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The large number of malicious files that are produced daily outpaces the current capacity of

malware analysis and detection. For example, Intel Security Labs report that during each hour in

the third quarter of 2015, more than 3.5M infected files were exposed to their customers’ networks,

and an additional 7.4M potentially unwanted programs attempted to install or launch. The damage

of malware attacks is also increasingly devastating, as witnessed by the recent Cryptowall malware

that has reportedly generated more than $325M in ransom payments to its perpetrators. In terms of

defense, it has been widely accepted that the traditional approach based on byte-string signatures is

increasingly ineffective, especially for new malware samples and sophisticated variants of existing

ones. New techniques are therefore needed for effective defense against malware. Motivated by

this problem, the dissertation investigates three new defense techniques against malware.

The first technique aims at the automatic detection of program obfuscation, which has been

abused by malware writers as an attack strategy to make their malware evade the defense. The key

idea is to extract and exploit useful information from Control Flow Graphs (CFGs) of malware

programs. Experimental results show that the new technique can detect a variety of obfuscation

methods (e.g., packing, encryption, and instruction overlapping). This patent-pending technique

paves the way for developing the two other techniques presented in the dissertation.

The second technique aims at automatically classifying whether a suspicious file is malicious

or not. The suspicious file may have been identified as obfuscated via the first technique men-

tioned above (or any technique of its kind). Machine learning methods are used to learn detection

models, which are shown to be effective against both plain and obfuscated malware samples. A

key contribution of this technique is the definition and utilization of over 32,000 features of files,

including file structure, runtime behavior, and instructions. To the best of our knowledge, this is
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the first effort that defines and uses such a comprehensive feature set.

The third technique leverages the first technique mentioned above for the automatic identifi-

cation of malware packers that were used to obfuscate malware programs. Signatures of malware

packers and obfuscators are extracted from the CFGs of malware samples. Unlike conventional

byte signatures that can be evaded by simply modifying one or multiple bytes in malware sam-

ples, these signatures are more difficult to evade. For example, CFG-based signatures are shown

to be resilient against instruction modifications and shuffling, as a single signature is sufficient for

detecting mildly polymorphic versions of the same malware. Last but not least, the process for

extracting CFG-based signatures is also made automatic.
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Chapter 1: INTRODUCTION

Malicious software, often referred to as malware, is a program designed to do harm to individuals,

corporations, or governments. Currently, malware is used in a wide range of attacks, from propa-

gating through the network, launching Denial of Service (DoS) attacks against web servers, caus-

ing service disruption and stealing credit card information to more sophisticated attacks against

nuclear plants [73]. In addition, financial malware programs are increasing in number and having

a stronger impact each year. For example, the Carbanak malware was able to steal $1 billion from

over 100 financial institutions worldwide in the biggest bank heist in history [28].

Each year a massive number of malware programs are produced and spread, and anti-virus

vendors struggle to keep up by producing more signatures and working to maintain timely updates

to their customers. In the last quarter of 2014, McAfee received more than 350 million malware

samples, 50 million of which were new malware. That means there are 387 new threats every

minute [29].

Despite the variety of anti-malware, ranging from host to network-based solutions, malware

detection remains an open problem. The primary complication to solving the issue is that malware

attacks continuously change. Malware programs employ several techniques to avoid detection and

to evolve rapidly compared to detection solutions. Techniques that evade signature detection exist,

such as simple encryption, polymorphism, or advanced metamorphism [44]. Other techniques

target behavior analysis via hook detection [31] and virtual machine detection [39], or even use

mimicry attacks to deceive the behavioral analysis system by showing benign behavior [72].

Although the malware detection problem has been discussed in numerous papers, it is evident

that more advanced solutions are needed and more research is encouraged to mitigate this serious

threat.
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1.1 Problem Statement

The evident reason why malware detection lags behind the development is due to the rapid evolu-

tion of malware. Malicious programs employ several techniques against each defense method. It

is relatively easy and quick for the malware author to obfuscate the sample, while it is difficult and

slow to develop a defense against that obfuscated threat. In the following subsection, we will give

an overview on how every aspect of the malicious program that could be useful for the process of

detection, such as static properties or dynamic behavior, can be obfuscated by the author to avert

detection.

1.1.1 Attack Against Static Analysis

Signature detection is one of the most used techniques for malware detection. It is simple and

rarely produces false-positive errors [60]. However, one of the most effective attacks against this

method is code obfuscation. Code obfuscation is usually done by using packers [65]. Packers are

used extensively in malware, and it is widely accepted that the vast majority of malware files are

packed [10]. Packers are software programs that employ compression techniques on the executable

file to decrease its size, or to hinder copyright infringement. This compression obfuscates the code,

so signatures can no longer be detected when an anti-malware system scans the file. Major anti-

virus software can be evaded using simple methods of obfuscation [13].

Other attacks, such as polymorphism and metamorphism, change the code continuously during

every infection. In these methods, the obfuscation is done on the instruction level. The malware

uses techniques such as instruction reordering, garbage code insertion, register swapping, among

others [44]. That is why polymorphism and metamorphism are considered to be some of the most

sophisticated obfuscation techniques [60].

Reverse engineering is the process of revealing and studying the instructions that compose the

binary file. This process is conducted by a malware analyst to study the structure and the behavior

of the malware. The process, in many cases, precedes the signature generation of the malware [60].

2



1 xor eax, eax
2 nop
3 nop
4 L1:
5 push eax
6 cmp eax, eax
7 jne fake
8 add ecx, 333h
9 jmp skip

10 fake:
11 DB 0Fh
12 skip:
13 nop
14 nop
15 mov ecx, ecx
16 mov edx, 444h
17 push offset ProcName
18 push eax
19 call GetProcAddress

Listing 1.1: Opaque predicate trick snippet.

Some malware programs use techniques to make the revere engineering process more difficult, or

deceive the malware analyst and show incorrect instructions. One of these techniques is opaque

predicate. Opaque predicate techniques [16] insert conditional statements (usually control flow

instructions) whose outcome is constant and known to the malware author, but not clear in static

analysis. Thus, a disassembler will follow both directions of the control flow instruction, one of

which leads to the wrong disassembly and affects the resulting control flow graph. As an example,

listing 1.1 shows an opaque predicate trick inserted on lines 6 and 7 of the code snippet. Since the

"compare instruction" on line 6 will always evaluate to true, the fake branch will never be taken

at runtime. However, to a disassembler, this fact is not apparent and it will evaluate both paths.

In this example, the disassembler will follow the target of the jne instruction on line 7, which

leads to a byte of data on line 11. The disassembly will continue starting with this byte, 0F, re-

sulting in decoding an instruction with opcode 0F9090 8BC9BA44. This incorrect instruction

is SETO BYTE PTR DS:[EAX+44BAC98B] as shown in figures 1.1 and 1.2 for two common

disassemblers, IDA Pro and OllyDbg, respectively.

3



Figure 1.1: Portion of IDA Pro graph for the example in listing 1.1.

Figure 1.2: Portion of OllyDbg disassembly for the example in listing 1.1.

1.1.2 Attack Against Dynamic Analysis

Behavior analysis systems mainly consist of a virtual machine in which the malicious sample will

run, and all its activities will be monitored. Then, a virtual machine could be easily restored to a

clean snapshot so another sample could be analyzed. However, the detection of a virtual machine

presence has been used by malware to avoid showing malicious behavior. Several techniques

proved that a virtualized environment can be discovered by detecting the presence of a hypervisor

[39, 42]. The virtual machine environment can be also discovered by checking for a list of known

4



artifacts that exist for a specific vendor. For example, the hard drive device name in a registry

key 1 can have the string qemu, vmware, xen, or virtual in the cases of Qemu, VMware,

Xen or Hyper-V virtual machines, respectively [4]. Other techniques for behavior monitoring is to

monitor hooking to operating system APIs. Whether the hooking is done inside a virtual machine

or on a bare metal one, the hooking can be detected if it was implemented in the user space [31].

If hooking or the presence of a virtual machine presence is detected, a malicious sample could

deceive the monitoring process by showing benign behavior [72].

Another common method of dynamic analysis is emulation. An emulator is a software program

that can emulate the execution of file instructions to determine whether it is malicious or not.

Emulators tend to implement common instructions and a limited set of the operating system’s

APIs. Therefore, an emulator can be attacked by using some uncommon APIs or instructions [60].

For example, the MMX set of instructions [12] can be used by some malware programs to hinder

the emulation process, since it is an uncommon set of instructions, most likely not implemented

by emulators. Other techniques to attack emulation includes timing attacks, in which the malware

can measure how long it takes to execute a single or a set of instructions. If an instruction takes

longer than usual to be executed, then most likely the program runs under an emulated environment

[41, 60].

Another common technique to attack both automated VM sandboxes or emulators is delayed

execution, where the malware sleeps for long enough that the emulator will exit before the malware

shows its malicious behavior [41]. Yet another attack on both automated VMs and emulators is

detecting mouse movements. For example, UpClick malware triggers its malicious behavior

when the left button of the mouse is clicked, and BaneChant malware activates on the infected

host after three mouse clicks [1].
1System\CurrentControlSet\Services\Disk\Enum
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1.2 Current Research

Several research have been proposed to tackle the problem of malware detection. Some improve

string signature generation [20]. String signature is one of the most widely used techniques for

malware detection. However, this technique is ineffective against novel malware or variants of

already existing programs. Other research depends on collecting behavioral data of the program

to determine if it is malicious or not [8], but these methods suffer from incomplete coverage of

different software execution paths. Another direction is to gather data from the file header, such as

the number of sections, size of each section, entry point location, etc [55]. This technique is very

fast compared to the former. However, it could produce a high error rate if the file is obfuscated,

which usually is. Current research aligned with our goals can be divided into two parts, detection

of obfuscation and zero-day malware detection. The next two subsections give a short overview of

the current research related to these problems.

1.2.1 Obfuscation Detection

Entropy-based detection

Lyda and Hamrock presented the idea of using entropy to find encrypted and packed files [30].

The method became widely used as it is efficient and easy to implement. However, some non-

packed files could have high entropy values and thus lead to false-positives. For example, the

ahui.exe and dfrgntfs.exe files have entropy of 6.51 and 6.59 respectively for their .text

section [68, 69] (These two example files exist in Windows XP 32-bit and are detected by our

system as non-packed). In addition to entropy-based evasion techniques mentioned in [64], simple

byte-level XOR encryption can bypass the entropy detection as well.

Signature-based detection

A popular tool to find packed files is PEiD, which uses more than 620 packer and crypter signatures

[5]. A drawback of this tool is that it can identify only known packers, while sophisticated malware
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may use custom packing or crypting routines. Moreover, even if a known packer is used, the

malware writer can change a single byte of the packer signature to avoid being detected as packed.

In addition, the tool is known for its high error rate [53].

File header anomaly detection

Other research such as [38,50,53,63] use the PE header and structure information to detect packed

files. These techniques can get good results only when the packer changes the PE header in a

noticeable way.

Besides the listed shortcomings of each technique, notably, none of the aforementioned tech-

niques can statically detect the presence of anti-disassembly tricks or other forms of control flow

obfuscation, yet these are now commonly used by a wide range of advanced malware.

1.2.2 Zero-day Malware Detection

There have been many different methods to protect proactively against malicious programs by

detecting zero-day malware threats. The following subsections discuss some of these methods.

Static Detection

Almost all anti-virus software use signature based detection. Byte signature detection is very

accurate and rarely produces any false positive. However, it takes too long compared to other

automatic methods to get a signature of a new malware program. The process of creating the

signature entails possession of the malware sample, analyzing it, extracting an accurate signature

and making sure there is no collision with other signatures, then deploying the new signature. That

is why, although byte signature is usually accurate, it is not an effective solution against unknown

malware [60].

Much information can be extracted from the file header, such as imported shared libraries, API

names, number of sections, etc. These features could be helpful in having an overview of the file.

Some research use PE header features to detect zero-day malware such as [55, 56]. Another tech-
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nique combines the header information with opcode and function call frequency [57]. However,

these techniques can get good results only when the malware affects the PE header in a distinctive

way.

Other techniques use byte n-gram to build a model for classification [26, 35, 48, 49, 54], which

rely on the contents of the file. Still, the technique is prone to evasion via obfuscation. Some

research utilizes both the control flow graph and the call graph for malware detection, such as

[17,18,25] where the authors use the features of the extracted graph with machine learning models.

Dynamic Detection

Some papers detect malicious activities by monitoring and logging performance-specific registers

of the processor, such as [14, 27, 61], where [61] used the hardware performance information to

detect anomalies in execution and hence detect exploitation of legitimate software. Other publi-

cations use instruction traces during execution [59]. Others use text strings displayed to the user

and compare their semantic to the behavior of the file to determine if the malware is carrying out

a stealth activity [23]. Salehi et al use the APIs and their arguments that the sample uses during

execution as the feature vector [45]. Other research uses temporal and spatial information of API

usage [3], that is, similar to [45], both the APIs and their arguments are collected, but their execu-

tion order is considered. In addition, Tian et al uses APIs sequences collected during runtime and

then applies pattern recognition algorithms on the extracted pattern [62].

1.3 Thesis Contribution

The main theme of our thesis is automatic proactive detection. In this thesis, we aim to (1) Iden-

tify potential malicious files by identifying packed or obfuscated files, so their execution can be

terminated or suspended until a human analyst intervenes, or a more rigorous analysis is done. (2)

Develop effective and efficient techniques based on machine learning to automatically detect new

malware with no need of a previous signature. (3) Automatically construct a compact signature

based on the control flow graph of the file to identify packer/obfuscator used in a packed file.
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First, we propose a novel technique for detecting obfuscated executable files, which helps to

flag potentially suspicious files. Although, benign files can employ some methods of obfuscation,

the vast majority of malware programs use a variety of obfuscation methods extensively to evade

detection. By detecting obfuscated files, a system administrator on a critical system can stop the

execution of the program and apply more rigorous analysis before it does any harm. The proposed

technique is able to detect a wide variety of different obfuscation methods such as, packing, en-

cryption, and even some advanced tricks such as instruction overlapping. The method is currently

patent pending.

Then we utilize the obfuscation detection technique in the second part of our research to detect

new malware samples regardless of the possession of a previous signature. In this method, we

combine information from the three different aspects of malware. We define features based on the

file structure, the dynamic behavior, and properties extracted from the instructions composing the

file. We use machine learning algorithms to combine and learn from these features and output a

runtime profile to automatically detect potentially malicious software.

Lastly, we leverage the first method to construct a compact signature based on the control flow

graph of the sample that is used to identify the packer or obfuscator applied to the file. We introduce

two types of signatures to compare and match two CFGs, an exact signature and an approximate

one. The approximate signature with the preprocessing of the graph is able to withstand minor

code modifications usually done by attackers. The technique can be used to construct a signature

of the control flow graph at the entry point function, and it can be compared to a set of signatures

in the database to determine the packer. We believe that the technique has a strong potential to be

efficient in detecting malware variants and polymorphic code, which will be implemented in our

future work.

1.4 Thesis Organization

The reminder of this thesis is organized as follows. In Chapter 2, we explain the details of our

obfuscation detection method, present the experiment, and discuss the result. In Chapter 3, we in-
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troduce a method for malware detection using machine learning. We discuss the different contexts

or aspects of the malicious sample and how the features are defined and extracted. In Chapter 4, a

signature based on the control flow graph of the file is introduced. We discuss graph preprocessing

methods, demonstrate the experiment and the result. Finally, the future research directions of this

dissertation are summarized in Chapter 5.
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Chapter 2: INSTRUCTIONS-BASED DETECTION OF SOPHISTICATED

OBFUSCATION AND PACKING

2.1 Introduction

Zero-day malware detection is a persistent problem. Hundreds of thousands of new malicious pro-

grams are produced and published on the Internet daily. Although conventional signature-based

techniques are still widely relied upon, they are only useful for known malware. Many research

efforts have aimed at helping flag and detect unknown suspicious and malicious files. All of these

techniques can be categorized into sandbox analysis, heuristic static analysis or code emulation.

Among the three, heuristic static analysis is the fastest, yet the weakest against obfuscation tech-

niques. Code obfuscation includes packing, protecting, encrypting or inserting anti-disassembly

tricks, and is used to hinder the process of reverse engineering and code analysis. About 80% to

90% of malware use some kind of packing techniques [30] and around 50% of new malware are

simply packed versions of older known malware according to a 2006 article [58], and we believe

it is far more than that by now. While it is very common for malware to use code obfuscation,

benign executable files rarely employ such techniques. Thus, it has become a common practice to

flag an obfuscated file as suspicious and then examine it with more costly analysis to determine if

it is malicious or not.

Most current work of detecting obfuscated files is based on executable file structure characteris-

tics as we will show in Section 2.2. Many public packers, indeed, exhibit identifiable changes in the

packed PE file. However, this is not always the case with custom packers and self-encrypting mal-

ware. Moreover, packing is not the only obfuscation technique used by malware writers. Malware

can use anti-analysis tricks that hinder the disassembly or analysis process. Such tricks can leave

absolutely no trace in the header as it is based on obfuscating the instructions sequence and the

execution flow of the program. Other methods depend on detecting the signature of known packers

in the file. The drawback of this method is obvious as it does not work with unknown and custom
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packers and cryptors. It also fails if the signature is slightly modified. Calculating the entropy

score of the file is another method of identifying packed and encrypted files. This method could

be effective against encryption or packing obfuscation, but is ineffective against anti-disassembly

tricks. In addition, the entropy score of a file can be reduced to achieve low entropy similar to

those of normal programs.

In this chapter, we present a new method for detecting obfuscated programs. We build a recur-

sive traversal disassembler that extracts the control flow graph of binary files. This allows us to

detect the presence of interleaving instructions, which is typically an indication of the opaque pred-

icate anti-disassembly trick. Our detection system uses some novel features based on referenced

instructions and the extracted control flow graph that clearly distinguishes between obfuscated and

normal files. When these are combined with a few features based on file structure, we achieve a

very high detection rate of obfuscated files.

More specifically, our contributions of the chapter are:

• We leverage the fact that some advanced obfuscated malware use opaque predicate tech-

niques to hinder the process of disassembly, and describe a technique that turns this strength

into a weakness by detecting its presence and flagging the file as suspicious (Section 2.3).

• We identify distinguishing features between obfuscated and non-obfuscated files by study-

ing their control flow graphs. These features help detect obfuscated files while avoiding

drawbacks of the other methods that rely on file structure.

• We achieve a fast scanning speed of 12 ms per file on average, despite the fact that our

method encompasses disassembly, control flow graph creation, feature extraction, and file

structure examination.

The rest of the chapter is structured as follows: Section 2.2 briefly review the related work.

Section 2.3 discusses the opaque predicate technique that can hinder the process of disassembly.

Section 2.4 reveals the statistical characteristics we identified for distinguishing obfuscated files
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from non-obfuscated ones. Section 4.5 describes our experiments and results. Section 4.6 discusses

the results and potential limitations. Section 4.7 concludes the chapter.

2.2 Related work

2.2.1 Entropy-based detection

Lyda and Hamrock presented the idea of using entropy to find encrypted and packed files [30].

The method became widely used as it is efficient and easy to implement. However, some non-

packed files could have high entropy values and thus lead to false-positives. For example, the

ahui.exe and dfrgntfs.exe files have an entropy of 6.51 and 6.59 respectively for their

.text section [68, 69] (These two example files exist in Windows XP 32-bit and are detected by

our system as non-packed). In addition to entropy-based evasion techniques mentioned in [64],

simple byte-level XOR encryption can bypass the entropy detection as well.

2.2.2 Signature-based detection

A popular tool to find packed files is PEiD, which uses around 620 packer and crypter signatures

[5]. A drawback of this tool is that it can identify only known packers, while sophisticated malware

use custom packing or crypting routines. Moreover, even if a known packer is used, the malware

writer can change a single byte of the packer signature to avoid being detected as packed. In

addition, the tool is known for its high error rate [53].

2.2.3 File header anomaly detection

Other research such as [38,50,53,63] use the PE header and structure information to detect packed

files. These techniques can get good results only when the packer changes the PE header in a

noticeable way.

Besides the shortcomings of every technique, notably, none of the aforementioned techniques

can statically detect the presence of anti-disassembly tricks or other forms of control flow obfus-
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cation, yet these are now commonly used by a wide range of advanced malware. In addition, our

proposed system does not depend on a coarse-grained entropy score of the file or section, signature

of packers, or file header features. Thus, it is able to overcome these shortcomings.

2.3 Anti-disassembly tricks used by malware writers

Malware writers use a variety of anti-analysis tricks to protect against all kinds of analyses. One

class of these is anti-disassembly tricks. Anti-disassembly tricks hinder the process of disassembly

and hence reduce the effectiveness of static analysis-based detection of malware. One of the most

common techniques is to use an Opaque Predicate. Although there are legitimate reasons for

including opaque predicate tricks, such as watermarking [36] and to hinder reverse engineering,

they are commonly used in malware to prevent analysis.

Opaque predicate tricks [16] insert conditional statements (usually control flow instructions)

whose outcome is constant and known to the malware author, but not clear in static analysis. Thus,

a disassembler will follow both directions of the control flow instruction, one of which leads to

the wrong disassembly and affects the resulting control flow graph. As an example, listing 2.1

shows an opaque predicate trick inserted on lines 6 and 7 of the code snippet. Since the "compare

instruction" on line 6 will always evaluate to true, the fake branch will never be taken at runtime.

However, to a disassembler, this fact is not apparent and it will evaluate both paths.

In this example, the disassembler will follow the target of the jne instruction on line 7, which

leads to a byte of data on line 11. The disassembly will continue starting with this byte, 0F,

resulting in decoding an instruction with opcode 0F9090 8BC9BA44. This incorrect instruction

is SETO BYTE PTR DS:[EAX+44BAC98B] as shown in figures 2.1 and 2.2 for two common

disassemblers, IDA Pro and OllyDbg, respectively.

We developed a recursive traversal disassembler that is able to detect interleaving code and flag

the corresponding basic block as problematic, so an analyst could easily know where to find these

tricks. Figure 2.3 shows a portion of the control flow graph output from our disassembler for this

example. Two blocks are shown in red to indicate that they are interleaving and only one of them
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Figure 2.1: Portion of IDA Pro graph for the example in listing 2.1.

is correct.

1 xor eax, eax
2 nop
3 nop
4 L1:
5 push eax
6 cmp eax, eax
7 jne fake
8 add ecx, 333h
9 jmp skip

10 fake:
11 DB 0Fh
12 skip:
13 nop
14 nop
15 mov ecx, ecx
16 mov edx, 444h
17 push offset ProcName
18 push eax
19 call GetProcAddress

Listing 2.1: Opaque predicate trick snippet.
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Figure 2.2: Portion of OllyDbg disassembly for the example in listing 2.1.

Figure 2.3: Part of our disassembler’s output for the example in listing 2.1.

2.4 Instructions-based detection: Turning attackers’ strength into weakness

Due to obfuscation techniques such as opaque predicate, the control flow graph (CFG) and the

sequence of instructions extracted from obfuscated programs are usually convoluted, resulting in

different sizes of basic blocks compared to a normal program, a greater percentage of sink vertices

of all basic blocks, and other telltale features. In the following subsections, we introduce interesting

features that can effectively identify an abnormal control flow graph and sequence of instructions.

We show how each of these features differs in case of obfuscated and clean files. The illustrative

statistical distributions presented in this section are from representative file sets that are also used

in the experiments of Section 4.5.

2.4.1 Percentage of sink vertices in CFG

The CFG of a given program is a digraph where each vertex represents a basic block. Sink vertices

in this context refer to those vertices with zero out-degree. Sink vertices are usually the exit point
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Figure 2.4: Distribution of sink vertices to all vertices ratio for malicious and clean file sets.

of the program, and since a typical program has few exit points in the code, the number of sink

vertices is very small compared to other vertices. Obfuscated malware that employ anti-analysis

techniques lead to inaccurate static disassembly of the file. Thus, the ratio of sink vertices to the

total vertices becomes different from a normal file. Figure 2.4 compares the ratio of sink vertices

in both clean non-obfuscated and malicious obfuscated files, respectively.

2.4.2 Percentage of the size of referenced instructions to the entire size of the section

Due to code obfuscation, encryption or packing, the size of referenced instructions compared the

size of the section is relatively smaller than that of clean files. The decryption or unpacking routine

that exists in the same section of the encrypted or packed code occupies a much smaller size than

the actual payload of the file. This fact represents a distinguishable feature between packed and

non-packed files. Figure 2.5 shows these values in different files in clean and malicious dataset.

2.4.3 Average number of instructions in basic blocks

After constructing the control flow graph of the program, each basic block will represent a set of

instructions with a single entry and a single exit instruction. The exit instruction, in most cases, is

a control transfer that affects the flow of the execution. If the disassembly was wrongly redirected

into disassembling packed or encrypted data due to anti-disassembly tricks, false instructions will

be decoded, which will result in different characteristics of a typical control flow graph of a normal
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Figure 2.5: Distribution of referenced instruction size to section size ratio for malicious and clean
file sets.

Figure 2.6: Distribution of basic block average size for malicious and clean file sets.

application. One of these characteristics is the average size of instructions in basic block. Figure

2.6 shows the average number of instructions in a basic block in malicious and benign dataset

respectively.

2.4.4 Entropy of referenced instructions opcodes

As discussed in Section 2.2, entropy is a measure of randomness which can sometimes be used

to detect packed files. Almost all techniques that use entropy to detect packed files calculate the

entropy of the entire file, a section, or the file header. However, as explained earlier, an encrypted

or packed data can still exhibit low entropy if an entropy reduction method is used. In addition, a

normal program could contain data of high entropy within the code. In this case, the entropy of

this data will be incorporated in the total entropy. This is a major source of false positives.
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Figure 2.7: Distribution of file entropy for referenced instructions only.

On the other hand, if the program employs an anti-disassembly technique that is able to deceive

the disassembler into decoding false instructions, the resulting opcodes of the false instructions

will have different statistical distribution than those of real ones. If the entropy of only referenced

instructions is computed, we would have a more specific and accurate use of the entropy metric.

Thus, even if a normal program contains data of high entropy within the code, the entropy of this

data will not be incorporated in the total entropy calculation, because the flow of execution of a

normal program ensures jumping over this data during execution. Figure 2.7 shows the distribution

of file entropy when only referenced instructions are considered, for both non-obfuscated clean and

obfuscated malicious files, respectively.

2.4.5 Existence of interleaving instructions

In our system we flag any file with interleaving instructions as obfuscated, since unobfuscated

applications do not intentionally employ opaque predicate. Existence of such interleaving instruc-

tions is a clear flag of obfuscation, unless it is a bug or an artifact in an unobfuscated program.

In Section 4.5, we show how our system found an artifact in non-obfuscated Windows files when

interleaving instructions were detected in them.
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2.4.6 Existence of unknown opcodes

If an unknown opcode is encountered while disassembling the file, it means that the disassembly

process is diverted from the normal execution path, and the file is flagged as obfuscated. It is

worth mentioning that our disassembler does not make assumptions about indirect addressing.

Assumption in this case would be uncertain and following uncertain paths would definitely lead

to high false-positive rate. Therefore, since the disassembler covers almost all opcodes of the x86

and x86-64 architecture, even some of undocumented instructions, finding an unknown opcode in

the extracted instructions would be a strong evidence of obfuscation.

2.5 Experiment and evaluation of our detection method

We ran our proposed system on two sets of files. The first set consists of 250 clean files taken

from a clean Windows XP 32-bit machine, all of them non-packed. The second set consists of 250

malicious packed files, packed by both commercial and custom packers. The ranges of values for

the features introduced in Section 2.4 are shown in Tables 2.1 and 2.2 for both clean and malicious

sets, respectively. Based on the result in Table 2.1, we established six conditions to test if the file

is packed or not:

1. The sink vertices ratio lies within the range of non-packed files.

2. The referenced instructions ratio lies within the range of non-packed files.

3. Average number of instructions in basic block lies within the range of non-packed files.

4. Entropy of referenced instructions lies within the range of non-packed files.

5. The code has one or more anti-disassembly tricks.

6. The code references an unknown opcode.

Based on these conditions, we achieved 100% correct detection of the clean files as non-packed

and 98.8% of the malicious files as packed or obfuscated. This result is shown in Table 2.3. In
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Table 2.1: Value ranges of statistical features in Windows XP clean file set.

Property Min Max

Sink vertices ratio 0.0260047 0.254545

Referenced instructions ratio 0.000544839 0.884181

Average number of instructions in basic block 2.3125 19.6357

Entropy of referenced instructions 3.38 5.61

Files with a referenced unknown opcode 0

Files with anti-disassembly trick 0

Table 2.2: Value ranges of statistical features in malicious file set.

Property Min Max

Sink vertices ratio 0.0 1.0

Referenced instructions ratio 1.89169 x 10−6 0.92139

Average number of instructions in basic block 1 2142

Entropy of referenced instructions 0 6.81

Number of referenced unknown opcode 0 5

Files with anti-disassembly trick 63

addition, we found that by adding an extra criterion by measuring the entropy of the entry point

section and marking files with entropy greater than 6.5 as packed, we could achieve 100% detection

of malicious files as packed, i.e., 0% false negatives. However, this introduced a 14.8% false

positive rate as some of the clean non-obfuscated files were flagged as obfuscated.

Although structural features of the files were not our main concern in this reseach, we added a

few checks on the file structure which further improved the result. The following list of structural

features were used to help identify obfuscated files:

1. The entry point is in file header before any section.

2. There is no .text or CODE section in the file.

3. The entry point is in the last section while it is neither .text nor CODE section.
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Table 2.3: File set analysis results.

FN FP Correctly detected Percentage %

Instructions-based features only

Clean files, WinXP 0% 0% 250 / 250 100%

Clean files, Win7 0% 0.2% 416 / 417 99.8%

Malicious files 1.2% 0% 247 / 250 98.8%

Instructions-based features with checking entropy of entry point section

Clean files, WinXP 0% 14.8% 213 / 250 85.2%

Clean files, Win7 0% 13.2% 362 / 417 86.8%

Malicious files 0% 0% 250 / 250 100%

Structural features only

Clean files, WinXP 0% 0% 250 / 250 100%

Clean files, Win7 0% 0% 417 / 417 100%

Malicious files 36.8% 0% 158 / 250 63.2%

Instructions-based with structural features

Clean files, WinXP 0% 0% 250 / 250 100%

Clean files, Win7 0% 0.2% 416 / 417 99.8%

Malicious files 0% 0% 250 / 250 100%

4. SizeOfRawData = 0 and VirtualSize > 0 for some sections.

5. Sum of SizeOfRawData field of all sections is greater than the file size.

6. Two or more sections overlap.

7. The file has no imports at all or the import table is corrupted.

The scanning result when using each detection features is shown in Table 2.3 where FN and FP

refer to false negative and false positive rates, respectively.

We collected 423 clean non-obfuscated files from a clean Windows 7 32-bit Home Basic Edi-

tion and scanned them using only our instructions-based condition. We used the ranges mentioned
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in Table 2.1 as detection conditions. There was 7 out of the 423 files (1.64%) detected as obfus-

cated. Since we know that those files are not obfuscated, we considered, at the beginning, the

result as a false-positive. However, after manually reverse engineering the files, it turned out there

is an artifact of some incomplete code generation [19] in six of them. The files have overlapped

instructions that, if executed, would likely crash the programs under certain conditions. Although

these conditions were not clear to us, based on the instructions’ location in the file, we feel that

is unlikely that that execution of these faulty instructions would ever take place [19]. The seventh

file is sppsvc.exe that has Referenced Instruction Ratio = 0.000273778, which is

less than the minimum boundary set in Table 2.1. Therefore, since the first six files contain an

artifact, we could safely exclude them from the set and consider that there was no false-positive

in our results except that corresponding to sppsvc.exe. On the other hand, when we combined

both instructions-based and structural-based conditions, we had five more false-positives, flagged

because they do not have any imports. Finally, we note that when we used entropy for detection,

it led to the worst result as some non-obfuscated files show high entropy in the code section. The

full results of this analysis of the file sets are shown in Table 2.3.

We ran another test on a larger set of 10,171 malicious files. The set is a collection of live

malware given to us by a security firm. Unfortunately, we have not been given details about the

set in terms of packing/obfuscation. Although we admit that scanning result of this set is not a

concrete measure of the effectiveness of the system since we cannot give a confirmed value of

false-positive or false-negative, we opted to show the result for the sake of illustration. Table 2.4

shows the value ranges of each condition, while Table 2.5 shows the result of scanning the large

malware set.

For all of our experiments, we observed that the system was able to process files at an average

rate of 12 ms each.
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Table 2.4: Value ranges of statistical features in large set of malicious files.

Property Min Max

Sink vertices ratio 0.0 1.0

Referenced instructions ratio 0.62 x 10−6 1.0

Average number of instructions in basic block 1 69600

Entropy of referenced instructions 0 7.23

Number of referenced unknown opcode 0 163

Files with anti-disassembly trick 1835

Table 2.5: Analysis results from the large set of malware.

Detected as packed Percentage %

Instructions-based features only 9982 / 10171 98.14%

Instructions-based with structural features 10161 / 10171 99.9%

2.6 Discussion and limitations

We can summarize the features used in our system into two categories. Instructions-based sta-

tistical features, and structural features. The file structure features have the same advantages and

limitations of the previous research discussed in Section 2.2. The major contribution of the chapter

is the instructions-based method of detection.

All the features mentioned in Section 2.4 except the one in Subsection 2.4.2 are useful metrics

when the file under consideration has features to intentionally deceive the disassembler into de-

coding wrong execution paths. This is due to existence of anti-disassembly tricks or other control

flow obscuring techniques.

On the other hand, if the file is packed or encrypted with no control flow obfuscation, the

feature discussed in Subsection 2.4.2 (Referenced Instruction Ratio) comes into play.

It can detect that just a small portion of the section is executed, which is typically the case when a

small routine is responsible for unpacking or decrypting the relatively large remainder of the file.

However, the limitation in this case is when this small routine exists in a separate section from the
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code to be unpacked. In this case, the section containing the unpacking routine would contain just

the referenced instructions of the unpacking routine, and thus its ratio will be high. Hence, our

detection would likely be evaded if a file is packed such that the unpacked routine and the packed

code exist in two different sections, the file does not affect the header in a distinguishable way, and

does not have anti-disassembly tricks.

Finally, the proposed system cannot yet analyze .NET and Java files because these are repre-

sented by an intermediate language which needs other methods of disassembly. The system was

developed in C++ and it uses the BeaEngine library [9]. The experiment was conducted under

Windows 7 64-bit on a notebook with Intel Core i5 processor and 8GB of RAM. The average

execution time was observed to be around 12 ms per file.

2.7 Conclusion

Due to the high number of malware being produced every day, the need for a fast and efficient

system detection persists. If there is an efficient, fast way to detect the presence of obfuscation in

a sample and then move it to a more rigorous test, this would reduce some of the burden on the

more costly methods and help keep up with the big number of samples.

This chapter presents a generic heuristic method to detect obfuscation based on both the struc-

tural and instructions-based features of the file. We built a complete recursive traversal disassem-

bler for x86 and IA-64 binary files. We were able to detect the instructions overlapping trick and

presence of unknown opcodes, which are mainly symptoms of opaque predicate or a bug in the

code. In addition, a number of statistical features based on the control flow graph and the instruc-

tions that help distinguish malicious and benign files have been presented. When measuring those

features combined with structural features of a sample, we achieve very high detection result of

obfuscated files with a very fast scanning time of 12 ms on average per file.

A key advantage of our method is that it is not limited to a certain type of packers or a specific

obfuscation technique. In our future work, we plan to add more instructions-based features and

incorporate machine learning techniques to classify different packers. We believe that if these
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future goals are accomplished and the limitations mentioned in 4.6 are overcome, they would lead

to more accurate results with less margin of error.
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Chapter 3: MULTI-CONTEXTS CHARACTERIZATION OF SOFTWARE

FOR MALICIOUS PROGRAMS DETECTION

3.1 Introduction

Malicious software, often referred to as malware, is a program designed to do harm to individuals,

corporations, or governments. Currently, malware is used in a wide range of attacks, from propa-

gating through the network, launching Denial of Service (DoS) attacks against web servers, caus-

ing service disruption and stealing credit cards information to more sophisticated attacks against

nuclear plants [73]. In addition, financial malware is increasing in number and having a stronger

impact each year. For example, the Carbanak malware was able to steal $1 billion from over 100

financial institution worldwide in the biggest bank heist in history [28].

Each year a massive number of malware is produced and spread, and anti-virus vendors struggle

to keep up with this high number by producing more signatures and work to maintain timely

updates to their customers. In the last quarter of 2014, McAfee received more than 350 million

malware samples in total, 50 million of them were new malware. That means there are 387 new

threats every minute [29].

Despite the variety of anti-malware solutions ranging from host-based to network-based, mal-

ware detection remains an open problem. The primary contestant to solving the issue is that mal-

ware attacks continuously change. Malware programs employ several techniques to avoid detection

and to evolve rapidly compared to detection solutions. Techniques that evade signature detection

exist, such as simple encryption, to polymorphism, or advanced metamorphism [44]. Other tech-

niques target behavior analysis via hook detection [31] and virtual machine detection [39], or even

using mimicry attack to deceive the behavioral analysis system by showing benign behavior [72].

A common technique used for malware detection is String signature. Nevertheless, the tech-

nique is not efficient against new malware samples and their variants. Other techniques exist which

depend on collecting the behavior data of a program to determine if it is malicious or not, but these
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methods suffer from incompleteness of their coverage to the software execution paths. Another

direction is to gather data from the file header, such as the number of sections, size of each sec-

tion, entry point location, etc. This technique is very fast compared to the former two, however,

it could produce a high rate of error if the file is obfuscated. Although the problem of malware

detection has been discussed repeatedly in both academia and business settings, it is evident that

more advanced solutions are needed and more research is encouraged to find mitigation to this

serious threat.

Contributions of the research presented can be summarized as: Defined and introduced a large

composite set of features that combines both static and dynamic aspects of the sample. More than

32,000 features compose the feature vector for sample classification in our experiment. This makes

it very difficult for an attacker to obfuscate code in such a way as to evade this number of features.

Utilized Random Forest and Naive Bayes machine learning techniques to achieve a high detection

rate on a large corpus of recent and diverse malicious files first seen by VirusTotal [67] during

the period from December 2014 to April 2015. 1,000,000 samples were used for the experiment,

divided equally between malicious and clean files. To the best of our knowledge, this is the largest

number of files used in an experiment in academic literature for malware detection. With this

comprehensive set of features and the large number of files, a training model that led to a high

detection rate was able to be produced. The model achieves accuracy up to 96.7% with a false

positive rate of 2.1% on a very large and diverse set of files, while working practically well in

detecting malware in future months. Evolution of both the features and malware families across

five months were investigated. The evolution of malware features across months is explained, and

a description of how that is correlated to malware campaigns is provided.

The rest of the chapter is organized as follows: In Section 2 we summarize the related literature

in this area. Section 3 describes our features set in details while Section 4 illustrates our method-

ology of constructing the feature vector. In Section 5 we outline the system architecture, describe

its components and the dataset to be used in the experiments. Section 6 describes the different ex-

periments and compares the results. Section 7 discusses the results shown in the preceding section
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and describes the evolution of features and malware families distribution during the course of five

months; and finally conclusions are given in Section 8.

3.2 Related Work

There have been many different methods used to protect proactively against malicious programs

by detecting zero-day malware. The following subsections discuss some of these methods.

3.2.1 Detection based on Dynamic Features

Some papers introduced techniques that detect malicious activities by monitoring and logging

performance-specific registers of the processor, such as [14, 27, 61], where [61] used the hardware

performance information to detect anomalies in execution and hence can detect exploitation of le-

gitimate software. Other publications use instruction traces during execution such as [59] and [24].

Others used text strings displayed to the user and compared their semantic to the behavior of the file

to determine if the malware is carrying on a stealth activity [23]. Salehi et al. [45] used the APIs

and their arguments that the sample uses during execution as the feature vector. Other research

studies used temporal and spatial information of the API usage [3], that is, similar to [45], both the

APIs and their arguments are collected, however, their execution order is considered as well. A

similar research done by Miao et al. [33] also utilized API names extracted during sample execu-

tion and constructed two layers of information, one that considers API names, while the other layer

is more high level and interprets a sequence of API to infer high level behavior. In addition, Tian

et al used API sequences collected during runtime and then applied pattern recognition algorithms

on the extracted pattern [62].

3.2.2 Detection based on Static Features

Several types of information can be extracted from the file header, such as imported shared li-

braries, API names, number of sections, etc. These features could be helpful in providing an

overview of the file. Many research studies have been done to detect malware based on this in-
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formation, such as [38, 50, 53, 63] which used the PE header and structure information to detect

packed files. Other PE header features are also used to detect zero-day malware [55,56]. A seminal

work of Shultz et al [52] used data mining techniques to detect malicious software. The research

used the list of DLLs used by the binary, the list of DLL function calls made by the binary, and

the number of different functions within each call, all extracted from the PE header. In addition,

strings extracted from the file were used as features as well as the byte sequence. Other techniques

used byte n-gram to build a classification model [26], which relied on the file contents. But still,

the techniques are prone to evasion via obfuscation. Ahmadi et al. [2] classified 21,741 malicious

files from 9 different families with a diverse set of static features such as Entropy, imported APIs,

strings, sections, instructions, n-gram of hex values of the file contents, etc. The research claimed

that it is capable of classifying obfuscated files. However, the experiment is limited in terms of the

number of clusters. Ding et al. [15] on the other hand, extracted the instructions from the statically

generated control flow graph. After extracting the instructions, the opcode is extracted and then

used by the n-gram method. Other interesting research was recently done by Invincea Labs [51]

for malware detection using Neural Networks. The authors achieved 95% detection rate with 0.1%

false positive when they used static features in an experiment consisting of 350,016 malicious

and 81,910 benign files. The features used were the imported DLL names, each DLL’s imported

functions, Entropy, byte distribution and other 256 features of metadata extracted from the header.

In general, although static analysis is still considered as prone to evasion if the file is obfuscat-

ed/packed, it is much faster and promising if combined efficiently with machine learning.

3.2.3 Detection based on Hybrid Features

There is a number of publications that use both dynamic and static features for malware detection.

Yan et al. [71] used PE header information and n-gram of instructions opcode as static features.

For dynamic features, they used n-gram of instruction traces opcode plus the list of invoked system

calls. The authors excluded the packed files from their dataset and considered only those files that

were not flagged by PEiD [5] as packed. Ravula et al. [40] gathered dynamic features of added/re-
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moved/modified registry keys, whether the sample accesses the internet or not, what DLLs and

APIs are used during execution and if the sample accesses another directory. For static features

they considered the packer name by using PEiD [5], the programming language used, list of unique

strings and URLs embedded in the files. The total number of features with list of APIs was 141

features. Santos et al. [47] collected the frequency of occurrences of operation codes that were

obtained statically. For dynamic analysis, information was gathered about file activities, some pro-

tection mechanisms of the sample, whether the sample is persistent, network activities, process

manipulation, whether the sample retrieves information about the system, and unhandled excep-

tions during execution. The number of dynamic features were 63 while the opcode-sequences

frequencies led to 144,598 features that were reduced later to 1,000. Other interesting research

is [6], in which the authors used the raw byte sequence of the binary file, sequence of instruction

traces, sequence of the statically disassembled instructions, the control flow graph, and dynamic

system call traces. The authors used 1,556 files (780 malicious and 776 benign) as the training set,

whereas the test set contains 20,936 of only malicious files.

3.3 Features Definition

We collect an extensive set of the malicious sample features and integrate them to build a feature

vector for machine learning techniques. The features are collected from different aspects of the

malicious samples. As every aspect of malware can be prone to obfuscation, data collected based

on one sole aspect could be inaccurate. Therefore, we collect several features from many aspects of

a malicious file, and use these to build our feature model for describing a malware sample. These

feature sets include dynamic analysis of the file when it runs in a controlled environment, static

analysis of the file header features, and data based on the instructions that compose the executable

file.

Static features consist of both fixed and variable length features. There are 16 fixed length static

features typically including the number of file sections, number of imported APIs and whether the

file is signed or not. Variable length features are the names of sections, the list of imported APIs,
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and the list of imported modules names. Three arrays of variable length features account for 4,500

different values, representing features existing across samples in a certain month. For example, the

array of imported module names contains 1,500 entries, which are different names found across

200,000 samples gathered from December 2014. Each value is represented as a bit in the feature

vector. The total length of the static feature vector for the month of December 2014 is 4,516.

Dynamic features, on the other hand, consist of 22 scalar-value features, such as whether the file

uses TCP connection, uses API hooking (Yes/No). The variable length features consist of 31 long

array of values representing, for example, list of Hooking types used, HTTP methods, and runtime

loaded DLLs. The total number of features represented in the vector of dynamic features for the

month of December 2014 is 27,552. Utilizing the technique presented in [43], a determination is

made as to whether the file is obfuscated or not. This information is based on the control flow

graph and distribution of instructions. The obfuscation feature is presented as one bit in the feature

vector.

Combining these three sets culminates a feature vector containing all the features. For a sample

belonging to December 2014, this vector consists of 32,069 features.

In the following subsections, we describe features extracted from each context. For the full list

of features, please refer to Table 3.2 and Table 3.3.

3.3.1 Instructions Features

Using the technique discussed in [43], information about the control flow graph of the file is ob-

tained. Based on the control flow graph features, it is determined whether the file is obfuscated,

including whether the file is using anti-analysis tricks on the instruction level. A boolean flag is

used in the feature vector to indicate whether the file employs any obfuscation techniques. The

flag is named "Is Obfuscated" in Table 3.2.

3.3.2 Dynamic Features

There are many features extracted from the program’s dynamic behavior.
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Network Activity

A number of features that indicate network activity initiated by the malware sample are extracted.

For example, UDP and TCP requests are logged and both the IP and PORT are extracted. Also,

DNS requests are used as features, with both the IP and host name collected. In addition, all HTTP

requests are collected, and for each request, the User-Agent, Destination URL and Request Method

are considered features.

Services

Service activities are collected, as some malware programs register one or more services to run in

the background once they penetrate the system.

Process Manipulation

We collected a number of features related to processes dealt with by the malicious samples during

execution, such as whether or not the sample created new processes, process tree name, terminated

processes, as well as process injection information.

Process injection is a highly utilized technique that allows malware to task legitimate processes

do the work for them. For example, if the malware needs to have network communication, but the

firewall on the system will deny its request the malware may look for some known processes that

likely have an "allow" rule in the firewall, such as web browsers, and then inject their malicious

code to get executed in the context of the legitimate application. A list of injected process names

was collected, as well as a number of features related to processes dealt with by the malicious

samples during execution, i.e. such as whether or not the sample created new processes, process

tree names, terminated processes, as well as process injection information. Additionally, a list of

shell commands executed by the sample is collected.
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Files

File use is very important for almost every sample. A malicious program could be a virus that

infects other executables. In this case it will look for executable files in the system, open them,

and write itself into their code. A trojan could also download other malware programs from the

internet. Several types of information about the files created, written, deleted or modified by the

sample under analysis are gathered.

Registry

The system registry is commonly used by processes to save or modify system configurations. Many

malicious applications use registry manipulation to achieve their goal. Registry related behavior

such as creation, modification and deletion of registry keys or values is noted.

Mutex Objects

Mutex objects are usually used in multi-threaded applications to control and coordinate shared

resources access. Mutexes can have names when created by the application, and the list of the

newly created and opened mutexes during the sample runtime are also collected.

Runtime DLL

An executable file can declare the DLLs to be used in the import table, or load the required DLLs

during runtime. Usually malware use the runtime DLL technique to hide behavior. The list of

DLLs loaded during runtime is collected and considered as part of the feature vector.

Windows Manipulation

The list of searched Windows names and Windows class name are gathered. These values are

usually used when the sample calls APIs such as FindWindow and RegisterClass.
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Shell Commands

A list of shell commands executed by the sample is also collected.

Extras

The VirusTotal report provides some extra information regarding the use of device driver, usually

whether the file is using the API DeviceIoControl, or detecting a debugger presence using

IsDebuggerPresent.

3.3.3 Static Features

The file structure can be indicative of the type of file, and some research studies are based solely

on file structure for malware detection, as mentioned in Section 3.2. Many features from the file

header are compiled and used in our final feature vector.

Imported Modules and API

Many research studies are based on collecting imported API names, as mentioned in Section 3.2.

The number of modules and the number of APIs are gathered as two fields in our feature vector.

In addition, the list of imported module names and APIs names are collected.

File Sections

Every executable file contains a number of sections for different types of contents. Usually .text

section contains executable code, .data section contains data, .rsrc for storing program’s resources,

etc. Some crafted files, usually malicious, can contain unusual section names. In addition, packed

files might also get smaller number of sections than unpacked files, and have specific section

names. For example, UPX packer [66] almost always puts sections with the names "UPX0",

"UPX1", etc. From every file in our set, we collected section names, file alignment [34] and

section alignment [34].
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EntryPoint

The address of the first instruction to be executed.

Machine Code

The machine code in the file header. This code indicates the type of the machine or the system

the file should run on. Usually a file compiled to run on Intel 386 or later processors will have the

value of 0x14c [34].

Image Base

Address in memory where the executable file will be located upon execution.

Compile Timestamp

Timestamp indicating file compilation date.

Link Date

Timestamp indicating file linking date.

Size of Headers

Size of the "optional header" which is, unlike what the name implies, required for PE executable

files [34].

Characteristics

Flags that indicate the attributes of the file, such as if the file is a DLL or not, 32 bit or 64 bit, etc.

Number of Data Directories

Number of data-directory entries in the optional header.
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File Size

Total file size in bytes.

Is Suspicious

A value that is set to non-zero if any of the following conditions is met:

• The entry point is in the file header before any section.

• There is no .text or CODE section in the file.

• The entry point is in the last section while it is neither .text nor CODE.

• SizeOfRawData = 0 and VirtualSize > 0 for some sections.

• Sum of SizeOfRawData field of all sections is greater than the file size.

• Two or more sections overlap.

• The file has no imports at all or the import table is corrupted.

These checks were used in our previous work [43] and led to improvement of the detection results.

Digital Signature

Whether the file is signed or not in our is also considered for the feature vector. Although some

recent malware samples are signed with stolen private keys, the vast majority of signed software is

benign.

3.4 Methodology

The feature set consists of two types of features, variable and fixed size. The variable size features

are the set of features that do not necessarily exist in every file. For example, HTTP host name

that the sample connects to, or API and module names imported. Since not all files have these
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Table 3.1: Top Ten Module Names.
Module Name Number of occurrences

1 KERNEL32.DLL 85,046
2 USER32.DLL 69,724
3 ADVAPI32.DLL 58,098
4 OLEAUT32.DLL 37,622
5 OLE32.DLL 34,280
6 GDI32.DLL 34,092
7 SHELL32.DLL 31,664
8 MSVCRT.DLL 24,642
9 COMCTL32.DLL 20,677
10 SHLWAPI.DLL 17,412

features, we select an initial set of files, namely the training set which consists of 100,000 files for

each malicious and clean category. The files in the training set were first seen by VirusTotal in the

specified month. All the variable size features are enumerated from this set and a table is assembled

with each different value. For example, Table 3.1 shows a subset of module names extracted

from the 100,000 malicious files in our training set for December 2014, with the corresponding

occurrence frequency, i.e. number of malicious files where a specific module name is found.

In this example, if we select only the ten module names in Table 3.1, we will have a vector of

size 10. Then, every other file we examine will have a binary vector of size 10, the value of 1 in

the vector means that the file is using the corresponding module, while 0 means it does not. For in-

stance, if a file uses the modules KERNEL32.DLL, LIBC.DLL, SHELL32.DLL, MSVCRT.DLL,

and SHLWAPI.DLL. It will have a feature vector of [1, 0, 0, 0, 0, 0, 1, 1, 0, 1]. The module

LIBC.DLL was used by the file, but it is not on our base features, so it will not be a part of the

vector. The same process is done for the other features. The value of each feature in the resulting

vector is a boolean value. For the full list of variable features, please refer to Table 3.3.

On the other hand, fixed length features will not be matched to any base features. Typically,

fixed length features include EntryPoint, NumberofSections, FileAlignment, etc. The value

of each feature in the resulting vector is an integer or boolean value. For the full list of fixed

features, please refer to Table 3.2.
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Table 3.2: Fixed Length Extracted Features.
Feature Report Feature Report

1- Num of imported modules Anatomist 2- Num of imported APIs Anatomist
3- Entry point Anatomist 4- Machine Anatomist
5- Image Base Anatomist 6- Compile Timestamp Anatomist
7- Size of Headers Anatomist 8- Section Alignment Anatomist
9- File Alignment Anatomist 10- Num of Data Directories Anatomist
11- File Size Anatomist 12- Num of Sections Anatomist
13- Is Suspicious Anatomist 14- Is Obfuscated Anatomist
15- Link Date VirusTotal 16- Is Signed VirusTotal
17- Has Hooks VirusTotal 18- Has UDP VirusTotal
19- Has HTTP VirusTotal 20- Has DNS VirusTotal
21- Has TCP VirusTotal 22- Does Service actions VirusTotal
23- Does Process Termination VirusTotal 24- Does Process Injection VirusTotal
25- Does Process Creation VirusTotal 26- Does Modify hosts file VirusTotal
27- Does Window Search VirusTotal 28- Has Runtime DLLs VirusTotal
29- Does Open Mutex VirusTotal 30- Does Create Mutex VirusTotal
31- Does Delete Registry VirusTotal 32- Does Set Registry VirusTotal
33- Does Open a file VirusTotal 34- Does Move a file VirusTotal
35- Does Download a file VirusTotal 36- Does Replace a file VirusTotal
37- Does Delete a file VirusTotal 38- Does Copy a file VirusTotal

3.5 System Architecture

In this chapter, we focus only on Windows PE executable files. Due to hardware and time con-

straints, we chose one million files on which to conduct our experiment, which is, to the best of

our knowledge, the largest number of files used in academic literatures for the topic of malware

detection. We excluded Adware from consideration. Adware is defined as computer programs that

display unwanted ads without user consent or permission. Adware could be manufactured by legit-

imate companies, such as Lenovo [11], so detecting adware programs accurately needs a different

approach and should not be treated in the same fashion as other malicious applications. We obtain

both malicious and benign binary files, along with the scan report of each file from VirusTotal.

The malicious files in our experiment is defined as those files that were flagged by 20 or more

antivirus programs, including Microsoft, Kaspersky, Mcafee and Bitdefender anti-malware. Since

Kaspersky, Mcafee and Bitdefender were among the best tools in regards to detection rate [7], and
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Table 3.3: Variable Length Extracted Features.
Feature Report Feature Report

1- Modules Anatomist 2- APIs Anatomist
3- Section Names Anatomist 4- Hook Type VirusTotal
5- Hook Method VirusTotal 6- HTTP URL VirusTotal
7- HTTP Method VirusTotal 8- HTTP User Agent VirusTotal
9- DNS IP VirusTotal 10- DNS hostname VirusTotal
11- UDP IP:PORT VirusTotal 12- TCP IP:PORT VirusTotal
13- Opened srvc names VirusTotal 14- Opened srvc mngr db VirusTotal
15- Opened srvc mngr machine VirusTotal 16- Extra VirusTotal
17- Shell cmd VirusTotal 18- Proc Tree Name VirusTotal
19- Injected Proc Name VirusTotal 20- Created Proc Name VirusTotal
21- Terminated Proc Name VirusTotal 22- Searched Windows Class VirusTotal
23- Searched Windows Name VirusTotal 24- Runtime DLLs VirusTotal
25- Opened Mutex Name VirusTotal 26- Created Mutex Name VirusTotal
27- Set Reg Entry Type VirusTotal 28- Set Reg Entry Key VirusTotal
29- Set Reg Entry Value VirusTotal 30- Deleted Reg Entry Key VirusTotal
31- Opened Files path VirusTotal 32- Read Files path VirusTotal
33- Written Files path VirusTotal 34- Deleted Files path VirusTotal

Microsoft was the best in regards to false-positive rates at the time of writing [7], we made sure all

malicious files in our experiment were detected by all four anti-malware programs. On the other

hand, benign files are considered those that are not flagged by any of the 56 antivirus systems at

VirusTotal. We understand that even though each file was tested by numerous antivirus systems

and found to be clean, there is still a small possibility that the file is obfuscated or a zero-day

malicious program. However, multi-antivirus scanning is the only feasible and automated way we

found to check whether the file is benign given our large data set.

The files were first seen by VirusTotal during the period from December 2014 to April 2015.

We collected 100,000 samples of both malicious and benign files each month from December 2014

through April 2015, giving us a total of 1,000,000 files.

The scan report from VirusTotal is a JSON file containing static and dynamic analysis data of

the file. The static analysis data is obtained using pefile [37] tool, while the dynamic analysis

is done by a modified version of Cuckoo [46]. VirusTotal lets the binary run for up to 60 seconds

before it is terminated [21, 32].
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Figure 3.1: Our system architecture.

We developed a PE file scanner called Anatomist in C++. It extracts different types of infor-

mation from the header of the PE file as well as a list of instructions and its control flow graph,

it is also resilient to many tricks usually used by malware to hinder the process of extracting in-

formation from the header. An earlier version of Anatomist was used in a previous work to detect

obfuscation in binary files [43]. Anatomist outputs a report in JSON format. Both Anatomist and

VirusTotal reports are stored in a MySQL database.

Next, both the training and test set reports will be fed to the Vector Generation com-

ponent which will match each report to the Features Model and get a feature vector for each

file. This step is described in detail in Section 3.4. Thus, Vector Generation will generate a

list of training and test set vectors. The generated vectors will be the input to the machine learning

classifier. We use WEKA [70] as our classification tool.

3.6 Experiment

An experiment E consists of a training and test set. Every month i has its set of files Si. For

each Experiment Ei, the training set is Si and the test set is 1
2
Si+1. That is, the files involved in

the experiment are divided as 66% training and 33% test. So Ei(Si,
1
2
Si+1) is an experiment of

learning from a training data set for month i, and testing the knowledge on data from the next
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Figure 3.2: Top ten modules with highest difference of usage.

month. The size of each training set Si = 200,000 files. In the experiment, we have 5 months of

data.

Practically speaking, we have a training set from which we extracted the variable length base

features. The training set is 200,000 files distributed equally between clean and malicious files.

We create a feature vector for each file to train the model. After that we use a test set of 100,000

files distributed equally between clean and malicious files, where we match their properties against

the features extracted from the training set, and form a feature vector for each file. So in total we

have a training set of 200,000 files and a test set of 100,000 files from next month both distributed

equally between clean and malicious files.

As an example of our base features, Table 3.4 and Figure 3.2 show the top ten modules that

have the highest difference of occurrences in files. For example, the module "COMCTL32.DLL"

is used by 56,615 clean files and 20,677 malicious ones, with difference of 35,938. The x-axis in

figure 3.2 represents the module ID, which can be found in Table 3.4 that shows the number of

occurrences of each module in files.

42



Table 3.4: Top Ten Modules with Highest Difference of Occurrences between Clean and Malicious
Files.

ID Module Name # of Clean files # of Malicious files
1 COMCTL32.DLL 56,615 20,677
2 SHELL32.DLL 53,521 31,664
3 VERSION.DLL 35,379 14,044
4 ADVAPI32.DLL 78,972 58,098
5 OLE32.DLL 54,298 34,280
6 GDI32.DLL 53,667 34,092
7 MSVCRT.DLL 8,559 24,642
8 OLEAUT32.DLL 51,389 37,622
9 USER32.DLL 81,312 69,724
10 KERNEL32.DLL 96,034 85,046

For each performance metric in the columns of the following tables, TP (True Positive) indi-

cates the number of malicious files that were correctly classified as malicious, whereas FP (False

Positive) indicates the number of benign files that were misclassified as malicious. Accuracy is

defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

FN is False Negative, which is the number of malicious files that were incorrectly classified as

benign, and TN (True Negative) is the number of correctly classified benign files.

A commonly used metric to evaluate the classification performance in the field of data mining

is the area under the receiver operating characteristic curve (AUC), which is utilized here as a

performance evaluation criterion.

We chose two machine learning algorithms to conduct our experiments, Naive Bayes and Ran-

dom Forest. Both belong to a different algorithmic family. Three scenarios were considered in our

experiment. First, running the experiment with only static features. Second, we use only dynamic

features. Finally, we utilize all the features. In all scenarios, we use those files first seen by Virus-

Total in December 2014 as the training set, and test the classifier on each of the subsequent months

until April 2015.
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Table 3.5: Applying December set to four months’ data with different features sets.
Static Only Dynamic Only Combined Features

RF NB RF NB RF NB

January
2015

TP 95.6% 91.9% 85.1% 42.1% 95.5% 92.1%
FP 2.8% 40.9% 0.6% 8.5% 2.1% 40.3%
Acc 96.4% 75.5% 92.3% 66.8% 96.7% 75.9%
AUC 99.3% 77.5% 95.0% 85.9% 99.5% 78.5%

February
2015

TP 89.6% 92.4% 85.8% 66.5% 94.3% 92.7%
FP 4.8% 37.2% 2.1% 15.2% 2.8% 36.8%
Acc 92.4% 77.6% 91.8% 75.6% 95.7% 78%
AUC 96.9% 78.8% 96.7% 86.3% 98.7% 80.1%

March
2015

TP 94.0% 92.4% 65.8% 65.1% 94.9% 92.6%
FP 2.5% 34.1% 1.4% 12.1% 1.5% 33.7%
Acc 95.7% 79.1% 82.2% 76.5% 96.7% 79.5%
AUC 98.4% 82.0% 94.2% 82.8% 98.8% 82.9%

April
2015

TP 86.3% 90.9% 75.4% 80.1% 88.5% 91.2%
FP 2.2% 24.4% 1.5% 35.3% 1.2% 24.1%
Acc 92.0% 83.3% 87.0% 72.4% 93.6% 83.5%
AUC 98.5% 84.1% 96.9% 77.7% 99.4% 84.8%

Static Features Only

In this scenario, only static features were considered, which are the features from 1 through 16 in

Table 3.2 and from 1 through 3 in Table 3.3. The features include "Is Obfuscated" which

is based on the control flow graph of the instructions. Figure 3.3(a) and Table 3.5 show the per-

formance of Naive Bayes and Random Forest algorithms, referred to as RF and NB in Table 3.5

respectively.

It can be noted from the figure that the accuracy of Naive Bayes is improving on later months.

However, the column "Static Only" in Table 3.5 shows that the TP rate has decreased in April

respective to January.
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Dynamic Features Only

In this scenario, we considered dynamic features; these are the features from 17 through 38 in Table

3.2 and from 4 through 34 in Table 3.3. Figure 3.3(b) and Table 3.5 illustrate the performance of

Naive Bayes and Random Forest.

Combined Features

In the final scenario, we considered all features, both static and dynamic. This led to the best

classification results. Figure 3.3(c) and Table 3.5 show the performance of the Naive Bayes and

Random Forest algorithms.

It is obvious that the Random Forest algorithm outperforms Naive Bayes in most cases. Figure

3.3(d) shows a comparison of Random Forest performance in the three scenarios.

We also conducted an experiment where every month’s data is considered as training set and

tested on itself. Table 3.6 shows the results of this experiment with both Random Forest and Naive

Bayes algorithms. In this experiment, all features were used. Random Forest achieved superior

results compared to Naive Bayes. It showed very good results in December, plus it scored 100%

accuracy with no errors in the last four months. On the other hand, Naive Bayes scores were not

close to Random Forest ones. This is a strong indication on the effectiveness of Random Forest.

Table 3.6: Applying each month to itself (Combined Features).
Classifier Period TP FP Acc AUC

Random Forest

Dec 2014 100% 0.07% 99.6% 100%
Jan 2015 100% 0% 100% 100%
Feb 2015 100% 0% 100% 100%
Mar 2015 100% 0% 100% 100%
Apr 2015 100% 0% 100% 100%

Naive Bayes

Dec 2014 82.2% 40.4% 70.9% 73.6%
Jan 2015 84.6% 36.4% 74.1% 78.3%
Feb 2015 92.1% 42.5% 74.8% 75.9%
Mar 2015 89.5% 33.4% 78.1% 80.7%
Apr 2015 87.1% 23.8% 81.7% 84.2%
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Figure 3.3: (a) Accuracy using static features only. (b) Accuracy using dynamic features only.
(c) Accuracy using combined features. (d) Accuracy of Random Forest algorithm with different
features sets.

An additional experiment was conducted to check the result of testing each month’s training

data on the month immediately following utilizing all features. Table 3.7 illustrates the results

of the experiment. The experiment showed the different results when using training sets from

different months. Again, this experiment shows that Random Forest outperforms Naive Bayes.

3.7 Discussion

As demonstrated in the previous section, the Random Forest algorithm outperformed Naive Bayes

in every experiment. It is expected that the accuracy will gradually decrease when predicting future
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Table 3.7: Applying each month to the one after (Combined Features).

Classifier Period TP FP Acc AUC

Random Forest

Dec14-Jan15 95.5% 2.1% 96.7% 99.5%

Jan15-Feb15 98% 1.3% 98.3% 99.8%

Feb15-Mar15 96.3% 1.1% 97.6% 99.7%

Mar15-Apr15 96.4% 0.9% 97.8% 99.7%

Naive Bayes

Dec14-Jan15 92.1% 40.3% 75.9% 78.5%

Jan15-Feb15 90.3% 29.1% 80.6% 85.3%

Feb15-Mar15 96% 42.5% 76.8% 78.2%

Mar15-Apr15 90.1% 24% 83.1% 83.9%

months, since new malware applications could emerge that differ from those in the initial training

set. However, as can be noticed in Table 3.5, some months show a gradual drop in performance,

while others show a gain. For example, Random Forest performed well using only dynamic fea-

tures until 3/2015, followed by a sudden drop of performance as shown in Fig. 3.3(b). There are

two primary reasons. The first is due to the fact that new campaigns emerged in March 2015 with

a significant population represented in the file data. The second reason is the surge data from mal-

ware families that were underrepresented in the training data. For example, the malware family

Win32/Loring accounts for 2,147 files in December 2014, but the number of files increased in

March 2015 to 11,763 files, representing the top family at almost 23.5% of the March 2015 test

files. Conversely, new malware families emerged in March, such as Win32/Rofin, with 228

files and Win32/Delf with 118 files. The total number of new families in March is 265 with

1033 different files. Table 3.8 shows the top ten malware families and the ratio of each family to

the total number of files in each month. Family names as shown in the table are obtained from

Microsoft anti-virus labels. The first column in the table represents the family distribution in train-

ing data (100,000 malicious files), whereas the other four columns represent distribution in the test

data (50,000 files each).

The training data from December 2014 contains 1,259 different malware families, with 3,049
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different variants. Some families have only one variant present in the training data, such as

Win32/Claretore, while other families contain over a hundred variants, such as Win32/Vobfus.

The top family in December 2014, shown in table 3.8 and in regards to the total file number of

variants is Win32/Virut, where the family has 16,666 files. Its two most common variants are

Win32/Virut.BR and Win32/Virut.BN with 6,728 and 4,841 files, respectively.

Table 3.8: Top Ten Malware Families in Each Month
Training December 2014 Test January 2015 Test February 2015
Families Count Families Count Families Count
Virut 16.66% Eggnog 34.22% Upatre 14.85%
Vflooder 4.60% Virut 7.50% Nabucur 8.34%
Elkern 4.55% Upatre 5.01% Soltern 7.69%
Parite 4.39% Simbot 4.11% Virut 7.47%
Jadtre 4.13% Loring 3.89% Vobfus 4.31%
Sality 3.26% Parite 3.74% Expiro 4.15%
Ramnit 2.44% Viking 2.96% Loring 3.96%
Almanahe 2.40% Beaugrit 2.70% Sality 3.48%
Loring 2.15% Vflooder 2.67% Comame!gmb 3.39%
Gupboot 1.99% Sality 2.39% Berbew 3.33%

Test March 2015 Test April 2015
Families Count Families Count
Loring 23.53% Virut 17.17%
Expiro 14.69% Lydra 9.57%
Vobfus 7.57% Soltern 8.94%
Virut 5.95% Vflooder 7.48%
Delf 5.59% Loring 4.23%
Mydoom 5.14% Rofin 4.17%
Worm:Win32/VB 5.12% Trojan:Win32/VB 3.64%
Vflooder 4.53% Sality 3.53%
Comame!gmb 3.57% Worm:Win32/VB 3.30%
Beaugrit 2.32% Morefi 3.16%
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3.7.1 Features Evolution

With a feature vector of length 32,000+ and over a million files, it is computationally difficult to

apply feature reduction algorithms to ascertain the importance of individual features. In order to get

a sense of features importance, and for the purpose of illustration, we examined the occurrence of

features in the benign and malicious files. A feature is rated as important when it can distinguish

between each class. We consider the disparity of occurrence, rather than the mere number of

occurrence, to determine if a feature is more distinguishing than other features.

Three classes of features were selected to illustrate how the feature evolution progresses month

to month. Tables 3.10, 3.11, and 3.9 show section names, evolution of APIs, and injected processes,

respectively, observed in the data of each month. Each month contains 200,000 files divided evenly

between clean and malicious categories, resulting in one million files after five months.

Each column in Tables 3.10, 3.11, and 3.9 shows the month of observation, feature name, and

number of files observed having that feature. The features listed are the top five distinguishing

features in that class. For example, in Table 3.11 the API Sleep observed in 65,573 and 30,414

clean and malicious files, respectively, providing a difference of 35,159 additional files in the Clean

category. This was the highest difference among APIs, and thus the top distinguishing API in the

API features. Likewise, the Malware row in the table lists the most distinguishing features, with

the highest contrast favoring malicious files.

An interesting observation in Table 3.11 is the high number of _controlfp, __p__commode

and other C-runtime floating point functions in four months, but not in January 2015. This can be

understood when we look at January’s malware families in Table 3.8. In January 2015, there was a

surge in the number files of the Eggnog family, utilizing registry APIs extensively, and account-

ing for 34.22% of files in that month. This made its API dominate the top five malware APIs that

month.

In Section Names category, it is evident from Table 3.10 that UPX packer was heavily used

by malicious files since most distinguishing section names are UPX0, UPX1, etc. UPX is a free

49



and an easy to use packer that is frequently abused by adversaries to obfuscate executables and

evade string signature. Behind UPX is "ASPack" packer, which is a commercial packer and also

used for similar obfuscation.

Table 3.9: Top five injected processes with highest differences of usage between malicious and
clean files.

Clean Malware
Value Files Value Files

D
ec

20
14

SELF 2,750 explorer.exe 1,228
dwwin.exe 2,407 python.exe 763
msiexec.exe 717 services.exe 658
wmiprvse.exe 325 cmd.exe 627
MiniThunderPlatform.exe 81 poskAAUk.exe 547

Ja
n

20
15

msiexec.exe 369 explorer.exe 1,616
SELF 2,207 iexplorer.exe 805
drwtsn32.exe 70 cmd.exe 746
DTLService.exe 14 net.exe 703
TenioDL.exe 12 pAAMUcMg.exe 678

Fe
b

20
15

msiexec.exe 351 SELF 6,904
tmp1.exe 24 iexplorer.exe 1,829
DTLService.exe 22 explorer.exe 1,746
LMIGuardianSvc.exe 19 python.exe 1,233
LMI_Rescue_srv.exe 10 biudfw.exe 1,026

M
ar

20
15

SELF 2,027 explorer.exe 1,679
msiexec.exe 935 services.exe 1,490
dwwin.exe 2,061 cmd.exe 853
HssInstaller.exe 96 net.exe 711
af_proxy_cmd_rep.exe 66 com7.exe 611

A
pr

20
15

SELF 2,281 explorer.exe 1,322
msiexec.exe 893 services.exe 898
GameCenter@Mail.Ru.exe1 81 dwwin.exe 2,593
drwtsn32.exe 97 python.exe 629
wmic.exe 55 iexplorer.exe 527

1"GameCenter@Mail.Ru.exe". Obviously the file has an interesting name that could give the impression that it is
malicious. However, we analyzed the file and it was found to be clean and legitimately signed. For more information,
see https://goo.gl/FCEPLh.
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Table 3.10: Top five section names with highest differences of usage between malicious and clean
files.

Clean Malware Clean Malware
Value Files Value Files Value Files Value Files

D
ec

20
14

.rdata 76,451 UPX0 26,181

Ja
n

20
15

.data 81,421 DATA 25,239
.reloc 44,030 UPX1 26,140 .rdata 76,326 BSS 24,040
.idata 28,673 UPX2 5,011 .text 80,127 CODE 24,165
.tls 21,951 .aspack 3,141 .ndata 18,308 .tls 26,025
.data 72,863 .adata 3,274 .rsrc 94,772 .aspack 4,779

Fe
b

20
15

.rdata 86,894 UPX0 12,209

M
ar

20
15

.rdata 80,807 UPX0 27,235
.reloc 54,451 UPX1 12,087 .data 81,372 UPX1 27,209
.idata 38,278 rsrc 2,785 .text 80,992 .aspack 14,808
.tls 26,122 uinC 2,777 .ndata 22,246 .adata 15,017
.ndata 16,994 .vmp0 2,685 .reloc 39,069 ExeS 13,326

A
pr

20
15

.rdata 85,326 UPX0 49,548

.data 82,194 UPX1 49,460

.text 82,612 UPX2 15,673

.ndata 31,978 .adata 3,585

.rsrc 98,094 .aspack 3,258

Code injection is commonly used by malware to hide malicious code inside trusted processes.

However, process code injection is still used by legitimate software. Table 3.9 illustrates the in-

jected process names used by both benign and malicious files. It can be observed that "SELF" is

the most injected process with respect to the number of clean files. SELF describes the same run-

ning process. This is done usually when a plugin or a piece of code is received and loaded by the

running process, then injected into the current context as a thread. On the other hand, it is obvious

from the table that "explorer.exe" is the mostly injected process by malware. This behavior was

illustrated by Win32/Sality and Win32/Madang.

3.8 Conclusion

Extensive analysis is presented and applied to a recent and diverse set of one million files, both

malicious and clean, where thousands of features were extracted. We defined and integrated fea-
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tures from three contexts to describe a malicious file and used Random Forest and Naive Bayes

machine learning algorithms to create and train classifiers to detect malicious programs. In one ex-

periment, a classifier was trained on a single month’s data and used to detect malware from future

months, up to four months ahead with a high detection accuracy up to 96.7% and false positive

rate of 2.1%. The evolution of features and malware families over the course of five months were

also studied and illustrated. As future work, we plan to apply feature selection algorithms to get

the most important features. In addition, we plan to leverage the system capabilities to cluster the

samples into families as well as consider other file types.
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Table 3.11: Top five APIs with highest differences of usage between malicious and clean files.
Clean Malware

Value Files Value Files

D
ec

20
14

Sleep 65,573 _controlfp 19,860
DestroyWindow 50,603 __p__commode 21,630
WriteFile 61,018 __p__fmode 22,112
ReadFile 54,884 _except_handler 17,022
SetFilePointer 53,836 _c_exit 12,265

Ja
n

20
15

Sleep 65,729 RegFlushKey 19,511
GetCurrentProcess 66,667 RegSetValueExA 28,365
MultiByteToWideChar 59,977 RegCreateKeyExA 26,161
GetLastError 66,898 RegQueryValueExA 33,492
FreeLibrary 53,781 RegOpenKeyExA 33,096

Fe
b

20
15

MultiByteToWideChar 69,448 _controlfp 21,698
SetFilePointer 63,675 __p__commode 23,281
GetSystemMetrics 50,013 __p__fmode 23,809
SetWindowPos 47,909 _except_handler3 18,823
WriteFile 68,699 exit 28,770

M
ar

20
15

DestroyWindow 60,392 _controlfp 20,745
SetFilePointer 64,695 __p__commode 24,323
GetExitCodeProcess 51,651 __p__fmode 23,392
ReadFile 65,025 _c_exit 16,114
Sleep 74,499 _cexit 23,383

M
ar

20
15

DestroyWindow 65,527 VirtualProtect 34,450
Sleep 78,919 _controlfp 15,408
GetExitCodeProcess 57,957 __p__commode 16,601
GetCurrentProcess 75,535 __p__fmode 16,906
MultiByteToWideChar 66,688 _c_exit 10,331
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Chapter 4: A CONTROL FLOW GRAPH-BASED SIGNATURE FOR

PACKER IDENTIFICATION

4.1 Introduction

Zero-day malware detection is a persistent problem. Hundreds of thousands of new malicious

programs are produced and published on the Internet daily. Although conventional signature-

based techniques are still widely relied upon, they are only useful for known malware. Many

research efforts have aimed at helping flag and detect unknown suspicious and malicious files. All

of these techniques can be categorized into three types: sandbox analysis, heuristic static analysis

or code emulation. Among the three, heuristic static analysis is the fastest, yet the weakest against

obfuscation techniques.

Code obfuscation includes packing, protecting, encrypting or inserting anti-disassembly tricks,

and is used to hinder the process of reverse engineering and code analysis. About 80% to 90% of

malware use some kind of packing techniques [30] and around 50% of new malware are simply

packed versions of older known malware [58]. While it is very common for malware to use code

obfuscation, benign executable files rarely employ such techniques. Thus, it has become a common

practice to flag an obfuscated file as suspicious and then examine it with more costly analysis to

determine if it is malicious or not.

In this chapter, we present a new method for packer or obfuscator detection and identification

that builds upon our instructions-based technique presented in Chapter 2. The prior work builds a

recursive traversal disassembler that extracts the control flow graph of binary files, and then com-

putes various statistical features of this graph to distinguish between obfuscated and normal files.

Once the file is confirmed to be obfuscated, the new work presented in this chapter constructs a

compact signature of the control flow graph at the entry point which is resilient to dummy instruc-

tions insertion and a number of graph manipulation methods. This signature can be compared to a

set of signatures in the database to determine the packer. If the packer is new or unknown, the sig-
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nature can be automatically constructed from a set of packed files and used to update the database

with no human intervention.

More specifically, the contributions of the chapter are:

• We introduce a compact signature for the control flow graph that can be used to identify the

obfuscator or packer used in a file.

• The process of CFG signature construction is done automatically with no human interven-

tion, so the system can store and be updated with new signatures to detect different types of

obfuscators or packers.

• The signature is resilient to some instructions modifications and shuffling, which makes a

single signature efficient against mildly different versions of the same code.

• We achieve a fast scanning speed of 0.5 ms per file on average, given the fact that our method

encompasses disassembly, control flow graph extraction, signature creation and matching.

• There is a strong potential that the same technique can be used to detect malware variants.

4.2 Related Work

Most of the current work of detecting obfuscated files is based on executable file structure charac-

teristics, such as file entropy, signature, or file header analysis.

4.2.1 Entropy-based Detection

Lyda and Hamrock presented the idea of using entropy to find encrypted and packed files [30]. The

method became widely used as it is efficient and easy to implement. However, some non-packed

files can have high entropy values and thus lead to false-positives. For example, the ahui.exe

and dfrgntfs.exe files from Windows XP 32-bit have an entropy of 6.51 and 6.59, respectively

for their .text section [68, 69] (our system detects these files correctly as non-packed). While

entropy-based methods can be effective against encryption or packing obfuscation, it is ineffective
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against anti-disassembly tricks, such as the one mentioned in Section 2.3, and even against simple

byte-level XOR encryption. Finally, the entropy score of a file can also be deliberately reduced to

achieve an entropy value similar to that of a normal program [64].

4.2.2 Signature-based Detection

A popular signature-based tool to find packed files is PEiD, which uses around 620 packer and

crypter signatures [5]. The obvious drawback of this tool is that it can identify only known packers,

and sophisticated malware usually uses custom packing or crypting routines. Moreover, even if a

known packer is used, the malware writer can change a single byte of the packer signature to avoid

being detected. Finally, it is a time consuming job to add a signature of a new packer since it

usually requires manual analysis to extract a reliable signature.

4.2.3 File Header-based Detection

File header-based techniques include those proposed by [38, 50, 53, 63]. These techniques can

get good results only when the packer changes the PE header in a noticeable way. Indeed, many

public packers exhibit identifiable changes in the packed PE file. However, this is not always the

case with custom packers and self-encrypting malware. Moreover, if the packing avoids the PE

file header completely, and instead focuses on instruction sequence or program execution flow,

there will be absolutely no trace in the header. Lastly, even if a packer introduces some identifiable

artifacts in the header, some of these can be easily removed by the malware author without affecting

the integrity of the executable. For example, section names and some strings could be manually

restored to match the original file header.

Besides the specific shortcomings of each technique described here, none of them can statically

detect the presence of anti-disassembly tricks or other forms of control flow obfuscation. Unfor-

tunately, these tricks are now commonly used in a wide range of advanced malware. This major

shortcoming is the first motivation for our work. Because our proposed system does not depend

on a coarse-grained entropy score of the file or section, byte signature of packers, or file header
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features, it overcomes the techniques’ individual shortcomings while also addressing the need for

detecting files containing anti-disassembly tricks and control flow obfuscation.

4.3 Background

4.3.1 Packer Identification

If a program is determined to be obfuscated, it is helpful to determine the obfuscator or packer that

was used. Identifying the packer will accelerate the automatic unpacking process, since the file will

be fed to the designated unpacker. If the unpacker was not determined, usually the file is fed to

a heuristic/universal unpacker that will emulate the instructions and guess the original entry point

of the unpacked file. Universal unpackers are not as reliable as those unpackers that were made

specifically for known packers and obfuscators. A universal unpacker has to make some guesses

and assumptions to determine the end of unpacking process that might deem wrong. Because of

the shortcomings with packer detection, reliable packer identification is also problematic. This fact

represents the second motivation for our work.

4.3.2 Control Flow Graphs

For a control flow graph (CFG) G consisting of a set of vertices V and edges E, the following

function maps a node to its 2-tuple of right and left children:

Children(x) = (xr, xl) |x, xr, xl ∈ G

In addition, parents of a node x are those nodes that have a direct connection to x. The set of

parents is defined as:

Parents(x) = {y ∈ G} |x ∈ Children(y)
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(a) (b)

Figure 4.1: (a) An example CFG, (b) a mirrored version of the same CFG.

Each node in a CFG has up to two children1. A node x is an exit node ⇐⇒ Children(x) = ∅,

and x is the entry node ⇐⇒ Parents(x) = ∅.

CFG Manipulation

CFGs can be manipulated in a number of ways without affecting the overall logic of the program.

These manipulations can be due to normal compiler optimization processes or, as in the case of

malware, polymorphism. The shape of the CFG changes while the original logic does not. For

example, a control flow instruction such as JE can be changed to JNE. In this case, the left and

right children will be swapped which results in a mirrored version of the original CFG. Figure 4.1

shows a CFG and its mirrored version, whereby each control flow instruction with two children

in Figure 4.1(a) has been negated so as to transform it into the mirrored version shown in Figure

4.1(b).

Another way that CFGs can be manipulated without affecting program logic is by prepending

a node at the entry node. For example, putting a JMP instruction that points to the first instruction

of the code will create an extra basic block at the beginning of the CFG while keeping the logic

unchanged. Similarly, nodes can be appended to exit nodes or inserted in the middle of the graph.

Finally, a node may be split into two to increase the number of nodes.

1Considering programs written in Intel x86 or x86-64 instructions set
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The rest of the chapter is structured as follows: Section 4.4 explains our methodology of con-

structing a reliable signature from the control flow graph. Section 4.5 describes our experiments

and results. Section 4.6 discusses the results and potential limitations. Section 4.7 concludes the

chapter.

4.4 Control Flow Graph-based Signature

4.4.1 Graph Preprocessing

As discussed earlier, polymorphic codes usually insert dummy instructions to evade detection by

string signature. These instructions could be either instructions that do not affect the execution flow

of the program, such as arithmetic or memory operations, or control flow instructions. In the first

case, the control flow graph of the program will not be affected, and the CFG signature will thus

stay the same. In the second, inserting control flow instructions will add more basic blocks to the

CFG and change the CFG signature. For instance, a malicious program could add a series of JMP

instructions between basic blocks, with each JMP pointing to the next. The malicious program

could also divide each basic block into smaller pieces and connecting them with JMP instructions

in between.

In all these cases, the logic of the program will be intact, but the presence of dummy JMPs

will change the CFG. Thus, we preprocess the CFG in order to alleviate the effects. Specifically,

we preprocess the graph before creating the signature such that nodes with only one child are

combined into one, as follows:

Merge(x, y) = v ⇐⇒ xr = xl = y |x, y, v ∈ G and xr, xl ∈ Children(x)

To mitigate the effect of mirroring, we traverse the graph and for each node we determine the

shortest distance to root, and assign this value to each node. Then every input CFG is topologically

sorted so that for each node, the deepest node on its right branch has a shorter distance to root than

the deepest node on the left branch. The sorting operation is defined as:

59



Figure 4.2: A normalized and sorted version of the CFG in Figure 4.1(a).

∀x, xr, xl ∈ G, swap(xr, xl) ⇐⇒ xrd > xld

where xrd, xld are the depth of right and left branch of x, respectively.

Figure 4.2 shows the normalized and sorted version of the program in Figure 4.1(a).

4.4.2 Exact Signature

In order to compare two CFGs, we use two types of signatures, exact and approximate. The exact

signature identifies two CFGs that look identical. However, if one of the CFGs was subjected to

minor manipulation, the signatures will fail to match. In this case, an approximate signature is

used in an attempt to withstand minor manipulation of the CFG, although this may come at the

cost of possible false-positives.

There are a number of known representations of graphs. In this chapter, we represent the

control flow graph as a series of integer values. Nodes are visited in breadth-first fashion, and each

node is given a sequential ID. Since each node in the control flow graph can have a maximum of

two children, an ID is followed by two IDs for the children, then the child with the least ID is listed
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followed by its children, etc. Each node is represented as 3-elements tuple of (Node ID, Child1 ID,

Child2 ID). If a node has only one child, the second nonexistent child is represented by zero. In

case of an exit node that has no children, both children are represented by two zeros. For example,

the following signature represents the graph in Figure 4.2.

1 2 3 2 4 5 3 0 0 4 0 0 5 0 0

The number of nodes in the graph equals the length of the signature divided by 3. With this

representation, the original graph can be fully restored from the signature.

Obviously, the node ID is repeated when it is listed as a parent and as a child. Thus, the

signature can be shortened by removing Node ID, then each two consecutive IDs represent the two

children of a node. The previous signature can be rewritten as:

2 3 4 5 0 0 0 0 0 0

In this version, the number of nodes equals the length of the signature divided by 2 and still the

original graph shape can be fully restored with this signature.

4.4.3 Approximate Signature

As mentioned earlier, the CFG can be modified in various ways without affecting the original pro-

gram logic. Thus, exclusively relying on finding exact signature matches will miss many possibly

isomorphic graphs and increase the rate of false negatives. In order to overcome this problem and

match similar CFGs, we construct an approximate representation of the graph, as follows.

Each node is labeled with two numbers, x, y. These values represent the number of parents

and the number of children of each node, respectively. Then, visiting each node in the graph in

a breadth-first first fashion, the numbers are listed in the order of the visited nodes. Since each

node cannot have more than two children, the possible values for x are 0, 1 and 2 and thus x can be

represented with just 2 bits. On the other hand, the possible number of parents is not limited to a

specific range of values. However, we scanned 300,000 files and found that the average number of
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parents for all CFG nodes is 1.3. We also found that only 130 files in this samples set have a CFG

containing one or more nodes with more than 63 parents.

Since the number of children can be represented in 2 bits, there are 6 remaining bits available

for the number of parents if the entire label is to be contained in one byte. Thus, a one-byte label

can represent a maximum of 63 parents, which is sufficient for the vast majority of CFGs, based

on our sampling.

To illustrate this, we refer again to the graph in Figure 4.2 and present the following three

hexadecimal sequences representing the number of children, parents, and the combined value,

respectively. For each byte in the combined sequence, the two low order bits represent the number

of children, and the high order six bits represent the number of parents.

02 02 00 00 00

00 01 01 01 01

02 06 04 04 04

There are many properties that each node in the CFG can have, such as, number of parents,

number of children, shortest distance to exit node, shortest distance from root, number of instruc-

tions and level. However, with the exception of the number of children and parents, examining

these properties shows that they are susceptible to change even if a single node is inserted or re-

moved. For example, if we define a signature based on the distance of each node to the root, and

then a new node is inserted as a new root, the entire signature will be completely different. The

same can happen if we used a shortest distance to exit node measurement. Although the number

of instructions in each node will not be affected by CFG manipulation, it will change if dummy

instructions are inserted or removed, something very common in polymorphic code, and usually

easier to accomplish than changing the CFG.

Overall for a given CFG, the number of direct children and parents are resilient to these modi-

fications. Only the node that is a direct children or parent of a modified node will have its value in

the signature changed. The rest of the CFG is not affected in terms of parents or children and thus

the rest of the signature will be the same.
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This makes the choice of these two properties a good fit to detect mildly polymorphic or opti-

mized code when the signature of a similar variant is known.

4.4.4 Signature Matching

To compare two signatures, we use a difference score based on edit distance as a metric for compar-

ison. The difference score between two signatures x and y is defined as the number of insertion,

deletions and substitutions needed to convert one string to another. We define a value δ as the

number of allowed distance between two signatures to establish a match. Each signature x in the

database has its own value of δ to make sure we match variants of x correctly. Hence, a match

between two signatures x and y is defined as:

x and y are matched ⇐⇒ 0 <= EditDistance(x, y) <= δx

Where x is the signature stored in the database and y is the signature of the input file.

4.5 Experiment and Evaluation

To evaluate the utility of our signature and matching algorithm, we conducted an experiment using

7 publicly-available packers commonly abused by malware authors to obfuscate their code: UPX,

Execryptor, Themida, FSGv1.33, FSGv2.0, eXpressor and Yoda’s Protector. For each packer, one

obfuscated file was sufficient to get a CFG signature able to detect all files in each test set of 20

obfuscated files for each packer.

For each file in the data set, the control flow graph is extracted from the function at the entry

point. The extraction is stopped at 200 basic blocks limit. In the case of Yoda’s protector, the test

set needed 3 signatures in PEiD to detect all of them, as the test set was packed by 3 different

versions of the packer. However, we only needed one signature of the CFG to detect files packed

by the 3 versions. Each signature successfully detected 100% of the test set. Table 4.1 shows the δ

of each signature, where each δ in the table is obtained by scanning the test set and obtaining the
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Table 4.1: Value of δ for each signature.

Packer UPX Execryptor eXpressor Themida FSG v1.33 FSG v2.0 Yoda

δ 10 1 1 1 1 1 2

Table 4.2: The distance of each packer signature from the other 6 packers.

Packer UPX Execryptor eXpressor Themida FSG v1.33 FSG v2.0 Yoda

UPX 0 37 156 38 30 29 31

Execryptor 37 0 184 12 31 24 17

eXpressor 156 184 0 182 159 167 175

Themida 38 12 182 0 35 25 18

FSG v1.33 30 31 159 35 0 12 31

FSG v2.0 29 24 167 25 12 0 24

Yoda 31 17 175 18 31 24 0

maximum difference score.

Table 4.2 shows the distance of each signature from the other 6 packers. Note that the distance

between a signature of packer x and the other 6 packers, is higher than δx, which indicates that

files belong to a packer x will not be misidentified as packer y, for any two different packers x and

y.

To measure the false-positive rate for each signature, we scanned 324 non-packed files taken

from a clean Windows 7 machine. We had zero false-positive rate with all the signatures. In fact,

the difference score was much greater than the δ value of each signature. Table 4.3 shows the

lowest difference score for each signature when scanning the non-packed files.

Table 4.3: Minimum score for each packer against non-packed files.

Packer UPX Execryptor eXpressor Themida FSG v1.33 FSG v2.0 Yoda

δ 29 12 103 12 24 17 17
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Table 4.4: Edit distance scores of UPX file set.
Score 0 3 6 10

Number of files 7 11 1 1

4.6 Discussion and limitations

During the experiment, we noted that UPX has a number of slightly different CFGs for some files

even if the same version is used. We found that during packing, UPX will add code blocks in the

unpacking stub based on the input file’s structure. For example, if the file has a relocation section,

UPX unpacking stub will contain some code that deal with unpacking the relocation section, and

this code will not be present in the stub of other files that do not have a relocation section. This is

in fact the reason UPX have higher value of δ than the other packers. That is, the more difference

among the CFGs belong to the same packer, the higher the value of δ needed to match all of them.

Table 4.4 shows the different edit distance scores we obtained when scanning UPX file set.

Typically, a PEiD signature and a CFG signature for UPX are as follows:

PEiD 60 BE ?? ?? ?? ?? 8D BE ?? ?? ?? ?? C7 87

?? ?? ?? ?? ?? ?? ?? ?? 57 83 CD FF EB 0E

?? ?? ?? ?? 8A 06 46 88 07 47 01 DB 75 07

8B

CFG 01 09 0A 05 05 0E 0E 0A 05 06 0A 06 0A 06

0A 05 05 05 0A 05 0D 0A 05 0A 0A 0A 0E 06

05 05 0A 05 06 06 05 09 06 0A 09 05 05 05

05 0A 0A 05 04 06 05 05

The symbol "??" in PEiD signature is a wildcard symbol refers to matching any byte value.

Yoda’s protector file set is obfuscated using three versions of the packer which are v1.02b,

v1.03.2 and v1.03.3. PEiD is using three signatures to detect all the files in the set, one signature

for each version. Nevertheless, only one CFG signature with δ value of 2 was needed to detect
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the three versions. On the other hand, we chose to separate the signatures for FSG packer, so we

have two different signatures to detect the FSG v1.33 and FSG v2.0, this is why we have δ of value

1 for each. However, if one signature is needed to match both versions, the δ is determined by

experiment to be 6. Therefore, it is up to the system administrator to choose whether to have lower

value of δ and more signatures, or higher value of δ with less number of signatures, considering

the risk of false-positive with high δ.

We set a minimum and maximum size of nodes of 30 and 200 nodes, respectively. So an input

CFG with a number of nodes less than the minimum is skipped, as considering CFG with size less

than this minimum could produce high number of signature mismatches. On the other hand, the

maximum number of 200 is thought to be enough to detect different CFGs, and so if the input file

has more nodes than the maximum, it is trimmed down to 200 nodes.

Regarding the speed of the system, the process of scanning a file involves disassembly, control

flow graph extraction, signature generation and matching. This process takes on average 0.5 ms

per file on a machine with 8GB and Xeon processor with four cores.

It worth to mention that one limitation of the system is imperfect disassembly due to indirect

addressing. However, this problem exists in all disassemblers since the problem of perfect disas-

sembly is undecidable problem [22]. Nevertheless, this should not be a problem in our case since

the same rules of disassembly are applied on both the training and test files.

4.7 Conclusion

Hundreds of thousands of malware are produced every year, the vast majority of them are obfus-

cated and packed. Unpackers are used to reveal the malicious code of the file by unpacking its

contents. It is important to identify the packer used in the malware in the triage process, so the

appropriate packer can operate on the file. Current techniques of packer identification mostly rely

on byte signature, which can be easily evaded by the attacker. In this chapter, we introduce a

new technique for packer/obfuscator identification based on the control flow graph of the file. We

introduced two types of signatures to compare and match two CFGs, an exact signature and ap-
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proximate one. The CFG is normalized and sorted and then the approximate signature is generated

in a short runtime of 0.5 ms per file on average. The approximate signature with the preprocessing

of the graph is able to withstand minor code modification usually done by attackers. The method

showed very good performance when tested against seven common packers with no false-positive.

We believe that the technique has a strong potential to be efficient in detecting malware variants

and polymorphic code, which will be implemented in our future work.
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Chapter 5: CONCLUSION AND FUTURE WORK

5.1 Conclusion

This dissertation addresses the problem of proactive automatic malware detection. Hundereds of

thousands of malware samples are produced every year, and most of them are obfuscated. This

research tackles the problem of obfuscated malware detection and classification by introducing

three techniques. The dissertation makes the following three contributions:

• A novel approach for detection of sophisticated obfuscation and packing: Obfuscation is a

common way to hide the intent of malicious files. Several ways exist to scramble the code

and make it difficult to analyze. We presented a technique for sophisticated obfuscation de-

tection in Chapter 2. The key idea is to extract and utilize information from the Control Flow

Graphs (CFGs) of malware programs to determine whether the file employs code obfusca-

tion techniques. The technique overcome limitations of other techniques used for the same

purpose while maintaining a fast execution runtime. Experimental results show that the new

technique can detect a variety of obfuscation methods (e.g., packing, encryption, and instruc-

tion overlapping) in a short runtime, which makes the technique feasible and practical for

deployment on critical systems. This patent-pending technique paves the way for developing

the two other techniques presented in the dissertation.

• Multi-context features for automatic malware detection: Given a suspicious file detected

by the previous method, our second technique presented in Chapter 3 aims at automatically

classifying whether the file is malicious or not, by utilizing several types of information about

the suspicious file (e.g., file structure, runtime behavior, and instructions). The technique is

efficient against both plain and obfuscated malware samples since it does not depend solely

on static features. Random Forest and Naive Bayes classifiers were used to build the machine

learning models. A key contribution of this technique is the definition and utilization of over

32,000 features of files, including file structure, runtime behavior, and instructions. To the
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best of our knowledge, this is the first effort that defines and uses such a comprehensive

feature set.

• A novel technique for packer and obfuscator identification: The third technique leverages

the first one to automatically identify and construct a signature for packers and malware

obfuscators based on the control flow graph on the file. The method presented in Chapter

4 constructs a signature based on the control flow graph of the file, which makes the new

signature has many advantages over the conventional byte signature. While it is sometimes

enough for an attacker to change only one or more bytes to evade detection with byte signa-

ture, it is more difficult to change the control flow graph of the file. In addition, the signature

is resilient to some instructions modifications and shuffling, which makes a single signature

efficient against mildly polymorphic versions of the same code. Last but not least, the signa-

ture extraction of new obfuscators is done automatically with no human analyst intervention.

5.2 Future Work

In this section, we present some potential research directions which might guide our future works.

5.2.1 Control flow graph-based signature for polymorphic variants detection

Packed malware files are dominant nowadays, and the problem of unpacking or deobfuscating the

malware sample is insisting due to the high number of obfuscated samples. Obfuscation is very

effective in evading detection by anti-virus software. A malware family can stay active in the wild

for a long period as long as it has different mutating variants that bypass the conventional byte

signature detection. We plan to leverage our work presented in Chapter 4 to detect mutating or

polymorphic variants of malware with the control flow graph signature. To address the limitation

of perfect disassembly discussed in Chapter 4, we plan to integrate an emulator to resolve indirect

addressing. The emulation part is planned to be minimal so it does not have a major impact on

the processing runtime. With this addition, we believe the signature will be more descriptive and

accurate, and thus will help detecting multiple variants of polymorphic malware with minimal
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number of signatures.

5.2.2 A fast malware detection using machine learning

Acquiring behavioral information of a malware sample is the slowest step in any malware detec-

tion system that uses this type of information. Thus, requiring the behavioral information to be

present makes the system relatively slow. We plan to extend our work presented in chapter 3 by

increasing the number of static features, plus adding some features based on partial emulation of

the instructions. In addition, removing those features that requires running the sample ahead of

the scanning time. We believe that this will lead to obtaining result similar or better than the one

presented in chapter 3, with a significant boost to the runtime speed. This will make the system

more suitable for deployment on user machines or systems that cannot wait for a malware sample

to run in a controlled environment to monitor its behavior.
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