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Neural Networks with back propagation are a powerful deep learning tool and were en-

hanced with the Convolutional Neural Networks (CNN). CNN gained notoriety in the detection

and classification of objects within images. Images are grids, or matrices, of data aligned in a spe-

cific pattern. These structures are naturally defined by the light photons that were the source of the

images. CNN have since proven valuable in non-image tasks, detecting and classifying variances

in different data. When CNN are used with other sources, often those data have a naturally defined

order, but what of cases where no natural order exists? CNN analyze the underlying structure

of images, extracting features out of the mathematical patterns from which objects are identified.

When data is not naturally ordered, duplicating similar mathematical structures should improve

CNN performance. One example is digital data comprising of security breaches. That data rarely

has a naturally derived order and is usually defined by specification or arbitrary log entry. Security

is also an area where high performance is preferred so research that effects improvement has merit.

This topic is examined by exploring the mathematical structure of images, followed with

an analysis of how a CNN are identifying those patterns. It then includes an algorithm for mim-

icking a similar structure in nonnatural security data, followed by testing between the original

specification structure, statistically derived image related schemes, and a set of random orders.

Also included is an examination of current visualizations tools to gain an understanding of the pa-

rameter behavior. By testing this hypothesis with different data sets and multiple models of CNN it

is shown that using mathematical relationships to define the matrix structure, attempting to match

those found in images, has strong merit for higher performance, but understanding the strengths
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and weaknesses of a particular CNN model variant is imperative to maximize the benefit.
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CHAPTER 1: INTRODUCTION AND MOTIVATION

Recent explosion in CNN architectures have pushed computer image recognition [1] to an art form.

It has provided a variety of options depending on the application [2]. They are also used in non-

image related fields, so understanding how they work with images should help us leverage their

use in these other areas.

It has been shown that entropy can be used to both increase detail [3] and reduce noise [4].

By examining the entropy of an image, for example the dog in Figure 1.1a, and comparing the

activation values found by analyzing it with a shallow CNN, Figure 1.1b, it is visible that the

CNN is identifying patterns in entropy. This research hypothesizes that these new CNN models

are finding novel ways of making identifiable information out of these patterns of entropy.

Exploration has been made in using CNN in fields other than image classification. Text

[5], sound samples [6], and medical diagnostics of DNA [7] are examples on how this technology

has other uses. Often times these sources of data have a naturally defined order such as the acous-

tical waves in a sound or DNA in a sequence. But many times these data sources do not have a

naturally defined order, for example a series of sensors on a automated vehicle [8]. In most “non-

natural" cases the researcher defaults the matrix order to a structural relationship between features

usually established by an arbitrary specification. The term “nonnatural" is used as a definition of

ordering sources that were not defined in nature. This is opposed to “unnatural" which leads to the

idea that they were ordered by something super-natural.

A particular subset of nonnatural data that has gained interest is detecting digital security

issues. For example raw IP traffic [9, 10], computer process metrics [11], and industrial sensors

[12] are examples where researches are evaluating the use of CNN in security related fields. The

ability of a CNN to examine a large amounts of data looking for patterns from which important fea-

tures are extracted is what make CNN successful. Compiling data sources in a properly organized

1



(a) Image with a 3 wide Entropy of Primary Colors (b) CNN Level-2 Activations of Image

Figure 1.1: Image processed by CNN

structure for a deep learning algorithm to analyze should be of concern when using CNNs.

The activation plot in Figure 1.1b is an example of visualizing the convolutional layer.

CNN models consist of many layers each performing a specific task. Some run convolutions via a

series of filters, some pool data points together, while others perform mathematical operations over

either one or a pair of grids. Comprehending what could be going on within these “black boxes"

is improved with visualization techniques that let the user by eyesight understand the network

internals.

1.1 Problem Statements

This research explores the use of training CNN models using nonnatural security data. Does order

of that data matter when defining the matrix? Is there a method that can derive a preferred, or even

an optimum order, one that produces the highest performance in the least amount of training time?

Is it possible to leverage visualization tools when working in a nonnatural security domain?

2



1.2 Summary Of Contribution

The contributions of this work are:

• Show that ordering of rows and columns has a major impact on the performance of CNN

when used to analyze nonnatural data but how much is model dependent.

• Define a methodology for ordering nonnatural data by statistical relationships.

• Show that using statistical relationships to define matrix order is a strong predictor of a good

performing order, but the exact statistical relationship can depend on the model of CNN.

• Increase the state of malware detection technology by providing data preparation and visu-

alization tools that assist in improving CNN performance when analyzing security data.

1.3 Related Publications

The initial hypothesis, that order matters, and defining order using statistical relationships based

on portions of the work in Chapter 3.2.1 - 3.2.1, Chapter 4.1.2 & 4.3.1 and Chapter 5.2.1, was

accepted for publication ICCCS-2019 conference.

• Randy Klepetko and Ram Krishnan. “Analyzing CNN Model Performance Sensitivity to

the Ordering of Non-Natural Data", 4th International Conference on Computing, Communi-

cations and Security (ICCCS). IEEE Rome, Italy, 2019. Reproduced with permission from

IEEE.

Additional development of the methodology and extending the types of data that can

be organized using statistical relationships based on portions of the work in Chapter 3.1 & 3.2.1,

Chapter 4.3.2- 4.3.6, and Chapter 5.2.2-5.2.6, was accepted for publication at SKM-2021.

3



• Randy Klepetko and Ram Krishnan. “Analyzing CNN Models’ Sensitivity to the Ordering

of Non-Natural Data", International Conference on Secure Knowledge Management in the

Artificial Intelligence Era. Springer, San Antonio, Texas, 2021. Reproduced with permission

from Springer Nature.

Followed up with a Information Systems Frontiers journal publication where analyzing

the use of visualization tools was added to enable some understanding for the individual models

parameter response based on portions of the work in Chapter 3.3.1 and Chapters 5.2.7 & 5.2.8.

• Randy Klepetko and Ram Krishnan. “Visualizing CNN Models’ Sensitivity to Nonnatu-

ral Data Order", Information Systems Frontiers, 2022. Reproduced with permission from

Springer Nature.

The latest publication explored using these techniques with internet protocol data sets and

shared a new visualization tool to better understand the model parameters, the Model integrated

Class Activation Map (MiCAM). It was accepted for publication to MLSC-2023 and is based on

portions of this work in Chapter 3.3 & 3.2.1, Chapter 4.1.1 & 4.1 and Chapters 5.1, 5.3.1 & 5.3.

• Randy Klepetko and Ram Krishnan. “MiCAM: Visualizing Feature Extraction Of Nonnat-

ural Data", 4th International Conference on Machine Learning and Soft Computing (MLSC

2023) Copenhagen, Denmark, 2023. Reproduced with permission from ACSTY.

Sections discussing ResNet modification, portions of Chapter 4.3.3 & 5.2.7, & all of

Chapter 5.2.10, and IP maleficent classification analysis, portions of Chapter 5.3, have not been

submitted for publication.
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1.4 Organization Of Dissertation

The remainder of the manuscript is organized as follows: Chapter 2 discusses related work using

CNN with nonnatural data. Chapter 3 outlines the methodology including a description of ordering

the data. Chapter 4 describes the analysis procedure with data and model details. Chapter 5

describes the evaluation results. Chapter 6 summarizes and concludes.
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

This chapter explores the related background and research. First discussed is understanding images

to identify the patterns that CNN discover and creates detectable features from. Then discussed are

various image analysis CNN models used in these experiments, their history, capabilities. Next is

included a description of some of visualization tools used with CNN. Following is an exploration

of novel uses of CNN in nonnatural settings, and finally a background is provided of CNN used

with nonnatural security data.

2.1 Image Analysis

Before neural networks, early image analysis used a number of mathematical procedures to help

automate the decoding and analysis of images. These techniques were used in image enhance-

ment, compression, feature extraction and rudimentary classification. Many of these methods are

still used in our video and image compression schemes, and are continuously reviewed for novel

insights and tools.

2.1.1 Convolutions

Convolution, the mathematical process of revolving a function over a set of numeric values has

long developed relationship with image analysis. In 1960, Perrin with Kodak [13] first introduces

the idea of using convolutions to identify edges and other sinusoidal patterns found within an

image. There are many other examples of how convolutions are used in image analysis and they

are the key process of how CNN operate.
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2.1.2 Correlation

Correlation, the statistical analysis of two sets of data and the measuring the related differences

between them has also long been used in image analysis. In 1961, Horwitz et. al. [14] proposed

using correlation in a process he called auto-correlation for identifying numbers and letters on a

page. This is done by comparing a known pattern and finding the highest correlation with multiple

augmented versions of an unknown second source. In 1970 Arcese et. al. [15] also use correlation

with a previously defined matrix to detect objects within a radar image. Correlation has repeatedly

been used in both image and digital information processing since.

2.1.3 Pooling

Using pooling as a image feature extractor was first suggested in 1965 by Hubble et. al. [16]. They

were studying the visual cortex receptors of a cat and discovered that data pooling was occurring

between two of the layers. Since it became a normal process for minimizing images, but it wasn’t

until 2005, when Serre et. al. [17] introduced it’s use as a feature extractor in an early CNN model.

2.1.4 Entropy

In the study of pattern recognition, entropy was introduced early on. In the year 1966, Bremermann

[18] explores the use of entropy to study speech recognition. Although speech is thought of as non-

image related, he clearly ties the sound pattern identification into a mathematical image on which

a classification problem is solved. In it he includes entropy among other measurements to help

identify features within the sound waves. He shows that these features are non-linear in general,

and he is critical of the linear approaches used at the time including Fourier analysis. Entropy is

another example of a mathematical concept that has repeatedly been used in image analysis.
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2.2 CNN in Image Analysis

The concepts of neural networks was first published about by Roseblatt [19] in 1963, labeling

each neuron a perceptron. There were a number of advances including layering the neurons by

Fukushima et. al. In 1983 [20], where they introduce the Neocognitron or new-recognizer. Fol-

lowed shortly by Rumelhart et. al. [21] with the introduction of back propagation for auto correct-

ing training errors.

It was Werbos, in 1987 [22], who published a analytical description of the human visual

system, and provided the insight on how to duplicate a similar structure using machines. In his

article he explains that the visual system is broken into several parts. The front are the optical

neurons (pixels) within the eye, followed by different layers of the brain, each of which are involved

in assembling the image as features found within the pixels, organizing them into a story the brain

understands.

Five years later, his work was translated into a practical system that could be coded in

a machine by Hussain et. al. [23]. They define the basic building blocks and links between the

layers calling it a Feature Recognition Network. They replicated a similar multi-level approach

where middle layers extract features from the input pixels, followed by a decision network which

compiles a story from those features. They made comparisons to the Neocognitron and showed it

could perform as well when deciphering hand written numbers with one tenth the number of cells.

A diagram on how it works is shown with a cat image in Figure 2.1. The initial lay-

ers combine the pixels into features consisting of edges and textures. The following layers then

combine and extract these features into new complex objects (eye’s, arms, etc.) until in the final

decision layer the picture is recognized. Initially this recognition result is random, with high error

rates, but with training and back propagation the error rate is reduced.

That inspired Convolution Neural Networks from which many models were derived.
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Figure 2.1: Visual diagram of a CNN activations identifying the image of a cat

Each new model uses novel techniques to accomplish higher precision in computer image object

identification and classification. Following is a review of each model used in this research, they’re

features and capabilities. The technical details will be discussed in the later methodology Chapter 3

and the Appendices.

2.2.1 LeNet

In 1989, LeCun et. al. introduced the LeNet model in [24]. It was the first to use back propaga-

tion in a practical application. They identify and classify hand written numbers provided by the

US postal system, simple black and white images. They’re goal was to achieve a 1% error rate

rate which they accomplished after 23 epochs of training. It is a shallow sequential model mean-

ing it has few layers that are linearly aligned. The data sets used closely resembles one used in

this research for the MiCAM visualization tool analysis, the MNIST [25] data set of handwritten

numbers.
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2.2.2 Inception Net

A number of CNN models came out between then and 2014. They explored different options by

choosing various mathematical activation functions, convolution window sizes, and modifications

to the depth and width of each layer. Inception Net by Szegedy et. al. with Google [26] took some

novel approaches and published several iterations where each added new features to over come the

limitations previous CNN models encountered.

In version one, they explored using multiple convolution window sizes, (5x5, 3x3,and1x1).

This added the capability of recognizing similar patterns at different scales. They then, in version

two, factorized all of the (NxN) convolutions into a series of lower order (1xN) and (Nx1) con-

volutions. This reduced the number of mathematical parameters by almost an order of magnitude.

The next version, V3, also included a factorized copies of 7x7 window size with several other

modifications including a new optimizer function, RMSProp, batch normalization in the classifiers

and label smoothing. These later features were to reduce over fitting.

It consists of 13 separated convolution stages, each consisting of a group of factored

convolutions and a pooling operation, with a total of 95 convolutional layers. Some stages are

separated by parameter reduction pooling operations. It was the first non-sequential model that

proved that the layers don’t need to be stacked linearly by beating the competitors in the ImageNet

2014 challenge. There are later versions of Inception Net, but they were released after ResNet

included features that align with the ResNet models which are discussed next.

2.2.3 ResNet

In late 2105 He et. al. submitted a paper [27] that added a new feature to the network topology

that revolutionized CNN, the residual connection. This new link is for data to mathematically add

the input of a convolution stage directly to the output, feeding the next stages input. It greatly
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reduced the issue of a vanishing gradient which is a major issue when training deep networks.

It accomplishes this by carrying though gradient changes over this connection, maintaining the

majority of the gradient magnitude further through the network.

They were able to win first prize the 2015 ImageNet competition with a top five error

rate of 3.57% taking the prize in all categories, classification, localization, and detection. They

also won the categories of detection and segmentation in the 2015 COCO competition.

There are multiple published versions of ResNet, all based on how many convolution

layers they are consist of. The convolutional layers are grouped by two or three in a stage with

a residual link around them. This research focuses on the using ResNet-18, per it’s name there

are 18 convolutional layers with a pair of pooling feature extractors at the end. Our research

experimented with other versions but found deeper models (ResNet-50, ResNet-101, etc.) took

orders of magnitude longer to train with no better results.

2.2.4 Xception Net

Chollete published the Xception Network in 2017 [28]. Inspired by Inception Net, it reduced com-

plexity and parameter count by adding depth separable convolutions. This is where the dimensions

of the convolution filter are modified by factoring 3-dimension filters into 2-dimensions. By re-

ducing the dimensions of the filter, the number of parameters required by the filter computations

are reduced. It reduces the processing time, while maintaining the majority of the combined fil-

ters capability. This approach introduces using several NxNx1 and 1x1xN convolution filters in

place of the individual NxNxN filters. It also includes more relu activation functions supplying

additional non-linearity.

Xception has 14 stages which consist of 40 convolutional layers. Most stages included

a pooling operation and a residual link. The residual links are opposite sets of 3x3x1 width wise

convolutions and some links include 1x1xN depth wise convolution . Performance comparisons
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versus previous models give Xception an advantage in fewer parameters hence processing time

and a moderate improvement in accuracy.

2.2.5 MobileNet

A year later Howard et. al. published his work with MobileNets [29] with the goal to minimize

the footprint of CNN to give them mobile access. Like Xception they also use depth separable

convolution but use them to reduce the width of later layers instead of expanding them as done in

Xception. This greatly reduces parameter count. Other models use pooling layers to accomplish

this. To reduce the count even more, they add two more parameters a width and resolution multi-

plier. These positive values are less than or equal to one, and are used when training from scratch

to decrease parameter count further while maintaining accuracy.

Several versions of MobileNet were tested with but this research found the first most

responsive during training. It is very sequential, no links or multiple paths through the 13 stagee.

Each stage consists of a series of depth wise and width wise convolutions. It is the only network

that doesn’t include any pooling operations as feature extractors, but uses convolutions with a

strides larger than one to accomplish this.

2.2.6 DenseNet

Last revised in 2018, Huang et. al. [30] published DenseNet. Like residual links, they add connec-

tions around layers, but instead of using addition as the function for combining the input source

with the output, they used concatenation, with each stage increasing the depth for the next stage,

creating a denser input cluster. Hence they named it a densely connected network. This compiles

all of the information previously gathered together as input from the earlier layers and forwards

the details on for the later stages. It reduces the information lost by the addition process used in

residual links, maintaining initial input integrity further mitigating the vanishing gradient.
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They reduce parameter count by including bottleneck layers in between dense stages.

These do not include the surrounding dense links, instead include a 1x1xN convolution to reduce

the depth and a pooling layer for a reduction in width and height. It allows a deeper number of

layers while limiting parameter count. This research worked with the smallest, Dense-121.

2.3 Visualizing Convolutional Neural Networks

A number of visualization tools have been created to assist in the engineering and development

of CNN. Some image generating tools create graphs to provide a higher level understanding of

the data flow within the model. Other visualization tools provide histograms of the parameters

as they adjust over the training period. Visually revealing the hidden layers provides researchers

comprehension behind neural network decisions. Theses tools are evolving as the field matures.

By providing transparency and an explanation [31] as to the network parameter intensi-

ties visualizations assist the researcher in all stages of the network development life cycle. Early

in model construction they provide failure details letting the engineer to see how performance is

affected by model changes. Visualizing the hidden layers enhance confidence that the model is

identifying a proper set of features during network maturity. As the network exceeds human per-

formance, the visualization tools provide a computer instructor, teaching the researcher novel ways

of examining the data.

Flow and model diagrams were introduced since the very first deep learning models were

published. They provide a visual representation of the mathematical objects that are coded within

the software. They represent these as spheres or cubes, and as multiple mathematical objects

are aligned in a layer, these graphical representations are placed next to each other in a row. A

line between objects represent communication or parameter passing pathways. For convolutional

layers, a plane of objects is used, and stacks of planes are a symbol which includes the third filter

dimension. For brevity when the interpretation is understood, sometimes a higher dimension object
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is represented by a lower level visual construct.

Another important class of visualization tools are classification response graphs which

are designed to show the how responsive a pixel is to that particular classification made on a tested

sample. These include Salience and CAM graphs. Most of these tools apply well with image data,

but are not as well suited for data that is not visual in nature like cybersecurity. Often they are some

form of flow and layer diagrams, class activation maps [32] (CAM), gradient visualization [33],

sensitivity to perturbations [34], or a confluence of these.

CAMs were initially generated using a weighted sum and up-sampling the class activa-

tion maps from the penultimate layer to generate activation regions of the original image. CAMs

have evolved using different parameters as the weight values for the ratio in summing the class

activation maps. Detailed by Selvaraju et. al in 2016, GradCAM [31] uses gradients in a back

propagation step with a relu function. LayerCAM [35] published by Jiang, et. al. collects the

GradCAM maps from all of the individual layers and then sums them together in a normalized

total that includes higher amount of detail from the shallower layers within the network.

GradCAM++ [36] by Chattopadhyay et. al. modified GradCAM by adjusting a normal-

izing factor used to determine the weights for the individual gradients from the feature activation

maps. Devised by Wang et. al. in 2020 ScoreCAM [37], goes further by dropping the gradi-

ents altogether and include a contribution value to measure the importance of each activation map.

EigenCAM submitted by Muhammad et. al. [38] replaces the gradients with an eigenvector that is

derived from a combinations of the weights from all of the layers.

One thing all of these CAM systems have in common is they attempt to produce a two

dimensional plot that shows how the features on the penultimate layer are related to the objects

within the sample image. This works fine with shallower networks since the features within the

penultimate layer are closely related to the pixels within the source image, but what about CNN

models that are deep and the final feature set have no direct relation ship to the initial image. For

14



example a source image of 75x75 pixels (75 x 75 x 3) and the resulting DenseNet-121 penultimate

layer (2 x 2 x 1028). A 2x2 grid does not distinctly map to points on a 75x75 grid. A better

visualization tool is needed for these deeper layers. For this research, to identify the patterns that

CNN layers are extracting features from nonnatural security data, a better visualization tool was

developed, the Model integrated Class Activation Maps (MiCAM).

2.4 CNN in Nonnatural Data Analysis

This section presents other research that examines using nonnatural data as the source for CNN

analysis. CNN were initially designed to mimic human vision and since have achieved super

human performance in this task, but what about data sources that do not relate to vision?

2.4.1 Industrial Cases

In [39], Lihao and Yanni analyze the quality of rubber tire treads based on the parameters measured

during the manufacturing process. There are four levels to the manufacturing process with eleven

metrics sampled at each level. They vectorize these parameters, filter for noise, and feed those

vectors to a CNN. They achieved a 94% accuracy with this process. Other than noise filtering they

did not discuss data preparation or how it was organized as it was fed to the CNN.

2.4.2 As a Feature Extractor

Golinko et al. [40] examined using a one dimensional CNN as a feature extractor for other machine

learning algorithms (kNN with k=1, SVN, and RF) with nonnatural “Generic" data and examined

if ordering of the source data for the CNN has any impact on performance of the final classifying

algorithm. They propose using statistical correlation as a method for identifying relationships of

adjacent data and show that not pre-ordering the data for CNN feature extraction is detrimental to
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performance. They show ordering by correlation offers significant improvement in most cases, es-

pecially for kNN and SVN, improving final average accuracy from 76% with no feature extraction

to 82% if the features were ordered by correlation prior to CNN feature extraction.

2.5 CNN in Security

One field where CNN analyzes nonnatural data is the dynamic analysis of digital information for

security purposes. This is when the data contains maleficent actors which is studied for general

patterns that could be used in dynamically identifying any future infections. This is in contrast to

static analysis which uses simple techniques of identifying fingerprints of known maleficent actors

to counter specific infections. An analogy is training bank security guards to look for suspicious

characters, guns and masks, versus identifying bank robber faces from a stack of photos.

2.5.1 Process Metric Analysis

Smith et al. in [41], performed dynamic malware analysis using process calls made by the executed

malware code as the data source. Executed code submits a series of commands calls in sequence.

These calls are command strings (ie. “ssh") which are pre-processed via a one hot encoding. When

commands are issued during the same time segment they are included into a single on hot encoded

vector. A series of these vectors represent the executed code as the calls are submitted to the kernel

over time. These vectors were then analyzed as a group by several different machine learning

techniques, comparing malware executed code and non-malware executed code. They show that a

CNN can have a 94% accuracy with a 95% precision and 89% recall. They do not discuss the one

hot vector ordering.

In [42], Tobiyama et al. compiled more process command call information from the

machine logs. These include time of the process, name of the process, process ID, name of the

command, the current working directory, the result from the command, and other information
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included when the command was issued. They fed this information into a pre-trained RNN for

feature extraction. The output of the RNN was fed to a CNN for analysis and achieved an AUC of

96%. They do not discuss the ordering of the data prior to feeding it to the network for analysis.

Abdelsalem et al. in [11], use metrics retrieved by hypervisors in a cloud environment

that track the individual processes on a virtual machine. This set of 35 metrics are captured for each

process running on the VM. They were then compiled into a process row, metric column matrix

which is supplied to a CNN. They achieved an 89% accuracy, but did not attempt to optimize

the data by maintaining static process rows or identify a preferred ordering during pre-processing.

McDole et. al. [43] followed up with research analyzing different CNN architectures using the

same data set and ordering scheme. Kimmell et. al. [44] includes the use of other deep learning

models, recurrent neural networks (RNN), by testing the validity using long short term memories

(LSTM) and Bi-Direction LSTMs. They also explore if the order has an effect on training and

discover that it does affect performance for all models. Parts of this manuscript expand on these

techniques with this data set.

2.5.2 IP Traffic Analysis

Arranging raw IP traffic packets from the publicly available security data set, CIC-IDS-2017, in

a grid after the physical layer was stripped, Zhang et. al. [9] analyzed them using CNN, LSTM,

and a hybrid of the two. They tested both binary classification (benign/maleficent) and multi-

classification (benign + 10 maleficent types). They show all systems achieve quite remarkable,

near-perfect results. For binary classification the best in precision was the hybrid which was

slightly ahead of CNN, followed by LSTM. Regarding multi-classification, CNN had some minor

advantage in precision over the hybrid and the LSTM was behind both. Parts of this manuscript

expand of these procedures with this data set.
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2.6 Research Goals

Extending this related work, our research goals are:

• Defining a methodology to derive a preferred or even an optimum order for any nonnatural

data that is supplied to a CNN for analysis.

• Improving dynamic maleficent actor detection when using a CNN by properly pre-processing

nonnatural security data with regards to row and column ordering.
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CHAPTER 3: ORGANIZING NONNATURAL DATA FOR CNN

ANALYSIS

When comparing a CNN to a strictly densely connected neural network exactly what is it doing

that helps it detect objects? It was shown in the initial developments of CNN by Hussain et. al.

in [23] that the Feature Recognition Network accomplished the same object detection task as the

fully connected Neocognitron designed by Fukushima et. al. [20] but with one tenth the number of

cells. How did it do this and why objects in images?

When the architecture of a CNN are examined in detail they consist mostly of individual

layers operating many convolutional filters over small windows. The are transcribing operations

through the entire image, transforming it over into a set of new images. The simplest example of a

filter is the wavelet, a unit filter of window size two, span of two, stride of two, and simply consists

of two anti-symmetric digital pulses. When processed over a single channel in two dimensions, the

wavelets filter out the high frequencies within the image or edge details of as shown in figure 3.1,

and transformed the original image figure 3.1a into four new images, each displaying different

characteristics of the original.

A CNN has many filters, as specified by the design engineer, where each parameter is

algorithmically assigned values through the training process. Each of these filters are trying to find

some pattern within the window of the convolution which means the patterns are localized within

the filter window size. This research hypothesize that it is this localization of pattern identification

and feature extraction that allow CNN to excel at image related tasks as compared to the processing

required to perform the same task with a densely connected network.

Local data points are nearby, and are relatively grouped with each other. The hypothesis

is that adjusting the pixel order will change the localizing patterns that the CNN are detecting.

How can this hypothesis be leveraged when analyzing data that doesn’t come in natural form?
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(a) B&W Image of Dog (b) Wavelet Filtering of Image

Figure 3.1: Image processed by Wavelet Filter

What makes up an object in an image? An object is a set of closely related pixels. These

have similar pattern and maintain a relative relationship with their surrounding pixels as to shades

of the associated channels (colors). For example the dog in figure 3.1a, the nose are a set of dark

pixels, surrounded by gray fur. The image background is very bright white, and appears to have

some stony texture. There is a distinct edge between the dog and background despite the diffusing

hair.

All of these objects and sub-objects mentioned have mathematical relationships with the

surrounding pixels. Statistical correlation informs us that pixels within the same object are highly

correlated. Sub-objects of the same object could have a negative correlation, so the same object

could have a high positive or negative values. Those pixels not related to the same object should

have little relationship or close to zero correlation as compare to those within the same object.

Accordingly those pixels should be spatially separate.

How to take advantage of this? Some form of correlation should be used to establish an

order, and quite possibly build artificial objects out of the malware patterns to enhance detection.
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This is discussed in further detail later in this chapter.

Nonnatural data organization is required prior to using CNN. The data sources must be

placed in some sort of stable pattern for the CNN to perform properly. Often that data is not

organized easily, and some care should be taken to ensure proper placement of the data. This

chapter discusses this topic in detail by: first review how data is naturally organized when CNN

are used in analyzing images and their related data expressions; second discuss how nonnatural

data sources are collected and how that leads to an appropriate structure for CNN; and finally a

technique for ordering nonnatural data within the structure that could improve CNN performance.

3.1 Building Grids from Nonnatural Data Sources

Nonnatural data sources are rarely pre-organized into a grid like fashion. If a CNN is to analyze

the data it must be organized as such. How that is accomplished will depend on the source of the

data, how it is packaged as samples, and primarily what question the network is analyzing the data

to answer.

Regarding the question getting asked, for example, take a stock market history, a series

of companies each with prices changing through the day. What questions could be asked? For

example, how one company is doing compared to it’s past or other companies? How the market

is doing as a whole? What should be sold, bought, and how much? Some questions use the same

data organization others different.

After the questions are defined the researcher needs to decide which data and how to best

organize that data to answer the question. Using the stock price example, one could ask, based on

historic stock price, will the year have an up or down market. In this example, take the closing

prices of 100 indices over a year, 200 business days, that’s a 100x200 grid. Sample that over 20

years, and there is 4000 samples. Another example could be asking about a particular business.

Take the price per hour and stack it over days, or take the beginning, median, and final price over
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a week, by four weeks. One could also include outside data, open records like expense reports,

profits / loses, and other sources of information. A decision needs to be made with regards to what

data is available and germane to the question.

3.1.1 Mapping Feature Labels and Values

The CNN uses a grid structure, consisting of two axis. In algebra they are called the abscissa and

ordinate but in this manuscript they are called rows and columns, both as vectors. The next step

in creating the grid from nonnatural data is to identify and label associations from the data to the

rows and columns. Start with a grid of V number columns and U rows. Before any values are

assigned, the labels need to be assigned for each of the rows and columns. Mathematically using

set theory, the column labels are vi, ∀i = 1 . . . V , and rows uj, ∀j = 1 . . . U . This provides two

vectors of labels, V � {v1 . . . vV } and U � {u1 . . . uU}.

Next the data associations are assigned to the labels. For the business example, the rows

could be the businesses, labeled by stock index name, and the columns various economic measure-

ments such as include opening, closing, and median stock price, number of reported employees,

total revenues and expenses, net income, and taxes paid.

Now with the data association established by the row and column labels, the values of

the sample are assigned all of X � xij, ∀i = 1 . . . V and ∀j = 1 . . . U , or in grid of size V xU in

the form:

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v1 v2 . . . vV

u1 xv1u1 xv2u1 . . . xvV u1

u2 xv1u2 xv2u2 . . . xvV u2

...
...

... . . . ...

uU xv1uU
xv2uU

. . . xvV uU

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Each point or pixel xij in this grid can be considered a unique pixel. This pixel is related to the
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other pixels in a column and row, and are grouped together as column and row vector, ui and vj .

As the data is mapped onto the grid note that most data is ingested into a system serially.

This means that data is brought in one element at a time, and it is up to the data organization

and order that defines how it is delivered. This data is compiled into packets. Does the packet

sample contain data about many labels, or just one? This question is asked along both the rows and

columns. It is a detail that helps decides how to re-organize the data for analysis which is covered

in the next couple of subsections.

3.1.2 Many Feature Labels Per Data Sample Packet

This is when the data is grouped together in large packets and values for many labels along one axis

are available. In the business example, the the data packet of daily stock prices for all companies.

The axis covered by many values is the businesses, and daily price is the other axis label. So this

one data packet could be used to make a number of concrete analysis between businesses for that

day. Statistical inferences like highest, lowest, mean and median price, and the spread of those

prices can be extracted from this single sample. An important implication for the vector ordering

mathematics later. These statistical inferences derived for these vectors labels are independent

from other packets.

3.1.3 Single Data Sample Packet Per Labeled Feature

This is the opposite case, where data along the axis is divided among many samples. For this

particular example of daily stock prices, this would be the businesses individually. The only sta-

tistical information possibly extracted about a business from the packet described in the previous

subsection is the price of that business for a particular day. There is no other information about

individual companies so any statistical questions regarding a single company requires many data

packets. How these statistics are gathered involve a different mathematical perspective than the
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previous case and are considered dependent on multiple packets. To use the same mathematics

require remapping the data set. It is this remapping that adds a level of mathematical complication

that is detailed later in the next section.

3.2 Vector Ordering

The focus of this study is what order is chosen for defining the axis of a grid? Is there one that is

optimal? In this case, the focus in on two dimensional grids. So what order is important for the

rows? What about columns? Are they dependent or independent? Does order matter at all? This

next section details the ordering schemes that are compared later.

3.2.1 Dynamic Vector Order

This research found that past studies may or may not have had "static" ordering definitions. Often

the organization of data was dependent on the data packets which may or may not consistently

order the rows and columns of the data as it was compiled. The initial experiments compared this

dynamic order scheme with static ordering schemes defined in the subsections below.

3.2.2 Static Order - Random: May or May not Increase Entropy

* The material presented in this subsection previously appeared in the proceedings of the 4th
International Conference on Computing, Communications and Security (ICCCS 2019) in the ar-
ticle, “Analyzing CNN Model Performance Sensitivity to the Ordering of Non-Natural Data", co-
authored with Ram Krishnan, Ph.D.

One option for choosing an order is to pick it at random. This does not mean that the

artificial pixels are randomly scattered onto the grid, but instead stochastically define the label

order along the rows and columns. Although this adds a sense of variability to the order definition
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it may or may not increase the entropy visualized when the grids are compiled. It is possible to

choose and arbitrary order that reduces entropy.

Comparing changes in performance for several random ordering schemes determines

whether any order has relevance. Depending on the data, this research either defined 10 random

column and 10 row positions or 100 random options along a single axis. This provided 100 unique

orderings that allowed this research test the basic hypothesis and the random results are used as a

background to compare the others ordering schemes against.

3.2.3 Static Order - By Structure: Per Specification

* The material presented in this subsection previously appeared in the proceedings of the 4th
International Conference on Computing, Communications and Security (ICCCS 2019) in the ar-
ticle, “Analyzing CNN Model Performance Sensitivity to the Ordering of Non-Natural Data", co-
authored with Ram Krishnan, Ph.D.

In most cases where previous researchers have used CNN with nonnatural data, the order

is defaulted to match the structure of the packets as they are delivered to the digital interface. This

order has been defined according to some human prioritized specification, one that does not con-

sider the implication that a particular order may or may not have in regards to CNN classification

performance.

The use of several structural relationships was explored as one method for establishing

an order. Found were several relationships as determined by specification: log location, process

number, parent/child and sibling status, related virtual machines, naming convention, or IEEE

internet protocol. These orderings were studied in detail and are included in the processing and as

part of the general backdrop along with the random 100.
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Table 3.1: Statistical Correlation Functions

Statistical Correlation Function

ρvivj =
E(xvixvj)− E(xvi)E(xvj)√

E(x2
vi
)− E(xvi)

2 ·
√

E(x2
vj
)− E(xvj)

2
(3.1)

3.2.4 Static Order - By Statistics: Per Correlation

* The material presented in this subsection previously appeared in the proceedings of the 4th
International Conference on Computing, Communications and Security (ICCCS 2019) and the
proceedings of the International Conference on Secure Knowledge Management in the Artificial
Intelligence Era (SKM 2021) in the articles, “Analyzing CNN Model Performance Sensitivity to
the Ordering of Non-Natural Data" and Analyzing CNN Models’ Sensitivity to the Ordering of
Non-Natural Data, co-authored with Ram Krishnan, Ph.D.

Perhaps images provide some insight on how to best order the matrices. CNN’s are used

to identify objects within images. What makes up an object in an image? Statistically, an object is

a set of highly related pixels. All of the pixels will have a similar shade. Pixels outside the object

boundaries usually have little statistical relationship to those inside an object. It is this fact that led

to many advances in image compression techniques [45–47].

This research hypothesizes that artificial objects can be created by grouping the rows

and columns to increase the average statistical relationship between neighboring features while

decreasing the overall entropy of the image. By taking either rows or columns as a V number of

vectors v, research found a relationship, statistical correlation ρvivj as shown in equation 3.1 to

base this order from, maximizing this relationship value between any two vectors vi and vj for all

vectors along an axis (row or column). This order was tested to see if it has a positive impact on

CNN performance. Also tested, an opposite hypothesis by dispersing the artificial objects, mini-

mizing the correlation between vectors to see if it had a negative impact on performance. These

column orderings are included in the evaluation details. This consists of three relationship func-

tions, correlation (equation 3.1), the absolute value of the correlation ρABSvivj = |ρvivj | to increase
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object edge creation, and anti-correlation, ρANTIvivj = 1 − |ρvivj |, to test a counter hypothesis

dispersing the objects and increase the entropy.

The derivation of this correlation function is easy when there are many vector labels

per data packet, when the statistics are independent of multiple packets. Each vector sample is

immediately related to each other by calculations within the same packet. Or mathematically if

the individual sample X which consists of P packets so X = [Xp]
P
p=1 where the packet is Xp =

[xpq]
Q
q=1 with Q labels. This allows easy evaluation of the cross vector correlation by calculating the

statistical relationships between samples labels across all of the packets. Since Xp � {v1 . . . vN},∴
ρvivj = f(xvi , xvj)∀Xp where f(xvi , xvj) is defined in equation 3.1.

It was a struggle to derive a proper correlation value when the data packets are organized

by a sample per feature label, or the statistics were dependent on multiple packets. Mathematically

it is flipped around. Q labels so that X = [Xq]
Q
q=1 where a label has P packets Xq = [xpq]

P
p=1.

Initially it was attempted to use the same correlation function, but because of a data size and

inclusion of irrelevant samples the results suffered from a vanishing correlation. This occurs when

a large set of samples not related to the label are included in the calculations. For this research the

queries were pared down so only packets related to a single vector pair, ui and uj , were calculated

at a time. The data set was reduced for this specific relation value to only include samples when

these two vectors were included. The data was further reduced by restricting the opposite axis v to

a single label. This basically modifies the correlation equation to:

ρvkuiuj
=

E(xvkui
xvkuj

)− E(xvkui
)E(xvkuj

)√
E(x2

vkui
)− E(xvkui

)2 ·
√

E(x2
vkuj

)− E(xvkuj
)2

(3.2)

It was repeated for the opposite vectors vk∀k. This reduced the query time from what was months

for all vector pairs to processing around a single opposite vector vk, ρvkuiuj
∀i, j, in roughly 24

hours. Once these calculations were finished a full set of vector pair correlation values was avail-

able, ρvkuiuj
∀i, j, k.
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Summing the correlations for a single pair resulted in a statistical relationship value be-

tween the vectors ρSUMuiuj
:

ρSUMuiuj
=

V∑
k=1

(ρvkuiuj
) (3.3)

To derive a relative importance order in the feature labels per sample correlations (equation 3.1

above) a sum is taken of all vector correlations for a single metric:

ρTOTvi =
V∑
j=1

(ρvivj) (3.4)

This is total feature labels per sample correlation on which to order their importance, largest to

smallest. It is repeated for the opposite axis, resulting in a second total samples per feature label

correlation:

ρTOTui
=

U∑
j=1

(ρSUMuiuj
) (3.5)

Along with the fully correlated rows ordered derived from equation 3.3, this research took the

opportunity to tests some other options derived from this function. Included were similar rela-

tionships mentioned with the dependent packet association with both the absolute value of the

correlations, ρABSpipj =
∑M

j=1

∣∣ρmkpipj

∣∣ and anti-correlations ρANTIpipj =
∑M

j=1(1−
∣∣ρmkpipj

∣∣).

This statistical relationship value is ranked by importance of each metric column and

process row with each other. A methodology was built to construct the order. It is generic process

with regards to feature label, fi, row or column, and the function used to derive the statistical

relationship value ρfifj . The ordering methodology uses the steps in Algorithm 3.1.
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Algorithm 3.1 Derive Statistical Relationship Order
For features along an axis, fi, define a function, ρfifj∀i, j
From ρfifj define ρTOTfi∀i
Create a selection pool of features P � fi
while P �= ∅ do

Create an empty bidirectional queue Q for features fi Find max(ρTOTfi)∀fi ∈ P Place the
corresponding feature fmax(ρ) onto Q Remove fmax(ρ) from P Create two pointers left, L, and
right, R; L,R ∈ Q Point L and R towards fmax(ρ) in Q while P �= ∅ and not(STOP) do

if ∃ρfLfi∀fi ∈ P or ∃ρfRfi∀fi ∈ P then
Find max(ρfLfi , ρfRfi)∀fi ∈ P Place the feature fmax(ρ) next to fL or fR on Q Re-
move fmax(ρ) from P Move the pointer, L or R, to the new feature fmax(ρ) in Q

else
Stack current queue Q into a final ordered axis V STOP

end

end

end

Result: A vector V of features fi that are ordered by the relationship function, ρfifj
Derive Statistical Relationship Order

Occasionally there are ties. This was especially true for the anti-correlated functions.

Many pair of feature vectors have no correlation between them. The ties were settled by examining

the next set of neighbors to see which set increased the relative total relationship value of the entire

grid.

3.2.5 Static Order - Correlation of Data Subsets

* The material presented in this subsection will appeared in the proceedings on the 4th Interna-
tional Conference on Machine Learning and Soft Computing (MLSC 2023) in the article, “Mi-
CAM: Visualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan,
Ph.D.

Since this study uses correlation on the entire set of data, what if this statistical analysis

is only performed on a subset of the data being analyzed. For example, what if the statistics were

derived only from a data subset that was classified as maleficent. Would deriving the order from

these statistics generate specifically maleficent artificial objects? In cases where the data sets have
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sub-classes, this hypothesis is tested.

3.3 Visualizations

For further analysis, this research studied several visualization tools used on specific data samples

from the testing set to explore what the CNN models are doing within the hidden layers. To see

the differences between a poor-performing order and a good one, the extreme options were chosen

from the results. These two extreme ordering options from each experiment were then analyzed

using the visualization tools.

3.3.1 Publicly Available Visualization Tools

* The material presented in this subsection previously appeared in the journal, Information Sys-
tems Frontiers (2022) , “Visualizing CNN Models’ Sensitivity to Nonnatural Data Order", co-
authored with Ram Krishnan, Ph.D.

Initial attempts to use visualization tools consisted of evaluating those that have been

published and readily available within the software environment. Used were Saliency, GradCAM,

GradCAM++, and ScoreCAM tools. An example of a set of visualization results is found in

Figure 3.2 which shows the original image followed by a Saliency [48], ScoreCAM [37], Grad-

CAM [31], and GradCAM++ [36] plots. In this case a LeNet-5 CNN was trained to discriminate

between cat and dog images. These plots visibly locate different features identified within the

image. Will these visualization tools help identify malware features within grids of cybersecurity

data? Along with analyzing grid order with deeper CNN models, we also explore the use of image

analysis visualization tools to assess if they can provide additional insight into these deeper models

analyzing nonnatural data. The resulting plots and analysis of their feasibility can be found in the

following chapters.
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Figure 3.2: CNN Visualization Tool Results of Dog Image

3.3.2 New Visualization Tool: The Model integrated Class Activation Maps (MiCAM)

* The material presented in this subsection will appeared in the proceedings on the 4th Interna-
tional Conference on Machine Learning and Soft Computing (MLSC 2023) in the article, “Mi-
CAM: Visualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan,
Ph.D.

To fully visualize feature extraction a tool was built that is a combination of a model

diagram with class activation maps. A model diagram is a flow plot that has the network layers

displayed with the data pathways identified so the engineer can visually see the related connections

between layers. This flow diagram is rather trivial when working with sequential models, but can

be quite complex when dealing with network like Inception Net, that have multiple interconnec-

tions between layers. A class activation map (CAM) is a combination via a weighted sum of all of

the activation maps for the filters a single layer. The weights for this sum define the type of CAM.

This tool takes the model diagram and instead of displaying an object (i.e. layer) as a

graphical construct (sphere or rectangle) it displays the CAM for that layer. After the MiCAM

diagram is complete the result is a map clearly showing the various features that each layer defines

as important in identifying the class of a tested sample. A diagram of the process steps used to

generate MiCAM plots is found in Figure 3.3.

The multiple steps to the process are identified in alphabetical order. In the beginning

the researcher has the chosen model and the data seen in (A). The model is trained in step (B)

while at the same time, the model layout is extracted from the model definition. From the result,

the trained model in (C) and the layer layout are pulled out and the activation model is defined
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Figure 3.3: MiCAM Generation Process

(D). This model has the pre-trained layers from the trained model laid out with the filters’ outputs

exposed for sampling later.

With the activation model, a sample is taken (E) and tested to determine how it is clas-

sified in (F). Using the activation model post-test and the model layout, the outputs or activations

are extracted (G) for all of the filters and the associated filters’ weights in (H). In step (I), using

an inverse Fourier transform, the inverted convolution is taken between a filters’ activation and its

kernels’ weights. The results of are summed together, weighted by the particular filter final bias

into a single CAM plot for each layer. This CAM plot is then up-sampled to match the original

input grids dimensions.

To enhance the details within the CAM plots, the full RGBA pallete is used, by associat-

ing different variations of the CAM data within the plotted pixels. Every plot has a maximum and

minimum range that is scaled to 256 discrete intensities. These pixel values can be positive or neg-

ative, so MiCAM uses a set of relu functions to display these variations in intensities by matching
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one of the 4 degrees to a specific range of values. For blue it uses the full range of minimum to

maximum for this plot, scaled to the 256 color levels. For red it displays the positive peaks using

the relu of the values, scaling from zero to the maximum of this plot. For green it displays the

negative peaks using relu of the negative value or zero if the values are positive, scaling from zero

to the minimum. For alpha and size, it uses the full range for the plot, but scale the results to the

minimum and maximum values for all of the CAM plots within the model. The results are very

dynamic images that display a full range of the extracted features.

After generating the images, there is a stack of CAM plots for all of the layers within

the model (J). For layers that are not convolutional, it uses an evenly weighted sum of the outputs

across the filter dimension, and then up-sample them to provide a graphic for each layer. For

layers that are one-dimensional (flatten and dense) MiCAM fits the linear data within the input

grid, scaling elements up if there are fewer data points within the layer than the width and height of

the source data. The CAM plots are then integrated with the Model Layout in the Model Diagram

Generator (K) which produces the final MiCAM diagram.

The code uses the “pydot/graphviz" graphical diagram module which has an interface for

integrating images in place of objects. The code required some slight modification for passing two

list of parameters. One is the list of layers that has CAM plot images, and the second is the image

files list of CAM plots. Both lists must be the same length, and for proper diagram generation

the layer names in the first list should align with the filenames in the second list. The code is

under open source license and found at https://github.com/rklepetko/MiCAM.git

for easy access.

This concludes this chapter on the reasoning behind the steps and methodology used to

test this researches hypothesis. Several implementations of this process are explored in the next

chapter.
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CHAPTER 4: EVALUATION PROCESS

The previous chapter discussed the hypothesis, reasoning behind it and the methodology proposed

to test it. This chapter discusses the steps performed in evaluating this hypothesis and methodology.

Discussed are the data sources and the method used to define the data structure organization. This

is followed by a description of the test bed including hardware and software applications. The

chapter closes with a technical description of each CNN model tested.

4.1 Data Sources

This section describes the data sources and how they are organized to match the methodology

defined earlier in Chapter 3.

4.1.1 Dataset-1: MNIST Handwritten Numbers

* The material presented in this subsection will appeared in the proceedings on the 4th Interna-
tional Conference on Machine Learning and Soft Computing (MLSC 2023) in the article, “Mi-
CAM: Visualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan,
Ph.D.

So that a baseline understanding of how the new visualization tool MiCAM behaves,

one data set that is analyzed within this research is the MNIST data set, compiled and released

by Deng [27], an image library consisting of hand written numerical text. The 10 image classes

are from "0" to "9" and comprise of 60,000 samples from 250 census takers and 250 high school

Figure 4.1: MNIST Data Samples
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Table 4.1: Virtual Machine Process Metrics

Metric Category Description

Status Process status, Current working directory
CPU information CPU usage, CPU user space, CPU system/kernel space, CPU chil-

dren user space, CPU children system space.
Context switches Voluntary context switches, Involuntary context switches
IO counters Read requests, Write requests, Read bytes, Write bytes, Read chars,

Write chars
Memory information Swap memory, Proportional set size (PSS), Resident set size (RSS),

Unique set size (USS), Virtual memory size (VMS), Dirty pages,
Physical memory, Text resident set (TRS), Library memory, Shared
memory

Threads Used threads
File descriptors Opened file descriptors
Network information Received bytes, Sent bytes
Group Information Group ID real, Group ID saved, Group ID effective

students. Another set of testing data was compiled from a separate group of 250 census and high

school students, but comprised of only 10,000 samples. This research joined the two, shuffle them

and use 20% of the data for testing, 20% in validation, or 14,000 of the samples per set, with the

remaining used for training. Each sample was fitted in to a 20x20 grid, normalized for shading, and

centered on a 28x28 image. For analysis on deeper models, this research up-sampled the images to

75x75 pixels in size. Visual examples of the MNIST data are seen in Figure-4.1. Several MNIST

samples with the MiCAM diagrams are shared in the results chapter ?? as a base line on evaluating

feature extraction.

4.1.2 Process Metrics of Malware Infections

* The material presented in this subsection previously appeared in the proceedings of the 4th
International Conference on Computing, Communications and Security (ICCCS 2019) and the
proceedings of the International Conference on Secure Knowledge Management in the Artificial
Intelligence Era (SKM 2021) in the articles, “Analyzing CNN Model Performance Sensitivity to
the Ordering of Non-Natural Data" and Analyzing CNN Models’ Sensitivity to the Ordering of
Non-Natural Data, co-authored with Ram Krishnan, Ph.D.
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Figure 4.2: 3-Tier Web Service

This source of the data are samples taken from virtual machines in a cloud IaaS environ-

ment. These virtual machines are arrayed as a LAMP stack hosted web-site as shown in Figure-4.2.

The application server is injected with malware half way during the experiment. Each sample is

for a specific process running on the VM kernel, and contains a series of M number of metrics per

process (Table 4.1) during a segment in time. Stacking all of the P number of processes that are

captured in a sample during a single slice of time results in a matrix:

Xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 m2 . . . mM=75

p1 xm1p1 xm2p1 . . . xmMp1

p2 xm1p2 xm2p2 . . . xmMp2

...
...

... . . . ...

pP=150 xm1pP xm2pP . . . xmMpP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

For these experiments the 35 metrics expanded out with one hot encoding to M = 75

metric columns and room in the matrix for as many as P <= 150 process rows. The 29+ mil-

lion process samples were organized around 114 experiments (infections), and consisted of 31,064

sample matrices, about half of which are considered infected. The experiments were split be-

tween 60% training, 20% validation, and 20% testing. The entire grid set for each experiment
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Table 4.2: Metric and Process Correlation Functions

Metric Statistical Correlation Function

ρmimj
=

E(xmi
xmj

)− E(xmi
)E(xmj

)
√

E(x2
mi
)− E(xmi

)2 ·
√

E(x2
mj
)− E(xmj

)2
(4.1)

Process Statistical Correlation Function

ρmkpipj =
E(xmkpixmkpj)− E(xmkpi)E(xmkpj)√

E(x2
mkpi

)− E(xmkpi)
2 ·

√
E(x2

mkpj
)− E(xmkpj)

2
(4.2)

was included in the group assigned it, so no experiment was split between training, validation, and

testing.

The data source for the rows and columns were organized in packets differently. For the

columns, each feature was a specific metric, and all samples included all of metrics, or feature

labels. Since this is a many feature labels per data packet situation, so the statistic functions are in-

dependent of many packets. Substituting the grid values into the appropriate statistical correlation

function results with the Equation-4.1.

The data set for the rows was by process, with an individual distinct process contained

within the individual data packet. This is the data packets per feature scenario, or the statistic

functions are dependent on multiple packets. After substitution, results in the correlation function

found in 4.2. Following the methodology spelled out in Algorithm 3.1, Subsection 3.2.1 a corre-

lation value and order was derived for every pair of metrics and processes. Note the difference

between these two functions. The metrics function is per every metric pair for all processes, while

the process function is per every pair of processes per metric.

As shared previously in Chapter 3 this research defined several order options for both

rows and columns. First 10 random orders for each which provided 100 distinct grids. Included

are several structural relationships as one method for establishing an order. Found were several
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(a) Benign (b) Infected

Figure 4.3: Visual Plot of Correlated Samples with 3 Wide Entropy

relationships as determined by specification, log location, process number, parent/child and sibling

status, related virtual machines, and naming convention. They performed no better, if not worse,

than the average of random options. They are included in processing as part of the general backdrop

along with the random 100. They were examined in detail when using the LeNet-5 CNN model,

but unless noted are ignored for analysis in the remaining evaluation.

After compiling the statistically related orders with the previously defined order sets,

there are a total of 252 distinct grid orders to compare. A visual example of the grids in different

ordering sets is shown in figure 4.3 and figure 4.4. Shown are two data samples, one benign and

another infected, using different row and column ordering schemes. Included is a 3-square pixel

entropy filter plot to highlight possible patterns the CNN may be detecting. One order set, fig-

ure 4.3, has both rows and columns correlated while the other, figure 4.4, has them anti-correlated.

How the algorithm constructs objects using the correlated order is visible and so is dispersing them

into tiny objects using the anti-correlated order.
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(a) Benign (b) Infected

Figure 4.4: Visual Plot of Anti-Correlated Samples with 3 Wide Entropy

4.1.3 IP-Traffic of Security Attacks: CIC-IDS-2017

* The material presented in this subsection will appeared in the proceedings on the 4th Interna-
tional Conference on Machine Learning and Soft Computing (MLSC 2023) in the article, “Mi-
CAM: Visualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan,
Ph.D.

The CIC-IDS-2017 data set has captured live, raw IP traffic that is intentionally subjected

to various forms of attack vectors. There were 12 attack classes, ten of which were of a sizable

sample. The sample count and break down by class is included with the results in Table 5.7 found

in the next chapter. This traffic is compiled by session, with the sessions labeled benign or by

attack class. Each packet in the session has the physical layer of the IP packet stripped, the first

fourteen bytes, and only the following 160 bytes kept. If the original packet wasn’t 174 bytes long,

the remaining portion of the 160 bytes are supplied with zeros. The first ten packets of the session

are then compiled in order of transmission, and if there aren’t ten packets, the remaining are filled
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with zeros. The result is a 10x160 byte grid.

Xf =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 b2 . . . bB=160

p1 xb1p1 xb2p1 . . . xbBp1

p2 xb1p2 xb2p2 . . . xbBp2

...
...

... . . . ...

pP=10 xb1pP xb2pP . . . xbBpP

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is the basic single sample from the data set before it is reorganized into a 40x40

square. The current order of this gird is IP specification for the columns and transmission time

for rows. Transmission time is a natural order, an instance in a sequence, but IP specification,

human defined, is a nonnatural order. Is IP specification the best order? Will statistical correlation

on the data be a high performing order? These are the questions this study is trying to resolve.

The hypothesis is that this structural order isn’t a preferred order for CNN analysis, and if the grid

is re-ordered using a statistical relationships, those that are found in images, it should be able to

improve the CNN performance. Note that statistical analysis between bytes, a nonnatural axis,

is not dependent on multiple samples, so the use of the simpler independent correlation as the

ordering function is appropriate.

To test these hypothesis, first 100 random column ordering schemes were generated to

process and compare. Since the calculations between bytes are independent per sample the func-

tion Equation-4.1 was used and the ordering algorithm shared in Algorithm 3.1. To diversify the

number of ordering options available to analyze the correlation relationships were used within dif-

ferent data subsets. The first data set was total of all samples. Next, the study separated between

the benign and maleficent and used the correlation of each of these data subsets. Then subsets

of each attack types were extracted and generate correlated orderings from each. The idea is to

see if it is possible to focus on a specific artificial objects by re-arraigning the order to match the

correlation generated from that subset sample type. Also generated were absolute values of the
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correlations (ρABSpipj =
∑M

j=1

∣∣ρmkpipj

∣∣) and anti-correlation (ρANTIpipj =
∑M

j=1(1 −
∣∣ρmkpipj

∣∣))
orderings for each of the data sets.

This resulted in 146 ordering schemes to analyze. After reordering, the samples were

then translated into a 40x40 grid by splitting the 160 bytes into four sections and stacking them

on top of each other in order. They were randomly reordered the samples and split them into 60%

training, 20% validation, and 20% testing sets.

The reordering process of the IP packet data was written in python and processed sequen-

tially on one of the test beds. The process for determining the correlations took approximately an

hour for the entire data set, while because of the smaller population sizes, the time to generate

all twelve maleficent classes plus benign subset correlations took approximately 18 minutes. The

time it took to generate the 146 ordered lists from the correlation values and the random orderings

took approximately 12 minutes. In contrast, the time it takes to prepare the data for the CNN,

generating the tensor-flow records from the data set for all 146 ordering schemes took 33 hours,

and the processing time for the CNN to train for ten epochs on the ordering schemes took close to

300 hours. So in relative terms, the ordering process took less than two hours, while CNN prep

and training took over 150 times that.

This data set has also been labeled by type of attack, so in the results a classification

task is included. It is strongly suspected that performance for classification tasks will reflect the

outcomes seen in the identification tasks.

4.2 Test Beds

The test beds used for the research contained in this document were three server class desktops

with additional GPU capability. The machines were running Ubuntu OS and Tensorflow™with

Tensorboard™under Python as the underlying engine to perform the CNN analysis. Comparing
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between these machines, the Tesla had the ability to handle larger CNN models with two cores

and more GPU memory, while the GeForce machines would process faster with the later CUDA

capable features. The analysis was run using a desktops with the following specifications:

4.2.1 GeForce GTX Machine

• Central Processor Unit: Intel©Core™i7-8700 CPU @ 3.2 GHz x 12

• Memory: 16.0 GB

• Graphical Processor Unit: GeForce™GTX 1070i/PCIe/SSE2

• OS: 64-bit Ubuntu©22.04.2 LTS (Gnome 42.4)

• CUDA™: 11.6

• Python: 3.10.6

This desktop was purchased and assembled locally, within the lab.

4.2.2 GeForce RTX Machine

• Central Processor Unit: Intel©Core™i9-12900K x 24

• Memory: 64.0 GB

• Graphical Processor Unit: Nvidia GA102 [GeForce™RTX 3080Ti]

• OS: 64-bit Ubuntu©22.04.2 LTS (Gnome 42.4)

• CUDA™: 11.6

• Python: 3.10.6

This desktop was purchased and assembled locally, within the lab.
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4.2.3 Tesla Machine

We run our remaining CNN analysis using a desktop with the following specifications:

• Central Processor Unit: Intel©Core™i7-8700 CPU @ 3.2 GHz x 12

• Memory: 15.5 GB

• Graphical Processor Unit: GeForce™GTX 1070i/PCIe/SSE2

• OS: 64-bit Ubuntu©20.04.2 LTS (Gnome 3.36.8)

• CUDA™: 11.1

• Python: 3.8.10

This desktop was purchased and assembled locally, within the lab. Extra care was needed to re-

engineer the case airflow. The Tesla is passively cooled but a heat generator. Initial attempts to use

it resulted in immediately overheating the GPU card and halting the machine. To get the processor

to perform properly airflow was increased by forcing it through the GPU card frame by increasing

the air pressure within the case using high performance fans.

4.3 CNN Architectures

* The material presented in this section previously appeared in the proceedings of the 4th Interna-
tional Conference on Computing, Communications and Security (ICCCS 2019) and the proceed-
ings of the International Conference on Secure Knowledge Management in the Artificial Intelli-
gence Era (SKM 2021) in the articles, “Analyzing CNN Model Performance Sensitivity to the
Ordering of Non-Natural Data" and Analyzing CNN Models’ Sensitivity to the Ordering of Non-
Natural Data, co-authored with Ram Krishnan, Ph.D.

Next is a discussion of the various CNN architectures the hypothesis is tested with. They

were chosen based on two criteria, were they research significant on their release, and are they
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feasible to apply in this application. The first criteria was covered in the related chapter 2 earlier

in this document.

Initially the research examined the use of a shallow CNN model, LeNet with relu as an

activation function. This model was used since it is one of the first CNN models to make major

milestones of object identification in image analysis, but is relatively simple to construct and easy

to understand. It is described in the first subsection below.

I was then tested to determine the statistical relationship hypothesis would hold true with

other forms of CNN. Initially experiments with ResNet-50 found that the training times took longer

per epoch and more epochs than a LeNet-5. LeNet-5 would usually saturate training in 20 epochs,

but Resnet-50 would take as long as 50. A shift to Auto-Keras ©was made and within by 20

epochs it would settle on a shallow CNN with a couple of dense layers, much like LeNet, but fail

to produce any meaningful results.

To determine which CNN models would behave, a modularly broad but targeted ap-

proach as provided by re-coding the test ground to use the recently released Keras ©application set

of deep learning models. Using a limited set of ordered experiments every model was tested for

training saturation. Because of the methodology, using the same data set for the different models

was simply changing the model name within the script. Post calculation analysis found five mod-

els that would saturate training much quicker than the others, within three epochs, so those were

chosen to compare. They are described describe them below in order of their release date.

4.3.1 LeNet

This research examines two versions of LeNet. The first is LeNet-5 was used in analyzing the

process metric malware data. The second is another LeNet-5 used to analyze the maleficent IP

traffic data. There were slight variations between these models. They were chosen specifically for

their matching specifications in research related to these data sets.
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The LeNet-5 model for detecting malware in process metrics comprises of:

• Two Convolutional layers where the first consisting of 32 nodes and the second of 64 nodes.

Each convolutional layer uses a 3x3 filter and relu as the activation function.

• After each convolutional layer is a max-pooling layer with a downsize of a factor of two to

one.

• Two dense layers, the first consisting of 1024 nodes and the second 512 nodes. Relu was

also used as the activation function for the dense layers.

• Predictive layer used binary cross entropy loss function.

• Training was processed for 20 epochs with a batch size of 64.

The LeNet-5 model for maleficent detection in IP packet flows comprises of:

• Two Convolutional layers where the first consisting of 32 nodes and the second of 64 nodes.

Each convolutional layer uses a 3x3 filter and relu as the activation function.

• After each convolutional layer is a max-pooling layer with a downsize of a factor of two to

one.

• Two dense layers followed by dropout. The first consisting of 4096 nodes and the second

1600 nodes. Relu was also used as the activation function for the dense layers.

• Predictive layer which used a softmax function for binary or multi classification.

• Training was processed for 10 epochs with a batch size of 8.

Complete model details as programmed and used in these experiments can be found in

Figure A.1 which shows the layout of the Lenet CNN model and the layers parameters are found

in Table A.1 and Table A.2 within Appendix A.
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4.3.2 Inception

The Inception model of CNN took some novel approaches to manage the challenges previous CNN

were encountering. This first had to do with image scale. Objects trained at one scale had difficulty

in identifying those same objects at a different scale. To overcome that challenge, they replaced

single convolutional layer with a parallel set of convolution layers, and then aggregated the results

for the next layer.

The second thing they do is introduce depth and width (aka point) separable convolu-

tions. This takes the understanding that a NxN matrix can be constructed by multiplying a 1xN

vector with a Nx1 vector. Normal convolutions are performed with filters that are as deep in chan-

nels as the layers input source. This mans that if the number of input data points is P = WxHxD

then an NxN filter would have NxNxD parameters.

By transforming the filter into two, using depth and width wise separation, the result is

two filters with fewer parameters. One has filter has NxNx1 parameters and the other has 1x1xN .

That means unless N = 1 the number of parameters in the separated filter solution is fewer than

the non-separated filters. This effect is greater deeper within the CNN layers as the third channel,

depth, increases. By reducing the parameter count of the filter, but maintaining mathematical

cohesion, you reduce computational redundancy and increase performance.

Version three also included some new concepts with regards to training and optimization.

The first is the RMSProp optimizer algorithm. This helps during training, adjusting the learning

rate depending on the gradient change. By comparing the current gradient with a moving average

the learning rate can be adjusted accordingly. RMSprop uses the squared average, hence the name

Root Mean Square. They also included batch normalization between classifiers and include label

smoothing. Both of these regularizing features helped reduce over fitting when the CNN become

over-confident in a single result.
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The layers of Inception are grouped in modular stages. The first two stages are a linear

series of convolution and max pool layers, one feeding the next. These stages are designed to

construct lower level features. This is followed by a set of Inception stages. These branch out

and perform a group of convolutions and average pooling layers in parallel, and then aggregate the

results into a single concatenated feature set for the next stage. Since there is some modularity to

these Inception stages they are often grouped together into five categories.

Once the Inception stages are finished, the final stage is the decision, which in our sce-

nario is a a basic 6144 node dense network with a flattening and 50% dropout as a preamble. The

layer flow is shown in figures B.1-B.8 with layer details found in table B.1 within Appendix B.

4.3.3 ResNet

One of the major refinements in CNN architecture development is the concept of the skip or resid-

ual connections which are introduced with Residual CNN or ResNet for short. These skip connec-

tions re-introduce the input of a CNN stage of layers by linking the source directly to the output,

maintaining the initial information integrity for the subsequent layers and stages.

It does this through two processes, an Identity Shortcut and a Projection Shortcut. The

identity shortcut is simply adding the input values to the output values, and requires that the vectors

match in dimensions. The projection shortcut performs a convolution on the input to transform the

dimension to match the output dimensions. It accomplishes this using either strides or depth wise

convolutions.

It was determined by adding these skip connections, and re-introducing the source data to

the following layers, that one of the major impedance in CNN training was alleviated, the Vanishing

Gradient. This occurs during the back propagation step in training, when the difference int gradient

weighs within later layers are repeatedly multiplied by small values nullifying gradient within the

earlier stages so no additional learning is achieved. By re-introducing the input vectors to the later
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layers, it appears the later layers are able to carry though the changes in gradient to the earlier

layers through these skip connections.

ResNet architectures come in different sizes depending on the number of layers they

use. This study initially attempted to use ResNet model of several sizes, but found the larger

models’ with erratic results and taking substantially longer to saturate training. Selected was the

smallest version published, ResNet-18 and it produced similar erratic results, but trained saturated

punctually. This model as included in our analysis.

As the name suggests, there are 18 convolution layer in it. These are grouped in 10

stages. The first stage is feature pre-fetching, followed by 8 stages consisting of two convolutions

paired with a skip connection. The third, fifth, and seventh stages have projection connections

while the remaining have identity shortcuts. All convolutions are 3x3 full vector (no separation).

All stages use a 1 stride convolution initially, but those stages with a projection shortcut use a stride

of two for the second convolution.

Once the residual stages are finished, ResNet includes a concatenation of an average and

max pooling of the results. The final stage is the decision, which in our scenario is a a basic 80

node dense network with flattening and 50% dropout as a preamble. To test why certain behaviors

are noticed when analyzing data with ResNet-18, two other models were design to compare the

differences between the pooling layers. One only uses the max pooling operation, and the other just

uses the average pooling operation. The remaining layers the model is unchanged. This provides

three ResNet models to analyze, ResNet-18, ResNet-18max, and ResNet-18avg. The layer flow

of the normal ResNet-18 is shown in figures C.1-C.5 with layer details found in table C.1 within

Appendix C.
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4.3.4 Xception

The Xception net is a combination of the concepts found in the Inception and ResNet models. It

uses similar shortcuts as ResNet, and separate out the convolutions like Inception, but they only

include the depth separable convolutions on the normal non-skip path and the width separable

convolution on a projection versions of the bypass paths. The resulting paths are summed like they

were in ResNet for the next stage input. By including these features they were able to not only out

achieve the accuracy of these models, but did so at higher efficiency with fewer parameters.

It has 15 convolution stages. First an initial feature prefetch stage followed by 12 shortcut

stages. The first, second, third and twelfth stage use projection shortcuts, the rest use identity. Once

the shortcut stages are finished, there are a pair of depth separable convolutions. The final stage is

the decision, which in this scenario is a a basic 162 node dense network with flattening and 50%

dropout as a preamble. The layer flow is shown in figures D.1-D.10 with layer details found in

table D.1 within Appendix D.

4.3.5 MobileNet

MobileNet is as it’s name implies, was designed for a small footprint for IOT applications. They

capitalized on the separation concept and constructed several versions with minimal parameter

counts. Unlike the other recent models, it stays true to the sequential form of the early CNN

models. It also uses two other multipliers that reduce the computation cost. These parameters are

called the width and resolution multiplier, and are between 0 to 1.

There are several versions of MobileNet, but this research only found the first to saturate

in a reasonable amount of time. It consists of 15 stages. The initial prefetch stage, followed by

13 convolution layers, and finally a decision layer. All of the convolution layers consist of a depth

wise (3x3) filter followed by a point (1x1) filter. The decision layer has a dense network consisting
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of 8192 nodes with flattening and 50% dropout as a preamble. This is the one network that includes

no pooling operations. The layer flow is shown in figures E.1-E.7 with layer details found in table

E.1 within Appendix E.

4.3.6 DenseNet-121

DenseNets took the principals of ResNets a step farther, and instead of carrying the input from

only the immediately previous block of convolutions to the next it concatenates together inputs

from all of the previous convolution stages to the following convolutional stages input. The blocks

are filter separated and organized into one 1x1 depth filter followed by a second 3x3 width filter

with a padding of one to maintain matrix size.

The networks start with a lower level feature extractor stage, and then follows through a

series of dense interconnected stages, interconnected with pooling layers to reduce dimensionality,

and finally a dense decision layer after flattening the matrix and adding a %50 dropout. DenseNet-

121 is used in this research comprises of 121 layers, one convolution in the prefetch stage, 119

within the dense stages, and the final decision layer. The dense stages are split in into 4 groups,

each one incrementing in size. The layer flow is shown in figures F.1-F.25 with layer details found

in table F.1 within Appendix F.
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CHAPTER 5: EXPERIMENTAL RESULTS

This chapter discusses the experimental results. It starts with the new visualization tool and how it

behaves with images. It then explores the malware process metrics, how order effects performance,

including results from current and MiCAM visualizations tools. It is followed with an analysis of

the maleficent internet protocol, an examination of ordering options and a display of the MiCAM

plots of some samples.

5.1 MiCAM Images Results

* The material presented in this section will appeared in the proceedings on the 4th International
Conference on Machine Learning and Soft Computing (MLSC 2023) in the article, “MiCAM: Vi-
sualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan, Ph.D.

This section reviews the resulting plots from the visualization tool as it is is processed

on a CNN analyzing the MNIST handwritten image data set. The resulting MiCAM plots are

large when compared to other CAM plots. They are usually vertically aligned following the model

layout. Since not only the convolutional layers, but the pooling, adding and concatenation layers,

along with the final flatten and dense layers at the end of are all plotted, the combined plot contains

a visual representation of the parameter intensities for each layer. For example, DenseNet-121,

with 121 convolutional layers has a total of 429 individual layers within the model. For brevity

the diagrams are not all included but can be found on GitHub at: https://github.com/

rklepetko/MiCAM.git. Snapshots of elements that illuminate the value of this visualization

tool are shared below.

Examined first is the LeNet-5 MiCAM plot (Left side of Figure 5.1) which clearly shows

how the convolution layers build the identifying features. Examining the dense layers closely it

can be seen the variation in the color pixel intensities relate to specific features the network has
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Figure 5.1: MiCAM Plots of LeNet-5 (left one) and MiCAM Plot Clips of ResNet-18 (right three)
analyzing an MNIST sample“7"

identified.

It is even clearer when examining ResNet-18 MiCAM plot (the right three plots of Fig-

ure 5.1) as shown in the top, or input stages, the middle of the model, and the final bottom or

decision layers. It’s seen in these graphs how the residual links re-introduce features extracted

from earlier layers. It is also visible within the final layers how the ResNet-18 network collapses

the number of extracted features to relatively few, 40, as compared to LeNet-5 which was 20736.

Figure 5.2: Clips of MiCAM Plot from a DenseNet-121 analyzing an MNIST sample “7"
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Examining the DenseNet-121 MiCAM plot of the same sample (Figure 5.2), included

are 49 of the 429 layers. From left to right are shown the details of the input layers, the first and

last dense connection before the first bottleneck, the three bottle neck stages, and the final decision

layers. In the dense connection plots, the reintroduction of the input stages initial features (outline

of a "7") is visible as the data cascades through all the way to the first bottleneck stage, maintaining

a higher level of details for feature extraction precision. Also visible is that the bottle neck layers

compile and extract the features for discrimination later.

5.2 Process Metrics of Malware Infections

* The material presented in this section previously appeared in the proceedings of the 4th Interna-
tional Conference on Computing, Communications and Security (ICCCS 2019) and the proceed-
ings of the International Conference on Secure Knowledge Management in the Artificial Intelli-
gence Era (SKM 2021) in the articles, “Analyzing CNN Model Performance Sensitivity to the
Ordering of Non-Natural Data" and Analyzing CNN Models’ Sensitivity to the Ordering of Non-
Natural Data, co-authored with Ram Krishnan, Ph.D.

This section shares the order analysis experiments results with the process metric mal-

ware data set. It begins with detail results from using a LeNet-5 model in the initial experiments,

then share results from the remaining modesl. It then shares visualization tool plots, including

MiCAM, of data samples in different ordering schemes.

5.2.1 LENET-5

This subsection shares the initial results found when a LeNet-5 was used to analyze the process

metric malware data set. Since malware infections are rare compared to the normal machine activ-

ity it is appropriate to compare the precision/recall curves versus accuracy which would weighted

by the excessive benign activity. P/R curves also inform on the relative precision required to mini-

mize false positives which in security scenarios have harmful results. In figure 5.3 and 5.4 there is
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(a) Accuracy of different row ordering (b) Accuracy of different column ordering

Figure 5.5: Test Accuracy Mean and Standard Deviation for Different Row and Columns ordering

The graphs following compares the 100 random curves with different metric column

orderings. For each methodical metric column ordering all of the different process row orderings

were included so the column order can be analyzed with some independence from the rows. In

figure 5.3b correlated metric columns are compared with other row orderings. Correlated columns

appear to reside in the upper spectrum of the randomly ordered curves.

The absolute value of the statistical correlation between metrics graphs are examined in

5.3c. In this set of curves not only do they reside the upper spectrum of the random curves, but

possibly an optimum result appears, one better than any random ordering.

Next examined is the counter example, Anti-Correlated columns ordering. As expected,

in 5.3d the curves do not align to the upper end of the randomly ordered curve spectrum, and most

curves show rather poor results in comparison, residing on the lower end of the spectrum.

Next examined are the results for defined row orderings. Again in each methodical row

order case all of the various column orderings are used for analysis independence between the rows

and columns.

The results for the orderings based off of initial alphanumeric relationships are found in
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graph 5.4a. It shows that alphanumeric row ordering results are spread relatively evenly among the

randomly ordered curves.

Examining the results for the orderings that are based off of sibling relationships in graph

5.4b the results are again spread among the random curves. In general they reside on the higher

than average end of the randomly ordered curve spectrum, but nothing stands out as exemplary.

Studying the results for the orderings that are based off of the number of machines that

make the process call followed by the number of execution or Process ID counts in graph 5.4c it

shows the results are spread among the random curves. Again they are higher than average, but

nothing stands out as exemplary.

Studying the results for the orderings that are based off of Process ID counts followed by

number of machines that call the process in graph 5.4d it shows the results are again spread among

the random curves. These curves though reside on the lower set of random curves, informing that

this is not a desired ordering.

As a comparison for other studies that only take the accuracy in consideration for evalu-

ation, included are the following two graphs that display the means and standard deviation spread

for the various row and column ordering performance accuracy. In 5.5b is shown the accuracy

spread for the various row ordering and 5.5a shares the accuracy found different column ordering

including the non-ordering from the previous research by Abdelsalam et al. [11].

5.2.2 Inception Net

This section shares the same experiment results using the process metric malware data set, but

instead using the Inception Net CNN model. In figure 5.6 all of the PR curves are shown as the

light pink background while the dark lines represents the subset of PR curves that are generated

running the model using a specific order set. Note that these plots of the Inception Net results
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are scaled in to 50%-100%. It is easy to identify that Inception prefers correlated columns and

ABS-correlated rows, while and correlated rows offer another well performing alternative. Anti-

correlated rows should be avoided.

5.2.3 ResNet-18

Following are the results from ResNet-18 in figure 5.7 running the same experiments. Note that

these plots for ResNet-18 are at scaled at 0-100%. It’s obvious by the wide varieties in PR curves

that this model is very susceptible to minor changes in order. For this model anticorrelated rows

and columns perform better than average, while the other orderings have only minor variation

around the poor average.

5.2.4 Xception Net

The next model, Xception Net, results are found in figure 5.8. Note that this model seems order

ambivalent with near perfect results every time, but it is visible that the statistically related order

performs well if not better than average. Only the ABS-correlated columns fell below average, but

this was by only 0.0007 AUC. It appears the best performance is found using correlated rows and

anti-correlated columns.

5.2.5 MobileNet

MobileNet is included as a small format option with it’s intention to be used in mobile devices. The

results are found in figure 5.9. Like ResNet-18, MobileNet seems to be very reactive when there

are changes in the order so these plots are at full zoom, 0-100%, to observe all of the curves. Unlike

ResNet-18 (0.898 AUC) it appears to respond better on average (0.958 AUC). It also appears that

it loves any statistical relationship in column order, but choosing a random order is better than any
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Table 5.1: Process/Metric Malware Analysis Mean AUC for Precision Recall Curves

ABS Anti ABS Anti

CNN All Corr Corr Corr Corr Corr Corr

Architecture Options Rows% Rows% Rows% Cols% Cols% Cols%

LeNet-5 20 ep 99.55 99.68 99.58 99.09 99.59 99.60 99.44
Inception-V3 94.35 96.06 96.60 89.65 96.53 94.65 95.88
ResNet-18 89.85 87.02 86.56 94.53 91.24 89.23 95.13
Xception 99.70 99.73 99.80 99.73 99.87 99.64 99.79
MobileNet 95.87 93.76 92.29 91.86 96.55 97.01 97.55
DenseNet-121 99.53 99.70 99.43 99.20 99.60 99.52 99.56

thing analyzed for row order.

5.2.6 DenseNet

Our final model to examine, DenseNet-121, was analyzed and the results are found in figure 5.10.

This like Xception had a vary high AUC regardless of row or column ordering, with almost near

perfect results each time. Only a couple of curves drop below 97%, and the figures are zoomed in

at 80%-100% for that reason. It displays that correlated rows and columns are the best option, but

all of the statistical relationships provide an average if not better result.

5.2.7 Model Comparison

For comparison, a breakdown of the different model performances while detecting malware from

process metric samples are included in the following tables. First table 5.1, is the average (mean)

area under the precision recall curves for the different ordering schemes along the both axis. The

second table 5.2, is transformation of the same numbers but in relation to the percentage of im-

provement (or degradation) against the average performance for all of the ordering schemes.

These tables clearly show that using correlation to order the shorter metric column axis

always improved performance over the average for all models, and all but two of the models when
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Table 5.2: Process/Metric Malware Analysis Percentage Improvement Over Average (Mean) Per-
formance

100%- ABS Anti ABS Anti

CNN All Corr Corr Corr Corr Corr Corr

Architecture Mean Rows% Rows% Rows% Cols% Cols% Cols%

Lenet-5 20 ep 0.45 28.89 6.67 -102.22 8.89 11.11 -24.44
Inception-V3 5.65 30.27 39.82 -83.19 38.58 5.31 27.08
ResNet-18 10.25 -27.88 -32.41 46.11 13.69 -6.11 52.02
Xception 0.30 10.00 33.33 10.00 56.67 -20.00 30.00
MobileNet 4.13 -51.09 -86.68 -97.09 16.46 27.60 40.68
DenseNet-121 0.47 36.27 -21.28 -70.21 14.89 -2.13 6.38

using correlation for the longer process rows. In particular the ResNet-18 and MobileNet showed

significant degradation. To understand why this was the model structures were analyzed and of

particular note was that the feature reduction/extraction process for these two models was different

compared to the others. Most CNN models use several pooling layers through out the network for

feature extraction and parameter reduction, but ResNet-18 uses a single pooling operation, sum of

the max pool and average pool at the end of the network, while MobileNet uses depth wise and

width wise convolutions with large strides.

To test if these structural difference have as affect on the ordering performance, two other

experiments were run, but with a modified ResNet-18 architecture. The first removed the average

pooling layer so feature extraction was performed by a max pooling layer only. The second does

the opposite, and removes the max pool and leaves the average pool. These models are labeled

ResNet-18max and ResNet-18min, and those results are shared later in section 5.2.10.

5.2.8 Analyzing Malware Results Using Existing Visualization Tools

* The material presented in this subsection previously appeared in the journal, Information Sys-
tems Frontiers (2022) , “Visualizing CNN Models’ Sensitivity to Nonnatural Data Order", co-
authored with Ram Krishnan, Ph.D.

For further analysis, several visualization tools are used on specific data samples from
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Table 5.3: Process/Metric Malware Analysis Worst Four and Best Four Performing Order Schemes
per CNN Architecture

CNN Row Order Column Order mAP Model

Architecture (Processes) (Metrics) Rank

Inception-V3 Anticorrelation Random5 %87.66 Worst
Inception-V3 Anticorrelation Random4 %87.98
Inception-V3 VMPID Random2 %88.03
Inception-V3 Anticorrelation Random1 %88.04
Inception-V3 ABS-Correlated Anticorrelated %98.33
Inception-V3 Alphanumeric Anticorrelated %98.47
Inception-V3 ABS-Correlated Random5 %98.54
Inception-V3 ABS-Correlated Correlated %98.68 Best
ResNet-18 Random1 Original %50.31 Worst
ResNet-18 Correlated Random9 %50.7
ResNet-18 VMPID Random1 %51.11
ResNet-18 ABS-Correlated Random1 %51.56
ResNet-18 Random10 Random3 %99.96
ResNet-18 Random10 Original %99.97
ResNet-18 PIDVM Random6 %99.99
ResNet-18 Random1 Random9 %99.99 Best
Xception Random7 Random4 %96.32 Worst
Xception Sibling Random6 %97.11
Xception Random7 Random6 %98.04
Xception Random7 Random1 %98.41
Xception Correlated Random6 %99.92
Xception Random3 Random8 %99.92
Xception Random4 Random1 %99.92
Xception Random3 Random5 %99.92 Best
MobileNet Alphanumeric Original %58.92 Worst
MobileNet ABS-Correlated Random8 %62.09
MobileNet Alphanumeric Random1 %62.11
MobileNet Anticorrelated Random5 %64.65
MobileNet Sibling ABS-Correlated %99.8
MobileNet ABS-Correlated Anticorrelated %99.81
MobileNet ABS-Correlated Correlated %99.81
MobileNet Correlated Random5 %99.82 Best
DenseNet-121 ABS-Correlated Random5 %96.36 Worst
DenseNet-121 Alphanumeric Random9 %97.13
DenseNet-121 Anticorrelated Random10 %98.43
DenseNet-121 Random7 Random2 %98.52
DenseNet-121 Alphanumeric Random1 %99.85
DenseNet-121 Random3 Random3 %99.87
DenseNet-121 Alphanumeric Correlated %99.87
DenseNet-121 VMPID Random1 %99.87 Best
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Figure 5.11: Inception-V3’s Worst Order (Anticorrelated/Random-5) Benign Sample #159 Visu-
alizations (Pred: 3.6e-9)

the testing set to explore what the CNN models are doing within the hidden layers. To see the

differences between a poor-performing order and a good one, extreme options were chosen the

from each model’s results. In the Table 5.3 displays the worst and best ordering options for each

model including associated mAP score achieved during testing. Then the two extreme options of

each model, the highlighted rows, were then analyzed using Saliency, GradCAM, GradCAM++,

and ScoreCAM.

With every model for the worst and best orders a set of five visualization plots was pro-

duced for a benign and infected sample. This was the same sample pair for all visualizations,

testing sample #159 (of 6000+) labeled benign and testing sample #165 infected. The only differ-

ence was the order in which the rows and columns were arranged. In all experiments, these two

samples were predicted accurately, though not always at 100%. Plots of these visualizations and a

discussion of them are found per CNN model over the following pages:

When comparing the Inception-V3 visualizations from the infected sample with the be-

nign sample in the worst order (Figure 5.11 and Figure 5.12, respectively), visible is the concen-

tration of pixels within the Salience map that are insignificant, with infected showing a higher

concentration. ScoreCAM shows a definite direction toward the upper half of the grid for benign

with a counter direction for the infected. GradCAM shows it uses the whole grid in making a
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Figure 5.12: Inception-V3’s Worst Order (Anticorrelated/Random-5) Infected Sample #165 Visu-
alizations (Pred: 1)

Figure 5.13: Inception-V3’s Best Order (ABS-Correlated/Correlated) Benign Sample #159 Visu-
alizations (Pred: 6.9e-10)

benign decision, while showing a similar response with the infected sample as ScoreCAM. Grad-

CAM++ shows that the lower region has more influence over the benign decision than the infected

sample.

In the best ordering for Inception-V3, the visualizations for the same samples are in Fig-

ure 5.13 and Figure 5.14. The Salience insignificant pattern is in clumps with benign comprising

of two masses spread top to bottom, where as the infected sample has three. ScoreCAM produced

what appears to be identical influence patterns for the infected and benign samples with the lower

half having influence, whereas GradCAM informs the entire grid has some influence over the be-

nign sample while in the infected, the lower half. GradCAM++ informs us that the lower half
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Figure 5.14: Inception-V3’s Best Order (ABS-Correlated/Correlated) Infected Sample #165 Visu-
alizations (Pred: 1)

Figure 5.15: ResNet-18’s Worst Order (Random-1/Original) Benign Sample #159 Visualizations
(Pred: 5.9e-5)

influences both the benign and infected samples, but the infected sample more so.

Comparing the worst order with the best order for Inception-V3, the best order has the

data element clumped together in blocks of matching values, whereas the worst order has the

data elements dispersed. The difference between mAP percentages is spread of an 11% or a 89%

improvement. The Salience plots clearly show that the denser the data clumps the more source

data is insignificant as the best order allows the model to focus on the important elements. In

addition the other visualizations have fewer similarities between the benign and infected samples

in the worst order analyzed by Inception-V3.

Examining the ResNet-18 visualizations, they appear very different than those for Inception-
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Figure 5.16: ResNet-18’s Worst Order (Random-1/Original) Infected Sample #165 Visualizations
(Pred: 0.9991)

Figure 5.17: ResNet-18’s Best Order (Random-1/Random-9) Benign Sample #159 Visualizations
(Pred: 0.0132)

V3. This is visible within the Salience plot of the worst order with tight clusters of activation, the

benign sample having five insignificance clusters, two of them densely packed and two lightly

packed. The infected sample in Figure 5.16 has only three insignificant clusters, but one is very

dense and one light. The infected clusters appear in similar locations to three of the benign clusters

(Figure 5.15). The CAM plots appear to indicate different things: ScoreCAM and GradCam show

almost exact opposite regions of the data having influence, with ScoreCAM favoring the left side

of the data samples, and GradCAM favoring the right. GradCAM++ is also favoring the right side

but in different regions. The infected and benign samples show influence from different regions

of the data sample in all three CAM plots. Notably this experiment performed worst out of all of

them, achieving only a 50.31% mAP score
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Figure 5.18: ResNet-18’s Best Order (Random-1/Random-9) Infected Sample #165 Visualizations
(Pred: 0.528)

The ResNet-18’s best order performed quite the opposite manner, achieving a near-

perfect mAP of 99.99%. The Salience plots are extremely sparse, showing that this network found

that most data has a significant influence on the decision. The sparse insignificant clusters have a

single local density in both the benign (Figure 5.17) and infected (Figure 5.18), samples, but in dif-

ferent regions of the sample. Again, the CAM plots show different things, with ScoreCAM finding

the top left significant in both samples, including the bottom right in the infected sample. Most

GradCAM and GradCAM++ plots show the entire sample has influence, except for GradCAM++

infected sample which finds the bottom right insignificant. Notably, all three CAM plots found

very similar regions of the benign and infected samples relevant.

Contrasting ResNet’s best and worst ordering schemes, in the best sample, the data pat-

terns are slightly less contiguous. Something about ResNet-18’s architecture very much appre-

ciates the data slightly looser patterns, by 49.68% mAP points, or a 99.97% improvement. The

Saliency plots’ differences are quite extreme with dense insignificant regions with the worst or-

dering, but are very sparse and light clusters in the best ordering. Almost the opposite response is

seen in the Inception-V3’s Saliency plots. The CAM plots are also quite different with the benign

and infected regions in the worst samples showing very different influence regions, whereas the

influence patterns between the benign and infected samples are very similar in the best ordering.
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Figure 5.19: Xception’s Worst Order (Random-7/Random-4) Benign Sample #159 Visualizations
(Pred: 2.5e-13)

Figure 5.20: Xception’s Worst Order (Random-7/Random-4) Infected Sample #165 Visualizations
(Pred: 1)
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Figure 5.21: Xception’s Best Order (Random-3/Random-5) Benign Sample #159 Visualizations
(Pred: 0)

Xception also has distinct patterns within the visualizations, different from the previous

two models. In the worst case, the Saliency of the benign (Figure 5.19) and infected (Figure 5.20)

appear to have a grid like pattern with the infected sample having slightly more intense insignificant

blocks within the influence grid. All CAM plots show some similarities, with the center of the

sample being insignificant but each to a different degree. ScoreCAM has an extremely intense

insignificant region with minor variations between the benign and infected samples. Benign is

slightly less intense and has a slight extension going to the upper left, whereas the infected sample

is more intense, particularly in the upper middle with a strong extension out to the middle left.

GradCAM++ has its center insignificant region very dim in the benign sample, but very similar to

ScoreCAM in the infected sample. GradCAM has no insignificant region for the benign sample,

but the infected has a small but intense insignificant region in the center with three lower isolated

lobes on the lower half edge.

The best order for the Xception’s visualization differs from those of the previous two

models, but the Saliency plots do have a similar grid-like pattern. The benign (Figure 5.21) has only

a few very intense insignificant clusters in a region of the grid at the lower left of the data sample,

whereas the infected (Figure 5.22) insignificant clusters are less intense and spread throughout

the influence grid. The CAM plots between the benign and infected samples are almost identical,

with most of the data sample having influence. ScoreCAM has a bar of insignificance intensely
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Figure 5.22: Xception’s Best Order (Random-3/Random-5) Infected Sample #165 Visualizations
(Pred: 1)

Figure 5.23: MobileNet’s Worst Order (Alphanumeric/Original) Benign Sample #159 Visualiza-
tions (Pred: 2e-13)

crossing the top right corner, whereas GradCAM has a little but intense bubble on the lower left,

and GradCAM++ has no insignificant region for either infection status.

Comparing the best and worst orderings, where there is a 3.6% spread but a 97.8% im-

provement. The differences between visualizations are stark. The data samples in the worst order

appear more stochastic whereas, in the best order, the data has cross-like patterns with some breaks

between. The Saliency plots for the best order have more intense but concentrated insignificant re-

gions. The CAM plots for the best order are nearly identical between the infected and benign

samples, whereas the plots have distinct characteristics between infection status for the worst or-

der.
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Figure 5.24: MobileNet’s Worst Order (Alphanumeric/Original) Infected Sample #165 Visualiza-
tions (Pred: 1)

Figure 5.25: MobileNet’s Best Order (Correlated/Random-5) Benign Sample #159 Visualizations
(Pred: 7.7e-18)

Examining the MobileNet’s visualizations, the Salience plots appear very noisy with

scattered insignificant data points spread though out the sample. Both have the lower half more

intense, but upper half is more sparse in the benign sample, (Figure 5.23) than the infected (Fig-

ure 5.24). The CAM plots all appear to show similar responses displaying that the lower half is

insignificant. ScoreCAM is more so, with a deep intensity on the benign sample, whereas skewed

a little to the right of infected sample. GradCAM’s benign plot shows no insignificant region,

whereas the infected sample shows insignificance in the lower half and is skewed to the middle

left. The GradCAM++ graphs also have the lower half marked as insignificant but skewed right

and left on the benign and infected sample respectively.
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Figure 5.26: MobileNet’s Best Order (Correlated/Random-5) Infected Sample #165 Visualizations
(Pred: 1)

The graphs produced for the MobileNet’s best ordering scheme are slightly different from

the worst just reviewed. The Saliency plots are still noisy in appearance, but the insignificant data

points crowd around the left side of the graph. The benign (Figure 5.25) and infected (Figure 5.26)

appear nearly identical with the infected sample slightly more intense. ScoreCAM shows a strong

band of insignificance horizontally across both samples, but the benign is a triangle shape, starting

on the middle left and extending toward both right-hand corners. GradCAM and GradCAM++

share almost identical patterns with the benign sample having no insignificant region whereas the

infected has a large bubble on the upper half of the left edge. The difference between the two is

that GradCAM++ is more intense.

Comparing the best and worst orderings for MobileNet’s experiments, it is obvious that

the model performance correlates to the data aligning with the long side of the grid. The differences

are stark with a mAP spread of 40.9% or an improvement of 99.56%. The Salience maps appear

to share this alignment, with the best performing order aligned vertically along the longer row

axis. There are distinct differences within the CAM plots when comparing the best and worst

orderings but differentiating on to how that relates to performance is difficult to discern. Although

the insignificant regions all appear to cover the same general area when relating to the infection

status, GradCAM and GradCAM++ have slightly less overall intensity in the best order. The

noticeable major variation between the order schemes is that GradCAM++ considers the entire
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Figure 5.27: DenseNet-121’s Worst Order (ABS-Correlated/Random-5) Benign Sample #159 Vi-
sualizations (Pred: 2.2e-10)

Figure 5.28: DenseNet-121’s Worst Order (ABS-Correlated/Random-5) Infected Sample #165
Visualizations (Pred: 1)

benign sample a significant deciding influence for the best order.

DenseNet-121 has the highest performing worst order at 96.36%. Its Salience maps

have a general but faint grid-like appearance with different bubbles of insignificant clusters over

certain regions. The benign sample (Figure 5.27) has tighter clusters in the upper middle of the

map whereas the infected (Figure 5.28) is more spread out with one intense cluster in the lower

center. The CAM maps show similar regions of insignificance. The benign sample has them all

on the upper half, but the ScoreCAM plot of the region is the most intense going from the top-

left to the right side whereas the GradCAM++ plot is missing the top-left corner and GradCAM

mostly comprises of an intense bubble on the upper-left edge. The infected sample has insignificant
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Figure 5.29: DenseNet-121’s Best Order (VM-PID/Random-1) Benign Sample #159 Visualiza-
tions (Pred: 3.5e-20)

Figure 5.30: DenseNet-121’s Best Order (VM-PID/Random-1) Infected Sample #165 Visualiza-
tions (Pred: 1)

regions in the same general area but is quite distinct in form from the benign sample. All three have

a strong band on the top edge, with ScoreCAM leaning sightly right, GradCAM leaning slightly

left, and GradCAM++ leaning heavily left. They also all have moderate shapes over the lower right

edge. ScoreCAM is a semicircle, GradCAM is a triangle whose center vertex reaches the left side,

and GradCAM++ is just a vertical bar.

The best order for DenseNet-121 has very similar Saliency maps between the infected

status. Both the benign (Figure 5.29) and infected sample (Figure 5.30) have a band of clustered

insignificant points going through the upper middle of the graph. The major difference is the

infected are more intense and localized, whereas there is a general dispersion of lightly insignificant
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clusters found through the benign Salience visual. The CAM maps show definite variation between

the benign and infected samples. ScoreCAM has a large band of insignificance going from top the

left-edge to the lower-right regardless of infection status, but the benign sample has a strong band

of influence along the top. GradCAM has a strong bubble of influence on the lower-left edge of

the benign sample, which shifts up and stretches over to the other side of the infected sample.

GradCAM++ shows full influence on the benign sample, whereas a similar band of insignificance

as the other CAMs, starting from the top left that becomes more intense towards the right edge.

DenseNet-121 has the smallest variation in the differences between best and worst order-

ings, with only a 3.51% mAP spread, but even here, when the best is 99.87%, near perfection (1 fail

in 333), the improvement above 96% (1 fail in 25) is an order of magnitude better. The differences

between data samples are almost indiscernible. Careful examination can reveal the worst ordering

appears to have small blocks of contiguous data with erratic breaks whereas the best order also has

contiguous blocks of data but are broken up at intermittent intervals. The Salience and CAM plots

are similar by comparison, the major difference is that GradCAM++ has full influence on the best

order benign sample. By comparison the other maps have similar areas, just shifts in regions and

intensities.

5.2.9 Analyzing Malware Results Using MiCAM

* The material presented in this subsection will appeared in the proceedings on the 4th Interna-
tional Conference on Machine Learning and Soft Computing (MLSC 2023) in the article, “Mi-
CAM: Visualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan,
Ph.D.

As mentioned in the previous chapters, MiCAM was used to analyze the difference be-

tween the best and worst ordering schemes (Table 5.3) when searching for malware. Between

the LeNet-5 MiCAM plots it is seen that the pooling layers have the most distinguishing char-

acteristics. It is visible in Figure 5.31 which is divided by the best and worst ordering schemes.
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Figure 5.31: MiCAM Plots of the Lower Quarter for the LeNet-5 Best (left) and Worst (right)
Ordering of Samples Benign #212 and Infected #214

Displayed is how the features are better defined in the pooling layers with the stronger intensities,

and the range on the infected sample of the best order is noticeably larger in the second pooling

layer than the worst order.

Within the ResNet-18 plots there are a number of items to take notice of in Figure 5.32.

Several of the CAM plots are identifying clusters of data points that have some significance on

the decision. In particular the B4 residue convolution layers and associated additions and acti-

vation layers, highlighted in yellow, perhaps point to particular data points the CNN identifies as

maleficent or benign. Also noticed is that the features from the best ordering are distinct in the

final pooling layers for the benign and infected samples, highlighted orange, but the worst order

displays those layers as having similar features by comparison.

For brevity the DenseNet-121 MiCAM graph are not displayed but they are available at

the Git site mentioned earlier. Things to note, the CAM plots most relatable to the source data are

the last convolution stage before the first bottle neck stage. Visible are a number of highlighted

pixels of interest for the different classifications. In particular noticed is a highlighted row within

the best ordering scheme for an infected sample, perhaps informing us that there is an infected

process on that row.
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Figure 5.32: MiCAM Plots of Pooling and Last Convolution Layers for the ResNet-5 Best (left)
and Worst (right) Ordering of Samples Benign #212 and Infected #214

81



Table 5.4: Pooling operations within Models

LeNet-5 Inception V3 Xception

Layer # Type Radius Layer # Type Radius Layer # Type Radius

3 Max 1 10 Max 5 13 Max 7
6 Max 3 17 Max 7 23 Max 15

27 Avg 7 33 Max 31
ResNet-18 50 Avg 11 123 Max 319

Layer # Type Radius 73 Avg 15
61 Max 60 99 Max 19 DenseNet-121

62 Avg 60 119 Avg 43 Layer # Type Radius

151 Avg 67 6 Max 3
MobileNet 183 Avg 91 52 Avg 15

Layer # Type Radius 215 Avg 115 140 Avg 39
none 247 Max 139 312 Avg 87

262 Avg 203
293 Avg 331

5.2.10 Analyzing Malware Multiple ResNet-18 Models

One thing discovered during this research was that the ResNet models where susceptible to high

degree in performance variance when changes were made within the grid ordering. Additional ex-

perimentation was performed and it was discovered that minor variations in model had implications

to this noticeable change. Included in this subsection are an analysis of the results.

The first major impact noticed was that the learning rate has a huge implication in this

variance. The initial experiments were with a learning rate 0 0.001 where the most variance was

found between models in the experiments of Subsection 5.2.3. Following the initial published re-

sults, the learning rate was modified incrementally in the future experiments and it was discovered

that a learning rate or 0.00001 provided significant improvement in the overall response of the

network.

Analyzing the differences between the networks it was noticed that ResNet’s use of pool-

ing operations was different compared to other networks (Table 5.4). Most use a maximum pooling

operation which caries through the most intense pixel from the initial input to represent the local-
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Table 5.5: ResNet-18 variance at LR:1e-5 Mean AUC for Precision Recall Curves

ABS Anti ABS Anti

CNN All Corr Corr Corr Corr Corr Corr

Architecture Options Rows% Rows% Rows% Cols% Cols% Cols%

ResNet-18 99.852 99.846 99.879 99.834 99.846 99.858 99.884
ResNet-18max 99.823 99.801 99.872 99.804 99.825 99.869 99.861
ResNet-18avg 99.840 99.850 99.914 99.811 99.837 99.833 99.842

Table 5.6: ResNet-18 variance at LR:1e-5 Improvement Over Average (Mean) Performance

100%- ABS Anti ABS Anti

CNN All Corr Corr Corr Corr Corr Corr

Architecture Mean Rows% Rows% Rows% Cols% Cols% Cols%

ResNet-18 0.148 -.00006 .00027 -.00018 -.00006 .00006 .00032
ResNet-18max 0.173 .00011 .00075 -.00029 -.00015 .00030 .00021
ResNet-18avg 0.160 -.00022 .00047 -.00022 -.00015 -.00019 -.00010

ized region a the output, and these are normally scattered throughout the network. ResNet’s use

only a single pool pair, a maximum and average, concatenating the results at the end of the net-

work. By theory this should amplify the less responsive pixels within the final extracted features

set. It our hypothesis that it is this global amplification late in the network that recognizes the

anticorrelation as a responsive order.

This was tested by creating three versions of the ResNet-18 model, each operating at at

the learning rate of 0.00001. The first was the normal ResNet18 model. The second removed the

average pooling so the results of using just the maximum as a pooling operation could be examined.

The third did the opposite, so how the network performs toward order variation when just using

the average pooling operation could be examined. They were labeled ResNet-18max and ResNet-

18avg and the results are found in Table 5.5 with the percentage of improvement/degradation

shown in Table 5.6.

It can be seen that the modification to the learning rate vastly improved performance of

all modified ResNet-18 models, and it reduced the variance in performance with regards to grid

order changes. The variance noticed between the models is attributable to changes in the pooling
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layers which strongly relates to the responsiveness to the anticorrelation order. This leads us to

several theoretical analysis explored in the next chapter.

5.3 IP-Traffic of Security Attacks: CIC-IDS-2017

5.3.1 Analyzing Malware Results Using MiCAM

* The material presented in this section will appeared in the proceedings on the 4th International
Conference on Machine Learning and Soft Computing (MLSC 2023) in the article, “MiCAM: Vi-
sualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan, Ph.D.

This study is analyzing the affect that order has on nonnatural data, and one data set

considered relevant is the CIC-IDS-2017 raw IP-traffic data. It poses a novel scenario to tests the

hypothesis. As described previously in Subsection 4.1, 146 different columns ordering schemes

were devised and compared to the performance results when using an order devised from the inter-

net protocol specification. A shallow LeNet-5 CNN model (2 convolution and three dense layers)

was trained, matching previously published research. In identifying the presence of maleficent

actors, the results are found in Table 5.7 and in classification of the maleficent actors in Table 5.8.

They include the PR curve mAP value for every non-random ordering scheme devised and a per-

centage of improvement over the mAP average of all the randomly generated schemes.

In detection tasks, Table 5.7, changes in grid order can make a significant difference

because of the percentage improvement towards perfection. Like discussed when analyzing best

and worst performing results analyzing malware using the Dense Network, Subsection 5.2.8, when

failures are costly the range seen here is significant. A change from 99.45% (non random worst)

to 99.7% (best) means almost a halving of the failures rate.

Counter our hypothesis, the ordering scheme derived when following the IP specification

exceeded expectations, out performing all other ordering options. It had a 34.67% improvement
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Table 5.7: Detection Analysis Results and Statistical Sample Counts By Class Order

Sample % Prec/Recall mAP % Improve/Degrade

Random Average 99.54 0.0
IP-Specification 99.70 34.67

Order Sample Set Count % Corr ABS Anti Corr ABS Anti

Bot 1228 0.15 99.54 99.57 99.57 -0.36 6.98 6.57
DDoS 44918 5.53 99.60 99.64 99.55 14.19 22.21 1.69
DoS Hulk 5952 0.73 99.58 99.57 99.53 7.85 5.69 -3.04
DoS Slowhttptest 4216 0.52 99.54 99.58 99.56 -0.27 8.99 3.59
DoS slowloris 3872 0.47 99.45 99.55 99.66 -18.97 1.98 25.28
FTP-Patator 3974 0.49 99.58 99.54 99.52 8.93 0.34 -5.34
Infiltration 6 0.001 99.58 99.60 99.64 9.56 13.51 21.20
PortScan 158410 19.53 99.56 99.54 99.56 4.50 0.13 4.48
SSH-Patator 2978 0.36 99.59 99.56 99.54 9.81 3.71 -0.19
Web Attack-Brute Force 1363 0.16 99.61 99.56 99.47 14.67 5.36 -15.15
Web Attack-Sql Injection 12 0.001 99.61 99.59 99.54 15.33 10.08 0.83
Web Attack-XSS 625 0.077 99.58 99.48 99.51 8.79 -13.73 -6.55
Maleficient 227554 28.06 99.55 99.57 99.52 2.98 6.29 -4.36
Benign 583411 71.940 99.51 99.54 99.51 -6.38 -0.55 -6.80
Total 810965 100.0 99.59 99.58 99.57 10.94 9.63 6.47
Average Improvement - - - - - 5.44 5.37 1.91
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over the average. This shows the care to which IEEE specification was laid to logically organize

the data packets as they relate to each other.

It is also interesting to note that the majority of ordering schemes devised around a statis-

tical relationship between data bytes within subsets of the data also performed better than average.

The surprise regarding the subsets was the correlation of the benign samples. Only two other cor-

relation subsets showed a major degradation in performance compared to the random average, and

those sample sizes were less than one percent of the total samples. The benign correlation had 70%

of the samples, but resulted in more than a 6% degradation. Focusing on benign samples to find

maleficent actors proved detrimental. These findings support our hypothesis that statistical corre-

lation does produce a better than average precision, as long as the data subset that the correlation

is taken from has enough maleficent samples.

It’s also notable that although anticorrelation ordering did have some significant improve-

ment for some subsets, the majority of the subsets showed a poorer performance. Absolute value of

correlation produced only one significantly detrimental ordering using a subset, which comprised

of less than 1/10th of 1% of the total samples, so appears to be a relativity safe when using with a

shallow network.

When analyzing classification task some results match what was the found in detection.

IP specification performed the best again, and both correlation and absolute value of the correlation

perform better than average using most data subset, while anticorrelation showed the least average

benefit. In contrast there appears to be a maximum performance in classification tasks with an

apparent limit of a 98.7%. This means the small variance effected by order is negligible compared

the difference toward perfection. Another difference is that using correlation from the whole data

set appeared to hamper classification, while anticorrelation supported it.

To analyze the differences between the best and worst ordering schemes for detection,

they were selected for processing with MiCAM diagrams their performance details are included in
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Table 5.8: Classification Analysis Results and Statistical Sample Counts By Class Order

Sample % Prec/Recall mAP % Improve/Degrade

Random Average 98.34 0.0
IP-Specification 98.68 .0035

Order Sample Set Count % Corr ABS Ant Corr ABS Anti

Bot 1228 0.151 98.52 98.55 98.31 0.0018 0.0021 -0.0003
DDoS 44918 5.539 98.50 98.51 98.24 .0016 .0017 -.0011
DoS Hulk 5952 0.734 98.43 98.48 98.32 .0009 .0014 -.0002
DoS Slowhttptest 4216 0.520 98.42 98.46 98.45 .0008 .0012 .0011
DoS slowloris 3872 0.477 98.35 98.60 98.46 .0001 .0027 .0012
FTP-Patator 3974 0.490 98.58 98.32 98.11 .0024 -.0002 -.0023
Infiltration 6 0.001 98.39 98.52 98.39 .0005 .0018 .0005
PortScan 158410 19.534 98.28 98.45 98.31 -.0006 .0011 -.0003
SSH-Patator 2978 0.367 98.09 98.17 98.34 -.0025 -.0018 .0000
Web Attack-Brute Force 1363 0.168 98.44 98.30 98.32 .0010 -.0005 -.0002
Web Attack-Sql Injection 12 0.001 98.56 98.35 98.30 .0022 .0001 -.0005
Web Attack-XSS 625 0.077 98.42 98.36 98.28 .0008 .0002 -.0006
Maleficient 227554 28.060 98.42 98.54 98.45 .0008 .0020 .0011
Benign 583411 71.940 98.56 98.48 98.35 .0022 .0014 .0000
Total 810965 100.0 98.27 98.28 98.57 -.0007 -.0006 .0023
Average Improvement - - - - - .0007 .0009 .0000

Table 5.9: Best and Worst Ordering Schemes For Maleficent IP-Traffic

CNN Best Column mAP Worst Column mAP

Architecture Order Score Order Score

Lenet-5 10 epoch IP Specification 99.703% Random-40 99.445%
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Figure 5.33: MiCAM Plots of LeNet-5 Analyzing Best Order (IP Spec) IP Packets with Benign
and Maleficent Packages

Figure 5.34: MiCAM Plots of LeNet-5 Analyzing Worst Order (Random-40) IP Packets with
Benign and Maleficent Packages

Table 5.9.

Examining the MiCAM plots, in Figures 5.33 and 5.34, it is visible how the best order has

a wider range, with the peak negative values showing very distinct regions within the convolutional

layers. Also in several layers, both orders show the first quarter of the sample is significant in

finding the maleficent sample’s attack vector, while several areas within the packet are identified

significant in the benign.
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CHAPTER 6: ANALYSIS AND CONCLUSION

The hypothesis of this research is to show that data order does matter for CNN performance. It

also offers that be duplicating images properties with data ordering, using correlation as a basis,

can help performance. Through experimentation, several models were found, including the latest

benchmark, DenseNet, to improve performance when that order is based on the data sets statistical

correlation.

This research shows that axis order always matters, and using correlation as a basis for

ordering the independent smaller axis does appear to improve identification performance over the

average regardless of the data or model used. All of the models performed well when the indepen-

dent shorter axis was ordered by correlation, but it was not always the preferred order.

6.1 Malware and Model Performance

* The material presented in this section previously appeared in the proceedings of the International
Conference on Secure Knowledge Management in the Artificial Intelligence Era (SKM 2021) in the
articles, “Analyzing CNN Model Performance Sensitivity to the Ordering of Non-Natural Data"
and in the journal, Information Systems Frontiers (2022) , “Visualizing CNN Models’ Sensitivity
to Nonnatural Data Order", co-authored with Ram Krishnan, Ph.D.

There is relevance to proper data ordering when preparing data for CNN, regardless of

the model. Even with a model that mattered least, DenseNet-121, an improvement of 96.4% toward

perfection is still noticed between the tested extremes. With every model, there was a handful of

ordering schemes that achieved close to the best performing score, whereas the worst order was

always an outlier. Notably there were 252 unique ordering schemes. This leads us to hypothesize

that every model has many ordering schemes that nearly approach the optimal performance, but

the poorly performing ones are rare in comparison.
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Ordering performance is model-dependent. What one model considered a good order

on an axis, other models may not. Usually some performance improvement was seen when using

either correlation or anticorrelation algorithm for an ordering scheme, but amount relevant was

model-dependent. It was also axis dependent, the shorter axis appreciated having the correlation

or anticorrelation function as an ordering scheme, while the longer axis might not.

With malware data, different models behaved differently. On average Xception produced

the best results and had a few options in order schemes that achieved the second-highest mark for

a model. One of the schemes happens to include regular correlation on the shorter axis, and all

correlation schemes performed better than average on the longer axis. This seems to indicate that

Xception may be easy to tune. DenseNet-121 also performed very well with only a slightly lower

peak mAP rating in two-thirds of the training time. Correlation along the longer axis is one of

the peak ordering schemes for DenseNet-121; thus it may also be easy to tune. Surprisingly only

Lenet-5 didn’t like the anti-correlated columns on the shorter independent axis. It is suspected that

it has to do with the lack of total width only two levels of convolution layers provides.

ResNet-18 produced the widest range of results, both the best and worst, followed by

MobileNet. On average, ResNet-18 appears to like the anticorrelated on both axes, almost opposite

behavior than the other models. MobileNet appears to perform well with any proposed correlation

order schemes for the shorter axis, but performs very poorly on the longer axis. It is suspected that

MobileNet’s responsiveness to one axis over the other and the visualization of that responsiveness

has to do with how features are extracted from the convolution layers within the model. This is in

contrast to the maximum pooling operations found in most models.

Modifying ResNet-18’s model did have an effect on order performance, which showed

that the feature extraction process has an affect on which order performs best. Most networks a

maximum pool operation integrated within their stages through out the network. They identify the

peaks within filter response. Since most networks use these as feature extractors earlier within the

network, those patterns are highly localized. ResNet-18 uses convolutions as feature extractors
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earlier in the network, and MobileNet uses only convolutions and doesn’t use any pooling opera-

tion. It is these structural differences in feature extraction that are the reason ordering performance

behaves as differently.

Although Inception-V3 was faster at training than both Xception and DenseNet-121, its

average performance was outperformed by MobileNet, which produced better results in half the

training time. Inception-V3’s architecture seems to lend to a more intuitive understanding of the

visualizations produced.

6.2 Maleficent IP-Traffic and Statistical Subsets

* Some of the material presented in this section will appeared in the proceedings on the 4th In-
ternational Conference on Machine Learning and Soft Computing (MLSC 2023) in the article,
“MiCAM: Visualizing Feature Extraction Of Nonnatural Data", co-authored with Ram Krishnan,
Ph.D.

This research again shows that order has an affect on CNN performance. In this case

though, the structural order as defined by the IP specification proved best. It shows the organization

and care that IEEE put forward in defining the internet protocol. There is obviously some order to

the IP-specification that provides the proper patterns for CNN to identify. It is also important to

note that correlation did improve performance over the average of random orderings in detection

tasks, even for the majority of cases where only a subset of maleficent data set was used to generate

ordering statistics.

Classification tasks appear to have limitations in performance that ordering has little af-

fect on. The improvements made by changing the order didn’t significantly improve performance.

IP specification again performed best, but that improvement was negligible over the average ran-

dom order. Correlation also improves over the average in the majority of cases, but insignificantly.
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6.3 Visualizations and MiCAM

* The material presented in this section previously appeared in the journal, Information Systems
Frontiers (2022) , “Visualizing CNN Models’ Sensitivity to Nonnatural Data Order", and will
appeared in the proceedings on the 4th International Conference on Machine Learning and Soft
Computing (MLSC 2023) in the article, “MiCAM: Visualizing Feature Extraction Of Nonnatural
Data", co-authored with Ram Krishnan, Ph.D.

Visualizations provide some insight into what the CNNs are doing with nonnatural data,

but deciphering the plots from these deeper models on the malware data is not as intuitive as it is

when examining visualizations from sequential models with images. It was not possible to identify

what particular data points within the sample made up a malware feature. In general, Salience and

ScoreCAM plots contain the most distinct and unique plots per experiment scenario. By contrast

GradCAM creates the same plot, an empty rectangle, for more than one-third of the scenarios.

GradCAM and GradCAM++, in one of the best scenarios each, create the same empty plot for

both the positive and negative samples. They appear unable to display the distinguishing features

the CNNs are using to make decisions.

ScoreCAM appears the most descriptive. The best ordering schemes of every model

show the plots between benign and maleficent are more similar than the ScoreCAM plots in the

worst ordering schemes. This indicates that ScoreCAM identifies that similar features are used

in decisions in better ordering schemes, whereas the worst ordering schemes show distinct or

divergent features. In general the visualizations provide some sense to the distinctness the various

CNN models generate features from the different orderings, but lack in clarity as to which portions

of the original data grid had an influence on those features.

In contrast MiCAM diagrams offer more detail regarding feature extraction within the

CNN models. They visually expose the layers, allowing the user to further understand the intensi-

ties of features extracted within the CNN structure. It was what directed this research in identifying

the underlying structure capabilities within ResNet, allowing further comparison how minor vari-
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ation in a model or process can affect feature extraction. MiCAM offers an additional tool for

engineers as they tailor CNN models to nonnatural cybersecurty applications.

6.4 Final Analysis

This research clearly shows that order affects CNN performance. Using correlation as the basis for

order is shown to have a significant opportunity to be a preferred order, but it may not be optimal.

Structural orders that are arbitrarily defined have proven to achieve poor results, but those structural

orders that the are diligently defined through rigorous organizational procedure could provide an

optimal order.

As a result of this study a methodology is proposed for identifying a preferred model and

ordering for novel grids of nonnatural data:

• Identify an initial, usually structurally defined, ordering for the grids.

• Test any available model with this ordering for a limited number of epochs and select several

of the best performing models.

• Use the methodology detailed within this manuscript to generate several ordering options

from statistics, and include a dozen random orders for a baseline.

• Test all of the options with chosen models and select best performer.

The sample sets used in generating the statistics for order generation don’t have to comprise of the

entire data set but must include substantial examples of the positive (maleficent) outcomes.

After processing a model, analyzing how the different ordering schemes behave can pro-

vide additional insight. Large variance in performance between the ordering schemes, like in the

initial ResNet experiments, may be indicative of an improper parameter such as learning rate.
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Current visualizations tools are not very supportive in nonnatural analysis scenarios, but

it was the use of the new tool, MiCAM, that enabled several milestones within this research.

In particular it was the MiCAM diagrams that pointed in the directing of examining the feature

extraction process as the source of order related performance changes. It also displays examples

of localizing pixel elements that are associated with a benign or maleficent classes.

This concludes this manuscript. Following is an Appendix that details CNN model defi-

nitions and the bibliography.
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Appendices
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APPENDIX A: LENET MODEL DETAILS
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Input_1: input_layer

conv1: conv3d

conv1_relu: Activation

Pool1: max_pool3

conv2: conv3d

conv2_relu: Activation

Pool2: max_pool3

Flatten: Flatten

fc1: Dense

fc2: Dense

fc1_relu: Activation

Decision: Dense

fc2_relu: Activation

Figure A.1: Metric Malware Analysis LeNet-5 CNN Model
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Table A.1: Process/Metric Malware Analysis LeNet-5 Model Details

LeNet-5 Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Convolution-1 1 conv1 150 75 1 32 3 3 1 1 1 288

Convolution-1 2 conv1_relu 150 75 32 32

Pool-1 3 pool1 150 75 32 0 2 2 1 2 1 0

Convolution-2 4 conv2 75 38 32 64 3 3 32 1 1 18,432

Convolution-2 5 conv2_relu 75 38 64 64

Pool-2 6 pool2 75 38 64 0 2 2 1 2 1 0

7 flatten 38 19 64 0

Fully Connected-1 8 fc1 1 1 46,208 1024 47,316,992

Fully Connected-1 9 conv3_relu 1 1 1024 0

Fully Connected-2 10 fc2 1 1 1024 512 524,288

Fully Connected-2 11 conv3_relu 1 1 512 0

Decision 12 dense 1 1 512 2 1024
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Table A.2: IP Maleficent Analysis LeNet-5 Model Details

LeNet-5 Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Convolution-1 1 conv1 40 40 1 32 3 3 3 1 1 320

Convolution-1 2 conv1_relu 40 40 32 0

Pool-1 3 pool1 40 40 32 0 2 2 1 2 1 0

Convolution-2 4 conv2 20 20 32 64 3 3 32 1 1 18,496

Convolution-2 5 conv2_relu 20 20 64 0

Pool-2 6 pool2 20 20 64 0 2 2 1 2 1 0

7 flatten 10 10 64 0

Fully Connected-1 8 fc1 1 1 6400 4096 26,214,400

Fully Connected-1 9 conv3_relu 1 1 4096 0

10 droput 1 1 4096 0

Fully Connected-2 11 fc2 1 1 4096 1600 6,553,600

Fully Connected-2 12 conv3_relu 1 1 1600 0

13 droput 1 1 1600 0

Decision 14 dense 1 1 1600 2 3200
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APPENDIX B: INCEPTION NET V3 MODEL DETAILS
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inception_v3_input: InputLayer

inception_v3: Functional

atten: Flatten

dropout: Dropout

dense: Dense

Figure B.1: Inception CNN Model Decision Layers
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Figure B.2: Inception CNN Model Functional Layers: Page 1 of 7
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Figure B.3: Inception CNN Model Functional Layers: Page 2 of 7
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Figure B.4: Inception CNN Model Functional Layers: Page 3 of 7
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Figure B.5: Inception CNN Model Functional Layers: Page 4 of 7
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Figure B.6: Inception CNN Model Functional Layers: Page 5 of 7
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Figure B.7: Inception CNN Model Functional Layers: Page 6 of 7
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Figure B.8: Inception CNN Model Functional Layers: Page 7 of 7
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Pre-feature A 1 conv2d 150 75 1 32 3 3 1 2 0 288

Pre-feature A 2 batch_norm 74 37 32 96

Pre-feature A 3 activation 74 37 32 0

Pre-feature A 4 conv2d_1 74 37 32 32 3 3 32 1 0 9,216

Pre-feature A 5 batch_norm_1 72 35 32 96

Pre-feature A 6 activation_1 72 35 32 0

Pre-feature A 7 conv2d_2 72 35 32 64 3 3 32 1 1 18,432

Pre-feature A 8 batch_norm_2 72 35 64 192

Pre-feature A 9 activation_2 72 35 64 0

10 max_pool2d 72 35 64 0 3 3 1 2 0 0

Pre-feature B 11 conv2d_3 35 17 64 80 1 1 64 1 0 5,120

Pre-feature B 12 batch_norm_3 35 17 80 240

Pre-feature B 13 activation_3 35 17 80 0

Pre-feature B 14 conv2d_4 35 17 80 192 3 3 80 1 0 138,240

Pre-feature B 15 batch_norm_4 33 15 192 576

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Pre-feature B 16 activation_4 33 15 192 0

17 max_pool2d_1 33 15 192 0 3 3 1 2 0 0

Incept A1 18 conv2d_8 16 7 192 64 1 1 192 1 0 12,288

Incept A1 19 batch_norm_8 16 7 64 192

Incept A1 20 activation_8 16 7 64 0

Incept A1 21 conv2d_6 16 7 192 48 1 1 192 1 0 9,216

Incept A1 22 conv2d_9 16 7 64 96 3 3 64 1 1 55,296

Incept A1 23 batch_norm_6 16 7 96 144

Incept A1 24 batch_norm_9 16 7 48 288

Incept A1 25 activation_6 16 7 96 0

Incept A1 26 activation_9 16 7 48 0

Incept A1 27 average_pool2d 16 7 192 0 3 3 1 1 1 0

Incept A1 28 conv2d_5 16 7 192 64 1 1 192 1 0 12,288

Incept A1 29 conv2d_7 16 7 48 64 5 5 48 1 2 76,800

Incept A1 30 conv2d_10 16 7 96 96 3 3 96 1 1 82,944

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept A1 31 conv2d_11 16 7 192 32 1 1 192 1 0 6,144

Incept A1 32 batch_norm_5 16 7 64 192

Incept A1 33 batch_norm_7 16 7 64 192

Incept A1 34 batch_norm_10 16 7 96 288

Incept A1 35 batch_norm_11 16 7 32 96

Incept A1 36 activation_5 16 7 64 0

Incept A1 37 activation_7 16 7 64 0

Incept A1 38 activation_10 16 7 96 0

Incept A1 39 activation_11 16 7 32 0

40 mixed0 16 7 256 0

Incept A2 41 conv2d_15 16 7 256 64 1 1 256 1 0 16,384

Incept A2 42 batch_norm_15 16 7 64 192

Incept A2 43 activation_15 16 7 64 0

Incept A2 44 conv2d_13 16 7 256 48 1 1 64 1 0 12,288

Incept A2 45 conv2d_16 16 7 64 96 3 3 48 1 1 55,296

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept A2 46 batch_norm_13 16 7 48 144

Incept A2 47 batch_norm_16 16 7 96 288

Incept A2 48 activation_13 16 7 48 0

Incept A2 49 activation_16 16 7 96 0

Incept A2 50 average_pool2d_1 16 7 256 0 3 3 1 1 1 0

Incept A2 51 conv2d_12 16 7 256 64 1 1 256 1 0 16,384

Incept A2 52 conv2d_14 16 7 48 64 5 5 64 1 2 76,800

Incept A2 53 conv2d_17 16 7 96 96 3 3 64 1 1 82,944

Incept A2 54 conv2d_18 16 7 256 64 1 1 96 1 0 16,384

Incept A2 55 batch_norm_12 16 7 64 192

Incept A2 56 batch_norm_14 16 7 64 192

Incept A2 57 batch_norm_17 16 7 96 288

Incept A2 58 batch_norm_18 16 7 64 192

Incept A2 59 activation_12 16 7 64 0

Incept A2 60 activation_14 16 7 64 0

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept A2 61 activation_17 16 7 96 0

Incept A2 62 activation_18 16 7 64 0

63 mixed1 16 7 288 0

Incept A3 64 conv2d_22 16 7 288 64 1 1 288 1 0 18,432

Incept A3 65 batch_norm_22 16 7 64 192

Incept A3 66 activation_22 16 7 64 0

Incept A3 67 conv2d_20 16 7 288 48 1 1 288 1 0 13,824

Incept A3 68 conv2d_23 16 7 64 96 3 3 64 1 1 55,296

Incept A3 69 batch_norm_20 16 7 96 144

Incept A3 70 batch_norm_23 16 7 48 288

Incept A3 71 activation_20 16 7 96 0

Incept A3 72 activation_23 16 7 48 0

Incept A3 73 average_pool2d_2 16 7 288 0 3 3 1 1 1 0

Incept A3 74 conv2d_19 16 7 288 64 1 1 288 1 0 18,432

Incept A3 75 conv2d_21 16 7 48 64 5 5 64 1 2 76,800

(table continues)

113



Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept A3 76 conv2d_24 16 7 96 96 3 3 64 1 1 82,944

Incept A3 77 conv2d_25 16 7 288 64 1 1 96 1 0 18,432

Incept A3 78 batch_norm_19 16 7 64 192

Incept A3 79 batch_norm_21 16 7 64 192

Incept A3 80 batch_norm_24 16 7 64 288

Incept A3 81 batch_norm_25 16 7 96 192

Incept A3 82 activation_19 16 7 64 0

Incept A3 83 activation_21 16 7 64 0

Incept A3 84 activation_24 16 7 64 0

Incept A3 85 activation_25 16 7 96 0

86 mixed2 16 7 288 0

Incept B 87 conv2d_27 16 7 288 64 1 1 288 1 0 18,432

Incept B 88 batch_norm_27 16 7 64 192

Incept B 89 activation_27 16 7 64 0

Incept B 90 conv2d_28 16 7 64 96 3 3 64 1 1 55,296

(table continues)

114



Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept B 91 batch_norm_28 16 7 96 288

Incept B 92 activation_28 16 7 96 0

Incept B 93 conv2d_26 16 7 288 384 3 3 96 2 0 995,328

Incept B 94 conv2d_29 7 3 96 96 3 3 96 2 0 82,944

Incept B 95 batch_norm_26 7 3 384 1,152

Incept B 96 batch_norm_29 7 3 96 288

Incept B 97 activation_26 7 3 384 0

Incept B 98 activation_29 7 3 96 0

Incept B 99 max_pool2d_2 7 3 288 0 3 3 1 2 0 0

100 mixed3 7 3 768 0

Incept C1 101 conv2d_34 7 3 768 128 1 1 768 1 0 98,304

Incept C1 102 batch_norm_34 7 3 128 384

Incept C1 103 activation_34 7 3 128 0

Incept C1 104 conv2d_35 7 3 128 128 7 1 128 1 3 114,688

Incept C1 105 batch_norm_35 7 3 128 384

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C1 106 activation_35 7 3 128 0

Incept C1 107 conv2d_31 7 3 768 128 1 1 768 1 0 98,304

Incept C1 108 conv2d_36 7 3 128 128 1 7 128 1 3 114,688

Incept C1 109 batch_norm_31 7 3 128 384

Incept C1 110 batch_norm_36 7 3 128 384

Incept C1 111 activation_31 7 3 128 0

Incept C1 112 activation_36 7 3 128 0

Incept C1 113 conv2d_32 7 3 128 128 1 7 128 1 3 114,688

Incept C1 114 conv2d_37 7 3 128 128 7 1 128 1 3 114,688

Incept C1 115 batch_norm_32 7 3 128 384

Incept C1 116 batch_norm_37 7 3 128 384

Incept C1 117 activation_32 7 3 128 0

Incept C1 118 activation_37 7 3 128 0

Incept C1 119 average_pool2d_3 7 3 768 0 3 3 1 1 1 0

Incept C1 120 conv2d_30 7 3 768 192 1 1 768 1 0 147,456

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C1 121 conv2d_33 7 3 128 192 7 1 128 1 3 172,032

Incept C1 122 conv2d_38 7 3 128 192 1 7 128 1 3 172,032

Incept C1 123 conv2d_39 7 3 768 192 1 1 768 1 0 147,456

Incept C1 124 batch_norm_30 7 3 192 576

Incept C1 125 batch_norm_33 7 3 192 576

Incept C1 126 batch_norm_38 7 3 192 576

Incept C1 127 batch_norm_39 7 3 192 576

Incept C1 128 activation_30 7 3 192 0

Incept C1 129 activation_33 7 3 192 0

Incept C1 130 activation_38 7 3 192 0

Incept C1 131 activation_39 7 3 192 0

132 mixed4 7 3 768 0

Incept C2 133 conv2d_44 7 3 768 160 1 1 768 1 0 122,880

Incept C2 134 batch_norm_44 7 3 160 480

Incept C2 135 activation_44 7 3 160 0

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C2 136 conv2d_45 7 3 160 160 7 1 160 1 3 179,200

Incept C2 137 batch_norm_45 7 3 160 480

Incept C2 138 activation_45 7 3 160 0

Incept C2 139 conv2d_41 7 3 768 160 1 1 768 1 0 122,880

Incept C2 140 conv2d_46 7 3 160 160 1 7 160 1 3 179,200

Incept C2 141 batch_norm_41 7 3 160 480

Incept C2 142 batch_norm_46 7 3 160 480

Incept C2 143 activation_41 7 3 160 0

Incept C2 144 activation_46 7 3 160 0

Incept C2 145 conv2d_42 7 3 160 160 1 7 160 1 3 179,200

Incept C2 146 conv2d_47 7 3 160 160 7 1 160 1 3 179,200

Incept C2 147 batch_norm_42 7 3 160 480

Incept C2 148 batch_norm_47 7 3 160 480

Incept C2 149 activation_42 7 3 160 0

Incept C2 150 activation_47 7 3 160 0

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C2 151 average_pool2d_4 7 3 768 0 3 3 1 1 1 0

Incept C2 152 conv2d_40 7 3 768 192 1 1 768 1 0 147,456

Incept C2 153 conv2d_43 7 3 160 192 7 1 160 1 3 215,040

Incept C2 154 conv2d_48 7 3 160 192 1 7 160 1 3 215,040

Incept C2 155 conv2d_49 7 3 768 192 1 1 768 1 0 147,456

Incept C2 156 batch_norm_40 7 3 192 576

Incept C2 157 batch_norm_43 7 3 192 576

Incept C2 158 batch_norm_48 7 3 192 576

Incept C2 159 batch_norm_49 7 3 192 576

Incept C2 160 activation_40 7 3 192 0

Incept C2 161 activation_43 7 3 192 0

Incept C2 162 activation_48 7 3 192 0

Incept C2 163 activation_49 7 3 192 0

164 mixed5 7 3 768 0

Incept C3 165 conv2d_54 7 3 768 160 1 1 768 1 0 122,880

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C3 166 batch_norm_54 7 3 160 480

Incept C3 167 activation_54 7 3 160 0

Incept C3 168 conv2d_55 7 3 160 160 7 1 160 1 3 179,200

Incept C3 169 batch_norm_55 7 3 160 480

Incept C3 170 activation_55 7 3 160 0

Incept C3 171 conv2d_51 7 3 768 160 1 1 768 1 0 122,880

Incept C3 172 conv2d_56 7 3 160 160 1 7 160 1 3 179,200

Incept C3 173 batch_norm_51 7 3 160 480

Incept C3 174 batch_norm_56 7 3 160 480

Incept C3 175 activation_51 7 3 160 0

Incept C3 176 activation_56 7 3 160 0

Incept C3 177 conv2d_52 7 3 160 160 1 7 160 1 3 179,200

Incept C3 178 conv2d_57 7 3 160 160 7 1 160 1 3 179,200

Incept C3 179 batch_norm_52 7 3 160 480

Incept C3 180 batch_norm_57 7 3 160 480

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C3 181 activation_52 7 3 160 0

Incept C3 182 activation_57 7 3 160 0

Incept C3 183 average_pool2d_5 7 3 768 0 3 3 1 1 1 0

Incept C3 184 conv2d_50 7 3 768 192 1 1 768 1 0 147,456

Incept C3 185 conv2d_53 7 3 160 192 7 1 160 1 3 215,040

Incept C3 186 conv2d_58 7 3 160 192 1 7 160 1 3 215,040

Incept C3 187 conv2d_59 7 3 768 192 1 1 768 1 0 147,456

Incept C3 188 batch_norm_50 7 3 192 576

Incept C3 189 batch_norm_53 7 3 192 576

Incept C3 190 batch_norm_58 7 3 192 576

Incept C3 191 batch_norm_59 7 3 192 576

Incept C3 192 activation_50 7 3 192 0

Incept C3 193 activation_53 7 3 192 0

Incept C3 194 activation_58 7 3 192 0

Incept C3 195 activation_59 7 3 192 0

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

196 mixed6 7 3 768 0

Incept C4 197 conv2d_64 7 3 768 192 1 1 768 1 0 147,456

Incept C4 198 batch_norm_64 7 3 192 576

Incept C4 199 activation_64 7 3 192 0

Incept C4 200 conv2d_65 7 3 192 192 7 1 160 1 3 258,048

Incept C4 201 batch_norm_65 7 3 192 576

Incept C4 202 activation_65 7 3 192 0

Incept C4 203 conv2d_61 7 3 768 192 1 1 768 1 0 147,456

Incept C4 204 conv2d_66 7 3 192 192 1 7 160 1 3 258,048

Incept C4 205 batch_norm_61 7 3 192 576

Incept C4 206 batch_norm_66 7 3 192 576

Incept C4 207 activation_61 7 3 192 0

Incept C4 208 activation_66 7 3 192 0

Incept C4 209 conv2d_62 7 3 192 192 1 7 160 1 3 258,048

Incept C4 210 conv2d_67 7 3 192 192 7 1 160 1 3 258,048

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C4 211 batch_norm_62 7 3 192 576

Incept C4 212 batch_norm_67 7 3 192 576

Incept C4 213 activation_62 7 3 192 0

Incept C4 214 activation_67 7 3 192 0

Incept C4 215 average_pool2d_6 7 3 768 0 3 3 1 1 1 0

Incept C4 216 conv2d_60 7 3 768 192 1 1 768 1 0 147,456

Incept C4 217 conv2d_63 7 3 192 192 7 1 192 1 3 258,048

Incept C4 218 conv2d_68 7 3 192 192 1 7 192 1 3 258,048

Incept C4 219 conv2d_69 7 3 768 192 1 1 768 1 0 147,456

Incept C4 220 batch_norm_60 7 3 192 576

Incept C4 221 batch_norm_63 7 3 192 576

Incept C4 222 batch_norm_68 7 3 192 576

Incept C4 223 batch_norm_69 7 3 192 576

Incept C4 224 activation_60 7 3 192 0

Incept C4 225 activation_63 7 3 192 0

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept C4 226 activation_68 7 3 192 0

Incept C4 227 activation_69 7 3 192 0

228 mixed7 7 3 768 0

Incept D 229 conv2d_72 7 3 768 192 1 1 768 1 0 147,456

Incept D 230 batch_norm_72 7 3 192 576

Incept D 231 activation_72 7 3 192 0

Incept D 232 conv2d_73 7 3 192 192 1 7 192 1 3 258,048

Incept D 233 batch_norm_73 7 3 192 576

Incept D 234 activation_73 7 3 192 0

Incept D 235 conv2d_70 7 3 768 192 1 1 768 1 0 147,456

Incept D 236 conv2d_74 7 3 192 192 1 7 192 1 3 258,048

Incept D 237 batch_norm_70 7 3 192 576

Incept D 238 batch_norm_74 7 3 192 576

Incept D 239 activation_70 7 3 192 0

Incept D 240 activation_74 7 3 192 0

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept D 241 conv2d_71 7 3 192 320 3 3 192 2 0 552,960

Incept D 242 conv2d_75 3 1 192 192 3 3 320 2 0 331,776

Incept D 243 batch_norm_71 3 1 320 960

Incept D 244 batch_norm_75 3 1 192 576

Incept D 245 activation_71 3 1 320 0

Incept D 246 activation_75 3 1 192 0

Incept D 247 max_pool2d_3 3 1 768 0 3 3 1 2 0 0

248 mixed8 3 1 1,280 0

Incept E1 249 conv2d_80 3 1 1,280 448 1 1 1,280 1 0 573,440

Incept E1 250 batch_norm_80 3 1 448 1344

Incept E1 251 activation_80 3 1 448 0

Incept E1 252 conv2d_77 3 1 1,280 384 1 1 1,280 1 0 491,520

Incept E1 253 conv2d_81 3 1 448 384 3 3 384 2 0 1,548,288

Incept E1 254 batch_norm_77 3 1 384 1,152

Incept E1 255 batch_norm_81 3 1 384 1,152

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept E1 256 activation_77 3 1 384 0

Incept E1 257 activation_81 3 1 384 0

Incept E1 258 conv2d_78 3 1 384 384 1 3 384 1 0 442,368

Incept E1 259 conv2d_79 3 1 384 384 3 1 384 1 0 442,368

Incept E1 260 conv2d_82 3 1 384 384 1 3 384 1 0 442,368

Incept E1 261 conv2d_83 3 1 384 384 3 1 384 1 0 442,368

Incept E1 262 average_pool2d_7 3 1 1,280 0 3 3 1 1 1 0

Incept E1 263 conv2d_76 3 1 1,280 320 1 1 1,280 1 0 409,600

Incept E1 264 batch_norm_78 3 1 320 1,152

Incept E1 265 batch_norm_79 3 1 384 1,152

Incept E1 266 batch_norm_82 3 1 384 1,152

Incept E1 267 batch_norm_83 3 1 384 1,152

Incept E1 268 conv2d_84 3 1 1,280 192 1 1 1,280 1 0 245,760

Incept E1 269 batch_norm_76 3 1 320 960

Incept E1 270 activation_78 3 1 320 0

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept E1 271 activation_79 3 1 384 0

Incept E1 272 activation_82 3 1 384 0

Incept E1 273 activation_83 3 1 384 0

Incept E1 274 batch_norm_84 3 1 192 576

Incept E1 275 activation_76 3 1 320 0

Incept E1 276 mixed9_0 3 1 768 0

Incept E1 277 concatenate 3 1 768 0

Incept E1 278 activation_84 3 1 192 0

279 mixed9 3 1 2,048 0

Incept E2 280 conv2d_89 3 1 2,048 448 1 1 2,048 1 0 917,504

Incept E2 281 batch_norm_89 3 1 448 1,344

Incept E2 282 activation_89 3 1 448 0

Incept E2 283 conv2d_86 3 1 2,048 384 1 1 2,048 1 0 786,432

Incept E2 284 conv2d_90 3 1 448 384 3 3 448 2 0 1,548,288

Incept E2 285 batch_norm_86 3 1 384 1,152

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept E2 286 batch_norm_90 3 1 384 1,152

Incept E2 287 activation_86 3 1 384 0

Incept E2 288 activation_90 3 1 384 0

Incept E2 289 conv2d_87 3 1 384 384 1 3 384 1 0 442,368

Incept E2 290 conv2d_88 3 1 384 384 3 1 384 1 0 442,368

Incept E2 291 conv2d_91 3 1 384 384 1 3 384 1 0 442,368

Incept E2 292 conv2d_92 3 1 384 384 3 1 384 1 0 442,368

Incept E2 293 average_pool2d_8 3 1 2,048 0 3 3 1 1 1 0

Incept E2 294 conv2d_85 3 1 2,048 320 1 1 2,048 1 0 655,360

Incept E2 295 batch_norm_87 3 1 384 1,152

Incept E2 296 batch_norm_88 3 1 384 1,152

Incept E2 297 batch_norm_91 3 1 384 1,152

Incept E2 298 batch_norm_92 3 1 384 1,152

Incept E2 299 conv2d_93 3 1 2,048 192 1 1 2,048 1 0 393,216

Incept E2 300 batch_norm_85 3 1 320 960

(table continues)
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Table B.1: Inception V3 Details

Inception Layer Input Size Filter Param

Stage No. Name Height Width Depth Count Hght Wdth Dpth Strd Pad Cnt

Incept E2 301 activation_87 3 1 384 0

Incept E2 302 activation_88 3 1 384 0

Incept E2 303 activation_91 3 1 384 0

Incept E2 304 activation_92 3 1 384 0

Incept E2 305 batch_norm_93 3 1 192 576

Incept E2 306 activation_85 3 1 320 0

Incept E2 307 mixed9_1 3 1 768 0

Incept E2 308 concatenate_1 3 1 768 0

Incept E2 309 activation_93 3 1 192 0

310 mixed10 3 1 2048 0

311 flatten 3 1 2048 0

312 dropout 1 1 6144 0

Decision 313 dense 1 1 6144 12,290
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APPENDIX C: RESNET-18 MODEL DETAILS
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Figure C.1: ResNet18 CNN Model Functional Layers: Page 1 of 5
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Figure C.2: ResNet18 CNN Model Functional Layers: Page 2 of 5
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Figure C.3: ResNet18 CNN Model Functional Layers: Page 3 of 5
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Figure C.4: ResNet18 CNN Model Functional Layers: Page 4 of 5
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Figure C.5: ResNet18 CNN Model Functional Layers: Page 5 of 5
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Table C.1: ResNet-18 Details

ResNET-18 Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Prefetch 1 first_layer_112_1 150 75 1 64 3 3 1 1 1 640

Prefetch 2 preparation_bn 150 75 64 256

Prefetch 3 preparation_relu 150 75 64 0

Residual Stage-1 4 B1_residue_1_conv_3 150 75 64 64 3 3 64 1 1 36,928

Residual Stage-1 5 B1_residue_2_bn 150 75 64 256

Residual Stage-1 6 B1_residue_2_relu 150 75 64 0

Residual Stage-1 7 B1_residue_2_conv_4 150 75 64 64 3 3 64 1 1 36,928

Join-1 8 B1_1_add 150 75 64 0

Join-1 9 B1_1_bn 150 75 64 256

Join-1 10 B1_1_relu 150 75 64 0

Residual Stage-2 11 B1_residue_3_conv_5 150 75 64 64 3 3 64 1 1 36,928

Residual Stage-2 12 B1_residue_4_bn 150 75 64 256

Residual Stage-2 13 B1_residue_4_relu 150 75 64 0

Residual Stage-2 14 B1_residue_4_conv_6 150 75 64 64 3 3 64 1 1 36,928

Join-2 15 B1_2_add 150 75 64 0

(table continues)
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Table C.1: ResNet-18 Details

ResNET-18 Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Join-2 16 B1_2_bn 150 75 64 256

Join-2 17 B1_2_relu 150 75 64 0

Residual Stage-3 18 B2_residue_1_conv_7 150 75 64 128 3 3 64 2 0 73,856

Residual Stage-3 19 B2_residue_2_bn 75 38 128 512

Residual Stage-3 20 B2_residue_2_relu 75 38 128 0

Residual Link-3 21 B2_original_reshaped 150 75 64 128 1 1 128 2 0 8,320

Residual Stage-3 22 B2_residue_2_conv_8 75 38 128 128 3 3 128 1 1 14,7584

Join-3 23 B2_1_add 75 38 128 0

Join-3 24 B2_1_bn 75 38 128 512

Join-3 25 B2_1_relu 75 38 128 0

Residual Stage-4 26 B2_residue_3_conv_9 75 38 128 128 3 3 128 1 1 147,584

Residual Stage-4 27 B2_residue_4_bn 75 38 128 512

Residual Stage-4 28 B2_residue_4_relu 75 38 128 0

Residual Stage-4 29 B2_residue_4_conv_10 75 38 128 128 3 3 128 1 1 14,7584

Join-4 30 B2_2_add 75 38 128 0

(table continues)

137



Table C.1: ResNet-18 Details

ResNET-18 Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Join-4 31 B2_2_bn 75 38 128 512

Join-4 32 B2_2_relu 75 38 128 0

Residual Stage-5 33 B3_residue_1_conv_11 75 38 128 256 3 3 128 2 0 295,168

Residual Stage-5 34 B3_residue_2_bn 38 19 256 1024

Residual Stage-5 35 B3_residue_2_relu 38 19 256 0

Residual Link-5 36 B3_original_reshaped 75 38 128 256 1 2 256 2 0 33,024

Residual Stage-5 37 B3_residue_2_conv_12 38 19 256 256 3 3 256 1 1 590,080

Join-5 38 B3_1_add 38 19 256 0

Join-5 39 B3_1_bn 38 19 256 1024

Join-5 40 B3_1_relu 38 19 256 0

Residual Stage-6 41 B3_residue_3_conv_13 38 19 256 256 3 3 256 1 1 590,080

Residual Stage-6 42 B3_residue_4_bn 38 19 256 1024

Residual Stage-6 43 B3_residue_4_relu 38 19 256 0

Residual Stage-6 44 B3_residue_4_conv_14 38 19 256 256 3 3 256 1 1 590,080

Join-6 45 B3_2_add 38 19 256 0

(table continues)
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Table C.1: ResNet-18 Details

ResNET-18 Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Join-6 46 B3_2_bn 38 19 256 1024

Join-6 47 B3_2_relu 38 19 256 0

Residual Stage-7 48 B4_residue_1_conv_15 38 19 256 512 3 3 256 2 0 1,180,160

Residual Stage-7 49 B4_residue_2_bn 19 10 512 2048

Residual Stage-7 50 B4_residue_2_relu 19 10 512 0

Residual Link-7 51 B4_original_reshaped 38 19 256 512 1 2 512 2 0 131,584

Residual Stage-7 52 B4_residue_2_conv_16 19 10 512 512 3 3 512 1 1 2,359,808

Join-7 53 B4_1_add 19 10 512 0

Join-7 54 B4_1_bn 19 10 512 2048

Join-7 55 B4_1_relu 19 10 512 0

Residual Stage-8 56 B4_residue_3_conv_17 19 10 512 512 3 3 512 1 1 2,359,808

Residual Stage-8 57 B4_residue_4_bn 19 10 512 2048

Residual Stage-8 58 B4_residue_4_relu 19 10 512 0

Residual Stage-8 59 B4_residue_4_conv_18 19 10 512 512 3 3 512 1 1 2,359,808

Join-8 60 B4_2_add 19 10 512 0

(table continues)
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Table C.1: ResNet-18 Details

ResNET-18 Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Final Pooling 61 max_pooling2d 19 10 512 0 4 4 512 4 0 0

Final Pooling 62 average_pooling2d 19 10 512 0 4 4 512 4 0 0

Final Pooling 63 concatenate 4 2 1024 0

64 linear 4 2 1,024 10 1 1 1024 10 0 10,250

65 flatten 4 2 10 0

Decision 66 dense 80 1 1 2 162140



APPENDIX D: XCEPTION NET MODEL DETAILS

141



xception_input: InputLayer

xception: Functional

atten: Flatten

dropout: Dropout

dense: Dense

Figure D.1: Xcept CNN Model Decision Layers
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Figure D.2: Xcept CNN Model Functional Layers: Page 1 of 9
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Figure D.3: Xcept CNN Model Functional Layers: Page 2 of 9

144



Figure D.4: Xcept CNN Model Functional Layers: Page 3 of 9
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Figure D.5: Xcept CNN Model Functional Layers: Page 4 of 9
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Figure D.6: Xcept CNN Model Functional Layers: Page 5 of 9
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Figure D.7: Xcept CNN Model Functional Layers: Page 6 of 9
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Figure D.8: Xcept CNN Model Functional Layers: Page 7 of 9
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Figure D.9: Xcept CNN Model Functional Layers: Page 8 of 9
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Figure D.10: Xcept CNN Model Functional Layers: Page 9 of 9
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Prefetch Conv-1 1 block1_conv1 150 75 1 32 3 3 1 2 0 288

Prefetch Conv-1 2 block1_conv1_bn 74 37 32 128

Prefetch Conv-1 3 block1_conv1_act 74 37 32

Prefetch Conv-1 4 block1_conv2 74 37 32 64 3 3 32 1 0 18,432

Prefetch Conv-1 5 block1_conv2_bn 72 35 64 256

Prefetch Conv-1 6 block1_conv2_act 72 35 64

Depth Sep-2 7 block2_sepconv1 72 35 64 128 3 3 1 1 1 8,768

Depth Sep-2 8 block2_sepconv1_bn 72 35 128 512

Depth Sep-2 9 block2_sepconv2_act 72 35 128

Depth Sep-2 10 block2_sepconv2 72 35 128 128 3 3 1 1 1 17,536

Depth Sep-2 11 block2_sepconv2_bn 72 35 128 512

Width Bypass-2 12 conv2d 72 35 64 128 1 1 128 2 0 8,192

Width Bypass-2 13 block2_pool 72 35 128 3 3 1 2 0

Width Bypass-2 14 batch_normalization 36 18 128 512

15 add 36 18 128

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Sep-3 16 block3_sepconv1_act 36 18 128

Depth Sep-3 17 block3_sepconv1 36 18 128 256 3 3 1 1 1 33,920

Depth Sep-3 18 block3_sepconv1_bn 36 18 256 1,024

Depth Sep-3 19 block3_sepconv2_act 36 18 256

Depth Sep-3 20 block3_sepconv2 36 18 256 256 3 3 1 1 1 67,840

Width Bypass-3 21 block3_sepconv2_bn 36 18 256 1,024

Width Bypass-3 22 conv2d_1 36 18 256 256 1 1 256 2 0 32,768

Width Bypass-3 23 block3_pool 36 18 256 3 3 1 2 0

24 batch_normalization_1 18 9 256 1,024

25 add_1 18 9 256

Depth Sep-4 26 block4_sepconv1_act 18 9 256

Depth Sep-4 27 block4_sepconv1 18 9 256 728 3 3 1 1 1 188,672

Depth Sep-4 28 block4_sepconv1_bn 18 9 728 2,912

Depth Sep-4 29 block4_sepconv2_act 18 9 728

Depth Sep-4 30 block4_sepconv2 18 9 728 728 3 3 1 1 1 536,536

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Width Bypass-4 31 block4_sepconv2_bn 18 9 728 2,912

Width Bypass-4 32 conv2d_2 18 9 256 728 1 1 256 2 0 186,368

Width Bypass-4 33 block4_pool 18 9 728 3 3 1 2 0

34 batch_normalization_2 9 5 728 2,912

35 add_2 9 5 728

Depth Sep-5 36 block5_sepconv1_act 9 5 728

Depth Sep-5 37 block5_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-5 38 block5_sepconv1_bn 9 5 728 2,912

Depth Sep-5 39 block5_sepconv2_act 9 5 728

Depth Sep-5 40 block5_sepconv2 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-5 41 block5_sepconv2_bn 9 5 728 2,912

Depth Sep-5 42 block5_sepconv3_act 9 5 728

Depth Sep-5 43 block5_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-5 44 block5_sepconv3_bn 9 5 728 2,912

45 add_3 9 5 728

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Sep-6 46 block6_sepconv1_act 9 5 728

Depth Sep-6 47 block6_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-6 48 block6_sepconv1_bn 9 5 728 2,912

Depth Sep-6 49 block6_sepconv2_act 9 5 728

Depth Sep-6 50 block6_sepconv2 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-6 51 block6_sepconv2_bn 9 5 728 2,912

Depth Sep-6 52 block6_sepconv3_act 9 5 728

Depth Sep-6 53 block6_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-6 54 block6_sepconv3_bn 9 5 728 2,912

55 add_4 9 5 728

Depth Sep-7 56 block7_sepconv1_act 9 5 728

Depth Sep-7 57 block7_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-7 58 block7_sepconv1_bn 9 5 728 2,912

Depth Sep-7 59 block7_sepconv2_act 9 5 728

Depth Sep-7 60 block7_sepconv2 9 5 728 728 3 3 1 1 1 536,536

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Sep-7 61 block7_sepconv2_bn 9 5 728 2,912

Depth Sep-7 62 block7_sepconv3_act 9 5 728

Depth Sep-7 63 block7_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-7 64 block7_sepconv3_bn 9 5 728 2,912

65 add_5 9 5 728

Depth Sep-8 66 block8_sepconv1_act 9 5 728

Depth Sep-8 67 block8_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-8 68 block8_sepconv1_bn 9 5 728 2,912

Depth Sep-8 69 block8_sepconv2_act 9 5 728

Depth Sep-8 70 block8_sepconv2 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-8 71 block8_sepconv2_bn 9 5 728 2,912

Depth Sep-8 72 block8_sepconv3_act 9 5 728

Depth Sep-8 73 block8_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-8 74 block8_sepconv3_bn 9 5 728 2,912

75 add_6 9 5 728

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Sep-9 76 block9_sepconv1_act 9 5 728

Depth Sep-9 77 block9_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-9 78 block9_sepconv1_bn 9 5 728 2,912

Depth Sep-9 79 block9_sepconv2_act 9 5 728

Depth Sep-9 80 block9_sepconv2 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-9 81 block9_sepconv2_bn 9 5 728 2,912

Depth Sep-9 82 block9_sepconv3_act 9 5 728

Depth Sep-9 83 block9_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-9 84 block9_sepconv3_bn 9 5 728 2,912

85 add_7 9 5 728

Depth Sep-10 86 block10_sepconv1_act 9 5 728

Depth Sep-10 87 block10_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-10 88 block10_sepconv1_bn 9 5 728 2,912

Depth Sep-10 89 block10_sepconv2_act 9 5 728

Depth Sep-10 90 block10_sepconv2 9 5 728 728 3 3 1 1 1 536,536

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Sep-10 91 block10_sepconv2_bn 9 5 728 2,912

Depth Sep-10 92 block10_sepconv3_act 9 5 728

Depth Sep-10 93 block10_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-10 94 block10_sepconv3_bn 9 5 728 2,912

95 add_8 9 5 728

Depth Sep-11 96 block11_sepconv1_act 9 5 728

Depth Sep-11 97 block11_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-11 98 block11_sepconv1_bn 9 5 728 2,912

Depth Sep-11 99 block11_sepconv2_act 9 5 728

Depth Sep-11 100 block11_sepconv2 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-11 101 block11_sepconv2_bn 9 5 728 2,912

Depth Sep-11 102 block11_sepconv3_act 9 5 728

Depth Sep-11 103 block11_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-11 104 block11_sepconv3_bn 9 5 728 2,912

105 add_9 9 5 728

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Sep-12 106 block12_sepconv1_act 9 5 728

Depth Sep-12 107 block12_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-12 108 block12_sepconv1_bn 9 5 728 2,912

Depth Sep-12 109 block12_sepconv2_act 9 5 728

Depth Sep-12 110 block12_sepconv2 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-12 111 block12_sepconv2_bn 9 5 728 2,912

Depth Sep-12 112 block12_sepconv3_act 9 5 728

Depth Sep-12 113 block12_sepconv3 9 5 728 728 1 1 728 1 0 536,536

Depth Sep-12 114 block12_sepconv3_bn 9 5 728 2,912

115 add_10 9 5 728

Depth Sep-13 116 block13_sepconv1_act 9 5 728

Depth Sep-13 117 block13_sepconv1 9 5 728 728 3 3 1 1 1 536,536

Depth Sep-13 118 block13_sepconv1_bn 9 5 728 2,912

Depth Sep-13 119 block13_sepconv2_act 9 5 728

Depth Sep-13 120 block13_sepconv2 9 5 728 1,024 3 3 1 1 1 752,024

(table continues)
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Table D.1: Xception Net Details

Xception Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Sep-13 121 block13_sepconv2_bn 9 5 1,024 4,096

Width Bypass-13 122 conv2d_3 9 5 728 1,024 1 1 728 2 1 745,472

Width Bypass-13 123 block13_pool 9 5 728 3 3 1 2 1

Width Bypass-13 124 batch_normalization_3 5 3 1,024 4,096

125 add_11 5 3 1,024

Depth Sep-14 126 block14_sepconv1 5 3 1,024 1,536 3 3 1 1 1 1,582,080

Depth Sep-14 127 block14_sepconv1_bn 5 3 1,536 6,144

Depth Sep-14 128 block14_sepconv1_act 5 3 1,536

Depth Sep-14 129 block14_sepconv2 5 3 1,536 2,048 3 3 1 1 1 3,159,552

Depth Sep-14 130 block14_sepconv2_bn 5 3 2,048 8,192

Depth Sep-14 131 block14_sepconv2_act 5 3 2,048

132 flatten 5 3 2,048

133 dropout 30,720 1 1

Decision 134 dense 30,720 1 1 61,442
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APPENDIX E: MOBILENET MODEL DETAILS

161



mobilenet_1.00_150_input: InputLayer

mobilenet_1.00_150: Functional

atten: Flatten

dropout: Dropout

dense: Dense

Figure E.1: MobileNet CNN Model Decision Layers
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Figure E.2: MobileNet CNN Model Functional Layers: Page 1 of 6
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Figure E.3: MobileNet CNN Model Functional Layers: Page 2 of 6
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Figure E.4: MobileNet CNN Model Functional Layers: Page 3 of 6
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Figure E.5: MobileNet CNN Model Functional Layers: Page 4 of 6
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Figure E.6: MobileNet CNN Model Functional Layers: Page 5 of 7
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Figure E.7: MobileNet CNN Model Functional Layers: Page 6 of 6
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Table E.1: MobileNet Details

MobileNet Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Prefetch 1 conv1 150 75 1 32 3 3 3 2 1 288

Prefetch 2 conv1_bn 75 38 32 128

Prefetch 3 conv1_relu 75 38 32

Depth Wise-1 4 conv_dw_1 75 38 32 32 3 3 1 1 1 288

Depth Wise-1 5 conv_dw_1_bn 75 38 32 128

Depth Wise-1 6 conv_dw_1_relu 75 38 32

Point Wise-1 7 conv_pw_1 75 38 32 64 1 1 32 1 1 2,048

Point Wise-1 8 conv_pw_1_bn 75 38 64 256

Point Wise-1 9 conv_pw_1_relu 75 38 64

10 conv_pad_2 75 38 64 1 1 1 0 1 0

Depth Wise-2 11 conv_dw_2 76 39 64 64 3 3 1 2 0 576

Depth Wise-2 12 conv_dw_2_bn 37 19 64 256

Depth Wise-2 13 conv_dw_2_relu 37 19 64

Point Wise-2 14 conv_pw_2 37 19 64 128 1 1 64 1 0 8,192

Point Wise-2 15 conv_pw_2_bn 37 19 128 512

(table continues)
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Table E.1: MobileNet Details

MobileNet Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Point Wise-2 16 conv_pw_2_relu 37 19 128

Depth Wise-3 17 conv_dw_3 37 19 128 128 3 3 1 1 1 1,152

Depth Wise-3 18 conv_dw_3_bn 37 19 128 512

Depth Wise-3 19 conv_dw_3_relu 37 19 128

Point Wise-3 20 conv_pw_3 37 19 128 128 1 1 128 1 0 16,384

Point Wise-3 21 conv_pw_3_bn 37 19 128 512

Point Wise-3 22 conv_pw_3_relu 37 19 128

23 conv_pad_4 37 19 128 1 1 1 1 1 1

Depth Wise-4 24 conv_dw_4 38 20 128 128 3 3 1 2 0 1,152

Depth Wise-4 25 conv_dw_4_bn 18 9 128 512

Depth Wise-4 26 conv_dw_4_relu 18 9 128

Point Wise-4 27 conv_pw_4 18 9 128 256 1 1 128 1 0 32,768

Point Wise-4 28 conv_pw_4_bn 18 9 256 1,024

Point Wise-4 29 conv_pw_4_relu 18 9 256

Depth Wise-5 30 conv_dw_5 18 9 256 256 3 3 1 1 1 2,304

(table continues)
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Table E.1: MobileNet Details

MobileNet Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Wise-5 31 conv_dw_5_bn 18 9 256 1,024

Depth Wise-5 32 conv_dw_5_relu 18 9 256

Point Wise-5 33 conv_pw_5 18 9 256 256 1 1 256 1 0 65,536

Point Wise-5 34 conv_pw_5_bn 18 9 256 1,024

Point Wise-5 35 conv_pw_5_relu 18 9 256

36 conv_pad_6 18 9 256 1 1 1 1 1 1

Depth Wise-6 37 conv_dw_6 19 10 256 256 3 3 1 2 0 2,304

Depth Wise-6 38 conv_dw_6_bn 9 4 256 1,024

Depth Wise-6 39 conv_dw_6_relu 9 4 256

Point Wise-6 40 conv_pw_6 9 4 256 512 1 1 256 1 0 131,072

Point Wise-6 41 conv_pw_6_bn 9 4 512 2,048

Point Wise-6 42 conv_pw_6_relu 9 4 512

Depth Wise-7 43 conv_dw_7 9 4 512 512 3 3 1 1 1 4,608

Depth Wise-7 44 conv_dw_7_bn 9 4 512 2,048

Depth Wise-7 45 conv_dw_7_relu 9 4 512

(table continues)
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Table E.1: MobileNet Details

MobileNet Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Point Wise-7 46 conv_pw_7 9 4 512 512 1 1 512 1 0 262,144

Point Wise-7 47 conv_pw_7_bn 9 4 512 2,048

Point Wise-7 48 conv_pw_7_relu 9 4 512

Depth Wise-8 49 conv_dw_8 9 4 512 512 3 3 1 1 1 4,608

Depth Wise-8 50 conv_dw_8_bn 9 4 512 2,048

Depth Wise-8 51 conv_dw_8_relu 9 4 512

Point Wise-8 52 conv_pw_8 9 4 512 512 1 1 512 1 0 262,144

Point Wise-8 53 conv_pw_8_bn 9 4 512 2,048

Point Wise-8 54 conv_pw_8_relu 9 4 512

Depth Wise-9 55 conv_dw_9 9 4 512 512 3 3 1 1 1 4,608

Depth Wise-9 56 conv_dw_9_bn 9 4 512 2,048

Depth Wise-9 57 conv_dw_9_relu 9 4 512

Point Wise-9 58 conv_pw_9 9 4 512 512 1 1 512 1 0 262,144

Point Wise-9 59 conv_pw_9_bn 9 4 512 2,048

Point Wise-9 60 conv_pw_9_relu 9 4 512

(table continues)
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Table E.1: MobileNet Details

MobileNet Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Wise-10 61 conv_dw_10 9 4 512 512 3 3 1 1 1 4,608

Depth Wise-10 62 conv_dw_10_bn 9 4 512 2,048

Depth Wise-10 63 conv_dw_10_relu 9 4 512

Point Wise-10 64 conv_pw_10 9 4 512 512 1 1 512 1 0 262,144

Point Wise-10 65 conv_pw_10_bn 9 4 512 2,048

Point Wise-10 66 conv_pw_10_relu 9 4 512

Depth Wise-11 67 conv_dw_11 9 4 512 512 3 3 1 1 1 4,608

Depth Wise-11 68 conv_dw_11_bn 9 4 512 2,048

Depth Wise-11 69 conv_dw_11_relu 9 4 512

Point Wise-11 70 conv_pw_11 9 4 512 512 1 1 512 1 0 262,144

Point Wise-11 71 conv_pw_11_bn 9 4 512 2,048

Point Wise-11 72 conv_pw_11_relu 9 4 512

73 conv_pad_12 9 4 512 1 1 1 1 1 1

Depth Wise-12 74 conv_dw_12 10 5 512 512 3 3 1 2 0 4,608

Depth Wise-12 75 conv_dw_12_bn 4 2 512 2,048

(table continues)

173



Table E.1: MobileNet Details

MobileNet Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Depth Wise-12 76 conv_dw_12_relu 4 2 512

Point Wise-12 77 conv_pw_12 4 2 512 1,024 1 1 512 1 0 524,288

Point Wise-12 78 conv_pw_12_bn 4 2 1,024 4,096

Point Wise-12 79 conv_pw_12_relu 4 2 1,024

Depth Wise-13 80 conv_dw_13 4 2 1,024 1,024 3 3 1 1 1 9,216

Depth Wise-13 81 conv_dw_13_bn 4 2 1,024 4,096

Depth Wise-13 82 conv_dw_13_relu 4 2 1,024

Point Wise-13 83 conv_pw_13 4 2 1,024 1,024 1 1 512 1 0 1,048,576

Point Wise-13 83 conv_pw_13_bn 4 2 1,024 4,096

Point Wise-13 83 conv_pw_13_relu 4 2 1,024

83 flatten 8,192 1 1

Decision 83 dropout 8,192 1 1

Decision 83 dense 8,192 1 1 2 16,386
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APPENDIX F: DENSENET-121 MODEL DETAILS

175



densenet121_input: InputLayer

densenet121: Functional

atten: Flatten

dropout: Dropout

dense: Dense

Figure F.1: DenseNet-121 CNN Model Decision Layers
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Figure F.2: DenseNet-121 CNN Model Functional Layers: Page 1 of 24
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Figure F.3: DenseNet-121 CNN Model Functional Layers: Page 2 of 24
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Figure F.4: DenseNet-121 CNN Model Functional Layers: Page 3 of 24
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Figure F.5: DenseNet-121 CNN Model Functional Layers: Page 4 of 24
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Figure F.6: DenseNet-121 CNN Model Functional Layers: Page 5 of 24
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Figure F.7: DenseNet-121 CNN Model Functional Layers: Page 6 of 24
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Figure F.8: DenseNet-121 CNN Model Functional Layers: Page 7 of 24
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Figure F.9: DenseNet-121 CNN Model Functional Layers: Page 8 of 24
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Figure F.10: DenseNet-121 CNN Model Functional Layers: Page 9 of 24
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Figure F.11: DenseNet-121 CNN Model Functional Layers: Page 10 of 24
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Figure F.12: DenseNet-121 CNN Model Functional Layers: Page 11 of 24
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Figure F.13: DenseNet-121 CNN Model Functional Layers: Page 12 of 24

188



Figure F.14: DenseNet-121 CNN Model Functional Layers: Page 13 of 24
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Figure F.15: DenseNet-121 CNN Model Functional Layers: Page 14 of 24
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Figure F.16: DenseNet-121 CNN Model Functional Layers: Page 15 of 24
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Figure F.17: DenseNet-121 CNN Model Functional Layers: Page 16 of 24
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Figure F.18: DenseNet-121 CNN Model Functional Layers: Page 17 of 24
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Figure F.19: DenseNet-121 CNN Model Functional Layers: Page 18 of 24
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Figure F.20: DenseNet-121 CNN Model Functional Layers: Page 19 of 24
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Figure F.21: DenseNet-121 CNN Model Functional Layers: Page 20 of 24
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Figure F.22: DenseNet-121 CNN Model Functional Layers: Page 21 of 24
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Figure F.23: DenseNet-121 CNN Model Functional Layers: Page 22 of 24
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Figure F.24: DenseNet-121 CNN Model Functional Layers: Page 23 of 24
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Figure F.25: DenseNet-121 CNN Model Functional Layers: Page 24 of 24
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Pre-Stage 1 zero_padding2d 150 75 1 1 3 3 1 2 3

Pre-Stage 2 conv1/conv 156 81 1 64 7 7 1 2 0 3,136

Pre-Stage 3 conv1/bn 75 38 64 256

Pre-Stage 4 conv1/relu 75 38 64

Pre-Stage 5 zero_padding2d_1 75 38 64 1 1 1 1 2 1

6 pool1 77 40 64 1 3 3 1 2 0

Stage-1 7 conv2_block1_0_bn 38 19 64 256

Stage-1 8 conv2_block1_0_relu 38 19 64

Stage-1 9 conv2_block1_1_conv 38 19 64 128 1 1 64 1 0 8,192

Stage-1 10 conv2_block1_1_bn 38 19 128 512

Stage-1 11 conv2_block1_1_relu 38 19 128

Stage-1 12 conv2_block1_2_conv 38 19 128 32 3 3 128 1 1 36,864

Stage-1 13 conv2_block1_concat 38 19 96

Stage-1 14 conv2_block2_0_bn 38 19 96 384

Stage-1 15 conv2_block2_0_relu 38 19 96

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-1 16 conv2_block2_1_conv 38 19 96 128 1 1 96 1 0 12,288

Stage-1 17 conv2_block2_1_bn 38 19 128 512

Stage-1 18 conv2_block2_1_relu 38 19 128

Stage-1 19 conv2_block2_2_conv 38 19 128 32 3 3 128 1 1 36,864

Stage-1 20 conv2_block2_concat 38 19 128

Stage-1 21 conv2_block3_0_bn 38 19 128 512

Stage-1 22 conv2_block3_0_relu 38 19 128

Stage-1 23 conv2_block3_1_conv 38 19 128 128 1 1 128 1 0 16,384

Stage-1 24 conv2_block3_1_bn 38 19 128 512

Stage-1 25 conv2_block3_1_relu 38 19 128

Stage-1 26 conv2_block3_2_conv 38 19 128 32 3 3 128 1 1 36,864

Stage-1 27 conv2_block3_concat 38 19 160

Stage-1 28 conv2_block4_0_bn 38 19 160 640

Stage-1 29 conv2_block4_0_relu 38 19 160

Stage-1 30 conv2_block4_1_conv 38 19 160 128 1 1 160 1 0 20,480

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-1 31 conv2_block4_1_bn 38 19 128 512

Stage-1 32 conv2_block4_1_relu 38 19 128

Stage-1 33 conv2_block4_2_conv 38 19 128 32 3 3 128 1 1 36,864

Stage-1 34 conv2_block4_concat 38 19 192

Stage-1 35 conv2_block5_0_bn 38 19 192 768

Stage-1 36 conv2_block5_0_relu 38 19 192

Stage-1 37 conv2_block5_1_conv 38 19 192 128 1 1 192 1 0 24,576

Stage-1 38 conv2_block5_1_bn 38 19 128 512

Stage-1 39 conv2_block5_1_relu 38 19 128

Stage-1 40 conv2_block5_2_conv 38 19 128 32 3 3 128 1 1 36,864

Stage-1 41 conv2_block5_concat 38 19 224

Stage-1 42 conv2_block6_0_bn 38 19 224 896

Stage-1 43 conv2_block6_0_relu 38 19 224

Stage-1 44 conv2_block6_1_conv 38 19 224 128 1 1 224 1 0 28,672

Stage-1 45 conv2_block6_1_bn 38 19 128 512

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-1 46 conv2_block6_1_relu 38 19 128

Stage-1 47 conv2_block6_2_conv 38 19 128 32 3 3 128 1 1 36,864

Stage-1 48 conv2_block6_concat 38 19 256

Stage-1 49 pool2_bn 38 19 256 1,024

Stage-1 50 pool2_relu 38 19 256

Stage-1 51 pool2_conv 38 19 256 128 1 1 256 1 0 32,768

52 pool2_pool 38 19 128 1 2 2 1 2 0

Stage-2 53 conv3_block1_0_bn 19 9 128 512

Stage-2 54 conv3_block1_0_relu 19 9 128

Stage-2 55 conv3_block1_1_conv 19 9 128 128 1 1 128 1 0 16,384

Stage-2 56 conv3_block1_1_bn 19 9 128 512

Stage-2 57 conv3_block1_1_relu 19 9 128

Stage-2 58 conv3_block1_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 59 conv3_block1_concat 19 9 160

Stage-2 60 conv3_block2_0_bn 19 9 160 640

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-2 61 conv3_block2_0_relu 19 9 160

Stage-2 62 conv3_block2_1_conv 19 9 160 128 1 1 160 1 0 20,480

Stage-2 63 conv3_block2_1_bn 19 9 128 512

Stage-2 64 conv3_block2_1_relu 19 9 128

Stage-2 65 conv3_block2_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 66 conv3_block2_concat 19 9 192

Stage-2 67 conv3_block3_0_bn 19 9 192 768

Stage-2 68 conv3_block3_0_relu 19 9 192

Stage-2 69 conv3_block3_1_conv 19 9 192 128 1 1 192 1 0 24,576

Stage-2 70 conv3_block3_1_bn 19 9 128 512

Stage-2 71 conv3_block3_1_relu 19 9 128

Stage-2 72 conv3_block3_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 73 conv3_block3_concat 19 9 224

Stage-2 74 conv3_block4_0_bn 19 9 224 896

Stage-2 75 conv3_block4_0_relu 19 9 224

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-2 76 conv3_block4_1_conv 19 9 224 128 1 1 224 1 0 28,672

Stage-2 77 conv3_block4_1_bn 19 9 128 512

Stage-2 78 conv3_block4_1_relu 19 9 128

Stage-2 79 conv3_block4_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 80 conv3_block4_concat 19 9 256

Stage-2 81 conv3_block5_0_bn 19 9 256 1,024

Stage-2 82 conv3_block5_0_relu 19 9 256

Stage-2 83 conv3_block5_1_conv 19 9 256 128 1 1 256 1 0 32,768

Stage-2 84 conv3_block5_1_bn 19 9 128 512

Stage-2 85 conv3_block5_1_relu 19 9 128

Stage-2 86 conv3_block5_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 87 conv3_block5_concat 19 9 288

Stage-2 88 conv3_block6_0_bn 19 9 288 1,152

Stage-2 89 conv3_block6_0_relu 19 9 288

Stage-2 90 conv3_block6_1_conv 19 9 288 128 1 1 288 1 0 36,864

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-2 91 conv3_block6_1_bn 19 9 128 512

Stage-2 92 conv3_block6_1_relu 19 9 128

Stage-2 93 conv3_block6_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 94 conv3_block6_concat 19 9 320

Stage-2 95 conv3_block7_0_bn 19 9 320 1,280

Stage-2 96 conv3_block7_0_relu 19 9 320

Stage-2 97 conv3_block7_1_conv 19 9 320 128 1 1 320 1 0 40,960

Stage-2 98 conv3_block7_1_bn 19 9 128 512

Stage-2 99 conv3_block7_1_relu 19 9 128

Stage-2 100 conv3_block7_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 101 conv3_block7_concat 19 9 352

Stage-2 102 conv3_block8_0_bn 19 9 352 1,408

Stage-2 103 conv3_block8_0_relu 19 9 352

Stage-2 104 conv3_block8_1_conv 19 9 352 128 1 1 352 1 0 45,056

Stage-2 105 conv3_block8_1_bn 19 9 128 512

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-2 106 conv3_block8_1_relu 19 9 128

Stage-2 107 conv3_block8_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 108 conv3_block8_concat 19 9 384

Stage-2 109 conv3_block9_0_bn 19 9 384 1,536

Stage-2 110 conv3_block9_0_relu 19 9 384

Stage-2 111 conv3_block9_1_conv 19 9 384 128 1 1 384 1 0 49,152

Stage-2 112 conv3_block9_1_bn 19 9 128 512

Stage-2 113 conv3_block9_1_relu 19 9 128

Stage-2 114 conv3_block9_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 115 conv3_block9_concat 19 9 416

Stage-2 116 conv3_block10_0_bn 19 9 416 1,664

Stage-2 117 conv3_block10_0_relu 19 9 416

Stage-2 118 conv3_block10_1_conv 19 9 416 128 1 1 416 1 0 53,248

Stage-2 119 conv3_block10_1_bn 19 9 128 512

Stage-2 120 conv3_block10_1_relu 19 9 128

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-2 121 conv3_block10_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 122 conv3_block10_concat 19 9 448

Stage-2 123 conv3_block11_0_bn 19 9 448 1,792

Stage-2 124 conv3_block11_0_relu 19 9 448

Stage-2 125 conv3_block11_1_conv 19 9 448 128 1 1 448 1 0 57,344

Stage-2 126 conv3_block11_1_bn 19 9 128 512

Stage-2 127 conv3_block11_1_relu 19 9 128

Stage-2 128 conv3_block11_2_conv 19 9 128 32 3 3 128 1 1 36,864

Stage-2 129 conv3_block11_concat 19 9 480

Stage-2 130 conv3_block12_0_bn 19 9 480 1,920

Stage-2 131 conv3_block12_0_relu 19 9 480

Stage-2 132 conv3_block12_1_conv 19 9 480 128 1 1 480 1 0 61,440

Stage-2 133 conv3_block12_1_bn 19 9 128 512

Stage-2 134 conv3_block12_1_relu 19 9 128

Stage-2 135 conv3_block12_2_conv 19 9 128 32 3 3 128 1 1 36,864

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-2 136 conv3_block12_concat 19 9 512

Stage-2 137 pool3_bn 19 9 512 2,048

Stage-2 138 pool3_relu 19 9 512

Stage-2 139 pool3_conv 19 9 512 256 1 1 256 1 0 131,072

140 pool3_pool 19 9 256 1 2 2 1 2 0

Stage-3 141 conv4_block1_0_bn 9 4 256 1,024

Stage-3 142 conv4_block1_0_relu 9 4 256

Stage-3 143 conv4_block1_1_conv 9 4 256 128 1 1 256 1 0 32,768

Stage-3 144 conv4_block1_1_bn 9 4 128 512

Stage-3 145 conv4_block1_1_relu 9 4 128

Stage-3 146 conv4_block1_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 147 conv4_block1_concat 9 4 288

Stage-3 148 conv4_block2_0_bn 9 4 288 1,152

Stage-3 149 conv4_block2_0_relu 9 4 288

Stage-3 150 conv4_block2_1_conv 9 4 288 128 1 1 288 1 0 36,864

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 151 conv4_block2_1_bn 9 4 128 512

Stage-3 152 conv4_block2_1_relu 9 4 128

Stage-3 153 conv4_block2_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 154 conv4_block2_concat 9 4 320

Stage-3 155 conv4_block3_0_bn 9 4 320 1,280

Stage-3 156 conv4_block3_0_relu 9 4 320

Stage-3 157 conv4_block3_1_conv 9 4 320 128 1 1 320 1 0 40,960

Stage-3 158 conv4_block3_1_bn 9 4 128 512

Stage-3 159 conv4_block3_1_relu 9 4 128

Stage-3 160 conv4_block3_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 161 conv4_block3_concat 9 4 352

Stage-3 162 conv4_block4_0_bn 9 4 352 1,408

Stage-3 163 conv4_block4_0_relu 9 4 352

Stage-3 164 conv4_block4_1_conv 9 4 352 128 1 1 352 1 0 45,056

Stage-3 165 conv4_block4_1_bn 9 4 128 512

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 166 conv4_block4_1_relu 9 4 128

Stage-3 167 conv4_block4_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 168 conv4_block4_concat 9 4 384

Stage-3 169 conv4_block5_0_bn 9 4 384 1,536

Stage-3 170 conv4_block5_0_relu 9 4 384

Stage-3 171 conv4_block5_1_conv 9 4 384 128 1 1 384 1 0 49,152

Stage-3 172 conv4_block5_1_bn 9 4 128 512

Stage-3 173 conv4_block5_1_relu 9 4 128

Stage-3 174 conv4_block5_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 175 conv4_block5_concat 9 4 416

Stage-3 176 conv4_block6_0_bn 9 4 416 1,664

Stage-3 177 conv4_block6_0_relu 9 4 416

Stage-3 178 conv4_block6_1_conv 9 4 416 128 1 1 416 1 0 53,248

Stage-3 179 conv4_block6_1_bn 9 4 128 512

Stage-3 180 conv4_block6_1_relu 9 4 128

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 181 conv4_block6_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 182 conv4_block6_concat 9 4 448

Stage-3 183 conv4_block7_0_bn 9 4 448 1,792

Stage-3 184 conv4_block7_0_relu 9 4 448

Stage-3 185 conv4_block7_1_conv 9 4 448 128 1 1 448 1 0 57,344

Stage-3 186 conv4_block7_1_bn 9 4 128 512

Stage-3 187 conv4_block7_1_relu 9 4 128

Stage-3 188 conv4_block7_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 189 conv4_block7_concat 9 4 480

Stage-3 190 conv4_block8_0_bn 9 4 480 1,920

Stage-3 191 conv4_block8_0_relu 9 4 480

Stage-3 192 conv4_block8_1_conv 9 4 480 128 1 1 480 1 0 61,440

Stage-3 193 conv4_block8_1_bn 9 4 128 512

Stage-3 194 conv4_block8_1_relu 9 4 128

Stage-3 195 conv4_block8_2_conv 9 4 128 32 3 3 128 1 1 36,864

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 196 conv4_block8_concat 9 4 512

Stage-3 197 conv4_block9_0_bn 9 4 512 2,048

Stage-3 198 conv4_block9_0_relu 9 4 512

Stage-3 199 conv4_block9_1_conv 9 4 512 128 1 1 512 1 0 65,536

Stage-3 200 conv4_block9_1_bn 9 4 128 512

Stage-3 201 conv4_block9_1_relu 9 4 128

Stage-3 202 conv4_block9_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 203 conv4_block9_concat 9 4 544

Stage-3 204 conv4_block10_0_bn 9 4 544 2,176

Stage-3 205 conv4_block10_0_relu 9 4 544

Stage-3 206 conv4_block10_1_conv 9 4 544 128 1 1 544 1 0 69,632

Stage-3 207 conv4_block10_1_bn 9 4 128 512

Stage-3 208 conv4_block10_1_relu 9 4 128

Stage-3 209 conv4_block10_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 210 conv4_block10_concat 9 4 576

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 211 conv4_block11_0_bn 9 4 576 2,304

Stage-3 212 conv4_block11_0_relu 9 4 576

Stage-3 213 conv4_block11_1_conv 9 4 576 128 1 1 576 1 0 73,728

Stage-3 214 conv4_block11_1_bn 9 4 128 512

Stage-3 215 conv4_block11_1_relu 9 4 128

Stage-3 216 conv4_block11_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 217 conv4_block11_concat 9 4 608

Stage-3 218 conv4_block12_0_bn 9 4 608 2,432

Stage-3 219 conv4_block12_0_relu 9 4 608

Stage-3 220 conv4_block12_1_conv 9 4 608 128 1 1 608 1 0 77,824

Stage-3 221 conv4_block12_1_bn 9 4 128 512

Stage-3 222 conv4_block12_1_relu 9 4 128

Stage-3 223 conv4_block12_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 224 conv4_block12_concat 9 4 640

Stage-3 225 conv4_block13_0_bn 9 4 640 2,560

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 226 conv4_block13_0_relu 9 4 640

Stage-3 227 conv4_block13_1_conv 9 4 640 128 1 1 640 1 0 81,920

Stage-3 228 conv4_block13_1_bn 9 4 128 512

Stage-3 229 conv4_block13_1_relu 9 4 128

Stage-3 230 conv4_block13_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 231 conv4_block13_concat 9 4 672

Stage-3 232 conv4_block14_0_bn 9 4 672 2,688

Stage-3 233 conv4_block14_0_relu 9 4 672

Stage-3 234 conv4_block14_1_conv 9 4 672 128 1 1 672 1 0 86,016

Stage-3 235 conv4_block14_1_bn 9 4 128 512

Stage-3 236 conv4_block14_1_relu 9 4 128

Stage-3 237 conv4_block14_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 238 conv4_block14_concat 9 4 704

Stage-3 239 conv4_block15_0_bn 9 4 704 2,816

Stage-3 240 conv4_block15_0_relu 9 4 704

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 241 conv4_block15_1_conv 9 4 704 128 1 1 704 1 0 90,112

Stage-3 242 conv4_block15_1_bn 9 4 128 512

Stage-3 243 conv4_block15_1_relu 9 4 128

Stage-3 244 conv4_block15_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 245 conv4_block15_concat 9 4 736

Stage-3 246 conv4_block16_0_bn 9 4 736 2,944

Stage-3 247 conv4_block16_0_relu 9 4 736

Stage-3 248 conv4_block16_1_conv 9 4 736 128 1 1 736 1 0 94,208

Stage-3 249 conv4_block16_1_bn 9 4 128 512

Stage-3 250 conv4_block16_1_relu 9 4 128

Stage-3 251 conv4_block16_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 252 conv4_block16_concat 9 4 768

Stage-3 253 conv4_block17_0_bn 9 4 768 3,072

Stage-3 254 conv4_block17_0_relu 9 4 768

Stage-3 255 conv4_block17_1_conv 9 4 768 128 1 1 768 1 0 98,304

(table continues)
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Table F.1: DenseNet-121 Details

Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 256 conv4_block17_1_bn 9 4 128 512

Stage-3 257 conv4_block17_1_relu 9 4 128

Stage-3 258 conv4_block17_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 259 conv4_block17_concat 9 4 800

Stage-3 260 conv4_block18_0_bn 9 4 800 3,200

Stage-3 261 conv4_block18_0_relu 9 4 800

Stage-3 262 conv4_block18_1_conv 9 4 800 128 1 1 800 1 0 102,400

Stage-3 263 conv4_block18_1_bn 9 4 128 512

Stage-3 264 conv4_block18_1_relu 9 4 128

Stage-3 265 conv4_block18_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 266 conv4_block18_concat 9 4 832

Stage-3 267 conv4_block19_0_bn 9 4 832 3,328

Stage-3 268 conv4_block19_0_relu 9 4 832

Stage-3 269 conv4_block19_1_conv 9 4 832 128 1 1 832 1 0 106,496

Stage-3 270 conv4_block19_1_bn 9 4 128 512
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Stage-3 271 conv4_block19_1_relu 9 4 128

Stage-3 272 conv4_block19_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 273 conv4_block19_concat 9 4 864

Stage-3 274 conv4_block20_0_bn 9 4 864 3,456

Stage-3 275 conv4_block20_0_relu 9 4 864

Stage-3 276 conv4_block20_1_conv 9 4 864 128 1 1 864 1 0 110,592

Stage-3 277 conv4_block20_1_bn 9 4 128 512

Stage-3 278 conv4_block20_1_relu 9 4 128

Stage-3 279 conv4_block20_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 280 conv4_block20_concat 9 4 896

Stage-3 281 conv4_block21_0_bn 9 4 896 3,584

Stage-3 282 conv4_block21_0_relu 9 4 896

Stage-3 283 conv4_block21_1_conv 9 4 896 128 1 1 896 1 0 114,688

Stage-3 284 conv4_block21_1_bn 9 4 128 512

Stage-3 285 conv4_block21_1_relu 9 4 128
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 286 conv4_block21_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 287 conv4_block21_concat 9 4 928

Stage-3 288 conv4_block22_0_bn 9 4 928 3,712

Stage-3 289 conv4_block22_0_relu 9 4 928

Stage-3 290 conv4_block22_1_conv 9 4 928 128 1 1 928 1 0 118,784

Stage-3 291 conv4_block22_1_bn 9 4 128 512

Stage-3 292 conv4_block22_1_relu 9 4 128

Stage-3 293 conv4_block22_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 294 conv4_block22_concat 9 4 960

Stage-3 295 conv4_block23_0_bn 9 4 960 3,840

Stage-3 296 conv4_block23_0_relu 9 4 960

Stage-3 297 conv4_block23_1_conv 9 4 960 128 1 1 960 1 0 122,880

Stage-3 298 conv4_block23_1_bn 9 4 128 512

Stage-3 299 conv4_block23_1_relu 9 4 128

Stage-3 300 conv4_block23_2_conv 9 4 128 32 3 3 128 1 1 36,864
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-3 301 conv4_block23_concat 9 4 992

Stage-3 302 conv4_block24_0_bn 9 4 992 3,968

Stage-3 303 conv4_block24_0_relu 9 4 992

Stage-3 304 conv4_block24_1_conv 9 4 992 128 1 1 992 1 0 126,976

Stage-3 305 conv4_block24_1_bn 9 4 128 512

Stage-3 306 conv4_block24_1_relu 9 4 128

Stage-3 307 conv4_block24_2_conv 9 4 128 32 3 3 128 1 1 36,864

Stage-3 308 conv4_block24_concat 9 4 1,024

Stage-3 309 pool4_bn 9 4 1,024 4,096

Stage-3 310 pool4_relu 9 4 1,024

Stage-3 311 pool4_conv 9 4 1,024 512 1 1 1024 1 0 524,288

312 pool4_pool 9 4 512 1 2 2 1 2 0

Stage-4 313 conv5_block1_0_bn 4 2 512 2,048

Stage-4 314 conv5_block1_0_relu 4 2 512

Stage-4 315 conv5_block1_1_conv 4 2 512 128 1 1 512 1 0 65,536
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Stage-4 316 conv5_block1_1_bn 4 2 128 512

Stage-4 317 conv5_block1_1_relu 4 2 128

Stage-4 318 conv5_block1_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 319 conv5_block1_concat 4 2 544

Stage-4 320 conv5_block2_0_bn 4 2 544 2,176

Stage-4 321 conv5_block2_0_relu 4 2 544

Stage-4 322 conv5_block2_1_conv 4 2 544 128 1 1 544 1 0 69,632

Stage-4 323 conv5_block2_1_bn 4 2 128 512

Stage-4 324 conv5_block2_1_relu 4 2 128

Stage-4 325 conv5_block2_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 326 conv5_block2_concat 4 2 576

Stage-4 327 conv5_block3_0_bn 4 2 576 2,304

Stage-4 328 conv5_block3_0_relu 4 2 576

Stage-4 329 conv5_block3_1_conv 4 2 576 128 1 1 576 1 0 73,728

Stage-4 330 conv5_block3_1_bn 4 2 128 512
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-4 331 conv5_block3_1_relu 4 2 128

Stage-4 332 conv5_block3_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 333 conv5_block3_concat 4 2 608

Stage-4 334 conv5_block4_0_bn 4 2 608 2,432

Stage-4 335 conv5_block4_0_relu 4 2 608

Stage-4 336 conv5_block4_1_conv 4 2 608 128 1 1 608 1 0 77,824

Stage-4 337 conv5_block4_1_bn 4 2 128 512

Stage-4 338 conv5_block4_1_relu 4 2 128

Stage-4 339 conv5_block4_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 340 conv5_block4_concat 4 2 640

Stage-4 341 conv5_block5_0_bn 4 2 640 2,560

Stage-4 342 conv5_block5_0_relu 4 2 640

Stage-4 343 conv5_block5_1_conv 4 2 640 128 1 1 640 1 0 81,920

Stage-4 344 conv5_block5_1_bn 4 2 128 512

Stage-4 345 conv5_block5_1_relu 4 2 128
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-4 346 conv5_block5_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 347 conv5_block5_concat 4 2 672

Stage-4 348 conv5_block6_0_bn 4 2 672 2,688

Stage-4 349 conv5_block6_0_relu 4 2 672

Stage-4 350 conv5_block6_1_conv 4 2 672 128 1 1 672 1 0 86,016

Stage-4 351 conv5_block6_1_bn 4 2 128 512

Stage-4 352 conv5_block6_1_relu 4 2 128

Stage-4 353 conv5_block6_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 354 conv5_block6_concat 4 2 704

Stage-4 355 conv5_block7_0_bn 4 2 704 2,816

Stage-4 356 conv5_block7_0_relu 4 2 704

Stage-4 357 conv5_block7_1_conv 4 2 704 128 1 1 704 1 0 90,112

Stage-4 358 conv5_block7_1_bn 4 2 128 512

Stage-4 359 conv5_block7_1_relu 4 2 128

Stage-4 360 conv5_block7_2_conv 4 2 128 32 3 3 128 1 1 36,864
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-4 361 conv5_block7_concat 4 2 736

Stage-4 362 conv5_block8_0_bn 4 2 736 2,944

Stage-4 363 conv5_block8_0_relu 4 2 736

Stage-4 364 conv5_block8_1_conv 4 2 736 128 1 1 736 1 0 94,208

Stage-4 365 conv5_block8_1_bn 4 2 128 512

Stage-4 366 conv5_block8_1_relu 4 2 128

Stage-4 367 conv5_block8_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 368 conv5_block8_concat 4 2 768

Stage-4 369 conv5_block9_0_bn 4 2 768 3,072

Stage-4 370 conv5_block9_0_relu 4 2 768

Stage-4 371 conv5_block9_1_conv 4 2 768 128 1 1 768 1 0 98,304

Stage-4 372 conv5_block9_1_bn 4 2 128 512

Stage-4 373 conv5_block9_1_relu 4 2 128

Stage-4 374 conv5_block9_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 375 conv5_block9_concat 4 2 800
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Dense Layer Input Size Filter Param

Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-4 376 conv5_block10_0_bn 4 2 800 3,200

Stage-4 377 conv5_block10_0_relu 4 2 800

Stage-4 378 conv5_block10_1_conv 4 2 800 128 1 1 800 1 0 102,400

Stage-4 379 conv5_block10_1_bn 4 2 128 512

Stage-4 380 conv5_block10_1_relu 4 2 128

Stage-4 381 conv5_block10_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 382 conv5_block10_concat 4 2 832

Stage-4 383 conv5_block11_0_bn 4 2 832 3,328

Stage-4 384 conv5_block11_0_relu 4 2 832

Stage-4 385 conv5_block11_1_conv 4 2 832 128 1 1 832 1 0 106,496

Stage-4 386 conv5_block11_1_bn 4 2 128 512

Stage-4 387 conv5_block11_1_relu 4 2 128

Stage-4 388 conv5_block11_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 389 conv5_block11_concat 4 2 864

Stage-4 390 conv5_block12_0_bn 4 2 864 3,456
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-4 391 conv5_block12_0_relu 4 2 864

Stage-4 392 conv5_block12_1_conv 4 2 864 128 1 1 864 1 0 110,592

Stage-4 393 conv5_block12_1_bn 4 2 128 512

Stage-4 394 conv5_block12_1_relu 4 2 128

Stage-4 395 conv5_block12_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 396 conv5_block12_concat 4 2 896

Stage-4 397 conv5_block13_0_bn 4 2 896 3,584

Stage-4 398 conv5_block13_0_relu 4 2 896

Stage-4 399 conv5_block13_1_conv 4 2 896 128 1 1 896 1 0 114,688

Stage-4 400 conv5_block13_1_bn 4 2 128 512

Stage-4 401 conv5_block13_1_relu 4 2 128

Stage-4 402 conv5_block13_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 403 conv5_block13_concat 4 2 928

Stage-4 404 conv5_block14_0_bn 4 2 928 3,712

Stage-4 405 conv5_block14_0_relu 4 2 928
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-4 406 conv5_block14_1_conv 4 2 928 128 1 1 928 1 0 118,784

Stage-4 407 conv5_block14_1_bn 4 2 128 512

Stage-4 408 conv5_block14_1_relu 4 2 128

Stage-4 409 conv5_block14_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 410 conv5_block14_concat 4 2 960

Stage-4 411 conv5_block15_0_bn 4 2 960 3,840

Stage-4 412 conv5_block15_0_relu 4 2 960

Stage-4 413 conv5_block15_1_conv 4 2 960 128 1 1 960 1 0 122,880

Stage-4 414 conv5_block15_1_bn 4 2 128 512

Stage-4 415 conv5_block15_1_relu 4 2 128

Stage-4 416 conv5_block15_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 417 conv5_block15_concat 4 2 992

Stage-4 418 conv5_block16_0_bn 4 2 992 3,968

Stage-4 419 conv5_block16_0_relu 4 2 992

Stage-4 420 conv5_block16_1_conv 4 2 992 128 1 1 992 1 0 126,976
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Stage No. Name Hght Wdth Dpth Cnt Hght Wdth Dpth Strd Pad Count

Stage-4 421 conv5_block16_1_bn 4 2 128 512

Stage-4 422 conv5_block16_1_relu 4 2 128

Stage-4 423 conv5_block16_2_conv 4 2 128 32 3 3 128 1 1 36,864

Stage-4 424 conv5_block16_concat 4 2 1,024

Stage-4 425 bn 4 2 1,024 4,096

Stage-4 426 relu 4 2 1,024

427 flatten 4 2 1,024

Decision 428 dropout 8,192 1 1

Decision 429 dense 8,192 1 1 2 16,386
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