ė nor ė′ do contain x, or ℓx ⊑ ℓo, so that ṅ1 = ṅ2. It follows that

ė[x := ṅ1] = ė[x := ṅ2] and ė
′[x := ṅ1] = ė′[x := ṅ2] and does not use columns

or variables not at or below ℓo. Since T1∼̇δ,ℓoT2 it follows that corresponding records

159

are selected for modification, and that the same updates are computed for each. Thus,

↓δℓo(T ′1) = ↓δℓo(T ′2).

insert i = ė into ṫ Analogous to update, the result set indistinguishability is obvious. As-

sume that δ(table) ⊑ ℓo, the opposite case is trivial. In general, by indistinguishability of

the input states we have that the inputs have the same number of records, which means that

the outputs have the same number of records, namely one more. If ℓδ 6⊑ ℓo, then all columns

are not at or below ℓo. In that case, ↓δℓo(T ′1) = ↓δℓo(T ′2). Now assume the opposite. We

have that the type of ė is at or below δ(i) by premise. If δ(i) 6⊑ ℓo, then by the argument

above the value is not visible in the projection, so that again ↓δℓo(T ′1) = ↓δℓo(T ′2). If how-

ever δ(i) ⊑ ℓo, then if ė contains x, then ℓx ⊑ ℓo, which means that ṅ1 = ṅ2. So always

ė[x := ṅ1] = ė[x := ṅ2]. Thus, the value computed is the same for both runs. Thus the

additional records in the projection are equivalent.

delete from ṫwhere ė Analogous to update and insert, the result set indistinguishability is

obvious. Assume that δ(table) ⊑ ℓo, the opposite case is trivial. Then if ẋ appears in ė it

holds that ṅ1 = ṅ2. Thus, always ė[x := ṅ1] = ė[x := ṅ2]. Furthermore, since the inputs

are indistinguishable at ℓo, it follows that corresponding records will be deleted. Thus, the

outputs will be indistinguishable, too, since they will be restricted in the same way.

160

Chapter 7: INCREMENTAL LOADING

The content of this chapter is based on [38].

Language-based security traditionally enforces information flow control at compile-time. That

means that a developer can be sure (as much as she trusts the compiler) that the source program

as written is correct and handles confidential data according to a given policy. However, without

further support, a user (different from the developer) is unable to establish if a program is secure:

• The user might not trust the developer. Even though the user trusts the correctness of the

type system and the guarantees it brings, she can not establish that the developer actually

ever used a secure language and compiler.

• If the user trusts the developer and the type system, it is not clear that the compiler used is

free of bugs or malicious parts.

• If the user trusts the developer, the type system, and the compiler, the program might still be

modified when stored or transmitted to the user, e.g., by a man-in-the-middle attack.

This problem can be mitigated by load-time checks performed by the user. The program loader

and linker ensures that the program still fulfills all requirements for confidentiality. However, a

full analysis requires a static analysis, since no security information is available anymore (security

annotations are dropped by the compiler since CPUs do not support security operations). This is

obviously too heavy-weight an approach, since users expect a timely application start.

Necula’s proof-carrying code [69] annotates a (binary) program with a proof of correctness.

In Necula’s implementation, first-order predicate logic is used to formalize the program semantics

and proofs of behavior. This technique can be adapted to annotate programs with enough security

information to perform a light-weight verification. An example of this technique is [15], which

describes a system for the analysis and verification of Java ME, the mobile edition of Java.

This technique has two drawbacks. First, it is based on Java Bytecode. It is well-known that

Java Bytecode is not a good intermediate code representation: its stack-based nature makes it hard

161

a

b c

d

Figure 7.1: Example Irreducible Control Flow Graph

to verify, analyze and optimize.

Second, Java Bytecode is a quite general code format that allows to represent irreducible control

flows, that is, it allows general jumps and branches to almost any point in the code. For example,

the control flow graph in Figure 7.1 is encodable as Java Bytecode: The generality of irreducible

control flow graphs leads to complex flows of information. In the above case, There is a flow

from both b and c to d, where b and c are in branches separated by a. Without knowledge about

both branches, the information flows will be incomplete and the program may leak data. Thus, for

irreducible CFGs, all the code needs to be available for analysis, which means that information

flow control is inherently a whole-program analysis. In the case of [15], this establishes itself

through SOAP: Safe OverApproximation Property. All annotated information has to have the SOA

property, which implicitly requires the full control flow graph.

Over the last decade, the Internet has become a premier distribution channel for both media

content and software applications. While the available bandwidth has multiplied, content sizes

also increased. For media content, streaming techniques have been developed that allow, for ex-

ample, a video to be played before it is fully downloaded. For applications, however, such tech-

niques are not commonly in use. Thus, there is still a significant time lag between the start of the

download/installation and the start of the application.

For Java, [90] and [52] investigated a client-server architecture that streams code blocks. The

server pre-links a program and partitions it into blocks for transmission, which are requested on

demand by the client. [90] investigated different granularities for the blocks on a range of mi-

crobenchmarks. Method-level partitioning, which transfers whole methods on the first invocation,

already leads to significant space savings. However, for maximum savings, the method body it-

162

self needs to be split up: [52] shows that on average only about half of the instructions of loaded

classes is ever executed. For that, the server breaks up the method code into basic blocks (a straight

sequence of instructions with a single entry and a single exit) and only transfers the entry block

of a method on program start. Referenced (e.g., through jumps), but not loaded basic blocks are

requested from the server when execution reaches that code location.

Note that [15] mentioned above cannot be applied to this architecture. The incremental code

loading necessarily prohibits a whole-program analysis establishing safe over-approximative prop-

erties. Thus, incremental code loading for application streaming and information flow control seem

to be mutually exclusive. We perceive this situation as a problem, since historical information sug-

gests that it will be a while (if ever) until bandwidth will catch up with rising application sizes to

achieve imperceptible download times.

Our solution is a novel intermediate code representation that allows for incremental loading

and program verification. As mentioned before, irreducible information flow implies the necessity

of a whole-program analysis. Thus we restrict our code format to only allow reducible control

flows. Note that for our case, this actually does not represent a significant restriction. The Java

ecosystem has an interesting semantic gap: while Java Bytecode allows a general goto and thus

irreducible control flows, the source language Java is structured and only has reducible control

structures. Thus, if we start from Java source code, our intermediate code representation is able

to handle all legal Java code. Furthermore, the standard Java compiler creates a straightforward

translation of Java to Java Bytecode that does not include irreducibility. Thus, all class files created

solely by the standard compiler can also be re-translated to our format.

Our intermediate representation is centered around the concept of regions (e.g., [3]). All re-

ducible control flow graphs can be structured through regions having a single entry, and the CFG

can be collapsed through certain rules to a single region. Our code format structures the code more

than basic regions, to transfer more information about the code. Similar to regions, our structures

allow nesting for composition to create all reducible CFGs. Thus, the name of our code format is

Nested Control Regions (NCR).

163

The difference between Java control structures and nested control regions is the level of ab-

straction. This is based on the idea that a small set of constructs can be used to create a whole CFG

through nesting and combination, emulating higher-level control structures. We identified seven

patterns of control flow that are necessary for Java programs. These seven patterns establish our

NCR types, and the number and types of possible NCRs that can be placed in compartments (i.e.,

nested inside), as well as how the control flow connects them.

The advantage of this representation is the imposed structuring on low-level code. Whereas

high-level languages impose a similar structure on source code, they usually highly restrict the

control flow. Low-level approaches like Java Bytecode, on the other hand, impose neither structur-

ing nor restrictions, making analysis a more complex and expensive task.

For example, a main part in load-time verification is the check of well-formed references. A

reference (here to mean variable or register) can only be used after it is defined. This is formalized

through the dominance relation: a program point dominates another, if the first precedes the latter

on all paths through the program. Dominance thus is an important program information needed

at load-time. Several algorithms with varying runtime complexity exists, with optimal algorithms,

while being linear time, needing multiple passes and very complex data structures.

Our structuring allows us to use a single-pass, linear-time algorithm, instead. This is possible

because we can approximate the dominance relation on a purely syntactical basis, and also allow

fast retrieval of dominating parents. Note that the single pass is also important for incremental

loading.

For information flow control, we layer the JIF type system over the basic Java-inspired type

system. All standard label types of JFlow (the confidentiality part of JIF), e.g., policy labels,

parameter labels and so on, are supported. Our loader only needs to verify the compliance with

the security policies - all variables with non-default labels (i.e., labels that cannot be derived from

input operands) have to be annotated in the serialized form. A program is safe then, if a traversal

of the program yields no errors in computing the labels, that is, all annotated labels are at least

as restrictive as the computed ones. This corresponds to just one iteration on an already existing

164

e ::= x | n | e+ e | e− e | e = e | e < e

C,D ::= skip | loadIpcD | x := e | C1;C2 |
if e then C1 else C2 | while e do D

Figure 7.2: Syntax

fixpoint of the dataflow algorithm that can infer security labels. The NCR structure helps in keeping

this a single-pass linear time algorithm, since the encoding enforces that all relevant information

for verification of a certain program location is already computed when verification arrives at that

point.

The following section will formalize our incremental loading and verification approach. Sec-

tion 7.2 describes Nested Control Regions in detail. Finally, Section 7.3 describes information flow

control over NCR.

7.1 Formalization

This section gives a formal justification of our approach. We present a simple, imperative lan-

guage with delayed loading. The language is intentionally kept simple to help the presentation.

The abstraction is a valid foundation, since code loading is confined to the currently executing

method. Thus prior work on extending imperative languages with procedures (e.g., [89]) and ob-

jects (e.g., [66, 13, 15]) are applicable to enforce noninterference for incrementally loaded Java.

7.1.1 Definitions

We base our work on the simple imperative language presented in [89]. The language has variables

(ranged over by x), literals n out of N and expressions over those. The expressions and commands

of the language are given by the syntax shown in Figure 7.2.

The sole new statement is loadIpcD. Here I defines a label for the code to be loaded and is

assumed to be unique for each load statement in a program. The security label pc is an upper

bound for the security that the statement is executed under. This corresponds to the program

counter label, e.g., in [66]. It is a static annotation to simplify the semantics. Finally, the statement

165

D describes the fallback code for the case that verification of the loaded code fails.

We use the simple security lattice given by ({L,H},⊑) with the usual semantics: L is a public

value, while H is confidential; L ⊑ L, L ⊑ H and H ⊑ H . A typing environment Γ maps

variables to security values.

A natural semantics gives meaning to our language. The advantage of a natural semantics

lies in the easier exposition of the workings of the language: in a smallstep semantics, multiple

load commands with the same loading label might be present in the current program: this would

happen in the case a loop is expanded and the body contains a load. Correctly replacing all

such commands requires extra work, e.g., non-standard handling of sequence commands and some

rewriting semantics. This is a technicality we would like to avoid here.

A state (ranged over by µ, ν) is a finite function from variables to values. We define an equiva-

lence relation∼Γ on states such that two states are equivalent if their low variables (according to Γ)

are equivalent: µ ∼Γ ν ⇐⇒ dom(Γ) ⊆ dom(µ) ∧ dom(Γ) ⊆ dom(ν) ∧ ∀(x = L) ∈ Γ.µ(x) =

ν(x). This formalizes the observable differences for low attackers. µ(e) describes the computa-

tion of e with the given variable values from state µ. The semantics for expression evaluation is

standard and elided.We use the syntax µ[x := n] for the update of a state.

The semantics is formally defined as (µ, C) ;Γ (µ′, C ′) with the following meaning: given

state µ, the execution ofC changes the state to µ′. Because of placeholders, the program code might

be changed. This is captured byC ′. Note that this is different from a smallstep semantics, whereC ′

is the continuation to be executed next. The relation is parameterized by the variable typing, which

is necessary for load. The;Γ relation is given in Figure 7.3. Note that the semantics refers to the

typing to ensure the correctness of loaded code. In practical systems, this could be implemented

as type checking over type annotations.

The type system is an extension of [89]. Judgements are of the form Γ ⊢ exp : τ and Γ ⊢ C :

τ cmd, where τ is a security level. The former judgement describes up to which confidentiality

the expression reads variables. Variables are typed according to the variable typing. Literals are

public. The result of an expression is the least upper bound of the sub-expressions.

166

[RSKIP] (µ, skip) ;Γ (µ, skip)

[RASS] (µ, x := e) ;Γ (µ[x := µ(e)], x := e)

[RSEQ]

(µ, C1) ;Γ (µ′, C ′1) (µ′, C2) ;Γ (µ′′, C ′2)

(µ, C1;C2) ;Γ (µ′′, C ′1;C
′
2)

[RIFT]

µ(e) = 1 (µ, C1) ;Γ (µ′, C ′1)

(µ, if e then C1 else C2) ;Γ

(µ′, if e then C ′1 else C2)

[RIFF]

µ(e) 6= 1 (µ, C2) ;Γ (µ′, C ′2)

(µ, if e then C1 else C2) ;Γ

(µ′, if e then C1 else C
′
2)

[RWIT]

µ(e) = 1 (µ,D) ;Γ (µ′, D′)
(µ′,while e do D′) ;Γ (µ′′, C ′)

(µ,while e do D) ;Γ (µ′′, C ′)

[RWIF]

µ(e) 6= 1

(µ,while e do D) ;Γ (µ,while e do D)

[RLOT]

(C = load(I))
Γ ⊢ C : pc cmd (µ, C) ;Γ (µ′, C ′)

(µ, loadIpcD) ;Γ (µ′, C ′)

[RLOF]

(C = load(I))
Γ 6⊢ C : pc cmd (µ,D) ;Γ (µ′, D′)

(µ, loadIpcD) ;Γ (µ′, D′)

Figure 7.3: Semantics

167

[TV AR,INT]

Γ(x) = τ

Γ ⊢ x : τ Γ ⊢ n : L

[TEXP]
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2
Γ ⊢ e1 ⊗ e2 : τ1 ⊔ τ2

[TASS,SKIP]

Γ(x) = τ Γ ⊢ e : τ
Γ ⊢ x := e : τ cmd Γ ⊢ skip : H cmd

[TIF]
Γ ⊢ e : τ Γ ⊢ C1 : τ cmd Γ ⊢ C2 : τ cmd

Γ ⊢ if e then C1 else C2 : τ cmd

[TWHILE]
Γ ⊢ e : τ Γ ⊢ C : τ cmd
Γ ⊢ while e do C : τ cmd

[TSEQ]
Γ ⊢ C1 : τ cmd Γ ⊢ C2 : τ cmd

Γ ⊢ C1;C2 : τ cmd

[TLOAD]

Γ ⊢ C : τ cmd τ ⊑ pc

Γ ⊢ loadIpcC : τ cmd

[TSUB1,2]
Γ ⊢ e : τ1 τ1 ⊑ τ2

Γ ⊢ e : τ2
Γ ⊢ C : τ1 cmd τ2 ⊑ τ1

Γ ⊢ C : τ2 cmd

Figure 7.4: Type System

The latter judgement describes the lower bound of variables which a command may modify.

Most rules are standard. We show the type system in Figure 7.4.

The important rule is TLOAD. Statically, the type system ensures that the fallback statement C

is correctly typed. Furthermore, for later loading, the semantics of the load command ensures that

the pc annotation is at least as restrictive as the typing.

7.1.2 Noninterference proof

Our proofs follow [89] and [31] and are an instance of progress and reduction lemmas.

Lemma 97 (Subject Reduction). If Γ ⊢ C : τ cmd and (µ, C) ;Γ (µ′, C ′), then Γ ⊢ C ′ : τ cmd.

Proof. By induction on (µ, C) ;Γ (µ′, C ′). We show only the cases where C is a load statement,

168

which follows from the typing on such statements. The other cases are standard.

Case RLOT : Then C = loadIpcD, and the typing derivation ends with TLOAD followed by an

application of subsumption. This is a standard simplification, as it can be easily shown that

whenever a load statement is typable, there exists a typing derivation of said form, so this is

without loss of generality.

Γ ⊢ D : τ ′ cmd τ ′ ⊑ pc

Γ ⊢ loadIpcD : τ ′ cmd τ ⊑ τ ′
TLOAD

Γ ⊢ loadIpcD : τ cmd
TSUB2

By premise of RLOT , we know that Γ ⊢ load(I) : pc cmd. By premise of TLOAD, τ
′ ⊑ pc,

and by TSUB2 τ ⊑ τ ′. With subsumption by TSUB2, we get Γ ⊢ load(I) : τ cmd. Finally by

the inductive hypothesis of the last premise of RLOT , we find Γ ⊢ C ′ : τ cmd.

Case RLOF : Then C = loadIpcD, and the typing derivation ends with TLOAD followed by an

application of subsumption, as above. Thus by the premise of TLOAD, Γ ⊢ D : τ ′ cmd. By

an application of subsumption, we get Γ ⊢ D : τ cmd. By the inductive hypothesis of the

last premise of RLOF , we have Γ ⊢ D′ : τ cmd.

Lemma 98 (Simple Security). If Γ ⊢ e : L and µ ∼Γ ν, then µ(e) = ν(e).

Proof. The proof proceeds by induction on the derivation of Γ ⊢ e : L.

Case x: Then the derivation ends with TV AR followed by an application of subsumption for the

reflexive case. Thus, by the premise of TV AR, Γ(x) = L, and thus by definition of ∼Γ

µ(x) = ν(x).

Case n: Then trivially µ(n) = ν(n) = n.

Case e1 ⊗ e2 . Then the derivation ends with TEXP followed by an application of subsumption

for the reflexive case. Thus, Γ ⊢ e1 : L and Γ ⊢ e2 : L, and by induction µ(e1) = ν(e1) and

169

µ(e2) = ν(e2). For⊗ ∈ {+,−}, µ(e1⊗ e2) = µ(e1)⊗µ(e2) = ν(e1)⊗ ν(e2) = ν(e1⊗ e2).

For ⊗ =“=”, we have either µ(e1) = µ(e2) and thus ν(e1) = ν(e2), so µ(e1 = e2) = 1 =

ν(e1 = e2), or µ(e1) 6= µ(e2) and thus ν(e1) 6= ν(e2), so µ(e1 = e2) = 0 = ν(e1 = e2). The

case for “<” is similar.

Lemma 99 (Confinement). If ⊢ C : H cmd and (µ, C) ;Γ (µ′, C ′), then µ ∼Γ µ
′.

Proof. By induction on the derivation of (µ, C) ;Γ (µ′, C ′), with the help of Lemma 97. Most

cases are standard, we show the cases for RWIT and load.

Case RWIT : Then C = while e do D, and the typing derivation ends with TWHILE followed by

an application of subsumption:

Γ ⊢ e : τ ′ Γ ⊢ D : τ ′ cmd
Γ ⊢ while e do D : τ ′ cmd H ⊑ τ ′

TWHILE

Γ ⊢ while e do D : H cmd
TSUB2

Then τ ′ = H , which means Γ ⊢ D : H cmd. Now (µ,D) ;Γ (ν,D′) by RWIT , with

µ ∼Γ ν by inductive hypothesis. Subject reduction gives Γ ⊢ D′ : H cmd. Now by TWHILE

it follows that Γ ⊢ while e do D′ : H cmd, and thus by inductive hypothesis ν ∼Γ µ
′, and

thus µ ∼Γ µ
′.

Case RLOT : Then C = loadIpcD, and the typing derivation ends with TLOAD followed by an

application of subsumption:

Γ ⊢ D : τ ′ cmd τ ′ ⊑ pc

Γ ⊢ loadIpcD : τ ′ cmd H ⊑ τ ′
TLOAD

Γ ⊢ loadIpcD : H cmd
TSUB2

Then τ ′ = pc = H , thus Γ ⊢ load(I) : H cmd by premise of RLOT . Now by inductive

hypothesis µ ∼Γ µ
′.

170

Case RLOF : Then C = loadIpcD, and the typing derivation ends with TLOAD followed by an

application of subsumption, as above. From the premise we get Γ ⊢ D : H cmd, thus by

inductive hypothesis µ ∼Γ µ
′.

Finally, the noninterference theorem states that if two computations start in equivalent states

and terminate, they end in equivalent states.

Theorem 100 (Noninterference). If ⊢ C : τ cmd, µ ∼Γ ν, (µ, C) ;Γ (µ′, C ′), (ν, C) ;Γ

(ν ′, C ′′), then µ′ ∼Γ ν
′.

Proof. By induction on (µ, C) ;Γ (µ′, C ′), using the previous lemmas. We show the cases for

RWIT and load.

Case RWIT : Then C = while e do D, and the typing derivation ends with TWHILE followed by

an application of subsumption. By RWIT , µ(e) = 1.

If Γ ⊢ exp : L, then by µ ∼Γ ν and Simple Security µ(e) = ν(e) = 1. Thus, RWIT is

also the last rule in (ν, C) ;Γ (ν ′, C ′′). Now by induction over the premises of RWIT and

transitivity of ∼Γ, µ
′ ∼Γ ν

′.

If Γ 6⊢ exp : L, then by TWHILE τ 6= L, thus by confinement µ ∼Γ µ
′ and ν ∼Γ ν

′, thus

µ′ ∼Γ ν
′.

Case RLOT : Then C = loadIpcD, and the typing derivation ends with TLOAD followed by an

application of subsumption. By the premise of RLOT the loaded code can be typed, thus by

the inductive premise we have µ ∼Γ ν.

Case RLOF : Then C = loadIpcD, and the typing derivation ends with TLOAD followed by an

application of subsumption. Since D is well-typed by the premise of TLOAD, we can apply

the inductive hypothesis and get µ ∼Γ ν.

171

7.1.3 Evaluation instead of Loading

The above system uses placeholders in the form of load in a one-shot manner: when a placeholder

needs to be executed, the corresponding code is loaded and type-checked. If the check succeeds,

the placeholder is replaced with the loaded code. Otherwise, the statically checked fallback code

replaces the placeholder.

Instead of this replacement, the semantics could be changed to execute the loaded code, but

retain the placeholder. This would correspond to eval statements in dynamic languages like

Javascript. While typing of arbitrary code is complicated and would need type inference, the

common case of using eval to load libraries from third-party providers can be covered. The

provider needs to type its code just once, and can provide that general typing to the client as type

annotations. The typing judgement in RLOX will then degenerate to a typing verification.

7.2 Nested Control Regions

The previous section gave a formal proof for a simplified imperative language and thus forms the

theoretical foundation for our work. In the following sections we describe the implementation

of our practical system. This section gives an overview over the basic set of nested control re-

gions, which form the basis of programs in our architecture, while Section 7.3 shows how to add

information flow control.

As stated earlier, nested control regions were designed with two goals in mind. First, the IR

should be simple and highly structured to increase verification efficiency and optimizability. In

particular, NCR supports a single-pass linear-time verification algorithm so that the format can

be used efficiently even on limited devices. Second, the semantics of the regions needs to ensure

that nested regions can only effect other regions outside the nesting in a principled manner. We

accomplish this by using low-level structured code.

The code structuring will retain the control information from the source languages, albeit in a

reduced, lower-level form. Using a structured intermediate language has several advantages over

172

using the highly-structured source code directly. Source languages usually expose very complex

control structures that do not correspond well to the features of current hardware architecture. It’s

the compiler’s task to reduce this complexity. An IR can be a middle step in between, transfer

code with already reduced complexity, thus decreasing the overhead at the client. Also, source

languages usually expose a lot of syntactic sugar and corner cases, which complicate parsing and

analysis, which is undesirable, especially in restricted environments.

7.2.1 Register-based IR

Prior experience with the benefits of a non-stack IR led us to adopt a register based IR. While tradi-

tional stack-based models like Java are known for their compactness and easy-to-write interpreters,

prior research shows that register-based models can be competitive in those respects [4].Advanced

techniques like verifiable annotations (or proof-carrying code in general) are harder to implement

on stack-based code, and many runtime environments use Just-in-Time compilation, which itself

usually uses multiple variants of register-based intermediate representations.

In NCR, registers are in SSA form. Each register is (statically) assigned to exactly once. When

control flows join, ϕ functions are used to join the corresponding data flows. This construction can

significantly reduce the complexity of many analysis and optimization algorithms. Furthermore,

SSA-form and code structure can reduce the amount of annotations necessary in a verification

systems [5].

7.2.2 Control Regions

Well-formed SSA-code uses registers as instruction parameters only when they are defined on all

incoming paths that reach the instruction. The register is then said to “dominate“ the instruction.

A verifier for NCR code has to check this well-formedness property to ensure the integrity of a

program. To ensure fast verification, dominator information should be easily accessible. There are

complicated multi-pass algorithms that are able to extract the dominator tree from a whole control

flow graph in linear time. We instead rely on structuring the code and its serialization in a way that

173

allows us to retrieve most dominator information easily in a single pass.

Our structuring is based on the idea that a small set of control constructs can be used to create

a control flow graph (CFG) through nesting and combination. That is the reason our approach is

called Nested Control Regions. There are several NCR types, each of which represents a certain

pattern of control flow with a single entry and dictates the number and types of possible NCRs that

can be placed in compartments (i.e., nested inside), as well as how the control flow connects them.

The advantage of this representation is the imposed structuring on low-level code. Whereas high-

level languages impose similar structure on source code, they usually highly restrict the control

flow. Low-level approaches like Java bytecode, on the other hand, impose neither structuring nor

restrictions, making analysis a more complex and expensive task. Our control structures are more

general than those given by high-level languages and allow more complex constructs, while still

retaining a structure in the code, allowing for example the easy extraction of dominator information

and loop nesting. The control patterns we identified as necessary and translated to control regions

are:

Block regions. A straight segment of instructions with a single entry. There is one normal succes-

sor, which is nested in the region’s single compartment.

Exit regions. A region defining two compartments: a body and an exit. The code within the body

is allowed to jump to the exit. This corresponds to forward jumps in reducible control flow

graphs.

Restricted goto. A restricted goto implements the jump allowed by an enclosing region, e.g., an

enclosing exit region.

Condition regions. A condition region has two compartments and a value slot. Depending on the

(boolean) value, control flow is diverted to one of the two compartments. Note that for a full

traditional if construct, an exit region is necessary to join the control flow afterwards.

Loop regions. A loop region defines the header of a simple loop and a body compartment. Re-

174

stricted gotos inside the body are allowed to jump to the header (i.e., the loop region itself),

forming a looping structure. Note that conditional loops have to be constructed by nesting a

condition region inside the loop body.

Exception and Finally regions. These region types provide structure related to exceptional con-

trol flow. Both types define two compartments: a body compartment, as well as a catch

compartment for exception regions and a finally compartment for finally regions, respec-

tively. The regions have the expected semantics.

The nesting of those regions allows us to easily compute a conservative approximation of the dom-

inator relationship. Each region has a corresponding node in our dominator tree. Instructionless

regions are associated with pro-forma nodes used to structure the tree. These nodes can be freely

arranged, since no actual code is involved. Except for pro-forma nodes, a parent is known to al-

ways be a dominator of a nested child. But the reverse does not universally hold in our system: not

all dominating nodes must be ancestors of the nodes they dominate. This can lead to an imprecise

approximation (e.g., as in Figure 7.5), but for any reducible control flow graph, it is possible to

create a control region nesting for which the dominator tree constructed in this manner will be

precise.

Proof of Precise Approximation of Dominator Relation

This section sketches a proof that all reducible control flow graphs (CFGs) can be encoded with

NCR regions such that the NCR approximation of dominance is precise. It relies on the definition

of reducibility based on two transformations T1 and T2, which modify a control flow graph. T1

removes self-edges, while T2 folds a node which has only a single incoming edge. A graph is

reducible if there is a sequence of transformations that change the CFG into a single node.

The proof is constructive: for a given reducible CFG we construct a nesting of NCRs that

reflects the CFG. For simplicity, we assume that the out-degree in the CFG is at max two. The

development can easily be extended to higher out-degrees. Furthermore, the resulting encoding is

175

Region Compartment Dominator node Pro forma node

Exit region (1)

body

Block region (2)

v = x+ y

next

If region (3) . . .

exit

Block region (4)

vϕ = ϕ(v)

next

. . . (5)

(1)

(2)

(3)

(4)

(5)(3)

(1)

(a) Imprecise

Block region (2)

v = x+ y

next

Exit region (1)

body

If region (3) . . .

exit

Block region (4)

next

. . . (5)

(1)

(2)

(3) (4)

(5)

(3)

(1)

(b) Precise

Figure 7.5: Precise and imprecise approximation of dominator relationship

not necessarily compact. In general, multiple regions represent a node in the CFG, such that the

encoding may contain several regions that are empty and only necessary for structuring.

The construction works by reversing the transformation sequence that leads to reduction of the

CFG. We begin with a single node encoding, and successively extend the current encoding. Each

node is represented by a sequence of regions making up the body of the node, and a set of gotos

for the out-going edges. The body is made up of loop regions for backward jumps, block regions

for actual instructions, and exitable regions for forward jumps (the gotos of which will be in later

nodes). The control flow is purely sequential and uses the straightforward nesting of the region

types. The set of gotos models the out-going edges. This is not a valid NCR structure, since the

regions are not nested correctly. However, depending on the number of edges, a post-processing

step can synthesize the right control structure and embed the gotos: a single out-edge can be either

represented by nesting the goto (if the target is a join node), or by embedding the target directly;

176

two out-edges mean a binary decision, which can be encoded with a conditional region, where the

gotos are handled like the single-edge case, but embedded in the branches; no out-edges means the

end of control flow, so that a return should be synthesized.

The construction moves by case analysis of the transformation. A T1 transformation removed

a self-edge. Thus, a loop is necessary in the NCR structure, which means another loop region is

pushed into the body. A T2 transformation collapsed a node with a single incoming edge. This

means a new node has to be established. It is important to distinguish between two situations: the

transformation changes a successor into a join node, or not (the join node may be created because

a node edge and a parent edge were joined during collapsing). In case a join node is created,

the NCR representation is marked to be a join. If it was not marked, the parent is the dominator

and will receive an exitable region, with the join node being the exit compartment. No matter the

creation of a join node, a new node representation is created and edges/gotos adjusted accordingly.

Semantic correctness of the construction is straightforward. Loops and exitable regions only

serve as “landing pads” for incoming edges, while the block regions encode the actual code. The

out-going gotos are created directly according to out-going edges of the CFG.

The proof that this construction retains the precise dominator relation is straightforward. It

follows by induction over the reversed transformation sequence, and the definition of the dominator

approximation as the transitive closure of the parent relation as given by the region nesting. Each

step of the construction preserves the original dominator relation in the approximation, and thus

after iterating over the transformation sequence, the original dominator relation, interspersed with

pro-forma regions, is encoded correctly.

Irreducible Control Flows

While reducible control flow is acceptable when the source language enforces reducible programs,

some cases may require the ability to encode irreducible control flow directly. For example, Java

programs are compiled to Java Bytecode, which allows programs with irreducible control flow.

We can extend our set of region types with an irreducible region (IRR). This region type has an

177

arbitrary number of compartments. Control flow inside the IRR is free, i.e., gotos are allowed to

transfer control to any compartment. However, the whole region enforces a single-entry discipline

by using a distinguished head compartment.

This construction avoids the exponential complexity of transforming irreducible CFGs to re-

ducible CFGs, while localizing the impact of the irreducibility. Of course, linear-time single-pass

verification cannot be guaranteed anymore for irreducible parts of a program. Furthermore, incre-

mental loading and verification requires IRRs to be loaded completely before being executed.

Structuring code through control regions not only helps with dominator tree retrieval. Nest-

ing regions allow us to verify code in a modular fashion: no information from a compartment is

necessary to verify basic information. This can be exploited to easily partition and break up code.

Static analyses can take advantage of structural information since regions restrict the set of valid

sub-control flows.

7.2.3 Placeholders

To include incremental loading, we add placeholder regions to the set of region types. Adopting

a region instead of an instruction has the benefit of simpler replacement of the loaded code in

the existing program. In the current implementation, simple numbers are used as handles in the

communication with the server. When control would flow to a placeholder, execution is stopped

and the server contacted. The placeholder will be replaced with the region received from the server,

and finally the execution is resumed.

7.2.4 Instruction Set

The instruction set is a register-oriented version of Java Bytecode. All stack manipulation op-

erations have been removed. We support both instructions on primitive types as well as object

operations. As a simplification, we only include a unified allocation-and-initialization operation

for objects, while Java bytecode separates the parts. This is however not significant in our setting:

we start with an extended version of Java. Most basic Java compilers create object allocation and

178

initialization code in a principled manner that can be emulated by our single operation.

7.2.5 Prototype Implementation

We adapted the standard JIF compiler based on Polyglot [70] to emit NCR code. Translation of

Java source code is done in a straightforward mapping of Java structures to nestings of NC regions.

Most Java control structures correspond to a simple template. For a proper treatment of computing

regions we refer to the literature (e.g., [3]).

To demonstrate the feasability of NCR, we created an interpreter able to load and run programs

in NCR form. The interpreter is a Java program itself, and uses the facilities of the host JVM. For

example, class stubs are created at runtime to easily represent objects with program code in NCR

form. With this implementation, classes generated from NCR code can easily interact with (i.e.,

be called from) the Java environment. Furthermore, with the stubs, management of the objects and

the Java call behaviour are moved to the virtual machine.

7.3 Information Flow Control with NCR

On top of the basic NCR representation we layered annotations for security typing. This was done

as a mostly straightforward port of the JIF system: security information is encoded as a label from

the Distributed Label Model [67]. Our current implementation is based on the older JFlow model,

which only protects confidentiality. A future treatment of integrity should be straightforward,

since those two are dual. Out of the complex set of label types in JFlow, we implemented the most

important ones:

Class/Substitution/Reference labels. These labels are used for genericity with respect to class

parameters. This topic is strongly related to generic data structures with parametricity over

some type. In this context, a data structure should be generic over some confidentiality label.

For example, a list data structure should be written only once for all levels of confidentiality

the elements might have, and instantiated with the right labels when used.

179

Class labels capture the label parametricity of a class by defining named parameters that can

be used as placeholders in the class’ body. Reference labels stand for a reference to a class

parameter in the class’ body. Substitution labels are used to assign values to parameters in

class labels.

In the original JIF, class labels are layered on top of Java types for classes. Thus, class labels

implicitly contain the structure of the Java class they are based on. Since our JIF implemen-

tation is decoupled from Java, class labels have to explicitly define this information. Class

labels are extended to be simple records of typed fields and functions. Instead of Java types,

JIF labels are used.

As an example, take the following JIF code:

c l a s s [l a b e l P] A {

B{ A l i c e : Bob} b ;

C[P]{ P} foo () { . . . }

}

This gets translated to the following class label:

c l a s s l a b e l A[P] :

(c l a s s l a b e l B){ A l i c e : Bob} b ;

(s u b s t L= r e f P i n c l a s s l a b e l C[L])

{ r e f P} foo () ;

To not interfere with loading and linking policies of possible other annotated type systems

(e.g., late resolution in Java), our JIF uses named references instead of fully loaded class

labels in a class label definition. Those references are only resolved on a by-need basis, e.g.,

when the field of a class is actually accessed.

Policy labels. Labels made up of a simple policy p = o : r1, A policy p restricts the access

to a value to the readers r given in the policy. The policy itself is owned by o (i.e., o is the

180

restricting principal).

Join labels. These labels join together multiple labels. The resulting label is at least as restrictive

as each component. Join labels are necessary for a precise analysis, since joining two labels

does not usually result in a label of the same type. An example is a value under the influence

of two simple policies of two different owners.

Parameter labels. Parameter labels are similar to a reference to another label. A parameter label

{a} has the some value as the label the variable a is annotated with.

Bottom and top label. The bottom label is the least restrictive label in the label lattice, whereas

the top label is the most restrictive one.

In the JIF framework, general label constraints are derived from program statements and collected

in a constraint systems. An iterative, data flow-like algorithm computes a fixpoint solution of the

system, which is a conservative labeling of all occurring variables, in case the program is secure.

This approach is also used to include label inference, which makes programming in JIF an easier

task (label inference automatically computes the least restrictive label for an unannotated variable).

Our security-typed mobile code only needs to verify the compliance with the security policies.

All variables with non-default labels (i.e., labels that cannot be derived from input operands) have

to be annotated in the serialized form. A program is safe then, if a traversal of the program yields no

errors in computing the labels, that is, all annotated labels are at least as restrictive as the computed

ones. In that regard, our algorithm is one iteration of the data flow algorithm on an already existing

fixed point. It is thus similar to other annotation schemes based on data flow properties, e.g.,

[44, 5, 25].

Since the NCR structure is rebuilt in a pre-order traversal of the dominator tree, all information

needed for verifying the security labels is available at the time a node is processed. This allows us

to keep the single pass structure of the general loading and verification. On the assumption that

181

operations on labels take a constant time1, we can also keep the linear time bound.

Important points in the control flow that need to be annotated are loops. This is necessary

to avoid the looping in the iterative data flow algorithm until a fixed point is reached. In the

context of security-typed code, the changing entity over loop iterations is the PC. The original JIF

implementation introduces a new, blank label to compute the information that is transferred over

loop iterations. This label is then filled by the constraint solver. Our fixed-point algorithm expects

this information annotated at the loop head. The original PC entering the loop will be compared

with and replaced by the annotated label, which has to be at least as restrictive. If a jump back to

the loop header is encountered in the loop body, the current PC and the annotated loop entry PC

are compared. The program is valid if the current PC is at most as restrictive as the loop entry PC

(see JFlow).

Other join points, like joins after branches, do not need to be annotated. In conformance with

JIF, the current PC will be computed as the label join of all PCs at the end of the predecessors.

A special building block used with NCR are single-exit (SE) regions. These regions contain a

sub-flow that can only be entered through the entry of the SE region as well as exited through a

special compartment, the exit compartment. Note that this is slightly different from exit regions: in

a nested exit region, it is permissible to jump to the outer exit with a restricted goto, whereas single-

exit regions forbid such jumps. This simplifies information flow insofar as any PC information

gathered in the nested sub-flow is lost at the exit of the region, since all paths through the control

flow graph will go through that node. Thus, the PC at the end of the region is the same as the PC

at the entry. Note that values, however, might have labels dependent on the internal control flow.

Most instructions produce values, which now have a labeled type. In most instances, annotating

the value is not necessary. The label produced by joining all the labels of the input operands with

the current PC, which captures all the restraints of the input data, will be as restrictive as needed.

Any valid annotation must be at least as restrictive as that label.

1This assumption is intuitively valid because only a bounded number of “atoms” can be introduced throughmethod

parameters etc. Thus operating on a finite set of elements is possible in constant time.

182

. . .

Exit region

body
. . .

Exit region (a)

or SESE region (b)

body
. . .

Goto E1

Goto E2

exit E1

Exit E2

E1

E2

Jump
Stack
(b)

E1

E2

Jump
Stack
(a)

Figure 7.6: SE region implementation

ϕ functions do not need to be handled in any special way. The different parameters for different

control flows are treated just as normal parameters. The resulting label will be the join of all input

labels and the PC of the exit region, being at least as restrictive as each input label and including

the control flow information.

Annotating the values of SSA instructions has advantages over the original JIF approach. In

JIF, labels annotate source variables. A variable thus has the same label for its lifetime (since the

annotated component is the type of the variable). SSA mandates a fresh variable every time a

value is produced, splitting up the scope of a source variable. This has the potential to increase the

granularity of label annotations, since a reused variable in the source code (like helper variables)

is split up into multiple scopes and can have different labels, possibly decreasing the number of

rejected programs. In a sense, the type system annotations become flow-sensitive. Of course,

since our prototype translates code produced by the standard JIF compiler, this advantage is purely

theoretical until we implement our own independent JIF-to-NCR compiler.

Another benefit arises from NCR’s use of low level of instructions. In most cases, complex

source code statements are broken up into several simpler SSA instructions. This greatly simplifies

the constraints placed on instructions.

183

Exceptions are handled with path labels as introduced in JIF. To ensure linear-time verification,

we currently need to restrict methods to declare escaping exceptions precisely (i.e., it is not allowed

to throw an exception subtype). This is common; e.g., [15] requires a mapping of exception types

to exception handlers to maintain lightweight verification.

We integrate incremental loading along the lines of Section 4.3. Placeholder regions contain

both a reference handle and fallback code. The fallback code is statically checked and valid at

the point of the placeholder. During execution, when the placeholder is reached, the referenced

code is requested from the server and type-checked. If the check succeeds, the downloaded code

replaces the placeholder. Otherwise, the fallback code is used. This way, no matter the outcome of

the type-check, execution can continue.

Further issues arise in an actual system. First and foremost, the verification environment has

to be extended so that it includes the server. The client will request code blocks depending on

the current execution. This will, of course, transfer information to the server, as in the following

example:

i f (c o n d i t i o n)

{ /∗ Block 1 ∗ / }

e l s e

{ /∗ Block 2 ∗ / }

The server will be able to deduce the condition value based on which block is requested. For the

verification to succeed, the server has to be trusted with the information. Thus, incremental loading

has to be rejected in environments where the server is not trusted enough.

For proper treatment of integrity, it is important that the integrity of the code be considered.

Low-integrity code should not be able to handle high-integrity data or take actions that require high

integrity such as declassification. The integrity of the code can be established through trust of the

server or through code signing.

184

Chapter 8: RELATEDWORK

This chapter surveys related work on the topics covered in this dissertation. Each of the following

sections discusses work related to one chapter of this thesis.

8.1 Framework

8.1.1 Language Composition

Basic type-safety of composition has been investigated, e.g., [20] studied an SQL-like extension to

C#. However, the query language was fully incorporated into the host, which seems infeasible for

the sheer amount and expressivity of languages considered for embedding in practice. Composi-

tionality of noninterference has been studied in different contexts (see [64, 77, 62] for overviews).

The goal of these works was to find circumstances under which composing secure program frag-

ments of one formal system yields a secure result. In contrast, our fragments are derived from

different security-typed languages (here While and SQL), and we base our compositionality result

around the notion of security completeness.

8.1.2 System Composition

There are several related approaches to secure a complex system. Li and Zdancewic [54] describe

a web programming language extended with an interface to a relational database (note only sim-

ple select statements), where the language and interface are security typed. But this means that

the storage side needs to be fully trusted. Arrows and monads (e.g.,[55, 86, 76] and references

therein) can be used to isolate and control information flows in a library fashion. We contend

that this approach has problems similar to those of Li and Zdancewic’s approach. We note that a

library approach to embedded languages restricts expressivity and conciseness to that of the host

language, as library exposes functionality to the host language through an interface describable in

the language. Thus, concepts of the embedded language need to be mapped to the host language,

185

potentially losing all benefits of domain specificity and conciseness.

Fabric [61] extends JIF to a secure distributed system. The set of nodes in this system is

partitioned into worker and storage nodes, so that managing storage is an integrated part of the

language/system. We believe that separation of concerns is important and our approach allows a

modular proof of the safety of the whole system, composed from smaller fragments. One may

take note that JIF, the foundation of Fabric, has still no formal guarantees of safety. Also note that,

persistent storage is but one use of an embedded language, and it seems unrealistic to expect one

language to excel in all domains.

8.2 Security Completeness

To the best of our knowledge, this is the first work to make use of completeness in the context of

security-typed languages. Kahrs [49, 50] studied completeness for basic type systems, where the

question is if all computable functions that are “well-going” can be typed. Kahrs uses transitions

systems, whereas our goal is to permit easy adoption of existing languages.

Traditional work in security-typed languages attempts to broaden the permissibility of the type

system, that is, accept more programs as typed and thus secure. For an older survey we refer

to [78]. Some more recent work is, for example, [31, 14, 48]. Our work is orthogonal to such

efforts. We show that, under certain constraints, there are always programs that compute a given

noninterferent function.

Our approach to prove a language security-complete is related to Secure Multi-Execution

(SME) [33]. SME can be seen as the dynamic counter part to our static program transforma-

tion. Instances of the program are run in parallel. As the noninterference notion is channel-based

(vs our input-output-based one), SME also needs additional runtime infrastructure to clone and

dispatch inputs from input channels and merge or discard outputs on output channels.

Formally, SME extends a standard language with specific concurrency support and concrete

runtime semantics that enforce the separation of the runs. The result is that in case the original

program was noninterfering, the output of secure multi-execution will be equivalent to the orig-

186

inal program. If the original was not noninterfering, the program’s semantics are not preserved.

However, even in that case the result is some noninterfering program.

For a comparison, first note that secure multi-execution has a slightly different goal than se-

curity completeness. Security completeness ensures that an equivalent typable program exists for

noninterfering computations. Secure multi-execution ensures that a program run is noninterfer-

ing, no matter if the input program is noninterfering itself. While this means that some tech-

nical limitations are shared, e.g., the need for an ordered lattice in case of termination-sensitive

noninterference, other properties and problems are unrelated: Security completeness must ensure

equivalence. In the case of termination-insensitive noninterference this implied additional work, as

we must also ensure equivalent termination behavior. SME only ensures (termination-insensitive)

noninterference and thus does not need this extra step. Security completeness is based on input-

output noninterference, and input-output equivalence. The order of computations is thus a minor

issue - only termination-sensitive noninterference may restrict the order of computation in some

type systems. SME is based on channel noninterference. The semantics of the SME extended lan-

guage must thus include a scheduler that is level-aware. The seminal paper [33] actually contains

leaks in case that the security lattice is not totally ordered. While this issue was remedied [51], the

solution implies even more runtime overhead than the original secure multi-execution.

One important difference is that SME is envisioned as an implementation technique whereas we

use level-separated simulation as a theoretical device to prove security completeness. Secure multi-

execution, as a practical method, has prototype implementations (e.g., [30]). Security completeness

is a theoretical property of security-typed languages. While our proof approach can be used to

derive typed programs, those programs will in general not be practical.

187

8.3 Extensions

8.3.1 Nondeterminism

To the best of our knowledge, we are the first to argue about security of nondeterministic programs

by deterministic simulation.

Our approach to nondeterministic languages is similar to prophecy variables [2, 63]. That work

proposes to prove the correctness of an implementation with respect to a specification by showing

that the implementation is a refinement. While an implementation may only expose a subset of

the behaviors of the specification, it likely includes more detailed/concrete data structures and so

on. To match specification and implementation runs, this mismatch has to be mapped. History

variables add information about past decisions and values of data that are not in the specification.

Prophecy variables are the dual for the future.

In our case, the determinism variable i in Definition 72 is a prophecy variable for the specific

choices of nondeterministic cases in the semantics.

8.3.2 Declassification

Declassification is an active research topic. For a recent survey and categorization we refer to

[80, 81]. We are not aware of any work in composing programs with declassification.

We adapted two declassification proposals that are enforcable by a security type system. De-

limited release [79] specifies what can be declassified. It defines so-called escape hatches that are

allowed to be declassified. The proposed security type system ensures that only escape hatches can

be declassified, and only in a consistent way, by tracking changes as effects. The model has been

extended to also cover the where axis of declassification [9].

Robust declassification [92] specifies who is allowed to declassify. So-called attacks, that is,

modifications of the system under consideration, cannot change the information release in a robust

system. Attacks here are modifications that, by themselves, form a secure system. An attacker is

assumed to be unable to circumvent basic security properties. This view is seen as practical insofar

188

it applies to the domain of dynamically loaded code, which is not executed until a basic check of

the loaded code succeeds.

In [68] a security type system is proposed that can enforce a language-based notion of robust-

ness. The type system tracks both confidentiality and integrity constraints. Attacks are confined to

low-integrity data, while declassification can only be performed in a high-integrity context.

We straightforwardly adapt the effect tracking of [79] to support delimited release. In contrast,

prior formulations of robust declassification [92] and [68] do not lend themselves to language

composition. The former is too weakly constrained, such that a significant number of further

requirements are necessary to show a general compositionality result. The latter is too confined to

the specific language upon which robust declassification is enforced. We distill a relaxed version

from [68] we call step-wise robustness. Step-wise robustness lies between [92] and [68], and forms

an implication chain, that is, we show that a typed program of [68] is step-wise robust, and a step-

wise robust system is robust with respect to the definition of [92]. Finally, our step-wise robustness

is constrained enough to immediately reason about composition.

8.4 Languages

8.4.1 Object-oriented calculus

Several treatments of information flow in object-oriented languages have been presented, e.g., [66,

13, 75, 85]. These are all class-based, a quite different setting from ours, with its own challenges

and simplifications.

Our proofs were inspired by work of Barthe and Serpette [16]. To the best of our knowledge,

this is the only other information flow work in foundational object calculi. The work presents an

annotated version of Abadi and Cardelli’s object calculus and its first-order type system. Our work

differs in that it allows object extension and does not rely on Abadi & Cardelli as an underlying

type system, and thus execution might produce method-not-found errors.

Our work is related to Askarov and Sabelfeld [10], who describe an extension of JIF that allows

189

to designate exceptions that cannot be caught and lead to termination. While on the surface similar,

the goals and features are quite different. Our work considers object-oriented programming based

around objects and allows adding methods to objects, a feature widely used in dynamic languages,

while Askarov and Sabelfeld’s extension of JIF is class-based and thus objects are static.

Most work on information flow control for dynamic languages use dynamic, rather than static,

enforcement mechanisms. One noteable exception that is related to our work is [27] for Javascript.

A flow analysis is performed to conservatively compute influences. The process is staged, since

the presence of eval in Javascript makes a whole-program analysis infeasible. To allow a fast

syntactic check when loading Javascript, the enforceable policies are very simplistic: writing to

or reading from particular variables can be prohibited. In comparison, we support any security

lattice, for example, the very expressive DLM [67], and an annotation checker could be used to

verify annotations. The staging process could be integrated in our work to support eval, which

we explore for Nested Control Regions in Chapter 7.

Our work is partially inspired by previous work on extensible object calculi. Two main cal-

culi have been proposed [1, 36], and both have been extended to include subtyping and object

extension [21, 23, 22, 58, 59, 60].

Incomplete objects have been considered, for example, in [23, 58, 18]. Types are split up into

an interface and a completion component. Only methods in the interface component might be

called, while the completion component defines dependencies (e.g., method that need to be added

to complete an object). Our type system does not separate between interface and completion

components, since we want to allow calling potentially non-existing methods.

8.4.2 SQL

Noninterference for database interactions has been treated before. Li and Zdancewic [54] describe

a web programming language extended with an interface to a relational database. Concrete queries

a program wants to make are wrapped in a typed interface, so that SQL queries do not appear in

the actual program. The exact syntax and semantics of the wrapped queries are not defined, and

190

not integrated into the language. The paper assumes them given and to preserve noninterference.

Furthermore, only a very inexpressive fragment of queries is described: just simple selects of data

in a single table. Issues of merging or updating tables are not handled.

Li and Zdancewic do not use a type system for the database itself. Instead, each query wrapper

defines the security levels of inputs and outputs. The paper does not suggest any method to ensure

consistency among wrappers. Our approach, on the other hand, labels the database schema. As

such, all queries over the schema automatically enforce the same policy, as column labels are

shared among all queries.

The immediate expressive power of the query wrapper type annotations is similar to our type

system: all rows share the confidentiality level for respective columns. However, we use an addi-

tional level for each table to handle insertions, deletions and table joins.

The Haskell Automatic Information Labeling System (HAILS) [83, 42] is an application of the

Labeled IO approach (using monads and arrows) to building web frameworks. Here the Labeled IO

monad tracks all information flows of encapsulated computations. If a computation would lead to

a potential leak in the current context of the monad, the execution is prevented. This is, in essence,

type-checked dynamic information flow control: the correctness of the monad is established by its

typability, but the actual control of flows is done at runtime.

HAILS as a web framework covers database storage backends. Policies govern how rows of

a table should be labeled. HAILS, in effect, allows a simple form of dependent typing: a column

value may be used to label other columns. This allows, for example, user-password tables where

each password is protected by the principal of its owner. To support working with values with

labels that cannot be known ahead of time, HAILS supports label comparison operators.

The key difference to our approach is that HAILS is, as mentioned, enforcing information

flow dynamically. This leads to significant overhead: the authors implemented a simple posting

board, which was benchmarked to be slightly slower than a non-secure implementation in PHP.

That means that the compiled and optimized Haskell program is slower than the interpreted PHP

program. Our approach is a pure type system approach: only typable queries are allowed, and if

191

queries are typable, they are guaranteed to be secure. No runtime overhead is incurred.

Another security property enforced over databases is differential privacy [34]. Differential

privacy ensures that a secure algorithm will behave approximately the same on closely related data

sets, that is, sets varying on a single element. This implies that the presence or absence of an

element will not affect the algorithm’s outcome significantly. This notion of security is different

from noninterference: it is a statistical property that enforces a notion of anonymity over range

queries. As such, it is not directly related to our work.

8.5 Implementation

8.5.1 Intermediate Representations

Several intermediate representations have been developed over the last decades. Java bytecode [56]

and .NET CIL [35] are established well in practice. Both define operations over a stack-based vir-

tual machine. While this format allows for a compact code, it is not well-adapted for register-based

target machines. In contrast, NCR is easy to analyze and optimize, and annotated information can

be efficiently verified.

SafeTSA [4] is a closely related IR. It is SSA-based, structures code in its Unified Abstract

Syntax Tree and is strongly typed. All three properties are used to encode SafeTSA code in a way

that is type- and reference-safe by construction. However, SafeTSA is strongly bound to Java only,

both in respect to the type system and the control structures, whereas NCR accomodates different

input languages by lower-level control structures that can be nested to emulate complex structures,

and can be extended with annotated type systems for different input languages.

The Dalvik VM is the runtime environment of the Android platform. It uses a register-based

model and code can be translated from Java bytecode. The code is not structured and strongly

adapted to small devices, e.g., the register set is restricted to a relatively small number of registers

(in fact, most instructions can only reference sixteen registers). Thus, the Dalvik Executable format

is more restricted and less structured than our format, and as such less adapted to the efficient and

192

incremental verification of information flow policies.

The Parrot VM1 was developed for the Perl programming language, but designed to be more

general to accept multiple input languages. It accepts multiple register-based input formats (e.g.,

Parrot Intermediate Representation), which all get compiled to an internal bytecode format on-the-

fly. The code is not structured and as such harder to analyze and verify than NCR.

YARV [82] is a virtual machine for Ruby. The IR is stack-based and tailored towards Ruby

only, whereas NCR is language-agnostic. RIL [37] is an intermediate language for Ruby. Com-

pared to NCR, it is very high-level and retains many of Ruby’s control structures while removing

duplicates. RIL and NCR have different goals: RIL is designed for ease of source code analysis

and code transformation, whereas NCR is an easy-to-verify transport format.

8.5.2 Secure Information Flow

Wagner et al. [90] designed a Java client-server architecture with an extended interpreter at the

client side. Java bytecode is analyzed and modified for partial loading. The default Java bytecode

and classfile format is changed for space conservation. For example, symbolic names are replaced

with integers and code is pre-linked, both reducing the size of the symbol table. Actual bytecode is

partitioned according to a static analysis that determines the probability of its use. Only the likely

parts are initially distributed, and the client requests missing parts when necessary.

Our adaptation of NCR with placeholder regions achieves the same goal. However, static anal-

ysis for usage prediction, which is necessary to optimize the communication overhead, is signifi-

cantly simpler on structured, register-based code - structured NCR code can be easily analyzed and

split up. Our implementation allows code to be partitioned along compartment boundaries. The

structuring of the control regions simplifies where to break-up the code, as well as analyze which

parts are likely to be executed and should be transferred in a chunk. A package distribution format

can be used to reduce the constant pool similar to the classfile compression. Furthermore, we show

how to correctly verify programs that are incrementally loaded. on the example of information

1http://www.parrot.org/

193

http://www.parrot.org/

flow control, which is possible through our baseline single-pass verification algorithm.

Information flow control has been a topic for many years. JFlow/JIF [66] and FlowCaml [72]

extend the basic type system of a practical language (Java and ML, respectively). JIF is based on

the decentralized label model [67]. Both systems check the program at compile time only. The

product is then distributed to the client, who has no way to check the program again, whereas NCR

is designed to be easily and incrementally verifyable. The basic NCR is technique-agnostic, i.e.,

the distributed label model and JIF rules are only one way to enforce information flow control over

NCR code.

Several other languages and systems have been designed for static information flow control,

e.g., [84, 61, 93]. Most are research languages based on the typed lambda-calculus and some have

been proposed as intermediate representations. We believe that a traditional, register-based IR is

better suited for current practical purposes: all practical runtime environments use register-based

IRs internally, and physical target machines use the same model.

The Mobius project applies proof-carrying code techniques to a subset of Java known as MIDP,

used on mobile devices. As part of the project, Barthe and Rezk developed a non-interference

bytecode verifier [15]. The algorithm needs three passes to establish non-interference and uses

annotation techniques to ensure efficient verification in the last pass. Compared to our solution, the

results are restricted: the MIDP specification basically makes a whole-program analysis possible,

since class loading is not allowed. This significantly simplifies the flow analysis. In our opinion,

it is a better design choice to create an intermediate representation that is easy to fully verify by

construction, instead of retro-fitting an existing solution.

Swift [26] is a framework for secure web application partitioning. Its intermediate representa-

tion called WebIL is used during compilation, but is not intended to be a mobile code format. It

only contains partitioning constraints instead of full security labels. This makes load-time checking

of code impossible.

An alternative to static information flow control checks flows dynamically at runtime. How-

ever, this incurs a significant overhead due to security label computations [12]. Laminar [75]

194

allows security to be traded for lower overhead: only selected values need to be labelled, and such

values can only be accessed in a special region, which reduces overhead. This “secure region” is

comparable to our single-exit region, in that it suppresses any knowledge of control flow to leak

out. However, the PC is raised at the beginning of the PC to its final value. This means that a

programmer is more restricted in using the secure region, and secure regions have to be tightly

nested.

Several hardware extensions have been proposed to support dynamic information flow control.

RIFLE [87], for example, adds security registers to dynamically track information flows. Implicit

information flows can be tracked through the placement and inclusion of security registers in label

computations. However, in comparison to our approach, the RIFLE hardware does not verify

the (correct) use of the security extensions. A static whole-program analysis at compile time is

proposed to translate traditional machine code to the new ISA, which precludes the use in dynamic

environments like mobile application platforms. As a last difference, it is not obvious how to

extend RIFLE to include declassification.

Our reference region alternatives address the problem of information flow leaking through run-

time verification failures. A similar issue arises in dynamic information flow systems, specifically,

information can be leaked because labels will only be updated on values that are written on the

path taken. RIFLE [87] uses a hybrid system with dynamic label tracking supported by hardware

and compiler static analysis to insert label computations that capture all implicit flows.

To the best of our knowledge, only [27] achieves a similar goal to our work. Javascript pro-

grams are verified incrementally, with the borders being eval instructions. A conservative flow

analysis computes influencing definitions. The computation is split between server and client, be-

cause the flow analysis is heavy-weight. To ensure fast checking (purely syntactical) and feasible

flow analysis, only very simple policies (a variable cannot be read or written) are possible, whereas

our technique can use the significantly more powerful policies JIF provides. It is also worth noting

that, in [27], the client has to trust the policies sent by the server.

195

Chapter 9: CONCLUSION

9.1 Summary

It is feasible to control information flow in composed languages with a modular, type-theoretic

framework.

Led by the observation that, in practice, host languages are usually at least as computationally

powerful as the language being embedded, we investigate a simulation approach to the problem:

If one can show that there exists a simulation for a composed program, properties of the simula-

tion can be used to derive properties of the composed program, side-stepping reasoning over the

complex, likely complicated, composed language.

We first formalize what we consider a language composition. We describe a simple eval

construct and give it reasonable semantics, semantics that such a construct could be assumed to

have in general. We leave the concrete implementation abstract and instead use transfer functions

and type transfer functions to generically argue about specific compositions. Transfer functions

abstract the necessary translation of values between languages, connecting the separate semantics

of host and embedded language. Similarly, type transfer functions abstract the translation between

types (or just security levels) between languages, connecting the separate type judgment of host

and embedded type system. Constraints placed onto these functions guarantee that trivial leaks do

not occur, for example, that unobservable information becomes observable. The derived properties

appear similar to those required in the framework of Abstract Interpretation [28, 29], letting transfer

functions and more specifically type transfer functions appear like Galois connections.

From this starting point, we derive a number of requirements or assumptions. The first set is

local and describes a simulation and its properties just for eval constructs. The Correct Simulation

requirement defines what it means to simulate an eval statement, that is, to work on an encoding of

the embedded state such that an encoding predicate (encodes) is preserved over the execution. The

Typable Simulation requirement ensures that the encoding used by the simulation is fine-grained

196

enough to retain the security typing of the embedded language. Only then is arguing over the

simulation meaningful, as otherwise security information is lost in the translation.

The second set of requirements lifts the local properties from eval constructs the complete

composed programs. The first of three requirements ensures that replacing evals with the ob-

servationally equivalent simulations will result in an observationally equivalent program without

evals, that is, a pure host-language program. As noninterference, our security property, is se-

mantical, this requirement allows us to connect the simulation to the original composed program

and guarantee the soundness of the approach. However, to establish noninterference, we also

need a complete typing of the transformed program. The remaining two requirements establish

this. Similarly to the semantics requirement, the type replacement requirement establishes that a

corresponding typing to the composed program, potentially extended by typing constraints for the

simulated embedded state, exists. The last requirement then allows to reduce a composed-language

typing to a host-language typing if no eval constructs are encountered in a program. This, finally,

allows us to appeal to the soundness of the host-language security type system to show that all

well-typed programs in a language thus composed are noninterferent.

This framework is both general and modular. The second set of requirements can be shown

purely by inspecting the host language and the requirements on transfer functions. All effort spent

on one composition can be fully reused for any other composition with the same host language.

While the first set is in general dependent on the embedded language, in many cases general com-

putational arguments can be used to significantly reduce the proof burden. Thus, the type and form

of noninterference proofs of host and embedded language is often not important to our framework:

the component proofs can be treated as black boxes, significantly lowering the required domain

knowledge for proof efforts.

To mitigate the final remaining technical requirement, that of typable simulations, we introduce

a property called Security Completeness. This novel property of a security-typed language states

that there exists a typable program for any computable, noninterfering computation, which im-

mediately satisfies the requirement for the existence of a typable simulation of any noninterferent

197

program. We derive sufficient, and in the case of Turing-complete languages necessary, condi-

tions for a security-typed language to be security-complete. As it turns out, these conditions are

commonly satisfied over integer computations for languages in the literature, as a case study of

languages from three different paradigms (imperative, functional, object-oriented) suggests. We

then show how our approach can be extended to include complex datastructures and references.

There are practical limitations, as type systems from the literature syntactically allow some typings

that are not useful in practice: parts of a datastructure are marked as public, while the complete

entity is confidential. We show that FlowML [72] is not security-complete for computations over

such types, and derive restrictions to categorize computations we can show typable.

We note that is possible to extend both the framework and security completeness. In the case

of the framework, the security property of interest, noninterference, is often too strong in practice.

We show that our approach can accommodate two notions of declassification (see [80]), that is,

intentional information release. We study Delimited Release [79], a model for restricting what can

be released. Enforcement of Delimited Release is based on an effect system, which is easily inte-

grated into our framework. We then study Robust Declassification [92, 68], which models the who

axis of declassification. Here, the type-system approach in [68] does not allow for composition,

while the trace-based approach in [92] has neither enforcement nor strong enough guarantees. We

derive a trace-based property between those two that is enforced by the type system in [68] and

show that we can apply our approach to preserve this property over compositions.

To demonstrate the practicality of our framework approach, we first propose two novel security

type system for languages that might be considered for embedding. We first describe a type system

for an object-oriented calculus that handles method-not-found errors. This significantly eases

the burden for static enforcement of noninterference in dynamic languages like Javascript, where

the dynamism is a huge hurdle for traditional type systems. We trade basic type system safety

guarantees (that is, method-not-found errors are guaranteed not to appear in typed programs) for

an increased number of accepted programs (as potential errors are accepted, but guaranteed not

to infer with the security properties). A second language we investigate is the Structured Query

198

Language (SQL) for relational database queries. We design a security type system for an expressive

fragment of the data manipulation sub-language, which includes selection, insertion, modification

and deletes, with table joins and nested queries. We formalize the semantics of our fragment and

show that our security type system is sound.

With these languages for embedding in hand, we select the seminal while language from [89]

as host language and show the composition of that language and our SQL dialect to be secure. We

formally prove the requirements established by our framework and security completeness, which

formally guarantees the soundness of the security type system of the composed language.

We thus believe that our framework is a successful step to mitigate the mismatch we observed

between software engineering practice and security theory when developing complex software.

Namely, it is best practice to break up complex designs into many smaller, easier to handle chunks

(called components) and develop them separately, often employing separate tools. A very basic

tool is the programming language used for the implementation, which can vary between compo-

nents. On the security side, enforcing security properties like confidentiality and integrity can be

handled by security-typed languages, which extend a basic language’s type system with security

annotations and flow-enforcing typing rules. Security-typed languages are attractive for several

reasons, the most important ones being static enforcement, that is, no or minimal runtime over-

head, and formal guarantees, that is, proven properties of typable programs. The literature has a

wide array of proposed security-typed language since the seminal development in [89], but has

neglected investigations of language combinations, as required by modern software engineering

practice.

Naive, straightforward approaches to composing security-typed languages have similar draw-

backs to early software development. Direct embedding requires deep knowledge of the languages

being composed, both on the syntactical and the semantical level. To also give formal security

guarantees for the composition, a standard approach would require intimate knowledge of the de-

sign and working of the formal proofs. While this is certainly a feasible approach for a domain

expert, one more problem arises: the effort for one combination of languages cannot be reused.

199

Even if one of the component languages is used in a composition again, the formal guarantees must

be derived again independently. Our framework eases this burden.

As a last use case, we investigate the use of our framework as a formal tool justifying the

correctness of incremental verification in an extended Java virtual machine. We propose Nested

Control Regions (NCR), a register-based, structured intermediate representation for program code

that is targetted specifically for optimizing compilers. A layered security type system based on

the practical JIF [66] language enforces noninterference. We extend NCR with a construct for

incremental loading of code: “holes” in the intermediate representations denote places where ad-

ditional code should be requested from the code producer, for example, a server connected over

some network infrastructure. When execution reaches a hole, the code for said hole is downloaded

and verified, and only after success placed into the hole.

We adapt our framework approach to argue that said technique is actually secure, that is, incre-

mental verification preserves noninterference. The adaptation shows how the holes can be treated

like a place of language embedding, even if the embedding is the same language. The require-

ments on the interface layer between surrounding program and code in the hole are similar to those

required by our framework, such that the same approach formally justifies the soundness.

9.2 Future Directions

There are three major directions that promise interesting opportunities.

First, there are some open points in the framework and security completeness. While we have

shown how finite, erratic nondeterminism can be handled, it is open how full-scale concurrency,

and potentially concurrent embeddings, interact with the approach. For example, if the embedded

language does not define or provide support for concurrency, but the host language does, concurrent

embeddings will force concurrent semantics onto the embedded language. It has been shown,

though, that secure type systems that are sound for sequential programs are not automatically

sound when the language is extended to support concurrency.

Related or similar open problems are other leaking channels. In a concurrent setting, timing

200

of programs can leak information, as the order of execution may be dependent on confidential

information. This is known as a timing channel. While there are proposals for type-based con-

trol of timing channels, it is not immediately clear whether this fits well into our computational

framework.

The second direction is a generalization of the security properties the framework can enforce.

We have shown in this thesis how two specific notions of declassification can be accommodated.

The techniques developed to enforce a form of robust declassification indicate that other gener-

alized properties may be able to be enforced. The outlook of such a generalization is that the

framework could be applied to the general area of component-based software and (arbitrary) prop-

erties. A practical application of such a generalized framework would be the formalization of

component frameworks like OSGi that allow to dynamically load and replace components.

The third direction is the investigation of more powerful security type systems for embedded

language. Currently, our SQL dialect’s type system establishes a homogenous typing of the data.

Each row’s data is typed the same, that is, all data in a column is classified the same. An example

of data that could not be typed under such a regime is that of (precise) login data. The most precise

classification is that each principal’s password is only accessible to the principal (and the login

process). But then the levels of data in a column of a table varies by the specific row.

This could be handled if our approach is generalized to dependent types. In that case, the type

of an element of a row can depend on the value of another element in that row. While switching

to a dependently typed embedded language may not seem too complicated, we also would need to

investigate the interactions in the host language. If the host language is not dependently typed itself,

only a very conservative type transfer function is secure, and the whole advantage of dependent

embedded typing is lost. If the host language is dependently typed itself, one now has to be able to

match dependent types, that is, types involving values, and show that operations preserve security

properties assumed in either language.

Together with stronger embedded security type systems, a case study of the difficulties in im-

plementing complex software in a real-world setting would be highly interesting.

201

BIBLIOGRAPHY

[1] Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 1st edition, 1996. ISBN 0387947752.

[2] Martín Abadi and Leslie Lamport. The existence of refinement mappings. Theor. Comput.

Sci., 82(2):253–284, May 1991. ISSN 0304-3975. doi: 10.1016/0304-3975(91)90224-P.

URL http://dx.doi.org/10.1016/0304-3975(91)90224-P.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: principles, techniques, and

tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-

201-10088-6.

[4] Wolfram Amme, Niall Dalton, Jeffery von Ronne, and Michael Franz. SafeTSA: A type safe

and referentially secure mobile-code representation based on static single assignment form.

In Proceedings of the Conference on Programming Language Design and Implementation

(PLDI’2001), volume 36 of ACM SIGPLAN Notices, pages 137–147, Snowbird, Utah, USA,

June 2001. ACM Press.

[5] Wolfram Amme, Marc-André Möller, and Philipp Adler. Data flow analysis as a general

concept for the transport of verifiable program annotations. Electron. Notes Theor. Comput.

Sci., 176(3):97–108, 2007.

[6] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form. In SAS,

LNCS 3148, pages 100–115, 2004.

[7] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for information flow in

object-oriented programs. In Conference record of the 33rd ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, POPL ’06, pages 91–102, New York, NY,

USA, 2006. ACM. ISBN 1-59593-027-2.

202

http://dx.doi.org/10.1016/0304-3975(91)90224-P

[8] Christopher Anderson and Sophia Drossopoulou. δ: an imperative object based calculus. In

USE 2002, 2002.

[9] Aslan Askarov and Andrei Sabelfeld. Localized delimited release: combining the what and

where dimensions of information release. In Proceedings of the 2007 workshop on Pro-

gramming languages and analysis for security, PLAS ’07, pages 53–60, New York, NY,

USA, 2007. ACM. ISBN 978-1-59593-711-7. doi: 10.1145/1255329.1255339. URL

http://doi.acm.org/10.1145/1255329.1255339.

[10] Aslan Askarov and Andrei Sabelfeld. Catch me if you can: permissive yet secure error han-

dling. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages

and Analysis for Security, PLAS ’09, pages 45–57, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-645-8.

[11] Aslan Askarov, Sebastian Hunt, Andrei Sabelfeld, and David Sands. Termination-insensitive

noninterference leaks more than just a bit. In Sushil Jajodia and Javier Lopez, editors, Com-

puter Security ESORICS 2008, volume 5283 of Lecture Notes in Computer Science, pages

333–348. Springer Berlin / Heidelberg, 2008.

[12] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information flow analy-

sis. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Languages and

Analysis for Security, PLAS ’09, pages 113–124, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-645-8.

[13] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confinement

in a java-like language. In Proceedings of the 15th IEEE workshop on Computer Security

Foundations, CSFW ’02, pages 253–267, Washington, DC, USA, 2002. IEEE Computer

Society.

203

http://doi.acm.org/10.1145/1255329.1255339

[14] Anindya Banerjee and David A. Naumann. Stack-based access control and secure infor-

mation flow. J. Funct. Program., 15(2):131–177, March 2005. ISSN 0956-7968. doi:

10.1017/S0956796804005453.

[15] Gilles Barthe and Tamara Rezk. A certified lightweight non-interference java bytecode ver-

ifier. In European Symposium on Programming, Lecture Notes in Computer Science, pages

125–140. Springer, 2007.

[16] Gilles Barthe and Bernard P. Serpette. Partial evaluation and non-interference for object

calculi. In Proceedings of the 4th Fuji International Symposium on Functional and Logic

Programming, pages 53–67, London, UK, 1999. Springer-Verlag. ISBN 3-540-66677-X.

[17] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations. Techni-

cal Report MTR-2547, Vol. 1, MITRE Corp., Bedford, MA, 1973.

[18] Lorenzo Bettini, Viviana Bono, and Silvia Likavec. A core calculus of mixins and incomplete

objects. In Companion to the 19th annual ACM SIGPLAN conference on Object-oriented pro-

gramming systems, languages, and applications, OOPSLA ’04, pages 208–209, New York,

NY, USA, 2004. ACM. ISBN 1-58113-833-4.

[19] Kenneth J. Biba. Integrity considerations for secure computer systems. MITRE Co., technical

report ESD-TR 76-372, 1977.

[20] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The essence of data access in cω: The

power is in the dot. In In ECOOP’02, 2002.

[21] Viviana Bono and Michele Bugliesi. Matching constraints for the lambda calculus of ob-

jects. In Proceedings of the Third International Conference on Typed Lambda Calculi and

Applications, pages 46–62, London, UK, 1997. Springer-Verlag. ISBN 3-540-62688-3.

[22] Viviana Bono and Kathleen Fisher. An imperative, first-order calculus with object ex-

tension. In Proceedings of the 12th European Conference on Object-Oriented Program-

204

ming, pages 462–497, London, UK, 1998. Springer-Verlag. ISBN 3-540-64737-6. URL

http://dl.acm.org/citation.cfm?id=646155.679695.

[23] Viviana Bono, Michele Bugliesi, Mariangiola Dezani-Ciancaglini, and Luigi Liquori. Sub-

typing constraints for incomplete objects (extended abstract). In Proceedings of the 7th In-

ternational Joint Conference CAAP/FASE on Theory and Practice of Software Development,

TAPSOFT ’97, pages 465–477, London, UK, 1997. Springer-Verlag. ISBN 3-540-62781-2.

[24] Gilad Bracha. Pluggable type systems. OOPSLA workshop on revival of dynamic languages,

2004.

[25] Guangyu Chen and Mahmut Kandemir. Verifiable annotations for embedded java environ-

ments. In CASES ’05: Proceedings of the 2005 international conference on Compilers, ar-

chitectures and synthesis for embedded systems, pages 105–114, New York, NY, USA, 2005.

ACM Press.

[26] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lantian Zheng, and Xin

Zheng. Secure web application via automatic partitioning. In SOSP ’07: Proceedings of

twenty-first ACM SIGOPS symposium on Operating systems principles, pages 31–44, New

York, NY, USA, 2007. ACM.

[27] Ravi Chugh, Jeffrey A. Meister, Ranjit Jhala, and Sorin Lerner. Staged information flow for

javascript. In Proceedings of the 2009 ACM SIGPLAN conference on Programming language

design and implementation, PLDI ’09, pages 50–62, New York, NY, USA, 2009. ACM. ISBN

978-1-60558-392-1.

[28] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static

analysis of programs by construction or approximation of fixpoints. In Proceedings of the

4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages, POPL

’77, pages 238–252, New York, NY, USA, 1977. ACM. doi: 10.1145/512950.512973. URL

http://doi.acm.org/10.1145/512950.512973.

205

http://dl.acm.org/citation.cfm?id=646155.679695
http://doi.acm.org/10.1145/512950.512973

[29] Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In

Proceedings of the 6th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’79, pages 269–282, New York, NY, USA, 1979. ACM. doi: 10.1145/

567752.567778. URL http://doi.acm.org/10.1145/567752.567778.

[30] Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens. Flowfox: A

web browser with flexible and precise information flow control. In Proceedings of the 2012

ACMConference on Computer and Communications Security, CCS ’12, pages 748–759, New

York, NY, USA, 2012. ACM. ISBN 978-1-4503-1651-4. doi: 10.1145/2382196.2382275.

URL http://doi.acm.org/10.1145/2382196.2382275.

[31] Zhenyue Deng and Geoffrey Smith. Lenient array operations for practical secure information

flow. In Proceedings of the 17th IEEE workshop on Computer Security Foundations, pages

115–, Washington, DC, USA, 2004. IEEE Computer Society.

[32] Dorothy E. Denning. A lattice model of secure information flow. Commun. ACM, 19:236–

243, May 1976. ISSN 0001-0782.

[33] Dominique Devriese and Frank Piessens. Noninterference through secure multi-execution. In

Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10, pages 109–124,

Washington, DC, USA, 2010. IEEE Computer Society.

[34] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,

and Ingo Wegener, editors, ICALP (2), volume 4052 of Lecture Notes in Computer Science,

pages 1–12. Springer, 2006. ISBN 3-540-35907-9.

[35] ECMA International. Common language infrastructure (cli) partitions i to vi. Standard

ECMA-335, ECMA, 2006.

[36] Kathleen Fisher, Furio Honsell, and John C. Mitchell. A lambda calculus of objects and

method specialization. Nordic J. of Computing, 1:3–37, March 1994. ISSN 1236-6064.

206

http://doi.acm.org/10.1145/567752.567778
http://doi.acm.org/10.1145/2382196.2382275

[37] Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. The ruby inter-

mediate language. In DLS ’09: Proceedings of the 5th symposium on Dynamic languages,

pages 89–98, New York, NY, USA, 2009. ACM.

[38] Andreas Gampe and Jeffery von Ronne. Efficient incremental information flow control with

nested control regions. In Proceedings of the 1st ACM SIGPLAN international workshop on

Programming language and systems technologies for internet clients, PLASTIC ’11, New

York, NY, USA, 2011. ACM.

[39] Andreas Gampe and Jeffery von Ronne. Information flow control with message-not-

understood errors. International Workshop on Foundations of Object-Oriented Languages

(FOOL), 2011.

[40] Andreas Gampe and Jeffery von Ronne. A framework for composing security-typed lan-

guages. In Proceedings of the Workshop on Foundations of Computer Security, FCS ’13,

pages 34–48, 2013.

[41] Andreas Gampe and Jeffery von Ronne. Security completeness: Towards noninterference in

composed languages. In Proceedings of the Eighth ACM SIGPLAN workshop on Program-

ming languages and analysis for security, PLAS ’13, pages 27–38, New York, NY, USA,

2013. ACM.

[42] Daniel B. Giffin, Amit Levy, Deian Stefan, David Terei, David Mazières, John Mitchell, and

Alejandro Russo. Hails: Protecting data privacy in untrusted web applications. In 10th Sym-

posium on Operating Systems Design and Implementation (OSDI), pages 47–60. USENIX,

2012.

[43] J A Goguen and J Meseguer. Security Policies and Security Models, volume pages, pages

11–20. IEEE, 1982.

[44] Vivek Haldar. Verifying data flow optimizations for just-in-time compilation. Technical

Report SMLI TR-2002-118, Sun Microsystems, 2002.

207

[45] Phillip Heidegger and Peter Thiemann. Recency types for analyzing scripting languages. In

Proceedings of the 24th European conference on Object-oriented programming, ECOOP’10,

pages 200–224, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-14106-4, 978-3-

642-14106-5.

[46] Nevin Heintze and Jon G. Riecke. The slam calculus: programming with secrecy and in-

tegrity. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on Principles of pro-

gramming languages, POPL ’98, pages 365–377, New York, NY, USA, 1998. ACM. ISBN

0-89791-979-3.

[47] Sebastian Hunt and David Sands. On flow-sensitive security types. In Con-

ference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’06, pages 79–90, New York, NY, USA,

2006. ACM. ISBN 1-59593-027-2. doi: 10.1145/1111037.1111045. URL

http://doi.acm.org/10.1145/1111037.1111045.

[48] Sebastian Hunt and David Sands. From exponential to polynomial-time security typing via

principal types. In Proceedings of the 20th European conference on Programming languages

and systems, ESOP’11/ETAPS’11, 2011.

[49] Stefan Kahrs. Limits of ML-definability. In Proceedings of the 8th International Symposium

on Programming Languages: Implementations, Logics, and Programs, PLILP ’96, pages

17–31, London, UK, UK, 1996. Springer-Verlag.

[50] Stefan Kahrs. Well-going programs can be typed. In Proceedings of the 6th international

conference on Typed lambda calculi and applications, TLCA’03, 2003.

[51] V. Kashyap, B. Wiedermann, and B. Hardekopf. Timing- and termination-sensitive secure

information flow: Exploring a new approach. In Security and Privacy (SP), 2011 IEEE

Symposium on, pages 413–428, 2011. doi: 10.1109/SP.2011.19.

208

http://doi.acm.org/10.1145/1111037.1111045

[52] Christoph Kerschbaumer, Gregor Wagner, Christian Wimmer, Andreas Gal, Christian Steger,

and Michael Franz. Slimvm: a small footprint java virtual machine for connected embedded

systems. In PPPJ ’09: Proceedings of the 7th International Conference on Principles and

Practice of Programming in Java, pages 133–142, New York, NY, USA, 2009. ACM.

[53] L. J. LaPadula and D. E. Bell. Secure computer systems: A mathematical model. Technical

Report MTR-2547, Vol. 2, MITRE Corp., Bedford, MA, 1973. Reprinted in J. of Computer

Security, vol. 4, no. 2–3, pp. 239–263, 1996.

[54] Peng Li and Steve Zdancewic. Practical information-flow control in web-based information

systems. In Proceedings of the 18th IEEE workshop on Computer Security Foundations,

CSFW ’05, 2005.

[55] Peng Li and Steve Zdancewic. Encoding information flow in haskell. In Proceedings of the

19th IEEE workshop on Computer Security Foundations, CSFW ’06, 2006.

[56] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series.

Addison-Wesley, second edition, 1999.

[57] Sam Lindley, James Cheney, and Philip Wadler. Shredding higher-order nested

queries. Available at http://homepages.inf.ed.ac.uk/slindley/papers/

shredding-draft-august2012.pdf.

[58] Luigi Liquori. An extended theory of primitive objects: First order system. In In Proc. of

ECOOP, pages 146–169. Springer-Verlag, 1997.

[59] Luigi Liquori. On object extension. In Proceedings of the 12th European Conference on

Object-Oriented Programming, pages 498–522, London, UK, 1998. Springer-Verlag. ISBN

3-540-64737-6.

[60] Luigi Liquori. Bounded polymorphism for extensible objects. In Thorsten Altenkirch, Bern-

hard Reus, and Wolfgang Naraschewski, editors, Types for Proofs and Programs, volume

209

1657 of Lecture Notes in Computer Science, pages 149–165. Springer Berlin / Heidelberg,

1999. ISBN 978-3-540-66537-3.

[61] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and Andrew C. Myers. Fabric:

a platform for secure distributed computation and storage. In SOSP ’09: Proceedings of the

ACM SIGOPS 22nd symposium on Operating systems principles, pages 321–334, New York,

NY, USA, 2009. ACM.

[62] Heiko Mantel, David Sands, and Henning Sudbrock. Assumptions and guarantees for com-

positional noninterference. In Proceedings of the 2011 IEEE 24th Computer Security Foun-

dations Symposium, CSF ’11, 2011.

[63] M. Marcus and Amir Pnueli. Using ghost variables to prove refinement. In Proceedings of the

5th International Conference on Algebraic Methodology and Software Technology, AMAST

’96, pages 226–240, London, UK, UK, 1996. Springer-Verlag. ISBN 3-540-61463-X. URL

http://dl.acm.org/citation.cfm?id=646057.678341.

[64] Daryl McCullough. Specifications for multi-level security and a hook-up. Security and

Privacy, IEEE Symposium on, 0:161, 1987.

[65] Robin Milner. Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River,

NJ, USA, 1989. ISBN 0-13-115007-3.

[66] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In In Proc. 26th

ACM Symp. on Principles of Programming Languages (POPL), pages 228–241, 1999.

[67] Andrew C. Myers and Barbara Liskov. A decentralized model for information flow control.

In In Proc. 17th ACM Symp. on Operating System Principles (SOSP, pages 129–142. ACM

Press, 1997.

[68] Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. Enforcing robust declassification

and qualified robustness. J. Comput. Secur., 14(2):157–196, April 2006.

210

http://dl.acm.org/citation.cfm?id=646057.678341

[69] George C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages 106–119,

New York, NY, USA, 1997. ACM Press.

[70] Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible

compiler framework for java. In In 12th International Conference on Compiler Construction,

pages 138–152. Springer-Verlag, 2003.

[71] Jens Palsberg. Efficient inference of object types. Inf. Comput., 123:198–209, December

1995. ISSN 0890-5401.

[72] François Pottier and Vincent Simonet. Information flow inference for ML. In Proceedings

of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

POPL ’02, pages 319–330, New York, NY, USA, 2002. ACM. ISBN 1-58113-450-9.

[73] François Pottier and Vincent Simonet. Information flow inference for ML. ACM Trans.

Program. Lang. Syst., 25(1):117–158, 2003.

[74] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic

behavior of javascript programs. In Proceedings of the 2010 ACM SIGPLAN conference on

Programming language design and implementation, PLDI ’10, pages 1–12, New York, NY,

USA, 2010. ACM. ISBN 978-1-4503-0019-3.

[75] Indrajit Roy, Donald E. Porter, Michael D. Bond, Kathryn S. McKinley, and Emmett Witchel.

Laminar: practical fine-grained decentralized information flow control. In PLDI ’09: Pro-

ceedings of the 2009 ACM SIGPLAN conference on Programming language design and im-

plementation, pages 63–74, New York, NY, USA, 2009. ACM.

[76] Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight information-

flow security in haskell. In Proceedings of the first ACM SIGPLAN symposium on Haskell,

Haskell ’08, pages 13–24, New York, NY, USA, 2008. ACM.

211

[77] P. Y. A. Ryan and S. A. Schneider. Process algebra and non-interference. J. Comput. Secur.,

9(1-2):75–103, January 2001.

[78] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE

Journal on Selected Areas in Communications, 21:2003, 2003.

[79] Andrei Sabelfeld and AndrewC. Myers. A model for delimited information release. In Soft-

ware Security - Theories and Systems, volume 3233 of Lecture Notes in Computer Science,

pages 174–191. Springer Berlin Heidelberg, 2004.

[80] Andrei Sabelfeld and David Sands. Dimensions and principles of declassification. In Pro-

ceedings of the 18th IEEE workshop on Computer Security Foundations, CSFW ’05, pages

255–269, 2005.

[81] Andrei Sabelfeld and David Sands. Declassification: Dimensions and princi-

ples. J. Comput. Secur., 17(5):517–548, October 2009. ISSN 0926-227X. URL

http://dl.acm.org/citation.cfm?id=1662658.1662659.

[82] Koichi Sasada. Yarv: yet another rubyvm: innovating the ruby interpreter. In OOPSLA ’05:

Companion to the 20th annual ACM SIGPLAN conference on Object-oriented programming,

systems, languages, and applications, pages 158–159, New York, NY, USA, 2005. ACM.

[83] Deian Stefan, Alejandro Russo, John C. Mitchell, and David Mazières. Flexible dynamic

information flow control in Haskell. In Haskell Symposium, pages 95–106. ACM SIGPLAN,

September 2011.

[84] Nikhil Swamy, Brian J. Corcoran, and Michael Hicks. Fable: A language for enforcing user-

defined security policies. In SP ’08: Proceedings of the 2008 IEEE Symposium on Security

and Privacy, pages 369–383, Washington, DC, USA, 2008. IEEE Computer Society.

[85] Nikhil Swamy, Juan Chen, and Ravi Chugh. Enforcing stateful authorization and infor-

mation flow policies in fine. In Proceedings of the 19th European conference on Program-

212

http://dl.acm.org/citation.cfm?id=1662658.1662659

ming Languages and Systems, ESOP’10, pages 529–549, Berlin, Heidelberg, 2010. Springer-

Verlag. ISBN 3-642-11956-5, 978-3-642-11956-9. doi: 10.1007/978-3-642-11957-6_28.

URL http://dx.doi.org/10.1007/978-3-642-11957-6_28.

[86] Ta-chung Tsai, Alejandro Russo, and J. Hughes. A library for secure multi-threaded informa-

tion flow in haskell. In Computer Security Foundations Symposium. CSF ’07, pages 187–202,

July 2007.

[87] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guilherme Ottoni,

Jason A. Blome, George A. Reis, Manish Vachharajani, and David I. August. Rifle: An ar-

chitectural framework for user-centric information-flow security. InMICRO 37: Proceedings

of the 37th annual IEEE/ACM International Symposium on Microarchitecture, pages 243–

254, Washington, DC, USA, 2004. IEEE Computer Society.

[88] Steve Vandebogart, Petros Efstathopoulos, Eddie Kohler, Maxwell Krohn, Cliff Frey,

David Ziegler, Frans Kaashoek, Robert Morris, and David Mazières. Labels and

event processes in the asbestos operating system. ACM Trans. Comput. Syst., 25

(4), December 2007. ISSN 0734-2071. doi: 10.1145/1314299.1314302. URL

http://doi.acm.org/10.1145/1314299.1314302.

[89] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure flow

analysis. J. Comput. Secur., 4:167–187, January 1996. ISSN 0926-227X.

[90] Gregor Wagner, Andreas Gal, and Michael Franz. Slim vm: optimistic partial program load-

ing for connected embedded java virtual machines. In PPPJ ’08: Proceedings of the 6th in-

ternational symposium on Principles and practice of programming in Java, pages 117–126,

New York, NY, USA, 2008. ACM.

[91] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.

Comput., 115:38–94, November 1994. ISSN 0890-5401.

213

http://dx.doi.org/10.1007/978-3-642-11957-6_28
http://doi.acm.org/10.1145/1314299.1314302

[92] Steve Zdancewic and Andrew C. Myers. Robust declassification. In Proceedings of the 14th

IEEE workshop on Computer Security Foundations, CSFW ’01, pages 5–, 2001.

[93] Steve Zdancewic and AndrewC. Myers. Secure information flow and CPs. In ESOP ’01: Pro-

ceedings of the 10th European Symposium on Programming Languages and Systems, pages

46–61, London, UK, 2001. Springer-Verlag.

[94] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Mak-

ing information flow explicit in histar. In Proceedings of the 7th USENIX

Symposium on Operating Systems Design and Implementation - Volume 7, OSDI

’06, pages 19–19, Berkeley, CA, USA, 2006. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=1267308.1267327.

[95] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed

systems with information flow control. In Proceedings of the 5th USENIX Sympo-

sium on Networked Systems Design and Implementation, NSDI’08, pages 293–308,

Berkeley, CA, USA, 2008. USENIX Association. ISBN 111-999-5555-22-1. URL

http://dl.acm.org/citation.cfm?id=1387589.1387610.

[96] Tian Zhao. Type inference for scripting languages with implicit extension. International

Workshop on Foundations of Object-Oriented Languages, 2010.

214

http://dl.acm.org/citation.cfm?id=1267308.1267327
http://dl.acm.org/citation.cfm?id=1387589.1387610

VITA

Andreas Robert Gampe received his Dipl. Inf. at the Friedrich-Schiller Universität Jena, Ger-

many, in 2006, with his thesis work supervised by Dr.WolframAmme. After working as a software

developer in Jena, Andreas attended The University of Texas at San Antonio, pursuing a Ph.D. de-

gree in the Department of Computer Science under the supervision of Dr. Jeffery von Ronne. His

research interests broadly lie in the fields of programming languages and computer security. He

is currently working on formalized notions of language compositions, and their implications for

computer security, specifically in the context of security-typed languages.

	Acknowledgements
	Abstract
	List of Figures
	Chapter 1: Introduction
	Thesis Statement
	Contributions
	Composition Framework
	Security Completeness
	Security Type Systems for SQL and a dynamic object-oriented language
	Incremental loading and verification of security-typed code

	Structure of this dissertation

	Chapter 2: Background
	Domain-Specific Languages
	Information Flow Control
	Lattice-based Security
	Noninterference
	Declassification
	Enforcement Mechanisms

	Proof Approaches for Type System based Security
	Mixed Syntactical-Semantical
	Purely Syntactical

	Chapter 3: Framework
	Introduction
	Motivational Example
	Proof Manipulation vs Framework Approach
	Framework for Composition
	Eval Setup
	Simulation
	Typability
	Replacement
	Completing the Framework Approach

	Applicability
	Case Study
	Host: WHILE
	Embedded Language: SQL
	Composed Language
	Proofs

	Chapter 4: Security Completeness
	Introduction
	Approach
	Basic Approach
	Termination Sensitivity

	Formalization
	Definitions & Requirements
	Revised Theorem & Proof
	Sufficient vs. Necessary Conditions

	Datatypes
	Assumptions
	Limitations
	Security-typed Simulation with Datatypes
	Nonrecursive Datatypes
	Proof of Nonrecursive Case
	Example
	Recursive Datatypes
	Proof of Recursive Case

	References & Objects
	Objects & Heaps
	Reachability, Equivalence & Indistinguishability
	Computation
	Security-typed Simulation with Heap Objects
	Formalization
	Proof

	Example Languages
	Volpano, Smith & Irvine
	FlowML
	Banerjee & Naumann

	Chapter 5: Extensions
	Nondeterminism
	Determinization

	Declassification
	Delimited Release
	Robust Declassification

	Chapter 6: Security-typed Embedded Languages
	OO
	Introduction
	Example
	Base Calculus
	Type System
	Noninterference
	Inference

	SQL
	Language
	Proofs

	Chapter 7: Incremental Loading
	Formalization
	Definitions
	Noninterference proof
	Evaluation instead of Loading

	Nested Control Regions
	Register-based IR
	Control Regions
	Placeholders
	Instruction Set
	Prototype Implementation

	Information Flow Control with NCR

	Chapter 8: Related Work
	Framework
	Language Composition
	System Composition

	Security Completeness
	Extensions
	Nondeterminism
	Declassification

	Languages
	Object-oriented calculus
	SQL

	Implementation
	Intermediate Representations
	Secure Information Flow

	Chapter 9: Conclusion
	Summary
	Future Directions

	Bibliography
	Vita

