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Modern software systems are becoming more complex as their growing software dependencies

and resources continue to inflate with each advancement; often requiring a vast collection of third-

party API references, OS level dependencies, configuration files, and much more. Maintaining

all of these resources can be a difficult task, especially when software supports multiple system

configurations and a wide range of dependency versions. Multiple potential issues arise when

software refers to these resources, such as: invalid or out-of-date URLs, file path errors, or invalid

file manipulations in scripts. We are able to use static analysis to observe the flow of resources and

determine the validity of operation upon these resources. This dissertation introduces an analysis

framework that abstracts possible values of resource path references which can be used to help

software developers maintain different types of resource referencing code. By utilizing the results

produced by our framework it is possible to ensure successful execution, code transplantation,

identify dependency issues and warn against potential errors. This dissertation also describes how

we applied our framework to summarize the network behaviors of applications, support repairing

of errors in Dockerfiles, and summarize a file system state resulting from shell script execution.
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Chapter 1: INTRODUCTION

1.1 Motivation

It is common for developers to experience build issues when attempting to build software from

an online repository. It is likely the case that the downloaded software was developed on a sys-

tem with a different configuration. If the creators of the software have their libraries installed in

a specific location or are using remote dependencies but fail to include them in their project then

developers may have trouble getting the software to build successfully on their systems. It is also

possible that build scripts are erroneous which may make the process of building software more

difficult. It is often difficult to debug build scripts with errors in them because missing depen-

dencies are difficult to track down especially if a specific version is required. Additionally, it is

possible for build scripts to take a few seconds to a few hours to execute and may end up failing

near the end of that time resulting in wasted time and a more difficult time getting the software to

compile successfully. The goal of this thesis is to develop a build script analysis tool that is able

identify these dependency issues and notify users of any other errors in build scripts that are related

to file manipulation.

1.2 Thesis Statement

The goal of this dissertation is to develop an analysis framework that abstracts possible values

of file path references and helps developers maintain different types of resource referencing code.
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1.3 Contributions

In this dissertation, we present an approach for analyzing and detecting errors in build scripts

using file flow analysis and abstract interpretation. We strive to save developers and researchers

time in building software so that they may focus on debugging, development, dynamic analysis and

utilization of the software. This is especially useful where one may wish to automatically build

multiple software projects.

We have developed an extensible framework that can traverse a build script’s flow of control

while providing hooks at each point allowing us to create a variety of analysis. We have developed

three extensions for the framework including, two extensions that calculate the prefix and postfix,

respectively for each variable used in a build script, and a third extension that will catch errors in

build scripts and notify a user of potential issues with a build script. We also developed a grammar

for our framework so that we can express all build scripts in a uniform way. We have manually and

automatically converted various real-world build scripts to our universal language and generated

some results using our framework.

1.4 Organization
This dissertation is organized as follows. Chapter 2 introduces the background and related

work. Chapter 3 describes our empirical study on the usage of a tool that summarizes network

behavior of Android applications built on our flow analysis framework. Chapter 4 shows how we

applied our framework to support recommending update of Dockerfiles. Chapter 5 demonstrates

how we can use path analysis to predict precondition and postcondition of scripts to detect errors.

In chapter 6 we conclude by summarizing the lessons learned and our major contributions in the

paper.

2



Chapter 2: BACKGROUND AND RELATED WORK

The purpose of this section is to provide the background of this study and a review of related

literature.

2.1 Network Traffic

In this section, we discuss the related works of our papers. These research efforts mainly fall

into three categories: network behavior summarization, android code analysis, and string analysis.

2.1.1 Network Behavior Summarization

In the area of network security, an important problem is to identify which application is gener-

ating the traffic on the network. Therefore, various techniques are developed to summarize network

behaviors of applications. Though the techniques are for a totally different purpose, they are rele-

vant to the research in this paper.

Statistical-information based approaches [49] [32] [13] mainly use the statistical information

or the contents of the network traffic (e.g., packet size, data transferring rate, packet intervals) to

perform a protocol/domain classification of network traffic. These approaches are able to identify

network traffic belonging to applications of certain domains, such as database applications, video

players, etc. However, similar to port-based approaches, these approaches are also coarse-grain

and cannot support application-level network-traffic classification.

Content-based approaches are able to support application-level network-traffic classification

by matching the payload of network packets with pre-generated signatures of specific applications.

One necessary and challenging step in these approaches is to generate signatures for large num-

ber of applications. Sen et al. [59] proposed to use content-based signatures to identify the P2P

network traffic of different P2P applications. These signatures are constructed manually through

careful reverse engineering the P2P applications. The other group of approaches try to extract

content based network signatures of an application from a large amount of network traffic of the

3



application. There have been many efforts in this part focusing on generating the network signa-

tures of worms from their collected network traffic. These efforts (e.g., Autograph [43], Early-

Bird [63], PolyGraph [38]) basically extract common byte flows in worms’ network traffic and

generate a content-based signature (in the form of a string or a regular expression) for a certain

worm or a group of worms. More recently, Park et al. [54] proposed to use the Longest Com-

mon Subsequence (LCS) alogrithm to generate a fingerprint of an application from the packets’

content in the application’s network traffic. Recently, Perdisci et al. [55] proposed a clustering-

based approach to generate a signature for a group of malware sharing similar network behavior.

This approach generates signatures for various HTTP-based software (not limited to worms, but

also include other software applications such as adware, spyware). Dai et al. [24] further extends

this approach to Android apps. Although the above network-traces based signature-generation ap-

proaches are fully automatic during the signature-extraction phase. All of these efforts require a

large amount of annotated representative network traffic for the application under study. Therefore,

they all need manual generation of network traffic or the accumulation of network traffic from a

monitored network, both of which require a relatively long time and much cost. Compared with

the above approaches, our approach leverages and adapts string analysis techniques to statically

generate the content-based signatures of android apps without requiring any annotated network

traffic. This advantage is especially important for the signature generation of android apps because

of the huge number of existing android apps and the rapid development of new android apps.

Network behavior summarization of applications based on system level behavior (e.g., system

calls) is another well studied area. Most of the approaches in this area execute the application

under monitored environment and collect system event sequences as the behavior signature of the

application [15] [58]. Therefore, usually, network accesses are recorded as simple system calls

without considering the content sent to or received from the network. Recently, Bayer et al. [12]

proposed an approach to cluster malware based on system behavior. Their approach take into

account more detailed network traffic information but the considered information still only limited

high-level information such as the names of downloaded files.

4



2.1.2 Analysis of Mobile Applications

Our work is also related to the security analysis of mobile applications. This area is an emerging

field in academic research, and some of the recent representative research efforts are presented as

below. PiOS [26] is static analysis framework for iOS, which is able to check the leaking of

sensitive information by combining data flow analysis and slicing techniques. Stowaway [30] is a

automatic tool that is able to determine whether an Android application requests more permissions

than it actually requires. The tool is based on a pre-generated mapping from Android system

APIs to Android permissions. Enck et al. [29] analyzed the permission system and the permission

combinations of Android System to collect a list of dangerous permission patterns and developed

Kirin, a service which identifies Android application requesting dangerous permission, so that

the users can be warned when installing them. Later, Enck et al. [28] further proposed ded, a

de-compiler for Android application, which is able to convert Dalvik Virtual Machine code to

JVM code, and then decompile the JVM code using existing Java de-compilers. As for dynamic

techniques, TaintDroid [27] dynamically monitors the information flow in Android applications

by tracking the propagation of taints throughout the android system. Apex [52] and TISSA [83]

are two recent advancements over the current Android permission system to provide more fine-

grained permission control and dynamic permission adjustability. These works mainly focus on

information leaking or permissions instead of network analysis, and none of these efforts are able

to generate network signatures for android apps.

2.2 Dockerfile Analysis

2.2.1 Studies and Analyses of Dockerfiles.

With the increase of software complexity and components, managing of software dependen-

cies [50] and test dependencies [51] has become an important problem. Tufano et al. [67] studied

on broken snapshots and likely causes behind broken snapshots. Recent research work on scientific

artifact reproduction [14] discussed about the uses of Docker to address the challenge of operat-
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ing system virtualization, cross-platform portability, and reusable software components. Cito et

al. [20] discussed about the rise of Docker adoption in industry, and performed an empirical study

on dockerfiles [21]. Rahman and Williams [56] performed an empirical study on the type of de-

fects in dockerfiles. Docker is also used for lightweight virtualization for developers for distributed

application development, build and ship [39].

2.2.2 Analysis of Building Configuration Files.

As build configuration files are getting complex and diverse, research on build configuration

file is getting importance that includes dependency analysis, migration of build systems and em-

pirical studies. To keep consistency during revision, Adams et al. [6] proposed a framework to

generate dependency graph of build configuration files. Al-Kofahi et al. [9] proposed a fault local-

ization technique for make files, and SYMake [66] uses a symbolic-evaluation-based technique to

detect common errors in Makefile. Following works by Zhou et al. [82] and Al-Kofahi et al. [10]

try to find configuration values exercising different parts of makefiles. Shambaugh [60] developed

a verifier for puppet configuration script, and Sharma et al. [62] proposed techniques to detect bad

smells in configuration files. Recently, Hassan et al. studied the reproduction of building envi-

ronments [34, 35], and performed AST level analysis to generate fix patch for build configuration

files [36] .

2.3 Analysis and Study of Build and Deployment Failures

Xia et al. [79] studied bugs in software build systems. The paper studies how often bugs appear

in software build systems. It also puts the bugs into 11 categories, compares how many bugs are

found per kLOC, the severity of each bug, and the duration of time during which the bugs were

found. The paper focuses on Ant, Maven, CMake and QMake. The study performed in this pa-

per serves as a great example for why our application would be useful. A similar study may be

conducted with projects that utilize a similar tool to ours. Horton and Parnin developed a tech-

nique [37] that aims to solve the dependency resolution problem by taking a runnable code snippet

6



and installing all language-level and system-level dependencies so that we may execute the snippet

without any import errors. It parses the snippet and generates a Dockerfile to install the required

dependencies to install and compile package from the PyPI repository. Wolf et al. proposed an

approach [78] to predict build errors from the social relationship among developers. McIntosh et

al. [45] carried out an empirical study on the efforts developers spend on the building configura-

tions of projects. Tamrawi et al. [64] proposed a symbolic-execution-based technique to analyze

Make files and detect bad smells / common errors. Downs et al. [25] proposed an approach to

remind developers in a development team about the building status of the project. Al-Kofahi et

al. proposed an approach [11] to detect semantic changes in Make files, and later proposed an a

fault localization approach [8] for Make files, which provides the suspiciousness scores of each

statement in a Make file for a build error. Rehearsal [61] is a verification framework for configu-

rations written in puppet. In particular, Rehearsal uses several static analyses to shrink the puppet

abstraction models to a tractable size, and then frames determinism-checking as decidable formu-

las for an SMT solver. Tamrawi et al. [65] developed a symbolic execution framework, SYMAKE,

for analysing make files and detect errors. SYMake first produces a symbolic dependency graph

(SDG), which represents the dependencies among files during the building process. After that, for

each string value in the SDG, SYMAKE provides an acyclic graph to represent its symbolic eval-

uation process. Adams et al. [7] presented a design and implementation of a reverse-engineering

framework for build systems. Their implementation is able to build dependency graphs that can be

visualized and queried for build-related data. They also discuss how we can use the build-related

data for refactoring and validation of a build system.

2.4 String Analysis

Our research is also closely related to string analysis. String analysis is an improvement over

data-flow analysis [40]. String analysis [18] is a static analysis technique to estimate possible

values of string variables. String analysis has been applied to detecting vulnerabilities [73,81], re-

pair web interfaces [72], software internationalization [70], inter-component communication anal-

7



ysis [53], etc. Christensen et al. [19] first suggested string analysis, which is an approach for

obtaining possible values of a string variable. Then, string analysis is widely used in various ar-

eas, especially for detecting and sanitizing SQL Injection vulnerabilities and Cross-Site-Scripting

vulnerabilities. Halfond and Orso [33] used string analysis to detect and neutralize SQL injection

attacks. Livshits and Lam [44] also applied string analysis to detect SQL injection attacks and

other vulnerabilities. Later, Wassermann and Su first developed string-taint analysis [73] to more

precisely detect security vulnerabilities. Kieyzun et.al. [42] further improved their approach by

considering strings that flow through the database.

Minamide [46] first applied string analysis on web applications. He also first suggested to

simulate string operations in the extended CFG with FSTs, and implemented a string analyzer on

PHP code to predict the possible values of dynamically generated web pages. Later, Wassermann

and Su first developed string-taint analysis [74] to more precisely detect the above two kinds of

vulnerabilities [75]. After that, Wassermann and Su [76] further extended their work, and devel-

oped an approach to generating test cases for security vulnerabilities. Our previous work [71] [72]

extends string taint analysis with conditional and dynamic features. Kieyzun et.al. [41] further

improved their approach by considering strings that flow through the database. Compared to these

approaches, we apply string analysis on statically generating network signatures, which is a totally

different problem. We further proposed techniques to handle obfuscation and various network

APIs.

2.4.1 Bug Detection of Shell Scripts

Similar to Lint [4] for C and Findbugs [3] for Java, people have also developed bug detection

tools for shell scripts. These tools such as BashLint [1] and ShellCheck [5] focus on coding style

issues and provide suggestions to developers. However, they are not able to detect the type of bugs

that our techniques can detect.
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Chapter 3: SUMMARIZING NETWORK BEHAVIOR OF ANDROID

APPS FOR NETWORK CODE MAINTENANCE

Network access is one of the most common features of Android applications. Statistics show

that almost 80% of Android apps ask for network permission and thus may have some network-

related features. Android apps may access multiple servers to retrieve or post various types of

data, and the code to handle such network features often needs to change as a result of server

API evolution or the content change of data transferred. Since various network code is used by

multiple features, maintenance of network-related code is often difficult because the code may

scatter in different places in the code base, and it may not be easy to predict the impact of a code

change to the network behavior of an Android app. In this chapter, we present an approach to

statically summarize network behavior from the byte code of Android apps. Our approach is based

on string taint analysis, and generates a summary of network requests by statically estimating the

possible values of network API arguments. To evaluate our technique, we applied our technique to

top 500 android apps from the official Google Play market, and the result shows that our approach

is able to summarize network behavior for most apps efficiently (averagely less than 50 second for

an app). Furthermore, we performed an empirical evaluation on 8 real-world maintenance tasks

extracted from bug reports of open-source Android projects on Github. The empirical evaluation

shows that our technique is effective in locating relevant network code.

3.1 Introduction

In this network era, most software access remote servers for various reasons, and mobile apps,

such as Android apps, often extensively use network due to the limited computation power of

mobile devices and requirements to access real-time data. For example, travel apps such as Orbitz1

and Expedia2 need to request availability information of hotel rooms and air tickets; messaging

1https://play.google.com/store/apps/details?id=com.orbitz
2https://play.google.com/store/apps/details?id=com.expedia.bookings
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apps such as SnapChat3 and FaceBook Messenger4 need to exchange text / multi-media messages

through network servers; even simple flashlight apps such as Tiny Flashlight5 collect user data

and send them to remote servers for usage-pattern study and advertisement. Actually, statistics

on Android permissions [80] show that, the network permission is the most popular permission

among Android apps, and about 80% Android apps request the network permission.

When Android apps evolve, the maintenance of network-related code is often an important

task in the maintenance process. First of all, due to various app features related to the network, a

substantial portion of code in Android apps is often about sending network requests and processing

network responses. Furthermore, as client-side code, Android application and server-side code

on the remote servers form a whole system. However, the two portions of code often do not

evolve simultaneously. It is common that Android app code and server-side code are maintained

by different development groups, especially when the server-side code is also responding to web

user interfaces. In many other cases, an Android app my use various third-party web services (e.g.,

Google and Facebook services for related features, Admob services for advertisement), and the

evolution of third-party services is usually out of the control of Android app developers. Client

developers often use mocking techniques [51] to keep some control on these dependencies during

development phase, but they finally need to adapt their code to accommodate changes in third party

services.

The maintenance of network related code in Android apps is often tedious and error-prone due

to two major reasons. First of all, since lots of software features in Android apps require interaction

with network, network-related code often scatters in different components, and thus it is difficult to

locate the code to be revised. Second, for better flexibility and re-usability of code, developers often

have to dynamically concatenate constant strings and user inputs to generate a network request.

The generation process often involves complicated string operations and invocations to network-

related APIs. In such a scenario, developers may not have an intuitive understanding of the network

3https://play.google.com/store/apps/details?id=com.snapchat.android
4https://play.google.com/store/apps/details?id=com.facebook.orca
5https://play.google.com/store/apps/details?id=com.devuni.flashlight
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requests generated by the code, as well as how their changes may affect network behaviors of the

app.

To sum up, maintenance of network code is an important task in the evolution of Android apps,

and developers can benefit a lot from techniques that can summarize network behaviors of android

apps as more intuitive models, and techniques that can provide traceability from intuitive models

to the code base. In this chapter, we propose a novel fully-automatic approach to generate such

models (we referred to them as traceable network summaries) for an Android app. In our approach,

the traceable network summary of an app describes all possible network requests with a sequence

of string constants extracted from the source code.

Examples of such summaries are presented at the end of Section 3.2. All the string constants

in the signatures have their code-location information attached with them so that it is easy to

trace from a string in the summary to the corresponding code location. The basic idea of our

approach is to statically analyzes the byte code of an android app, and to use string analysis to

estimate the possible contents of the requests sent to the network6. Our approach is based on

the observation that, the content of the sent network request are usually generated with one or

more request-generating API methods (which we refer to as network API methods in the rest of

this paper) by concatenating the arguments of these API methods. Therefore, we will be able

to estimate the content of network requests, if we are able to estimate the possible values of the

arguments of network APIs, and to model the network API methods on how they generate the

contents of network requests.

In particular, our approach consists of the following five steps. First, for a given android app,

we translate the Dalvik byte code in its apk file to Java byte code using dex2Jar [2], an off-the-

shelf tool. Second, we locate in the Java byte code all the invocations of the network API methods

that are in our pre-defined network API method list. It should be noted that this list is generated

manually only once and then used when generating network summaries for all android apps, and

for each network API method, we prepare an API grammar template which presents how the

6It should be noted that although the detailed design and implementation of our approach is for android apps, the
basic idea of our approach may be applicable to other mobile apps or even PC applications
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API manipulates its arguments to generate a network request. Third, we set each argument arg

of these located network-API-method invocations as the input of string taint analysis [74] and

perform the analysis on Java byte code to generate a string-operation grammar that estimates the

possible values of arg. Fourth, for each invocation of a network API method, we combine the

API method’s API grammar template with the string-operation grammars of all of its arguments,

to generate a combined grammar that is able to estimate the network-request content generated by

this network-API-method invocation. Fifth, we generate the network summary of an app as a set

of constant-string sequences, from combined grammars of all network-method-invocations in the

app.

In this chapter, we focus on the HTTP-based network requests, which is the most popular

network traffic sent by android apps. Previous statistics [80] show that, on 35,000 apps with

network access permission, more than 31,000 are using HTTP/HTTPS. Furthermore, more than

70% of these apps use only HTTP, and some of the apps that use HTTPS also use HTTP and

generates HTTP traffic. Therefore, when preparing the list of network API methods and grammar

templates, we only consider API methods that participate in the generation of the HTTP-request

contents. However, our approach is general and can be applied to other network protocols as long

as we can prepare the API-method lists and grammar templates for a network protocol.

To evaluate the applicability and efficiency of our approach, we implemented a prototype tool

called NetDroid, and applied the tool on top 500 android apps (requesting the network permis-

sion). Among these apps, NetDroid is able to generate signatures for 455 of them with an average

processing time of 49 seconds. Furthermore, to evaluate the effectiveness of the generated net-

work signatures, we collected 8 real-world maintenance tasks of network code from open source

Android projects in Github. NetDroid was able to generate signatures for all the involved projects,

and the generated signatures successfully located 11 of 14 code revision locations.

This paper makes the following main contributions.

• We identify and demonstrate the complexities in summarizing network behavior and main-

taining network-related code.
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• We propose a novel approach based on string analysis to statically generating tracable net-

work summaries for android apps.

• We implement our approach as NetDroid, an automatic prototype tool.

• We apply NetDroid on top 500 real-world android apps in the official Google Play Market

to evaluate its applicability and efficiency, and evaluated the quality of generated summaries

with 8 real-world maintenance tasks on network code.

The rest of this chapter is organized as below. Section 3.2 presents two real-world examples to

better explain the challenges and motivate our technical choice. Section 3.3 presents the overview

and details of our approach. Section 3.4 presents the evaluation of our approach. Then we discuss

some important issues in Section 3.5.

3.2 Example

In this section, we present two examples to better explain our problem and how our approach

works.

The first code sample is from HomeActivity.class of the app t4t.power.management, that man-

ages the power level of an Android phone, collects certain messages, and sends the content to the

server. To get the code shown below, we first convert the apk file to a Jar file using dex2jar tool,

and then decompiled the Jar file using JD7. The following code sample first concatenates the con-

stant strings “http://ggtrack.org/SM1c?device_id=”, “&adv_sub”, with the phone number get from

getPhoneNumber(), to generate a string URL. Then, the code initiates an HttpGet object with

the URL.

1 Object localObject7 = new java/lang/StringBuilder;

2 String str5 = "http://ggtrack.org/SM1c?device_id=";

3 ((StringBuilder)localObject7).<init>(str5);

4 str5 = getPhoneNumber();

5 localObject7 = ((StringBuilder)localObject7)

7http://java.decompiler.free.fr/. We do not decompile the Jar file but directly use the Java byte
code in our approach, we decompile the code here only for the ease of understanding.
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.append(str5);

6 str5 = "&adv_sub=";

7 localObject7 = ((StringBuilder)localObject7)

.append(str5);

8 str5 = getPhoneNumber();

9 localObject7 = ((StringBuilder)localObject7)

.append(str5);

10 localObject7 = ((StringBuilder)localObject7)

.toString();

11 localStringBuilder.<init>((String)localObject7);

12 HttpGet localHttpGet =

new org/apache/http/client/methods/HttpGet;

13 localObject7 = localStringBuilder.toString();

14 localObject1 = localHttpGet;

15 localObject2 = localObject7;

16 ((HttpGet)localObject1).<init>((String)localObject2);

The second code sample is from Y.class8 of the app Youtube. The function of the following

code is to generate a URI, which is later packaged and sent to the Internet.

...

1 Object localObject1 = new android/net/Uri$Builder;

2 ((Uri.Builder)localObject1).<init>();

3 String str1 = "http";

4 localObject1 = ((Uri.Builder)localObject1)

.scheme(str1);

5 str1 = "gdata.youtube.com";

6 localObject1 = ((Uri.Builder)localObject1)

.authority(str1);

7 str1 = "feeds";

9 localObject1 = ((Uri.Builder)localObject1)

.appendPath(str1);

10 str1 = "api";

11 localObject1 = ((Uri.Builder)localObject1)

.appendPath(str1);

12 localObject1 = ((Uri.Builder)localObject1).build();

13 b = (Uri)localObject1;

...

From the two code samples above, we have the following observations. First of all, developers
8The class name is renamed due to obfuscation in the standard Android build process.
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do manipulate strings in the code to generate the content of network requests. Second, the second

code sample shows that some of the packet generation APIs (e.g. Uri.Builder) can be more complex

than taking a method that takes a single string argument (e.g., ((HttpGet)g).<init>("...");).

In particular, when using such API methods to generate the content of network requests, an object

will take multiple string arguments in multiple method invocations, and generate the content by

concatenating the arguments. Based on the above observations, we choose to leverage string anal-

ysis as the basic technique in our approach. Furthermore, we propose techniques to handle various

complex request-generation APIs. For the above example, our approach is able to generate two

constant-string sequences (as a part of the summaries of the two apps) as below:

Sequence 1:

Host:ggtrack.org

START -> http://ggtrack.org/SM1c?device_id=

-> &adv_sub -> END

Sequence 2:

Host:gdata.youtube.com

START -> http:// -> gdata.youtube.com

-> /feeds -> /api -> END

3.3 Approach

The overview of our approach is presented in Figure 4.1. From the figure, we can see that

the input of our approach is an apk file and a prepared list of network API methods with their

grammar templates. The output of our approach is a network summary, which is in the form a

set of string constant sequences. As mentioned in introduction, the 5 major components of our

approach are Dex2Jar, network invocation handling, string taint analysis, grammar combination,

and summary generation. In this section, we will first introduce the representation of tracable

network summaries, and then describe in detail the design of last 4 components.
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3.3.1 Representation of Network Summaries

In our paper, a traceable network summary is represented as a set of constant string sequences.

Each constant string sequence has two reserved constants “START”, and “END” to be the begin-

ning and ending constants, and is in the form as below.

START → C1 → ...→ Ci → ...→ Cn → END (3.1)

It should be noted that, in our approach, we use such a sequence to present all network requests

that contains C1, ..., Ci, ... Cn in sequence. In other words, if the alphabet of characters in all

network requests is Σ, the sequence in Formula 1 represents all network requests in the form as

below.

Σ∗C1Σ
∗...Σ∗CiΣ

∗...Σ∗CnΣ∗ (3.2)

Compared with arbitrary automata used in existing string (taint) analyses [17] for value summa-

rization, the restricted form in Formula 1 has better readability for developers, because the former

often consists of hundreds of states and transitions (as illustrated in TransVis [74]), while the latter

is restricted by the number of constants defined in the program. Furthermore, the summary of

an app is the union of all sequences. Therefore, it is possible to map one or several sequences

to a certain restful API at the server side. For multiple sequences with common prefixes, it is

straightforward to combine them as a tree.

3.3.2 Handling Network-API-Method Invocations

In this subsection, we introduce how we handle network-API-method invocations. Our work

includes two parts. The first part is building a list of network API specifications that are able to

model the semantics of these APIs (i.e., modeling how they generate the network-packet contents

by concatenating their arguments). We use API grammar templates to specify the semantics of each

API. An API grammar template is a context-free grammar with parameters. The parameters repre-
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Figure 3.1: The overview of our approach

Table 3.1: Examples of Network API methods in Android system

API Type
android.net.Uri$Builder: android.net.Uri$Builder scheme combining

android.net.Uri$Builder: android.net.Uri$Builder authority combining
android.net.Uri$Builder: android.net.Uri$Builder appendPath combining

java.io.OutputStream: void write conditional
java.io.ObjectOutputStream: void writeObject conditional
java.io.ObjectOutputStream: void writeChars conditional
java.io.ObjectOutputStream: void writeUTF conditional

org.apache.http.client.methods.HttpGet: void <init> simple
org.apache.http.client.methods.HttpPost: void <init> simple
org.apache.http.client.methods.HttpPut: void <init> simple

org.apache.http.client.methods.HttpDelete: void <init> simple
org.apache.http.client.methods.BasicHttpRequest: void <init> simple

... ...

sent the parameters of the API, the start variable of the grammar template represents the generated

content of network request, and the productions in the template help to model the semantics of the

API method. For example, the API grammar template for the API method: "java.net.url(String

protocol, String host, String path)" is shown as below.

S0 -> S1 S2

S1 -> <protocol> "://"

S2 -> <host> <path>

The grammar shows that, in the generated URL, the value of hostwill appear before path, and

the constant string “://” will be added to format the request. When NetDroid locates a invocation
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of the API, it will replace “protocol”, “host” and “path” in the grammar with their corresponding

real arguments in the API invocation.

To generate the list of API grammar templates, we need to manually study the possible network

libraries in android system. Since we focus on HTTP requests in this chapter, we consider only

the network API methods that may generate HTTP requests. In the android system, there are three

sources of network API methods: Java network libraries, Apache network libraries, and android

network libraries. It should be noted that, for each android app, the android system requires all its

required third-party libraries to be packaged within the app. This design decision is made to help

separate apps at runtime into sandboxes for better system security. It also means that it is sufficient

for us to collect the network API methods in the android system. Because the byte code of all

third-party network libraries must be packaged within the apk, and can be directly analyzed.

Given the list of network API methods and their grammar templates, our network-API-method

handling component locates network API invocations, and binds arguments to parameters in the

grammar templates. For each network API method, we refer to the grammar template with binded

arguments as API grammar segments. When we locate an invocation of the API, such as URL u =

new URL("http", str1, str2), we will generate an API grammar segment for the invocation

as below. In the API grammar segment, the parameters are replaced with arguments, so that we

can later calculate the context-free grammar g1, and g2 for the arguments str1 and str2 with string

taint analysis, and combine the API grammar segment with g1 and g2. In the grammar segment,

we use <:str1> to represent an argument str1.

S0 -> S1 S2

S1 -> "http" "://"

S2 -> <:str1> <:str2>

The API grammar segment can handle simple network API methods that take all arguments

at one time. However, as we shown in Section 3.2, there are some more complicated network

API methods. We divide these API methods into two categories: combining network APIs, and

conditional network APIs. Combining network APIs are those network APIs that may generate
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a network packet by concatenating multiple arguments from multiple invocation sites. For exam-

ple, in the our second code sample in Section 3.2, the class Uri.builder can generate a URL

by sequentially invoke three methods: scheme(String str), authority(String str), and

appendPath(String str). Then a URI is generated based on the arguments of all the method

invocations. Conditional network APIs are usually general IO API methods, and whether their ar-

guments will be sent as the content of a network request depends on the code context. For example,

the method write(byte[] bytes) defined in the class java.io.OutputStream can be used

to send data to either network or the file system. Whether the method sends data to the network

or to the file system depends on whether the OutputStream belongs to a socket or a file. In our

work, we manually examined the API documentation9 of Android SDK, and identified the network

API methods based on whether at least one of their parameters are sent to the network. Table 3.1

lists some popular API-methods of each type, and we introduce as follows how we handle these

two types of complicated network API methods in Section 3.3.2, and Section 3.3.2, respectively.

Combining Network API Methods

Combining network API methods are typically a group of methods defined in a request-generating

class (e.g. Uri.builder). An instance (object) of the class, after initiated, will call methods in this

group for one or more times to acquire all the data to be put into a network request. Therefore,

to handle combining network API methods, we need to trace the life cycle of request generation

instances, and build an API grammar segment for the instance as a whole. Therefore, the API

grammar templates for combining network API methods need to consider the current state of the

request-generating object. We present the API grammar templates of the methods in Uri.builder as

below. In the template, the parameter <head> denotes the start variable of the current grammar,

and represents the current state of the packet-generating object. In the grammar, S[i] denotes a

new nonterminal that is different from all existing nonterminals.

<init>:

S0 -> ""

9https://developer.android.com/reference/packages.html
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Algorithm 1: Concatenation of Grammar Segments for Combining Network API meth-
ods

Require:
G is the inter-procedure control flow graph
M is a map from network-API-methods to grammar templates
start is an initialization statement of a network-request-generating instance

Ensure:
S is the concatenated grammar segment for start

1: worklist← ∅
2: worklist.enqueue(start)
3: while worklist 6= ∅ do
4: current = worklist.pop()
5: S ′ ← S ∪M.get(current)
6: if S ′! = S then
7: suc← G.successors(current)
8: worklist.enqueueAll(suc)
9: end if

10: end while

scheme(String scheme):

S1 -> <head> <scheme> "://"

authority(String authority):

S2 -> <head> <authority>

appendPath(String path):

S[i] -> <head> "/" <path>

Algorithm 1 shows the worklist-based algorithm we use to concatenate grammar segments of

combining Network API methods.

During the analysis, we first locate all initializations of the request-generating objects (e.g., the

invocation of Uri.builder.<init> at Line 2 of code sample 2 in Section 3.2). Then we use the

initialization statement as the starting node for our algorithm. We first generate an API grammar

segment for it according to the API grammar template. For example, we generate S0->"" for

Uri.builder.<init>. Then, we leverage standard context-sensitive inter-procedure data flow

analysis [57] to trace the generated object obj. Along the data flow, when obj invokes a combining

network API method (e.g., schema(String scheme)), we will merge the API grammar seg-

ment of the combining network API invocation with the current grammar segment of obj. As an

example, for the code sample 2 in Section 3.2, we will have the following API grammar segment.
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S0 -> ""

S1 -> S0 <:str1-3> "://"

S2 -> S1 <:str1-5>

S3 -> S2 "/" <:str1-7>

S4 -> S3 "/" <:str1-10>

When there are branches, there can be multiple start variables for obj because we will add start

variables (i.e., S[i]) along all paths. In this case, we will add a final start variable into the grammar

segment of obj that deduces all the current start variables of the grammars. Furthermore, we add a

new non-terminal for each method invocation at a different location, so a same non-terminal will

be added when a method invocation is analyzed for the second time, and the analysis will converge

with the existence of loops in the data flow. As an example, when our analysis goes through the

following code sample, it will add S0->"" to the grammar segment at Line 1, and add S1->S0

<:str1> to the grammar segment the first time it goes through Line 3. The second time it goes

through Line 3, S1->S1 <:str1> will be added, because S1 is the current <head>, and the new

non-terminal will still be S1. Apparently, the analysis will reach a fixed point the third time Line 3

is processed.

1 ((Uri.Builder)localObject1).<init>();

2 while(...)

3 localObject1 = ((Uri.Builder)localObject1)

.appendPath(str1);

4

Conditional Network API Methods

To handle conditional network API methods, we need to determine whether the object that

invokes a conditional network API method is under a network-related context (e.g., determine

whether an output stream belongs to a socket). The API grammar templates for such APIs are not

special, but we must correctly differentiate the network-API-method invocations that are under a

network-related context and the invocations that are not. NetDroid leverages data dependence

analysis on the objects that invokes conditional network APIs. Specifically, NetDroid checks
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whether the data flow of the object reaches any point in the byte code, where the object is re-

lated to another indication API (which indicates a network-related context). For example, when an

OutputStream object ob has data dependency with an invocation of the API java.net.Socket:

getOutputStream(), NetDroid will determine that all the conditional network API invocations

of ob are real network API invocations. In the network API handling step, NetDroid will consider

only the located real network API invocations, while ignore all other conditional network API

invocations.

3.3.3 Apply String Taint Analysis

The third component of NetDroid uses string taint analysis to estimate the possible values of

all the network arguments in the located network API invocations. String taint analysis [74] [69]

is able to estimate the possible values of a given string variable in the code, and trace values back

their origins in the code. By analyzing the data flow of string variables and string concatenations,

for a given string variable v, string taint analysis is able to generate a context-free grammar, whose

language represents the possible values of v, and whose code-location attributes on the terminals

record the origin of values.

After string taint analysis is applied, NetDroid is able to generate a context-free grammar

for each argument of each network-API-method invocation. As an example, for the argument

localObject2 in Line 16 of code sample 1, after this step, we can generate a grammar for it as

below. The language of this grammar actually represents the possible values of localObject2.

In the grammar, “<???>” denotes any string, because the phone number is read from the phone

storage, and string taint analysis is not able to estimate it.

S0 -> "http://ggtrack.org/SM1c?device_id="

S1 -> S0 <???>

S2 -> S1 "&adv_sub"

S3 -> S2 <???>
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3.3.4 Grammar Combination

The component of grammar combination, for each network API invocation inv, combines

the API grammar summary of inv with the grammar of each argument of inv. This process is

straightforward. We just replace the arguments in the API grammar summary of inv with the start

variables of the grammar of each argument. For example, in the code sample 2, we can combine

the API grammar segment shown in Section 3.3.2 with four simple grammars generated by string

taint analysis, and get the combined grammar as below.

S0 -> ""

S1 -> S0 S1-3 "://"

S2 -> S1 S1-5

S3 -> S2 "/" S1-7

S4 -> S3 "/" S1-10

S1-3 -> "http"

S1-5 -> "gdata.youtube.com"

S1-7 -> "feeds"

S1-10 -> "api"

3.3.5 Extracting Tracable Network Summaries

Finally, we need to extract the network summaries from a set of combined grammars generated

from the grammar combination component. To generate signatures of constant string sequences,

we enumerate all the limited deduction trees of the grammar (i.e., we deduce only once for re-

cursive nonterminals). Therefore, for each deduction tree, we generate a sequence of constant

strings by ignoring the terminals which are not constant strings (i.e., “<???>”). It should be noted

that, according to our definition in Section 3.3.1, ignoring non-constant strings and deducing only

once for recursive nonterminals actually generates a conservative approximation of the original

grammar.

Using the approach above, we can generate a set of constant-string sequences from each com-

bined grammar. Then, we merge all these sets, and compare all these constant-string sequences

to remove all the duplicate constant-string sequences. If we can find common prefixes (e.g., host

names), we merge all the constant-string sequences with a common prefix as a tree for better pre-
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Figure 3.2: An example of tree-based network summary for Flister

sentation. Figure 3.2 shows part of a prefix tree summary generated from Flister app. This part of

the summary shows that the app is accessing 3 domains, and for each domain, the summary pro-

vides the paths and parameter templates used. Thus if the parameter names or paths are changed,

it would be easy for Flister developers to find what needs to be changed.

3.3.6 Trace from Summaries to Code

After a summary is generated, since all the string constants involved in the summary have their

code location recorded, it is straightforward to trace from the constant strings in the summary to

code locations. When the network request format needs to be changed due to server-side code

changes or API changes, developers can simply trace from the string constants in the affected

string-constant sequences.

3.4 Evaluation

To evaluate our approach, we implemented our approach as a prototype called NetDroid10 base

on the Soot framework [68], and carried out an experiment on the real-world apps from android

market.
10Available at http://xywang.100871.net/netdroid
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Table 3.2: Basic information of maintenance tasks

Task Project Issue No. Description KLOC API # code changes
1 spring-social 178 parameter deleted 35 FaceBook API 2
2 restfb 201 change name of a parameter 66 FaceBook API 1
3 Wizcorp 1051 change parameter value format 122 Twitter API 1
4 android-simple-facebook 197 change method name 13 FaceBook API 1
5 socialauth 249 parameter deleted 7 Twitter API 1
6 Jasig 886 parameter becomes required ... 69 Github API 2
7 caskdata 3356 id field deprecated 23 CDAP API 1
8 dotCMS 386 method name change 13 CMS API 5

3.4.1 Research Questions

To evaluate the effectiveness of our approach, we first need to study whether our approach is

applicable and efficient on real-world apps. Then we need to evaluate the quality of the summaries

generated by our approach. Specifically, we should evaluate the quality of the generated summaries

in real-world maintenance tasks of network code. Therefore, we try to answer the following three

research questions.

• RQ1: Is our approach robust and efficient enough to handle most Android projects?

• RQ2: Is our approach able to generate meaningful network summaries?

• RQ3: How effective our generated network summaries are in helping developers doing real-

world network-code related maintenance tasks?

3.4.2 Applicability

To answer the first research question, we applied our prototype NetDroid on 500 android apps

from the Google Play Market. The 500 apps are top ranked in Google market and request network

access permission. We refer to this set of android apps as Top-500-Set below. The size of apk files

in Top-500-Set ranges from 30KB to 120.6MB, and the total size of the 500 apk files is 5.7GB.

We also report the size of the Jar file translated from the apk file, because the apk file usually

contains not only code, but also supporting files such as figures or even video snippets. Therefore,
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the sizes of apk files may not be precise indications of the scalability of our approach. In contrast,

the generated Jar File is more precise because it contains only Java byte code. The size of the

translated jar files ranges from 7kB to 8.9MB, and the total size is 346MB.

NetDroid is able to successfully process 455 android apps, which takes a proportion of 91.0%

of all the 500 android apps. For all the 45 apps, the reason why NetDroid can not process them is

failure in the translation from apk files to jar files with Dex2Jar, or the loading phase of Soot (due

to errors in the translated Java byte code). We further investigate the Java byte code of these classes

and found that some Java byte code fails to pass the type check of Soot. Such failures are due to

the imprecision in the process of translating Dalvik byte code to Java byte code. Actually, since

our tool is designed for developers, such failures may not happen in reality, because developers

can choose to compile their project to Java byte code and directly apply NetDroid on it without

translation. We integrate the translation from apk files to Jar files in our tool because developers do

not have to change their building configuration, and we are able to evaluate our tool on top android

apps which we do not have source code for.

Among the 455 apps that NetDroid can successfully process, NetDroid generates an invalid

summary for 33 of the apps. A summary is invalid if it does not have any constant string sequence,

or all of its constant string sequences are empty. The reason for invalid network summaries is that,

the value of the network arguments in the located network API invocations come from android

system library so that they are estimated as any string by string taint analysis, and therefore an

invalid summary will be generated. It may be helpful to build an android system model and further

trace to the constant strings in the android system. However, if the values of network arguments

eventually come from user input, it maybe impossible to generate precise network summaries for

those parts statically.

To sum up, NetDroid is able to successfully generate valid network summaries for 422 apps

from the Top-500-Set, which makes a proportion of 84.4%. Furthermore, the failing reasons of the

88 apps show that our approach has the potential to perform better in reality when source code is

available.

26



3.4.3 Supporting Maintenance Tasks

Although we can use the top apps downloaded from the official Google Play Market to evaluate

the efficiency and robustness of NetDroid, we can evaluate the helpfulness of the generated sum-

maries only with open source Android projects, because the latter have public available version

history for us to collect real-world maintenance tasks.

To perform our study, we first collected 8 real-world maintenance tasks related to network

code. It should be noted that, although maintenance of network code is common, it is difficult to

identify such tasks for two reasons. First of all, a lot of network code maintenance tasks are not

bug fixes, because when the developers know about the changes on server-side code or third-party

web services, they may direct change the code so that the error is not released to public available

versions. However, Github does not allow search on code commit messages, so it is not possible

for us to search for network-code-related code commits directly. By contrast, we have to search

in the bug reports (Github allows searching of bug reports) to find network-code-related bug fixes.

Second, network-related code is often used in various features so the bug reports related to network

code may be of various forms, and it is difficult to find them with specific keywords. During our

searching, we found that the API change of third-party web services is one common reason of

network-code related maintenance, so we search Github bug reports with names of popular third-

party web services such as Twitter, Facebook, and Google.

The collected tasks are presented in Table 3.2. In the table, columns 1-7 present the task ID,

the project where the bug report is from, the bug report number, a description of the change on the

RESTful API, the size of the source code base, the relevant RESTful API, and the code change

locations in the code version history. We use the code revision locations in the version history as

the ground truth of our empirical study.

The result of our study is presented in Table 3.3. Columns 1-9 present the task id, number of

code locations reported by the summary, number of code locations actually revised, the number of

true positives, false negatives, false positives, precision, recall, and F score. From the results, we

have the following observations.
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First of all, our approach is able to generate summaries for all the 8 apps involved in the

maintenance tasks. Second, by tracing from the summaries to code, our technique is able to cover

11 of 14 revised code locations, with 47 false positive code locations in total. This indicates that,

when a server restful API is changed, the developers need to examine about 5 code locations to

find the actual code location to be changed, which is very reasonable in a debugging process.

It should be noted that, when tracing from constant strings in our summaries back to the code,

developers may actually not revise the string constant itself, but perform the change at a specific

point on the data flow from the string constant to the network packet. Therefore, NetDroid provides

all code locations along the data flow path from the code location of the string constant to the

network request generation APIs. Such a strategy will cause some false positives, but it will largely

reduce the number of false negatives. Furthermore, since the reported code locations are still few

and along the same data flow, they should not cause big burden on the developers to identify the

correct location to perform the change.

We further studied the reason of false positives and false negatives generated by our approach

and describe them as follows.

False Positives. Our approach generates 47 false positives in total. Among these false posi-

tives, 40 are along the data flow path from the string constant to the network API. As we mentioned

above, these false positives are not very harmful because they help developers to understand how

the network request is generated and decide where to change the code. The rest 7 false positives

are due the imprecision of our analysis. Since our analysis uses approximation when analyzing

string operations, it may mistakenly involve irrelevant string constants to the network summary.

False Negatives. Our approach generates only 3 false negatives. 1 of the false negatives in

task 8 is due to the usage of reflection to perform network method calls, which we cannot handle

for now. The rest 2 false negatives are due to the concatenation of user input. Our analysis reports

only code locations between the code location of the affected string constants and the network API.

Therefore, user input is traced only after they are concatenated with string constants. In the two

false negatives, the two revised code locations are simply on the code processing just user input,
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Table 3.3: Code Location for Maintenance Tasks

Task Located Changed TP FN FP P(%) R(%) F(%)
1 13 2 2 0 11 15.4 100 26.7
2 5 1 1 0 4 20 100 33.3
3 7 1 1 0 6 14.2 100 24.9
4 2 1 1 0 1 50 100 66.7
5 1 1 1 0 0 100 100 100
6 21 2 1 1 20 4.8 50 8.8
7 3 1 1 0 2 33.3 100 50.0
8 6 5 3 2 3 33.3 40 36.3

so our approach was not able to locate them.

3.4.4 Threats to Validity

The main threats to the construct validity is that, in our empirical evaluation on software main-

tenance tasks, our assumption of developers’ knowledge may be different the developers’ actual

knowledge. To reduce this threat, we assume developers know only the name of changed parame-

ters / methods in the Restful API, and we then search the network summaries and trace back to the

code based on only that name. Therefore, the usage scenario of NetDroid in our empirical should

not be easier than the actual scenario. The main threats to the internal validity is that, the reported

evaluation results may be only applicable to the apps used in our evaluation. We use keywords of

popular web services such as Facebook and Twitter to more effectively find network-code-related

bug fixes. We note that these keywords may cause our results biased to maintenance tasks involv-

ing third-party web services, but we believe that such maintenance tasks are common and they

are not significantly different from the network-related code maintenance tasks that do not involve

third-party web services. To reduce this threat, we use a large set of top apps to generate net-

work summaries. Furthermore, we choose apps from different domains in the study on software

maintenance tasks, so that it is more likely that our results are also applicable to other apps.
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3.5 Discussion

3.5.1 Limitations

Our current approach to generate network summaries has the following major limitations.

First of all, our approach is based on the network-related API methods presented in Table 3.1.

Therefore, our approach cannot handle the cases where a different set of network APIs are used.

This limitation can be overcome by extending our API set.

Second, since our approach is based on static analysis of Java code, it cannot handle the An-

droid apps that send out network request with native code. Additionally, it cannot handle dynamic

code features such as runtime code loading and reflection, as shown in our evaluation.

Third, our approach focuses on the generation of network requests. However, there are another

portion of code that parses network responses and process the data. Such code are also network

related and may evolve frequently due to evolution of server-side code or third-party web services.

Our current approach is not able to support maintenance of such code.

3.5.2 Dynamic Approaches to Network Behavior Summarization

From our evaluation, we can see that, our static approach is able to automatically generate

network summaries for most of the apps, and it is able to cover the whole code base of the app,

so it is able to find some network behaviors that are very difficult to be revealed dynamically.

However, the static approach may be not precise enough in some apps, may generate lots of false

positives, some invalid summaries, and cannot handle dynamically loaded code. Therefore, dy-

namic approach to network behavior summarization may well complement our approach. With

proper testing of the Android apps, network traffic collection, as well as tainting of data sent to the

network, dynamically generated traceable network summaries may resolve some limitations of our

approach.

30



Chapter 4: RECOMMENDING UPDATES OF DOCKERFILES VIA

SOFTWARE ENVIRONMENT ANALYSIS

Dockerfiles are configuration files of docker images which package all dependencies of a soft-

ware to enable convenient software deployment and porting. In other words, dockerfiles list all

environment assumptions of a software application’s build and / or execution, so they need to be

frequently updated when the environment assumptions change during fast software evolution. In

this chapter, we propose RUDSEA, a novel approach to recommend updates of dockerfiles to de-

velopers based on analyzing changes on software environment assumptions and their impacts. Our

evaluation on 1,199 real-world instruction updates shows that RUDSEA can recommend correct

update locations for 78.5% of the updates, and correct code changes for 44.1% of the updates.

4.1 Introduction

Modern software often depends on a large variety of environment dependencies to be properly

deployed and operated on production machines. Databases, application servers, system tools, third-

party libraries, and supporting files often need to be well installed and configured before software

execution, and thus may cause tremendous effort and high risks during software deployment. This

is not one-time but continuous cost due to the fast software evolution and delivery nowadays.

A practical approach to alleviate this effort is to use container images. A container image is a

stand-alone and executable package of a piece of software with all its environment dependencies,

including code, runtime, system tools, libraries, file structures, settings, etc. It can be easily ported

and deployed to other machines, but is much lighter-weight than traditional virtual machines which

can achieve similar goals.

Despite the large benefit brought by container images during software deployment, they also

increase the effort of software developers because they need to generate and maintain the image

configuration files which describe how the container images can be constructed with all environ-

ment dependencies, such as what tools and libraries should be installed and how the file structure
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should be set up. A recently study [21] on Dockerfiles by Cito et al. shows that in top projects

a docker file is averagely revised 5.8 times each year (note that there can be multiple dockerfiles

in one project, and the average and maximum number of dockerfiles per project in our dataset is

4.9 and 41). Such a task can be tedious and error prone because (1) modern software typically

relies on many environment dependencies, and due to fast evolution of software requirements and

underlying frameworks, such dependencies also need to be changed very frequently; (2) some

environment changes (e.g., automatic system updates, environment changes during installation of

irrelevant software) can happen without any developer actions so developers may even not be aware

about them; (3) developers can easily neglect environment dependencies of their software when

they set up or change them because the changes are made in the operating system instead of the

software itself; and (4) many environment dependencies (e.g., system tools, supporting files) can-

not be checked during software compilation but only used at runtime, so they can be easily missed

during compilation and testing (which is hardly thorough). Once an incomplete or erroneous im-

age configuration file is being used, the container image will also be incomplete or contains errors,

which may cause failures in production machines.

In this chapter, we propose a novel technique, RUDSEA, to help developer update container

image configuration files more easily and with more confidence on their correctness. Specifically,

based on an existing image container file, RUDSEA first tracks the accesses to the system en-

vironment from software source code and build configuration files. Such accesses are extracted

as environment-related code scope. Then, for each code commit, RUDSEA traces its impact on

environment-related code scope and automatically determines whether certain items in the image

configuration file should be updated accordingly. Based on the type of code impact and configura-

tion items, RUDSEA further recommends the actual updates that should be made on the items. We

implement our technique for Docker1, which is currently the dominating framework in container

images for both software industry and open source community, and the image configuration files

for docker are called dockerfiles. Note that, although the implementation and evaluation of this

1https://www.docker.com/
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Figure 4.1: RUDSEA Overview

research focus on docker images and dockerfiles, the general approach is applicable to any Open

Container Initiative (OCI) compliant container image.

To evaluate RUDSEA, we carried out an experiment on a dataset of 375 dockerfiles in 40 soft-

ware projects collected from GitHub. Our evaluation shows that RUDSEA correctly recommends

update locations for 941 of 1,199 instruction updates in dockerfiles, with a precision of 49.8%.

Furthermore, RUDSEA is able to correctly recommend the actual revision for 529 of the 1,199

dockerfile updates. To sum up, this paper makes the following contributions.

• RUDSEA, a novel technique on automatically recommending update locations and contents

for dockerfiles during software evolution.

• A dataset of dockerfiles and their corresponding historical versions as benchmarks for future

research on this topic.

• An empirical evaluation of RUDSEA’s effectiveness on real world dockerfiles.

The rest of this chapter is organized as follows. First, we will introduce some background

knowledge about dockerfiles in section 4.2. Then, we describe our approach and detailed tech-

niques in section 4.3. Finally, we present our evaluation results in section 4.4.

4.2 Background

In this section, we will introduce some background knowledge about dockerfiles. A dockerfile

typically consists of three parts. The first part (From) specifies an existing container image that the
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configured image is based upon. Some examples of existing images may include a clean Ubuntu

system of a certain version, or a publicly available image prepared with Java, Android SDK and

databases. The second part (Parser Directives) describes rules such as escape characters on parsing

the rest of the dockerfile, and is optional. The third part (Environment Replacements) is the main

part of the dockerfile, and describes how the image should be constructed with a sequence of

instructions. The major types of instructions are listed below.

• RUN & WORKDIR: executing a system command or executable within the working directory

specified by WORKDIR.

• CMD & ENTRYPOINT: setting the default command (CMD) to be executed and argu-

ments(ENTRYPOINT) to be use when executing the container image.

• LABEL: Setting environment variables in the container image.

• EXPOSE: exposing a network port in the container image.

• ENV: defining a variable to be used in the rest of the dockerfile.

• ADD / COPY: add a new directory / file in the file system of the container image, and copy

directories / files from hosting system to the image.

From the list, we can see that three types of instructions will be updated frequently during soft-

ware evolution, which are RUN instructions (updating versions of tools / libraries to be installed),

Label instructions (updating environment variables), and Add / COPY instructions (changing de-

fault file structures). By contrast, other instructions are either typically stable (e.g., EXPOSE, CMD

& ENTRYPOINT) or used only in the dockerfile itself (e.g., ENV). Therefore, our paper focuses

on the updates of RUN, LABEL, and ADD / COPY instructions.

4.3 Approach

As shown in Figure 4.1, our approach consists of two major components. The first component

extracts software code that is related to the items in dockerfiles. Here the software code base
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includes source files, build configuration files, and property files. The core part of this component

is value dependency analysis, and we apply it to both old and new versions to acquire the results

for both versions. The second component receives the analysis results of two code versions and

generates the actual updates. It leverages change impact analysis to determine whether the code

change may affect the environment-related code, and equivalence analysis to check whether new

code is added as the equivalent part of known environment-related code.

4.3.1 Extracting Environment-related Code Scope

The major challenge of extracting environment-related code is the complicated interface be-

tween software and its environment. While software libraries and their versions are typically listed

in build configuration files (e.g., makefile for GNU Make, pom.xml for Maven, build.gradle

for Gradle), references to file paths and environment variables are often scattered in source code,

build configuration files, property files, etc. A thorough definition of all possible environment

interfaces requires huge manual effort, and the definition can easily be out-of-date due to quick

evolution of the underlying development frameworks, build configuration tools, and their various

plug-ins.

To overcome this challenge, RUDSEA uses a different solution. Our intuition is that, all the

environment related code, no matter how they interface with environment, must refer to the values

in the items of dockerfiles. Note that here we assume that the original version of the dockerfile is a

correct one. Simply put, we can search for the values from dockerfile items in the constant string

values in various source files, since such values must be used when software interfaces with the

environment.

However, a simple keyword search does not work, because developers frequently use string

concatenations and value assignments to generate runtime values from the string constants. For

example, the dockerfile may refer to a file path /home/project-name/foo/bar, while in the

source code, the file path may be a string concatenation expression such as "/home/" + project

+ "/" + module + "/bar/", where project and module are variables for flexibility of chang-
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ing sub-projects and modules. In such cases, the original values will not be detectable with simple

keyword search, but string concatenations and assignments need to be considered. In our initial

implementation of RUDSEA, we consider only string concatenations, as we find that other string

operations are rarely used in generating library names, file paths, and environment variable values.

Therefore, RUDSEA uses a two-stage approach, which first locates the initial string constants

which are long enough substrings of a dockerfile item. Then, RUDSEA performs value dependency

analysis to compute additional values through manipulating these initial string constants. As our

analysis is light weight, we need only a parser and known string concatenation functions (which are

typically only several, and very similar among all programming languages) for each programming

language used in the software project.

Locating Initial String Constants

The first step of locating initial string constants is to extract dockerfile item values from dock-

erfiles. To achieve this, we use a dockerfile parser to extract all argument values of RUN, Label,

and Add / COPY instructions. Since RUN instructions often take Linux utility commands (e.g.,

mkdir, apk-get install) as their parameters, and such commands are not necessarily referred in the

software code base, we filter out all such commands from dockerfile item values.

After collecting the list of dockerfile item values, RUDSEA extracts all string constants from

the software code base, and verifies whether their length is over 3 and is a substring of any docker-

file item values. If so, the string constant is added to the set of initial string constants. In particular,

given a string constant str, and a set of dockerfile item values D, Formula 1 presents a boolean

function env which checks whether str is an initial string constant. In the rest of the paper, the set

of initial string constant is denoted as Init.

env(str) = len(str) ≥ 3 ∧ ∃d ∈ D, d.contains(str) (4.1)

In the formula, we use len(x) to represent the length of string x, and x.contains(y) to represent

string y is a substring of x. We will use this check function also in our value dependency analysis
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to make the abstract domain bounded. Based on the initial string constants, RUDSEA performs

value dependency analysis which checks how string constants are combined with each other to

form more values, and tracks the string manipulation process.

Value Dependency Analysis

The value dependency analysis in RUDSEA is a static analysis on string concatenations and

assignments within the software code base. Value dependency analysis uses an abstract domain

< Γ, T >. Γ is a set of mappings from the set of string variables V in the software code base, to

sets of string values generated from the set of string constants (S) in the code base. Specifically, Γ

is defined in formula 2.

Γ = {var → L|var ∈ V ∧ L ⊂ S∗} (4.2)

For each value in L, we also track the locations of string constants that form each value in T ,

so basically T is a mapping from a string value in L to a set of program points.

Why RUDSEA does not use automatons to represent string values? In our value dependency

analysis, to track string concatenations and assignments, we use a string set domain instead of an

automaton as in string taint analysis [73] for two reasons as follows. First, string taint analysis

(and also the original string analysis [18]) uses the Mohri-Nederhof algorithm to handle strongly

connected components in string dependencies, and generates an approximate automaton, which is

a slow process and typically results in over-approximation and affect analysis accuracy. Second,

in string taint analysis, the tracing from original string constants to the final string values is at

character level, which makes it difficult to propagate updates from original string constants to the

final string values.

Despite the accuracy, efficiency, and straightforward tracing provided by the string value set

domain, its major drawback (and why it cannot be used in general string analysis) is that it is not

bounded. When a string variable is written within an unbounded loop or recursive method, the

possible values of the variable can be infinite.
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In the specific application scenario of RUDSEA, we find that this problem can be solved. Our

idea is to use the env function to bound the string value set in our domain. The intuition is that,

if a possible value of a string variable does not satisfy env function, it will not be a reference to

dockerfile item values, and thus can be discarded. Therefore, given that dockerfile item values are

finite, all string values in our abstract domain will be perfectly bounded (without any accuracy loss

regarding reference to dockerfiles) by the dockerfile item values through env function. In particu-

lar, the transfer functions of value dependency analysis on string initialization, string assignments,

and string concatenations are defined in

Once value dependency analysis converges at a fixed point, we can tell for each variable, what

are its possible values (satisfying env functions) and the original string constants and string con-

catenations used in forming each value. If a string variable var contains a value val that is identical

with any dockerfile item value, we will consider var and all the statements used in forming val

as in the environment-related code scope. Specifically, we denote all the dockerfile item values

generated from software code base with value dependency analysis as Gen, and Gen is formally

defined in Formula 3. Recall that D is the set of all dockerfile item values extracted from the

dockerfiles.

Gen =
⋃

var∈V

Γ(var) ∩D (4.3)

Then the environment-related code scope can be formally defined as in Formula 4. Recall that

T is a part of our abstraction domain which maps any string value in Γ to program points involved

in generating the value. Gen and T will be further used in our Dockerfile change generation stage.

Scope =
⋃

val∈Gen

T (val) (4.4)

4.3.2 Dockerfile Change Generation

Given a new software version, RUDSEA’s dockerfile change analysis tries to find out what

updates on the code will affect items in dockerfiles. Note that RUDSEA does not take single code

commit as its input, because dockerfiles are often not updated until a new release so there may be
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many code commits in between. Environment change analysis include the change impact analysis

which examines whether known environment-related code scope will be affected by the changes,

and the equivalence analysis which examines whether a new environment-related code scope is

added.

Change Impact Analysis

In the change impact analysis, RUDSEA will perform value dependency analysis on the new

version of the software, and map the analysis results (string constants and statements involving

string concatenations / assignments) with that from the original version with a file difference tool.

In the rest of this section, we denote Gen, T , and Scope generated from the value dependency

analysis on the original version as Genold, Told, and Scopeold, while the corresponding results on

the new version as Gennew, Tnew, and Scopenew. We further define the set of variables that has at

least one possible value in Gen as Gvar. We refer to such variables as docker variables. Similarly,

we have Gvarold and Gvarnew. Note that Gvar is formally defined in Formula 5.

Gvar = {var|var ∈ V ∧ Γ(var) ∩Gen 6= ∅} (4.5)

The intuitive assumption behind our change impact analysis is as follows. If a variable var has

a dockerfile item value in its possible value set Γ(var) (i.e., var is a docker variable), it is likely

to be used for environment interfacing. Therefore, if it holds a different set of values in the new

version, the new set of values are likely to be also used for environment interfacing and should

be added to the dockerfile. Furthermore, if a docker variable is deleted in the new version, the

corresponding dockerfile item value may also need to be deleted if no other docker variables hold

the same value in the new version.

As an example, consider a variable var having a possible value "/home/foo/bar" in the old

version, and the value is a dockerfile item value. In the new version, if the same variable has a

possible value "/home/foo/bar2", then it is likely that we should add "/home/foo/bar2" to

dockerfiles. In particular, if "/home/foo/
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bar" is no longer in Γnew(var), we should replace "/home/foo/

bar" with "/home/foo/bar2". If "/home/foo/bar" is still in Γnew(var), we should in-

sert a new instruction that performs exact the same operation on "/home/foo/bar2" as on

"/home/foo/bar". If the variable var is deleted in the new version, and no other docker vari-

ables has "/home/foo/bar" in its possible values, the value should be deleted from the docker-

file.

A complication in this process is when a old docker variable (var in Gvarold) holds multiple

values in Genold, or hold other values that are not in Genold. In such cases, when the possible

values of var contains some new value in the new version, it is hard to tell which old value this

new value is replacing or complementing. Our solution is to compare their forming process stored

in T . Given a new value newv in Γnew(var), we compare Tnew(newv) with each of the old values

oldv in Γold(var), and map this new value to an old value oldv whose forming process Told(oldv)

is most similar to Tnew(newv). Specifically, we measure similarity by the size common program

points between Told(oldv) and Tnew(newv).

Equivalence Analysis

While change impact analysis is able to recommend dockerfile updates related to existing dock-

erfile item values. There are also other cases where a new environment dependency is added.

RUDSEA needs to also detect those cases and find out where the insertions need to be made.

To solve this issue, we develop equivalence analysis which checks which two program points

have similar usage in the program. They are considered equivalent program points. In our analysis,

we consider similar code inside one basic block or in different alternative blocks (i.e., basic blocks

within the same level in a conditional statement). Examples of alternative blocks are if and else

blocks within one conditional statement, or case blocks within one switch statement.

The intuition behind equivalence analysis is that if a writing statement to a string variable

equiv is inserted as a equivalent program point of a writing statement s which writes to a docker

variable var with dockerfile item value val, the inserted writing statement will be considered as
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a new docker variable, and its possible values will be recommended for insertion into dockerfiles.

For each possible value of equiv, RUDSEA recommends an insertion of a new instruction that

performs exact the same operation on equiv as on val.

4.3.3 Implementation

We implemented the value dependency analysis of RUDSEA for Java, PHP, and Gradle. To

support Maven, simple property files, and XML property files, we further convert all dependencies

and property definition in such files as string constant assignments (i.e., assignment of property

value to property name, and dependency values to a special variable “dependency”), thus they can

be handled by the dockerfile-update generation component of RUDSEA.

4.4 Evaluation

To evaluate the effectiveness of RUDSEA, we carried out an experiment on a set of software

projects with dockerfiles, and used their version histories as ground truth to check how accurate

RUDSEA’s recommendation is. Specifically, we try to answer the following two research ques-

tions.

• RQ1: How effective is RUDSEA on recommending update locations in Dockerfiles?

• RQ2: How effective is RUDSEA on recommending updates in Dockerfiles?

• RQ3: What are the major reasons causing RUDSEA to fail on recommending correct up-

dates?

In the rest of this section, we introduce the dataset construction, evaluation metrics, evaluation

results, and threats to validity in the following four subsections, respectively.
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4.4.1 Dataset of Dockerfiles

We collected a set of Docker-using open source projects in Github2. In particular, we searched

through top Java and PHP projects by number of stars and check whether the project contains dock-

erfiles. If so, we added the project into our dataset. We stopped after we collected 20 PHP projects

and 20 Java projects. Then, we checked the history of the dockerfiles in these projects. In some

projects, dockerfiles have their own repository, so we gathered the dockerfiles from there. In some

other projects, dockerfiles are attached with each release (so they do not have a version history),

we collected all dockerfiles from all releases so that they form a version history. From the version

history of dockerfiles, we used diff to generate ground truth updates of dockerfiles. We further

removed all internal updates of dockerfiles (e.g., updates of comments, refactorings). Finally, we

acquired a dataset of 375 external updates of dockerfiles, each of which can be ascribed to one or

more updates in the source code and / or build configuration files. In our evaluation, we use the up-

dates in the source code and / or build configuration files as input, and the corresponding dockerfile

updates as output. It should be noted that each update may involve multiple instruction updates. In

total, the dockerfile updates include 1,199 instruction insertions, revisions, and deletions.

One question should be studied is how large the dockerfiles are, so that we can see how difficult

the update localization is. To answer this question, we further performed an empirical study on

our dataset. In the 40 Java and PHP projects, there are 197 dockerfiles in total. The number of

dockerfiles in a single project ranges from 1 to 41, and the average number is 4.9. The number of

valid lines (excluding blank and comment lines) in dockerfiles varies from 1 to 64 lines, and the

average is 28 lines. Since there are often multiple docker files in one project, the average number

of dockerfile lines in a project is 137 lines, and the number of lines ranges from 12 lines to 622

lines. Although dockerfiles are relatively smaller than source code, they are condense formatted

(i.e., there are often multiple commands to be executed in one line), and their dependency on the

code is latent. So the localization of updates is still a difficult problem.

2The dataset is available at https://sites.google.com/site/rudseaproject/
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Table 4.1: Effectiveness of RUDSEA on recommending update locations
Project # of Actual Inst. Updates P (%) R (%) F (%)
PHP 720 53.9 79.7 64.3
Java 479 44.5 76.6 56.3
All 1,199 49.8 78.5 60.9

4.4.2 Metrics

In our experiment, we use the traditional metrics of precision, recall, and F-score to measure

the effectiveness of techniques. We consider a recommended location to be correct, if the recom-

mended instruction to be updated is revised, deleted, or have another instruction inserted before of

after it in the real version history.

For a recommended update to be correct, we require the recommendation has the same type

(insertion, update, or deletion), same instruction type, and argument value. Here we consider

equivalent updates as also correct. For example, recommending a same insertion at a different

location from the real insertion is also considered correct as long as the location difference does

not cause difference in semantics.

4.4.3 Evaluation Results

To answer RQ1, we present our evaluation results in Table 4.1. In the table, we present the type

of projects, the number of actual instruction updates, precision, recall, and F-score in Columns 1-

5, respectively. From the table we can see that RUDSEA is able to achieve high recall (averagely

78.5%) and acceptable precision (averagely 49.8%) in recommending update locations. Note that,

since averagely less than four updates are performed in each commit, achieving a precision at

around 50% means that developers need to inspect averagely eight locations, and finding four of

them correct.

To answer RQ2, we present the results in Table 4.2 with the same format. From the table we

can see that RUDSEA can achieve an average recall of 44.1% on recommending direct updates.

This means that RUDSEA can recommend exactly correct updates for 529 of 1,199 instruction

updates, which may save a large amount of effort of developers. Compared with the recall on
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Table 4.2: Effectiveness of RUDSEA on recommending updates
Project # of Actual Inst. Updates P (%) R (%) F (%)
PHP 720 28.7 42.6 34.3
Java 479 27.0 46.3 34.1
All 1,199 28.0 44.1 34.3

location recommendation, we can see that for the updates RUDSEA successfully recommends

locations, about 56% (529) are exactly correct updates. To answer RQ3, we studied the remaining

412 incorrect updates and find the errors mainly fall into three categories.

First, RUDSEA may insert an instruction at a wrong location. For simplicity, when RUDSEA

finds that a docker variable has a new value which can be mapped to a dockerfile item value v in

change impact analysis or equivalence analysis, RUDSEA always insert an extra instruction after

the instruction handling v. Since instructions in dockerfiles are executed in sequence, such an

insertion location may be wrong, especially when v is handled in a long instruction concatenated

with “&&”. This category accounts for 207 incorrect updates and we believe that most of them

can be resolved by more fine-grained rules on dockerfile insertions.

Second, although RUDSEA correctly recommends an insertion, the inserted argument may not

be correct. Developers sometimes add extra parameters to the RUN instructions they added, but

RUDSEA is not able to recommend such parameters as it does not understand their semantics.

This category accounts for 90 incorrect updates.

Third, when a docker variable cannot be mapped to a variable in the new version, RUDSEA

simply deletes dockerfile item values in its possible value set from dockerfile. Some complicated

version updates of the software cause difficulties in finding correct mapping of variables between

versions and thus RUDSEA may delete a value that should be revised. This category accounts for

65 incorrect updates and we believe that they can be partly resolved by using more precise version

diff tools.

4.4.4 Threats to Validity

The major threat to the internal validity of our evaluation is whether the ground truth updates

we used in our experiment are all correct. Although we use real-world updates, developers may
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make erroneous updates or miss some updates, which may cause inaccuracy in our results. Also,

the implementation of RUDSEA may be not perfect and involve bugs. The major threat to the

external validity is that our evaluation results apply to only the subject projects and updates, or

only Java / PHP projects. To reduce this threat, we use projects from Github based on different

programming languages.

4.4.5 Studies and Analyses of Dockerfiles.

With the increase of software complexity and components, managing of software dependen-

cies [50] and test dependencies [51] has become an important problem. Tufano et al. [67] studied

on broken snapshots and likely causes behind broken snapshots. Recent research work on scientific

artifact reproduction [14] discussed about the uses of Docker to address the challenge of operat-

ing system virtualization, cross-platform portability, and reusable software components. Cito et

al. [20] discussed about the rise of Docker adoption in industry, and performed an empirical study

on dockerfiles [21]. Rahman and Williams [56] performed an empirical study on the type of de-

fects in dockerfiles. Docker is also used for lightweight virtualization for developers for distributed

application development, build and ship [39].

4.4.6 Analysis of Building Configuration Files.

As build configuration files are getting complex and diverse, research on build configuration

file is getting importance that includes dependency analysis, migration of build systems and em-

pirical studies. To keep consistency during revision, Adams et al. [6] proposed a framework to

generate dependency graph of build configuration files. Al-Kofahi et al. [9] proposed a fault local-

ization technique for make files, and SYMake [66] uses a symbolic-evaluation-based technique to

detect common errors in Makefile. Following works by Zhou et al. [82] and Al-Kofahi et al. [10]

try to find configuration values exercising different parts of makefiles. Shambaugh [60] developed

a verifier for puppet configuration script, and Sharma et al. [62] proposed techniques to detect bad

smells in configuration files. Recently, Hassan et al. studied the reproduction of building envi-
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ronments [34, 35], and performed AST level analysis to generate fix patch for build configuration

files [36] .
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Chapter 5: DETECTING SCRIPT ERRORS

In this chapter, we use our previously proposed static analysis framework on real world data

as well as compare it to existing tools commonly used by today’s developers. We evaluated our

analysis on 58 docker files and the experiment shows that FiFA is able to generate an expressive

directory tree and report file manipulation warning and errors.

5.1 Introduction

File systems are widely used for data storage in computer systems. To automatically manipu-

late files, various software projects use file manipulation scripts combining basic operations such

as touch, cp, and rm provided by the operating system. Furthermore, the emerging DevOps

practice in software industry requires the developers to fully automate the software building, test-

ing, and deployment process, which leads to more complicated file manipulations in build scripts

(e.g., gradle scripts, makefiles), deployment scripts (e.g., docker files), and continuous integration

scripts (e.g., gitlab.yml, travis.yml).

A large portion of runtime errors in file manipulation scripts are related to the path existence

properties of the underlying file system. As a basis for estimation, in Github which stores 391,231

closed bug reports in total for all Shell script projects, searching for the key phrase “file not found”

and “file already exists” returns 33,466 results ( performed on March 22nd, 2019). Furthermore,

path-existence-related failures are typically severe because they will directly cause the termination

of script execution which is often followed by a software crash.

Although file manipulation scripts are relatively short, they are still difficult to understand and

run because developers often make assumptions on the existing paths in the file system over which

they do not have full control. Once the system is modified by other scripts, and/or the script is

executed on a different machine, the assumptions may no longer hold and the script will suffer from

path-existence-related errors. To reduce path-existence-related errors, in this chapter, we present

a novel static-analysis-based technique to infer path-existence pre-conditions of file-manipulation
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scripts. In particular, given a piece of file manipulation script, our approach calculates the pre-

condition for each control flow point in the script. The pre-condition at the beginning of the script

can be then checked against a file system’s file structure to determine whether the script can be

executed on the file system without causing path-existence-related errors.

The first step of our technique is to design an abstract domain that summarizes the path-

existence states of a file system. Despite the extensive research efforts [47] [23] on summarizing

memory states including modeling both variable values [48] [22] and heap shapes [77] [16] [31],

there have been few techniques developed to summarize file-system states, which brings two spe-

cial challenges. First of all, unlike memory locations which are usually referred to by variable

names and field names hard-coded in the source code, file system paths are often string values

generated at run time by concatenating string variables. Second, although a file system state on

path existence can be presented as a path tree, unlike the tree or graph domains used in heap shape

analysis where edges can be labeled with predefined field names/indexes, the possible edge labels

(folder and file names) in a directory tree are generated by the program at run time and thus are

usually unbounded.

To overcome these two challenges, our key insight is to summarize the run-time state of a file

system as a set of string values, each of which represents an existing path in the file system. Thus

the state of the file system is presented as all the currently existing paths, and the abstract domain

of the file-system state in static analysis can be defined as a string set that contains all possibly

existing paths in the file system at a program point. To handle infinite paths / path sets due to loops

and regular-expression-based path presentations (e.g., “rm foo/bar*”), we further use an automaton

to represent the set of all possible paths. Such an automaton is referred to as a File-System-State

(FSS) automaton, and the transfer functions of file operations such as cp and rm can be modeled

as finite state transducers that transform one FSS automaton to another.

To sum up, this chapter makes the following main contributions.

• An intermediate language FMIL that captures path-related semantics of file manipulation

scripts.
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• A static analysis FiFA that infers all possible directory tree states of running a given file

manipulation script. Within FiFA, we use FSS automaton as abstract domains and finite

state tranducers to define transfer functions.

• An evaluation on 58 dockerfiles which shows that FiFA is able to generate preconditions

within reasonable amount of time.

The rest of this chapter is organized as follows. Section 5.2 is going to present a motivating

example to illustrate the requirement of FiFA and just the techniques we develop. We will introduce

the details of FiFA in Section 5.4, and present our evaluation setup and results in Section 5.5.

Finally, we conclude in Section 6.3.

5.2 Example

In this section, we present an example to illustrate the problem we are solving. Below is a

real-world dockerfile from project Zalenium1. The original dockerfile has 434 lines so we cannot

put the whole file here and can provide only two code snippets. The two snippets show two RUN

commands (running its argument as a shell command) with if conditions. The first snippet checks

whether the option kubernetesSlimVersion is set to true, and if it is not set, the dockerfile

will download and set up the docker libraries. The second snippet setup the testing bots when

they are enabled in the configuration. Both snippets create and remove some folders / files in the

file system, and make assumptions of the file system. For example, the first snippet assumes that

“docker/” exists, and the second snippet assumes that “tmp/” exists.
1 RUN i f [ "${kubernetesSlimVersion}" = "false" ] ; t h e n \
2 s e t −x \
3 && DOCKER_VERSION="17.12.0-ce" \
4 && c u r l −fSL "https://${DOCKER_BUCKET}/linux/static/..." \
5 −o do ck e r . t g z \
6 && t a r − xzv f d oc k e r . t g z \
7 && mv d oc k e r / d oc k e r / u s r / b i n / docker −${DOCKER_VERSION} \
8 && rm − r f d oc k e r / && rm d o ck e r . t g z \
9 && docker −${DOCKER_VERSION} −− v e r s i o n | g r ep "${DOCKER_VERSION}" ; \

10 e l s e \
11 echo "Skipping adding Docker because of kubernetes slim mode" ; \
12 f i
13 . . .
14 RUN i f [ "${testingBotEnabled}" = "true" ] ; t h e n \
15 cd / tmp \
16 && wget −nv "${TB_TUNNEL_URL}" \

1https://github.com/zalando/zalenium
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17 && mv t e s t i n g b o t − t u n n e l . j a r / u s r / l o c a l / b i n \
18 && j a v a − j a r / u s r / l o c a l / b i n / t e s t i n g b o t − t u n n e l . j a r −− v e r s i o n ; \
19 e l s e echo "Testing Bot Disabled" ; \
20 f i

There are many such configuration-guarded file manipulation pieces, making it difficult to test

all of them and find out all the possible pre-conditions of the file system state before running the

script.

5.3 Intermediate Language

File manipulation scripts can be written in many different programming languages, such as

shell script, docker files, yml files, etc. These programming languages are also usually dynamic

and flexible so that they allow code of other programming languages to be inserted as a part of its

code. For example, it is standard practice to have embedded shell script snippets in Docker files

and yml files. Furthermore, software configuration and deployment systems evolve very fast, so

do the file-manipulation scripts they use. In the past decade, we witnessed the emerging of many

new types of file manipulation scripts such as gradle scripts for gradle build tools, travis.yml for

TravisCI continuous integration, and Docker files for Docker. Based on the above observations,

we developed our technique on an intermediate language so that various current and future file-

manipulation scripts can be benefit from our technique.

Since our technique uses its own intermediate language and we want to analyze Docker files

in our evaluation, we needed a way to convert the Docker files to data that our framework can

understand. To do this we used a Dockerfile parser to look for Docker commands that could poten-

tially modify the file system2. Commands such as COPY, ADD, and RUN can affect the Docker

container’s file system. The COPY and ADD commands are fairly straight forward and could be

translated to our framework’s copy command. The RUN command is the most challenging one

to transform because it could be any shell command within the container. It is possible to make

almost any modification to the file system using the RUN command. There were so many possibil-

ities and due to time constraints we had to only consider the most common RUN commands. As

2https://github.com/asottile/dockerfile
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per Docker’s Dockerfile documentation, the RUN command is run in a shell, which by default is

‘/bin/sh -c‘ on Linux3. In an effort to handle most RUN file cases, we implemented a shell parser

to parse all the RUN commands within our Dockerfile data set4. We searched through all the RUN

commands and counted each shell command occurrence. We decided to support the top 25 shell

commands with the highest number of occurrences that may modify the file system.

5.4 Approach

5.4.1 Abstraction Domain

In our technique, we use automaton as the abstract domain. The automaton represents all

possibly existing file paths in the file system at a program point. For example, for the following

piece of code, the automaton at the end of the program is shown in Figure 5.1
1 mkdir ’tmp’
2 i f ( o t h e r ) {
3 t o u c h ’tmp\abc’
4 } e l s e {
5 t o u c h ’def’
6 }

In figure 1, we can see that, FiFA uses a post fix “/” to indicate that a path value is a folder. So

FiFA can detect errors when a file is being referred to as a folder and vice versa.

5.4.2 Transfer Functions

To infer the pre-condition of a file-manipulation script, we need to run our analysis backward

from the end of the script. The abstract domain is initialized as an empty automaton because no

directory tree assumption is required at the end of a script. Whenever our analysis passed a file

manipulation operation, it needs to apply the transfer function to the abstract domain. Note that

we maintain two abstraction domains, one for positive pre-conditions (indicating that certain paths

need to be existing, denoted asD), and the other for negative pre-conditions (indicating that certain

paths must not be existing, denoted as N ).

Since the basic operations such as union are well defined for automaton abstract domain, we
3https://docs.docker.com/engine/reference/builder/#run
4https://github.com/mvdan/sh
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Figure 5.1: An Exemplar FSS Automaton
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just introduce our transfer functions for the basic file operations: touch, mkdir, cp, and rm. The

mv operation can be presented as a cp operation and a rm operation, so we just translate it to two

more basic operations. In particular, transfer functions for the five basic operations are presented

below.

touch x :N = N ∪ automaton(x)

D = D ∪ parentdir(x)

(5.1)

mkdir x :N = N ∪ automaton(x+ “/”)

D = D ∪ parentdir(x)

(5.2)

cp x y :N = N ∪ automaton(y + basename(x))

D = D ∪ automaton(x)

(5.3)

rm x : D = D ∪ automaton(x) (5.4)

In the functions, we useD andN to denote the positive and negative abstract domain before (on

the right hand side) and after (on the left hand side) the operation. We use function automaton(x)

to denote the automaton generated by string analysis for path variable x. It should be noted that

we do not have a transfer function for cd because it does not change the file system state, but only

change the current directory. We handle cd by moving CD flags (indicating Current Directory)

on the states of the FSS automaton. When cd x is encountered, we will calculate the intersection

between FSS automaton D and automaton(x), and put flags on the states in D which are paired

with an acceptance state of automaton(x) during the intersection process, and remove CD flags

from all other states. For rm and rmr, we will do the automaton difference only if x is a constant

string, to make sure our transfer functions are conservative. Otherwise since automaton(x) is an

over-estimation of x’s possible values, the difference between D and automaton(x) can be an

under-estimation.

We use function basename(x) to denote the automaton generated by extracting the base file-
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name of a path variable x. Here we can see that because x is an automaton, the function basename

can only be implemented as a transducer, which is presented in Figure 5.2. In the finite state trans-

ducer, we use eps to denote ε, and textttu0001-uffff to denote the whole character set Σ, and ∗ as

an output indicates that the output of the transducer at the specific transition will be the same as

the input.

Figure 5.2: FST to extract the basename

We use function parentdir(x) to denote the automaton generated by extracting the parent di-

rectory of a path variable x. For example, the parent directory of a regular expression a/b/c|a/d

would be a/b/|a/. The transducer to extract parent directory from a path variable x is presented

in Figure 5.3.

Figure 5.3: FST to extract the parent folder

The definition of paths in file manipulation scripts can be various. For example, mkdir abc

and mkdir abc/ both create a folder with name abc. This may cause our automaton to have

extra file path separators, resulting in double file path separators or extra file path separator at the
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end of a path value. To remove such extra path separators, we design the following two finite state

transducers as shown in Figures 5.4 and 5.5.

Figure 5.4: FST to remove double file path separators

Figure 5.5: FST to remove the last file path separator

5.5 Evaluation

5.5.1 Evaluation Setup

In our evaluation, we use a set of Docker files from a popular curated list of Docker resources

and projects on Github5. We created a simple program to extract any projects that included any

source code written using the Go programming language. We used a Dockerfile from each repos-

itory and automatically parsed them to generate an intermediate script that our framework could

use to perform the analysis.

5https://github.com/veggiemonk/awesome-docker
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The results presented in this report were performed on a computer running Windows 10 with an

Intel i7-6700K CPU and 16GB RAM. Our implementation and all evaluation subjects are available

at our anonymous project website6.

5.5.2 Evaluation Results

Our evaluation results are presented in Table 5.1. The Columns 2-9 present the execution time

of Control Flow analysis, String analysis, FiFA round 1, FiFA round 2, total line number of the

docker file, total line number of the converted FMIL file, the number of nodes in precondition, and

the number of nodes in post condition, respectively. From the results we can see that on average

FiFA’s execution time is 80 milliseconds in total. Note that we run FiFA twice when applying it.

In the first round, FiFA will report errors when a file is referred to but not generated by earlier

statements. Since most file-manipulation scripts run in an existing file system and assumes the

existence of certain paths, we consider these reported errors to be warnings and simply add the

missing path to the initial FSS automaton. It should be noted that in this process, FiFA can infer

the precondition required by the file-manipulation script to successfully run. In the second round,

FiFA will use the inferred precondition as the initial FSS automaton so that FiFA will report “file

not found” errors in the second round because all preconditions are satisfied.

Dockerfile Live Str. FiFA FiFA LOC LOC Pre Post

Ana. Ana. Run 1 Run 2 Dockerfile FFA Size Size

appcelerator/amp 2 0 102 84 5 3 47 62

bcicen/ctop 0 1 263 366 13 7 46 109

caicloud/cyclone 0 0 8 13 18 1 2 2

Century/dray 0 0 8 10 5 1 6 6

cisco/elsy 0 1 69 120 16 2 69 76

cloud66/habitus 0 0 128 136 14 5 40 45

containous/traefik 0 0 33 20 16 2 15 15

6https://sites.google.com/site/fifarepo/
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ContainX/netshare 0 0 86 89 7 3 3 52

cpuguy83/ambassador 0 0 85 112 5 2 84 100

crosbymichael/dockersql 0 0 39 32 5 2 43 43

CWSpear/persist 0 0 15 15 9 1 2 29

Dataman/crane 0 0 5 5 7 1 2 2

deltaskelta/alertd 0 1 15 9 30 2 14 14

dnephin/dobi 0 1 13 20 6 3 15 20

docker-flow/monitor 0 0 75 80 12 2 63 89

docker-slim/slim 0 0 18 19 8 2 16 16

docker/distribution 1 0 113 120 5 4 53 126

docker/libcompose 0 0 107 163 51 9 71 116

docker/machine 0 0 36 25 14 3 37 40

drone/drone 0 0 18 17 42 6 2 36

etcd-io/etcd 0 1 3 3 34 2 2 2

fabiolb/fabio 0 0 21 17 42 6 2 36

fsouza/dockerclient 0 0 31 58 14 5 40 45

genuinetools/bane 0 0 62 50 25 6 62 101

genuinetools/img 0 0 46 27 15 3 88 88

genuinetools/reg 0 0 48 45 26 7 60 97

goharbor/harbor 0 0 45 29 13 3 88 88

GoogleContainer/diff 0 0 22 21 6 2 2 41

GoogleContainer/test 0 0 14 21 7 1 37 57

google/cadvisor 0 0 16 16 42 6 2 36

harbur/captain 0 0 6 6 6 2 2 13

hashicorp/nomad 0 0 18 24 6 2 40 42

hasura/gitkube 0 1 22 19 42 6 2 36

howtowhale/dvm 0 0 51 54 13 3 88 88
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iron-io/functions 0 0 4 3 4 1 2 2

istio/istio 0 0 26 45 16 1 45 45

ivanilves/lstags 0 0 25 14 17 2 26 26

jessfraz/dockfmt 0 0 158 146 25 6 64 105

jlhawn/dockramp 0 0 8 8 14 1 11 12

jwilder/docker-gen 0 0 7 5 8 1 2 6

jwilder/dockerize 0 0 23 24 12 2 30 30

kubernetes/kubernetes 0 0 14 14 43 3 2 36

mayflower/docker-ls 0 0 14 14 5 1 2 2

moncho/dry 0 0 12 16 16 2 21 21

mudler/companion 1 0 63 28 15 3 88 88

mutable/factory 1 0 30 51 14 5 40 45

openfaas/faas 0 0 20 19 42 6 2 36

oracle/smith 0 0 18 7 12 3 15 15

prologic/autodock 0 0 35 47 20 3 50 79

rancher/convoy 0 0 8 13 11 1 33 32

rancher/rancher 0 0 20 20 42 6 2 36

remind101/empire 0 0 16 16 5 2 38 38

rexray/rexray 0 0 15 15 11 4 2 54

stelligent/mu 0 0 3 3 6 1 2 2

theupdate/notary 0 0 10 12 6 2 26 27

tianon/gosu 0 0 22 26 49 4 35 56

tpbowden/router 0 0 10 12 5 1 27 26

weaveworks/weave 0 0 5 6 14 1 12 12

Average 0 0 38 42 17 3 30 45

Table 5.1: Execution Time and Sizes of Automatons (ms)
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5.5.3 Qualitative Analysis

In this subsection, we present a simple example to show what our pre-conditions and post-

conditions look like. The following dockerfile is from dnephin/dobi that we analyzed using

our framework. It consists of six Dockerfile commands.
1 FROM r a i l s : 5
2 WORKDIR / code
3 COPY s e t u p . sh / code /
4 RUN . / s e t u p . sh
5 WORKDIR / code / b log
6 CMD ["bin/rails" , "server" , "-b" , "0.0.0.0" ]

Then, we were able to transform the Dockerfile commands to the following FMIL code shown

below.
1 cd ’/code’ ;
2 t o u c h ’/code/setup.sh’ ;
3 t o u c h ’setup.sh’ ;
4 cd ’/code/blog’ ;

Running this FMIL script in our framework gives us the following output.
1 d n e p h i n _ d o b i _ D o c k e r f i l e
2 ***** Run : 0
3 ***** Run : 1
4 t o u c h : c a n n o t t o u c h ’ s e t u p . sh * * ’ : F i l e a l r e a d y e x i s t s
5 V a r i a b l e a n a l y s i s e l a p s e d t ime : 5ms
6 Grammar a n a l y s i s e l a p s e d t ime : 1ms
7 FFA f i r s t run e l a p s e d t ime : 59ms
8 FFA second run e l a p s e d t ime : 59ms
9 P r o c e s s f i n i s h e d wi th e x i t code 0

The pre-condition and post-condition FSS automatons of the dockerfile generated by our FiFA

analysis tool are presented in Figure 5.6 and Figure 5.7, respectively. It should be noted that,

the original automatons generated by FiFA have only single character on each transition. For

better readability, we combine multiple transitions on a chain to a single transition with a word

on it. From the figures, we can see that FiFA successfully infers that the paths /code/ and

/code/blog/must exist before running the dockerfile. The post-condition also contains /code/setup.sh

that is created by the COPY command at Line 3 of the original dockerfile.

Figure 5.6: Pre-condition FSS Automaton
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Figure 5.7: Post-condition FSS Automaton

Due to the large size of generated automaton, we cannot show the complete automaton FiFA

generated for the example in Section 2 of this paper. But they can be found at our anonymized

website7.

5.5.4 Comparison With ShellCheck

In this subsection, we present the comparison of our technique with ShellCheck, an existing

tool for detecting shell script warnings, errors and bad practices. Table 5.2 shows the errors de-

tected by our technique and ShellCheck. We add a check mark to the column 3 and/or 4 if the

error can be detected by corresponding tool. From the table, we can see that FFA and ShellCheck

detect different types of errors in shell scripts so FFA can provide additional help to shell script

developers on top of ShellCheck.

Script Error FFA ShellCheck

aambrioso1_pypi-flask-

app_server_setup.sh

WARNING: ’x’ does not exist X

cp: cannot stat ’x’: No such file or direc-

tory

X

rm: cannot remove ’x’: No such file or

directory

X

cp: cannot stat ’x’: No such file or direc-

tory

X

7longtable
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SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

SC1091: Not following: ’x’ was not spec-

ified as input

X

aim-leo_db-auto-

backup_add-schedule.sh

WARNING: ’x’ does not exist X

SC2230: which is non-standard. Use

builtin ’command -v’ instead.

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2006: Use $(...) notation instead of

legacy backticked ‘...‘.

X

andcan_dust_build.yml.sh WARNING: ’x’ does not exist X

SC2148: Tips depend on target shell and

yours is unknown. Add a shebang.

X

SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

bismite_bismite-

sdk_build_template.sh

cp: ’x’ and ’x’ are the same file X

mkdir: cannot create directory ’x’: File

exists

X

cp: cannot stat ’x’: No such file or direc-

tory

X

WARNING: ’x’ does not exist X

SC2086: Double quote to prevent glob-

bing and word splitting.

X
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ColinPitrat_caprice32

_.travis.yml.sh

touch: cannot touch ’x’: No such file or

directory

X

WARNING: ’x’ does not exist X

SC2148: Tips depend on target shell and

yours is unknown. Add a shebang.

X

SC2069: To redirect stdout+stderr, 2>&1

must be last...

X

eclipse-embed-cdt_eclipse-

plugins_builds-upload.sh

cp: ’x’ and ’x’ are the same file X

SC2012: Use find instead of ls to better

handle non-alphanumeric filenames.

X

hezrq_dotfiles_install.sh WARNING: ’x’ does not exist X

SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

homeauto_nethunter_build.sh mkdir: cannot create directory ’x’: File

exists

X

rm: cannot remove ’x’: No such file or

directory

X

cp: cannot stat ’x’: No such file or direc-

tory

X

SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

SC2034: ’x’ appears unused. Verify use

(or export if used externally).

X
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SC2006: Use $(...) notation instead of

legacy backticked ‘...‘.

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2004: / is unnecessary on arithmetic

variables.

X

C2035: Use ./*glob* or – *glob* so

names with dashes won’t become options.

X

ibm-garage-cloud_ibm-

garage-tiles_release.yaml.sh

mkdir: cannot create directory ’x’: File

exists

X

WARNING: ’x’ does not exist X

SC2148: Tips depend on target shell and

yours is unknown. Add a shebang.

X

SC2002: Useless cat. Consider ’cmd <

file | ..’ or ’cmd file | ..’ instead.

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

jhu-

cs318_vagrant_bootstrap.sh

cp: cannot stat ’x’: No such file or direc-

tory

X

SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

JonMarten_RNAseq_scrap

_3_3a_map_cis_eQTLs

_submissions

_script_3phenotest.sh

WARNING: ’x’ does not exist X

SC1091: Not following: ’x’ was not spec-

ified as input

X
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jpentland_rcfiles_startup.sh SC2009: Consider using pgrep instead of

grepping ps output.

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2002: Useless cat. Consider ’cmd <

file | ..’ or ’cmd file | ..’ instead.

X

SC2068: Double quote array expansions

to avoid re-splitting elements.

X

lawrencewoodman_sblasm

_.travis.yml.sh

WARNING: ’x’ does not exist X

SC2148: Tips depend on target shell and

yours is unknown. Add a shebang.

X

layer6ai-

labs_RecSys2020_run.sh

mkdir: cannot create directory ’x’: File

exists

X

WARNING: ’x’ does not exist X

SC2034: ’x’ appears unused. Verify use

(or export if used externally).

X

linkedin_kafka-

monitor_single-cluster-

monitor.sh

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2068: Double quote array expansions

to avoid re-splitting elements.

X

MaxDesiatov_swiftwasm-

build_build-toolchain.sh

mkdir: cannot create directory ’x’: File

exists

X

SC1113: Use #!, not just #, for the she-

bang.

X
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SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2034: ’x’ appears unused. Verify use

(or export if used externally).

X

SC2230: which is non-standard. Use

builtin ’command -v’ instead.

X

nwcd-samples_aws-instance-

scheduler_buildspec.yml.sh

WARNING: ’x’ does not exist X

SC2148: Tips depend on target shell and

yours is unknown. Add a shebang.

X

SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

SC2006: Use $(...) notation instead of

legacy backticked ‘...‘.

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2154: bucket is referenced but not as-

signed.

X

pablochacin_operator-

sh_demo.sh

WARNING: ’x’ does not exist X

SC1091: Not following: ./screenplay.sh

was not specified as input (see shellcheck

-x).

X

PokemonGoF_PokemonGo-

Bot_setup.sh

WARNING: ’x’ does not exist X

cp: cannot stat ’x’: No such file or direc-

tory

X
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rm: cannot remove ’x’: No such file or

directory

X

mkdir: cannot create directory ’x’: File

exists

X

SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC1091: Not following: bin/activate was

not specified as input (see shellcheck -x).

X

SC2162: read without -r will mangle

backslashes.

X

SC2027: The surrounding quotes actually

unquote this. Remove or escape them.

X

seanbuckley_dotfiles_setup.sh WARNING: ’x’ does not exist X

mkdir: cannot create directory ’x’: File

exists

X

rm: cannot remove ’x’: No such file or

directory

X

SC1091: Not following: ./utils.sh was not

specified as input (see shellcheck -x).

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

spring-projects-

experimental_spring-

graalvm-native_build-

samples.sh

WARNING: ’x’ does not exist X
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SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

Stivvo_wayPreview_compile.shSC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

The-BB_debian-

keenetic_debian-buster-

mips.sh

mkdir: cannot create directory ’x’: File

exists

X

cp: cannot stat ’x’: No such file or direc-

tory

X

WARNING: ’x’ does not exist X

rm: cannot remove ’x’: No such file or

directory

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2125: Brace expansions and globs are

literal in assignments. Quote it or use an

array.

X

SC2024: sudo doesn’t affect redirects.

Use ..| sudo tee file

X

VicerExciser_watershedpi

_launcher.sh

WARNING: ’x’ does not exist X

SC1012: \t is just literal ’t’ here... X

SC2003: expr is antiquated... X

SC2004: $/${} is unnecessary on arith-

metic variables.

X

SC2005: Useless echo? Instead of ’echo

$(cmd)’, just use ’cmd’.

X
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SC2006: Use $(...) notation instead of

legacy backticked ‘...‘.

X

SC2046: Quote this to prevent word split-

ting.

X

SC2059: Don’t use variables in the printf

format string. Use printf "..%s.." "$foo".

X

SC2086: Double quote to prevent glob-

bing and word splitting.

X

SC2126: Consider using grep -c instead

of grep|wc -l.

X

SC2164: Use ’cd ... || exit’ or ’cd ... ||

return’ in case cd fails.

X

SC2196: egrep is non-standard and dep-

recated. Use grep -E instead.

X

Table 5.2: Errors Detected by FFA and ShellCheck
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Chapter 6: CONCLUSION

6.1 Network Traffic

In this paper, we propose a novel approach to statically generate traceable network summaries

for android apps. Our approach is based on grammar templates of network API methods and string

taint analysis, and we further propose new techniques to handle complex network API invocations,

and to generate signatures from string-operation grammars. We evaluate our approach on top 500

android apps and 8 maintenance tasks from open-source android projects. The results show that

our approach is able to efficiently generate signatures with high quality for most of the apps. The

empirical study on maintenance tasks shows that the signatures generated by our approach are

able to help developers precisely and quickly locate the code locations in network-related code

maintenance tasks. There are several directions to further improve our work, which are listed as

below.

First of all, we plan to apply our approach on a larger set of apps and real-world maintenance

tasks. We also plan to adapt our approach to GUI-based Java software projects and evaluate our

adapted approach on open-source Java applications.

Second, NetDroid currently generates some invalid signatures because it cannot trace into the

system library. It is inefficient to analyze the whole android system, and we plan to build an

android system model for the network signature generation problem, so that we can reduce the

invalid signatures.

Third, our tool NetDroid is not able to process some apps due to the failure in loading some

classes in the Java byte code. We may extend our tool to tolerate such failures or avoid such failures

by enhancing the converting tool from Dalvik byte code to Java byte code.
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6.2 Recommending Updates of Dockerfiles

In this paper, we present RUDSEA, which is a novel approach to recommend updates for

dockerfiles during software evolution. RUDSEA leverages tracks environment accesses from code

to extract environment-related scopes from the old software version and the new software version.

Then, RUDSEA generates updates from the two versions of analysis results. Our evaluation on

40 projects and 1,199 real-world instruction updates shows that RUDSEA can recommend correct

update locations for 78.5% of the updates, and correct updates for 44.1% of the updates, with

moderate false positives.

6.3 File Flow Analysis

In this paper, we present FiFA, a novel file flow analysis framework that infers pre-conditions

and post-conditions of file-manipulation scripts. We developed FiFA on an intermediate language

called FMIL, as well as a compiler to translate Dockerfiles to FMIL. Our evaluation on more than

60 Docker files shows that our analysis can efficiently perform the analysis averagely within 80

milliseconds.

In the future, we plan to extend our translator tool to handle shell environment variables, Dock-

erfile ENV commands, and conditional statements within RUN statements. We may also wish to

add support for additional commands within the Docker RUN command. Furthermore, we plan to

consider further analyze the permission of path variables to detect permission denial errors.
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