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SHERIFDEEN LAWAL, Ph.D.
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The Next Generation Access Control (NGAC), founded on the Policy Machine (PM), is a

robust Attribute-Based Access Control (ABAC) framework that enables a structured and flexible

approach for the establishment of the conventional access control models. The authorization state

of the policy machine is an annotated Directed Acyclic Graph (DAG). Structurally, relations among

attributes of the same type are hierarchical. This structure allows specifying authorization/revoca-

tion in multiple ways. However, one or more limitations can make most of the approaches to grant

or revoke access inconsistent with existing policies. We proposed a variety of algorithms that pro-

vides the Policy Machine administrator a comprehensive list of all possible methods to authorize

or revoke access using ABAC policy review. The approaches generated by these algorithms can

help the PM administrator make an informed decision before access authorization or revocation.

This work began with a pilot study where we consider the policy review for authorization of an

administrative access right, user assignment. The preliminary work evolved to a generic algorithm

that reviews authorization policy for other administrative access rights. A thorough extension

of the generic algorithm accommodates the policy review of authorization with constraints and

revocation.

In recent times, as the number of blockchain use cases continues to grow, methods and tech-

nologies utilized by fraudsters continue to become sophisticated. The most notable form of cyber-

attack utilizes a security breach in the internal security of blockchain systems, leading to illegal

access to application services. A complex system like the blockchain network requires a dynamic,

flexible, and scalable access control mechanism. There are numerous research efforts to leverage

smart contracts in implementing access control based on blockchain. However, most of these con-

tributions are either focused on blockchain-based access control for an off-chain resource. Other

vi



effects implement blockchain-based access control for a specific domain. This dissertation presents

the first-ever implementation of the NIST NGAC (Policy Machine) system in a blockchain net-

work. We utilized an instance of the Policy Machine for controlling access to assets in multiple

blockchain ledgers. We implemented and evaluated the algorithms in this dissertation on the Hy-

perledger Fabric blockchain network.

vii



TABLE OF CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Chapter 1: Introduction & Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Need For Attribute-Based Access Control . . . . . . . . . . . . . . . . . . . . 3

1.2 Policy Reviews and Complexities of Attribute-Based Access Control . . . . . . . . 4

1.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Organization of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Chapter 2: Background And Literature Survey . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Access Control Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Discretionary Access Control (DAC) . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Mandatory Access Control (MAC) . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Role-Based Access Control (RBAC) . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Attribute-Based Access Control (ABAC) . . . . . . . . . . . . . . . . . . 10

2.2 Policy Review in Access Control Models . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Discretionary Access Control . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Role-Based Access Control . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Attribute-Based Access Control . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Attribute Based Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Attribute-Based Access Control Models . . . . . . . . . . . . . . . . . . . . . . . 14

viii



2.5 Policy Machine Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 ABAC Policy Specification Methods . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.1 Enumerated Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.6.2 Logical-Formula Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.7 Administrative Role Based Access Control Policy Analysis . . . . . . . . . . . . . 19

2.7.1 ARBAC97 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7.2 Administrative TRBAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.8 Attribute Based Access Control in Hyperledger Fabric . . . . . . . . . . . . . . . 21

Chapter 3: Administrative Access Authorization Through Policy Review . . . . . . . . 23

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.4 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.5 Claim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.6 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Policy Review For Access Authorization . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Algorithmic Design and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Policy Review Algorithm for Generic Authorization . . . . . . . . . . . . 37

3.4.2 Performance Evaluation of Access Authorization Review Using Networkx 39

Chapter 4: Constrained Access Authorization And Revocation Through Policy Review 43

4.1 Policy Review For Constrained Access Authorization . . . . . . . . . . . . . . . . 43

4.1.1 Derived functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Constrained Access Authorization Methodologies . . . . . . . . . . . . . . 45

4.1.3 Constrained Access Enablers . . . . . . . . . . . . . . . . . . . . . . . . . 48

ix



4.2 Policy Review For Access Revocation . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Policy Review for Scenario-I . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Policy Review for Scenario-II . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4 Algorithmic Design and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Policy Review Algorithms for Constrained Authorization and Revocation . 54

4.4.2 Performance Evaluation of Constrained Access Authorization and Revo-

cation in Hyperledger Fabric . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 5: Implementation of ABAC Review In Hyperledger Fabric Blockchain . . . . 62

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Hyperledger Fabric Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Hyperledger Fabric Blockchain Network Development . . . . . . . . . . . . . . . 67

5.3.1 Tools and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Network Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.3 Transaction flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Access control in HLF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Hierarchies, Naming, and Types of Policy . . . . . . . . . . . . . . . . . 70

5.4.2 Motivation for ABAC in Hyperledger Fabric Blockchain Network . . . . . 70

5.4.3 Coarse Access control Scenario in HLF . . . . . . . . . . . . . . . . . . . 71

5.5 System Architecture and Implementation . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Use Case And Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6.1 Policy Machine Implemented for gREIT . . . . . . . . . . . . . . . . . . . 75

5.6.2 gREIT Access Request Scenarios . . . . . . . . . . . . . . . . . . . . . . 76

5.7 Performance Evaluation of Policy Machine Implementation in Hyperledger Fabric . 77

Chapter 6: Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

x



Vita

xi



LIST OF TABLES

2.1 Basic Model Elements & Relations. . . . . . . . . . . . . . . . . . . . . . 17

3.1 A formal expression, no delete operation is required to grant access autho-

rization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Precondition Association & Auth. Enabling User Attributes . . . . . . . . . 30

3.3 Scenario-II Policy Elements & Relations. . . . . . . . . . . . . . . . . . . 34

3.4 Proportion of Nodes for Scenario-I and Scenario-II . . . . . . . . . . . . . 42

4.1 Scope of Authorization/Revocation on Attribute Groups . . . . . . . . . . . 46

4.2 Generic access authorization approaches for Cathy’s request . . . . . . . . 51

4.3 Constrained access authorization approaches for Cathy’s request, without

set UA3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Constrained access authorization approaches for Cathy’s request, without

set UA2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xii



LIST OF FIGURES

2.1 Core ABAC Representation (adapted from [68]) . . . . . . . . . . . . . . . 14

2.2 Policy Machine Authorization Graph . . . . . . . . . . . . . . . . . . . . . 15

3.1 A Generic Authorization Graph: source user requesting administrative op-

eration on a user attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 A Generic Authorization Graph: source user requesting administrative op-

eration on an object attribute . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Policy Machine Authorization Graph . . . . . . . . . . . . . . . . . . . . . 37

3.4 Distribution of Response Time to Generate Access Authorization Approaches

for Scenario-II on graphs with 1,000 nodes . . . . . . . . . . . . . . . . . . 42

4.1 Policy Machine Authorization Graph . . . . . . . . . . . . . . . . . . . . . 44

4.2 Average latency for number transactions and access requests . . . . . . . . 56

5.1 A Ledger L comprises Blockchain B and world state W . . . . . . . . . . 64

5.2 Network infrastructure partitioned by member organizations and their con-

nection to a channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 The transaction flow for query and update proposal to the ledger . . . . . . 69

5.4 Partial Components of a Channel, channel01 . . . . . . . . . . . . . . . . . 71

5.5 World state W1 for Ledger L1 contains two business objects . . . . . . . . 71

5.6 Blockchain Access Control System Architecture. . . . . . . . . . . . . . . 72

5.7 Policy Machine Authorization Graph for global REIT . . . . . . . . . . . . 74

5.8 Policy Decision Smart contract response to access request scenarios . . . . 74

5.9 Average latency of register, launch, and buy transactions using LevelDB . . 77

5.10 Average latency of register, launch, and buy transactions using CouchDB . 78

xiii



CHAPTER 1: INTRODUCTION & MOTIVATION

The first step before a user can operate on protected resources in the computer system is that it

asserts the user’s identity. Usually, the protected resources such as directories, files, applications,

data, e.t.c., are called objects. A common name for a user requesting access to objects and system

processes acting on the user’s behalf are called subjects.

An individual or organization that owns resources of value in the computer system has the

authority to establish a policy that describes what operations may be performed upon those objects,

by whom, and in what circumstance those subjects may perform those operations. If the subject

satisfies the access control policy established by the object owner, then the subject is authorized

to perform the desired operation on that object-better known as being granted access to the object.

The operations(actions) a permitted user can perform on an object, for example a file directory,

includes create, read, update, and delete of file(s). If the subject does not satisfy the policy, then it

is denied access to the object.

Access control policies are high-level stipulated conditions that define how access is managed

and who, under what circumstances, may access what information. Though access control policies

may be application-specific, access policies usually involve subject actions within a specific system

environment or throughout an organization’s perimeter. For example, policies may deal with the

usage of an object within or across the entire organization units or may be based on need-to-

know, competence, authority, obligation, or conflict-of-interest factors [27]. These policies can

span more than one computing platforms and applications. The enforcement of access policies and

governance of information sharing within the organization requires codifying an organization’s

specified access policies into machine-enforceable algorithms or access control languages.

Access control models are formalized computing algorithm or mathematical representation of

the security policies enforced by access control systems. It provides vital insights for proving theo-

retical limitations of the access control systems. Access control models are the connecting link for

a rather wide gap in abstraction between the policy and the mechanism. The use of access control
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models to represent access control policies serves as a means to incorporate formalization, effec-

tively communicate when describing the characteristics of an access control system, and alleviate

the difficulty of access control policy specification.

Since the development of access control models in the early seventies, the three most widely

adopted models are the Discretionary Access Control (DAC) [59], Mandatory Access Control

(MAC) [59], and Role-Based Access Control (RBAC) [20, 57, 58].

Attribute-Based Access Control (ABAC) [26, 28] is the current milestone in access control

models, is a model that regulates access permissions based on the attributes (characteristics) of

the subject, resources, and in some cases, the context (or environment). ABAC subsume the three

previous traditional models, provides dynamic and effective access control decisions by involving

associated attributes of subject and object in making a decision. Also, ABAC offers a powerful and

flexible access control by allowing an unrestrained number of user and object attributes in access

control decisions.

Attribute-based access control allows organizations to enforce access decisions based on the

attribute of the subject, resource, action, and environment involved in an access event.

• Subject The subject is the user requesting access to a resource to perform an action. An

ABAC system collect data from human resource directory or information from authentica-

tion tokens at the time of login to create attributes that characterize the user/subject. These

attributes form a profile for the user and are user ID, job roles, user groups, unit and or-

ganization memberships, management level, security clearance, and other distinguishable

characteristics.

• Resource The resource is the protected asset or object such as file, database, application or

Application Programming Interface that the subject wants to access. Properties of a resource

that serves as attributes includes creation date, owner, name, type, and sensitivity of the

resource. For example, when a student tries to access an online grade, the resource involved

is “student grade = <valid ID number>”
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• Action The action is whatever the requesting user do with the resource. Typical action

attributes are read, write, edit, copy, create, execute, delete. Some system environments

require customized (multiple) attributes to describe an action. Before a student have an

online access to grades in the previous example, the action of a lecturer requesting to post

the grade can have the characteristics “action type = post”.

• Environment The environment is the general situation at the time of every access request.

Contextual considerations that represent environmental attributes are time and location of

a requested access, the subject’s device, and communication protocol. Organization can

include established risk signals such as previous subject’s pattern of behavior and authenti-

cation strength as part of the contextual information.

1.1 The Need For Attribute-Based Access Control

Access control policy specification without the use of attributes and context can offer a reasonable

level of granularity. It becomes very challenging to maintain these polices in the heterogeneous

and dynamic enterprise landscape of this moment and the coming future. There are difficulties in

managing traditional access control policies in the following cases:

1. There are various rationale such as logic, performance, and security that may require an or-

ganization to have multiple databases. Usually, these databases are of different types such as

relational, noSQL, and data warehouses, each with its own flavor of access control policies.

2. We are in an era of Continuous Integration and Continues Delivery(Deployment) CI/CD in

application development. As a result, newer set of resources are being added to the database

all the time. With static policies, it is very hard to ensure that the right policies are in place

at all times.

3. There is a growing trend in the move away from the traditional perimeter based security

model toward the application of the security model known as zero trust architecture that

treat the enterprise intranet (internetwork) as untrusted to the same degree as the Internet.
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The need to adapt a dynamic incorporation of multiple factors such as the degree of trust in

the user and device, user and device situational context i.e. location, time-of-day, type of task

as well as the current security threat level in the userâs immediate environment. An access

control system without attribute-based policies can not enforce a zero trust architecture.

1.2 Policy Reviews and Complexities of Attribute-Based Access Control

The extent to which data is protected and shared among the authenticated users in an organization

depends on access policy enforcement. Many organizations are increasingly paying attention to

sharing and protecting their resource and information. One of the challenges of the access control

systems is that its implementation must be tailored to every use case [27]. For instance, some ac-

cess control capabilities are packaged as part of an entire service product, and others are offered as

an appended feature for managing access configurations within or across architectural abstraction.

When the particular access control mechanism that is included within an application or op-

erating system is not critically examined and evaluated, the consequences are costly. This can

undermine the administrative and user productivity as well as the organizationâs ability to per-

form its primary purpose. As an example, a medium-sized enterprise with significant number of

subjects, the number of systems and devices that requires access control configuration are in the

hundreds, and the number of objects(resources) that requires protection are in the millions.

Some of the administrative difficulties in the adoption ABAC is as a result of large set of at-

tributes [6]. Firstly, it is laborious to assign or de-assign these attribute values to users or objects.

Secondly, authorization policies definition using attributes would be large and complex in nature,

making specification and modification difficulty. Imagine a scenario of a misconfiguration of single

permission, a user is definitely given an unintended access to information and systems or is inef-

fective in performing his/her duties. The bottom line is that security posture of the organization

has been weakened.

In addition, the interaction of access control functionality with other application behavior can

make it difficult to understand, analyze, and evolve access control functionality [52]. Policy re-
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views are critical to the specification of a new policy based on existing policies or updating an

existing policy. For example, to define a new policy that allows ‘manager’ to approve a ‘new loan’,

an administrator may first want to check, who (in terms of user attributes and values) can approve

‘new loan’ for existing set of policies. In other words, policy reviews can prevent or mitigate

the consequences of policy misconfiguration. System administrator can compare the outcomes of

query (policy review) with expected result for a specified policy.

1.3 Problem Statement

Common policy review questions in an ABAC system are the evaluation of the capabilities asso-

ciated with users and their attributes and the access control entries of objects and object attributes.

For logically formulated ABAC, the satisfiability of these typical policy queries is an NP prob-

lem but a polynomial-time or linear-time problem in enumerated ABAC policies. The hierarchical

structure of an enumerated ABAC model allows specifying a policy in multiple ways. A subset

of the various approaches of expressing a policy may complicate or contradict an existing policy.

Answering unconventional but important policy review questions can prevent unintended conse-

quences that may arise from multiple approaches for policy specification.

In the context of enumerated ABAC, we consider the following policy review questions that

are vital to policy updates:

1. What are the policy elements (user and object attributes) that can enable access of a user to

a given resource?

2. What are the policy elements (user and object attributes) that can enable access revocation

to a user over a given resource?

3. Can a user attribute confer/delegate granted access rights to other user attributes?

4. If there exists a chain of conferred/delegated access rights, then what is the depth of the

chain?
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In this work, We will leverage on answering the first two of the previous ABAC policy review

questions to develop algorithms that generate approaches to authorize and revoke access in the

enumerated ABAC model.

1.4 Summary of Contributions

The summary of what this work contributes is the following:

1. We develop and implement an algorithm that reviews an ABAC policy and apply the reviews

to generates all the possible relations that can grant access for a denied administrative access

requests.

2. We extend the on previous algorithm by allowing a set of parameters to provide additional

flexibility in authorization and revocation of access in an ABAC policy environment.

3. With a use case scenario, we implement the variations of the ABAC policy review algorithms

in Hyperledger Fabric, a framework for the blockchain application development.

1.5 Organization of Dissertation

The chapter 1 of this dissertation introduces the concept of access control model in computer

systems. In chapter 2 we provide general background to Attribute-Based Access Control and that

of an instance, Policy Machine (PM). The algorithms that generate generic approaches to grant

access through ABAC policy reviews were presented in chapter 3. A refinement and extension

of the algorithm in the preceding chapter was discussed in chapter 4. As a proof of concept,

proposed algorithms in this dissertation are implemented in chapter 5. Concluding, chapter 6

provides possible future research that can be done in ABAC policy review.
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CHAPTER 2: BACKGROUND AND LITERATURE SURVEY

2.1 Access Control Models

An assigned computer administrator utilize access control mechanisms in logic aligned to protect

owners’ objects by mediating requests from subjects. These access control mechanism can use a

variety of methods to enforce the access control policy that applies to those objects. How these

mechanisms function can be described in terms of various logical access control models. These

access control models provide a framework and set of boundary conditions upon which the objects,

subjects, operations, and rules may be combined to generate and enforce an access control decision.

Each of the access control models has its advantages and limitations.

Access control model evolution began with the dichotomy between governmental and com-

mercial needs that led to the development of two distinct access control mechanisms, Mandatory

Access Control (MAC) and Discretionary Access Control (DAC). Limitations of MAC and DAC

motivates the development of Role-Based Access Control. Role-Based Access Control (RBAC) is

considered a much more generalized model than either MAC or DAC, encompassing both models

as special cases while providing a policy-neutral framework that allows RBAC to be customized

on a per-application basis.

The current milestone in access control models is the Attribute-Based Access Control (ABAC)

model. ABAC model authorizes access to perform a set of operations by evaluating attributes

associated with the subject, object, and in some cases, environment conditions against policy,

rules, or relationships that describe the allowable operations for a given set of attributes [68].

2.1.1 Discretionary Access Control (DAC)

Discretionary Access Control (DAC) is an authorization-based approach that policies control ac-

cess based on the identity of the requestor and on rules stating what requestors are (or are not)

allowed to do.

The access matrix model is a framework for describing a primitive discretionary access control
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policy. In the access matrix model, the state of the system is defined by a triple (S, O, A), where

S is the set of subjects, who can exercise privileges; O is the set of objects, on which privileges

can be exercised (subjects may be considered as objects, in which case S ⊆ O); and A is the

access matrix, where rows correspond to subjects, columns correspond to objects, and entry A[S,

O] reports the privileges of S on O. The type of the objects and the actions executable on them

depend on the system. Changes to the state of a system is carried out through commands that can

execute primitive operations on the authorization state, possibly depending on some conditions.

Although the matrix represents a good conceptualization of authorizations, it is not appropriate

for implementation. In a general system, the access matrix will be usually enormous in size and

sparse (most of its cells are likely to be empty). Storing the matrix as a two-dimensional array is

therefore a waste of memory space. Two of the approaches to implementing the access matrix in a

practical way are:

• Access Control List (ACL): The matrix is stored by column. Each object is associated with

a list indicating, for each subject, the actions that the subject can exercise on the object.

• Capability: The matrix is stored by row. Each user has associated a list, called capability

list, indicating, for each object, the accesses that the user is allowed to exercise on the object.

2.1.2 Mandatory Access Control (MAC)

Mandatory (MAC) policies control access based on mandated regulations determined by a central

authority.

DAC are ideally appropriate for systems and applications in the commercial and industrial

settings because of its flexible policies. However the DAC policies have a costly disadvantage

by not providing assurance of information flow in a system. Specified authorization is easily

circumvented. For instance, a user granted a read access on a data can pass this authority to another

user without the knowledge of owner - information dissemination is not controlled. Conversely,

MAC systems controls information dissemination by preventing the flow of information from high-

level objects to low-level objects. Access in MAC is govern on the basis of system’s subjects
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and objects classification. There is an access class assignment for every subject and object in a

mandatory system. The set of access classes is a partially ordered set and usually a security level

and a set of categories constitute an access class. Logic and use of the access classes assigned to

objects and subjects in an application of a multilevel mandatory policy determines if the access

class is meant for a secrecy or an integrity policy. That is, MAC is implemented as a secrecy-based

and integrity-based mandatory policies.

2.1.3 Role-Based Access Control (RBAC)

Role-based (RBAC) policies control access depending on the roles that users have within the sys-

tem and on rules stating what accesses are allowed to users in given roles.

In the early 2000s, the National Institute of Standards and Technology (NIST) proposed a U.S.

national standard for role-based access control through the International Committee for Informa-

tion Technology Standards (ANSI/INCITS) [20] introduced a family of models called RBAC1 to

RBAC3.

The RBAC0 (core RBAC) is the base model that consist of users, roles, objects, operation, and

permissions as basic elements. Users access are indirectly granted through an assignment of users

to roles, and permissions (i.e., the association between an object and an operation excitable on

the object) to roles. RBAC0 offers flexibility through the many-to-many relational assignments of

permission-to-role and user-to-role. Also in RBAC0, is the concept of session, where each session

is a mapping between a user and a (subset of roles assigned to the user) set of activated roles. Thus,

available permissions to a user for a given session are all the permissions associated with the roles

activated by the user in the session.

The other RBAC models introduce role hierarchies (RBAC1) and constraints (RBAC2) [55].

A role hierarchy is a partial order on roles that lets an administrator define that one role is senior

to another role, which means that the more senior role inherits the junior role’s permissions. For

example, if a Manager role is defined to be senior to an Engineer role, any user assigned to the

Manager role would also have the permissions assigned to the Engineer role.
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Constraints are predicates over configurations of a role model that determine if the configura-

tion is acceptable. Typically, role models permit the definition of mutual exclusion constraints to

prevent the assignment of the same user to two conflicting roles, which can enforce separation of

duty. Other constraints that are frequently mentioned include cardinality constraints to limit the

maximum number of users in a role, or prerequisite role constraints, which express that, e.g., only

someone already assigned to the role of an Engineer can be assigned to the Test-Engineer role. The

most expressive model in the family is RBAC3, which combines constraints with role hierarchies.

2.1.4 Attribute-Based Access Control (ABAC)

Attribute-Based Access Control (ABAC) An access control method where subject requests to per-

form operations on objects are granted or denied based on assigned attributes of the subject, as-

signed attributes of the object, environmental conditions, and a set of policies that are specified in

terms of those attributes and conditions.

Attribute-Based Access Control (ABAC) [28, 68] has been around for over two decades. Nu-

merous ABAC models have been proposed [2, 30, 47, 61, 63, 71]. Despite the existence of these

different ABAC models, there is no consensus on a specific standard ABAC model. However, a

well-accepted simplest form of attribute-based access control includes users, user attributes, ob-

jects, object attributes, actions, and permissions or operations allowed for users on specific ob-

jects, based on attributes of users and objects. This typical foundation provides great freedom

to researchers to incrementally enhance this basic ABAC architecture based on customized needs

and requirements in different scenarios. Any additional component that uses or is compatible with

the basic ABAC components can be incorporated with them in order to get a more powerful and

flexible ABAC model.

As limitations of the two foremost traditional access models (DAC and MAC) inspires the

design of RBAC, role-based access control has its own set of limitations such as role explosion

and role-permission explosion [49]. It is also restrictive in nature since accesses are based only on

roles and it is difficult to include other characteristics of users, and contextual or environmental
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factors (e.g. time, location, etc.) in access control policies.

On the other hand, attribute-based access control policies can easily incorporate these factors

with environmental and contextual attributes [2,61], as well as define access control policies based

on different characteristics of users and objects, besides roles. Although ABAC research has re-

ceived significant attention in academia, it is not so common to find implementations of these

models in the industry.

There are two major techniques for specifying authorization policies in Attribute Based Access

Control (ABAC) models [43]. The more conventional approach is to define policies by using

logical formulas involving attribute values. Examples in this category include ABACα, HGABAC

and XACML. The alternate technique for expressing policies is by enumeration. Policy Machine

(PM) and 2-sorted-RBAC fall into the later category.

2.2 Policy Review in Access Control Models

Policy review (policy review query or policy content query) belongs to a class of analysis queries

that directly examine policy content [5]. We examine typical policy review in the models discussed

in the preceding section.

2.2.1 Discretionary Access Control

Early approaches to specifying DAC policy allowed associating conditions and user groups with

authorizations to restrict their validity. Conditions are (system-dependent (e.g., time or location),

content-dependent (e.g., relation of an object to another), and history-dependent (i.e., previously

grated access)) system predicates that if only satisfied is an associated authorization valid. The

concept of user groups (e.g., Contractors, Analysts, Auditors) allows the use of group hierarchy

in policy specification. Implementations of DAC that support features such as conditions and user

groups motivates the following policy review questions: (i) What group of users are authorized to

perform a given operation on an object? (ii) What are the chain of objects linked to a given object

in a hierarchy?
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In ACL, policy review of authorizations associated with an object is a trivial search, while

policy query of authorizations associated with a subject or user group requires a relatively complex

search of individual ACLs for all objects [15]. Analogously, with capabilities, it is immediate to

retrieve queries on the privileges of a subject, while evaluating all the accesses executable on an

object requires the search of all the different capabilities [55].

2.2.2 Role-Based Access Control

Administrative reviews is a category in the features that the RBAC system and administrative

functional specification defines. The administrative review features define requirements in terms

of an administrative interface and an associated set of semantics that provide the capability to

perform policy query on RBAC elements and relations. Some of the queries answered by the

administrative functions are the following that return the set of:

• users assigned to a given role

• roles assigned to a given user

• operations a given user may perform on a given object

• all permissions either directly granted to or inherited by a given role

• roles directly assigned to a given user as well as those “roles that were inherited by the

directly assigned roles.”

2.2.3 Attribute-Based Access Control

To demonstrate expressive power and flexibility, several ABAC models including [2, 19, 61, 71]

have been proposed in past few years. These models adopt the conventional approach of designing

attribute based rules/policies as logical formulas. Using logical formulas to grant or deny access is

convenient because of the following reasons. (i) Simple and easy: Creating a new rule for granting

access is simple. It does not involve upfront cost like engineering roles in case of RBAC. (ii)

Flexible: Rules are easy to succinctly specify even complex policies. There is no limit on how
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many attributes can be used in a rule or how complex the language be to specify the rule. Given a

required set of attributes, and a computational language, ABAC policy is only limited to what the

language can express [68].

Interestingly, designing a rich computational language to define attribute-based rules makes

policy update or policy review an NP-complete or even undecidable problem. For example, autho-

rization policies in many existing ABAC models including [2,61,71] are expressed in propositional

logic. Reviewing policy in these models (which may simply ask, for a given policy which (attribute,

value) pairs evaluate the policy to be true) is similar to the satisfiability problem in propositional

logic which is NP-complete. Likewise review for policies specified in first-order logic is undecid-

able.

Another method for specifying attribute-based policies is by enumeration. Policy Machine [12]

and 2-sorted-RBAC [37] fall into this category. Enumerated policies can also be very expressive.

Ferraiolo et al. [12] show configuration of LBAC, DAC and RBAC in Policy Machine using enu-

merated policies [12]. Moreover, updating or reviewing an enumerated policy is inherently simple

(polynomial time) because of its simple structure. It should be noted that the size of an enumerated

policy may be exponential relative to a succinct formula which expresses the same policy. Thus

there is a trade-off between these two methods for specifying policies.

2.3 Attribute Based Access Control

Attribute-Based Access Control: An access control method where subject requests to perform

operations on objects are granted or denied based on assigned attributes of the subject, assigned

attributes of the object, environmental conditions, and a set of policies that are specified in terms

of those attributes and conditions. The ABAC model not only has the flexibility to enforce a

combination of the previous models but also has the expressive power lacking in the traditional

models.

At the minimum, any ABAC system can evaluate attributes and enforce rules or relationships

between those attributes. The Attribute-Based Access Control Mechanism evaluates attributes and
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Figure 2.1: Core ABAC Representation (adapted from [68])

access control rules to provide access decisions for all access requests. Essentially, the Policy

Enforcement Point (PEP) and the Policy Decision Point (PDP) are components at the core of an

Attribute-Based Access Control mechanism. While the Policy Enforcement Point interfaces the

access request and protected resources, the Policy Decision Point determines whether to grant or

deny access requests made through the PEP based on access control rules (see figure 2.1).

All subjects and objects within the system must be assigned specific attributes that characterize

them. In some cases, a single attribute is sufficient to distinguish an entity. For example, identifying

an object by ownership ascribed to it. Other scenarios require a combination of attributes to capture

a subject or object. For instance, determining a subject based on the organization they belong to,

the certifications held, and years of experience. Whenever there is a change to system entities,

associated attributes may require updates.

2.4 Attribute-Based Access Control Models

At this moment, a metamodel instance CABAC [19] is one of the most recent efforts to formalize

the ABAC model. While there is no standard ABAC model, research effort classified proposed

models as a pure or hybrid [62]. The formalism of various ABAC models differs slightly, but they

constitute common entities and relations. Some of the proposed pure ABAC models are system

agnostic and subsume other traditional models. Another group of proposed pure ABAC models is
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Figure 2.2: Policy Machine Authorization Graph

domain-specific for cloud-computing, mobile environment, grid computing, and web services.

Hybrid ABAC models aim to integrate attributes into existing models of access control to ex-

tend traditional models with an identity-less or policy-based access control notion. An early hybrid

approach towards an ABAC model was the introduction of parameterized roles and permissions

to RBAC, PRBAC [69]. Other RBAC-ABAC hybridizations are Attribute-Based Role Assign-

ment [29], Attribute-Centric [18, 36], and Role-Centric [33]. Apart from the RBAC extension, a

recent effort was to unify ABAC with alternative access control models [32].

An ongoing effort to standardize Attribute-Based Access Control by the (American National

Standards Institute / International Committee for Information Technology Standards) ANSI/INCITS

is the Next Generation Access Control (NGAC) standardization. The Policy Machine (PM) is the

basis for the Next Generation Access Control. We implemented a couple of the Attribute-Based

Access Control policy review issues previously discussed in the context of the policy machine.
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2.5 Policy Machine Overview

The rest of this section provides an overview of policy machine core data elements and selected

relations pertinent to this work. The assignment, association, prohibition, and obligation are the

primary relations. Privileges and restrictions are derived relations from associations and prohi-

bitions in the PM respectively. In this work, we only focus on the assignment and association

relations and concepts related to them. To ease referencing, we provide the formal definition of

PM components discussed in this work in table 2.1. Readers with prior knowledge of policy ma-

chine fundamentals may skip this section.

PM Basic Elements And Relations

Policy specification in Policy Machine has an annotated Directed Acyclic Graph (DAG) represen-

tation. Basic elements of the PM called Policy Elements (PE) are the nodes in the access control

graph. These nodes are the finite sets of Users (U), Objects (O), User Attributes (UA), Object

Attributes (OA), and Policy Classes (PC). As shown in the access control graph of figure 3.3, the

users / user attributes are the left top nodes. Unlabeled directed acyclic edges called assignments

are relations allowed from user nodes to user attribute nodes, user attribute to user attribute nodes,

and user attribute to policy class node. In a similar fashion on the right side of the graph, connected

unlabeled directed acyclic edges start from object / object attribute nodes, through object attribute

nodes, and terminates at the policy class node. All the nodes except for the policy class must have

a path to the policy class. Users’ access to protected resources is only possible through the creation

of an association. An association is a relation represented by labeled (annotated) downward-arcing

edge from a user attribute node to an attribute (user attribute or object attribute node). For instance,

in figure 3.3, the association triple (Group Head, aarsi, Retail & Foreign Serv) specify that a user

who has a path to Group Head is authorized to perform operations enabled by aarsi on Retail &

Foreign Serv and policy element that has a path to Retail & Foreign Serv. Access granted through

an association could be a set of resource access rights or a set of administrative access rights (shown

in solid blue and dashed red edges respectively). The policy elements and the relations constitute
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Table 2.1: Basic Model Elements & Relations.

U A finite set of authorized users; U = {u1, ..., un}
where ui denotes a member of U.

P A finite set of system processes; P = {p1, ..., pn}
where pi denotes a member of P.

O A finite set of protected objects; O = {o1, ..., on}
where oi denotes a member of O.

UA A finite set of user attributes; UA = {ua1, ..., uan}
where uai denotes a member of UA.

OA A finite set of object attributes; OA = {oa1, ..., oan}
where oai denotes a member of OA. OA ⊇ O

PC A finite set of policy classes; PC = {pc1, ..., pcn},
where pci denotes a member of PC.

PE

A finite sets of users in U, objects in O,
user attributes in UA, object attributes in OA,
policy classes in PC;
PE = U ∪ UA ∪ OA ∪ PC and O ⊆ OA

AT The finite set of user and object attributes;

AT def
= UA ∪ OA.

AR

A finite set of resource access rights RAR
and administrative access right AAR;
AR = {ar1, ..., arn} and 2AR

1 is the non empty subsets of AR,
where ari denotes a member of AR.
AR = RAR ∪ AAR

ASSIGN

The assignment relation is a binary relation
on the set of policy elements, PE.
ASSIGN ⊆ (U×UA) ∪ (UA×UA)
∪ (OA×OA) ∪ (UA×PC) ∪ (OA×PC)

ASSIGN+

The binary relation ASSIGN+ is the
transitive closure of the assignment relation
ASSIGN. ASSIGN ⊆ ASSIGN+

ASSOCIATION

The ternary relation ASSOCIATION from UA to 2AR
1 to AT.

ASSOCIATION ⊆ UA × 2AR
1 × AT

If segregated by RAR and AAR,
ASSOCIATION ⊆ (UA × 2AR

1 × AT) ∪ (UA × 2AR
1 × AT)
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the authorization graph. The table shown in the figure is a formal definition of the PM components

mentioned and others in subsequent sections of this dissertation.

2.6 ABAC Policy Specification Methods

2.6.1 Enumerated Policy

Two related work to policy review in the PM framework attempt to answer two types of user

queries. One, can a particular user operate on an object? Two, what privileges does a user have?

As an example, "can Carl review all objects in the system that he can read or write?"

Mell et al. [45] was the first attempt to implement graph search approaches to query policy

in the PM .The other contribution made use of a variation of an algorithm that finds common

predecessors of two nodes in a Directed Acyclic Graph (DAG). A comparison of the performance

characteristics of the techniques in the mentioned work to the existing implementations shows

significant improvement. The time complexity to evaluate access decisions and review access

rights based on the number of edges improved from quadratic to linear. In the case of Basnet et

al. [4], it is linear in the number of operation nodes (they converted operation labeled edges into

nodes) for making access decisions and log-linear in the number of user and operation nodes to

review access rights.

In contrast, we apply policy queries to create or modify rules. That is, we evaluate policy

queries to create rules that grant or deny user access.

2.6.2 Logical-Formula Policy

The PTaCL and XACML are some languages that support logic-based formula for expressing

ABAC policy, where attribute names/values pairs are terms for defining policies and access re-

quests. Policy languages expressed in propositional logic apply an ABAC policy to a request by

matching the attributes in the request with policy attributes. At the time a request is evaluated, some

attribute values are retrieved incorrectly. The consequence is a complex decision that describes all

possible evaluation outcomes to make up for missing attributes. A novel evaluation mechanism
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that uses a non-deterministic attribute retrieval for a given request addresses the complex decision

problem for the enforcement mechanism that needs to resolve it into a conclusive one [11].

Zhang et al. present a model-checking algorithm to evaluate access control policies and a tool

as its implementation [72]. The algorithm checks whether the access policies allow authorized

users to reach their goals and prevent intruders from achieving their malicious actions. The au-

thors utilize their previous work that formalizes the RW access control system description and

verification framework to describe the policies and goals (read and overwrite operations) of agents

(subjects) evaluated. The algorithm performs two modes of checking on its input, a policy descrip-

tion, and a goal. The accessing mode of the algorithm searches for strategies consisting of reading

and writing steps that allow the agents to achieve their operations regardless of the system state.

In the intrusion detection mode, the algorithm evaluates the willingness of intruders to guess the

value of attributes that s/he not allowed to read.

2.7 Administrative Role Based Access Control Policy Analysis

2.7.1 ARBAC97

Administrative role-based access control ‘97 (ARBAC ‘97) [56] defines administrative roles and

specifies how members of each administrative role can change the RBAC policy. It enables the

specification of policy for user-role assignment changes. Also, ARBAC requires separate adminis-

tration [66]. In other words, the administrative role cannot serve as the target role in the rules that

expressed the policy. However, the work of [70] argues that the assumption of separate adminis-

tration limits the expressiveness and applicability of ARBAC.

There are several research contributions on the user-role reachability analysis of ARBAC.

These works query whether a given user can be assigned to given roles by given administrators.

Studies on the analysis of user-role reachability [22, 23, 31] assume separate administration by

following the ARBAC ‘97 definition. Stoller et al. analyzed the ARBAC user-role reachabil-

ity without separate administration using an algorithm that allows roles that appear negative and

positive in the policy and a fixed tractable number of users. However, the algorithm may have

19



exponential complexity for the users and mixed roles but have polynomial complexity for a fixed

input size in numbers of users and mixed roles. By reducing the number of ARBAC rules and users

considered during analysis, some research efforts [70] optimized Stoller and Co algorithm.

2.7.2 Administrative TRBAC

There are two temporal extensions of the RBAC model, TRBAC, which impose temporal con-

straints on roles activation or user-role assignment. Also, these models restrict the ability to per-

form administrative action by temporal constraints. The administration of extended RBAC policies

with contextual information, like time and space, is complex since they must fulfill fluid require-

ments. There are a couple of research contributions on the safety problem of Administrative Tem-

poral RBAC (ATRBAC). Analysis in these studies identified administrative actions that generate

policies through which a user can acquire permissions that may compromise some security goals.

Mondal et al. [41] reduced the safety problem for ATRBAC policies to a verification problem of

timed automata [3]. Apart from safety, their approach supports other verification properties but as-

sumes a fixed set of users. The disadvantage is that whenever the set of users changes, the analysis

requires a re-run. Furthermore, it is not a scalable technique because the state space exploration

grows exponentially by the model checker in the number of users.

Another approach proposed in [67] transformed the safety problems of ATRBAC policies into

reachability problems for policies expressed in models that are similar to URA97 or URA97 vari-

ant. Their work allows leveraging previous effort in analyzing Administrative RBAC policies by

using existing tools such as RBAC-PAT [22] or VAC [21]. The drawback of [67] is the state-

space explosion, there is a need to solve several safety problems for URA97, and the complexity

of many constrained versions of this problem is NP-hard [60]. Ranise et al. [51] apply the sym-

bolic model checking technique (that uses a class of the first-order formulae, Bernays-Shonfinkel-

Ramsey BSR [50]) to solve safety problems for ATRBAC policies and addressing the limitations of

previous contributions mentioned. Their work translates the safety problem of ATRBAC policies

to a reachability problem of BSR transition systems.
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2.8 Attribute Based Access Control in Hyperledger Fabric

Here, we overview previous research contributions on exploiting blockchain for an ABAC imple-

mentation. The application of blockchain as an Attribute-Based Access Control system is studied

in different domains. The implementation of blockchain-based ABAC in IoT systems is discussed

by Pinno et al. [46], Ding et al. [16], and Dukkipati et al. [17]. Zhang and Posland in [73] propose

a blockchain-oriented authorization scheme for Electronic Medical Records (EMRs). The gran-

ularity of their authorization approach support queries of blocks and attribute values. Also, their

method lowers the computational overhead by eliminating the use of the Public Key Infrastructure

(PKI) for authorization, encryption, and decryption.

Another attempt to control access to Electronic Health Record (EHR) proposes an architecture

that uses both blockchain and edge node [24]. The blockchain serves as the controller that manages

the identity and access control policies specified in the Abbreviated Language For Authorization

(ALFA). Besides, the edge node is off-chain storage for the EHR data and uses specified policies to

enforce attribute-based access control on EHR data in combination with blockchain-based access

control logs.

Maesa et al. [39] introduced an access control service utilizing the Ethereum blockchain plat-

form. The blockchain stores smart contracts as access control policies specified using eXtensi-

ble Access Control Markup Language (XACML) [40] and process access decision making. Gou

et al. [25] propose a multi-authority attribute-based access control scheme by using Ethereum’s

smart contracts. The Ethereum smart contracts provide the specification for the interactions be-

tween data owner, data user, and multiple attribute authorities. A data user presents its attributes

to different attribute authorities and receives attributes tokens from respective attribute authorities

only if validation of attributes is successful. The use of a distributed Attribute-Based Access Con-

trol system based on Hyperledger Fabric blockchain to provide trusted auditing of access attempts

was proposed by Rouhani et al. [53].

There are few implementations of attribute-based access control on a blockchain for a domain-

independent scenario [25, 39, 53]. While [39, 53] specify policies using the XACML, we utilize
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the Policy Machine, a different open-source attribute-based access control framework developed

by NIST. Rouhani et al. [53], the only generic implementation of attribute-based access control on

Hyperledger Fabric blockchain network, utilizes ABAC components as smart contracts to control

access to an off-chain system. In contrast, our attribute-based access control implementation spec-

ifies policies using smart contracts for access control to the on-chain data. Also, an all-purpose

blockchain-oriented attribute-based access control implemented by Maesa et al. [39] and Guo et

al. [25] utilizes the Ethereum blockchain platform. The Ethereum based blockchain implementa-

tion is costly because of the fee paid for every operation, but there are no fees in the permissioned

blockchain, such as the Hyperledger Fabric.
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CHAPTER 3: ADMINISTRATIVE ACCESS AUTHORIZATION

THROUGH POLICY REVIEW

An access request in the policy machine model is a request to operate on resources represented

as objects (i.e., non-administrative access request) or on the creation and maintenance of policy

elements and relations (i.e., administrative access request). For both access request types, we

consider authorizing access requests through subsets of administrative privileges. In other words,

a user who is not a superuser (root user) can grant access to another user. The relationship between

a user requesting access and the resource referenced by that request dictates the authorization

approaches. In this chapter, we discuss the access request scenarios, the policy review of policy

elements involved in granting access, and how we apply these scenarios and the reviewed policy

elements in our algorithm.

3.1 Preliminaries

3.1.1 Definitions

The policy review of authorization approaches can be stated as – given a denied access request,

find all the possible sets of one or more access request sets that can authorize the denied access

request such that no strict subsets of any access request set can grant the denied access.

Formally, given AREQD : ∀areqd ∈ AREQD ·
(
Access_Decision(areqd) = deny

)
, find

AREQauth :

∀areqd ∈ AREQD, ∀areqA ∈ AREQauth ·
((
∀areq ∈ areqA

· Access_Decision(areq) = {accept}
)
−→ Access_Decision(areqd) = {accept}

)
∧
(
∀areqs ⊂ areqA ·

((
∀areq ∈ areqs · Access_Decision(areq)

= {accept}
)
−→ Access_Decision(areqd) = {deny}

))

An Authorizing Access Request is a function that takes a set of denied access requests as input
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and return a set of one or more access request sets as output for each denied access request such

that the following conditions are satisfied:

1. A given denied access request is authorized if all access requests of the associated access

request set is authorized.

2. A given denied access request cannot be authorized by any strict subsets of the associated

access request set.

A formal expression for this function and its conditions are given as func_aareq :

AREQD −→ 22
AREQ ,

Where ∀areqd ∈ AREQD, ∀areqA ∈ func_aareq(areqd) ·
((
∀areq ∈ areqA

· Access_Decision(areq) = {accept}
)
−→ Access_Decision(areqd) = {accept}

)
∧

(
∀areqs ⊂ areqȦ

((
∀areq ∈ areqs · Access_Decision(areq)

= {accept}
)
−→ Access_Decision(areqd) = {deny}

))

3.1.2 Assumption

All users in the policy machine derive privileges to operate on the protected resource through as-

signment and association relations. The assignment relations among attributes of the same type are

hierarchical. Thus, the policy machine allows specifying authorization in multiple ways. In other

words, creating a combination of relations can grant a single access request. However, there may

be a restriction on obvious approaches to permit access. Our algorithm generates an exhaustive

list of all possible ways to authorize a request, especially approaches that are manually difficult to

identify.
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3.1.3 Observations

1. The Principal Authority (PA), also known as the superuser, is a compulsory predefined entity

of the PM. The PA is responsible for creating and controlling the policies of the PM in their

entirety and inherently holds universal authorization to carry out those activities within the

PM. The access rights held by the principal administrator can be delegated to a domain or

subordinate administrators except the following:

(a) The access right to create and delete policy class.

(b) The access right to create and delete assignment of attributes to the policy class.

For instance, the Principle Administrator (PA) that instantiated the authorization graph of

figure 3.3 is not visible in the graph. He created the policy class (BankOp Access), the nodes

(Admin, Op Officers, Retail & Foreign Serv, Group Head, Regional Head, Jane, and Paul),

and the edges between them. At the minimum, he also created the associations ((Group

Head, aarsi, Op Officers) and (Group Head, aarsj , Retail & Foreign Serv)). Access rights

granted to users with a path to Group Head are sufficient to create all other policy elements

and relations.

2. To preserve the properties of the policy machine, it requires deleting relations before the

policy element. For example, if a user attribute is involved in an assignment or association

relation, the user attribute cannot be deleted until it is no longer involved in the relation.

3.1.4 Notations

In this paper, the notation to represent administrative access rights is no different from the generic

specification of NIST. We adopt a subscript notation to describe the relationship of a user and

process. And dot notation is applied in referencing subentities of an object.

• User’s Process: A user can have a one to many relations with processes, but a process can

have a one to one relation with the user. We denote a user us associated with a process p as

pus .
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• Access Rights: Every administrative access right for the creation and deletion of policy

element is prefixed by ‘c-’ and ‘d-’ respectively. A policy element or a pair of policy elements

follows. For instance, ‘c-uapc’ is the administrative access right to create an assignment from

a user attribute (ua) to a policy class (pc).

• Access Request Element: Let areqd = (pus , arx, target) be a tuple of an administrative

access request. For simplification, we adopt the dot notation to reference the access request

variables. For example, the administrative operation arx in the access request denoted as

areqd.arx

3.1.5 Claim

The create and delete access rights are the only types of administrative access rights that applies to

policy elements and their relations. However, deletion of any policy element and/or relations can

not authorize any denied access request

The deletion of any policy element and/or relations can not authorize any denied access request.

That is to say, given an access request set that authorizes a denied access, if there exist an

operation requesting the deletion of any policy element in the access request set and no strict

subset of the access request set can grant the denied access, then the denied access is authorized

without the operation requesting the deletion of a policy element and no strict subset of the access

request set can grant the denied access. We can express this claim formally as in table 3.1.

3.1.6 Scope

The PM framework has multiple facets – the policy elements and the assignments that make up

a policy element diagram, the association and prohibition that apply the policy element diagram

to form the authorization graph, and obligations that are carried out when access-related events

occur [12]. Prohibition and obligation are outside the scope of this work.

26



Table 3.1: A formal expression, no delete operation is required to grant access authorization

∀areqd ∈ AREQD,∀areqA ∈ func_aareq(areqd) ·

(((
∀areq ∈ areqA : ∃d-* ∈ areq.aop·

Access_Decision(areq) = {accept}
)
∧ Access_Decision(areqd) = {accept}

)
∧(

∀areqs ⊂ areqA ·
((
∀areq ∈ areqs · Access_Decision(areq)

= {accept}
)
∧ Access_Decision(areqd) = {deny}

))
−→((

∀areq\areqdd: areqdd.aop = d-* ∈ areqA · Access_Decision(areq)

= {accept}
)
∧ Access_Decision(areqd) = {accept}

)
∧(

∀areqs ⊂ areqA ·
((
∀areq ∈ areqs · Access_Decision(areq)

= {accept}
)
∧ Access_Decision(areqd) = {deny}

)))

3.2 Policy Review For Access Authorization

We adapt the following terms in the construct of the policy reviews for access authorization:

• A privileged user is a user that can grant the permission another user is seeking. Our algo-

rithm only considers granting access by a nonprinciple administrator through the creation of

edges (relations) between existing nodes (policy elements).

• A user requesting access to operate on a policy element is the source user.

• A protected resource that a source user is requesting to operate on is a target policy element.

• The precondition associations are association relations that a privileged user derives its per-

mission to authorize a source user.

• A set of policy elements that the creation of one or more (edges) relations between them

authorize the source user’s request is an authorization enabling policy element.

For this work, authorizing access through policy reviews only holds for a privileged user grant-

ing access by creating edges (relations) between existing nodes (policy elements).
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Access Authorization Scenarios

The policy machine access requests are distinguishable by the type of operation or protected re-

source a subject wants to access. We categorize all access request into two scenarios using the

containment relation. This enables us to specify the properties of an authorization enabling policy

element and the precondition associations in our queries.

One possible scenario is when the target policy element contains the source user (i.e., the target

policy element is reachable from the source user) or there is a user attribute that contains both the

source user and the target policy element (i.e., there is a path from both the source user and the

target policy element to a user attribute). While this first situation only happens if the target policy

element is a user or a user attribute, the source user can only request an administrative operation on

these types of target policy elements. That is, the source user may want to create/delete a user or

user attribute node in the authorization graph. Consequently, a user or user attribute target policy

element limit authorization enabling policy element queries to user attribute only.

The second scenario is of a request that the target policy element is not reachable from the

source user and no attribute contains both the target policy element and the source user. In this

case, the source user may want to operate on a target policy element that is a user, user attribute, an

object, or an object attribute. Thus, the access request is an administrative or a non-administrative

(resource) access request. For instance, the source user may want to read a file, run an application,

or create/delete a user, a user attribute, an object, or an object attribute. The operation differentiates

the access request in this scenario. For a target policy element that is an object or object attribute,

the queries for authorization enabling policy element includes both (user and object) attributes.

Before we delve into the definition of authorization enabling policy element and precondition

associations for the two scenarios, we adapt following notations for specifying a set and functions

in the authorization enabling policy element

• tail : ASSOCIATION −→ UA: is a function that maps an edge, association relation,

(uai, arsj, auk) ∈ ASSOCIATION to the (user attribute) node uai ∈ UA it originates.
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Figure 3.1: A Generic Authorization Graph: source user requesting administrative operation on a
user attribute

• head : ASSOCIATION −→ AT: is a function that maps an edge, association relation,

(uai, arsj, auk) ∈ ASSOCIATION to the (user/object attribute) node atk ∈ AT it terminates.

Where AT = UA ∪ OA

• anc: PE −→ 2PE: is the mapping from a policy element to the set of policy elements that is

an ancestor to the policy element.

• des: PE −→ 2PE: is the mapping from a policy element to the set of policy elements that is

a descendant to the policy element.

• PEifunc = {node | (∃pej∈PEi)[node∈func(pej)]}: is the set of all policy elements returned

by func for the set PEi, where func is anc or des.

Administrative Authorization Enabling User Attributes

For a source user whose target policy element is a user or user attribute and there is a user attribute

that contains the source user and target policy element, the precondition association must satisfy

the following:
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1. The user attribute node returned by the tail function for the precondition association as its

input is reachable from a privileged user.

2. The head function returns a user attribute node that is reachable from the source user, target

policy element, and the privileged userfor the precondition association as its input.

Figure 3.1 depicts a generic authorization graph for the first scenario. We assume the source

user (i.e., us) wants to perform an administrative action on a user node, ut. Since there is no path

from the source user node to an association, no request is authorized. Also, we assume the admin-

istrative access rights set arsi activates the operation the source user us wants to perform on the

target policy element ut. Firstly, we query for the precondition association, (uap, arsi, uaw)

in this case. The precondition association (uap, arsi, uaw) allows a privileged user (e.g.,up)

to create (assignment and/or association) relations that authorizes the source user. That is, the priv-

ileged user creates relation(s) that provides an assignment relation path from the source user to the

user attribute, uap returned by the tail function for the precondition association, (uap, arsi,

uaw). The privileged user creates relations using the combination of the following defined user

attribute sets, authorization enabling policy element to authorize a source user.

• UA1: is a set of user attribute nodes that has a path to the precondition association (uap,

arsi, uaw) predecessor-node (uap). That is, the set UA1 = {uak1,uak2, ....,uakn,uap}

Table 3.2: Precondition Association & Auth. Enabling User Attributes

Precondition {(uap, arsi, uaw)∈ASSOCIATION | arx ⊆ arsj}

Association

Priv. Users {up∈U | (up, uap) ∈ASSIGN+}

Source Users {us∈U | (us, uaw) ∈ASSIGN+ ∧ (us, uap) /∈ ASSIGN+}

Target UA {target∈UA | (us, target), (target, uaw) ∈ASSIGN+}

UA1 {ua | ua = tail((uap, arsi, uaw)) ∨ ua∈anc(tail((uap, arsi, uaw))}

UA2 {ua | ua∈anc(head((uap, arsi, uaw))) ∧ ua∈des(us)}

UA3 {ua | ua∈anc(head((uap, arsi, uaw))), ua/∈ UA2anc , ua/∈ UA2, ua/∈ UA1des , ua/∈ UA1}

UA4 {ua | ua∈des(us) ∧ des(uat) }
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in figure 3.1. UA1 = {ua | ua = tail((uap, arsi, uaw)) ∨ ua∈anc(tail((uap,

arsi, uaw))}

• UA2: is a set of user attribute nodes on the path of the source user to a user attribute that con-

tains both the source user and the target policy element. UA2 = {ua | ua∈anc(head((uap,

arsi, uaw))) ∧ ua∈des(us)}

• UA3: is a set of user attribute nodes that has a path to a user attribute containing both

the source user and the target policy element, and excludes user attributes in the sets UA1

and UA2. UA3 = {ua | ua∈anc(head((uap, arsi, uaw))), ua/∈ UA2anc , ua/∈ UA2,

ua/∈ UA1des , ua/∈ UA1}

• UA4: is a set of user attribute nodes that contains the source user and target policy element

(ut). UA4 = {ua | ua∈des(us) ∧ des(uat) }

The formal definition of the above queried precondition association and authorization enabling

policy element sets for this scenario is in table 3.2.

Administrative Authorization Enabling Attributes

For an administrative request that the source user does not contain the target policy element or

there is no attribute that contains the source user and the target policy element, the target policy

element can be a user, user attribute, an object, or object attribute. To allow the source user

operate on the target policy element in this scenario, we query for two precondition associations

(precondition association
′ and precondition association

′′). While the precondition association
′′

permits the source user’s operation on the target policy element, the precondition association
′

allows the creation of relation(s) that makes the predecessor node of the precondition association
′′

reachable from the source user.

If the target policy element is an object or object attribute, precondition association
′ prede-

cessor and successor nodes are user attributes. While the predecessor node of the precondition

association
′′ is a user attribute node, the successor is an object attribute, when the target policy
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Figure 3.2: A Generic Authorization Graph: source user requesting administrative operation on
an object attribute

element is an object or object attribute. However, if the target policy element is a user or user

attribute, the predecessor and successor nodes of the precondition association
′ and precondition

association
′′ are user attributes. These precondition associations need to satisfy the following:

1. The successor node of the precondition association
′′ is reachable from the target policy

element and a subset of its access rights set enables the source user’s operation.

2. The successor node of the precondition association
′ is reachable from the predecessor node

of the precondition association
′′ .

3. There is path from a privileged user to the predecessor node of precondition association
′ and

precondition association
′′ .

4. The successor node of the precondition association
′ is reachable from the source user and

the privileged user. A subset of the precondition association
′ access rights set grants the

privileged user the authority to create relation(s) that make(s) the predecessor node of the

precondition association
′′ reachable from the source user.

In the authorization graph of figure 3.2, let us be the source user that wants to operate on an

object attribute oaw. After the administrator queries for the two precondition associations (i.e.,

precondition association
′ = (uai, arsj , uak) and precondition association

′′ = (uai, arsq, oar)in
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the figure). Then s/he queries for the following (authorization enabling policy elements) user

attributes and object attributes sets in the authorization graph.

• UA1 is a set of user attribute nodes that has a path to the predecessor-node(s) (uai) of

both precondition associations (uai, arsj , uak) and (uai, arsq, oar). UA1 = {ua | ua ∈

anc(head((uai, arsj , uak))) ∧ ua ∈ anc(head((uai, arsq, oar)))}

• UA2 is a set of user attribute nodes with a path to the successor-node (uak) of the precondi-

tion association
′ (uai, arsj , uak) and are reachable from the source user. UA2 = {ua | ua

∈ anc(head((uai, arsj , uak))) ∧ ua ∈ des(us)}

• UA3 is a set of user attribute nodes with a path to the successor-node of the precondi-

tion association
′ (uai, arsj , uak) and not in the sets UA1 and UA2. UA3 = {ua | ua ∈

anc(head((uai, arsj , uak))), ua /∈ UA2anc , ua /∈ UA2, ua /∈ UA1des , ua /∈ UA1}

• OA1 is a set of object attribute nodes that has a path to the successor node (oat) of the pre-

condition association
′′ (uai, arsq, oar) and is not reachable from the target policy element

oaw. OA1 = {oa | oa ∈ anc(head((uai, arsq, oar))) ∧ oa /∈ des(oaw)∧ oa 6= oaw}

• OA2 is a set of object attribute nodes that has a path to the successor node of the the pre-

condition association
′′ (uai, arsq, oar) and is reachable from the the target policy element

oaw. OA2 = {oa | (oa ∈ des(oaw) ∧ oa /∈ OA1des) ∨ oa = oaw}

• OA3 is the set of object attributes that has a path to the successor node of the (oat) of the

precondition association
′′ (uai, arsq, oar) and are reachable from the target policy element

oaw and elements of the set OA2. OA3 = {oa | (oa ∈ anc(head((uai, arsq, oar))) ∧ oa

∈ des(oaw) ∧ oa ∈ OA2des ) ∨ oa = head((uai, arsq, oar)) }
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Table 3.3: Scenario-II Policy Elements & Relations.

Enabling {(uai, arsq, oar)∈ASSOCIATION | arx ⊆ arsq

Assoc-a ∧ ∃ up ∈ U : (up, uai) ∈ASSIGN+}

Enabling {(uai, arsj , uak)∈ASSOCIATION | ∃ up, us ∈ U

Assoc-b : (us, uai) /∈ ASSIGN+∧ (up, uai) ∈ASSIGN+}

Priv.
{up∈U | ∃ (uai, arsj , uak), (uai, arsq, oar)

Users ∈ ASSOCIATION : (up, uap) ∈ASSIGN+}

Source
{us∈U | ∃ (uai, arsj , uak) ∈ ASSOCIATION :

Users (us, uak) ∈ASSIGN+ ∧ (us, uai) /∈ ASSIGN+}

Target
{oaw ∈OA | ∃ (uai, arsq, oar) ∈ ASSOCIATION

OA : (oaw, oar) ∈ASSIGN+}

UA1

{uap ∈UA | ∃ (uai, arsj , uak), (uai, arsq, oar) ∈
ASSOCIATION : (uap, uai) ∈ASSIGN+}

UA2

{uas ∈UA | ∃ (uai, arsj , uak) ∈ ASSOCIATION,

us∈ Source Users : (us, uas), (uas, uak) ∈ASSIGN+}

UA3

{uav ∈UA | ∃ (uai, arsj , uak) ∈ ASSOCIATION

: (uav, uak) ∈ ASSIGN+} \{UA1 ∪ UA2}

OA1

{oak ∈OA | ∃ (uai, arsq, oar)∈ ASSOCIATION,

oaq, oat ∈ OA, oaw ∈ Target OA :

(oak, oar), (oaw, oat), (oaq, oak), (oat, oak) ∈ASSIGN+

(oaq, oat), (oat, oaq) /∈ ASSIGN+}

OA2

{oat ∈OA | oat /∈ OA1 ∧ ∃ oak ∈ OA1

: (oat, oak) ∈ ASSIGN+

OA3

{oaq ∈OA | oaq /∈ OA2 ∧ ∃ oak ∈ OA1

: (oaq, oak) ∈ ASSIGN+
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Lastly, the administrator creates a combination of relation between elements of the authoriza-

tion enabling policy elements using derived privileges from precondition association
′ (uai, arsj ,

uak) and precondition association
′′ (uai, arsq, oar) to grant source user us request. Table 3.3

formally defines the above authorization enabling attributes and relations for a source user request-

ing an administrative operation on an object or an object attributes.

In a similar manner as the aforementioned procedure, an administrator can authorize a source

user requesting an administrative operation on a user or user attribute. To represent this case in

an authorization graph like figure 3.2, the object attribute sub-graph is a user attribute sub-graph.

Also, all the five sets of authorization enabling policy elements are user attribute sets.

3.3 Illustrative Example

The example that follows demonstrates how the number of approaches to grant access can explode

and how any constraint can limit the number of ways an access may be granted.

Example 1. The authorization graph of figure 3.3 represents the access policy of a financial insti-

tution with the policy class BankOp Access. In the financial institution, a sensitive task ‘trans-T’

must be completed by a single user who is a member of both user attributes, ATM Custodian and

Trans Serv Supervision (i.e., Cathy). The task ‘trans-T’ is modeled as a sequence of administrative

operation granted on Object attributes, ATM & POS Serv and Wire Trans Serv through the sets

of administrative access rights aarsp and aarsq respectively. Alice and Bob are employees of the

financial institution. Alice is a member of ATM Custodian and not Trans Serv Supervision, while

Bob is a member of Trans Serv Supervision and not ATM Custodian.

For another task ‘T-1’ in this same institution, it is required that a user whose a member of

both ATM Custodian and Trans Serv Supervision assigns a member of the Backup Officer to ATM

Custodian in order to complete the task ‘T-1’. In the current state of the authorization graph

of figure 3.3, Cathy does not have the access right to assign Backup Officer to ATM Custodian.

Assuming Jane and Paul (members of the institution that has a path to the user attribute Group

Head) can grant Cathy the access right to create the required assignment (unlabeled edge), using
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the administrative access rights in aarsi. The following are approaches to grant Cathy the access

right to assign Backup Officer to ATM Custodian:

1. Create association between user attribute: Jane or Paul can create associations from any user

attribute on Cathy’s path to Op Officers (i.e., ATM Custodian and Trans Serv Supervision) to

any user attribute that makes Op Officers reachable from Backup Officer (i.e., Backup Officer

and Op Officers). In other words, Jane or Paul can create four different association relations

(labeled with at least the access right Cathy is requesting) to grant Cathy the required access.

2. Create assignment from a user attribute to user attribute: Jane or Paul can create assign-

ments (unlabeled edges) between user attributes that make Group Head or Regional Head

reachable from Cathy. That is, in order to authorize Cathy’s request, Jane or Paul needs to

create an (unlabeled edge) assignment from user attribute node (ATM Custodian or Trans

Serv Supervision) to user attribute node (Group Head or Regional Head). This second ap-

proach authorizes Cathy’s request by creating one of the four possible assignment relations.

3. Create assignment from a user to user attribute: Again, Jane or Paul can create assignments

(unlabeled edges) from user node (Cathy) to user attribute node (Group Head or Regional

Head) that makes (Group Head or Regional Head) reachable from Cathy. There are only

two ways to authorize Cathy’s request using this approach.

In total, there are twelve different ways of creating an assignment or association to allow Cathy

complete task ‘T-1’. However, only the two different ways of the three enumerated approaches

does not violate the constraint on the task ‘trans-T’. If Jane or Paul should authorize Cathy’s

request using the first or the second approach, then Alice and Bob can collude to carry out task

‘trans-T’.

Even more, this is a simple example compare to the size of an enterprise where this kind of

issue get more complicated. Also, the structure of an authorization graph may permit granting

an access using any non-redundant combination of the three approaches. For instance, in the

previous example, Jane or Paul may grant Cathy’s request to complete task ‘T-1’ by first creating
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Figure 3.3: Policy Machine Authorization Graph

an (unlabeled edge) assignment from Cathy to Backup Officer and then create another (unlabeled

edge) assignment from Backup Officer to Group Head or Regional Head.

3.4 Algorithmic Design and Evaluation

3.4.1 Policy Review Algorithm for Generic Authorization

The proposed algorithm in this dissertation comprises of three functions. The function mainPReview

is the basis for the discovery of policy elements and relations for the two scenarios. The functions

targetContainsSource and sourceNotContained provide possible approaches to au-

thorize a source user requesting access in scenario-I, and scenario-II respectively.

The privileged user’s access rights are utilized to create the authorization approaches. All ad-

ministrative access rights for creating assignments enable a common operation, createAssign.

The createAssign takes an ordered pair of nodes that an edge originates and terminates as

input. Similarly, access rights for creating associations enable the operation createAssoc. A

triple as input to the createAssoc is the predecessor-node, the label, and successor-node of an
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edge.

An input to the mainPReview function is the authorization state of a graph Gauth and access

requesting triple areqd. The pus , arx, and target of the triple is the source user, access right

source user is requesting, and target policy element respectively. The expected output of this

algorithm AREQA is a list of sets of possible approaches to grant the source user’s access for

either of two scenarios.

The flow of the algorithm is as follows:

1. Step 1a of algorithm 3.1 are preconditions to generate authorization approaches for scenario-

I and scenario-II, respectively. If the conditions in the previous lines were satisfied, the func-

tion

scenario-IPEGenerator generates the sets prev.Users (PU), UA1, UA2, UA3, and,

UA4 as defined in table 3.2. The sets of policy elements returned from the function

scenario-IPEGenerator, a set ARSassoc of arsj subsets that include access the source

user is requesting, an empty list AREQA and the source user areqd·pus are augments of

the function targetContainsSource.

(a) The function targetContainsSource loops through the powerset of access rights

available to the privileged user.

(b) Within the loop, each if statement appends the set(s) of triple that can create edges to

authorize source user’s access request.

(c) If the elements of the powerset are exhausted, then AREQA returns the list of sets of

approaches to authorize the source user’s request.

2. If the target is not a user or user attribute, then only scenario-II preconditions are true.

Access requesting triple areqd that satisfies scenario-II preconditions, step (1c) of algorithm

3.1 and authorization graph Gauth are augments of the function scenario-IIPEGenerator.

Table 3.3 defines the sets of policy elements, prev.Users (PU), UA1, UA2, UA3, OA1,

OA2, andOA3, the function scenario-IIPEGenerator generates. These sets returned
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by scenario-IIPEGenerator, a set ARSassoc of arsq subsets that include access the

source user is requesting, an empty list AREQA and the triple areqd·pus are augments of

the function sourceNotContained. The flow of the function sourceNotContained

is the same as the previous scenario.

Algorithm 3.1 Main function for the algorithm to generate approaches to authorize access request
Input: areqd = (pus , arx, target), Gauth = (PE, ASSIGN, ASSOCIATION)
Output: AREQA

Step 1: /*Group administrative and resource Associations */

a. AREQA← [ ]

b. If areqd·target ∈ {PE·U ∪ PE·UA}

i. If ∃ (uai, arsj , uak) ∈ Gauth.ASSOCIATION : (areqd.user, areqd·target) ∈
ASSIGN+∧ (areqd.user, uak) ∈ ASSIGN+ ∧ (areqd·target, uak) ∈ ASSIGN+

∧ {areqd·arx} ⊆ arsj

PU, UA1, UA2, UA3, UA4← scenario-IPEGeneratorareqd, Gauth, (uai, arsj , uak)
Let ARSassoc← {ars : ars ∈ 2arsj ∧ areqd·arx ∈ ars }
Return areqd·pus , AREQA, UA1, UA2, UA3, UA4, PU, ARSassoc, arsj

c. ElseIf (areqd·pus , areqd·target) /∈ ASSIGN+ ∧ ∃ (uai, arsj , uak), (uap, arsq, oar)
∈ Gauth.ASSOCIATION : (areqd·target, oar) ∈ ASSIGN+ ∧ (uap, uai) ∈ ASSIGN+

∧ (areqd·pus , uak) ∈ ASSIGN+ ∧ (uai, uak) ∈ ASSIGN+ ∧ {areqd·arx} ∈ arsq

Let ARSassoc← {ars : ars ∈ 2arsq ∧ areqd·arx ∈ ars }

Return sourceNotContained(areqd·pus , AREQA, UA1, UA2, UA3, OA1, OA2, OA3, PU,
ARSassoc, arsj , arsq)

3.4.2 Performance Evaluation of Access Authorization Review Using Networkx

We discuss the implementation details of the generic access authorization review algorithm (see

3.4.1) utilizing the networkx (python library for studying graphs and networks). An Ubuntu virtual

machine with two cores and 10Gb of memory was used as our experimental platform. We tested

the response time of our algorithm to return all the approaches that authorize requests by simulating

10 random graphs for scenario-II. For each of the random graphs, we performed 200 iterations for

each request sizes of 1, 5, 500, and 1000. The 10 random access control graphs have 1000 (user,
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Algorithm 3.2 A function to generate approaches to authorize a source user access request for
scenario-I
function targetContainsSource(areqd, AREQA, UA1, UA2, UA3, UA4, PU, ARSassoc, arsj)

1. Let uai ∈ UAi, pup ∈ PU, and arsassoc ∈ ARSassoc

2. For ars ∈ 2arsj

a. If {{c-uua}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua1〉)
}

b. If { {c-uaua}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈ua2, ua1〉)
}

c. If {{c-uua}, {c-uaua}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua3〉), (pup ,
createAssign, 〈ua3, ua1〉)

}
d. If {{c-assoc-fr-ua}, {c-assoc-to-ua}} == ars

AREQA = AREQA ∪
{

(pup , createAssoc, 〈ua2, arsassoc, ua4〉)
}

e. If {{c-uua}, {c-assoc-fr-ua}, {c-assoc-to-ua}}

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua3〉), (pup ,
createAssoc, 〈ua3, arsassoc, ua4〉)

}
f. If { {c-uaua}, {c-assoc-fr-ua}, {c-assoc-to-ua}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈ua2, ua3〉), (pup ,
createAssoc, 〈ua3, arsassoc, ua4〉)

}
g. If {c-uua}, {c-uaua}, {c-assoc-fr-ua}, {c-assoc-to-ua}

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua3〉), (pup ,
createAssign, 〈ua1, ua3〉), (pup , createAssoc, 〈ua3, arsassoc, ua4〉)

}
3. Return AREQA
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Algorithm 3.3 A function to generate approaches to authorize a source user access request for
scenario-II
function sourceNotContained(areqd, AREQA, UA1, UA2, UA3, OA1, OA2, OA3, PU, ARSassoc,
arsj , arsq)

1. Let uai ∈ UAi, oai ∈ OAi, pup ∈ PU, and arsassoc ∈ ARSassoc

2. For ars ∈ 2{arsj ∪ arsq}

a. If {{c-uua}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua1〉)
}

b. If { {c-uaua}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈ua2, ua1〉)
}

c. If {{c-assoc-fr-ua}, {c-assoc-to-oa}} == ars

AREQA = AREQA ∪
{

(pup , createAssoc, 〈ua2, arsassoc, oa1〉)
}

d. If {{c-uua}, {c-uaua}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua3〉), (pup ,
createAssign, 〈ua3, ua1〉)

}
e. If {{c-uua}, {c-assoc-fr-ua}, {c-assoc-to-oa}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua3〉), (pup ,
createAssoc, 〈ua3, arsassoc, oa1〉)

}
f. If { {c-uaua}, {c-assoc-fr-ua}, {c-assoc-to-oa}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈ua2, ua3〉), (pup ,
createAssoc, 〈ua3, arsassoc, oa1〉)

}
g. If {{c-assoc-fr-ua}, {c-assoc-to-oa}, {c-oaoa}} == ars

AREQA = AREQA ∪
{

(pup , createAssoc, 〈ua2, arsassoc, oa3〉), (pup ,
createAssign, 〈oa2, oa3〉)

}
h. If {{c-uua}, {c-uaua}, {c-assoc-fr-ua}, {c-assoc-to-oa}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua3〉), (pup ,
createAssign, 〈ua2, ua3〉), (pup , createAssoc, 〈ua3, arsassoc, oa1〉)

}
i. If {{c-uua}, {c-assoc-fr-ua}, {c-assoc-to-oa}, {c-oaoa}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈areqd·pus , ua3〉), (pup ,
createAssoc, 〈ua3, arsassoc, oa3〉), (pup , createAssign, 〈oa2, oa3〉)

}
j. If { {c-uaua}, {c-assoc-fr-ua}, {c-assoc-to-oa}, {c-oaoa}} == ars

AREQA = AREQA ∪
{

(pup , createAssign, 〈ua2, ua3〉), (pup ,
createAssoc, 〈ua3, arsassoc, oa3〉), (pup , createAssign, 〈oa2, oa3〉)

}
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Scenario-I Node Proportion

User Nodes 200

User Attribute Nodes 800

Policy Class Node 1

Scenario-II Node Proportion

User Nodes 200

Object Nodes 200

User Attribute Nodes 300

Object Attribute Nodes 300

Policy Class 1

Table 3.4: Proportion of Nodes for Scenario-I and Scenario-II

user attribute, object, and object attribute) nodes. The proportion of nodes of each type per access

control graph is shown in the table 3.4. We restricted the maximum number of edges from a user

to the policy class node to 5. Figure 3.4 is the distribution of response time to generate all possible

approaches to grant a request. Again, the NIST policy machine reference documentation and no

related work in the literature addressed this policy query of our work, no comparative experiment

for us to perform.

Figure 3.4: Distribution of Response Time to Generate Access Authorization Approaches for
Scenario-II on graphs with 1,000 nodes
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CHAPTER 4: CONSTRAINED ACCESS AUTHORIZATION AND

REVOCATION THROUGH POLICY REVIEW

This chapter expands and improves on the work of the previous chapter. We introduce parameters

that make it possible to limit the granted authorization. Further, this version of the algorithm can

query for approaches to revoke access. The objective of the work in this chapter is to answer two

questions:

i. If a user is allowed to perform op on resource, What are the approaches to deny the user

access to perform op on the protected resource?

ii. If a user is not authorized to perform op operation on a resource, What are the approaches

to grant the op on protected resource to the user?

4.1 Policy Review For Constrained Access Authorization

In the previous (generic) algorithm, relation(s) are created from the access enablers sets to allow

the source user perform requested access. In a real-world application, the size of the policy autho-

rization graph is big. The generated approaches to authorize a request tend to become a deluge of

information for an administrator to process. Using the illustrative example of chapter 3, where one

of the approaches to authorize Cathy’s request was to create a user attribute assignment. From the

authorization graph in reference and the definition of user attribute enablers, the sets UA1 = {Group

Head, Regional Head} and UA2 = {ATM Custodian, Trans Serv Supervision}. The number of pos-

sible approaches to authorize Cathy’s request using the user attribute assignment is the cartesian

product of the two sets. Thus, the number of possible ways of granting a request through a given

set of relations is proportional to the cardinality (size) of access authorization enablers sets.
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aars
aars

aarsaars

{r,w}

assignment

r-association

a-association

Figure 4.1: Policy Machine Authorization Graph

4.1.1 Derived functions

We categorize a request for constraint authorization or revocation into two scenarios as before. In

the first scenario, the target policy element contains the source user or a user attribute contains

source userand target policy element. This scenario deals with the case of a constrained authoriza-

tion or revocation on a request to operate on user or user attribute target policy element. In the other

case, no containment relationship between the source user and target policy element. We query for

constraint authorization or revocation approaches for requests on any target policy element except

the policy class. Some of the authorization enabling policy element definitions are the same as in

chapter 3, while others are derivates. The functions that are the building blocks for the definition of

the authorization enabling policy element in the previous work stay the same. For easy reference,

below are the function definition:

• tail : ASSOCIATION −→ UA: is a function that maps an edge, association relation,

(uai, arsj, auk) ∈ ASSOCIATION to the (user attribute) node uai ∈ UA it originates.

• head : ASSOCIATION −→ AT: is a function that maps an edge, association relation,

(uai, arsj, auk) ∈ ASSOCIATION to the (user/object attribute) node atk ∈ AT it terminates.

Where AT = UA ∪ OA

• anc: PE −→ 2PE: is the mapping from a policy element to the set of policy elements that is
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an ancestor to the policy element.

• des: PE −→ 2PE: is the mapping from a policy element to the set of policy elements that is

a descendant to the policy element.

• PEifunc = {node | (∃pej∈PEi)[node∈func(pej)]}: is the set of all policy elements returned

by func for the set PEi, where func is anc or des.

4.1.2 Constrained Access Authorization Methodologies

The results of the authorization review from the previous chapter provide an administrator the abil-

ity to know all the relations any user can create to permit another users’ request. A policy machine

administrator must have the overall answer to a given policy review query. However, apart from

the possibility that the policy review for user authorization returns a flood of information, we may

be interested in only a subset of the possible approaches to grant requested access. For instance,

the policy administrator of BankOp Access may be interested in knowing how to authorize Cathy’s

request without using the access-enabling set UA2. Rather than generate the entire possible means

to allow access, as in the previous algorithmic design, we introduced additional input parameters

for the algorithm to adapt to tailored queries.

Before discussing the added parameters to the previous algorithm for achieving flexibility, there

is a need to know the scope of allowed access for a given approach in a policy review of autho-

rization. We developed constraints based on the knowledge of the extent of granted access for any

authorization approach. There is a discernible sequence in the relations created to authorize the

source user request. In other words, we observe a pattern in the direction of edges when the algo-

rithm generates authorization approaches. These are edges created from or to some authorization

enabling attribute sets that allow the source user perform requested operation on the target policy

element. That is, relations (edges) start from a tail node and end at the head node. The scope of

an authorization approach is limited to the elements of an attribute set that are tail nodes for edges

(relations) in an authorization approach.
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Table 4.1: Scope of Authorization/Revocation on Attribute Groups

Attribute Groups Pattern of Relations(s) Authorization Effect
UA1 Assignment: to No effect
UA2 Assignment: from Access granted

Association: from or inherited
UA3 Assignment: from and to Access granted

Association: from or inherited
UA4 Association: to No effect
OA1 Association: to No effect
OA2 Association: to No effect

Assignment: from Access entry
granted

OA3 Association: to No effect

The creation of the relation(s) that authorizes the source user grants capabilities or access

entries for all the possible tail nodes (authorization enabling attributes) in a relation(s) that allow(s)

access for a requested user. Using the earlier example of a user attribute assignment approach to

authorizing Cathy’s request, the elements of the sets UA2 and UA1 are the tail and head nodes,

respectively. In figure, before the creation of the user attribute assignment, the granted capabilities

set of the elements ATM Custodian and Trans Serv Supervision nodes of set UA2 are
{

(aarsp,

ATM & POS Serv), ({ r,w}, ATM & POS Serv)
}

and
{

(aarsq, Wire Trans Serv)
}

, respectively.

Assuming access granted to Cathy was through the creation of user attribute assignment from

Trans Serv Supervision to Regional Head node. The assigned and acquired capabilities set of

Trans Serv Supervision is now
{

(aarsq, Wire Trans Serv), (aarsi, Op Officers), (aarsj , Retail &

Foreign Serv)
}

.

In general, the authorization enabling attributes UA2, UA3, and OA2 are the sets with tail nodes

in edges that grant requested access. When an edge (assignment or association relation) from

UA2 and UA3 nodes authorizes a source user’s request, there are added capabilities for these user

attribute sets. The creation of an assignment relation from elements of the set OA2 that allows

access to the target policy element elevates the access entries of the set OA2 elements. The table

summarizes the pattern of relation(s) created using these attribute sets and the change in capability
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or access entry of the attributes sets after an authorization.

The column pattern of relation created (i.e., <relation/edge type> : <direction>) in the table

describe the type of edge(s) we can create from or to elements of a given access enabling attribute

set. As an example when the resource is a user or user attribute, a possible approach to authorize

access is creating an edge (assignment) from ua2 to ua1 or creating an assignment from ua2 to

ua3 and creating an association from ua3 to ua4, where uai ∈ UAi. The third column of the

table signifies the change in capability or access entry of a user or an object attribute, respectively,

after utilizing an authorization approach. Authorizing a request to elevate the capability of the user

attributes UA2 and UA3, and access entry of object attribute OA2. A policy administrator can

constrain the authorization of a request through these attributes with elevated capability or access

entry.

In addition to request (user, op, resource), and a graph associated with the request as input

parameters in the previous algorithm, we introduced a record (authmode) with fields of key-value

pair. Firstly, if there is an association relation (policy) that grants the user the authority to perform

op on the resource, the algorithm generates approaches to revoke the access. Otherwise, it produces

possible relation(s) that allow user to perform op on the resource. The key-value pairs from the

input record allow a policy administrator to specify modes of authorization. The algorithm can

generate all possible approaches with/without constraint to authorize a request. A key isGeneric

with a boolean value of true generates all approaches without restriction, while the value of false

produces constrained authorization approaches. When isGeneric is true the two other key-value

pair in the record becomes null. Another key is the denySet, and the value is a set that authorization

granted or inherited by its elements is constrained. The value for the denySet can take take ua2,

UA3, orOA2 attribute set. The above definition of the access enabling sets have no constraint. The

size of set UA2, UA3, and OA2 becomes smaller or empty when utilizing the discussed constraining

parameters.

For example, if the key denySet has a value UA2, the algorithm excludes all relations(s) that

authorize access through this user attribute set. An attribute set with elevated capability or access
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entry that is not the value of the denySet key is also constrained through the third key limitto. The

value for the key limitto specifies the number of elements used to generate approaches to authorize

access. Its value is a user attribute set if the resource is a user or user attribute and an object

attribute set for an object or object attribute resource. Assuming a request = (user, op, resource),

Graph = (PE, ASSIGN, ASSOCIATION), authmode = {isGeneric : false, denySet : UA2, limitto

: 1}, these input parameters yields an output of constrained authorization approaches. It excludes

authorization approaches using elements in the user attribute set UA2. The value of limitto permits

creating authorization approaches using one element of UA3 or OA2 if the resource is a user or an

object type, respective.

4.1.3 Constrained Access Enablers

The following defined sets of (user and object) attribute groups form the basis of our algorithm

for the policy review of access authorization and revocation. We derived the attribute groups

considering the resource a user wants to perform an action on is of type user or object. When the

resource in question is a user or user attribute, the following user attribute groups create relations

that authorize and revoke access requests.

• UA1 = {ua | ua = tail((uai, arsj, auk)) ∨ ua∈anc(tail((uai, arsj, auk))}

• UA2 = {ua | ua∈anc(head((uai, arsj, auk))) ∧ ua∈des(user)}

• UA3 = {ua | ua∈anc(head((uai, arsj, auk))), ua/∈ UA2anc , ua/∈ UA2, ua/∈ UA1des , ua/∈

UA1}

• UA4 = {ua | ua∈des(user) ∧ des(resource) }

Where (uai, arsj, auk) is an association relation that grants the user attribute uai the access rights

arsj on auk.

Assuming we want to grant or deny access to an object or object attribute. Combining the sets

UA1, UA2, UA3, above and the following object attribute groups enable the creation of relations

that authorize or revoke access.
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• OA1 = {oa | oa ∈ anc(head((uap, arsq, aor))), oa /∈ des(resource),oa 6= resource}

• OA2 = {oa | (oa ∈ des(resource) ∧ oa /∈ OA1des) ∨ oa = resource}

• OA3 = {oa | (oa ∈ anc(head((uap, arsq, aor))), oa ∈ des(resource), oa ∈ OA2des ) ∨ oa

= head((uap, arsq, aor)) }

This scenario requires two association relations. The association (uai, arsj, auk) grants author-

ity to create or delete the relation(s) from attribute(s) of the user to whom we want to authorize/deny

access. The second association (uap, arsq, aor) allows the creation or deletion of relation(s) to the

requested resource (object or object attribute).

4.2 Policy Review For Access Revocation

In the case of policy queries to revoke access, the privileged user has the authority to disassociate

the source user from the granted authorities that enable the previous access granted to the target

policy element. By deleting a combination of relations, user to user attribute, user attribute to user

attribute, association, object to object attribute, and object attribute to object attribute, revokes the

source user‘s access. The assumption is that none of these delete operation require the removal of

the source user, target policy element, or any attribute to retain a valid state of the policy graph.

Rather than query for authorization enabling policy element and precondition associations, we

query for precondition associations and what we term as revocation relations. The revocation

relations are the ordered pair of nodes (policy elements) that the removal of an edge between them

disassociates authorities granted to the source user.

The access revocation scenarios are the opposite of the access authorization scenarios. Thus,

the are three access revocation scenarios, the administrative revocation by user attribute, adminis-

trative revocation of attribute, and non-administrative revocation by object attributes. This is the

scenario where the source user and target policy element are in the same sub-graph. The combi-

nation of delete user to user attribute, user attribute to user attribute, association relations revokes

the source user‘s access to the target policy element.
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For this scenario, the source user and target policy element are not in the same sub-graph,

the target policy element is any of the possible types (i.e., user, user attribute, object, or object

attribute). If the target policy element is a user or user attribute, the revocation relations are user

to user attribute, user attribute to user attribute relations, and association relations. Likewise, for

an object or object attribute target policy element, the revocation relations are object to object

attribute, object attribute to object attribute, and association relations.

4.3 Illustrative Example

4.3.1 Policy Review for Scenario-I

This first example elaborates on the illustrative example of chapter 3 and compares the policy re-

view for authorization of Cathy’s request using the generic and constrained algorithms. We provide

the access enabling attribute sets using the derived function definition on the policy authorization

graph of figure 4.1. Rather than the single operation approaches of authorization Cathy’ s request

used in the example 3.3, this example provides all the methods using the combination of the three

operations for this scenario - creation of user assignment, user attribute assignment, and association

relations(edges). The multiple operations that create user assignment, user attribute assignment,

user assignment, association, user attribute assignment, association, and user assignment, user at-

tribute assignment, association sets of relations also authorize the request for this scenario.

The creation of a relation(an edge) using user assignment, user attribute assignment, and asso-

ciation operation from Cathy to user attributes in the set UA1, from user attributes in UA2 to UA3,

and from UA2 to UA4, respectively, are the single operation approaches to allow Cathy to assign

Backup Officer to Trans Serv Supervision. A double operation approaches to policy review for

authorization is using the sets of two relations, user assignment, user attribute assignment, user

assignment, association, and user attribute assignment, association, to create sets of relations from

Cathy to UA3, from UA3 to UA1, from Cathy to UA3, from UA3 to UA4, and from UA2 to UA3, from

UA3 to UA4, respectively. Lastly, the set of relations(edges), from Cathy to set UA3 user attributes,

from the set UA1 to UA3 user attributes, from UA3 to UA4 user attributes , applies the operations that
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create the user assignment, user attribute assignment, and association relations.

Table 4.2: Generic access authorization approaches for Cathy’s request

– User Assignment{
(Cathy, Group Head), (Cathy, Regional Head)

}
– User Attribute Assignment{

(ATM Custodian, Group Head), (ATM Custodian, Regional Head), (Trans Serv Su-
pervision, Group Head), (Trans Serv Supervision, Regional Head)

}
– Association from User Attribute to User Attribute{

(ATM Custodian, aarsk, Op Officers), (Trans Serv Supervision,aarsk, Op Officers)
}

– User Assignment and User Attribute Assignment{
{(Cathy, Backup Officer), (Backup Officer, Group Head)}, {(Cathy, Backup Officer),

(Backup Officer, Regional Head)}
}

– User Assignment and Association from User Attribute to User Attribute{
{(Cathy, Backup Officer), (Backup Officer, aarsk, Op Officers)}

}
– User Attribute Assignment and Association from User Attribute to User Attribute{

{(ATM Custodian, Backup Officer), (Backup Officer, aarsk, Op Officers)}, {(Trans
Serv Supervision, Backup Officer), (Backup Officer, aarsk, Op Officers)}

}
– User Assignment, User Attribute Assignment, and Association from User Attribute to User

Attribute{
{(Cathy, Backup Officer), (Group Head, Backup Officer), (Backup Officer, aarsk,

Op Officers)}, {(Cathy, Backup Officer), (Regional Head, Backup Officer), (Backup
Officer, aarsk, Op Officers)}

}
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Table 4.3: Constrained access authorization approaches for Cathy’s request, without set UA3

– User Assignment{
(Cathy, Group Head), (Cathy, Regional Head)

}
– User Attribute Assignment{

(ATM Custodian, Group Head), (ATM Custodian, Regional Head), (Trans Serv Su-
pervision, Group Head), (Trans Serv Supervision, Regional Head)

}
– Association from User Attribute to User Attribute{

(ATM Custodian, aarsk, Op Officers), (Trans Serv Supervision,aarsk, Op Officers)
}

Table 4.4: Constrained access authorization approaches for Cathy’s request, without set UA2

– User Assignment{
(Cathy, Group Head), (Cathy, Regional Head)

}
– User Assignment and User Attribute Assignment{

{(Cathy, Backup Officer), (Backup Officer, Group Head)}, {(Cathy, Backup Officer),
(Backup Officer, Regional Head)}

}
– User Assignment and Association from User Attribute to User Attribute{

{(Cathy, Backup Officer), (Backup Officer, aarsk, Op Officers)}
}

– User Assignment, User Attribute Assignment, and Association from User Attribute to User
Attribute{

{(Cathy, Backup Officer), (Group Head, Backup Officer), (Backup Officer, aarsk,
Op Officers)}, {(Cathy, Backup Officer), (Regional Head, Backup Officer), (Backup
Officer, aarsk, Op Officers)}

}

The three listings below provide the result for operations that authorizes Cathy’s request. Table

4.2 is the review of authorization for Cathy’s request without constraint. Tables 4.3 and 4.4 limit

the sets UA2 to 1 and UA3 to 0, and UA2 to 0 and UA3 to 1, respectively.
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4.3.2 Policy Review for Scenario-II

This second example demonstrates the use of our algorithm for a policy review of authorization

on an access request that we described as the second scenario (scenario-II). From the authorization

graph of the financial institution (see figure 4.1), the object attribute Retail & Foreign Serv is the

root folder for the other folders (object attributes, i.e., Wire Trans Serv, ATM & POS Serv, Hub1,

Hub2, FxT1, FxT2) and the file Wrk StA. No Trans Serv Supervision (i.e., Cathy and Bob) has an

administrative right on the folder (object attribute Wire Trans Serv) and the folder it contains.

Let the administrative access right set aarsp grants ATM Custodian to create files and folders

in the and sub-folders. However, Bob, a Trans Serv Supervision, needs the access rights to create

and delete files and folders in Hub1. Since the target policy element is an object attribute, a query

for approaches to authorization Bob’s request requires user and object attribute access enabling

sets. In scenario-I illustrated by the previous example, three single operations can create a relation

for authorizing a request. The only single relation in this scenario that can grant access is the

association relation.

The access enabling sets for the association relation are UA2 and OA3 or UA2 and OA2. In

the current authorization graph of figure 4.1, all operations that creates assignment relations can

grant Bob’s requested access only when combined with the association relation of the sets UA2

and OA3 or UA2 and OA2. We can combine one of the operations that create user assignment, user

attribute, and object attribute assignments with the mentioned association. The pair of edges, user

assignment, association from user to object attribute, user attribute assignment, association from

user to object attribute, and association from user to object attribute, object attribute assignment

are relations that can authorize a source user request using two operations.

Further, a three operations approach that create a triple of edges, user assignment, user attribute

assignment, association from user to object attribute, user assignment, association from user to ob-

ject attribute, object attribute assignment, and user attribute assignment, association from user

attribute to object attribute, object attribute assignment can authorize a request on target policy

element using the sets of edges {(source user, UA3), (UA2 , UA3), (UA3, OA3)}, {(source user,
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UA3),(UA3, OA1), (OA2, OA1 )}, {(source user, UA3), (UA2 , UA3), (UA3, OA1), (OA2, OA1)}, respec-

tively.

4.4 Algorithmic Design and Evaluation

4.4.1 Policy Review Algorithms for Constrained Authorization and Revocation

This algorithm starts with the main function for constrained authorization and revocation of access

query. It takes as input a request, areqd = (source, opx, target), where the source is the

user requesting access, opx is the operation the user want to perform on the (protected resource)

target. An authorization graph Gauth = (PE, ASSIGN, ASSOCIATION) associated with the

request and the key-value record authMode for specifying constraints are the two other inputs.

The output of the algorithm is the sets of operations that can grant source request if not autho-

rized yet. Otherwise, the output is the sets of operations that can revoke source request has been

authorized.

The first function call from the main is the isRequestAuthorized that returns result a boolean

value of true if the source user request has not been authorized and the authAssoc, a set of

associations that can grant the source request on target. If result is true and the target is

a policy element of user or attribute type, the getUAOASetsHelper is called. The getUASetsHelper

generates the access enabling user attribute sets. The elements of the access enabling user attribute

sets assigned in the getUASetsHelper function according to the key-value pairs in the authMode

input parameter.

These user attribute sets, the source, the output set AREQA, and the subsets of operation

that can authorize source request are input parameters to the function targetContainsSource. In

this condition that the value of result is true (see Step 2.1a), the targetContainsSource returns

operations that creates relations to authorize source access on AREQA.

If the value of result is true but the target is an object or object attribute, the algorithm

executes the block of code in the Step 2.1b. OPS is set to the values to create assignments (i.e., user

assignment, user and object assignment) and associations from user attributes to object attributes.
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Algorithm 4.1 Main

Input: Gauth = (PE, ASSIGN, ASSOCIATION),

areqd = (source, opx, target),

authMode =
{

isGeneric: true/false, denySet: UA2/UA3, limitAccess: Successors /
Path

}
Output: AREQA

Step 1: /*Initialize variables*/

AREQA← []

OPS← { }

Step 2: /*Check if request is for authorization or revocation and assign key-value for operation
record/

1. result, authAssoc = isRequestAuthorized(Gauth, areqd

a. If result and target ∈ {U ∪ UA}
OPS = {assign: createAssign, assoc: createAssoc}
UA1, UA2, UA3, UA4 ← getUASetsHelper(Gauthrequest, authAssoc,
authMode)
Let OPsubsets← {op : op ∈ 2opj ∧ opx op }
Return targetContainsSource(source, AREQA, UA1, UA2, UA3, UA4, OPsubsets)

b. Else if result and target ∈ {O ∪ OA}
OPS = {assign: createAssign, assoc: createAssoc}
UA1, UA2, UA3, OA1, OA2, OA3 ← getUAOASetsHelper(Gauthrequest,
authAssoc, authMode)
Let OPsubsets← {op : op ∈ 2opj ∧ opx op }
Return sourceNotContainedByTarget(source, AREQA, UA1, UA2, UA3, OA1,
OA2, OA3, OPsubsets)

c. Else
OPS = {assign: deleteAssign, assoc: deleteAssoc}
Return getRevocationApproaches(Gauth, areqd, ASSOCIATION)

The getUAOASetsHelper utilizes the values in authMode to determine if the query is for autho-

rization with or without constraints, and assign values to the access enabling attribute sets. The

last function call in this block of code, sourceNotContainedByTarget, returns sets of operations

that create relations to allow source perform opx on target.
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Algorithm 4.2 getUASetsHelper

Input: areqd, authAssoc, authMode

Output: UA1, UA2, UA3, UA4

1. If authMode[isGeneric]

CanGenerate = {}
Return getUASets(areqd, authAssoc, authMode, CanGenerate)

2. Else If Not authMode[isGeneric] ∧ authMode[denySet] == UA3

CanGenerate =
{
UA2: true, UA3: false

}
Return getUASets(areqd, authAssoc, authMode[limitAccess],
CanGenerate)

3. Else If Not authMode[isGeneric] ∧ authMode[denySet] == UA2

CanGenerate =
{
UA2: false, UA3: true

}
Return getUASets(areqd, authAssoc, authMode[limitAccess],
CanGenerate)

Figure 4.2: Average latency for number transactions and access requests

In a situation that the isRequestAuthorized returns a value of false for result, the getRevo-

cationApproaches is called after setting the values of OPS to delete operations. The getRevoca-

tionApproaches has three subroutines, canRevokeByUserAttribute(), canRevokeByAttribute(), and

canRevokeByAssociation(). These subroutines query for revocation approaches on any authorized

request.
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Algorithm 4.3 getUASets

Input: request, authAssoc, authMode, CanGenerate

Output: UA1, UA2, UA3, UA4

UA1 =
{
ua : ua == authAssoc[pre] ∨ ua ∈ ancestors(authAssoc[pre])

}
UA2 =

{
ua : ua ∈ descendants(request[source])

}
UA3 =

{
ua : ua ∈ ancestors(authAssoc[suc]), ua /∈ ancestorsOfSet(UA2), ua /∈ UA2, ua /∈

descendantsOfSet(UA1), ua /∈ UA1

}
UA4 =

{
ua : ua ∈ descendants(request[source]) ∧ ua ∈ descen-

dants(request[target])
}

1. If authMode[isGeneric]

Return UA1, UA2, UA3, UA4

2. Else If Not authMode[isGeneric]

a. If CanGenerate[UA2] ∧ limitAccess[key] == Successors

UA2 =
{
ua : ua ∈ UA2 ∧ ua ∈ limitAccess[value]

}
b. Else If CanGenerate[UA2] ∧ limitAccess[key] == Path

UA2 =
{
ua : ua ∈ UA2 ∧ ua ∈ descen-

dants(limitAccess[value][pathSource]) ∧ ua ∈ ances-
tors(limitAccess[value][pathSink])

}
c. Else

UA2 = {}
d. If CanGenerate[UA3] ∧ limitAccess[key] == Successors

UA3 =
{
ua : ua ∈ UA3 ∧ ua ∈ limitAccess[value]

}
e. Else If CanGenerate[UA3] limitAccess[key] == Path

UA3 =
{
ua : ua ∈ UA3 ∧ ua ∈ descen-

dants(limitAccess[value][pathSource]) ∧ ua ∈ ances-
tors(limitAccess[value][pathSink])

}
f. Else

UA3 = {}
g. Return UA1, UA2, UA3, UA4
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Algorithm 4.4 targetContainsSource

Input: source, authorizationApproaches, UA1, UA2, UA3, UA4, OPsubsets, opx

Output: authorizationApproaches

/*Check for possible authorization approaches*/

1. If {OPS[assign]} ⊆ OPsubsets

authorizationApproaches = authorizationApproaches ∪
{
PU,

{OPS[assign]}, source, UA1

}
authorizationApproaches = authorizationApproaches ∪

{
PU,

{OPS[assign]}, UA2, UA1

}
authorizationApproaches = authorizationApproaches ∪

{
PU,

{OPS[assign]}, source, UA3

}
,
{
PU, {OPS[assign]}, UA3, UA1

}
2. If {OPS[assoc]} ⊆ OPsubsets

authorizationApproaches = authorizationApproaches ∪
{
PU,

{OPS[assoc]}, UA2, opx, UA4

}
3. If {OPS[assign], OPS[assoc]} ⊆ OPsubsets

authorizationApproaches = authorizationApproaches ∪
{
PU,

{OPS[assign]}, source, UA3

}
,
{
PU, {OPS[assoc]}, UA3, opx, UA4

}
authorizationApproaches = authorizationApproaches ∪

{
PU,

{OPS[assign]}, UA2, UA3

}
,
{
PU, {OPS[assoc]}, UA3, opx, UA4

}
authorizationApproaches = authorizationApproaches ∪

{
PU,

{OPS[assign]}, source, UA3

}
,
{
PU, {OPS[assign]}, UA1, UA3

}
,
{
PU,

{OPS[assoc]}, UA3, opx, UA4

}
4. Return authorizationApproaches

Algorithm 4.5 canRevokeByUserAttribute

revocationApproaches← { }

sourceNeighbors← {}

1. If outDegree(source) > 1

a. sourceNeighbors = sourceNeighbors ∪ successors(source)

b. For ua ∈ sourceNeighbors
If ua ∈ anc(target)

revocationApproaches = revocationApproaches ∪
(deleteAssign, source, ua)

c. Return revocationApproaches
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Algorithm 4.6 canRevokeByAttribute

MIN = 1

revocationApproaches← { }

uaNeighbors← { }

sourceToTargetPath← des(source user) ∩ anc(target)

1. For ua ∈ sourceToTargetPath

If outDegree(ua) > MIN; uaNeighbors[ua] = successors(ua)

2. For key, value, ∈ uaNeighbors

For node ∈ value
If node ∈ anc(target) ∧ inDegree(node) > MIN

revocationApproaches = revocationApproaches ∪
(deleteAssign, key, node)

3. Return revocationApproaches

4.4.2 Performance Evaluation of Constrained Access Authorization and Revocation in Hy-

perledger Fabric

In this section, we present the details of our experiments carried out for performance evaluation.

The experiments were in two steps, an on-chain that reads the Policy Information Ledger and an

off-chain policy review analysis. An iterative process in the policy review algorithm will degrade

the blockchain network performance if deployed to the network. We performed this experiment

using a virtual machine with 2 CPUs, 10GB RAM, running Ubuntu 16.04 LTS operation system,

and Hyperledger Fabric V2.2 installed. We built a Fabric blockchain testbed with one Raft orderer

service node, two peers for an organization on a single channel, and a LevelDB database.

We created a policy graph generator script that simulates the creation of policy elements to

the Policy Information Ledger. The policy graph comprises a policy class, 300 user and object

attributes, and 200 users and objects. We generated workloads for the read policy graph trans-

action into the Fabric blockchain using the Hyperledger Caliper V0.4.2. Hyperledger Caliper is a
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Algorithm 4.7 getRevocationApproaches

Input: Gauth, areqd, ASSOCIATION

Output: revocationApproaches

Step 1: /*Initialize the revocation approaches set and make function calls*/

revocationApproaches← { }

canDeleteUserAssignment← canRevokeByUserAttribute(Gauth, areqd)

canDeleteAttributeAssignment← canRevokeByAttribute(Gauth, areqd)

canDeleteAssociation← canRevokeByAssociation(Gauth, areqd, ASSOCIATION)

Step 2: /*combine approaches if possible*/

1. If canDeleteUserAssignment; revocationApproaches =
revocationApproaches ∪ canDeleteUserAssignment

2. If canDeleteAttributeAssignment; revocationApproaches =
revocationApproaches ∪ canDeleteAttributeAssignment;

3. If canDeleteAssociation; revocationApproaches =
revocationApproaches ∪ canDeleteAssociation

4. If canDeleteUserAssignment ∧ canDeleteAttributeAssignment

revocationApproaches = revocationApproaches ∪
canDeleteUserAssignment · canDeleteAttributeAssignment

5. If canDeleteUserAssignment ∧ canDeleteAssociation

revocationApproaches = revocationApproaches ∪
canDeleteUserAssignment · canDeleteAssociation

6. If canDeleteAttributeAssignment ∧ canDeleteAssociation

revocationApproaches = revocationApproaches ∪
canDeleteAttributeAssignment · canDeleteAssociation

7. If canDeleteUserAssignment ∧ canDeleteAttributeAssignment ∧
canDeleteAssociation

revocationApproaches = revocationApproaches ∪
canDeleteUserAssignment · canDeleteAttributeAssignment ·
canDeleteAssociation

8. Return revocationApproaches
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blockchain performance benchmark framework, which allows users to test different blockchain so-

lutions with customized use cases and get a set of performance test results. To test the performance

of our algorithm another script reads the policy graph ledger, simulates requests for authorization

and revocation, and sets values for authorization mode record. The graph in Figure 4.2 shows the

average latency for reading the policy graph using the Caliper. Also, on the same graph, the aver-

age response time to generate revocation and constrained authorization approaches for the request

sizes are shown. The policyRead average latency varies in the range of 0.36 to 0.44 seconds for the

number of transactions. The average response time of the policyReview increases as the number of

requests for revocation and constrain authorization increases.
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CHAPTER 5: IMPLEMENTATION OF ABAC REVIEW IN

HYPERLEDGER FABRIC BLOCKCHAIN

Blockchain was invented in 2008 for bitcoin, the first digital currency to solve the double-spending

problem without the need for a trusted authority or central server [42]. The invention of bitcoin

(BCH) inspires the likes of Ethereum(ETH) [9], Litecoin (LTC) [65], Tether (USDT) [38], and

much more as cryptocurrencies. In less than a decade, the blockchain distributed ledger technology

has evolved and paved the way for other usages, apart from cryptocurrency. Other non-crypto

currency blockchain platforms are Corda [7] and Hyperledger Fabric [10].

In this chapter, we will implement an Attribute-Based Access control ABAC review in Hy-

perledger Fabric HLF. Hyperledger Fabric (HLF) is an open-source distributed ledger software

that provides the framework for developing applications or solutions with a modular architecture.

In the sections that follow, we briefly discuss the general underlying concepts of blockchain as a

distributed ledger and describe the integral components of the Hyperledger Fabric. We provide

the process of developing the HLF components into a network for application development and

describe the typical flow of business transactions in the HLF network. We also touch on the default

access control in the HLF and motivate the need for an ABAC approach.

We intend to implement the policy machine, an instance of the ABAC model, in the Hyper-

ledger Fabric. This effort will include integrating the authorization and revocation review algo-

rithms from the previous chapters into the HLF network. To conclude this chapter, we will evaluate

the performance of the ABAC review implementation in the Hyperledger Fabric.

5.1 Background

Blockchain can be defined as an immutable decentralized ledger for recording transactions, main-

tained within a distributed network of mutually untrusted peers. Every peer execute a consensus

protocol to validate transactions grouped into blocks and maintains a copy of the ledger that con-

stitute the blocks. Blockchain is temper-proof because every new block is cryptographically linked
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to the previous one.

Blockchain is an emerging technology that can radically improve secured transparent transac-

tions at banking, supply chain, and other transaction networks. Itâs estimated that Blockchain will

generate $3.1 trillion in new business value by 2030[1]. The Distributed Ledger Technology (DLT)

is the basis for the application of blockchain to save time when recording transactions between par-

ties, remove costs associated with intermediaries, and reduce risks of fraud and tampering. Some

of the well known Blockchain platforms includes hyperledger fabric, ethereum, corda, etc. Gen-

erally, blockchains are classified as permissionless and permissioned blockchain. Permissionless

blockchains such as Bitcoin and ethereum allow anonymous node to join the blockchain network

without permission. On the other hand, hyperledger fabric and corda are examples of permissioned

blockchain that require identifiable nodes to obtain permission from a federated authority(ies) be-

fore joining the blockchain network.

Generally, there are four building blocks of a blockchain framework that includes a shared

ledger, cryptography, system of trust or consensus, and business rules or smart contracts. The

blockchain frameworks utilize a configured SQL or noSQL distributed database that conforms

with its “append only” or immutable protocol. Authentication, traceability, and verifiability of the

business transactions on a blockchain network are achieved using cryptography. The consensus

protocol provides a system for all participating (blockchain network entities) peers to agree on a

value as an outcome of a business transaction. Smart contract are executable business terms that

are embedded in a blockchain transaction database and defines the flow of value and state of each

transaction.

5.2 Hyperledger Fabric Overview

We provide an overview of components the Hyperledger Fabric network design is comprised of in

this section. The core infrastructural components are the peer nodes and orderer nodes. Other com-

ponents are the client node, chaincode (smart contract) ledger, and channels. These components

are briefly described.
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Ledger

Hyperledger Fabric ledger stores assets. An asset (or business object) is the representation for

anything of monetary value stored on a blockchain network and is transferable between blockchain

network participants. A ledger comprised of the world state (or simply state) and the blockchain,

see figure 5.1. The former is a database expressed as key-value pairs that holds the current value of

an asset. A key is a unique name for an asset. The value are attributes that describe the asset. The

world state provides an easy and direct access to the current value of an asset in a ledger rather than

having to traverse the assetâs history in the blockchain. The blockchain is structured as sequential

log of interlinked blocks, where each block contains a sequence of transactions, each transaction

representing an update to the world state.

Nodes

There are three types of nodes in Hyperledger Fabric network. A client (client node) acts on

behalf of the end user for creating and submitting request to the network. Clients are created

using Hyperledger Fabric SDKs. Peer nodes (or simply peers) are the fundamental element of

the Hyperledger Fabric blockchain network, they host the ledgers that store the asset. Nodes that

render the service of block sequencing, as well as transaction sequence within blocks when blocks

are first created in Hyperledger Fabric blockchain network are called ordering node. An ordering

node is also used to initialize network. At the launch of an ordering node, it produces the first

block written to the ledger, genesis block. The genesis block contains the network configuration
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properties and policies specified at the initialization of the orderer node.

Chaincode

A chaincode is an implementation of smart contract in Hyperledger Fabric, a piece of code that

accesses the ledger and provides instructions for the asset and network component modification.

A transaction is an action that triggers the change of an assetâs value or the blockchain network

configuration. While business transaction (or simply transaction) alters an asset value, configu-

ration transaction enables updates to the blockchain network components. similarly, a chaincode

that specify the logic for asset queries and updates are called application chaincode. These are in-

stalled and instantiated as isolated processes on peer nodes. Whereas, system chaincode are smart

contract that specify logic for modifying components of blockchain network. System chaincodes

are programmed into the peer node binary at inspection.

Channels

An instance of the blockchain network is called a channel, it serves as a mechanism for a set

of components to communicate and transact privately. There are two types of channel. he first

channel that is created in a Fabric network is the “system” channel. The system channel defines

the set of ordering nodes that form the ordering service and the set of organizations that serve as

ordering service administrators. Peers transact on private “application” channels that are derived

from the ordering service system channel.

Membership Service Provider (MSP)

The Membership Service Provider (MSP) refers to an abstract component of the system that pro-

vides credentials to clients, and peers for them to participate in a Hyperledger Fabric network.

Clients use these credentials to authenticate their transactions, and peers use these credentials to

authenticate transaction processing results (endorsements). While strongly connected to the trans-

action processing components of the systems, this interface aims to have membership services
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components defined, in such a way that alternate implementations of this can be smoothly plugged

in without modifying the core of transaction processing components of the system [1].

Organization

Also known as “members”, organizations are invited to join the blockchain network by a blockchain

network provider. An organization is joined to a network by adding its Membership Service

Provider (MSP) to the network. The MSP defines how other members of the network may ver-

ify that signatures (such as those over transactions) were generated by a valid identity, issued by

that organization [1]. The particular access rights of identities within an MSP are governed by

policies which are also agreed upon when the organization is joined to the network.

Figure 5.2 is a minimal representation of the HLF supply chain network. The network consists

of four organizations, United State Department of Agriculture (USDA, org.usda) as the regulator,

Lone Star Farms (org.lsf) as the producer, Walmart (org.wal) as the retailer, and UPS (org.ups) as

the shipper. The ordering node, org.usda.on1 provides the ordering service for the HLF network.

The peers, org.lsf.ep1, org.wal.ep1, org.wal.ep2, and org.ups.ep1 are nodes that can invoke
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update transactions because they have the chaincode (smart contract) for channel01 installed. Peer

org.lsf.pn1 connects to channe01, can respond to a query transaction proposal and not update

transaction proposal it has the ledger L for channel01. Multiple channels can exist on a network.

Nodes without a link to channel01 are participating in another channel not shown in figure 5.2. A

peer node can serve multiple channels, as they are isolated from each other.

5.3 Hyperledger Fabric Blockchain Network Development

Severs that host infrastructural components of Hyperledger Fabric are required to have (os-virtualization

software) docker container installed. At runtime, the creation of chaincode (smart contract) is

launched in isolated Docker containers. Secondly, HLF infrastructure components (orderer and

peers) are developed as docker images. Another reason is that docker container orchestration sys-

tem, Kubernetes is used to setup the Hyperledger Fabric network. We now provide an overview of

HLF executable components and tools that exist as Docker images. These executable components

and tools require configuration information provided in the YAML file format.

5.3.1 Tools and Components

The development of HLF network relies on tools such as the configtxgen, configxlator, and cryp-

togen. Configtxgen is a utility tool for managing configuration artifacts such as genesis block

(orderer channel block) and transaction channel. Cryptogen tool generates cypto material, digital

certificate and key-store, in a testing environment for users, network infrastructure, and member

organization. Configxlator serves as a utility tool to translate configuration encoded in protocol

buffer to a readable (JSON) format.

The peer binary is a process that serves as a node in the HLF network. It is also used as a tool to

manage network and channel level configurations. A peer node maintains the ledge and manages

the chaincode (smart contract) delayed to it. Peer node exposes services build on grpc and the

services are invoked by the clients, other peers, and the orderer for sending blocks to the peer. Peer

nodes exchanged data by utilizing a gossip dissemination protocol. The orderer binary is single
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file that requires the genesis block for it initialization. The runtime properties are controlled in

a (YAML) configuration file. The HLF framework provides a messaging system in the ordererâs

node for the ordering and distribution of blocks using Raft. The type and specification of an

orderer nodes is controlled by the configuration file, orderer.yaml. The orderer binary also exposes

services to peers and client through the grpc and depends on the use of crypto service provider for

encryption, decryption, and signing of messages.

5.3.2 Network Initialization

HLF network is only launched through an orderer node. A designated server for the ordering

service is initialized with crypto-config.yaml, configtx.yaml, and orderer.yaml configuration files.

The configuration transaction file, configtx.yaml specifies which organizations are members of a

channel (defined as a consortium), the ordering nodes that can add new blocks on a given channel,

as well as the policies that govern channel updates. The initial channel configuration is stored

in the ledger as the first block, also referred to as channel genesis block, and the genesis block

is updated through channel configuration updates. After a successful launch of the orderer node,

peer nodes of organizations defined in the consortium or consortia can join a predefined channel or

request the creation of a new channel. To facilitate the storage of an asset into channel ledger and

usersâ business transaction on an asset, the consortium associated with the channel specifies the

development of a chaincode (smart contract) that is installed on a channel peer node. In addition,

consortiumâs application developer creates application installed on client nodes using the HLF

SDKs that enable end user to create transaction request and submit to the network.

5.3.3 Transaction flow

After the installation of chaincode dedicated for a business network on peer node and conforming

application is available on the client node, end users can invoke the chaincode (smart contract)

to read and update the ledger. A ledger query is a straight forward transaction that a response is

returned immediately. A peer can return the results of a query to a client application instantly since
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the peerâs local copy of the ledger has the required information to satisfy the query. Figure 5.3

shows a query request in three steps - the client application connects to a peer, invokes a chaincode

with a query request, and the chaincode returns a query response. However, ledger update is a

more complex interaction between the client application, peers and orderer. In addition to three

steps in the query transaction request, two extra steps are required in an update transaction request.

A single peer node can not respond to a ledger update transaction request, it is a consensus process

among all the peers that has the ledgeâs copy. The designated chaincode on peer node returns a

simulated (i.e., results not effected on the ledger) results as step three of a ledger update transaction

request.

5.4 Access control in HLF

HLF uses access control lists (ACLs) to manage access to resources by associating a policy with a

resource. The resources protected through ACLs are stream of events, functions exposed by both

application and system chaincodes. Users access these resources using the client application or

the peer tools and policies are used to exercise access control on the resources (endpoints). In

the appropriate section of the configuration file, configtx.yaml, a resource represented in the con-

vention <component>/<resource> is mapped to a policy. Where <component> is an HLF module

and the <resource> is a function exposed by the module. For example, peer/Propose represents a

target resource âProposeâ for invoking a transaction and it is a function exposed through the âpeerâ
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module

5.4.1 Hierarchies, Naming, and Types of Policy

Policies are specified at different sections of the configtx.yaml file. These policies are encoded in

the genesis block of the HLF network. The encoded policies translate to the hierarchy of policies

specified at different levels of the network. HLF fabric adopt the unix-like representation of file

path to describe the hierarchy of policies. Hierarchy of policies are in three tiers, the top most is

/Channel, second tier policies are /Channel/Application and /Channel/Orderer, and the last tiers

are /Channel/Application/<org id>/ and /Channel/Orderer/<org id>. Where <org id> is the unique

name (identity) of an organization in the channel. For instance, a policy specified at the /Channel

level defines rules that governs access to channel level resources.

Policies have names. The fully qualified name of a policy is determined by the hierarchy

followed by policy name (i.e., policy name is the leaf level of hierarchy). The standard policy

names are Readers, Writers, Admins, and Endorsers. For example, /Channel/Readers defines a

Readers policy with a rule that applies to a system channel level resource.

A policy definition is comprised of the policy type and the rule. The policy types are signature

and implicit meta policies. For the signature policy types, the rules are boolean expression in terms

of principle, using boolean functions OR(..), AND(..), and OUTOF(..). Signature policies directly

evaluates to a true (grant) or false (deny). On the other hand, implicit meta policies are used for

creating consensus driven decision points. Instead of the boolean expression, the rule of an implicit

meta policy type refers to sub policies (i.e., refers to another implicit meta or a signature policy),

using the keyword ANY, ALL, and MAJORITY. The evaluation of implicit meta policy at runtime

is an aggregated results from referred sub policies.

5.4.2 Motivation for ABAC in Hyperledger Fabric Blockchain Network

Using the default Hyperledger Fabric access control, it is cumbersome for administrators to specify

flexible access control based on asset (business object) attributes. For every use case, application
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Figure 5.5: World state W1 for Ledger L1 contains two business objects

chaincode (smart contract) developers are tasked with the development of access control policy for

complex business objects. We demonstrated this claim in the scenario that follows.

5.4.3 Coarse Access control Scenario in HLF

From figure 5.4, using the default ACLs, assuming the principal org.wal.member has the authority

to propose a transaction on the ledger L1 by invoking the smart contract SC3 that changes the value

of an asset in the state W1.

It is cumbersome to use ACL if it is required to restrict the access of the principal org.wal.member

to asset values of the attribute typeB (see figure). Any selective access to HLF resource is dealt

with on a case by case basis by an application chaincode developer.
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Figure 5.6: Blockchain Access Control System Architecture.

5.5 System Architecture and Implementation

In section 2.5, we provide an overview of the Policy Machine. Figure 5.6 represents the functional

architectural implementation of Policy Machine in the Hyperledger Fabric blockchain network. We

implement the Policy Information Point (PIP) for storing the access control state and the database

for the protected resources as Policy Information and Resource Ledgers, respectively. The Pol-

icy Administration Smart Contract represents the Policy Administration Point (PAP). It mediates

access and enables modification to the Policy Information Ledger. Similarly, we implement the

(RAP) as Resource Access Smart Contract that intercepts application (resource) user’s request to

the Resource Ledge. Our Policy Decision Smart Contract (see figure 5.6) is the logic that represents

the Policy Decision Point (PDP) component of the Policy Machine. It makes access decisions on

access requests forwarded from both Policy Administration Smart Contract and Resource Access

Smart Contract response.

This architecture aims at implementing the Policy Machine for client nodes that are native to

the blockchain. We need not implement a smart contract for the Policy Enforcement Point (PEP),
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and the Event Processing Point (EPP) component of the Policy Machine is outside the scope of

this work.

Some components of the Policy Machine we implement as Smart contracts are in the go pro-

gramming language. We leverage the invokeChaincode Application Programming Interface (API)

to enable the request and response between Smart contracts (chaincode). For instance, assum-

ing the installation of the smart contracts are on the same channel. The Resource Access Smart

Contract conveys the access decision for an application users’ request. It locally calls the invoke

function of the Policy Decision Smart contract that returns access decision response. This inter-

chaincode function call does not require a new transaction message. The calling chaincode uses

the same transaction context as its caller. Note that invokeChaincode API allows the cases where

the calling and called chaincode are on the same or different channel. However, for our imple-

mentation, only when an invocation of a chaincode by another on the same channel is allowed.

Recall that the Policy Information Ledger stores an abstract representation of protected resources

in the Resource Ledger. For consistency on these two ledgers, the Policy Decision Smart contract

is allowed both read and write access on the two ledges. If the Policy Decision Smart Contract

is not on the same channel with the two ledges, any (delete/create) modification request to these

ledges will not affect.

5.6 Use Case And Scenarios

A case study for this work is a blockchain-based global Real Estate Investment Trust (REIT).

The concept of global REIT is a portfolio diversifier designed to deliver high returns and income

through investments in real estate investment trust (REIT) and real estate companies worldwide.

It offers investors exposure to global real estate markets without the necessity of acquiring an

entire property and shift the management and compliance obligations to the fund management.

Apart from offering high total investment return through a combination of capital appreciation and

current income like traditional REITS, blockchain-based global Real Estate Investment Trust (e.g.,

globalreit.co) also provide (a) real estate investment using cryptocurrency (b) stable dividends for
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Figure 5.7: Policy Machine Authorization Graph for global REIT

Scenario 2

sherifdeenlawal:test-network sherifdeenlawal$ source SMBroker-login.sh
sherifdeenlawal:test-network sherifdeenlawal$ peer chaincode invoke 
"${TARGET_TLS_OPTIONS[@]}" -C pmchannel -n pgacc -c 
'{"Args":["launchTokenizedAsset", "UpTownHotel", "AUM", "gREITAccess"]}'
Error: endorsement failure during invoke. response: status:500 message:"SMBroker
is unauthorized to launch token asset: UpTownHotel"

Scenario 1

sherifdeenlawal:test-network sherifdeenlawal$ source John-login.sh
sherifdeenlawal:test-network sherifdeenlawal$ peer chaincode query -C pmchannel -n 
ttcc -c '{"Args":["readAccount", "WalletID"]}'
{"ID":"WalletID","GREIT":"500","ERC20":"2000","accountType":"invest"}
sherifdeenlawal:test-network sherifdeenlawal$ peer chaincode invoke 
"${TARGET_TLS_OPTIONS[@]}" -C pmchannel -n ttcc -c '{"Args":["buyGRET", 
"WalletID", "KJKPlaza", "150"]}'
2021-05-08 13:13:24.756 CDT [chaincodeCmd] chaincodeInvokeOrQuery -> INFO 001
Chaincode invoke successful. result: status:200 payload:"650"

Figure 5.8: Policy Decision Smart contract response to access request scenarios

crypto investors (c) crypto domain for real estate asset holders to exit into a liquid market

A global REIT acquires assets around the world. Acquired assets, also called Asset Under
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Management (AUM), with a Net Asset Value (NAV) and a projected portfolio value by the end

of a specified time. The global REIT issues an Initial Coin Offering (ICO), the cryptocurrency

industry equivalent of an Initial Public Offering (IPO). Investors interested in offering buy and

receive a new cryptocurrency token issued by the company. This token may have some utility in

using the product or service the company is offering, or it may just represent a stake in the company

or project.

Our use case, a global REIT platform, utilizes three modules deployed to the Hyperledger

Fabric network. The asset management module consists of an instance of the Resource Access

Smart Contract called asset management chaincode and a ledger. It allows asset owners to register

their assets with the Fund Manager. The fund manager completes the asset owner’s background

check and KYC compliance evaluation before the list (launch) of an asset on the platform. Investors

have access to assets’ information and choose to invest in assets listed on the global REIT platform.

The second module is the transaction module. It deploys a Resource Access Smart Contract

called token transaction chaincode. The role of the transaction module is to receive and validates all

investors’ transaction requests to the platform. The access control module has a Policy Information

Ledger and policy graph access chaincode. Policy Administration and the Policy Decision Smart

Contracts constitute the policy graph chaincode. The following subsection explains the graphical

representation of the Policy Information Ledger shown in Figure 5.7

5.6.1 Policy Machine Implemented for gREIT

Figure 5.7 represents a Policy Machine access control graph for the global REIT platform. An

algebraic expression for the access graph is G = (PE, ASSIGN, ASSOCIATION). The graph nodes

are elements of the set PE, policy element. Nodes on the left side of the graph represent participants

(fund manager, asset owners, and investors) and their attributes. The nodes to the right represent

the protected (object attributes) assets and transactions. While unlabeled edges (black arrows) of

the access graph are elements of the ASSIGN, the labeled edges (blue arching lines) are the AS-

SOCIATION relations. Excluding the policy class node, gREIT, the assignment (unlabeled edges)
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from all other nodes must terminate at the gREIT Access node. The policy class is a container

that holds all the access rules expressed in the access graph. An element of the ASSOCIATION

relation is a triple (user attribute, access right set, object attribute). It implies that a user node with

a sequence of assignment (unlabeled edges) that leads to the user attribute of an association can

perform the operation(s) granted through access right set on the objects and object attributes that

have a path (sequence of assignment) to the association object attribute. For instance, the asso-

ciation (GFM, create, Records) grants the user Admin the access right to perform the action that

creates the real estate assets as tokens.

We have utilized the Hyperledger Fabric implementation of the ERC-20 (Etherum Request for

Comments 20) for both the token value of an asset and investor’s payment for an offering listing

on the platform. The ERC-20 is a standard for Fungible Tokens. The records of tokenized assets

reside in the ledger for the asset management module, while the record of the purchase of coin

offering is the log to the ledger of the transaction module.

5.6.2 gREIT Access Request Scenarios

The access rights exchange and buy of the associations (UserIDi, exchange, read, WalletIDr) and

(Investors, buy, read, Asset Under Mangt) in Figure 5.7 models the authorization of purchase by

an investor. For an authorized investment in a token asset, an investor must pay from an account

(WalletID) associated with the UserID of the investor. Scenario 1 of Figure 5.8 shows the inter-

action of the user John with the gREIT platform application. The query request ‘readAccount’

returns that John has 500 GREIT asset tokens and 2000 ERC20 currency tokens. His authorized

‘buyGRET’ transaction to invest 150 ERC20 currency in a tokenized asset ‘KJKPlaza’ response is

an asset token balance of 650.

In another scenario, a user (SMBroker) requests to list (launch) an asset for the initial offering

service. As the user SMBroker is not associated with the attribute (GFM) granted the access right to

launch asset token, the Policy Decision Smart Contract denied the transaction request (see scenario

2 Figure in 5.8).
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Figure 5.9: Average latency of register, launch, and buy transactions using LevelDB

5.7 Performance Evaluation of Policy Machine Implementation in Hyper-

ledger Fabric

We performed this experiment using a virtual machine that has 2 CPUs, 10GB RAM, running

Ubuntu 16.04 LTS operation system, and Hyperledger Fabric V2.2 installed. We built a Fabric

blockchain testbed which has one Raft orderer service node, two peers for an organization on

a single channel. The network configuration is evaluated against the two available data bases

(LevelDB and CouchDB).

We generated the three types of transaction workloads into Fabric blockchain using the Hyper-

ledger Caliper V0.4.2. Hyperledger caliper is a blockchain performance benchmark framework,

which allows users to test different blockchain solutions with custom use cases, and get a set of
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Figure 5.10: Average latency of register, launch, and buy transactions using CouchDB

performance test results. Caliper comprises two difference processes, a manager process and scal-

able worker process. The manager process initialize the Fabric network, schedules the configured

rounds, and spools the performance report based on the observed transaction statistics. This exper-

iment, our benchmark configuration sets the number of worker process to 20. For each round of

execution ranging from 1000 to 10000 transactions evaluates the average latency for workloads of

the transaction types (register, launch, buy).

Figures 5.9 and 5.10 plot the experimental results in terms of average transaction latency. The

register transaction average latency increases linearly with an increase in transaction number. For

10000 transactions, the average latency for the LevelDB and CouchDB was 1.0 and 1.33 seconds,

respectively. The two other types of transactions peaked when the transaction number was 7500.

The average latency for the launch transaction was 0.97 and 1.40 seconds for the LevelDB and
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CouchDB, respectively. Notice a similar trend for the buy transaction. CouchDB results in higher

latency than the LevelDB since it incur internal network latency for the required HTTP communi-

cation. Conversely, the LevelDB can not effectively support complex schema and queries for the

ledge.
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CHAPTER 6: CONCLUSION & FUTURE WORK

The policy machine attribute-based access control model uses enumeration of attributes and re-

lations to formulate policy. This feature makes performing (queries) reviews of policy feasible,

rather than the theoretical NP-complete time complexity in models that express policy logically.

However, the NIST reference specification is lacking policy reviews pertinent to the creation and

modification of administrative access policy. An example in section 3.3 demonstrates how policy

review using our proposed algorithm can prevent an unintended consequence in the PM adminis-

tration. In section 3.4.2, the response time of the performed experiments indicates the proposed

algorithm is scalable.

This work also proposed the NIST ABAC architecture and its implementation for a permis-

sioned blockchain network. The policy Machine is well-adapted for a distributed system such as

the blockchain, and it is scalable. After we discussed previous work that studies the implementa-

tion of ABAC on a blockchain, we presented the system architecture and implementation of the

Policy Machine sub-components as smart contracts (chaincode). We provided a use case to demon-

strate the feasibility of the Policy Machine for a blockchain network. The experimental evaluation

of this work applies the two available types of databases for Hyperledger Fabric setup, and the

Hyperledger Caliper framework provides workloads for average latency results.

After the implementation of the NIST ABAC architecture in a permissioned blockchain net-

work, we implemented our policy review algorithms on the Hyperledger blockchain network. In

section 4.4.2, we presented the evaluation of reading the Policy Information Ledger on the Hyper-

ledger Fabric network and the response time for a policy review of various request sizes.

The are multiple tracks to further this work. The immediate effect is to incorporate the review

of authorization and revocation of non-administrative policy into this work. The Policy Machine is

robust and flexible to compose and combine multiple policies. An area for future work is to study

the policy review in Policy Machine with multiple policy classes. Another extension of this work

can include the policy review of delegations.
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