
PRACTICAL USER OBLIGATION SYSTEMS THAT

AFFECT AND DEPEND ON AUTHORIZATIONS

APPROVED BY SUPERVISING COMMITTEE:

Jianwei Niu, Ph.D., Chair

Ravi Sandhu, Ph.D.

Rajendra Boppana, Ph.D.

Jeffery von Ronne, Ph.D.

Ting Yu, Ph.D.

Accepted:
Dean, Graduate School

Copyright 2011 Murillo de Barros C. R. A. Pontual
All Rights Reserved

DEDICATION

”When you make the finding yourself - even if you’re the last person on Earth to see the light -

you’ll never forget it.” Carl Sagan

This dissertation is dedicated...

in memoriam of my mother Anna, who will always be with me.

in memoriam of my late supervisor Will, who was not only a mentor, but also a very dear

friend.

to my wife Emanuelle, the love of my life.

to my sister Anna, my best friend.

to my grandma Conchita, who always inspired me, even in my hardest times.

to my father Clementino, for your support and incitement.

PRACTICAL USER OBLIGATION SYSTEMS THAT

AFFECT AND DEPEND ON AUTHORIZATIONS

by

MURILLO DE BARROS COSTA REGO AMAZONAS PONTUAL, M.S.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
December 2011

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3489426

Copyright 2011 by ProQuest LLC.

UMI Number: 3489426

ACKNOWLEDGEMENTS

First, I would like to take the opportunity to acknowledge and extend my heartfelt gratitude to

my late advisor, Dr. William H. Winsborough. Without his expertise and guidance, this research

could not be accomplished. He has guided me and also challenged me during this journey. He

has helped me learn not only how to approach a technical problem but also taught me how to be

a better person in life. He always emphasized that contributing to science is more important than

just publishing papers, which is one of my most important takeaways from Ph.D.

Second, I would like to thank my colleague, collaborator, and friend Omar Haider Chowdhury.

His insights and expertise have helped me workout several technical details of this dissertation.

Furthermore, he has also helped me proofread this dissertation.

Third, I would also like to express gratitude to my current advisor Dr. Jianwei Niu for believing

in me. She has supported me when I needed it most.

Fourth, I would like to thank my collaborators Dr. Ting Yu, and Dr. Keith Irwin. They have

been very helpful throughout this journey and have helped me articulate, formalize, and solve

different problems related to my research.

Finally, I would like to thank my friends Andreas Gampe and Jeff McAddams who have helped

me proofread this dissertation. In addition, I would also like to thank my committee members for

spending their time on me.

December 2011

iii

PRACTICAL USER OBLIGATION SYSTEMS THAT

AFFECT AND DEPEND ON AUTHORIZATIONS

Murillo de Barros C. R. A. Pontual, Ph.D
The University of Texas at San Antonio, 2011

Supervising Professors:
Jianwei Niu, Ph.D.

William H. Winsborough, Ph.D.

Many authorization systems include some notion of obligations. However, most of the prior

works concentrate on policy specification and enforcement of system obligations. Little attention

has been given to user obligations that can depend on and affect authorizations. A user obligation

is an action that a user must perform in some stipulated time window. As automated tools seek

to provide increasing support for managing personnel and projects, there is an increasing need for

individual tasks to be assigned and coordinated with authorization, and for supporting automated

techniques. Thus, the management of user obligations that depend on and affect authorizations is

a significant issue in the field of computer security. In this context, a user may incur an obligation

that she is unauthorized to perform.

Prior work has introduced property of the authorization system state that ensures users will be

authorized to fulfill their obligations in the appropriate times. We call this property accountability

because users that fail to perform authorized obligations are accountable for their non-performance.

Roughly state, a system state is accountable when each of the pending obligations in the current

state is authorized no matter when all the other obligations would be performed in their associated

time interval.

Thus, accountability property can be viewed as an invariant that the system attempts to main-

tain. This invariant of the system ensures that if the users are diligent, then they will be authorized

to fulfill their obligations. To this end, it may be necessary to prevent discretionary (non-obligatory)

actions being performed if they would violate the accountability property. We achieve this by aug-

iv

menting the reference monitor to deny actions that violate it. The prior work is inconclusive and

purely theoretical in regards to the feasibility of maintaining accountability in practice. In addition,

there are several technical challenges and issues in designing such systems which the prior work

overlooked.

In this dissertation, we develop a collection of techniques and tools to address these issues.

First, we study the scalability of our abstract obligation model. To this end, we present an in-

stantiation of the abstract obligation model by using simplified versions of the Role-based Access

Control (RBAC) and the Administrative Role-based Access Control (ARBAC) (i.e., mini-RBAC

and mini-ARBAC) as its authorization system. Based on our empirical evaluations, we believe

that our obligation model is efficient enough to be used in practice. Furthermore, in order to show

the flexibility of our abstract model, we instantiate it with a simplified version of the HRU Ac-

cess Control Matrix Model. We also compare the performance of these two instantiations through

experiments.

Secondly, we enhance the usability of our obligation system by providing techniques that assist

users to overcome authorization denials due to accountability violation. For this, we develop an

approach based on an AI-planning tool that provides the user with an alternative plan of actions to

achieve her goal. Our empirical results indicate that our tool can handle moderate sized problem

instances.

Thirdly, we present techniques that provide administrators ways to overcome accountability

violation. This is particularly useful when obligations are violated, users are reassigned to different

divisions, or new projects or business functions are added.

Finally, we enrich our obligation model to support different kinds of obligations that occur in

practice (viz., repetitive and cascading obligations). When one obligation incurs another obligation,

we call this phenomenon the “cascading” of obligations. Repetitive obligations are obligations that

repeat after some predefined time. We provide techniques to decide the accountability property

efficiently in their presence. Our experimental results show that accountability can be decided

efficiently in presence of restricted versions of these kinds of obligations.

v

TABLE OF CONTENTS

Acknowledgements . iii

Abstract. iv

List of Tables . viii

List of Figures . ix

Chapter 1: Introduction . 1
1.1 Terminology . 2
1.2 Problem Statement . 5
1.3 Objective and Thesis Statement . 9

1.3.1 Approach . 11
1.3.2 Contributions . 14

1.4 Outline . 15

Chapter 2: User Obligation Model . 16
2.1 Events . 16
2.2 Obligation State . 17
2.3 General Architecture . 17
2.4 Abstract Model . 21
2.5 Concrete Model . 24

2.5.1 mini-RBAC and mini-ARBAC Authorization Model 24
2.5.2 Extended mini-HRU Access Control Matrix Model 30

2.6 Summary . 34

Chapter 3: Accountability Properties . 35
3.1 Illustrations and Utility of Accountability . 36
3.2 Strong Accountability Property . 38

3.2.1 Algorithm for Determining Strong Accountability 40
3.2.2 The Algorithm . 40
3.2.3 Non-incremental Version . 42
3.2.4 Generalizing the Authorization Model (Extended mini-HRU Access Con-

trol Matrix Model) . 43
3.3 Weak Accountability . 48

3.3.1 The Weak Accountability Problem . 49
3.3.2 Special-Purpose Algorithm for Determining Weak Accountability 54
3.3.3 Model Checking Approach for Determining Weak Accountability 61
3.3.4 Weak Accountability under the original HRU Access Control Matrix Model 64

3.4 Evaluation Results . 68
3.4.1 Evaluation of the Strong Accountability Algorithm 70
3.4.2 Evaluation of the Weak Accountability Approaches 75

vi

3.5 Summary . 79

Chapter 4: Failure Feedback . 80
4.1 Action Failure Feedback Problem . 81

4.1.1 Complexity of the Problem . 82
4.2 Approach . 83
4.3 Evaluation of the Planner . 84

4.3.1 Experimental Environment . 85
4.3.2 Problem Instance Generation . 85
4.3.3 Results . 87

4.4 Summary . 88

Chapter 5: Restoring Accountability . 89
5.1 Obligation Dependencies . 90
5.2 Slice Properties . 93
5.3 Restoring Accountability . 95
5.4 Summary . 100

Chapter 6: Cascading Obligations . 101
6.1 Strong Accountability under Cascading of Obligations 104
6.2 Cascading of Obligations . 105

6.2.1 Taxonomy . 108
6.3 Proof of co-NP completeness of Strongly Accountability Problem 109
6.4 Algorithm for Determining Infinite Cascading . 113
6.5 Algorithm for Determining Strong Accountability 113

6.5.1 The Algorithm . 113
6.6 Empirical Evaluations . 119

6.6.1 Evaluations Results . 120
6.7 Summary . 126

Chapter 7: Related Work . 127
7.1 Obligation Models . 127
7.2 Security and Usability . 130
7.3 Policy Analysis . 131
7.4 Workflows . 131

Chapter 8: Conclusion and Future Work . 133
8.1 Future Work . 137

Bibliography . 140

Vita

vii

LIST OF TABLES

2.1 An example mini-RBAC authorization state . 26

2.2 An example mini-ARBAC policy . 26

3.1 Time periods in the proof of Theorem 16. 53

3.2 Policies used in experiments . 70

3.3 Execution time for experiments . 75

3.4 Execution time for experiments . 77

4.1 Execution time vs. obl . 88

4.2 (a) Execution time vs. c (b) Execution time vs. dact 88

viii

LIST OF FIGURES

2.1 Obligation Architecture . 18

3.1 Translation model . 62

3.2 SMV model for an obligation system . 63

3.3 Performance of incremental strong accountability algorithm - mini-RBAC/mini-

ARBAC . 71

3.4 Performance of incremental strong accountability algorithm - mini-RBAC/mini-

ARBAC (non-strongly accountable set) . 71

3.5 Performance of non-incremental strong accountability algorithm - mini-RBAC/mini-

ARBAC . 72

3.6 Performance of non-incremental strong accountability algorithm - mini-RBAC/mini-

ARBAC (non-strongly accountable set) . 72

3.7 Performance of incremental strong accountability algorithm - HRU 74

3.8 Performance of incremental strong accountability algorithm - HRU (non-strongly

accountable set) . 74

3.9 Performance of non-incremental strong accountability algorithm - HRU 76

3.10 Performance of non-incremental strong accountability algorithm - HRU (non-strongly

accountable set) . 76

3.11 The Hybrid Approach for solving Weak accountability 78

5.1 Dependencies among obligations . 91

6.1 Formulation of Cascading Obligations . 103

6.2 Computing the Least Common Multiple . 117

6.3 Unrolling Infinite Repetitive Obligations . 117

6.4 Execution time vs. number of obligations (directly cascading of obligations) . . . 122

6.5 Execution time vs. number of obligations (directly cascading of obligations, non-

strongly accountable set) . 122

6.6 Execution time vs. number of obligations (finite repetitive obligations) 123

ix

6.7 Execution time vs. number of obligations (finite repetitive obligations, non-strongly

accountable set) . 123

6.8 Execution time vs. number of obligations (finite/infinite repetitive obligations and

directly cascading of obligations) . 124

6.9 Execution time vs. number of obligations (finite/infinite repetitive obligations and

directly cascading of obligations, non-strongly accountable set) 124

6.10 Execution time vs. number of obligations . 125

x

CHAPTER 1: INTRODUCTION

Maintaining security in modern organizations depends on security procedures being faithfully

carried out, both by computer systems and by humans. A computer system relies on authorization

systems to prevent malicious or accidental violation of confidentiality and integrity requirements.

Security policies can be used to guarantee that the authorization mechanisms are reflecting the

desired security requisites. In general, a security policy is a formal or semi-formal specification

that describes many different security aspects in an organization. Usually, security policy contains

the configurations of the security mechanisms, how resources can be accessed, the permitted in-

formation flow, how data is stored, etc. In addition to these requirements, some security policies

may also contain notion of obligations. An obligation defines an action that must be performed

by some stakeholder in a future time. One of the most common type of obligations is the system

obligation. A system obligation is an obligatory action that must be fulfilled by the system itself.

For example, if a user fails more than three times to login into a system, then the system must block

the user and must send an email to the administrator. However, not all the obligatory actions can

be performed by automatic systems. In fact, security mechanisms also rely on human users and

administrators performing actions that range broadly, including tasks such as business functions

and administrative operations, and are also an obligatory part of the humans’ job descriptions. We

call these actions user obligations. For instance, a conference system could require a user (in the

role of reviewer) to review a paper in no less than two weeks.

Most user obligations may also require corresponding system authorizations. This is due to the

fact that a user obligation is nothing more than an action being performed in a computer system,

and therefore being subjected to the same permission requirements (e.g., if Alice has an obligation

to check the log files; she needs to have the “read” permission to the log files) as any typical action.

In addition, many obligations have an effect on the authorization mechanisms. For instance, when

an employee is reassigned to a different division, an administrator may incur obligations to revoke

the permissions of the transferred employee. As automated tools seek to provide increasing support

1

for managing personnel and projects, there is an increasing need for individual tasks to be assigned

and coordinated with authorizations, and for supporting automated techniques.

Nowadays, more and more government privacy regulations are being created, for instance,

Children’s Online Privacy Protection Act of 1998 (COPPA), Gramm-Leach-Bliley Act (GLB) of

1998, The Health Insurance Portability and Accountability Act (HIPAA) of 1996, etc. Many of

them contain some notions of user obligations that depend on authorization. For example, the 45

CFR part 164 HIPAA [28] contains such user obligation, and states that an individual has the right

to request a Covered Entity (CE) (e.g., a hospital) to amend his protected health information (PHI).

After this request, the CE is obliged no later than 60 days to correct the individual’s PHI (for doing

this, some employee of the CE must have the appropriate permissions) or to provide the individual

the reasons for not amending his PHI. Thus, the management of user obligations that depend on

and affect authorizations is a significant issue in the field of computer security.

1.1 Terminology

In this section, we present different categories of obligations that exist in the literature. This is not

intended to be an exhaustive presentation, instead it serves to introduce the reader to the obligation

terminology. In general, an obligation contains the following components, an obligatory action, a

principal that is obliged to perform the obligatory action, a time window when the obligatory action

must be performed and finalized, and a condition that triggers the obligation. In this dissertation,

we use the terms principal, stakeholder, and agent indistinguishably, to represent the agent that is

obliged to perform an obligation. In this case, the obligatee can either refer to a human being or a

machine agent. On the other hand, we use the terms user or subject to indicate that an obligation

is being performed by a single human user.

Types of Obligations

Obligations are requirements that the obligatory agent needs to follow. Such requirements can

require that the agent to take certain actions, or on the other hand, can forbid the agent to take

2

certain actions. In addition to this, the obligatory requirement may need the agent to take certain

actions before granting the access to a resource or other actions. Now, we present the three different

forms of obligations:

1. Obligations (also known as positive obligations, post-obligations) are actions that a principal

must perform in some stipulated future time. For example, Alice must check the log files in

the first week of the next month.

2. Refrainments (also known as negative obligations, anti-obligations) are actions that a prin-

cipal is forbidden to take in a particular time. For example, Bob is forbidden to check the

log files in the next month.

3. Provisions (also known as pre-obligations) are actions that a principal takes in order to gain

access to a resource. For example, in order to check the log files, Bob must request an

authorization.

Types of Agents

Obligations can be carried out by humans or the system itself. Below, we present the types of

obligations according to the type of the principals:

1. System obligations are fulfilled by the computer system itself. For example, the system

must check the integrity of the log files in the first day of the next month.

2. User obligations are fulfilled by human user of the system. For example, Alice must check

the log files in the first day of the next month.

Number of Agents

Depending on the number of agents who are obliged to fulfill an obligation, we have the following

classification:

3

1. Collective obligations (also know as group obligations) must be fulfilled by a group of

agents. Note that, a collective obligation may require that at least one agent performs the

obligation, or it may require all the agents that are members of the group to perform the

obligation. For instance, Alice or Bob must check the log files in the next month. Another

example could be, Alice and Bob must check and digitally sign the log files in the next

month.

2. One agent obligations are fulfilled by only one agent. For example, Alice must check the

log files in the next month.

Types of Triggers

An obligation can be triggered by one of the following ways:

1. Conditional Obligations are triggered by some condition. For instance, as long as Alice is

the security manager, she must check the log files every month.

2. Event obligations are triggered by events. The events can be controllable (internal), or can

be a uncontrollable (external). For example, if the manager Alice requests Bob to check the

log files(i.e., a controllable event), then he must check the log files. Another example could

be, if a server crashes (i.e., a uncontrollable event), then Alice must restore it in no more than

10 hours.

Types of Deadlines

The deadlines of obligations can be defined in two different ways:

1. Ongoing Obligations are terminated when some event occurs. In other words, must be

performed during a usage. For instance, Alice is obliged to check the log files until the

project is over. Her obligation is terminated when the project is over.

2. Time Interval Obligations must be performed within a given time interval. For example,

Alice must must check the log files between 7 AM and 9 PM.

4

3. Immediate Deadline Obligation must happen and finish just after the event that triggered

it For instance, if there is an error on a transaction; the system must roll back all the actions.

Incremental and Non-incremental

Obligations can be fulfilled in an incremental or non-incremental way:

1. Non-incremental Obligations are seen as atomic unit. For instance, Alice is obliged to

check the log files in the next week.

2. Incremental Obligations have an internal state and are fulfilled incrementally. For example,

Alice is obliged to pay her bill in no more than three incremental payments.

Repetitive and Non-repetitive Obligations

Obligations can happen indefinitely in time, or can occur for a finite particular time. According to

this terminology we can have the following classification of obligations:

1. Non-repetitive Obligations are obligations that happen only once. For instance, Alice is

obligated to check the log files in the next week.

2. Finite Repetitive Obligations are obligations that recur at fixed time intervals in a finite

way. For instance, Alice is obliged to check the log files in the first day of the month during

one year.

3. Infinite Obligations that recur indefinitely at fixed time intervals. For example, every first

day of the month Alice must check the log files.

Note that, Finite Repetitive Obligation is a particular case of the Ongoing obligation. However,

both Finite and Infinite Repetitive Obligations can also occur in a non-periodic way.

1.2 Problem Statement

Work on computer managed obligations goes back several decades [34,39,40]. Many works focus

on policy determination of obligations [2,5,12,15,23,38,42,55]. Relatively little work has focused

5

on specification of the proper discharge of obligations [12,24,26,31,41]. Even less has focused on

user obligations.

Working in the context of user obligations, Irwin et al. [31,32] were the first to study obligations

that depend on and affect authorizations. A correctly functioning system has a regular behavior,

whereas a human user’s behavior cannot be predicted or enforced. This situation raises complexity

in designing and analyzing a user obligation system. One such situation arises when the user

Alice is assigned to perform an obligation in July next year, for which she currently does not

have the proper authorization. A traditional reference monitor will not deny the addition of such

an obligation. If some other user does not first give Alice the proper authorization, her request

to perform the obligatory action will be denied. No one may realize that she can not fulfill her

obligation until she attempts to perform it. Irwin et al. observe that deadlines are needed for user

obligations in order to be able to capture the notion of violation of obligations. Associating a start

time as well as an end time with each obligation, Irwin et al. introduce properties called strong

and weak accountability [31] that ensure that each obligatory action will be authorized during

its stipulated time interval. For a given authorization policy, accountability is a property of the

authorization state and the obligation pool. Roughly stated, accountability holds if each obligatory

action will be authorized, no matter when all the other obligations are fulfilled in their associated

time intervals. The strong version of accountability requires that each obligation be authorized

throughout its entire time interval. On the other hand, weak accountability allows an obligation

to be unauthorized during part of its time interval. However, it ensures that if the obligated user

waits for other obligations to be fulfilled, it is guaranteed that the action will become authorized

in its deadline. Other types of accountability exist [30]; however they are out of the scope of this

dissertation.

Accountability properties are important because they allow users to reason about future states

of the system. In the scenario presented above, assume the administrator Bob tries to add an obli-

gation to Alice that she needs to perform in July next year. If she does not possess the permissions

to fulfill her obligation, and there is no obligation (in the set of pending obligations) that gives

6

such permissions to her, then Bob will be notified by the system that he cannot add this obliga-

tion, as doing so would compromise accountability of the state. A big advantage of this type of

system is that the administrators do not need to wait for users trying to execute their obligation, in

order to discover that the users do not have the permissions. Thus, accountability properties can

be viewed as invariants that the system attempts to maintain. To this end, it may be necessary to

prevent discretionary (non-obligatory) actions being performed if they would disturb accountabil-

ity.1 To accomplish this, a user obligation system can have a reference monitor that is responsible

for denying actions that violate the accountability. A discretionary action can violate the account-

ability property in one of the following ways:

1. The action is administrative and can make an obligated user unable to perform her obligation.

2. The action causes an obligation to be incurred that will not be authorized.

3. The action introduces an administrative obligation that will make an obligated user unable

to perform a subsequent obligation.

The results presented by Irwin et al. [31,32] were inconclusive from the standpoint of practical-

ity. They show that when the authorization system used in the obligation model is fully abstract,

accountability is undecidable. This follows from the fact that the authorization system can per-

form arbitrary computations. When it is instantiated with a simplified HRU Access Control Matrix

Model, as is done by Irwin et al. [31, 32] , the problem of determining strong accountability be-

comes polynomial. However, for the algorithm they present, this polynomial has degree four in the

number of obligations and degree two in the policy size. Additionally, no performance evaluation

is provided to determine the limit of problem instance size that can be efficiently handled. More-

over, determining weak accountability in the instantiated case is intractable (co-NP hard) and no

decision procedure is presented.

1In many cases it will be necessary to enable users (especially administrators) to force discretionary actions to be
performed, even when doing so violates accountability. Also, since it is impossible to ensure that users will fulfill
their obligations, accountability guarantees obligatory actions will be authorized only under the assumption that other
obligations on which they depend are faithfully discharged.

7

Irwin’s abstract model supports the notion of cascading obligations, by which we mean that

obligatory actions can cause additional obligations to be incurred. However, when they instantiate

their concrete model with to use a simplified HRU Access Control Matrix Model, they disallow

cascading obligations. This is because several issues make cascading obligations difficult to handle

correctly. More specifically, three problems make supporting cascading difficult and unproductive

with their model:

1. Different policy rules can cause different (disjunctive) obligations to be incurred, making it

computationally expensive to reason about the future state of the obligation pool and autho-

rization system.

2. Cycles can easily be formed that introduce the likelihood of infinite sequences of new obli-

gations being incurred as the result of a single action.

3. The time intervals during which new obligations are to be performed depend on the time at

which the action that causes them to be incurred is performed. As obligations are scheduled

times further from the current time are considered, the time intervals in which obligatory ac-

tions could occur become longer. This makes it increasingly unlikely that these obligations

will be authorized throughout the entire interval in which they must be to satisfy account-

ability.

Another problem that was not addressed in previous work [31, 32] is how obligation systems

handle the violation of obligations. Recall that accountability properties guarantee that users will

have the necessary permissions to perform their obligations; considering that all the users diligently

fulfill their obligations. However, when a user is unable to fulfill his obligations, then all other

obligations that depend on this violated obligations may also be violated. For instance, consider

an obligation system that has two users, Alice and Bob. Bob is a project manager, and Alice is

a member of Bob’s team. Now, consider that Bob has an obligation to grant Alice the role of

developer, and Alice has an obligation to develop source code. Let us assume that Bob was ill and

was unable to fulfill his obligation. Due to Bob’s illness, Alice did not receive the developer role

8

that she needs to create source code. Thus, lack of authorization will cause Alice to violate her

obligation. Because human behavior is unpredictable, it is clear that when some obligations are

violated, a system must provide some strategies to assist the administrator to recover the system

from these violations.

1.3 Objective and Thesis Statement

Based on the discussion above, it is clear that there are many research issues that must be addressed

by any system that manages obligations that interact with authorization. This section summarizes

the ones that we address in this dissertation.

Scalability and Performance A real life obligation system should be scalable enough to support

a large number of obligations, users, and objects. In our case, we want to investigate whether it is

possible to efficiently compute both versions of accountability in a way that these decision proce-

dures can be added to a reference monitor. Recall that every time a user tries to execute an action;

the system needs to check whether the action is authorized and it is not violating accountability

(i.e., removing the permission of other obligations). Thus, if a user needs to wait more than few

seconds when executing an action; it is clear that such a system is not going to be very usable in

practice. Previous work provided a higher cost polynomial algorithm for strongly accountability,

but did not provide any decision for weak accountability. In this dissertation, we present efficient

decision procedures for both versions of accountability.

Flexibility In this dissertation, we want to show that our abstract obligation model is flexible

enough to support different authorization systems. For this, we want to instantiate it with two

different authorization models, namely, mini-ARBAC/mini-RBAC and a simplified version of the

HRU Access Control Matrix Model.

Usability Recall from the previous section that even when a user has the proper authorizations,

his action may be denied if it violates accountability (i.e., an action is revoking other obligations

9

permissions). Previous work [21, 36] have presented techniques for providing users with assis-

tance in understanding and overcoming authorization denials. However, only Irwin et al. have

presented techniques to overcome these denials when considering user obligations and account-

ability. Because of privacy concerns, as well as the intricate interactions between actions and

pending obligations, Irwin’s technique presented the user a plan of actions that will allow him to

execute his desirable action without violating accountability. Irwin’s technique was based on AI

planning, but no complexity analysis and only with partial empirical evaluations were presented.

The aim of this dissertation is to provide a formal description of this problem, complexity analysis,

and a comprehensive empirical evaluation of this approach.

Support for Different types of Obligations An obligation system must have an appropriate

balance between efficiency and expressive power (managing different types of obligations). Irwin

et al. presented a polynomial time algorithm for determining strong accountability when their

obligation model was instantiated with an access control matrix model as its authorization state.

To accomplish this, they made an additional assumption, which prevents cascading of obligations.

As depicted in previous section several issues complicate handling such situations. In fact, Irwin

et al. have proved that deciding accountability problem without any restriction when using their

abstract model is undecidable. However, to be usable, an obligation system must be able to express

many different forms of obligations that occur in the real world, as for example, cascading of

obligations, finite and infinite repetitive obligations, etc. In this dissertation, we explore restricted

notions of cascading of obligations, and we present efficient procedure for deciding accountability

in presence of them.

Violation Recovery As mentioned in the previous section, the idea of preserving accountability

as a system invariant sometimes might not be achieved, as users may fail to fulfill their obliga-

tions. Furthermore, it may be necessary to revoke a user’s authorization, as when a user leaves

an organization or is transfered to a different position. In such cases, tools are needed that enable

administrators and other authorities to remove or reassign obligations, or to add new obligations

10

that replace old ones in a manner that authorizes new or existing dependent obligations. These

may include tools that analyze dependencies among existing obligations or that propose plans by

the help of which accountability could be maintained or restored.

Thesis Statement The primary goal of this dissertation is to identify, specify, analyze, and solve

several fundamental technical challenges that arise in designing a practical user obligation sys-

tem that can affect and depend on authorization. In our scope, an obligation is a positive, non-

incremental, user obligation, triggered by an event, fulfilled instantly and with deadlines. (Pre-

obligations, negative obligations and conditional obligations are out of the scope of this thesis.)

1.3.1 Approach

The techniques we develop are the follows:

1. We instantiate the authorization portion of the obligation model of Irwin with a previously

studied simplified version of the administrative role-based access control model [48, 50]

called mini-ARBAC and mini-RBAC [51]. To this end we present:

(a) A more efficient algorithm that determines strong accountability of a set of pending

obligations under this instantiated model. This algorithm has the complexity n2 logn

times the policy size, in which n is the number of pending obligations. The empirical

evaluation that we have conducted shows that the algorithm runs in less than 8 mil-

liseconds, even for very large policies and obligation sets2, and that there are cases in

which each one outperforms the other. In short, the special-purpose algorithm can han-

dle larger problem instances (more obligations, users, roles, and policy rules), when the

algorithm is used incrementally to determine whether a single obligation can be added

to an accountable obligation pool.

2In this dissertation, we use the terms small obligation pool size for describing obligation pools that have less than
200 obligations, moderate obligation pool size when we have more than 200 and less than 2000 obligations, and large
obligation pool size when we have more than 2000 obligations. Furthermore, a small-size policy concerns less than 50
users and 50 objects, moderate-size policy concerns less than 200 users and 200 objects, and large-size policy concerns
more than 200 users and 200 objects.

11

(b) We provide a proof that deciding for weak accountability is co-NP complete in the

simplified model, and remains so when only one policy rule enables each action and

the condition expressed by that rule is purely conjunctive. (Both positive and negative

role memberships can be tested, however.)

i. We explore two approaches for weak accountability, one that designs an algorithm

specifically to solve this problem, and one that uses model checking. We provide,

design, specification, optimization, prototypes, and empirical evaluations of these

techniques. Our empirical evaluation of these techniques indicate that they are ef-

fective in many cases for obligation sets and policies of moderate size, provided

interdependent obligations do not overlap too much, while the model checker is

much better able to deal with the many possible interleaving of overlapping obli-

gations.

(c) We also give a reformulation of Irwin’s obligation system and accountability definitions

that makes some improvements on the original. The most significant of these is that

we formalize the scheduling of obligations in terms of traces (sequences of states and

actions), rather than by assigning times at which actions are performed. Assigning

times raises the issue of two actions being scheduled at the same time. Since actions

must be atomic, Irwin et al. introduced a fixed, arbitrary order on actions that defines

the order in which actions scheduled for the same time are performed. Not only does

this make the presentation cumbersome. This order can actually affect whether a given

obligation pool is accountable. In the current formulation, time is used only to define

the relative order in which obligations may be carried out.

2. We improve the algorithm presented in [31] that uses a simplified HRU Access Control Ma-

trix Model as authorization state to utilize the same data structure we developed in [45].

Then, we present an empirical evaluation comparison between the strong accountability al-

gorithm under the mini-ARBC model and a simplified HRU Access Control Matrix Model.

12

In a further additional result, we show that the weak accountability decision problem remains

co-NP complete when the authorization system is restricted to use only the expressive power

of the original HRU Access Control Matrix Model.

3. Sometimes, preserving accountability as a system invariant may not be achieved. For exam-

ple, users may fail to fulfill their obligations. Furthermore, it may be necessary to change

a user’s authorization to fulfill their obligations, as when a user leaves an organization or is

transferred to a different position. In this dissertation, we provide techniques to be used by

obligation system managers to restore accountability, such techniques may include removal

or reassignment of obligations, or to add new obligations that replace old ones in a manner

that authorizes fulfillment of new or existing dependent obligations. We introduce several

notions of dependence among pending obligations that must be considered in this process.

We also introduce a novel notion we call obligation pool slicing, owing to its similarity to

program slicing. An obligation pool slice identifies a set of obligations that the administrator

may need to consider when applying strategies proposed here for restoring accountability.

4. We also present a precise description of the action failure-feedback problem. In this ap-

proach, when a user attempts to execute an action that will be denied (either it or the obliga-

tion incurred violates accountability), we try to present the user an alternate plan of actions

that will enable her to perform the desired action. We consider that this approach can be

particularly useful in project management environments or in case of workflows, when it is

desirable to ensure that a user is going to be able to fulfill her main task, even when she has

some particular actions denied.

(a) We study the question whether it is possible to have an action failure feedback com-

ponent in practice. To answer this question we utilize an approach presented by Irwin

in his PhD dissertation [30]. The approach uses an AI planning technique to solve this

problem. The contributions of my dissertation are:

i. We provide a precise formal definition of the action failure-feedback problem.

13

ii. We also prove that the action failure-feedback problem is PSPACE-hard for a user

obligation system that uses mini-RBAC and mini-ARBAC as the authorization

model.

iii. Given the difficulty of obtaining real life policies and obligations; we present three

different strategies to generate complex problem instances in order to assess the

limits of Irwin’s approach in practice.

iv. We also present empirical evaluations of Irwin’s approach. It indicates that the

approach is effective for small sized obligation sets and policies.

5. As described before, cascading obligation is an important topic on the studies of obligation.

In this dissertation, we aim to support restricted forms of cascading obligations in our con-

crete model and to provide techniques and tools that can decide accountability in presence

of them. them. To this end, we present the following:

(a) A cascading obligation taxonomy.

(b) We show that deciding strong accountability when considering unrestricted cascading

obligations, using our concrete model using the mini-ARBAC/mini-RBAC as its au-

thorization system is NP hard.

(c) We present algorithms and empirical evaluations for two restricted versions of cascad-

ing obligations, namely, non-infinite cascading, and infinite repetitive obligations. The

empirical evaluations of these algorithms indicate that they can decide strong account-

ability in less than 1/10th of a second, even for very large obligation sets.

1.3.2 Contributions

The contributions of this dissertation are summarized below:

1. Algorithms, complexity analysis, and empirical evaluations for strong and weak account-

ability properties using mini-RBAC and mini-ARBAC.

14

2. Comparison between strong accountability technique using mini-RBAC and mini-ARBAC,

and strong accountability technique using a simplified version of the HRU Access Control

Matrix Model.

3. The complexity analysis of the action failure feedback problem, and its empirical evaluation.

4. A comprehensive study of techniques that can be used to restore accountability when ac-

countability is violated.

5. Algorithms, complexity analysis, and empirical evaluations for strong accountability when

considering restricted version of cascading obligations using mini-RBAC and mini-ARBAC.

1.4 Outline

The reminder of this dissertation is organized as follows. Chapter 2 provides our obligation archi-

tecture, abstract, concrete models as well authorization states. Chapter 3 presents the definitions

of accountability, techniques and their empirical evaluations. Chapter 4 provides the action failure

feedback problem, techniques and their empirical evaluations. Chapter 5 discusses the techniques

to restore accountability. Chapter 6 presents the management of handling cascading obligations.

Chapter 7 discusses the related work. Chapter 8 provides the conclusion and future work of this

dissertation.

15

CHAPTER 2: USER OBLIGATION MODEL

In this chapter, we introduce our framework for managing user obligations that can affect and

depend on authorization. The architecture of the obligation system is inspired by the model pre-

sented by Irwin et al. [30–32]. As stated before, our obligation system supports user obligations

that are triggered by events, have explicit time windows, and are atomic in nature. After presenting

the architecture of the obligation system, we then show the formal aspects of our abstract and con-

crete models. For the concrete model, we use mini-RBAC and mini-ARBAC as the authorization

system of our choice. Roughly speaking, mini-RBAC (resp., mini-ARBAC) is a simplified version

of the widely used RBAC (resp., ARBAC) system [49]. In RBAC, users are given authorizations

based on the role they have. The main differences between mini-RBAC and mini-ARBAC with

their standard counterpart are as follows; they do not support sessions, explicit separation of duties,

role hierarchies, and disjunction of roles in the pre-condition. A more comprehensive discussion

of mini-RBAC and mini-ARBAC is provided in section 2.5.1. In addition, we also present a con-

crete model instantiated with a simplified version of the HRU Access Control Matrix Model. Note

that, we do not consider this instantiation as a novel contribution as it was previously presented

in Irwin et al. [31]. However this is necessary to understand the contributions in the next chapter.

The following chapters of this dissertation use the concrete models presented in this chapter.

2.1 Events

Before introducing our obligation framework, let us examine how obligations are incurred in our

model. We assume that obligations are triggered by events. An event is an action that may trigger

a state change in the system. We consider two classes of events in our system, namely, controllable

events and uncontrollable events. Controllable events are originated by actions taken by users of

the system on zero or more objects. (E.g., when Alice creates a report, she may incur an obligation

to later submit the report to her supervisor. Presumably creating the report is a controllable event.)

Note that the action part of a controllable event can either be a discretionary action or an obligatory

16

action. On the other hand, uncontrollable events are generated by the environment. (E.g., a policy

might require that when a court order arrives, a company lawyer must review and respond to it. Re-

ceiving a court order is a uncontrollable event.) In this dissertation, we only consider controllable

events.

2.2 Obligation State

At each point in time, an obligation can be in one the following states: pending, fulfilled, or

violated. We say an obligation is fulfilled if the action identified by the obligation has been executed

during the obligation’s time interval. We say an obligation is violated when the action defined by

the obligation was not executed in its proper time interval. Finally, we say an obligation is pending

if the current time is less than the end time period of the obligation and the obligation has not yet

been executed. A pending obligation can be in one of the two states, available or unavailable. We

say an obligation is available when the obligation is pending and all the resources, authorization

and users required to fulfill it are available. On the other hand, an obligation is unavailable when it

is pending and one of the following is not available during the its entire time interval: authorization,

user, or resources. However, the principal interest of this dissertation is to guarantee authorization

availability. (Ensuring user availability and resource availability are matters for future work.)

2.3 General Architecture

This section presents our architecture [46] for managing user obligations that can depend on and

affect authorization (figure 2.1). In figure 2.1, the arrows represent messages that can be exchanged

among software components and users. The direction of the arrow indicates the direction of mes-

sage flow. Let us now consider the main components of the architecture.

Reference Monitor The standard function of a reference monitor is to disallow actions that are

not authorized [52]. We augment this requirement so that the reference monitor also disallows

controllable actions when the obligations that they cause to be incurred, or the action itself, would

17

Figure 2.1: Obligation Architecture

violate the accountability property of the system. Requiring the reference monitor to check for

violation of accountability is an attempt to maintain accountability as an invariant of the system.

The Reference Monitor is further divided into four main components.

(a) Authorization Checker It checks standard authorization (i.e., check whether someone has

the proper authorization to execute an action).

(b) Obligation Checker It is responsible for denying actions that violate the accountability

property of the system. The Obligation Checker can deny an action if one of the following cases

occurs. (i) The action is administrative and can make an obligated user unable to perform her

obligation. (ii) The action causes an obligation to be incurred that will not be authorized. (iii) The

action introduces an administrative obligation that will make an obligated user unable to perform

a subsequent obligation.

Denying an action that violates accountability is an attempt to maintain accountability incre-

mentally as often as possible. By providing an algorithm for checking accountability and evaluat-

18

ing it empirically, it has been shown [45] that one can efficiently maintain accountability of a large

scale system in practice. Please, consult chapter 3 for more details.

An additional function of this component is to select or help a user to select among the policy

rules that can be used to authorized the desired action. When multiple rules preserve accountabil-

ity, the appropriate rule to select may be application dependent. In some cases, it may even be

appropriate to let the user requesting the action make the selection. When this is inappropriate, for

example, due to performance issues, a range of policy-driven alternatives are possible. However,

this is out of the scope of this dissertation

(c) Failure Feedback Mechanism When the Obligation Checker component denies an action

because it would violate accountability, the failure feedback component attempts to present the

user with an alternate plan of action that will enable her to accomplish her desired actions without

violating accountability. The user has the option of accepting the plan, or not . If accepted, the

actions in the plan become obligations. The plan can involve actions for the user herself and for

others. If the plan contains actions for other users, they must also agree to the plan before the

system will convert the plan into user obligations. If no plan is found, the action will be denied and

the user will be notified. This problem is called the Action Failure Feedback Problem (AFFP).

Pontual et al. [47] present a formal specification of the AFFP, complexity analysis, an AI-based

approach that can encode instances of the AFFP problem as an input to a partial order AI planner,

and empirical evaluation of the resulting tool. Please, consult chapter 4 for more details.

(d) Accountability Restoration Manager When an obligation is violated, unavailable, or some

external uncontrollable event results in the violation of the system’s accountability, this is detected

by the failed obligation manager module (in the event manager) that will be discussed shortly in

detail. When the administrator is notified of the violation, he uses the semi-automatic tool support

provided by the Accountability Restoration Manager to restore accountability. For that, we con-

sider that the obligation pool is an object that an administrator can edit. Restoring accountability is

a complex problem. It requires consideration of characteristics of obligations such as their impor-

tance, purpose, and level of urgency. The capabilities of individual users that might be candidates

19

for assuming obligations previously assigned to others must also be considered. Therefore, a fully

operational, deployed obligation system must include human actors to handle or help with account-

ability restoration. Thus, the Accountability Restoration Manager includes a human, probably the

same human as is generally responsible for obligation system management. Strategies for doing

so are discussed in chapter 5.

Event Manager The major responsibilities of the event manager are altering authorization state

of the system according to the administrative events, monitoring obligation status, and recognizing

responsible users for obligation violation. The main components of it are presented next.

(a) Event Handler It observes controllable and uncontrollable events, and is also responsible for

performing administrative events, modifying the authorization state accordingly. It also adds new

obligations to the obligation pool, per the policy rule requirements. All the events are also logged

by the event handler.

(b) Fulfillment Monitor It is responsible for checking whether an observed event constitutes

the fulfillment of a pending obligation. It uses a timer to keep track of the obligations that are

nearing their deadlines and notifies the appropriate users. Finally, it detects violated obligations

and notifies the Failed Obligation Manager.

(c) Failed Obligation Manager It is responsible for determining the violated and unavailable

obligations. After that, it determines all the obligations that are affected by them. (See chap-

ter 5 section 5.3.)

(d) Responsibility Analyzer It is important for organizational managers to be aware of which

employees are diligent and which are not. This component provides this information.

Assuming the system was initially in an accountable state, any single obligation violation is the

responsibility of the user charged with fulfilling it. This also holds when multiple obligations are

violated concurrently. When an administrative obligation is violated; other obligations may also

be violated due to lack of permissions.

This component may not be executed/called immediately each time an obligation goes unful-

filled. Consequently, it is possible that this component is presented with multiple obligations that

20

have been violated, some of which were supposed to be performed by users that had inadequate

permissions. In this case, the user that is ultimately responsible for a violation is the one that had

the permissions required to perform the administrative obligation to grant the missing permission.

This module determines which users are responsible for causing each violation. Identifying users

that are ultimately responsible for violations is known as the blame assignment problem, which is

solved by this module.

Irwin et al. [32] provide a general approach for recognizing users responsible for accountability

violation. However, they do not provide appropriate treatment to obligations incurred by unavail-

able users. We present techniques such as, reassignment of obligations, removal of obligations

etc., that an administrator can use to manage such obligations.

The architecture presented above is our vision for managing user obligations as part of the

system’s security policy. As mentioned at various points in the discussion above, several parts of

this architecture (Obligation Checker [31, 45], Failure Feedback [47], Accountability Restoration

Manager [46] and Responsibility Analyzer [32]) have been designed, implemented, and empiri-

cally evaluated. The remaining components are subjects of on-going and future work.

2.4 Abstract Model

This section presents an abstract meta-model that encompasses the basic constructs of an autho-

rization system that supports obligations. Our presentation in this section is derived from that of

Irwin et al. [31].

The abstract model presented here does not treat uncontrollable events and its effects on the

system state. The majority of such events are going to cause only non-administrative obligations to

be incurred. These can be handled by adding a policy rule that specifies the effect of such events as

discussed below in this section. However, some events might cause a change in the authorization

state, for instance, an employee getting arrested. In such cases, one can use the same techniques

presented in chapter 5.

An obligation system consists of the following components:

21

• U : a universe of users.

• O: a universe of objects with U ⊆ O.

• A: a finite set of actions that can be initiated by users. The structure of actions is given just

below.

• T : a countable set of time values.

• B = U×A×O∗×T ×T : the universe of obligations users can incur. Given b = ⟨u, a, o⃗, start, end⟩ ∈

B, b.u denotes the obligated user, b.a is the action the user must perform, b.o⃗ is the finite se-

quence of zero or more objects that are parameters to the action, and b.start and b.end are

the start and end times of the interval during which the action must be performed1. A well

formed obligation b satisfies b.start < b.end.

User-initiated actions are events from the point of view of our system. We denote the uni-

verse of events that correspond to nonobligatory, discretionary actions by:

D = U ×A ×O∗

We denote the universe of all controllable events, obligatory and discretionary, by E = D∪B.

• Γ ∶ fully abstract representation of authorization state (e.g., AC matrix, UA).

• S = FP(U)×FP(O)×T ×Γ×FP(B) : the set of system states2. We use s = ⟨U,O, t, γ,B⟩

to denote system states. U is the finite set of users currently in the system, O is the finite set

of objects, t is the current time, B is the set of pending obligations, and γ ∈ Γ.

• P: a fixed set of policy rules. A policy rule p ∈P has the form p = a(u, o⃗) ← cond(u, o⃗, a) ∶

Fobl(s, u, o⃗), in which a ∈ A (which means ⟨u, a, o⃗⟩ ∈ E) and cond is a predicate that must

be satisfied by (u, o⃗, a) (denoted γ ⊧ cond(u, o⃗, a)) in the current authorization state γ when

1Throughout, we refer to components of structured objects such as b with notation such as b.o⃗.
2We use FP(X) = {X ⊂ X ∣X is finite} to denote the set of finite subsets of the given set.

22

the rule is used to authorize the action. Fobl is an obligation function, which returns a finite

set B ⊂ B of obligations incurred (by u or by others) when the action is performed under this

rule.

Each action a denotes a higher order function of type (U × O∗) → (FP(U) × FP(O) × Γ) →

(FP(U) × FP(O) × Γ). When, in state s, user u ∈ s.U performs action a on the objects o⃗ ∈ s.O∗,

a(u, o⃗)(s.U, s.O, s.γ) returns ⟨s′.U, s′.O, s′.γ⟩ for the new state s′. Thus, actions can introduce

new users and objects, have side effects, and change the authorization state. Note that in general

performing an action also introduces new obligations; these depend on the policy rule used, as well

as on the action, and are handled in Definition 1 below.

Note that for a given action e ∈ E and a given policy rule p ∈ P , the transition relation is

deterministic. The following definition formalizes this relation.3

Definition 1 (Transition relation). Given any sequence of event/policy-rule pairs, ⟨e, p⟩0..k, and

any sequence of system states s0..k+1, the relation Ð→ ⊆ S × (E × P)+ × S is defined inductively on

k ∈ N as follows:

(1) We have sk
⟨e,p⟩kÐ→ sk+1 if and only if the policy rule pk = a(u, o⃗) ← cond(u, o⃗, a) ∶ Fobl(s, u, o⃗) ∈

P satisfies a = ek.a, and sk+1 = ⟨U ′′,O′′, t′′, γ′′,B′′⟩ satisfies

sk.γ ⊧ cond(u, o⃗, a)

ek.u ∈ sk.U and ek.o⃗ ∈ sk.O∗

⟨U ′′,O′′, γ′′⟩ = a(u, o⃗)(sk.U, sk.O, sk.γ)

B′′ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(sk.B − {e}), if ek ∈ B

sk.B ∪ Fobl(sk, ek.u, ek.o⃗), otherwise

and
3Notation: for j ∈ N, we use s0..j to denote the sequence s0, s1, . . . , sj , and for ` ∈ N, ` ≤ j, s0..` denotes the prefix

of s0..j and when ` < j the prefix is proper. Similarly, ⟨e, p⟩0..j denotes ⟨e0, p0⟩, ⟨e1, p1⟩, . . . , ⟨ej , pj⟩.

23

(2) s0
⟨e,p⟩0..kÐ→ sk+1 if and only if there exists sk ∈ S such that s0

⟨e,p⟩0..k−1Ð→ sk and sk
⟨e,p⟩kÐ→ sk+1.

2.5 Concrete Model

This section presents two instantiations of the above abstract obligation system that will be used

on the reminder of this dissertation. Section 2.5.1 presents the definitions of the mini-RBAC/mini-

ARBAC authorization model, as well, the obligation concrete model instantiated with it, and some

examples. In section 2.5.2 we present the formalization of the extended mini-HRU Access Control

Matrix Model, the instantiation of our obligation model using it as the authorization model. This

section also presents some examples.

2.5.1 mini-RBAC and mini-ARBAC Authorization Model

Role Based Access Control (RBAC) unlike AC matrix model uses a level of indirection between

users and permissions called “roles”. Instead of assigning permissions to users directly, RBAC al-

lows assigning permissions to roles and roles to users. Introducing roles makes it easier to manage

users and their associated permissions in a large organization.

Administrative Role Based Access Control (ARBAC) model is used to manage RBAC. ARBAC

allows administrators to assign and remove roles from users. The widely studied RBAC96 [49] and

ARBAC97 model [50] have been simplified somewhat by Sasturkar et al. for the purpose of study-

ing policy analysis, forming a family of languages called mini-RBAC and mini-ARBAC [51]. The

member of the family that we use supports administrative actions that modify user-role assign-

ments, but does not consider explicit separation of duty (SMER), role hierarchies (however, a pol-

icy with role hierarchy can be easily transformed in one that does not support it), sessions, changes

to permission-role assignments, or role administration operations, such as creation or deletion of

roles. The model does not distinguish between regular and administrative roles. The presentation

of mini-RBAC and mini-ARBAC here is based on the one given by Sasturkar et al. [51]. We

present examples of a mini-RBAC policy in table 2.1, and a mini-ARBAC policy in table 2.2 on

24

page 26.

We use mini-ARBAC and mini-RBAC in this study in part because of its relationship with

RBAC, an access control model that has gained wide acceptance in many sectors. Previous

work [31] in accountability analyzed obligations in the context of the AC matrix model. It is

interesting and useful to investigate issues that arise in integrating the user obligation systems with

another popular authorization system. It turns out that mini-ARBAC and mini-RBAC are simpler

than the AC matrix model, because administrative operations are more restricted. In the AC matrix

model, individual administrative actions can make multiple changes to the access control state,

whereas in mini-ARBAC, actions can change only one permission or role assignment at a time.

Moreover, the impact of those changes are simpler, as authorization depends on individual role

memberships, rather than on a combination of matrix entries. As we shall see, this simplification

has a beneficial impact on the complexity of deciding strong accountability.

Definition 2 (mini-RBAC:). A mini-RBAC authorization state γ is a tuple ⟨U ,R, P,UA,PA⟩

where:

• U ,R and P are the finite sets of users, roles and permissions respectively, where a permission

ρ ∈ P is a pair ⟨action, object⟩ .

• UA ⊆ U ×R is a set of user-role pairs. Each ⟨u, r⟩ ∈ UA indicates that user u is a member of

role r.

• PA ⊆ R × P is a set of permission-role pairs. If ⟨r, ρ⟩ ∈ PA, users in role r are granted the

permission ρ.

Definition 3 (mini-ARBAC policy:). A mini-ARBAC model ψ is a tuple ⟨CA,CR⟩ where:

• CA ⊆ R ×C × R is a set of the can assign rules, in which C is the set of preconditions, the

structure of which is discussed presently. Each ⟨ra, c, rt⟩ ∈ CA indicates that users in role

ra are authorized to assign a user to the target role rt, provided the target user’s current role

memberships satisfy precondition c. A precondition is a conjunction of positive and negative

25

roles. Target user ut satisfies c in γ (written ut ⊧γ c) if for each literal l in c, ut ⊧γ l, which is

defined by u ⊧γ r ≡ ⟨u, r⟩ ∈ γ.UA and u ⊧γ ¬r ≡ ⟨u, r⟩ ∉ γ.UA. So the action grant(ua,rt,ut)

is authorized if there exists ⟨ra, c, rt⟩ ∈ CA such that ua ⊧γ ra and ut ⊧γ c.

• CR ⊆ R×R is a set of can revoke rules. Each ⟨ra, rt⟩ ∈ CR indicates that a user belonging to

the (administrative) role ra has the capability to revoke the role rt from any target user (i.e.,

there exists ⟨ra, rt⟩ ∈ CR such that ua ⊧γ ra). There are no constraints on revocation based

on the other roles held by the target user.

Table 2.1: An example mini-RBAC authorization state, γ, for a software development life cycle.
Note that we allow the use of wildcards (*) in the expression of permissions to denote collections
of permission pairs.

U = {Joan, Carl, Alice, Bob, Eve}
R = {projectManager, developer, blackBoxTester, securityManager}
P = {⟨develop, sourceCode⟩, ⟨test, software⟩, ⟨assignProjObl, * ⟩}

UA = {⟨Joan, securityManager⟩, ⟨Alice, developer⟩, ⟨Bob, blackBoxTester⟩, ⟨Eve, projectManager⟩}
PA = {⟨developer, ⟨develop, sourceCode⟩⟩, ⟨projectManager, ⟨assignProjObl, *⟩⟩,

⟨blackBoxTester, ⟨test, software⟩⟩}

Table 2.2: An example mini-ARBAC policy, ψ, for a software development life cycle.

CA = {⟨securityManager, ¬ blackBoxTester, developer⟩, ⟨securityManager, ¬ developer, blackBoxTester⟩}
CR = {⟨securityManager, blackBoxTester⟩}

mini-RBAC/mini-ARBAC Concrete Model

In the instantiated concrete model we introduce here, O is a set of objects with U ∪ R ⊆ O, in

which R is the set of roles and U is the set of users of the system. The finite set of actions A

comprises of two different types of actions, administrative actions (e.g., grant and revoke) and

non-administrative actions (e.g., read, write, etc.). An event e is a tuple ⟨u, a, o⃗⟩ in which u is the

user performing the action, a is the action (i.e., grant, revoke, read, etc.), o⃗ is a tuple of objects,

the subtype of which depends on the action. For instance, o⃗ = ⟨rt, ut⟩ when a is an administrative

action, and o⃗ may be ⟨book⟩ when a is the non-administrative action (e.g., read).

26

In the concrete model, we use a mini-RBAC policy γ = ⟨P,R,UA,PA, ⟩ and a mini-ARBAC

ψ = ⟨CA,CR⟩. Often left fully abstract in RBAC models, permissions P ⊂ A × O∗ in our context

is taken to be a set of action, object-tuple pairs. We omit U because it occurs elsewhere in the

obligation-system state s. In our context, the authorization state γ can be modified dynamically

according to the policy ψ. As in the abstract model, the set of obligation-system policy rules P

consists of policy rules of the form p = a(u, o⃗) ← cond(u, o⃗, a) ∶ Fobl(s, u, o⃗). The way in which

it is determined whether the condition cond(u, o⃗, a) is satisfied in a given authorization state γ

depends on whether a is an administrative action. When a is grant (respectively, revoke), o⃗ is a

pair ⟨ut, rt⟩ and u is attempting to grant role rt to (respectively, revoke rt from) user ut. In this case

u’s authorization to do so is determined by γ.UA and ψ.CA (respectively, ψ.CR). When action a

is not administrative, u’s authorization is determined by γ.UA and γ.PA.

Let us now consider the transition from state s to some state s′ that occurs when an event e is

handled according to policy rule p. The fact that this is the transition taken is denoted by s
⟨e,p⟩Ð→ s′.

Letting e = (u, a, o⃗), we require that u ∈ s.U and o⃗ ∈ s.O∗. The action a(u, o⃗) determines the

values ⟨s′.U, s′.O, s′.γ⟩ based on (s.U, s.O, s.γ). Thus, actions can introduce and remove users

and objects and change the authorization state. The condition, cond(u, o⃗, a), in the policy rule p

must be satisfied for p to be used in the transition; Fobl associated with the particular p determines

any new obligations added in obtaining s′.B from s.B. These points are formalized in definition 5

below.

There are three cases in which a user u is authorized to perform an action a on an object tuple o⃗.

(i) When a is non-administrative, authorization depends on the permissions assigned to u’s roles;

(ii) when a grants a role, there must be a can assign rule for one of u’s roles such that the target

user ut satisfies the precondition; (iii) when a revokes a role, a similar requirement holds on the

existence of a can revoke rule. This is formalized in definition 4.

27

Definition 4. For all u ∈ U and o⃗ ∈ O∗, γ ⊧ cond(u, o⃗, a) if and only if the following holds4.

(∃r).(((u, r) ∈ γ.UA)∧

(i) [a ∉ administrative→ (⟨r, ⟨a, o⃗⟩⟩ ∈ γ.PA)]∧

(ii) (∀ut, rt).[a = grant ∧ o⃗ = ⟨ut, rt⟩ →

(∃c).((⟨r, c, rt⟩ ∈ ψ.CA) ∧ (ut ⊧γ c))]∧

(iii) (∀ut, rt).[a = revoke ∧ o⃗ = ⟨ut, rt⟩ →

((⟨r, rt⟩ ∈ ψ.CR))])

The transition relation presented in definition 1 preserves the invariant over states s = ⟨U,O, t, γ,B⟩

given by ∀b ∈ s.B ⋅ (b.u ∈ s.U) ∧ (b.o∗ ⊆ O∗) and s.U = s.γ.U .

Definition 5 (Transition relation). Given any sequence of event/policy-rule pairs, ⟨e, p⟩0..k, and

any sequence of system states s0..k+1, the relation Ð→ ⊆ S × (E × P)+ × S is defined inductively on

k ∈ N as follows:

(1) sk
⟨e,p⟩kÐ→ sk+1 holds if and only if, letting pk = a(u, o⃗) ← cond(u, o⃗, a) ∶ Fobl(s, u, o⃗), we

have sk.γ ⊧ cond(ek.u, ek.o⃗, ek.a), and sk+1 = ⟨U ′′,O′′, t′′, γ′′,B′′⟩, in which ⟨U ′′,O′′, γ′′⟩ =

a(u, o⃗)(sk.U, sk.O, sk.γ), B′′ = (sk.B − {ek}) when ek ∈ B, and B′′ = sk.B ∪ Fobl(sk, ek.u, ek.o⃗)

otherwise.

(2) s0
⟨e,p⟩0..kÐ→ sk+1 if and only if there exists sk ∈ S such that s0

⟨e,p⟩0..k−1Ð→ sk and sk
⟨e,p⟩kÐ→ sk+1.

Note that a reference monitor in our obligation system is going to require more than simply

that a transition is well defined to permit an action to be performed according to a given policy

rule. It will further require that performing the action and adding any obligations required by the

policy rule leaves the system in an accountable state.

Example 6 (Obligation System). We use the mini-RBAC, and mini-ARBAC policies presented in

tables 2.1 and 2.2 respectively to illustrate three scenarios that demonstrate how an obligation

4We use “[“ and “]” as an alternate form of parenthesis to aid the eye in recognizing the formula’s syntactic structure

28

system can be used to manage a software development cycle. For simplicity, we assume all the

roles and permissions in this example are associated with a specific software development project.

In scenario 1, Bob has an obligation to perform black-box testing of some software. Should the

security manager, Joan, attempt to revoke Bob’s black-box tester role, she would be prevented from

doing so. This is because Bob needs the role to fulfill his obligation, so revoking it would make

the system unaccountable. (Of course, in some situations, such as Bob leaving the company, Joan

would have to be able to force revocation. This requires handling the violation of accountability,

in chapter 4 we present techniques to restore accountability.)

In scenarios 2 and 3, Eve, the project manager performs discretionary actions that assign obli-

gations to team members. For this, she uses the action assignProjObl, which is governed by the

following policy rule in our framework:

assignProjObl(pm, ⟨oblAction,oblUser,
ÐÐÐÐÐ→
oblObject, oblStart,oblEnd⟩)

← (pm ⊧γ projectManager) ∶ {⟨oblUser,oblAction,
ÐÐÐÐÐ→
oblObject, [oblStart,oblEnd]⟩}

In scenario 2, Eve creates a new obligation that requires Alice to perform black-box testing within 1

month. The action Eve performs is given by assignProjObl(Eve, ⟨test, Alice, ⟨software⟩,01/01/2010,

02/01/2010⟩. Eve satisfies Eve ⊧γ projectManager, so the authorization system permits her to per-

form the action. However, the new obligation, ⟨Alice, test, ⟨software⟩, [01/01/2010, 02/01/2010]⟩,

would make the system unaccountable, since Alice does not have the role of black-box tester. So

Eve’s action is prevented.

In scenario 3, after discovering that Alice does not have the black-box tester role, Eve attempts

to create a new obligation that obligates Joan to grant Alice the role of black-box tester. For this,

Eve attempts the action, assignProjObl(Eve, ⟨Grant, Joan, ⟨blackBoxTester, Alice⟩, 01/01/2010,

02/01/2010⟩). This would generate the new obligation ⟨Joan, Grant, ⟨blackBoxTester, Alice⟩,

[01/01/2010, 02/01/2010]⟩. However, as Alice does not satisfy the conditions required for assign-

ment to this role, Joan would be unable to fulfill this obligation.

29

2.5.2 Extended mini-HRU Access Control Matrix Model

The HRU Access Control Matrix Model [27] is a well-known and popular access control model

which is expressive enough to model many real world systems. However, we extend the original

HRU Access Control Matrix Model in a way that conditional commands can have positive and

negative conditions, and the conditions are expressed in a disjunctive normal form (DNF). In addi-

tion, it also supports non-administrative commands (i.e., commands that do not modify the matrix

of rights). In contrast to the original HRU model, we only consider two primitive administrative

operations, namely, remove a right and enter a right. The components that comprise the extended

mini-HRU model is discussed below:

Definition 7 (Extended mini-HRU Access Control Matrix Model:). An HRU Access Control Ma-

trix Model γ is a tuple ⟨R,O,U ,M,AC,NA⟩ where:

• R, O and U are respectively the finite set of rights, objects and users.

• M = FP(U × O ×R) is the matrix of rights, which represents the set of finite permissions.

Individual positive permissions are given by m = (u, o, r) when r ∈ M[u, o], and negative

permission are denoted by ¬m = (u, o,¬r) when r ∉M[u, o]. This signifies that a user u has

a right r over an object o when r ∈M[u, o], and u does not have right r over object o when

r ∉M[u, o].

• AC is a finite set of administrative commands where each command performs a finite se-

quence of primitive administrative operations. Each primitive administrative operation can

enter (resp., remove) a right to (resp., from) into M . Thus, individual administrative com-

mands can make multiple changes to M .

Each of the administrative command ac ∈ AC has the following form:

command α(X1,X2, ...,Xk)

if c then

op1, ..., opn

30

end

α represents the name of the command, X1, ...,Xk are the formal parameters to the com-

mand (i.e., users and/or objects). A precondition c is a conjunction of positive and negative

permissions. A command can be executed only if the precondition is evaluated to be true

according to M . We say that a precondition c = ⋀i li is satisfied when all of its conjuncts

li ∈ c are satisfied with respect to M denoted by li ⊧M .

li ⊧M =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ∈M[u, o] if li =mi where mi = (u, o, r)

r ∉M[u, o] if li = ¬mi where mi = (u, o, r)

false otherwise

In contrast to the original HRU Access Control Matrix Model, our extended model supports

multiple commands with the same name α. When this happens, the commands differ only

on their preconditions, in such a way that is equivalent to having a unique command with

a precondition expressed as a disjunction of the separate preconditions5. Each opi in the

command represents a primitive operation that can alterM . The extended mini-HRU Access

Control Matrix Model supports the following two primitive operations:

– enter r into M[u, o]: This operation adds the right r to the cell M[u, o].

– remove r from M[u, o]: This operation removes the right r from the cell M[u, o].

When a command is executed, the effect of the primitive operations associated with it is

atomic. Let us consider the following example.

Example 8 (Atomicity). In this example we demonstrate that the effect of our administrative

commands are atomic.

command grant ● rt(ua ,ut ,ot)

if (own ∈M[ua, ot]) ∧ (rx ∈M[ut, ot]) then
5Due to the restriction of the model, the resulting precondition would be in disjunctive normal form.

31

M[ut, ot] ∶=M[ut, ot] ∖ {rx}

M[ut, ot] ∶=M[ut, ot] ∪ {rt}

M[ut, ot] ∶=M[ut, ot] ∪ {rx}

end

In the previous command, we can see that the first primitive operation removes the rx right

from M[ut, ot]. However, the last primitive operation restores the rx right to M[ut, ot]. Due

to the atomic nature of the command, it seems like the right rx was never removed. For this

reason, we just consider the end effect of the command. In this example, the end effect of

executing this command is user ut will end up with the rights rx and rt over object ot.

• NA represents the set of non-administrative commands. Recall that the original HRU Ac-

cess Control Matrix Model does not support non-administrative commands. Each of the

non-administrative commands na ∈ NA has the following form:

command α(X1,X2, ...,Xk)

if c then α is authorized

end

The terminology used in non-administrative commands is similar to that of administra-

tive commands. Note that, we could use an administrative command to simulate a non-

administrative command. This can be trivially accomplished by entering a right that appears

in the condition of the command, (e.g., if we have a command that checks read ∈ M[u, o],

then we could have the following primitive M[u, o] ∪ {read}. Note that, this primitive does

not alter the cell M[u, o]).

Example 9 (Non-administrative command). In this example we present a non-administrative

command that allows a user to read a file.

command read ● file(u,file)

if (read ∈M[u, file]) then

read file

32

end

Extended mini-HRU Access Control Matrix Concrete Model

We instantiate our model to use HRU Access Control Matrix Model as the authorization state. In

our instantiated concrete model O is a set of objects with U ⊆ O, in which U is the set of users of

the system. The finite set of actions A comprises of two different types of actions, administrative

actions (e.g., grant a right and revoke a right) and non-administrative actions (e.g., read, write,

etc.). Each action a ∈ A is now assumed to perform a command from the set AC ∪ NA. When

a performs a command from the set AC (resp., NA) it is called an administrative (resp., a non-

administrative) action. Note that, for the rest of the dissertation, actions and commands will mean

the same thing and will be used interchangeably.

Example 10 (Administrative Obligation). In this example we present an administrative obligation

b1 = ⟨grant ● rt(ua ,ut ,ot), [5,10]⟩ that utilizes the following command.

command grant ● rt(ua ,ut ,ot)

if (own ∈M[ua, ot]) ∧ (r1 ∈M[ut, o3]) then

M[ut, ot] =M[ut, ot] ∪ {rt}

end

In our context, the rights r in M are modified dynamically when some administrative ac-

tion takes place. The set of obligation-system policy rules P consists of policy rules of the form

a(st, u,O) ← cond ∶ Fobl. The user u will be authorized to perform action a on object O in state st

if it satisfies cond(u, t, σ,O) associated with that action. The condition cond(u, t, σ,O) is satisfied

when the user u is authorized to perform action a on the set of objects O at time t according γ.M .

Here, σ = γ, where γ is a HRU Access Control Matrix Model. The cond(u, t, σ,O) of an action a

gives the pre-condition for the command associated with a.

33

2.6 Summary

This chapter has presented background necessary to understand the contributions of this disserta-

tion. It also has given a brief overview of each of the components of our obligation framework

and discuss their interactions. A central organizing principle of the architecture is that the system

should be in an accountable state as much of the time as possible without interfering unnecessarily

with usability. Furthermore, we have also presented the abstract obligation model. It has also re-

viewed the mini-ARBAC/mini-ARBAC and the extended mini-HRU authorization models. It then

have defined the obligation concrete models instantiated with both authorization models.The next

chapters use the concrete obligation models presented in this chapter.

34

CHAPTER 3: ACCOUNTABILITY PROPERTIES

This chapter presents a reformulation of the definitions of strong and weak accountability prop-

erties [31]. Accountability properties are defined in terms of hypothetical schedules according to

which the given pool of obligations could be executed, starting in a given state. Strong accountabil-

ity requires that each obligation be authorized throughout its entire time interval, no matter when

during their intervals the other obligations are scheduled, and no matter which policy rules are used

to authorize them. On the other hand, weak accountability allows an obligation to be unauthorized

during part of its time interval, provided that if the obligated user waits for other obligations to be

fulfilled, it is guaranteed that the action will become authorized before its deadline.

The property’s name, accountability, reflects the fact that it is appropriate for an organization

to hold those accountable who fail to perform authorized obligations. To the extent that it can be

maintained, accountability is helpful for heightening the benefits derived by assigning user obli-

gations. These benefits include facilitating effective planning, including obtaining early warning

when plans are infeasible, as well as transparency and awareness of which users are failing to fulfill

their duties and the impact of such failures.

Deciding whether a system state is accountable requires reasoning about future states of the

authorization system. It is reasonable to assign to a user an obligation that the user is not currently

authorized to perform, provided that other obligations will grant that authorization prior to the time

the first obligation must be performed. As we have discussed in chapter 2, a reference monitor can

help maintain accountability by preventing actions that would cause it to be violated. To this end,

it is necessary to study how accountability checking can impact the performance of the reference

monitor.

Recall that the results presented by Irwin et al. were inconclusive from the standpoint of practi-

cality. When they instantiated their obligation model with a simplified version of the HRU Access

Control Matrix Model [27], the problem of determining strong accountability becomes polyno-

mial. However for the algorithm they present, this polynomial has degree 4 in the number of

35

obligations and degree 2 in the policy size. Furthermore, no performance evaluation is provided

to determine the limits of problem instance size that can be handled efficiently in practice. Addi-

tionally, determining weak accountability in the instantiated case remains intractable (co-NP hard)

and no decision procedures are presented.

In this chapter, we instantiate the authorization portion of the obligation model of Irwin et

al. with a previously studied administrative role-based access control model [48, 50] called mini-

RBAC and mini-ARBAC [51]. Using mini-ARBAC and mini-RBAC instead of the extended mini-

HRU Access Control Matrix Model simplifies the problem of determining accountability, largely

because obligatory actions are limited to making at most one change to the authorization state per

action. Our treatment here ignores the possibility of “cascading” of obligations. Specifically, we

achieve this by assuming actions that can cause new obligations to be incurred are disjoint from

actions that can be obligatory (in chapter 6, we generalize the definition of the strong accountabil-

ity property considering arbitrary cascading of obligations and also present decision procedures

of strong accountability that can handle with restricted form of cascading obligations). We also

present decision procedures for strong and weak accountability, which we then evaluate empiri-

cally. Finally, we present an improved decision procedures for strong accountability when consid-

ering the extended mini-HRU Access Control Matrix Model presented in previous chapter as the

authorization state. Empirical evaluations of these procedures are also presented.

The results presented on this chapter support the thesis that maintaining strong accountability

in the reference monitor is reasonable in most applications, and that in many, even weak account-

ability can be supported adequately.

3.1 Illustrations and Utility of Accountability

Before we formally define accountability properties, let us present four simple examples in a

software-development environment that illustrate the use of accountability in detecting that oblig-

atory actions are unauthorized when the obligation is introduced, rather than when the action is

attempted. Let us assume Eve is a project manager. She uses the action assignProjObl to assign

36

obligations to team members. The action assignProjObl takes as input the values that are placed

into the new obligation.

Suppose that Alice’s only role is that of a developer, which enables her to develop software. In

scenario 1, Eve creates an obligation that requires Alice to perform black-box testing. In doing so,

Eve makes the state unaccountable, as Alice does not have the requisite roles to perform this action.

Thus, a reference monitor that tries to enforce accountability will prevent Eve from performing this

assignProjObl. Without this intervention, the inadequacy of Alice’s roles would be discovered only

when Alice attempts to perform the testing.

Now, suppose Bob has the role blackBoxTester. Assume that the organization uses mandatory

vacation to help prevent insiders committing fraud [9] and that Eve is responsible for ensuring her

employees adherence to this policy. In scenario 2, Bob is required to go a mandatory vacation in

July. Eve adds obligations that Joan, in the role securityManager, removes Bob’s roles while Bob

is on vacation and restore them when he returns. Now, if Paul, another projectManager, tries to

assign to Bob an obligation to perform black-box testing in July, Paul will be prevented from doing

so, as Bob will not have the necessary roles at that time. Paul discovers this when he tries to assign

obligations to Bob rather than when Bob attempts to perform the task or fails to make the attempt

due to being out of the office.

In scenario 3, suppose Bob already has an obligation to perform black-box testing of a software

component. Should Joan attempt to revoke Bob’s blackBoxTester role, she would be prevented be-

cause Bob will need it to fulfill his existing obligation. Under normal circumstances, this prevents

Joan inadvertently removing a needed role. However, in some situations, such as when Bob leaves

the company, Joan must be able to force the role revocation and in this case must remove or re-

assign Bob’s obligations. Either of these courses of actions could interact with other obligations

already in the pool. For instance, there might not be another user to whom Bob’s obligation can

be assigned. Simply removing the obligation might be unacceptable, either because the action is

required in its own right or because some later obligation depends on its having been performed.

Sometimes there will be no satisfactory solution, as when a key employee leaves the company.

37

However, to assist Joan in managing the situation when a solution exists, it is necessary to provide

tools that support finding such a solution.

Assume the company does not allow a developer to perform black-box testing (i.e., a separation

of duty policy). In scenario 4, Eve wants Alice to perform some black-box testing. To this end,

Eve attempts to create a new obligation to Alice perform black-box testing. Her action will be

denied, and she is going to discover that Alice does not have the blackBoxTester role. After

discovering that, Eve tries to add a new obligation to Joan to grant Alice the role of black-box

tester. However, as Alice does not satisfy the conditions required for assignment to this role, Eve

again will have her action denied. Note that in these scenarios, the system alerts Eve immediately

that the tasks she is attempting to assign cannot be completed, and enables her to revise her plans

accordingly. Without the accountability checks, Eve would not be alerted to the fact that the

obligations cannot be fulfilled until the obligated users attempted the obligatory actions and were

prevented from performing them by the authorization system. The above scenarios illustrate the

utility of accountability when considering obligations that have only authorization dependencies

among themselves. Note that, it is possible to extend our notion of accountability to support

other notions of dependencies, for instance, functional dependencies. For example, Bob has an

obligation b1 to create a report in June, and Alice has an obligation b2 to review the report in July.

Obligation b2 has a functional dependency on obligation b1. If obligation b1 does not happen,

obligation b2 cannot happen. However, addressing these is a matter of future work.

3.2 Strong Accountability Property

As discussed in the introduction, even though users are capable of failing to fulfill their obligations,

it is very helpful to make use of a conditional notion of correctness that says, roughly, assuming

the users fulfill their obligations diligently, all users will be authorized to perform their obligations

in the appropriate time interval. This section formalizes this notion called strong accountability

Accountability is defined in terms of hypothetical schedules according to which the given pool

of obligations could be executed, starting in a given system state. Under the assumption that

38

each prior obligation has been fulfilled during its specified time interval, accountability requires

that each obligation be authorized throughout its entire time interval, no matter when during that

interval the other obligations are scheduled, and no matter which policy rules are used to authorize

them.

Given a set of obligations B, a schedule of B is a sequence b1..n that enumerates B, in which

n = ∣B∣ (i.e., ∣B∣ returns the size of the set B). A schedule of B is valid if for all i and j, if

1 ≤ i < j ≤ n, then bi.start ≤ bj.end. This prevents scheduling bi before bj if bj.end < bi.start. Given

a system state s1, and a policy P , a proper prefix 1 b1..j of a schedule b1..n for B is authorized by

policy-rule sequence p1..j ⊆ P∗ if there exists sj+1 such that s1
⟨b,p⟩1..jÐ→ sj+1.

Let us now formalize the strong accountability property.

Definition 11 (Strong accountability). Given a state s1 ∈ S and a policy P , we say that s1 is

strongly accountable (denoted by sa(s1, P)) if for every valid schedule, b1..n, every proper prefix

of it, b1..k, for every policy-rule sequence p1..k ⊆ P∗ and every state sk+1 such that s1
⟨b,p⟩1..kÐ→ sk+1,

there exists a policy rule pk+1 and a state sk+2 such that sk+1
⟨b,p⟩k+1Ð→ sk+2.

Example 12 (Strong Accountability). Using the mini-RBAC, mini-ARBAC policies presented in

chapter 2 tables 2.1 and 2.2, let us assume we have two pending obligations b1 and b2 defined as

follows:

• b1 ∶ Joan must grant the developer role to Carl in time [7,9]

• b2 ∶ Carl must develop sourceCode in time [10,20]

The example obligation system is strongly accountable because obligation b2 is guaranteed

to be authorized between time 10 to 20, as obligation b1 can be fulfilled any time in its time in-

terval, since Joan already has the role of security manager and Carl satisfies the CA rule constraints.

1Notation: for j ∈ N, we use s1..j to denote the sequence s1, s2, . . . , sj , and for ` ∈ N, ` ≤ j, s1..` denotes the prefix
of s1..j and when ` < j the prefix is proper. Similarly, ⟨e, p⟩1..j denotes ⟨e1, p1⟩, ⟨e2, p2⟩, . . . , ⟨ej , pj⟩.

39

3.2.1 Algorithm for Determining Strong Accountability

This section begins by presenting our incremental algorithm for determining whether adding a

new obligation to a strongly accountable obligation pool preserves the property. It then discusses

the complexity of the algorithm. A non-incremental version of the algorithm is then discussed.

The algorithms presented here and in the next section are specialized to mini-ARBAC and mini-

ARBAC, but can be generalized to support other models in which user rights are modified by

administrative actions. As discussed in the section above, all the techniques presented here make

the assumption that obligatory actions cannot cause new obligations to be incurred.

3.2.2 The Algorithm

Algorithm 1 is designed to be used incrementally for maintaining strong accountability. Algo-

rithm 1 takes as input a strongly accountable set of obligations B, a mini-RBAC authorization

state γ, a mini-ARBAC policy ψ, and a new obligation b. It returns true if adding b to B preserves

strong accountability, and false otherwise. Below, we discuss using it to determine whether a given

set of obligations is strongly accountable.

Algorithm 1 StrongAccountable (γ,ψ,B, b)

Input: A policy ⟨γ,ψ⟩, a strongly accountable obligation set B, and a new obligation b.
Output: returns true if addition of b to the system preserves strong accountability.

1: if Authorized (γ,ψ, B, b)= false then
2: return false
3: if b.a ≠ grant or revoke then
4: return true
5: After:={b′∣b′ ∈ B ∧ b′.end> b.start}
6: B ∶= B ∪ b
7: for each obligation b∗ ∈After do
8: if Authorized (γ,ψ, B , b∗)=false then
9: B ∶= B ∖ b /* Restore representation of B */

10: return false
11: return true

The intuition behind Algorithm 1 is as follows. To determine whether adding b to B preserves

strong accountability, the algorithm inspects the current authorization state ⟨γ,ψ⟩ and each obli-

gation b′ ∈ B that could be performed prior to b (b′ ∈ B ∧ b′.end ≤ b.start) to determine whether

40

b will be authorized during its entire time interval, [b.start, b.end]. The algorithm uses procedure

Authorized (Algorithm 2) for this purpose. If b.a is an administrative action, the algorithm also de-

termines whether b interferes with authorizations required by later obligations b∗ (b∗ ∈ B ∧ b∗.end

> b.start). When b.a is not administrative, this is not necessary, as it does not affect authorizations.

Because b.u’s roles can change during the interval [b.start, b.end], Algorithm 2 must check

each subinterval defined by start and end points of obligations inB to check whether the obligatory

action is authorized during that period. For this it uses the set subint(B), which we construct as

follows. Let us consider the set timepoints(B) which is defined by timepoints(∅) = ∅ and

timepoints(B ∪ {b}) = timepoints(B) ∪ {b.start, b.end}. The set subint(B) is now defined by

subint(B) = {[s, e] ∣ s, e ∈ timepoints(B) ∧ (s < e) ∧ ¬∃m ∈ timepoints(B).(s <m) ∧ (m < e)}.

Algorithm 2 uses procedure hasRole (Algorithm 3) to determine whether a user’s role member-

ships conform to requirements for b.a to be authorized. Recall that to be authorized, a grant action

grant(u, rt, ut) requires that ut ⊧γ c, in which c is given by a can assign rule, ⟨ra, c, rt⟩ ∈ ψ.CA.

This requires the ability to test that ut is not in certain roles, as required to satisfy a query such as

u ⊧γ ¬r. Thus hasRole takes a query and the time interval of b, during which the query should

be satisfied. When a pending obligation b′ ∈ B can change whether the query is satisfied during

the time interval of b, b.a is not guaranteed to be authorized during its full time interval, indicating

that strong accountability is not satisfied. Otherwise, the current policy (γ.UA) is investigated to

determine whether the query is satisfied at present. Then the last pending obligation scheduled to

be performed before b that affects the role membership in question is found and inspected. The

result of hasRole is then determined on this basis.

The procedure, hasRole (see page 43), must find the last grant or revoke of the given role to the

given user. To support this, we use a modified interval search tree, which performs such lookups

in time O(logn), in which n = ∣B∣. Using it, the time complexity of hasRole is also O(logn).

For each time interval in subint(B ∪ {b.start, b.end}) that overlaps [b.start, b.end], Authorized

calls hasRole once for each policy rule and once for each literal in the associated constraint c,

making the time complexity of Authorized O(qmn logn), in which q is the number of policy rules

41

Algorithm 2 Authorized (γ,ψ,B, b)

Input: A policy ⟨γ,ψ⟩, an obligation set B, and an obligation b.
Output: returns true if b is authorized with respect to γ.UA and B

1: if b = ⟨u, grant, ⟨rt, ut⟩, [start, end]⟩ then
2: return (∀[s, e] ∈ subint(B ∪ {start, end})).

(overlaps([s, e], [start, end]) →
(∃⟨ra, c, rt⟩ ∈ ψ.CA).(hasRole(γ,ψ,B,u ⊧ ra, [s, e])
∧(∀l ∈ c).(hasRole(γ,ψ,B,ut ⊧ l, [s, e]))))

3: else if b = ⟨u, revoke, ⟨rt, ut⟩, [start, end]⟩ then
4: return (∀[s, e] ∈ subint(B ∪ {start, end})).

(overlaps([s, e], [start, end]) →
(∃⟨ra, rt⟩ ∈ ψ.CR).(hasRole(γ,ψ,B,u ⊧ ra, [s, e]))

5: else /* b = ⟨u, a, ⟨o⃗⟩, [start, end]⟩ */
6: return (∀[s, e] ∈ subint(B ∪ {start, end})).

(overlaps([s, e], [start, end]) →
(∃⟨ra, ⟨a, o⃗⟩⟩ ∈ γ.PA).
(hasRole(γ,ψ,B,u ⊧ ra, [s, e]))

(q =Max{∣CA∣, ∣CR∣, ∣PA∣}) and m is the maximum size of the role constraints in the can assign

rules in CA. In the worst case, in which the obligatory action is administrative (grant or revoke),

the main procedure StrongAccountable calls Authorized n times. This results in an overall worst-

case time complexity ofO(qmn2 logn). When the obligation to be added, b, is non-administrative,

the time complexity of StrongAccountable is reduced to O(qmn logn). The memory complexity,

when implemented with a modified interval search tree is O(∣R∣⋅∣U ∣+n).

Theorem 13. Given a set of obligations B that is known to be strongly accountable, a mini-

ARBAC policy ψ, a mini-RBAC authorization state γ including an initial authorization state and

a new obligation b. Deciding whether B ∪ {b} is strongly accountable can be done in polynomial

time in the size of the B, γ and ψ.

3.2.3 Non-incremental Version

Algorithm 2 can be used in a non-incremental fashion to determine whether a given obligation set

B is strongly accountable. This is achieved by adding each administrative obligation to an empty

modified interval search tree and then calling Authorized for each obligation b ∈ B to see whether

it is authorized in the context of ⟨γ,ψ⟩ and B. This can be done in O(qmn2 logn + a logn) =

42

Algorithm 3 hasRole (γ,ψ,B,u ⊧γ l, [s, e])

Input: A policy ⟨γ,ψ⟩, an obligation set B, a query u ⊧γ l in which l has either the form r or ¬r, and a
time interval [s, e].

Output: Returns true if u ⊧γ l is guaranteed to hold throughout the interval [s, e].
1: if l = r then /* positive role constraint */
2: if (∃⟨u′, revoke, ⟨r, u⟩, [start, end]⟩ ∈ B).(

overlap([s, e], [start, end])) then
3: return false
4: if ⟨u, r⟩ ∈ γ.UA then
5: if (∃⟨u′, revoke, ⟨r, u⟩, [start, end]⟩ ∈ B).(end < s) then
6: Select such a tuple so that end is maximized
7: if (∃⟨u′′, grant, ⟨r, u⟩, [start′, end′]⟩ ∈ B).

(start′ > end ∧ end′ < s) then
8: return true
9: else

10: return false
11: else
12: return true
13: else /* ⟨u, r⟩ ∉ γ.UA */
14: if (∃⟨u′, grant, ⟨r, u⟩, [start, end]⟩ ∈ B).

(end < s) then
15: Select such a tuple so that start is maximized
16: if (∃⟨u′′, revoke, ⟨r, u⟩, [start′, end′]⟩ ∈ B).

(overlap([start, e], [start′, end′])) then
17: return false
18: else
19: return true
20: else
21: return false
22: else /* l = ¬r negative role constraint */
23: In case of negative role checking (u ⊧γ l where l = ¬r), the algorithm follows similar steps, reversing

the roles of “GRANT” and “REVOKE” and reversing the negative and positive role tests.

O(qmn2 logn), in which a is the number of obligations to perform administrative actions (a ≤ n).

(The term a logn is the cost of constructing the search tree.)

3.2.4 Generalizing the Authorization Model (Extended mini-HRU Access Control Matrix

Model)

Algorithm 1, without modifying the time complexity, can be extended to support administrative

actions that modify the PA, CA and CR components of the authorization state. We believe greater

generalization is also possible, for instance, to support ARBAC/RBAC models that support role

43

hierarchies and in which the role hierarchy can be modified. However, doing so seems likely to

increase the algorithm’s complexity by a factor of the number of roles in the system.

In addition, algorithm 1 can be also extended to support other authorization models. In this

section, we instantiate the abstract obligation model, presented in chapter 2, to use an modified

version of the extended mini-HRU Access Control Matrix Model as the authorization model.

3.2.4.1 Algorithm for dealing with the extended mini-HRU Access Control Matrix Model

This section presents an incremental algorithm for deciding whether adding a new obligation to

a strongly accountable obligation pool preserves the strong accountability property. Algorithm 4

is designed to be used incrementally for maintaining strong accountability. It takes as input a

strongly accountable set of obligations B, an extended mini-HRU Access Control Matrix Model

γ, and a new obligation b. It returns true if adding b toB preserves strong accountability, and false,

otherwise.

Algorithm 4 StrongAccountable (γ,B, b)

Input: An extended mini-HRU Access Control Matrix Model γ, a strongly accountable obligation set B,
and a new obligation b.

Output: returns true if addition of b to the system preserves strong accountability.
1: if Authorized (γ, B, b)= false then
2: return false
3: if b.a ∈ γ.NA then
4: return true
5: After:={b′∣b′ ∈ B ∧ b′.end> b.start}
6: B′ ∶= B ∪ b
7: for each obligation b∗ ∈After do
8: if Authorized (γ, B′ , b∗)=false then
9: return false

10: B ∶= B′

11: return true

The idea behind Algorithm 4 is very similar to the Algorithm 1. It tries to determine whether

adding a new obligation b to B preserves strong accountability. To this end, Algorithm 4 checks

all the obligations that can be performed prior to b to decide whether b will be authorized during

its entire time interval (i.e., the obligation is satisfying all the preconditions in the command),

44

[b.start, b.end], or not. In order to check if an obligation is authorized, Algorithm 4 uses procedure

Authorized (Algorithm 5).

Note that, if b.a is an administrative command, the algorithm also needs to determine whether

b may interfere with authorizations required by later obligations b∗ (b∗ ∈ B ∧ b∗.end > b.start). In

the case of b.a being a non-administrative command (b.a ∈ γ.NA), this step is not necessary, since

non-administrative commands do not alter the authorization state.

Algorithm 5 uses the same idea of Algorithm 2. But now, instead we check whether b.u’s rights

changed during the interval [b.start, b.end]. To this, Algorithm 5 checks each subinterval defined

by start and end points of the obligations in B to check whether the obligatory action is authorized

during that period. For this, it uses the set subint(B), which is constructed in the same way as

explained for Algorithm 2

Algorithm 5 uses the procedure hasPermission (Algorithm 6) to determine whether a user has

the necessary permissions to perform the command defined by b.a. To be authorized an obligation

must satisfy the preconditions defined in the command rule of the action b.a. For this, it is necessary

to check whether a user has a particular right over an object in a particular time interval. Thus,

hasPermission takes a permission (i.e., m = (u, o, r)) and the time interval of b, during which

the permission should be satisfied. When a pending obligation b′ ∈ B can change whether the

permission is satisfied during the time interval of b, b.a is not guaranteed to be authorized during

its full time interval, indicating that strong accountability is not satisfied. Otherwise, the current

matrix of rights (γ.M) is investigated to determine whether the permission is satisfied at present.

Then the last pending obligation scheduled to be performed before b that affects the cell in question

is found and inspected. The result of hasRole is then determined on this basis. Note that, hasRole

utilizes an auxiliary boolean function overlap, which receives two time interval as input and checks

whether they overlap or not.

The procedure, hasPermission, must find the last obligation that “enters” or “removes” a given

right over an object to the given user. To support this, we use a modified interval search tree (de-

noted by tree(B)). To build the tree we inspect each administrative obligation and add all the

45

Algorithm 5 Authorized (γ,B, b)

Input: An extended mini-HRU Access Control Matrix Model γ, an obligation set B, and an obligation b.
Output: returns true if b is authorized with respect to γ.UA and B

1: return (∀[s, e] ∈ subint(B ∪ {b.start, b.end})).
(overlaps([s, e], [b.start, b.end]) → (∃α ∈ γ.AC ∪ γ.NA).(α = b.a)∧
(∀l ∈ α.c).(hasPermission(γ,B, l, [s, e])))

primitives related to b.a in the tree (i.e., enter or remove a right on an object to/from a user). Note

that the primitives contain the action, the rights, the objects, the target users, and time windows that

are related to the administrative obligations. One can perform lookups in the tree in timeO(log k),

in which k is equal the total number of primitive operations generated by all administrative obli-

gations in B. Recall that each administrative obligation is associated with a command that may

contain more than one primitive operation.

By using the above interval search tree, the time complexity of hasPermission is alsoO(log k).

For each time interval in subint(B ∪ {b.start, b.end}) that overlaps [b.start, b.end], Authorized

calls hasPermission once for each policy rule and once for each literal in the associated constraint

c, making the time complexity of Authorized O(qmn log k), in which q is the number of policy

rules (q = Max{∣NA∣, ∣AC∣}) and m is the maximum size of the preconditions in the NA and

AC, and n = ∣B∣. In the worst case, in which the obligatory action is administrative (grant or

revoke), the main procedure StrongAccountable calls Authorized n times, once for each obligation

scheduled after the obligation in question. This results in an overall worst-case time complexity

of O(qmn2 log k). When the obligation to be added, b, is non-administrative, the time complexity

of StrongAccountable is reduced to O(qmn log k). The space complexity of this algorithm, when

implemented with a modified interval search tree, is O(∣R∣⋅∣U ∣⋅∣O∣+n). Note that, the above a

algorithm assumes that policy conditions are purely conjunctive. This corresponds to the same

assumption we make in the algorithm presented above for mini-ARBAC/mini-RBAC. However,

the above algorithm also assumes that each obligatory action may add or remove one or more

rights from the matrix cells. Although, Algorithm 1 and Algorithm 4 have the same complexity

cost, because Algorithm 4 accept multiple modifications of rights per command; one needs to do

46

Algorithm 6 hasPermission (γ,B, l, [s, e])

Input: An extended mini-HRU access control model γ, an obligation set B, a permission l to be queried in
which l has either the form m = ⟨u, o, r⟩ or ¬m = ⟨u, o,¬r⟩, and a time interval [s, e].

Output: Returns true iff l is guaranteed to hold throughout the interval [s, e].
1: if l =m then /* positive permission */
2: if (∃⟨u′, remove, ⟨u, o, r⟩, [start, end]⟩ ∈ tree(B)).(

overlap([s, e], [start, end])) then
3: return false
4: if r ∈ γ.M[u, o] then
5: if (∃⟨u′, remove, ⟨u, o, r⟩, [start, end]⟩ ∈ tree(B)).(end < s) then
6: Select such a [start, end] so that end is maximized
7: if (∃⟨u′′, enter, ⟨u, o, r⟩, [start′, end′]⟩ ∈ tree(B)).

(start′ > end ∧ end′ < s) then
8: return true
9: else

10: return false
11: else
12: return true
13: else /* r is not originally in γ.M(u, o) */
14: if (∃⟨u′, enter, ⟨u, o, r⟩, [start, end]⟩ ∈ tree(B)).

(end < s) then
15: Select such a [start, end] so that start is maximized
16: if (∃⟨u′′, remove, ⟨u, o, r⟩, [start′, end′]⟩ ∈ tree(B)).

(overlap([start, e], [start′, end′])) then
17: return false
18: else
19: return true
20: else
21: return false
22: else /* l = ¬m */
23: In case of negative right checking (l = ¬m), the algorithm follows similar steps, reversing the roles

of “enter” and “remove” and reversing the negative and positive right tests.

k look ups on the data structure. Consequently, the cost of the Algorithm 4 will be greater or equal

Algorithm 1.

The algorithm presented by Irwin et al. [31] differs from this extended mini-HRU Access Con-

trol Matrix Model variant of our algorithm by allowing disjunctions as well as conjunctions in

policy-rule conditions. So, Irwin’s algorithm supports an obligation model that is strictly more

expressive than that supported by ours. The HRU Irwin’s algorithm runs in time O(z2n4). The ad-

ditional expressivity of obligations supported by the Irwin algorithm explains a factor of O(zn) in

the difference between the complexities of these algorithms. The remaining factor of O(n/ logn)

47

arises because we obtain a performance improvement by using a data structures based on binary

interval search tree. Were a similar data structure used in the Irwin’s algorithm, this difference

would disappear.

Algorithm 4 can also be used in a non-incremental fashion to determine whether a given obli-

gation set B is strongly accountable. This is achieved by adding each primitive operations of all

the administrative obligations to an empty modified interval search tree tree(B) and then calling

Authorized for each obligation b ∈ B to see whether it is authorized in the context of γ and B. This

can be done in O(qmn2 log k + a log k) = O(qmn2 log k), in which a is the number of administra-

tive obligations. (The term a log k is the cost of constructing the search tree, and k is the number

of primitive operations that alter the authorization state.)

3.3 Weak Accountability

Given a schedule b1..n, a proper prefix b1..k is a critical prefix if for all j such that k < j ≤ n,

bk.end ≤ bj.end. The intuition behind the critical prefix definition is that if an obligation is at-

tempted during the final subinterval prior to its end time, it must be authorized. However, if it is

attempted before then, it need not be authorized, in which case, the reference monitor will prevent

its being performed. This is acceptable because weak accountability is intended to guarantee that

obligatory actions are authorized in their final subinterval. Weak accountability requires much the

same thing as strong accountability, but only for critical prefixes.

Definition 14 (Weak accountability). Given a state s1 ∈ S and a policy P , we say that s1 is weakly

accountable if for every valid schedule, b1..n, and every critical prefix of it, b1..k, for every policy-

rule sequence p1..k ⊆ P and state sk+1 such that s1
⟨b,p⟩1..kÐ→ sk+1, there exists a policy rule pk+1 and

a state sk+2 such that sk+1
⟨b,p⟩k+1Ð→ sk+2.

Example 15 (Weak Accountability). Using the mini-RBAC, mini-ARBAC policies presented in

chapter 2 tables 2.1 and 2.2, let us assume we have two pending obligations b1 and b2 defined as

follows:

48

• b1 ∶ Joan must grant developer role to Carl in time [7,9]

• b2 ∶ Carl must develop sourceCode in time [5,20]

The example obligation system is weakly accountable, but not strongly accountable. It is not

strongly accountable as obligation b2 is not authorized before time 7 and is not guaranteed to be

authorized until time 9. Initially Carl does not have the role developer (table 2.1) and Joan may

not grant him the role until time 9. On the other hand, the system is weakly accountable because

obligation b1 can be fulfilled any time in its time interval, since Joan already has the role of security

manager and Carl satisfies the CA rule constraints, and b2 can be fulfilled anytime after time 9.

3.3.1 The Weak Accountability Problem

An instance of the weak accountability problem is given by a tuple ⟨γ,ψ,B⟩ in which:

• γ = ⟨R,UA,PA⟩ is an initial mini-RBAC authorization state.

• ψ = ⟨CA,CR⟩ is a mini-ARBAC policy.

• B is a set of pending obligations.

Theorem 16. Given a set of obligations B, a mini-ARBAC policy ψ, a mini-RBAC authorization

state γ, and an initial authorization state γ, deciding whether the given system is weakly account-

able is co-NP complete in the size of the B, γ and ψ.

Proof. We are given a 3-SAT expression S = d1 ∧ d2 ∧ ⋯ ∧ dn where each di = li1 ∨ li2 ∨ li3 for

i ∈ [1, n]. Let the set of variables involved in this expression be given by X = {x1, x2, . . . , xm}.

Thus each literal lij = xk or ¬xk where i ∈ [1, n], j ∈ [1, 3] and k ∈ [1, m].

We construct a system of obligations within the context of mini-ARBAC. This system will be

weakly accountable if and only if S is not satisfiable. The system has two administrative roles, ar1

and ar2. For every disjunct di of S we have a corresponding role rdi and for every variable xk of

S we have an associated role rxk in the system. Along with these roles, the system has two more

roles which are important to us r′ and rgoal.

49

We assume that the system has three users, u0, u1 and u2. The initial user-role assignment in

the system is as follows:

user assignment(u0, Ø)
user assignment(u1, {ar1})
user assignment(u2, {ar2})

We ignore the role-permission assignment rules, as it has no impact on the argument. Thus the

policy rules are as follows:

can assign(ar1, true, rx1)
⋮

can assign(ar1, true, rxm)
can revoke(ar1, rx1)

⋮
can revoke(ar1, rxm)

We also add one can assign rule for each lij , the form of which depends on the form of lij as

follows:

can assign(ar1, rxk , rdi) when lij = xk (3.1)

for some k ∈ [1, m], j ∈ [1, 3] and i ∈ [1, n].

can assign(ar1, ¬rxk , rdi) when lij = ¬xk (3.2)

for some k ∈ [1, m], j ∈ [1, 3] and i ∈ [1, n].

can assign(ar1,
n

⋀
i=1

rdi , r
′) (3.3)

can assign(ar1,¬r′, rgoal) (3.4)

The system currently has some pending obligations where each obligation is of form

50

can assign(ar2, true, rd1)
⋮

can assign(ar2, true, rdn)
can assign(ar2, true, rx1)

⋮
can assign(ar2, true, rxm)

can revoke(ar2, rx1)
⋮

can revoke(ar2, rxm)

(action, [ts, te]). Intuitively, the first ones nondeterministically select a truth assignment.

b1, t = (u1 Grants rx1 to u0, [1, 2])
b1, f = (u1 Revokes rx1 from u0, [1, 2])

⋮
bm, t = (u1 Grants rxm to u0, [1, 2])

bm, f = (u1 Revokes rxm from u0, [1, 2])

For each literal lij we add one obligation. The time interval of this obligation depends on

whether the literal is positive or negative, which assists in ensuring the obligations can be fulfilled

during the cleanup phase.

blij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(u1 Grants rdi to u0, [3, 21]) if lij = xk

(u1 Grants rdi to u0, [3, 31]) if lij = ¬xk

The time line during which all the obligations in the system should be fulfilled can be divided

into 6 time periods as shown in Table 3.1.

The logic behind the reduction is as follows. The obligations bk, t and bk, f for k ∈ [1, m] can

always be executed before their deadline. Obligations bcleanupdi
, bcleanupxk and bcleanup¬xk for i ∈ [1, n],

j ∈ [1, 3] and k ∈ [1, m] can also be executed before their stipulated deadline enabling b∗ and each

blij to be carried out eventually. Now whether b can be carried out depends on how it is scheduled

with respect to obligation b∗. If b∗ is performed before b then b can not be executed because b∗

51

b∗ = (u1 Grants r′ to u0, [5, 31])
b = (u1 Grants rgoal to u0, [10, 15])

bcleanupd1
= (u2 Grants rd1 to u0, [16, 20])

⋮
bcleanupdn

= (u2 Grants rdn to u0, [16, 20])
bcleanupx1 = (u2 Grants rx1 to u0, [16, 20])

⋮
bcleanupxm = (u2 Grants rxm to u0, [16, 20])

bcleanup¬x1 = (u2 Revokes rx1 from u0, [22, 30])
⋮

bcleanup¬xm = (u2 Revokes rxm from u0, [22, 30])

adds u0 to a role that prevents u0 to receive the role granted in b. We show that S is satisfiable if

and only if there exist a schedule in which b∗ is performed before b; resulting the system being in

weakly unaccountable state.

For the only if part, suppose the 3-SAT problem is satisfiable. We construct a schedule that

demonstrates the system is not weakly accountable. Such a schedule begins in period 1 by selecting

an assignment that satisfies the 3-SAT problem, representing this in the assignment of each rxk to

u0 just in case xk is true. Then, in period 2, u1 grants each rdi to u0, as permitted by statements

(3.1) and (3.2). In period 3, u1 grants r′ to u0, as permitted by statement (3.3). Finally, in period

4, u1 is unable to fulfill obligation b due to statement (3.4)

For the if part of our reduction, we show the converse. Suppose there is no satisfying assign-

ment for S. In this case, there is no scheduling of obligations b1,t⋯bm,t and b1,f⋯bm,f such that

every blij can be performed before time 14. Thus, b∗ can not be performed before time 15. This

ensures b can execute in every schedule. The pending obligations at time 15 are then each blij and

b∗. By time 20, u2 must grant each rdi to u0, enabling u1 to fulfill b∗. Also by time 20, u2 must

grant each rxk to u0, enabling u1 to fulfill each obligation of form (u1 Grants rdi to u0, [3, 21]).

Then, by time 30, u2 must revoke each rxk from u0 enabling u1 to fulfill each obligation of form

(u1 Grants rdi to u0, [3, 31]). Thus all the obligations can be carried out, resulting the system

being in a weakly accountable state. We can say that, when there is no satisfying assignment for

S, the system is in weakly accountable state.

52

Table 3.1: Time periods in the proof of Theorem 16.

Period Interval Activity
1 1...2 Nondeterministically select a truth assignment. The represented assign-

ments make xk true just in case u0 has role rxk .

2 3...4 It is possible to grant rdi to u0 during this period just in case one of the
literals in di is true under the selected assignment.

3 5...9 It is possible that u0 gets r′ during this period (via obligation b∗) just in case
each disjunction in the 3-SAT problem is satisfied.

4 10...15 u1 is unable to fulfill obligation b just in case u has been assigned r′ in
period 3 (via obligation b∗).

5 16...21 In this period, u2 grants each of the rdi’s to u0 (via obligation bcleanupdi
) en-

abling obligation b∗ to be fulfilled at its last time period if b∗ has not been
carried out before. Moreover u2 also grants each rxk to u0 (via obligation
bcleanupxk) enabling the obligation blij where lij = xk to be fulfilled in time 21
if it has not been fulfilled before.

6 22...31 Here u2 revokes each rxk from u0 (via obligation bcleanup¬xk) enabling the obli-
gation blij where lij = ¬xk to be fulfilled in time 31 if it has not been fulfilled
before.

The above reduction shows that checking weak accountability in a system of obligations gov-

erned by mini-ARBAC policy is co-NP Hard. Now we want to show that checking weak account-

ability in such a system is in co-NP. A nondeterministic algorithm to identify systems that are not

weakly accountable begins by guessing a schedule of the obligations indicating for each obligation

when it is to be carried out, then we can check if all the obligations of the system are present in the

schedule. Then for each obligation, we check if it is authorized. If it is authorized, we simulate the

behavior of the obligation and update the authorization state of the system. Otherwise we check

if the obligation is in its last time. If it is, we stop and declare the system is not weakly account-

able. So given a schedule of the obligations, we can check if the schedule is a valid one in O(n).

Thus checking weak accountability in a system of obligations governed by mini-ARBAC is co-NP

Complete.

53

The approaches we use for solving weak accountability are, respectively, an algorithm designed

specifically for this purpose and the general-purpose technique of model checking. Model checking

is a formal verification method for determining whether a FSM model satisfies a temporal logic

property.

The special-purpose algorithm explicitly considers all authorized2 critical prefixes of valid

schedules and checks whether the next obligation in the schedule is authorized. On the other

hand, the model checking approach models the execution of a set of obligations as a finite state

machine (FSM) and checks the accountability property, as specified by a temporal logic formula.

We use a symbolic [16] model checker (viz., Cadence SMV [6]). This approach has the advantage

that, without constructing actual traces, it computes a characterization of states starting from which

a trace can reach a state that violates accountability. An efficient dynamic programming algorithm

avoids considering multiple interleavings of actions when order makes no difference to the result.

When the set is not weakly accountable, both methods generate a counter example: if a given

state s0 is not weakly accountable, then a counter example is an authorized critical prefix b0..k of a

valid schedule such that the next obligation in the schedule is not authorized.

3.3.2 Special-Purpose Algorithm for Determining Weak Accountability

In this section, we present an algorithm (see algorithm 7) designed specifically to solve the weak

accountability problem(see section 3.3.1). The algorithm takes as input a list of pending obligations

B = b0, . . . , bn−1, n = ∣B∣, a mini-RBAC authorization state γ, and a mini-ARBAC policy ψ. It

returns true if the list of pending obligations B is weakly accountable and false otherwise.

As mentioned above, the algorithm (see algorithm 7) investigates all authorized critical prefixes

of valid schedules of B and checks whether the next obligation in the schedule is authorized. If

not, a counter example has been found and is returned. Otherwise, it returns true, indicating that

B is weakly accountable.

2Given a state s0 and a valid schedule of s0.B, a critical prefix b0..k of that schedule is authorized if there

exists a policy-rule sequence p0..k ⊆ P and state sk+1 satisfying s0
⟨b,p⟩0..k
Ð→ sk+1.

54

Algorithm 7 WeaklyAccountable(γ,ψ, B)

Input: A policy ⟨γ,ψ⟩, current pending obligations B
Output: return true B is weakly accountable.

1: sort the obligation list B according to the non-decreasing order of end time of the obligations.
2: numEx ∶= 0
3: executed [1...n] ∶= false
4: T ∶= null
5: return solve(0, γ,ψ,B,T,numEx, executed)

The algorithm uses a recursive procedure, solve (see algorithm 8), to incrementally explore

valid schedules in a depth-first manner. Each invocation of solve extends a prefix that is known

to be authorized and extensible to at least one valid schedule. For each obligation that, under

the validity constraint, is a candidate to extend the prefix, the algorithm determines whether that

obligation is authorized in the current authorization state. (The current authorization state is main-

tained so as to reflect the initial authorization state provided by γ and the effect on it of obligations

already in the prefix.) If the obligation is authorized, it is appended to the prefix, the authorization

state is updated, and the procedure is invoked recursively to explore further extensions of the pre-

fix. If it is not authorized, the algorithm determines whether the obligation’s end time is later than

that of some other obligation that is not in the current prefix. If so, the obligation is skipped, as

the current prefix is not a critical prefix of schedules in which this obligation comes next. If not,

a counter example has been found; it is reported, and the algorithm terminates. Unless a counter

example has been found, the algorithm proceeds by examining any remaining candidates to be

added to the current schedule.

The algorithm uses a boolean array executed[1..n] to represent the set of obligations that have

been successfully incorporated into the current partial schedule.

Recall that a valid schedule must execute b1 before b2 if b1.end ≤ b2.start. As solve incremen-

tally constructs a possible schedule, an obligation is not yet ready to be incorporated if some other

unscheduled obligation has to go before it. On the other hand, an obligation b is ready to be sched-

uled if b.start ≤ minTime in which minTime, the least end time of all unincorporated obligations,

is given by minTime = min{bi.end ∣ executed[i] = false}.

55

Algorithm 8 solve(ready, γ,ψ,B,T,numEx, executed)

Input: The index ready, represents the index of the last obligation that is ready, a policy ⟨γψ⟩, obliga-
tion array B, multi-set of end times T , total number of obligation executed so far numEx, status of
obligations executed.

Output: returns false if there is a counter example which ensures that B is not weakly accountable.
1: if numEx ≥ ∣B∣ then
2: return true
3: i ∶= ready + 1
4: if T = null then
5: T.insert(B[i].end)
6: ready ∶= ready + 1; i ∶= i + 1
7: while i ≤ ∣B∣ and T.minValue() ≥ B[i].start do
8: T .insert(B[i].end)
9: ready ∶= ready + 1; i ∶= i + 1

10: for all j ∈ [1, ready] do
11: /* For B[j] = ⟨u, a, o⃗, ⟨s, e⟩⟩, a(u, o⃗)(γ) is the policy state obtained after the action */
12: if executed[j] = false then
13: if (∃p ∈ P).(γ ⊧ p.cond(u, o⃗, a)) then
14: /* obligation B[j] is currently authorized */
15: executed[j] ∶= true
16: T.delete(B[j].end)
17: if ¬solve(ready, a(u, o⃗)(γ),

B, T,numEx + 1, executed) then
18: return false
19: executed[j] ∶= false
20: T.insert(B[j].end)
21: else
22: if T.minValue() ≥ B[j].end then
23: print counter example
24: return false
25: return true

3.3.2.1 Optimizing the Algorithm

The algorithm assumes that the obligation set is represented by an array B and begins by sorting

B by time interval start time. This supports identifying obligations that are ready to be scheduled

very efficiently by a single index, ready, which is maintained so as to preserve the invariant that

ready is the greatest i such that executed[i] = false ∧ bi.start ≤ minTime.

The multi-set of end time points of as yet unscheduled obligations is implemented by using a

balanced binary search tree T , which supports finding the minimum value, inserting a new value,

and deleting a value, each in O(logn). We represent γ.UA by a 2-dimensional array representing

56

its characteristic function, which enables us to perform lookup, update and restore operations in

constant time.

The special-purpose weak accountability algorithm becomes impractical when the number of

overlapping obligations is greater than about 10. However, in practice, usually the overlapping

obligations are not related directly or indirectly. Using that intuition, we can optimize the above

algorithm by using a notion of dependence of obligations. We define a direct dependence relations,

then take its reflexive, symmetric, transitive closure to obtain an equivalence relation. This in turn

enables us to partition the set of pending obligations so that if we select any pair of obligations,

one from each of two distinct sets in the partition, neither obligation depends on the other. We then

execute Algorithm 7 separately on each set in the partition. This often significantly reduces the

size of the problem instances that must be solved. We say that one obligation is directly dependent

on another if the first grants or revokes a role that the other obligation uses (or might use according

to the policy) (i.e., as a pre-condition or as part of a permission).

Example 17 (Dependency between obligations). Using the mini-RBAC, mini-ARBAC policies pre-

sented in chapter 2 tables 2.1 and 2.2, two obligations b1 and b2 defined as follows:

• b1 ∶ Joan must grant developer role to Carl in time [5,9]

• b2 ∶ Carl must develop sourceCode in time [10,20]
b2 depends directly on b1, because Carl needs the developer role to develop sourceCode (b2), and

he is going to receive this from Joan (b1).

According to the definition of dependence, we write b1 ∼ b2 if there is a direct dependence

between obligation b1 and obligation b2. We write ≋ for the reflexive, symmetric, transitive closure.

Thus, ≋ is an equivalence relation over elements ofB and, as such, induces a partition {B1, . . . ,Bk}

of B.

Theorem 18. Let {B1, . . . ,Bk} be the partition a pending set of obligations, B, induced by ≋.

There is a counter example of weak accountability for one of the obligation sets Bi for some i,

1 ≤ i ≤ k, if and only if there is a counter example for B.

57

Proof. ⇒ direction :

Without loss of generality, we will show that if there is a counter example of weak account-

ability within obligations of set B1 then we can find a counter example of weak accountability in

obligation set B.

Thus we can fix, σB1 to be a counter example of weak accountability for obligation set B1 and

let b∗ refer to the obligation in the schedule σB1 that is not authorized. On the other hand, for

obligation set B2 we chose any weakly authorized schedule σB2 . We next construct an interleaving

σB of σB1 and σB2 , and show that it is valid, weakly authorized, and b∗ is not authorized in σB.

We start with σB2 and, starting with σB1
1 , add each element σB1

k to the schedule being con-

structed in the least position that satisfies the following properties :

1. If k > 1, it is after σB1

k−1

2. It is placed after each σB2
o , if any such o exists, such that σB2

o .end ≤ σB1

k .start

3. If σB1

k is not authorized in σB1 , it is placed after each σB2
m if any such m exists, such that

σB2
m .end < σB1

k .end

We now use induction on k to show that the schedule of B2 ∪ {σB1
i ∣ 1 ≤ i ≤ k} constructed at

stage k is valid and weakly authorized. The base case follows immediately from assumptions on

σB2 . For the step, recall that the requirement of validity of a schedule ensures that each unordered

pair of obligations is ordered in a manner that respects their time intervals. The induction assump-

tion that the schedule of (B2∪{σB1
i ∣ 1 ≤ i ≤ k−1}) that is constructed at stage k−1 is valid. Thus,

when σB1

k does not occur in the pair the validity constraint is satisfied.

Let us consider the pairs that include σB1

k . For validity, we must show that each obligation

b′ scheduled after σB1

k satisfies σB1

k .start < b′.end and each obligation, b, scheduled before σB1

k

satisfies b.start < σB1

k .end. For the former, requirement (2) ensures validity for all such pairs

of obligations b′ and σB1

k . For the latter, when b ∈ B1, this follows from requirement (1) and

the assumption that σB1 is valid. For the case in which b ∈ B2, consider the last b′ ∈ B2 in the

58

constructed schedule that precedes σB1

k . The b′′ ∈ B1 that immediately follows b′ must satisfy one

of two cases : either (a) b′.end ≤ b′′.start or (b) b′.end < b′′.end and b′′ is not authorized in σB1 .

From validity of σB2 (or from well-formedness, if b = b′), we have b.start < b′.end. In case (a), we

use the fact that b′′.start < σB1

k .end follows from the validity of σB1 , or the well-formedness when

b′′ = σB1

k . In case (b), we use the fact that σB1 is weakly authorized and b′′ is unauthorized in σB1

to show that b′′.end < σB1

k .end.

To show the schedule is weakly authorized, we must show that

1. If σB1

k is not authorized in σB1 then it comes after any of σB2
m such that σB2

m .end < σB1

k .end

2. If some b ∈ B2 is not authorized in σB2 and b comes before σB1

k , then b.end ≤ σB1

k .end

For (1), we can see that requirement (3) achieves exactly what is required by it.

For (2), we again consider b′ and b′′ as in the previous part of the proof and the two cases, (a)

and (b). In both cases, because b is unauthorized in σB2 , yet σB2 is weakly authorized, we have

b.end ≤ b′.end (3.5)

case a: b′.end ≤ b′′.start. Here we use the fact that σB1 is valid to obtain b′′.start < σB1

k .end,

which yields the desired result, b.end ≤ σB1

k .end. case b: b′.end < b′′.end and b′′ is not authorized

in σB1 . Now because σB1 is weakly authorized, we obtain b′′.end ≤ σB1

k .end completing this case

as well.

We now show that b∗ is not authorized in σB. Suppose for contradiction that it were authorized.

In this case, we show that there must be some obligation b◇ ∈ σB2 that influenced the authorization

state of obligation b∗ to make it become authorized during the execution of obligation set B. If

b◇ ∈ σB1 then during the execution of σB, b◇ will not be authorized. As b◇ ∈ σB2 , b◇ is not authorized

during the execution of σB1 whereas it is authorized during execution of σB.

There are several scenarios which can arise when b◇ can influence the authorization state of b∗.

Let us investigate one of the possible scenarios, when b∗ is not authorized during the execution of

59

obligation set B1 according to the initial authorization state. There is no previous obligation in B1

which grants the necessary permissions to obligation b∗ resulting it to be not authorized. During

the execution of obligation set B, b◇ ∈ B2 can grant b∗ ∈ B1 the necessary permissions resulting b∗

to become authorized during the execution of B.

There is another possible scenario that arise during execution of obligation B by which b◇ can

influence the authorization state of b∗. In the scenario, b∗ is authorized according to the initial

authorization state during the execution of B1 but there is a previous obligation br ∈ B1 which

revoked the necessary permissions from b∗ resulting it to be unauthorized. During the execution of

B, b◇ can grant the permission revoked by br after br resulting b∗ to be authorized or b◇ can grant

some other permission which can enable b∗ to be authorized using a different policy rule.

According to our definition of dependence, in all the scenarios described above the obligations

b◇ and b∗ are dependent (b◇ ∼ b∗) soB1 ≋ B2 which is a contradiction to our assumption ofB1 ~ B2.

Thus, when there is a counter example of weak accountability within obligations of set B1 then

there is a counter example of weak accountability present in B.

⇐ direction:

If there is a counter example of weak accountability within obligations of set B then there is a

counter example present in either set B1 or B2 or both.

We assume that obligation setB is not weakly accountable and σB be a counter example forB.

Let b∗ be the obligation which is not authorized according to σB. For i ∈ {1,2}, let σBi enumerate

Bi in the same order as it is enumerated by σB. Without loss of generality, we also assume b∗ ∈ B1.

We show that σB1 is a counter example. If it is not then there exists an obligation b◇ ∈ B2 which

influenced the authorization state of obligation b∗ during execution in obligation set B. Several

scenarios can arise where b∗’s authorization state can be influenced by b◇. One possible scenario

is when b∗ is authorized according to the initial authorization state but b◇ scheduled before b∗

revokes the necessary permissions from b∗ resulting it to be unauthorized during execution of B

but as b◇ ∉ B1, b∗ is authorized during execution of B1.

Another possible scenario arises when b∗ is authorized according to the initial authorization

60

state. But there is another obligation b◻ ∈ B1 scheduled before b∗ and b◇ ∈ B2, that grants the

necessary permissions making b∗ to be authorized. But b◇ scheduled before b∗ and after b◻, revokes

the necessary permission from b∗ resulting it to be unauthorized eventually during execution of B.

As b◇ ∉ B1, b∗ becomes authorized during execution of B1.

Thus according to our definition of dependence between obligations, in all the scenarios men-

tioned here b◇ and b∗ can not be independent (b◇ ∼ b∗) resulting obligation B1 and B2 to be depen-

dent (B1 ≋ B2), which is a contradiction to our assumption of B1 ~ B2.

Thus when there is a counter example of weak accountability within obligations of set B then

there is a counter example present in either set B1 or B2 or both.

Even with this optimization, the special-purpose algorithm becomes impractical when it is

applied to a set of obligations that have a high degree of overlapping among obligations that are

also dependent on one another. In that case, the optimization gains little advantage. Fortunately,

this circumstance seems to be quite rare in practice (see section 3.4).

3.3.3 Model Checking Approach for Determining Weak Accountability

In this section, we describe an approach to determining weak accountability by using model check-

ing techniques. Model checking [18] is a formal verification method for determining whether a

finite state machine (FSM) model satisfies a temporal logic property. In our study, we use the sym-

bolic model checker, Cadence SMV [6, 16]. For each input problem instance, we construct FSMs

that encode the obligations and explores all possible valid, weakly authorized schedules. In effect,

it checks each one to determine whether they contain any unauthorized obligations. dAs we report

below in section 3.4, this enables the technique to solve many problem instances that involve too

many possible schedules for our special-purpose algorithm to handle.

61

3.3.3.1 Translation and Optimizations

We use a C++ program to translate a mini-ARBAC security policy ψ, a mini-RBAC authorization

state γ, the initial state of a given system γ.UA, and a set of obligations B into a Cadence SMV

finite-state-machine (FSM). The translator hard-codes the security policy ⟨γ,ψ⟩ and the obligation

set into a FSM. Then, we execute the SMV code to determine whether the obligation set is weak

accountable (Figure 3.1).

Figure 3.1: Translation model

To reduce the number of states generated, the translator scans the obligations and represents

as a constant each entry of the authorization state that is not modified during execution. For op-

timization purposes, instead of the system time assuming arbitrary values; we normalize the end

point of each obligation to differ by one. To decrease the number of the states generated, we also

make sure that the nonadministrative obligations are scheduled just in their end times as they do

not alter the authorization state of the system.

3.3.3.2 FSMs State Variables

The FSMs we construct contain the following 5 state variables, which are finite.

• t (Integer) — t represents the current system time. Its value ascends through the start and end

points of input-obligation time intervals. It is used to identify obligations that are ready to execute

(their time interval has been entered) and those that must be executed before time advances (their

62

time interval is about to end).

• n (Integer) — This represents the index of the obligation that is selected by the scheduler to

be executed.

• obl (Array of boolean) — Indicates for each obligation i whether it has been performed (0 for

no, 1 for yes).

• UA (Two dimensional array of boolean) — UA represents the current authorization state(i.e.,

the same UA as depicted in the mini-RBAC model). UA[u][r] takes the value 1 when user u is in

role r, and 0 otherwise.

• aco (Boolean) — Indicates the system is weakly accountable.

3.3.3.3 The FSM for Checking Weak Accountability

The FSM is divided in two main modules as pictured in Figure 3.2:

Figure 3.2: SMV model for an obligation system

The scheduler comprises two parts. The timer increments the system time when the end

times of the remaining obligations all exceed the current system time. The obligation selector

nondeterministically selects one of the pending obligations that is currently ready to be executed.

An obligation b is ready at time t if it satisfies t ≥ b.start ∧ t ≤ b.end.

63

The monitor receives an obligation b from the scheduler, and checks whether it is authorized

according to UA. If so, it records that this obligation has been fulfilled by setting obl[b] =1. If

b is an administrative action, the monitor changes UA accordingly. On the other hand, if b is not

authorized, this may or may not represent a counterexample to weak accountability. If t < b.end,

weak accountability can still be satisfied if b becomes authorized later, before the end of its time

interval. In this case, the monitor returns control to the scheduler to select another obligation.

However, if t = b.end, the monitor sets aco = 0, signaling that the system is not weak accountable

that is captured by checking whether it is always the case that the variable aco is true.

3.3.4 Weak Accountability under the original HRU Access Control Matrix Model

In this section we present a proof that the accountability problem remains co-NP complete when

the authorization system is restricted to use only the expressive power of the original HRU access

matrix model. Recall that in the original HRU access matrix model commands have unique names,

and commands’ preconditions are only given by a conjunction of positive permissions. Note that,

the proof presented here strengths the theoretical results presented in [31], which had used super

set of the original HRU Access Control Matrix Model.

Theorem 19. Given a set of obligations B, a HRU Access Control Matrix Model γ, deciding

whether the given system is weakly accountable is co-NP complete in the size of the B and γ.

Proof. We are given a 3-SAT expression S = d1 ∧ d2 ∧ ⋯ ∧ dn where each di = li1 ∨ li2 ∨ li3 for

i ∈ [1, n]. Let the set of variables involved in this expression be given by X = {x1, x2, . . . , xm}.

Thus each literal lij = xk or ¬xk where i ∈ [1, n], j ∈ [1, 3] and k ∈ [1, m].

We construct a system of obligations within the context of HRU Access Control Matrix Model.

This system will be weakly accountable if and only if S is not satisfiable. The system has just

one object o, and all the rights are related to this object. For every disjunct di of S we have

a corresponding right rdi and for every variable xk of S we have an associated right rxk . We

represent the lack of the right rxk as another right called Nrxk . Along with these rights, the system

64

has five more rights which are important to us rgoal, ar1, ar2, r′. Again we represent the lack of

the right r′ as another right called Nr′.

We assume that the system has three users, u0, u1 and u2. The initial matrix of rights to object

o in the system is as follows:

M[u0, o] = {Nr′,Nrx1 , . . . ,Nrxm}
M[u1, o] = {ar1,Nr′}
M[u2, o] = {ar2,Nr′}

In our policy rules we have one grant command for each lij , the form of which depends on the

form of lij as follows:

command grant ● rdi(u, t, o) when lij = xk (3.6)

if M[u, o] = ar1 ∧ M[t, o] = rxk then

enter rdi into M[t, o]

for some k ∈ [1, m], j ∈ [1, 3] and i ∈ [1, n].

command grant ● rdi(u, t, o) when lij = ¬xk (3.7)

if M[u, o] = ar1 ∧ M[t, o] = Nrxk then

enter rdi into M[t, o]

for some k ∈ [1, m], j ∈ [1, 3] and i ∈ [1, n].

command grant ● r′(u, t, o) (3.8)

if M[u, o] =
n

⋀
i=1

rdi then

enter r′ into M[t, o]

65

command grant ● rgoal(u, t, o) (3.9)

if M[u, o] = Nr′ then

enter rgoal into M[t, o]

We also have these commands in the policy rules:

command grant ● rx1(u, t ,o) command grant ● rx1 ● 2 (u, t ,o)
if M [u,o] = ar1 then if M [u,o] = ar2 then
enter rx1 into M [t ,o] enter rx1 into M [t ,o]
remove Nrx1 from M [t ,o] remove Nrx1 from M [t ,o]

⋮ ⋮
command grant ● rxm(u, t ,o) command grant ● rxm ● 2 (u, t ,o)

if M [u,o] = ar1 then if M [u,o] = ar2 then
enter rxm into M [t ,o] enter rxm into M [t ,o]
remove Nrxm from M [t ,o] remove Nrxm from M [t ,o]

command revoke ● rx1(u, t ,o) command revoke ● rx1 ● 2 (u, t ,o)
if M [u,o] = ar1 then if M [u,o] = ar2 then
remove rx1 from M [t ,o] remove rx1 from M [t ,o]
enter Nrx1 into M [t ,o] enter Nrx1 into M [t ,o]

⋮ ⋮
command revoke ● rxm(u, t ,o) command revoke ● rxm ● 2 (u, t ,o)

if M [u,o] = ar1 then if M [u,o] = ar2 then
remove rxm from M [t ,o] remove rxm from M [t ,o]
enter Nrxm into M [t ,o] enter Nrxm into M [t ,o]

command grant ● rd1(u, t ,o)
if M [s ,o] = ar2 then
enter rd1 into M [t ,o]

⋮
command grant ● rdn(u, t ,o)

if M [u,o] = ar2 then
enter rdn into M [t ,o]

The system currently has some pending obligations where each obligation has the form

(command, [ts, te]). Intuitively, the first ones nondeterministically select a truth assignment.

For each literal lij we add one obligation. The time interval of this obligation depends on

whether the literal is positive or negative, which assists in ensuring the obligations can be fulfilled

during the cleanup phase.

66

b1, t = (grant ● rx1(u1 ,u0 ,o), [1, 2])
b1, f = (revoke ● rx1(u1 ,u0 ,o), [1, 2])

⋮
bm, t = (grant ● rxm(u1 ,u0 ,o), [1, 2])
bm, f = (revoke ● rxm(u1 ,u0 ,o), [1, 2])

blij =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(grant ● rdi(u1 ,u0 ,o), [3, 21]) if lij = xk

(grant ● rdi(u1 ,u0 ,o), [3, 31]) if lij = ¬xk

b∗ = (grant ● r′(u1 ,u0 ,o), [5, 31])
b = (grant ● rgoal(u1 ,u0 ,o), [10, 15])

bcleanupd1
= (grant ● rd1(u2 ,u0 ,o), [16, 20])

⋮
bcleanupdn

= (grant ● rdn(u2 ,u0 ,o), [16, 20])
bcleanupx1 = (grant ● rx1 ● 2 (u2 ,u0 ,o), [16, 20])

⋮
bcleanupxm = (grant ● rxm ● 2 (u2 ,u0 ,o), [16, 20])
bcleanup¬x1 = (revoke ● rx1 ● 2 (u2 ,u0 ,o), [22, 30])

⋮
bcleanup¬xm = (revoke ● rxm ● 2 (u2 ,u0 ,o), [22, 30])

Obligations bk, t and bk, f for k ∈ [1, m] can always be executed before their deadline. Obli-

gations bcleanupdi
, bcleanupxk and bcleanup¬xk for i ∈ [1, n], j ∈ [1, 3] and k ∈ [1, m] can also be executed

before their stipulated deadline enabling b∗ and each blij to be carried out eventually. Now whether

b can be carried out depends on how it is scheduled with respect to obligation b∗. If b∗ is performed

before b then b can not be executed because b∗ adds u0 to a right that prevents u0 to receive the

right granted in b. We show that S is satisfiable if and only if there exist a schedule in which b∗ is

performed before b; resulting the system being in weakly unaccountable state.

Now, suppose the 3-SAT problem is satisfiable, then we can construct a schedule that demon-

strates the system is not weakly accountable. Such a schedule begins in period 1 by selecting an

assignment that satisfies the 3-SAT problem, representing this in the assignment of each rxk to u0

just in case xk is true. Then, in period 2, u1 grants each rdi to u0, as permitted by statements (3.6)

and (3.7). In period 3, u1 grants r′ to u0, as permitted by statement (3.8). Finally, in period 4, u1 is

67

unable to fulfill obligation b due to statement (3.9)

Now, suppose there is no satisfying assignment for S. In this case, there is no scheduling of

obligations b1,t⋯bm,t and b1,f⋯bm,f such that every blij can be performed before time 14. Thus, b∗

can not be performed before time 15. This ensures b can execute in every schedule. The pending

obligations at time 15 are then each blij and b∗. By time 20, u2 must grant each rdi to u0, enabling u1

to fulfill b∗. Also by time 20, u2 must grant each rxk to u0, enabling u1 to fulfill each obligation of

form (u1 Grants rdi to u0, [3, 21]). Then, by time 30, u2 must revoke each rxk from u0 enabling

u1 to fulfill each obligation of form (u1 Grants rdi to u0, [3, 31]). Thus all the obligations can be

carried out, resulting the system being in a weakly accountable state. We can say that, when there

is no satisfying assignment for S, the system is in weakly accountable state.

This reduction shows that checking weak accountability in a system of obligations governed by

HRU Access Control Matrix Model policy is co-NP Hard. Now, to proof that the weak account-

ability procedure in a system of obligations governed by HRU matrix model is co-NP Complete we

do the following. Given a schedule of obligations, for each obligation, we check if it is authorized.

If it is authorized, we simulate the behavior of the obligation and update the authorization state of

the system. Otherwise we check if the obligation is in its last time. If it is, we stop and declare the

system is not weakly accountable. This can be done in O(n). Thus checking weak accountability

in a system of obligations governed by HRU matrix model is co-NP Complete.

3.4 Evaluation Results

A central goal of our empirical evaluation is to determine how practical it is to use the account-

ability algorithm as a part of a reference monitor. This section presents results of experiments

designed to assess the adequacy of our algorithms and techniques with respect to performance.

When a discretionary action is attempted, the problem that a reference monitor must solve is to

determine whether the action, if permitted, would cause accountability to be violated. The discre-

tionary action could do this by changing the current authorization state, causing new obligations

to be incurred, or both. It is the performance of using our techniques to determine whether the

68

discretionary action would lead to a violation of accountability that we wish to evaluate. When

the determination must be made, there is an existing obligation pool, which in general includes

new obligations that would be incurred if the discretionary action were permitted, and a current

authorization state, which again reflects the state that would result if the discretionary action were

carried out.

Our primary objective is to determine whether strong accountability checking can be added to

the reference monitor. To this end, we evaluate strong accountability checking for two different

authorization states, namely, mini-RBAC/mini-ARBAC and HRU Access Control Matrix Model.

In our evaluation, we use a system with a moderate-size policy and 1000 users. For this, we

perform two sets of experiments. The first evaluates the efficiency of the incremental algorithms

For an obligation set of size 100,000, the algorithm runs in 5 − 7 milliseconds when using

the mini-RBAC/mini-ARBAC authorization state, and 70 − 90 milliseconds when using the HRU

Access Control Matrix Model as the authorization state. The second experiment is done on the non-

incremental algorithms. On the same size input, it requires about 55 milliseconds under the mini-

RBAC/mini-ARBAC authorization state, and 350 milliseconds using the HRU Access Control

Matrix Model as the authorization state. The number of users and roles have little impact on the

algorithms’ execution times, and the effect of the number of policy rules is roughly linear. Thus we

conclude that when the mini-RBAC/mini-RBAC authorization system is used, our algorithm for

strong accountability provides adequate performance to be incorporated into reference monitors

for most applications.

Another goal is to determine the effectiveness of all our approaches to weak accountability

(when using mini-RBAC/mini-RBAC as the authorization state). We find that if the obligations

overlap little and have a low degree of mutual dependence, the optimized special-purpose algo-

rithm out-performs the model-checking approach; however, when obligations are clustered and

have a high degree of mutual dependence, the model-checking approach tends to perform better.

We introduce a metric called the Degree of OVErlapping (DOVE) that is the number of pairs of

overlapping obligations, normalized with respect to the number of possible overlaps. Imagine a

69

graph with nodes given by obligations and an edge connecting each pair of obligations that overlap

in time. The DOVE is the size of the edge set divided by the number of edges the graph would

have if it were complete.

Experimental Environment All the strong accountability experiments are performed using an

Intel i7 2.0GHz computer with 6GB of memory running Ubuntu 11.10. Whereas, all the weak

accountability experiments are performed using an Intel Core 2 Duo 2.0GHz computer with 2GB of

memory running Ubuntu 8.10. The algorithms for strong and weak accountability are implemented

in C++ and built with gcc 4.2.4.

3.4.1 Evaluation of the Strong Accountability Algorithm

This section presents the policy and obligations generation for both the mini-ARBAC/mini-RBAC

and the extended mini-HRU Access matrix control authorizations. As well, the empirical evalua-

tions for the strong accountability algorithms presented in previous sections.

mini-ARBAC/mini-RBAC To evaluate the strong accountability algorithms for mini-

ARBAC/mini-RBAC, we assumed 1000 users and used a handcrafted mini-ARBAC/mini-RBAC

policies ⟨γ0, ψ0⟩ summarized in table 3.2. To generate the obligations, we handcrafted 6 strongly

accountable sets of obligations in which each set has 50 obligations. Each set has a different ratio

of administrative to non-administrative obligations (rat). We then replicated each set of obliga-

tions for different users to obtain the desired number of obligations. The execution times shown

are the average of 100 runs of each experiment.

Table 3.2: Policies used in experiments. C represents the number of roles in the pre-conditions of
CA rules

policy R O A CA CR PA C Generated
⟨γ0, ψ0⟩ 50 50 50 60 60 250 10 By Hand
⟨γ1, ψ1⟩ 50 50 50 2500 2500 120,000 10 Random
⟨γ2, ψ2⟩ 27 12 37 37 38 1,200 4 By Hand

70

Figure 3.3: Performance of incremental strong accountability algorithm - mini-RBAC/mini-
ARBAC

Figure 3.4: Performance of incremental strong accountability algorithm - mini-RBAC/mini-
ARBAC (non-strongly accountable set)

71

Figure 3.5: Performance of non-incremental strong accountability algorithm - mini-RBAC/mini-
ARBAC

Figure 3.6: Performance of non-incremental strong accountability algorithm - mini-RBAC/mini-
ARBAC (non-strongly accountable set)

72

Figure 3.3 presents results for the incremental algorithm. As we can see, the time required

by the incremental algorithm grows roughly linearly in the number of obligations. The impact

of rat on the execution time of algorithm arises largely because the algorithm must inspect every

obligation following each administrative obligation. On the other hand, when someone tries to

add a unauthorized obligation to a strongly accountable set, the algorithm can determines that the

final set is not accountable in less than 2.5 micro-seconds as shown in figure 3.4. Recall that the

incremental algorithm first checks whether a new obligation is authorized or not. This is made by

using a modified search tree.

In the experiments for the non-incremental algorithm (SA), we see that the execution time

grows roughly linearly with the size of the obligation set (figure 3.5). As with the incremental

algorithm, a higher rat value leads to a higher execution time. Here, the impact of having a non-

strongly accountable set is much greater than in the incremental case. Figure 3.6 presents this

case. In the worst case, the algorithm could determine that an set if not strongly accountable in

45 milliseconds. The time to determine that an obligation set is not strongly accountable will be

less than to determine if a set is strongly accountable, because as soon as the system finds one

obligation that is not authorized it can terminate the algorithm.

Extended mini-HRU Access Control Matrix Model To evaluate the strong accountability al-

gorithm for the extended mini-HRU Access Matrix model, we also assume 1000 users and used

a handcrafted extended mini-HRU policy that contains 60 objects, 250 non-administrative com-

mands, 120 administrative commands, 50 rights. The maximum number of preconditions of non-

administrative and administrative is 10. Again, we use the same handcrafted strategy that was used

when generating sets for the mini-ARBAC/mini-RBAC.

Figures 3.7 and 3.8 show the simulation results of the incremental strong accountability al-

gorithm when using the extended mini-HRU as the authorization state. Note that, the results

presented for this algorithm behave as the results presented in figure 3.4 and 3.6. However, be-

cause the extended mini-HRU authorization state supports multiple changes on the authorization

73

Figure 3.7: Performance of incremental strong accountability algorithm - HRU

Figure 3.8: Performance of incremental strong accountability algorithm - HRU (non-strongly ac-
countable set)

74

per action, the cost to decide accountability is greater than that of deciding it when considering

the mini-RBAC/mini-ARBAC as authorization state. In our experiments, deciding strongly ac-

countability when using extended mini-HRU is 11 times slower than when deciding it using the he

mini-RBAC/mini-ARBAC as authorization state.

Figures 3.9 and 3.10 show the empirical evaluation for the non-incremental strong account-

ability using the extended mini-HRU model as the authorization state. Again, this algorithm

behaves in the same fashion of the non-incremental strong accountability algorithm when using

mini-RBAC/mini-ARBAC as authorization state. In our experiments, the HRU version is 7 times

slower than the mini-RBAC/mini-ARBAC version.

3.4.2 Evaluation of the Weak Accountability Approaches

In this section, we compare the performance between the special-purpose algorithm (SP), the op-

timized special-purpose (OSP) algorithm, and the model checking approach (MC). We used two

policies, ⟨γ1, ψ1⟩ and ⟨γ2, ψ2⟩, summarized in table 3.2. (See [7] for the detailed policies.) To gen-

erate obligations, we used two algorithms, A1 and A2. (See [7] for more details.) A1 uses policy

⟨γ1, ψ1⟩ to generate a random set of obligations for given values of DOVE, number of obligations

(n), and rat. A2 uses policy ⟨γ2, ψ2⟩ and the parameters presented above, and generates obligations

like in section 3.4.1. In the experimental results presented in table 3.3 and 3.4, the entry x means

the approach was unable to terminate within a reasonable time (60 minutes) for the input set.

Table 3.3: (a) Execution time of the MC, SP and OSP approach vs. the number of obligations (n).
(b) Execution time of the MC, SP and OSP approach vs. DOVE.

n 100 300 700
MC 1.0 16.1 324.8
SP 0.006 0.025 1.42

OSP 0.002 0.003 0.016

DOVE 0.02 0.06 0.19
MC 0.80 0.85 0.83
SP 0.001 179.0 x

OSP 0.0006 0.0006 0.0006
(a) Time in seconds (b) Time in seconds

Table 3.3 (a) shows the execution time vs. number of obligation(n) for MC, SP and OSP.

Obligations were generated by A1 using DOVE =0.002 and rat = 5%. The execution time for MC

75

Figure 3.9: Performance of non-incremental strong accountability algorithm - HRU

Figure 3.10: Performance of non-incremental strong accountability algorithm - HRU (non-
strongly accountable set)

76

grows rapidly with n, as this and the number of users increases the size of the state space. On

the other hand, execution time of SP and OSP grows slowly with n and OSP has a much better

performance than SP.

Table 3.3 (b) shows execution time vs. DOVE for MC, SP and OSP. We used 100 obligations

generated by A2 with a rat value of 20%. The execution time of MC and OSP are not affected

by DOVE, whereas that of SP grows exponentially. We empirically determined that the value of

DOVE 0.158 forms a threshold for SP beyond which it does not perform adequately. Again, the

execution time for the OSP approach is much faster than the MC approach.

Table 3.4: (a) Execution time of the MC, SP, OSP approach vs. different rat value. (b) Execution
time of the MC, SP, SA and OSP vs. n.

rat 0% 10% 20%
MC 97.9 99.3 104.1
SP 91.1 92.8 96.8

OSP 0.004 0.004 0.005

n 103 104 3 × 104

MC 1831.5 x x
SP 0.003 0.055 1.859

OSP 0.008 0.618 5.27
SA 0.001 0.006 0.052

(a) Time in seconds (b) Time in seconds

Table 3.4 (a) presents execution time vs. rat for all the techniques using A2 where DOVE =

0.01 and n = 500. The rat affects MC and SP techniques’ execution time, whereas the OSP does

not seem to be affected and has a speedup of magnitude 25,000 compared to both MC and SP.

In our experiments, we used A2 to generate obligations for most of our inputs, as it is difficult in

practice to randomly generate large sets of obligations that are weakly accountable.

In our experiments, we found problem instances where the MC approach outperforms the OSP

approach (viz., when the obligations are clustered together and are dependent on each other) and

vice versa. We use this fact and introduce a hybrid approach (see figure 3.11). In this approach, we

use the fact that strong accountability implies weak accountability so we check if the obligation

set is strongly accountable. If not, then we perform some quick tests, which can identify some of

the problem instances that are definitely not weakly accountable. We present the tests below:

1. We simulated the schedule in which each obligation is executed at its end time. If under this

77

schedule any obligation is not authorized, the obligation set is not weakly accountable. (The

converse is not true because other valid schedules may also provide counter examples.)

2. If some obligation b requires a user to be in a role r and another obligation b′ that overlaps

with b with b.end ≤ b′.end and that revokes u the role, then the set of obligations is not

weakly accountable. (No third obligation could restore the role, should b′ be executed before

b.) Similarly, if b requires the user not to occupy the role, and b′ grants it, the set is not

weakly accountable.

If the test is unable to decide the accountability query, then we compute two metrics: DOVE

and dependency; based on these metrics we choose whether we use the MC or OSP approach. In

case that both metrics are unsatisfied, we execute both approaches. If neither of the approaches

terminates within a specified amount of time, we say that the problem instance can not be solved.

Figure 3.11: The Hybrid Approach for solving Weak accountability

78

3.5 Summary

In this chapter, we have presented an algorithm to decide strong accountability efficiently and two

methods to decide weak accountability. These are based on an obligation system that uses mini-

ARBAC/mini-RBAC as its authorization system. We have given experimental results that demon-

strate that the performance of the algorithm for strong accountability is excellent and that show the

methods for weak accountability are adequate for most medium-size problem instances. This is

despite our result that, even using the simple authorization model, mini-ARBAC/mini-RBAC, the

weak accountability problem is co-NP complete with respect to the policy and obligation pool size.

In addition, we have also presented an algorithm for deciding strong accountability for a obligation

system that uses extended mini-HRU Access Matrix Model as authorization system. In general,

this algorithm performs 13 times slower than the mini-ARBAC/mini-RBAC based model. Despite

on this, it still runs in less than 90 milliseconds.

79

CHAPTER 4: FAILURE FEEDBACK

In previous chapters, we presented techniques to decide accountability efficiently in practice.

When such approach is used incrementally, one can expect that the system will preserve account-

ability. However, many situations can arise that can cause the violation of accountability property

of the system. Sometimes a user is fired or transferred, a server can crash, and these situations can

put the system in an unaccountable state. We intend to design automated tools that will enable the

administrators and other authorities to remove or reassign obligations, or to add new obligations

that replace old ones to restore accountability. In prior chapters, we did not address the relationship

of usability and security. Addressing the relationship between security and usability is the main

goal of this chapter.

In recent years, several researchers have proposed techniques for providing users with assis-

tance in understanding and overcoming authorization denials [36, 57, 58]. The incorporation of

environmental factors into authorization decisions has made this particularly important and chal-

lenging. An environmental factor that has not previously been considered in this effort to provide

such assistance to users arises in systems, where obligations can depend on and affect authoriza-

tions. In these systems, it is desirable to ensure that users will have the authorizations they require

to fulfill their obligations, so, when desired actions are denied, the system provides to the users

a plan of actions to help them find means of overcoming their denials. We call the approach to

present a plan of actions to the users, the Action Failure Feedback Problem . The approach to solve

this problem was developed by Irwin in his PhD dissertation [30]. The contributions of my disser-

tation to this topic are a precise definition of the problem, the complexity analysis of the problem,

and empirical evaluations to demonstrate the effectiveness of the approach presented in [30]. Since

obligation systems of the kind we study are not yet deployed, it is impractical to obtain real poli-

cies and obligations. Therefore, the problem of generating representative problem instances is a

significant challenge. In this chapter, we discuss a three-fold approach we took to generate what

we believe to be a reasonably representative collection of problem instances upon which we based

80

our empirical performance evaluations on.

4.1 Action Failure Feedback Problem

An instance of the action failure feedback problem (AFFP) is given by a tuple ⟨γ0, ψ,U0, ut,A,B⟩

in which:

• γ0 = ⟨R,UA0,PA⟩ is an initial mini-RBAC authorization state.

• ψ = ⟨CA,CR,SMER⟩ is a mini-ARBAC*. Here, differently from the mini-ARBAC version

presented in chapter 2, we are considering SMER ⊆ R×R (Static Mutually Exclusive Roles)

rules, that are unordered pairs of roles such that no user is allowed to have both roles simul-

taneously. Our CR rules are also conditional, in other words, like the CA the target users

must satisfies the preconditions.

• U0 represents the set of users in the system.

• ut is the user that intends to perform the actions in A.

• B is a set of strongly accountable pending obligations.

• A is a set of desired actions that we want to add to B while preserving strong accountability.

These actions must be performed by ut. The actions are defined as a set of desired action

that can have one of the following formats:

1. For non-administrative actions, we have ⟨u, a, o⟩, where a user u intends to perform

non-administrative action a on object o.

2. In the case of administrative actions, we have ⟨ua, grant, r, u⟩, in case of a Grant,

meaning that user ut intends to grant role r to user u. Or, ⟨ua, revoke, r, u⟩, when user

ut intents to revoke role r of user u

Definition 20 (Action Failure Feedback Problem). Does there exist a set of actions A1 and an

assignment of time periods to them, where A ⊆ A1 and B ∪A1 is strongly accountable ?

81

4.1.1 Complexity of the Problem

In this section, we discuss the complexity of the action failure feedback problem. We show that

the problem is PSPACE-hard with respect to the policy and obligation pool size. To show that the

problem is PSPACE-hard, we reduce a well known problem called the unrestricted role reachability

problem [53] to the action failure feedback problem.

A user-role reachability problem instance is a tuple Rea = ⟨γR0 , ψR,U R
0 ,u

R
t ,goalR⟩. In the

tuple, γR0 = ⟨RR,UAR0 ⟩ is an initial mini-RBAC authorization state, ψR = ⟨CAR,CRR,SMERR⟩ is

a mini-ARBAC* policy, UR
0 is a set of users, uRt ∈ UR

0 is a target user, and goalR represents a set

of roles in the system, goalR ⊂ γR0 .R.

Definition 21 (Role Reachability Problem). Is it possible for the administrative users in UR
0 to

grant uRt all the roles defined in the goal by just applying the rules on ψR ?

4.1.1.1 Reduction

We want to reduce the Rea problem into the AFFP problem. So, the AFFP instance will be:

• ut = uRt and ψ = ψR

• B = ∅ and U0 = UR
0 ∪ {uRt }

• UA0 = UAR0

• γ.PA = {⟨r, ⟨a, o⟩⟩∣(r ∈ goalR) ∧ (a ∈ new action()1) ∧ (o ∈ new object())} (i.e., for each

role presented in the goal, we create a new entry in PA, where this new entry is a unique

permission).

• A = {⟨ut, a, o⟩∣∃r ∈ R .⟨r, a, o⟩ ∈ γ.PA}. We create one desired action for each new PA

entry that was added in the previous step.

1The methods new action(), new object() return a unique new action and a unique new object respectively.

82

The intuition behind the reduction is that for each role ri(0 ≤ i ≤ ∣goal∣) in goal we create a new

unique desired action Ai in AFFP. We also add the associated PA rules which permit a user in role

ri to perform action Ai. In addition, we assume no pending obligations. The reduction can clearly

be done in polynomial time. Thus, if we find a solution for the AFFP, we also find a solution for

the Rea problem.

4.2 Approach

In this section, we summarize the approach taken by Irwin et al. [30] for solving the AFFP. As

presented in section 4.1.1, the AFFP is PSPACE-hard, then there is no algorithm to solve it in

polynomial time. Partial-order planners are search space engines that use heuristics techniques.

Thus, partial-order planners are an inherent choice to attack our problem.

A typical partial-order planner has a list of ordering constraints, a set of actions, a set of con-

straint variables, and a list of flaws that contains conflict among the actions, and the unsatisfied

goals. Initially, the planner starts with a empty initial plan. When it progresses, it chooses a flaw

and tries to fix it by creating additional new steps (e.g., ordering constraints, variable constraints,

etc.), and it also updates the list of flaws. The planner stops when it finds a plan without any flaws

(found a solution for the given problem), or when pre-defined threshold of time has passed (could

not find a valid solution for the problem instance).

We use a modified version of the UCPOP [44] partial-order planner for finding solutions of

AFFP instances. This choice is based on the reliability of the UCPOP, and a good support of the

AI community. The following discusses how we convert an AFFP instance Action Description

Language (ADL) which is the input language of the planner, as well as some modifications we

make for adapting UCPOP for our purpose.

1. Translation and Initial Plan: We first translate the AFFP problem instance into ADL. In

this translation, actions in the access control system become actions in the planning domain,

carrying appropriate preconditions and effects. We also, create a initial plan, which contains

83

the set of pending obligations and the desired actions.

2. Preconditions and Flaws: Because we modify the planner to take an initial plan that in-

cludes both desired actions and obligations, we must explicitly construct the list of flaws for

the planner that includes the preconditions for all the desired actions.

3. Variable Constraints: In a partial-order planner, arguments taken by actions are represented

by variables. The variables occurring in obligations (currently in the pool) and the new

desired actions should be constrained so that their values are uniquely determined.

4. Timing: In order to encapsulate obligation into a partial-order planner we need to translate

the discrete times of the obligations into a partial-order relation that is used in the initial plan.

5. Converting from Planner Output to Obligations: After a planner gives a plan of action,

we need to convert the planner output into obligations. The intuition behind the conversion

it to use a topological sort algorithm to convert the partial order of obligations provided by

the planner to a possible total order of obligations.

4.3 Evaluation of the Planner

In section 4.1.1, we have shown that the action failure feedback problem is PSPACE-hard. This

has lead us to investigate using AI planning techniques that are well known to solve search-space

based problems using heuristics. This section presents our empirical evaluation of the effectiveness

this approach.

The main goal of our empirical evaluation is to assess the limits of our approach for small size,

but complex problem instances. To our knowledge, there are currently no deployed systems that

incorporate the support of management and enforcement of obligations as part of their security

policy. Consequently it is necessary for us to devise our own policies and problem instances. We

have three classes of input instances; two are generated from automated input instance generators

and the third is hand crafted. We discuss our problem instance generation techniques in one of the

84

following sections. After presenting the equipment and software employed, this section discusses

our approach to generate those problem instances, followed by our results and findings.

4.3.1 Experimental Environment

All the experiments here are performed using an Intel Core 2 Duo 3.0 GHz computer with 2

GB of memory running Ubuntu 9.04. One of the input instance generators is written in C++. The

other input instance generator and the translator which translates a mini-RBAC and mini-ARBAC*

policy to ADL is written in Objective Caml. We used UCPOP 4.1.

4.3.2 Problem Instance Generation

In an effort to evaluate our planner-based approach as fully as possible, we used three different

approaches for generating problem instances. All three approaches generate problem instances

that include obligation pools that are known to be accountable and desired actions for which it is

known that plans that enable the desired actions to be added to the pool, along with other enabling

obligations, resulting in a new pool that is again accountable. The only question is whether the

planner is able to find the enabling actions to achieve this result.

We label the three test generators used G1, G2, and G3, respectively. The goal of G1 is to gen-

erate policies, obligation pools, and desired target actions randomly based on uniform probability

distributions for each component of the problem instance. The goal of G2 is to generate instances

that seem likely to arise in a realistic system deployment setting withing an enterprise. The goal of

G3 is to generate instances that are particularly intricate with the goal of making the discovery of

solutions particularly difficult for the planner. Instance generator G1 and G2 are fully automated,

while approaches G3 generates instances manually.

The automated generation of instances byG1 is based on certain input parameters. Specifically,

these are the number of roles (r), the number of pre-conditions in the CA rules (c), the number of

CA rules (ca), number of CR rules (cr), number of users (u), number of roles per user (ru), number

of actions (a), the number of objects (o), the number of PA rules (pa), number of obligations (obl)

85

in the existing obligation pool, number of maximum length of the sequence of new actions that

need to be added to enable the desired target actions to be enabled (depth), and number of desired

target actions (dact). The CA rules, CR rules, γ.U , γ.O, γ.PA and γ.UA are generated randomly

based on the parameters ca, cr, u, o, a, o, and ru, respectively. For generating each obligation in

the obligation pool, we randomly select a time window and try all possible obligations that make

the system strongly accountable. We select one randomly from the possible obligations and add it

to the pool of pending obligations (B). This process is repeated until a pool of size obl is obtained.

For generating desired target actions, we first simulate the effect of administrative obligations of

B initial authorization state γ to get a new authorization state γ1. We then iteratively generate all

administrative actions that are authorized in the current authorization state, select one at random

and add it to a plan that is constructed to ensure the desired target action can actually be achieved.

(It is a plan such as this that the planner will be expected to find.) The authorization state is then

updated accordingly. This process is repeated, each time selecting randomly among administrative

actions that are currently authorized, but that would not have been authorized in the previous

authorization state, until a plan of the desired length is reached (depth). The final action is then

generated, again selected at random among actions that are authorized in the final authorization

state, but not in the previous one. Due to the cost of this algorithm, we found it necessary to limit

depth to at 5. In our experiments, G1 is used with ca = 100, cr = 100, pa = 200, and u = 40.

For the second test generator (G2), we automatically constructed a system state intended to be

reflective of a realistic enterprise organization structure. For that, we use one level of administrative

roles (10 roles), and three levels of operational roles, 5, 10, and 20 roles, respectively for each level.

ForG2, we have a total of u = 180, where 40 are administrative users, and 140 are operational users.

For each role, we have two can assign rules and two can revoke rules, in a total of ca = 90 and

cr = 90. For each obligations have 20 units of time window, and the time frame for the set of all

obligations is 200.

For the third test generator (G3), we use a handcrafted policy based on a hospital setting with

r = 58, c = 6, ca = 98, cr = 55, pa = 168, obl = 60 and dact ≤ 20. We design complex problem

86

instances (i.e., when desired actions interfere with other desired actions, obligations interfere with

desired actions, desired actions interfere with obligations, and also considering Statically Mutually

Exclusive Roles (SMER)). We also generate inputs where authorizing each desired action needs

introducing more than 5 additional actions in the plan.

4.3.3 Results

The execution times reported here are an average of 10 successful runs. In our experiments, we

put a bound on the number of possible plans the planner can examine. In addition, we put a time

threshold in which the planner can inspect for solutions. Thus, when the planner cannot find a

solution in the assigned threshold time; it considers the problem instance it is inspecting does not

have solution (i.e., we consider this a failure). We have 18 failures in a total of 403 trials for a

success rate of 95.53%.

We use our third input instance generator (G3) to identify the limits of our approach. We

observe that our approach is adequate for problem instance with dact = 1 and obl = 60, when

the optimal plan length is 7. This signifies that authorizing the desired action needs introducing

6 additional actions. Our approach does not scale well (greater value of dact) for such complex

problem instances.

Table 4.1 shows the execution time (in seconds) of problem instances generated by G1

(TimeG1) and G2 (TimeG2) with varying obl values. All the other parameters are fixed. The

execution time grows linearly with the number of total actions for both generators. As, G1 gener-

ates complex problem instances, TimeG1 ≥ TimeG2 . When the total number of actions exceeds a

certain threshold (170 actions), the execution time starts growing exponentially.

Table 4.2 (a) reports execution time with varying c (dact = 10, obl = 80). The execution time

increases linearly when c < 10 but it starts growing exponentially for c ≥ 10. Table 4.2 (b) shows

execution time for different dact values (obl = 80). The execution time in this experiment increases

linearly with dact. G1 is used to generate input instances for both the experiments.

87

Table 4.1: Execution time vs. obl

dact obl TimeG1(s) TimeG2(s)
10 10 4.03 1.19
10 20 7.43 2.46
10 40 14.69 6.87
10 80 55.89 24.24
10 160 304.64 152.81

Table 4.2: (a) Execution time vs. c (b) Execution time vs. dact

c dact obl Time(s)
1 10 80 56.29
3 10 80 60.59
5 10 80 66.70
8 10 80 64.61

10 10 80 116.94

dact obl Time(s)
5 80 45.48

10 80 48.98
15 80 62.29
20 80 69.05
30 80 82.29

(A) (B)

4.4 Summary

In this chapter, we have presented the formal definition of the action failure feedback problem.

Such problem attempts to provide suggestions to users how they could accomplish desired target

actions that are currently denied. Our formulation of the problem is based on user obligation

systems that use mini-RBAC and mini-ARBAC* as their authorization system. We have shown

that the action failure feedback problem is PSPACE-hard with respect to the policy and obligation

pool size, and we have summarized the AI planner-based [30] approach to solve it. We have

constructed a tool based on this approach and evaluated it empirically on a diverse collection

of problem instances. The results demonstrate that our approach could be useful for small size

problem instances.

88

CHAPTER 5: RESTORING ACCOUNTABILITY

As we have discussed in previous sections, a reference monitor can help maintain accountabil-

ity by preventing actions that would cause it to be violated. However, even with such a reference

monitor in place, accountability is still violated when an obligation is not or will not be performed.

For instance, if a user fails to fulfill an obligation, say, to grant Alice the rights she needs next July,

the system will become unaccountable, and Alice will be unable to perform her own obligation.

Thus, an obligation system manager needs strategies and support tools that she can use to restore

accountability. Three of the four present contributions seek to address these needs.

As part of supporting an obligation system manager in restoring accountability, we present

three forms of dependency that can exist among obligations within a system’s obligation pool.

While functional dependencies also exist, here we focus exclusively on dependencies that are based

on authorization requirements. The three kinds of authorization dependencies we formalize are

positive dependency, negative dependency, and antagonistic dependency.

Borrowing a term from programming languages, we introduce what we call a slice of an obli-

gation pool. A slice of a program is a subset of the statements in a program that define a portion of

the program’s behavior [56]. In our context, a slice is a subset of the current pool of pending obli-

gations. We introduce two kinds of slice. One is based on positive dependency among obligations.

The other is based on all three forms of dependency mentioned above. An obligation system man-

ager who is working on restoring accountability can use a slice of the current obligation pool to

identify which obligations she needs to consider modifying. As we shall see, the choice of which

kind of slice to use depends on the strategy being applied to the restoration of accountability.

Our final contribution consists of several strategies that an obligation system manager can use

for accountability restoration. These strategies can be supported by AI planning techniques [47]

and by tools that compute the kinds of obligation pool slice discussed above.

89

5.1 Obligation Dependencies

Our system uses a reference monitor that attempts to maintain accountability by denying action

requests that would violate it. Accountability can be violated nevertheless. For instance, suppose

that obligations b1 and b2 are scheduled so that b1 happens first and grants necessary permissions

for performing b2. If b1 is violated, b2 may no longer be authorized, so the obligation pool ceases

to be accountable. A similar situation arises when a manager or administrator learns ahead of time

that, if nothing is done to prevent it, b1 will become violated owing to user or resource unavail-

ability. As the violation is anticipated before it has occurred, in this latter case it may be easier to

recover gracefully than in the former. In both cases, however, methods for restoring or preserving

accountability are needed.

Ultimately, when accountability is violated, a human obligation system manager will generally

have to participate in its restoration. To facilitate her task, we can provide information about

dependencies among obligations that are relevant to the various approaches available to her for

this purpose. For instance, in the previous example, b2 cannot be fulfilled if b1 is violated, as

b1 provides the necessary permissions for b2. When an obligation is or will be affected by the

(eventual) violation of another obligation, we say that the former has a dependency on the latter

obligation. Changes in the obligation pool that affect accountability can have their impact on

other obligations indirectly. The obligation system manager is best served by being provided an

aggregation of dependencies that connect multiple obligations to the source of the disruption of

accountability. We call the aggregate we define for this purpose an obligation-pool slice. In this

section, after discussing each form of dependence, we return to the notion of a slice.

Various forms of dependence arise depending on the strategy one tries to use to restore ac-

countability. In this section, we identify three different categories of dependencies on this basis.

When one plans simply to let an obligation go unfulfilled (“removing” the obligation), then one

is concerned only with the impact this will have on later obligations via the authorization state.

We call this positive dependence. (Positive dependence can also arise when the violated obligation

90

Figure 5.1: Dependencies among obligations

revokes a role if the second obligation is an administrative action that requires the target user not

to have the role.) When one plans to reschedule an unfulfilled obligation, it may be necessary also

to reschedule later obligations that have a positive dependence on it. When this is done, the second

obligation is moved later in time, possible moving it past some other obligation that modifies the

authorization state in a way that interferes with the execution of the second obligation. We call

this interference negative dependence. Finally, when one obligation is rescheduled to occur after

an obligation it once preceded, the authorization state in which a third, later obligation must be

executed may be different as a result. For instance, if an obligation is moved past another that

would reverse a change made by the first to the authorization state, the third obligation would no

longer be exposed to an authorization state in which the reversal has been applied. We call this

third form of dependence antagonistic dependence.

The notions of dependency among obligations presented here are based only on the authoriza-

tion requirements of the obligations. There could be other notions of dependency, such as func-

tional dependencies that expresses requirements on the temporal ordering of obligations. However,

we do not consider this here.

Example 22 (Obligations). We use the obligation pool pictured in figure 5.1 to illustrate the var-

ious notions of dependencies. Each obligation has a unique identifier, bi. The roles rj that the

obligated user requires to perform his obligation are given on the left hand side of the colon, along

with the obligated user uk. In this example u1 executes b4, u2 executes b8, u3 executes b12, and

u0 is responsible for the rest. When multiple policy rules enable the obligation, the requirements

for each rule are presented in separate annotations, as illustrated by obligation b8. When one

rule requires multiple roles, they are listed in the same annotation, as illustrated by obligation

91

b4. For economy of space, we have chosen an example that avoids the need to represent negative

preconditions. When an obligation performs an administrative action (grant or revoke), the right

hand side of the colon indicates the effect of this action. When an obligation grants a role r to

a user u, this is indicated by +r(u) on the right hand side of the colon; when it revokes r from

user u, this is indicated by −r(u). (E.g., obligation b1 revokes the role r1 from the user u1). In the

case of non-administrative obligations, this part of the annotation is empty. The current user role

assignment we consider for the example is γ.UA = {⟨u0, r0⟩ ⟨u1,∅⟩ ⟨u2, r0⟩ ⟨u3,∅⟩}.

Definition 23 (Positive Dependency). Given a system state s = ⟨U,O, t, γ,B⟩, a set of policy rules

P , an obligation b ∈ B and a set of pending obligations B̂ ⊆ B, such that (∀b̂ ∈ B̂ ⋅ b̂.end < b.end).

We say b has a positive dependence on B̂, denoted by B̂
+Ð→ b, if and only if removing B̂ from

B yields an obligation pool in which b is not guaranteed to be authorized during its entire time

interval and B̂ is a minimal set satisfying this property.

The arrow direction signifies that B̂ is establishing in the authorization state the necessary

permissions required by b.

Example 24. In figure 5.1 we have the following positive dependencies {b2}
+Ð→ b4, {b3}

+Ð→ b4,

{b6}
+Ð→ b8, {b7}

+Ð→ b8 and {b11, b10}
+Ð→ b12. Here, {b2}

+Ð→ b4 and {b3}
+Ð→ b4, because

without b2 and b3, b4 cannot be performed. The same is true in the case of obligation b8. Note that

b12 will be authorized if one of b10 and b11 is absent, but when both of them are absent, b12 will be

not be authorized. Thus, b12 does not have a positive dependence on b10 or b11 individually, but

does have a positive dependence on the set {b11, b10}.

Definition 25 (Negative Dependency). Assume we are given a system state s = ⟨U,O, t, γ,B⟩, a

set of policy rules P , an obligation b ∈ B and a set of pending obligations B̂ ⊆ B. We say that b

has a negative dependence on B̂ if B̂ is a minimal set satisfying the following property. The start

time of b is before that of each element of B̂ (i.e.,∀b̂ ∈ B̂ ⋅ b̂.start > b.start) and if b is rescheduled

so that it starts after obligation in B̂, then b is no longer guaranteed to be authorized throughout

its entire time interval. In this case we write b
−←Ð B̂.

92

The direction of the arrow indicates that B̂ yields an authorization state in which b may not be

authorized during its entire time interval.

Example 26. In figure 5.1, we have b4
−←Ð {b5} due to the fact that if we reschedule b4 after b5, it

will not be authorized.

Definition 27 (Antagonistic Dependency). Given a system state s = ⟨U,O, t, γ,B⟩, a set of policy

rules P , and three obligations b1, b2, b3 ∈ B, we say that b2 has an antagonistic dependence on b1

via b3, denoted by b2 b3— b1, if inverting the order of b1 and b2 may result in there being a point

during the interval of b3 at which b3 is not authorized.

Example 28. In figure 5.1, we have the following antagonistic dependencies (b1 b4— b2), (b6 b8— b9)

and (b7 b8— b9). Note that, b7 and b9 have an antagonistic dependency via b8 although they consider

different roles (viz., r2 and r1, respectively).

5.2 Slice Properties

Having defined the dependence relations of interest, we now consider how to aggregate the depen-

dencies at a higher level where they are more easily applied by the obligation system manager for

the purpose to restoring accountability. The aggregation is a structure we call an obligation-pool

slice, or simply slice. A slice is a subset B̂ of a given obligation pool B. Intuitively, B̂ con-

sists of obligations that interact directly or indirectly with an input set of obligations B0 ⊆ B via

various dependence relations relevant to the authorization requirements of obligations. The slice

satisfies B0 ⊆ B̂ ⊆ B and is given by the closure of B0 under some operation defined in terms of

the dependence relation. The formal definition of each specific slice depends on the nature of the

dependence relation used in its construction. We next provide these formal definitions, along with

theorems that characterize them in terms of accountability, as needed for their use in accountability

restoration.

Definition 29 (Positive Dependency Slice). Assume we are given a system state s = ⟨U,O, t, γ,B⟩,

a set of policy rules P , and a set of pending obligations B0 ⊆ B. PSB(B0) is the positive depen-

93

dency slice of B with respect to B0 if it is given by PSB(B0) = Bp in which Bp ⊆ B is the smallest

set that satisfies the following requirements:

• B0 ⊆ Bp

• ∀b ∈ B ⋅ (∃B̌ ⋅ (B̌ ⊆ Bp ∧ B̌
+Ð→ b) Ð→ (b ∈ Bp))

The relation
+Ð→ is of type 2B × B where B is the current pending pool of obligations. The

intuition behind calculating the positive dependency slice is to start the slice to be the set of obli-

gations Bv. Then, we consider all the subsets of the current slice and check whether there is any

obligation that is not part of the current slice that has a positive dependency on one of those subset.

If we can find such an obligation we add it to the current slice. We continue this process until the

size of the slice does not grow anymore.

Please note that the above procedure is provided here solely to assist the reader’s intuition

regarding the slice definition. The design of an efficient algorithm remains an open problem. At

minimum, it should compute the dependence relation in a lazy way. Moreover, minimality in the

dependence relation will be less of an issue in a real algorithm, which will focus on constructing

the slice, not on the dependence relation that defines it.

Note that this notion of slice would be useful when the administrator is considering removal of

pending obligations as (part of) her strategy for restoring accountability. The following theorem

shows the utility of this slice with respect the to administrators objective of leaving the obligation

pool in an accountable state.

Theorem 30. Given an accountable system state s0 = ⟨U,O, t, γ,B⟩, a policy P , a set of obliga-

tions B0 ⊆ B, and Bp = PSB(B0), the state given by s = ⟨U,O, t, γ,B ∖Bp⟩ is accountable.

Proof. Suppose for contradiction that s is not accountable. In this case, there must be an obliga-

tions b̃ ∈ (B ∖Bp) that is not guaranteed by B ∖Bp and γ to be authorized during its entire time

interval. By the assumption that s0 is accountable, either (1) b̃ is authorized during its entire time

interval by γ and no obligations in B modified that part of γ on which b̃’s authorization depends,

or (2) some of the obligations in B modified the authorization state so as to make b̃ authorized

94

throughout its time interval. In case (1), it is impossible to remove obligations from B with the

result that b̃ becomes possibly unauthorized, contradicting the assumption that s is not accountable.

In case (2), Bp has the property that removing it from B yields an obligation pool in which b̃ is

not guaranteed to be authorized during its entire time interval. It follows that Bp has at least one

minimal subset satisfying this property. Call it B̂. By definition of positive dependency, b̃ has a

positive dependence on B̂. Now by definition of positive dependency slice, it follows that b̃ ∈ Bp,

giving us the desired contradiction with b̃ ∈ (B ∖Bp).

Definition 31 (Full Dependency Slice). Assume we are given a system state s = ⟨U,O, t, γ,B⟩, a

set of policy rules P , and a set of obligations B0 ⊆ B. The full dependency slice of B with respect

toB0, denoted by FDSB(B0) is given by the smallest setBf that satisfies the following properties:

• B0 ⊆ Bf

• ∀b ∈ B ⋅ (∃B̌ ⋅ (B̌ ⊆ Bf ∧ ((B̌ +Ð→ b) ∨ (b −←Ð B̌)))

Ð→ (b ∈ Bf))

• ∀b ∈ B ⋅ (∃b1 ∈ Bf ⋅ ∃b2 ∈ B ⋅ ((b b2— b1) ∨ b1 b— b2)

Ð→ (b ∈ Bf))

When the administrator is considering rescheduling the violated obligations and all its depen-

dent obligations, this notion of slice would be used.

Theorem 32. Given an accountable system state s0 = ⟨U,O, t, γ,B⟩, a policy P , a set of obliga-

tions B0 ⊆ B, and Bf = FDSB(B0), the state given by s = ⟨U,O, t, γ,B ∖Bf ⟩ is accountable.

Proof. This theorem can be proved in a manner similar to that used in the proof of theorem 30.

5.3 Restoring Accountability

In this section, we present several possible techniques by which an administrator can restore ac-

countability. The selection among the techniques is application and system-requirement depen-

dent. In practice, the administrator will use a combination of these techniques. Some obligations

95

will, of course, be too important just to drop. Among these may be user-level obligations that

do not change the authorization state. Achieving the intended changes to the authorization state

might also influence the administrator’s decision whether to drop obligations (including the vio-

lated ones), or instead to reschedule or reassign them.

It is important to bear in mind that restoring accountability while preserving all the desired

obligations is not always possible. For instance, if an obligation with a hard deadline has been

violated, this situation cannot be reversed. Furthermore, even when a solution exists, enabling us to

reorganize existing obligations and add new obligations with the result that all desired obligations

are fulfilled, it is not always going to be possible to find that solution in practice, as the problem is

fundamentally intractable. Thus the support techniques and tools we discuss in section can at best

increase the likelihood of finding a satisfactory solution. In the following we take B0 to be the set

of obligations that either have been violated or are unavailable.

Removal of Obligations When applying the removal strategy, the user removes the entire posi-

tive slice Bp = PSB(B0) from the obligation pool B. The resulting obligation pool is accountable,

as shown by theorem 30. Among the strategies for restoring accountability, this one modifies the

fewest obligations, owing to the minimality of the sets in the forward dependency relation. Of

course it may often be undesirable, depending on the importance of some of the obligations in the

positive slice. However, sometimes there is really no alternative, since some deadlines are hard.

Example 33 (Removal of Obligations). Using the example in figure 5.1, consider b2 and b11 have

been violated. If we use the removal strategy, we need to remove obligations b2, b11, and b4. We

have to remove b4 as it has a positive dependency on b2.

Rescheduling of Obligations In this approach, we can take advantage of the fact that some pairs

of obligations in Bf = FDSB(B0) are independent. In particular, Bf can be partitioned into sets

such that obligations from different sets are independent on one another. of obligations where

obligations in different partitions are independent of each other. In this case, each partition can be

96

rescheduled independently of one another. We denote each partition ofBf asBi
f ⊆ Bf , 0 ≤ i ≤ ∣B0∣.

Example 34 (Partitions of Bf). Using the example in figure 5.1, let the current system time be 15,

and that b4 and b11 have been violated. Thus, Bf = {b4, b11, b5} creates two partitionsB1
f = {b4, b5}

and B2
f = {b11}.

For each Bi
f , we find the set of obligations Bi

0 ⊆ Bi
f that have already been violated or are

unavailable. We assume an obligation b̃ has already been violated if b̃.start ≤ tc where tc is the

current system time. We use ts and te to denote the earliest start time and the latest end time among

all the obligations in Bi
0. Next, we find the obligation bn with the earliest start time among all the

obligations in Bi
f ∖Bi

0. We then check whether it is possible to reschedule the obligations in Bi
0

after tc but before bn.start ((te − ts) < (bn.start − tc)). If so, we reschedule all the obligations in

Bi
0 after tc keeping their original relative distance. If this is not the case, then we add bn to the set

Bi
0, and repeat the steps presented above (i.e., compute te, and find a new bn), until we find a time

interval that is large enough to fit all the obligations in the currentBi
0. If no such intervals are found,

we shift all the obligations in Bi
f so that the obligation with the earliest start time is scheduled at

time tc + 1 and the obligations maintain their original relative positioning. The intuition behind

this approach is that all the obligations that can interact with each other will maintain their original

relative positions and will be authorized.

Example 35 (Rescheduling of Obligations). the current time be 8 and b2 and b3 have been violated.

If we reschedule b2 and b3, we need to reschedule the entire set Bf = {b2, b3, b4, b5}. The new time

windows for the set could be b2 = [21,25], b3 = [22,26], b4 = [28,33] and b5 = [35,38].

In some cases, it might not be possible to use the above approach. For instance, it may be

essential that one of the obligations not be delayed. In such cases, the administrator must keep

the time window of this obligation fixed, and attempt reschedule the other dependent obligations

around it. However, if this is not possible, then the administrator may consider shrinking the width

of some of the dependent obligations’ time windows. Note that, every time the administrator tries

to shrink the time window of an obligation, the reference monitor needs to check if the system is

97

still accountable. It is up to the administrator to decide which obligations’ time windows can be

shrunk and by how much.

Reassignment of Obligations In this strategy, the administrator reassigns new users to the obli-

gations that are unavailable. When an obligation’s window has already passed, this approach must

be combined with rescheduling. This case is discussed below under “hybrid strategy.” Along with

the reassigning technique, the administrator may use an AI-planner [47] to check what other ac-

tions (e.g., giving required permissions to the new users) are required in order to transfer these

obligations to the new users.

Example 36 (Reassignment of Obligations). Returning again to the example in figure 5.1, suppose

the current system time be 4 and that the user u0 will be unavailable within the time window [10,

13]. The administrator can reassign obligations b10 to user u2, since u2 has the role r0 required

for performing b10.

Addition of Obligations In this strategy the administrator adds new obligations in order to make

the system accountable. (E.g., let us consider obligation bx needs a permission given by by which

is scheduled before bx. If by is violated, then the administrator can restore accountability by adding

an obligation before bx that grants the necessary permissions to it.) Again, the administrator can

utilize the AI-planner presented in [47] to identify the new obligations she needs to add to the

obligation pool to restore accountability when it has been violated.

Hybrid Strategy Obligations can be deemed by the administrator to have different levels of

importance. It may be reasonable to remove some obligations, while other must be performed

according to their original schedule. Moreover, some obligations that have been violated may have

had hard deadlines and cannot be rescheduled or reassigned. Thus, the administrator requires the

flexibility to apply a mixture of strategies to restore accountability. We propose a hybrid strategy

for this purpose. In it, the administrator takes an incremental approach to constructing a solution

98

to the accountability violation. The techniques presented above are applied to different violated or

unavailable obligations and different portions of their slices.

Suppose the administrator decides to divide B0 into three subsets: obligations that must be

removed (BRem
0); obligations that must be reassigned (BRea

0); and obligations that must be resched-

uled (BRes
0). Of course, these choices cannot be made independently of one another. For instance,

it is not possible to reschedule an obligation that depends on an obligation that will be removed.

On the other hand, some obligations can be both rescheduled and reassigned.

The administrator then computes the positive dependency slice of BRem
0 , denoted by BRem

p , and

the full dependency slice for BRes
0 , denoted by BRes

f . As discussed in “removal of obligations”, if

the administrator needs to remove the obligations in BRem
0 , she also has to remove the obligations

in BRem
p . Moreover, for rescheduling obligations in BRes

0 , she also has to reschedule obligations

in BRes
f . If BRem

p and BRes
f intersect then removing BRem

p could yield an authorization state where

rescheduling obligations in BRes
f ∖ BRem

p would not yield an accountable system. When BRem
p

either contains any non-administrative obligation that is important or contains any administrative

obligation that yields an authorization state necessary for discretionary actions, then she can not

also remove the set BRem
p to yield an accountable system. In such cases, she tries to find a maximal

subset of BRem
0 , denoted by B̂Rem

0 , so that the positive slice of it has neither any intersection with

the full dependency slice of (BRem
0 ∖ B̂Rem

0) ∪ BRes
0 nor does it contain any obligations that the

administrator is unwilling to remove.

If she can find such a maximal subset, she can remove the obligations in the positive slice of

of B̂Rem
0 . Then, she can reschedule the full dependency slice of (BRem

0 ∖ B̂Rem
0) ∪ BRes

0 . Finally,

for reassigning the obligations in BRea
0 she can use the approach discussed in “reassignment of

obligations”.

Rescheduling the full dependency slice of (BRem
0 ∖ B̂Rem

0) ∪BRes
0 can also introduce incompat-

ibility. For instance, the administrator might not want to reschedule some obligations in the full

dependency slice of (BRem
0 ∖ B̂Rem

0) ∪BRes
0 because of their urgency. We can address this problem

in a manner similar to that discussed under “rescheduling of obligations”.

99

Each time an administrator uses one of the techniques presented above to restore accountability,

it is the system’s responsibility to ensure that it is still in an accountable state. This can be checked

using the algorithm in chapter 3.

5.4 Summary

In this chapter, we have introduced three different notions of authorization dependency among

obligations. We have also presented formal specifications of two different notions of slice that

calculates the set of obligations, which the administrator needs to consider when applying the

different restoration techniques given a set of violated obligations. Finally, we have shown also a

set of strategies that an administrator can use to restore accountability.

100

CHAPTER 6: CASCADING OBLIGATIONS

In chapter 2, we introduce policy rules for a user obligation system and they have the form

p = a(u, o⃗) ← cond(u, o⃗, a) ∶ Fobl(s, u, o⃗). Such a policy rule p permits a user u to take an action a

on the tuple of objects o⃗ if the user u fulfills the condition cond (which is typically the authorization

requirement of the system). The other component in the policy rule is Fobl(s, u, o⃗). This function

returns a possible empty set of obligations that u or some other user in the system will incur when u

executes the action a. The stipulated time window of the newly incurred obligations depend on the

time when the action a is executed. Suppose the action currently being performed is an obligatory

action. Although this possibility is not treated by our prior chapters, it could in general incur

additional obligations depending on Fobl(s, u, o⃗). Those obligations could in turn incur further

obligations, resulting in a chain of obligations, the time windows of which depend on each other,

and on when, within its time interval, each obligation is performed. We call this phenomenon of

obligations incurring additional new obligations, cascading obligations.

While our abstract model supports arbitrary cascading of obligations, the techniques discussed

in chapter 2 for our concrete model disallow them. This is done by partitioning the actions into

two disjoint groups, namely, discretionary action group and obligatory action group. We restrict

the policy rules such that only actions from the discretionary group can introduce new obligations

in the system. Thus, actions from obligatory action group can not further introduce new obliga-

tions. We impose this restriction due to several technical challenges, discussed just below, that we

face when modeling arbitrary cascading of obligations in our model while attempting to maintain

accountability.

It is our vision that interesting applications, such as project management tools and organi-

zational workflows, can utilize user obligation systems for managing obligations. In such en-

vironments, cascading obligations appear naturally, due to the inherent capability of cascading

obligations to capture dependence among various actions, obligatory or otherwise. For example,

cascading obligations can be used to encode an organization’s sales workflow: when a sales as-

101

sistant submits a purchase order, the company clerk is obligated to issue a check in the amount

identified in the purchase order. As soon as the clerk issues the check, the manager incurs an obli-

gation to verify the consistency of the purchase order and approve the check. Thus, so it important

to accommodate cascading in some manner.

We believe that workflows can be supported within our system if the form of policy rules we

support are generalized with respect to their ability to constrain applicability of a given policy rule.

Currently, only the authorizations of the user are checked. By constraining other aspects of the

action parameters (such as the objects to which the action is applied) we will be able to encode

decision points of workflows. However, we must extend our concrete model to allow cascading

obligations.

It must be acknowledged that a great deal of work has been done in the area of workflow

systems (see chapter 7). With few exceptions, workflow systems do not permit modification of

authorizations. Moreover, those workflow systems that do permit modification of authorizations

are unable to discover that a user lacks authorizations to perform an assigned task prior to the time

at which that task is attempted. By maintaining accountability, we enable such errors to be detected

and resolved much earlier. This is the main distinguishing feature of modeling workflows within

the context of our authorization-aware obligation systems.

Some of the technical challenges to supporting cascading obligations while maintaining ac-

countability are as follows:

1. Different policy rules that permit the same action can cause different obligations to be in-

curred. This makes it difficult at accountability-determination time to reason about the future

state of the obligation pool. Certainly, if one rule leads to an accountable obligation pool,

and the other does not, one would expect the former rule to be used. When both rules lead to

accountability, the appropriate course of action seems to be application dependent. In some

cases, it may be appropriate to let the user requesting the action make the decision. But this

might be inappropriate for some situation, for example, systems that are concerned about

performance (e.g., response time, throughput rate).

102

2. The time intervals of the new obligations depend on the time at which the action is performed

that causes them to be incurred. Making it difficult to reason about the appropriate time

window when the new obligations must be authorized. Figure 6.1 presents two obligations,

namely, b1 and b2. Let us assume that b2 is incurred when b1 was executed, in time tx. Thus,

b2’s time window will be given by a predefined distance from tx. This is described in the

picture as σx. Thus, depending on when b1 is performed, b2 will have different time windows.

And it will be necessary to check accountability for each one of these time windows.

Figure 6.1: Formulation of Cascading Obligations

3. It is not trivial how to compute accountability when the policy allows infinite cascading. As

we have finite number of users, objects, actions and policy rules in our system, to have an

infinite chain of cascading obligations we must have cycles in the policy. If such a cycle has

a regular behavior it is possible to have an efficient strong accountability decision procedure.

But there are situations where this is not the case. One such critical situation appears when

an obligation is authorized by multiple policy rules and each policy rule generates a different

set of obligations. The same situation continues for the newly incurred obligations resulting

an exponential increase of the number of obligations that one need to reason about for de-

termination of accountability. Moreover, each such branch according to the choice of policy

rule can have disjoint cycles of cascading obligations making the analysis difficult. Thus, if

the number of obligations in the current pool is high and they are well spread in a large time

window, such a situation discussed above can make the strong accountability determination

103

difficult.

6.1 Strong Accountability under Cascading of Obligations

In this section, we provide a definition of strongly accountability under the cascading of obligation

assumption. We start by defining two auxiliary functions that are going to be used in the definition

of strong accountability.

Definition 37 (Fobls). Fobls is a function that takes as input an obligation b̂ and returns a set of sets

of obligations B̂ in which each element represents a set of obligations that b̂ can incur according

to the Fobl function of a policy authorizing it. The formal specification and the type of Fobls are

precisely shown just below.

Fobls ∶ B → FP(FP(B))

Fobls(b = (u, a, o⃗, ts, te)) = {Fobl(u, o⃗)∣p = a(u, o⃗) ← cond(u, o⃗, a) ∶ Fobl(s, u, o⃗) ∈ P}

Definition 38 (PFobls). PFobls is a function that takes as input a set of obligations B̄ and returns

a set of sets of obligations B̃ in which each element is a possible set of obligations that all the

obligations of B̄ can incur. In short, B̃ is the set containing all possible combination of obligations

that B̄ can incur. The formal specification and the of type of the function PFobls are shown just

below.

PFobls ∶ FP(B) → FP(FP(B))

PFobls(b1...n = (u1...n, a1...n, o⃗1...n, ts, te)) = {BB ⊆ B∣∀i ∈ 1 . . . n.Fobls(bi) ≠ ∅ → ∃f ∈ Fobls(bi).f ⊆ BB}

Definition 39 (Strong accountability in presence of Cascading of Obligations). Given a state s1 ∈

S , in which s1.B is a strongly accountable pool of obligations, a policy P , a set of new obligations

Bc that can generate cascading of obligations, we say that the state s created by the union of

s1.B and Bc is strongly accountable (denoted by sac(s1,Bc,P)) if and only if sa(s,P) ∧ s =

104

s1[B ∶= s1.B ∪Bc] ∧ ∃B′

c ∈ P.PFobls(Bc).sac(s,B′

c,P). Where sa(s,P) is the definition of strong

accountability without cascading (see definition 11 presented in chapter 3).

6.2 Cascading of Obligations

Our obligation system is governed by policy rules that have the following format, p = a(u, o⃗) ←

cond(u, o⃗, a) ∶ Fobl(s, u, o⃗). If a user u satisfies the authorization requirement defined by cond, he

can take the action associated by the policy rule. When the user takes the action, the policy rule

may in turn create more obligations. This is governed by the Fobl(s, u, o⃗) of the policy rule. In our

concrete model, we did not define how Fobl generates the parameters of newly incurred obligations.

In this section, we present options which can be used to instantiate the parameters of the newly

incurred obligations. For this, we explain how the policy rules encode the new obligations’ time

windows, how users are selected, etc. Then, we present a taxonomy that describes the types of

cascading obligations that our obligation model supports.

Number of Policy Rules Obligations are incurred by policy rules. Depending how the policy

rule is written we can have:

1. Obligation authorized by multiple policy rules: Here, an obligation can be authorized by

many policy rules. Different policy rules that permit the same obligation can cause different

obligations to be incurred.

2. Obligation authorized by only one policy rule: Here, an obligation is authorized by only

one policy rule. Thus, the cascading of obligations that will be incurred by an action object

pair will always be the same.

Selection of Users When someone executes an action, this can generate other obligations to the

user that initiated the action, or for other users. The user who incurs the obligations is called obli-

gate. To allow to specify the obligatee we should extend our policy rules to include the obligatee.

Below, we present how the selection of users can be incorporated to the policy rules:

105

1. Explicit User: In this strategy, the obligatee is hard-coded in the policy rule.

Example 40 (Selection of Explicit User). Let us assume a permission assignment rule, p1 =

{manager, check, log} ∶ Fobl = {Bob, send, report, shift = 10, window = 5}. This rule

tells that a user is going to be authorized to check the log if she is in the role of manager.

Once, she checks the log, this will incur an obligation to Bob to send the report.

2. Self, Target, and Explicit User : When a policy rule’s obligatee field contains “Self”, it

precisely specifies that the user who initiates the action authorized by the policy will get the

obligation incured by it.

Example 41 (Self clause). Let us assume a can assign rule, p1 =

{ manager, employee, programmer} ∶ Fobl = {Self, send, report, shift =

10, window = 5}. This rule tells that a user in the role of manager is authorized to

grant the role programmer to a user in the role of employee. Let us assume the manager Bob

grants the employee Alice to the role of programmer. This will generate a new obligation to

Bob (as he is the originator of the obligation, viz. Self) to send a report.

On the other hand, whenever the policy rule is authorizing an administrative action and the

obligatee field of that policy rule contains “Target” as an argument, it signifies that the target

of the original administrative action authorized by this policy would incur the obligations

specified by it.

Example 42 (Target clause). Let us assume a can assign rule, p1 =

{ manager, employee, programmer} ∶ Fobl = {Target, send, report, shift =

10, window = 5}. This rule tells that a user in the role of manager is authorized to grant

the role programmer to a user in the role of employee. Let us assume the manager Bob

grants the employee Alice to the role of programmer. This will generate a new obligation to

Alice (as she is the target of the original obligation, viz. target) to send a report.

Note that, the obligatee may also be hard-coded in the policy rule.

106

3. Role expression : In this approach the obligatee contain boolean role expression. Each

literal in the boolean expression can contain a positive or negative role assignment. The

system can select a user to be the obligatee provided the user satisfies the role expression

when the new obligation is incurred.

Example 43 (Role expression). Let us assume a permission assignment rule, p1 =

{ manager, check, log} ∶ Fobl = {intern ∧ ¬programmer, send, report, shift =

10, window = 5}. This rule tells that a user is going to be authorized to check the log

if she is in the role of manager. Once, she checks the log, the system will randomly select a

user that is in the role of intern and but is not a programmer, and it will create an obligation

to this user to send the report.

Creation Time Recall from the previous sections, that the time window of the new obligation

is a constant displacement from the action/obligation that incurs the new obligation. Thus, it

is necessary to add two new fields in the Fobl , namely, the shift, and window size. The shift

determines the distance between the new obligation, and the obligation that incurs it. Whereas

the window size tells the size of the time window of the new obligation. Depending on how the

time is shifted from the original obligation, the policy rule can follow two different strategies. We

consider them below:

1. Based on the execution time : In this strategy, the time window of the new obligation will

depend on the execution time of the action/obligation that incurs the new obligation. For

instance, if obligation b1 generates obligation b2, and the policy rule that governs b1 specifies

that the shift is 10 and the new obligation window size is 5. Then, if b1 is executed in time 6,

then the time windows for obligation b2 will be b2.start = 16 and b2.end = 21.

2. Based on obligation time window : Here, the time window will depend on the end time of

the action/obligation that is incurs the new obligation. For instance, if obligation b1 generates

obligation b2 and the time window of b1 is [2,7]. The policy rule that governs b1 specifies

107

that the shift is 10 and the new obligation window size is 5. Then, no matter when b1 is

executed in its time window, the time window for obligation b2 will be [17,22].

6.2.1 Taxonomy

In this section, we present the types of cascading obligations that can be supported by our concrete

model.

Repetitive obligation as its name suggests are obligations that occur recurrently after a fixed

amount of time (e.g., A security officer needs to investigate the system logs every week). In order

to represent repetitive obligations, we modify the notion of temporal constraints as presented by

Ni et al. [41] by adding an additional field named “shift”. The shift signifies the distance between

two occurrence of repetitive obligations.

Definition 44 (Temporal Constraint). A temporal constraint is a tuple (⟨ts, te⟩, shift, repetition),

where ts, te, shift ∈ N, and repetition ∈ N∗ or repetition = I .

A temporal constraint represents a sequence of time intervals defined as follows:

• [ts, te], [ts + shift,2te + shift], ...[ts + (repetition − 1)(te − ts + shift), te + (repetition −

1)(te − ts + shift)]. If repetition ∈ N∗

• [ts, te], [ts + shift,2te + shift], ...[ts + (repetition − 1)(te − ts + shift), te + (repetition −

1)(te − ts + shift)], If repetition = I

We augment our obligation model to support repetitive obligations. Now, obligations have

temporal constraints instead of time windows.

• Finite Repetitive Obligations occurs recurrently after a fixed

amount of time for a finite amount time. It is defined as b =

{user, action, objects, ⟨ts, te⟩, shift, repetition}. Where repetition ∈ N∗.

For instance, b = {Bob, check, log, ⟨5,8⟩, 2, 3} will generate 3 obligations

{Bob, check, log, ⟨5,8},{Bob, check, log, ⟨10,13},{Bob, check, log, ⟨15,18}.

108

• Infinite Repetitive Obligations occurs recurrently after a fixed amount of time. It is de-

fined as b = {user, action, objects, ⟨ts, te⟩, shift, repetition}. Where repetition = I .

For example, b = {Bob, check, log, ⟨5,8⟩, 2, I} will generate infinite obligations,

{Bob, check, log, ⟨5,8},{Bob, check, log, ⟨10,13}, ...

Directly cascading of obligations describes a cascading of obligations in which each is autho-

rized by only one policy rule. In addition, the selection of users will use the “Self, Target, and

Explicit user” strategy. The time window of the new obligations will depend on the end time pe-

riod of the action/obligation that incurs the new obligations. The policy rules are guaranteed to

be free of cycles. In this way, an obligation can only generate a finite set of obligations. These

obligations do not incur repetitive obligations.

Unrestricted cascading of obligations describes unrestricted cascading of obligations. Here,

obligations can be authorized by multiple policy rules. The time window of the new obligations

will depend on the execution time of the action/obligation that originated them. Policy rules can

have cycles. In this way, that an obligation can generate an infinite set of obligations. In addition,

the selection of users combines all the strategies presented before.

6.3 Proof of co-NP completeness of Strongly Accountability Problem

Theorem 45. Given a strongly accountable pool of obligations B, a new obligation b, an initial

authorization state γ, and a mini-ARBAC policy ψ that allows cascading of obligations and also

allows each action to be authorized by multiple policy rules, deciding whether B ∪Bc is strongly

accountable is NP-hard in the size of B, γ, and ψ, where Bc is the set of cascading obligations

incurred by b.

Proof. To show that deciding accountability is NP-hard when the input mini-ARBAC policy allows

cascading of obligations and also allows each action to be authorized by multiple policy rules, we

reduce the Hamiltonian path problem for directed graphs to it. Given a directed graph G(V,E)

109

where V is the set of vertices and E is the set of edges, the Hamiltonian path problem asks whether

there is a simple path in the graph G(V,E), such that it contains all the vertices and each of

the vertices in V are visited only once in that path. To this end, we present a polynomial time

algorithm which reduces a Hamiltonian path problem instance to the problem instance of deciding

accountability in presence of cascading obligations. Thus, the graph will have a Hamiltonian path

when the reduced problem instance of deciding accountability1 yields true.

Let us consider a Hamiltonian path problem instance where the directed graph G(V,E) is

given. Let us also assume that the total number of vertices in the graph is n (i.e., ∣V ∣ = n). We also

consider the vertices in V are uniquely labeled using a number from 1...n. Each edge e ∈ E has

the form (vi, vj) where 1 ≤ vi, vj ≤ n.

Now, we will try to construct a problem instance of deciding accountability that corresponds to

the Hamiltonian path problem instance. In the accountability decision problem instance, consider

that we have only two users, namely u0 and u1. Furthermore, let us also consider we have the

following roles, ar1, r0, r̂, r1...n, v1...n. Each of the role v1...n corresponds to the vertex of the graph.

At each point of time, the roles (in v1...n) that the user u1 currently possesses, denote the vertices

that we have already visited in the current path in the graph. Additionally, each of the role r1...n

also corresponds to the vertices of the graph. This is used to determine the current vertex being

inspected and will be explained later.

The current role assignment of users in the system is as following.

user assignment{⟨u0,{ar1}⟩, ⟨u1,{∅}⟩}

Now, we turn our attention to the input mini-ARBAC policy of the problem instance. The

policy for the corresponding problem instance would be like following:

For each vertex i in the graph G(V,E), we have a can assign rule, each of which has the

1When we say deciding accountability, we actually mean deciding the stronger version of the accountability

110

following form where 1 ≤ i ≤ n.

can assign(ar1, true, r0) ∶

{

⟨u0,Grant, u1, ri,1,1⟩,

⟨u0,Grant, u1, r̂,5 ∗ n,10⟩

} (6.1)

For each edge e = (x, y) ∈ E, we have one policy rule like the following,

can assign(ar1,¬vx ∧ ¬vy ∧ ¬ry, rx) ∶

{

⟨u0,Grant, u1, vx,1,1⟩,

⟨u0,Grant, u1, ry,1,1⟩

} (6.2)

We also have the following policy rules for each of the vertices. The policy specifies that if

ri is the last role among the roles r1...n that is being granted to u1 then there is no need to incur

any further obligations and it could be the end of the simple path where each vertex is representing

granting of a role to u1.

can assign(ar1, ⋀
(1≤j≤n)∧(i≠j)

rj, ri) ∶ {∅},1 ≤ i ≤ n (6.3)

The following policy rule allows a user in role ar1 to grant the user who has all the roles in

r1...n to be assigned the role r̂.

can assign(ar1, ⋀
1≤i≤n

ri, r̂) ∶ {∅} (6.4)

111

In the problem instance, consider B = ∅ and the obligation we want to add is b =

⟨u0,Grant, u1, r0, [1,2]⟩. Furthermore, we consider that when an action is authorized by mul-

tiple policy rules, then we select the one to use non-deterministically. We also consider that adding

an obligation b in the accountable pool of obligationsB will not violate the accountability property

as long as there is a cascading pool of obligations Bc incurred by b, in which all the obligations

in B ∪Bc are authorized. However, in our instance, as B is empty, we just need to check whether

there exists a Bc in which all the obligations are authorized.

Now when we consider the new obligation b = ⟨u0,Grant, u1, r0, [1,2]⟩, no matter what policy

rules of the form (1) we use, it will incur an obligation b̂ = ⟨u0,Grant, u1, r̂, [5 ∗ n + 2,5 ∗ n +

12]⟩. Thus, one of the pre-condition of b not violating accountability is that the obligation b̂ be

authorized. We can see from the policy rule (4) that it is the only policy rule that can possibly

authorize it. It however requires that the user u1 possesses all the roles in r1...n. Now u1 to get

all the roles the policy rules that can be used are either of form (1), (2), or (3). These policy rules

make sure that the only way a user can get all the roles in r1...n if there is a simple path in the

corresponding graph containing all the vertices only once. The policy rules of form (1) ensure that

one can start looking for such a path in any of the vertices of the graph. The policy rules of form (2)

on the other hand encodes the edge relationship and also impose a constraint that the only way to

get a role ri through an obligation incurred due to granting a predecessor role (predecessor vertex)

and if she did not have the role before (not visiting a vertex twice). The policy rules of form (3)

precisely specifies that whenever u1 possesses the last role of the roles in r1...n, there is no need to

search anymore as we have already found a simple path containing all the roles. Thus, G(V,E)

will have a Hamiltonian Path if the accountability decision procedure yields true.

Scope Given the above theorem, we provide a decision procedure for deciding strong account-

ability in presence of finite and infinite repetitive obligations, and also directly cascading of obli-

gations.

112

6.4 Algorithm for Determining Infinite Cascading

This section presents an algorithm that can statically verify the absence of cycles among policy

rules. By guaranteeing that our policy rules do not contain cycles, we avoid the creation of infinite

cascading of obligations.

Algorithm 9 works as following. It proceeds in a depth first search manner inspecting each

possible action, object pair in the system. It considers that they are authorized and checks what

obligations are incurred due to executing the action. It then calls the procedure findCycles to check

whether we can reach an action, object pair we have already seen before. If that is the case, it

guarantees that there is a cycle in the policy.

Algorithm 9 InfiniteCascading(⟨γ,ψ⟩)

Input: A policy ⟨γ,ψ⟩
Output: Returns true if ⟨γ,ψ⟩ allows infinite cascading obligations

1: map⟨pair⟨action, object⟩, boolean⟩ obligationSeen
2: obligationSeen.clear()
3: for each possible action, object pair ⟨a, o⟩ in the system do
4: obligationSeen.insert(⟨⟨a, o⟩, true⟩)
5: if findCycles(a, o,obligationSeen) == true then
6: return true
7: obligationSeen.delete(⟨⟨a, o⟩, true⟩)
8: return false

6.5 Algorithm for Determining Strong Accountability

This section begins by presenting our algorithm for determining whether adding a set of cascading

of obligations to a strongly accountable obligation pool preserves the accountability property. It

then discusses the complexity of the algorithm. The algorithms presented here are specialized to

mini-ARBAC and mini-ARBAC.

6.5.1 The Algorithm

The idea behind Algorithm 11 is that we are going to add three different types of cascading of

obligations to our obligations pool, and then decide whether the final pool is accountable. To this

113

Algorithm 10 findCycles(action a, object o, map obligationSeen)

Input: An action a, object o, and a map data structure which represents the obligations/action,
object pairs we have already seen.

Output: Returns true if ⟨a, o⟩ can generate an infinite cascading of obligations
1: for each possible policy rule p ∈ P do
2: if p.a = a ∧ p.o⃗[0] = o then
3: obligations B = p.Fobl()
4: for each obligation b ∈ B do
5: if obligationSeen.find(⟨b.a, b.o⃗[0]⟩) = true then
6: return true/* cycle found */
7: else
8: obligationSeen.insert(⟨⟨b.a, b.o⃗[0]⟩, true⟩)
9: if findCycles(b.a, b.o⃗[0],obligationSeen) = true then

10: return true/* cycle found */
11: obligationSeen.delete(⟨⟨b.a, b.o⃗[0]⟩, true⟩)
12: return false

end, we unroll the chain of cascading obligations incurred by obligation b (i.e., B′). We also unroll

the set of finite repetitive obligations incurred by Br (i.e., B′′), and finally, we unroll the infinite

repetitive obligations incurred by Bri (viz., B′′′).

Then, we used the non-incremental version of the strongly accountability algorithm presented

in chapter 3 for deciding whether the whole set Bfinal ∶= B∪B′∪B′′∪B′′′ is strongly accountable.

The Algorithm 11 achieves this by adding each administrative obligation to an empty modified

interval search tree and then calling Authorized (see Algorithm 2 in chapter 3) for each obligation

b′ ∈ Bfinal to see whether it is authorized in the context of ⟨γ,ψ⟩ and Bfinal.

Unrolling Directly Cascading To unroll the chain of cascading obligations incurred by b, Al-

gorithm 11 uses procedure UnrollCascading described in Algorithm 12. This procedure is an

adaptation of the breadth-first search (BFS) algorithm. Recall that, we disallow infinite directly

cascading of obligations. Thus, the procedure UnrollCascading is guaranteed to terminate. This

procedure uses the function Fobl, which takes an obligation bc as its input. It returns a set of obli-

gations that are incurred as result to taking the action associated with bc. The parameters of the

obligations will depend on the policy rule used to authorize bc.

114

Algorithm 11 StrongAccountableCascading (γ,ψ,B, b,Br,Bri)

Input: A policy ⟨γ,ψ⟩, a strongly accountable obligation set B, and a new obligation b that generates
cascading obligations, a set of finite repetitive obligations Br and a set of infinite repetitive obligations
Bri .

Output: returns true if addition of b, Bi and Br to the system preserves strong accountability.
1: B′ ∶= UnrollCascading(γ,ψ, b);
2: B′′ ∶= UnrollFiniteRepetitive(γ,ψ,Br);
3: m ∶= MaxEndTime(B,B′,B′′);
4: B′′′ ∶= UnrollInfiniteRepetitive(γ,ψ,Bri ,m);
5: Bfinal ∶= B ∪B′ ∪B′′ ∪B′′′;
6: for each obligation b∗ ∈ Bfinal do
7: if b∗.a = grant or revoke then
8: InsertIntoDataStructure(b∗);
9: for each obligation b∗ ∈ Bfinal do

10: if Authorized (γ,ψ, Bfinal, b∗)= false then
11: return false
12: return true

Algorithm 12 UnrollCascading (γ,ψ, b)

Input: A policy ⟨γ,ψ⟩ and a new obligation b.
Output: returns a set of cascading obligations B that is generated by b.

1: B = ∅;
2: queue < obligation > q;
3: q.push(b);
4: while !q.empty() do
5: b = q.front();
6: B ∶= B ∪ {b};
7: q.pop();
8: B′ ∶= Fobl(b);
9: for each obligation b∗ ∈ B′ do

10: q.push(b∗);
11: return B

Unrolling Finite Repetitive Obligations To unroll the obligations incurred by the finite repet-

itive obligations Br, Algorithm 11 uses procedure UnrollFiniteRepetitive described in Algo-

rithm 13. Recall that, in repetitive obligations there are two extra fields, namely, the shift, and

the number of repetition. Thus, for each obligation br in Br, the procedure creates copies of br,

varying only the time window; the exact number of copies will depend on the field “number of

repetition” predefined in br. Below, we present an example to illustrate this process.

Example 46 (Unrolling Finite Repetitive Obligations). Given a finite repetitive obligation b =

115

{u1, check, logF ile, ⟨2,4⟩, shift = 1, repetitions = 3}, the unrolling process will yield to the

following 3 obligations, b1 = {u1, check, logF ile, ⟨2,4⟩}, b2 = {u1, check, logF ile, ⟨5,7⟩} and

b3 = {u1, check, logF ile, ⟨8,10⟩}.

Algorithm 13 UnrollFiniteRepetitive (γ,ψ,B)

Input: A policy ⟨γ,ψ⟩ and a set of finite repetitive obligations B.
Output: returns a set of unrolling obligations B′ that is generated by B.

1: for each obligation b′ ∈ B do
2: B′ = ∅;
3: i ∶= 1;
4: window ∶= b′.te − b

′.ts;
5: while i ≤ b′.repetition do
6: bi ∶= b

′;
7: bi.te ∶= (b′.te − b

′.shift − b′.ts) ∗ i + b
′.ts − b

′.shift;
8: bi.ts ∶= bi.te −window;
9: B′ ∶= B′ ∪ {bi};

10: i + +;
11: return B′

Unrolling Infinite Repetitive Obligations Algorithm 11 uses procedure UnrollInfiniteRepetitive

to unroll the obligations incurred by the infinite repetitive obligationsBri . First, we find the overall

period at which the infinite repetitive obligations will start to repeat themselves. In figure 6.2

we have two infinite repetitive obligations, b1 = {u1, a, o, ⟨1,5⟩, shift = 1, repetitions = I} and

b2 = {u1, a, o, ⟨1,10⟩, shift = 1, repetitions = I}. It is clear, that that after time 11, we start to see

a pattern formed by the obligations, this is the overall period. To compute the overall period, we

use procedure LCM. The procedure is used to find the least common multiple of a set of periods.

We compute each obligation period in the following way, given a infinite repetitive obligation bi,

which can be unrolled to b0, b1, ..., bi. The time that will be used for the LCM procedure is given

by b1.s−b0.s. In this figure, the periods that are used to the LCM are 5 and 10, which will generate

a overall period of size 10.

Once the period is computed, we check whether the period is greater than the maximum time

of the finite obligations. If this is the case, we just need to unroll the infinite repetitive obligations

until two additional periods. Otherwise, we unroll the infinite obligations until the maximum time,

116

Figure 6.2: Computing the Least Common Multiple

and then we unroll one additional period. Figure 6.3 describe this procedure.

Figure 6.3: Unrolling Infinite Repetitive Obligations

Complexity Analysis Initially, we have an obligation set that contains ∣B∣ obligations. After

unrolling all the obligations, we end up with n = ∣B∣ + ∣B′∣ + ∣B′′∣ + ∣B′′′∣. The cost to unroll the

directly cascading of obligations is O(∣B′∣). The cost to unroll the finite repetitive obligations is

O(∣B′′∣). The cost to unroll the infinite repetitive obligations is O(∣Bri ∣2 + ∣B′′′∣).

So, the total cost isO(qmn2 logn+a logn+∣B′∣+∣B′′∣+∣Bri ∣2+∣B′′′∣) =O(qmn2 logn), in which

a is the number of obligations to perform administrative actions (a ≤ n). (The term a logn is the

cost of constructing the search tree.) q is the number of policy rules (q =Max{∣CA∣, ∣CR∣, ∣PA∣})

and m is the maximum size of the role constraints in the can assign rules in CA.

117

Algorithm 14 UnrollInfiniteRepetitive (γ,ψ,B,m)

Input: A policy ⟨γ,ψ⟩, a set of infinite repetitive obligations B, and a point in time m representing the last
time point where a non-infinite obligation happens.

Output: returns a set of unrolling obligations B′ that is generated by B.
1: B′ = ∅;
2: period = LCM(B)

3: if period >m then
4: finalT ime ∶= period ∗ 2;
5: else
6: finalT ime ∶= (⌈(m/period)⌉ + 1) ∗ period;
7: for each obligation b′ ∈ B do
8: end ∶= b′.te;
9: window ∶= b′.te − b

′.ts;
10: while end <= finalT ime do
11: bi ∶= b

′;
12: bi.te ∶= (b′.te − b

′.shift − b′.ts) ∗ i + b
′.ts − b

′.shift;
13: bi.ts ∶= bi.te −window;
14: B′ ∶= B′ ∪ {bi};
15: end ∶= bi.te;
16: return B′

Algorithm Variations One of the problems that Algorithm 11 can suffer is an explosion in the

length of the chain of the cascading obligations. This can happen for three different causes. First,

an obligation added to the system can trigger several other obligations. Although, this is possible,

we do not consider this. As we are prohibiting infinite cycles in the policy rules, the amount of

obligations triggered by one obligation would be bounded by the Fobls described in the policy

rules. Secondly, one can add a finite repetitive obligation that needs to repeat itself several times.

In this case, we can try to bound the number of times a finite repetitive obligation can happen.

Finally, when someone adds infinite repetitive obligations, sometimes the period that these infinite

repetitive obligations are going to repeat is very large. In this case, it is going to be necessary to

unroll many infinite repetitive obligations. A possible solution for this problem is to impose a re-

striction in our system. Namely, finite and infinite repetitive obligations will be non-administrative

in nature. That is, they will not alter the authorization state. In this case, we only need to unroll

the obligations until after the maximum end time of non-repetitive obligations.

Algorithm 11 is receiving three different sets of obligations. Another possibility to the algo-

rithm would be to receive only one obligation, that could be, a obligation that will incur a chain

118

of cascading of obligations, or a finite repetitive obligation, or a infinite repetitive obligation. Cur-

rently, in the system there is a set of pending obligations, which finite repetitive obligations. And

a separated set that contain not unrolled infinite repetitive obligations. Now, if someone wants to

add an obligation that triggers other obligations, the algorithm unroll the chain of the obligations

that will be incurred by this obligation and add to the pending obligation. Then, the algorithm re-

computes the period of the infinite repetitive obligations and check whether the unrolled infinitive

repetitive obligations together with the pending obligations are accountable. Note that, the algo-

rithm will never mix the infinite repetitive obligations with the set of finite obligations. In the case

that one wants to add an infinite repetitive obligation to the system. The algorithm adds this infi-

nite repetitive obligation to the infinite repetitive pending obligation set, then it computes the new

period, unroll the infinite repetitive obligations, and compute accountability to these obligations

together with the finite pending obligation pool. The last case is analogous, but now if someone

tries to add finite repetitive obligation. The algorithm unroll this finite repetitive obligation, and

add this obligations to the finite pending obligation pool. Then, it recomputes the period for infi-

nite repetitive obligations, it unrolls them, and it checks whether the union of both sets is strongly

accountable.

6.6 Empirical Evaluations

The goal of these empirical evaluations is to determine the impact of restricted versions of cas-

cading of obligations when deciding strong accountability when using our obligation model with

mini-RBAC/mini-ARBAC as the authorization state.

Policy generation To evaluate the strong accountability algorithms for mini-ARBAC/mini-

RBAC, we assumed 1000 users and used a handcrafted mini-ARBAC/mini-RBAC policies ⟨γ0, ψ0⟩

summarized in table 3.2.

To evaluate the strong accountability algorithm under the cascading of obligations assumptions,

we assume 1007 users and used a handcrafted mini-RBAC/mini-ARBAC policy that contains, 551

119

roles, 53 actions (2 administrative, 51 non-administrative), 1051 objects, 560 can assigns rules

(with 5 maximum role preconditions), 560 can revoke rules, 1251 permission assignment rules.

101 Fobl rules, each Fobl generating 10 new obligations, making a total of 1000 new cascading of

obligations generated.

To generate the obligations, we handcrafted 6 strongly accountable sets of obligations in which

each set has 50 obligations. Each set has a different ratio of administrative to non-administrative

obligations (rat). We then replicated each set of obligations for different users to obtain the desired

number of obligations. Similarly, we generate the infinite and finite repetitive obligation in the

same way, we have 6 sets of repetitive obligations that are strongly accountable. The execution

times shown are the average of 100 runs of each experiment.

Experimental Environment All the strong accountability experiments are performed using an

Intel i7 2.0GHz computer with 6GB of memory running Ubuntu 11.10.

6.6.1 Evaluations Results

Directly cascading For these empirical evaluations, we add one obligation to a strongly ac-

countable obligation set. This obligation incurs 1000 new obligations. Then, the algorithm needs

to answer whether these 1000 obligation along with the original strongly accountable obligation

set is still strongly accountable. Figure 6.4 presents results for the strong accountability algo-

rithm when considering the case described above. As we can see, the time required by the strong

accountability algorithm grows roughly linearly in the number of obligations. In the worst case

the algorithm runs in 110 milliseconds to determine that the set is strongly accountable. This is

roughly two times slower than the non-incremental strong accountability algorithm presented in

chapter 3 without cascading of obligations. This is due to the overhead of unfolding the cascading

obligations (algorithm 13, which is a variation of the breadth first search). The impact of rat on

the execution time of algorithm arises largely because the algorithm must inspect every obligation

following each administrative obligation. When someone tries to add a unauthorized obligation

120

to a strongly accountable set, the algorithm can determine that the final set is not accountable

in less than 90 milliseconds as shown in figure 6.5. Which again is two times slower than the

non-incremental algorithm presented chapter 3 without considering cascading of obligations.

Only finite repetitive obligations Here, we consider to add 50 finite repetitive obligations to a

strongly accountable obligation set. These 50 obligations generate 1000 new obligations. The algo-

rithm will check whether the old set of obligations plus this set is strongly accountable. Figure 6.6

shows results for the strong accountability algorithm when considering the case described above.

The time required by the strong accountability algorithm grows roughly linearly in the number

of obligations. In the worst case, the algorithm runs in 65 milliseconds to determine if the set is

strongly accountable. In general, if the number of obligations generated by the finite repetitive

obligations is not too large (when compared with the original set), the time to compute the algo-

rithm is almost not affect by the repetitive obligations. As algorithm 13 can unroll the repetitive

obligations in a trivial way, the overhead of this procedure will be small considering the number

of repetitive obligations is small. Figure 6.7 presents the execution times for computing strongly

accountability under finite repetitive obligations when the whole set is not strongly accountable.

As previous case, we can see that computing strongly accountability for a non strongly accountable

set is a little bit faster than computing for a strongly accountable set for obvious reasons.

Finite and Infinite repetitive obligations, and cascading of obligations For these empirical

evaluations, we add one obligation to a strongly accountable obligation set. This obligation gen-

erates 1000 new obligations. We also add 50 finite repetitive obligations to a strongly accountable

obligation set. These 50 obligation in turn is going to generate 1000 new obligations. Finally, we

add 5 infinite cascading of obligations, these generate more 1000 obligations The algorithm checks

whether all this set together are strongly accountable.

Figure 6.8 shows results for the strong accountability algorithm when considering the case de-

scribed above. The time required by the strong accountability algorithm grows roughly linearly in

the number of obligations. In the worst case, the algorithm runs in 120 milliseconds to determine

121

Figure 6.4: Execution time vs. number of obligations (directly cascading of obligations)

Figure 6.5: Execution time vs. number of obligations (directly cascading of obligations, non-
strongly accountable set)

122

Figure 6.6: Execution time vs. number of obligations (finite repetitive obligations)

Figure 6.7: Execution time vs. number of obligations (finite repetitive obligations, non-strongly
accountable set)

123

Figure 6.8: Execution time vs. number of obligations (finite/infinite repetitive obligations and
directly cascading of obligations)

Figure 6.9: Execution time vs. number of obligations (finite/infinite repetitive obligations and
directly cascading of obligations, non-strongly accountable set)

124

Figure 6.10: Execution time vs. number of obligations

if the set is strongly accountable. The performance of this algorithm is similar to the algorithm that

tries to decide strongly accountability under pure cascading. This is due to the fact that unfolding

the pure cascading obligation dominates the cost of unfolding infinite and infinite repetitive obliga-

tions (considering the three sets are generating the same number of obligations). When comparing

this algorithm with the incremental algorithm for computing strongly accountability in chapter 3,

we can see this algorithm again needs double the time to decide strongly accountability when not

considering cascading. Figure 6.9 presents the execution times for computing strongly account-

ability for the above case, when the obligation set is not strongly accountable. As we can see from

the figure, in the worst case, the algorithm needs less than 90 milliseconds.

Increasing the number of cascading obligations In this empirical evaluation, we keep the num-

ber of non-cascading obligation fixed (5000 obligations). And all the obligations are adminis-

trative. Then, we vary the number of cascading obligations (finite, infinite repetitive, and pure

cascading) from 3,000 to 76,000. Figure 6.10 presents the results. We can see the time grows

linearly when increasing the number of the cascading of obligations. Even, for more than 126,000

125

obligations the algorithm can decide strongly accountability in less than 140 milliseconds.

6.7 Summary

This chapter has presented a taxonomy of cascading of obligations. It also has presented a proof

that shows that deciding strongly accountability in the presence of cascading of obligations for user

obligation using mini-RBAC/mini-ARBAC as its authorization states is NP-hard with respect to the

policy and obligation pool size. We have also presented decision procedures for checking strongly

accountability in the presence of some restricted versions of cascading of obligations. Finally, it

has presented some empirical evaluations that shows that one can enforce strongly accountability

in the presence of cascading of obligations in less than 120 milliseconds.

126

CHAPTER 7: RELATED WORK

This chapter discusses the works related to this dissertation. We start our discussion by pre-

senting the differences and similarities between our work and other works in the obligation field.

Then, we present some related research about how security can interfere with usability and how

we address these issues in our framework. Many of the contributions presented in this dissertation

are in the form of policy analysis, thus we present some related work that served as the inspira-

tion to our work. Finally, we discuss the advantages of using obligation systems over workflow

managements systems (WFMS). To this end, we present some related work in the are of workflow.

7.1 Obligation Models

Many obligation models have been proposed, ranging from largely theoretical [24, 31, 40] to more

practical [26, 32, 38, 41, 54]. Minsky and Lockman [40] were the first to suggest incorporating

obligations into authorization models. They proposed a very general model that includes concepts

of positive obligations, negative obligations, deadline of obligations, obligations triggered by

events, compensatory actions for failed obligations, etc. The model is probably too abstract to be

implemented in a real world system.

Today, many policy languages can specify the assignment of obligations as part of the policy.

Some of these include XACML [2], EPAL [5], KAoS [55] and Ponder [23]. XACML [2] supports

only system obligations that are triggered by events and have an immediate deadline. EPAL [5] is

somehow similar to XACML and assumes obligations are defined as actions that must be taken

by the environment, and that they do not interfere with each other. Ponder, on the other hand,

assumes user obligations that depend on authorization, but obligations do not have a time window

associated with them, and must be fulfilled immediately.

Bandara et al. [11] extended the model proposed by Irwin et al. [31] for obligations in order

127

to create more complex policy rules. The language proposed is more expressive, yet the strong

accountability problem remains tractable. However, no accountability decision procedure was

presented.

Gama and Ferreira [26] presented an implementation of an obligation model called Heimdall,

which is based on policies written in xSPL. Their model can only enforce system obligations. On

the other hand, our model deals with user obligations that depend on authorizations. In that sense,

their work is complimentary to ours.

The model of Bettini et al. [15] uses logic-programming to select policy rules in or-

der to minimize the number of obligations and provisions one must incur. Unlike our model,

they consider that an obligatory user always has the necessary permissions to fulfill his obligations.

Dougherty et al. [24] presented an abstract obligation model that relates a program execution

path with obligations. The model is very expressive and can handle both positive and negative

obligations. They also consider repetitive obligations, penalties for violating an obligation and

also states for obligations. They do static analysis by using Büchi automata to answer questions

such as determining whether two obligations are contradictory or whether a run of the system

fulfills a given obligation, etc. Thus, their analysis work focuses on system obligations, rather than

on user obligations.

Ni et al. [41] presented a concrete model for obligations that interact with permissions based

on PRBAC [42] that handles repetitive obligations, pre and post-obligations and also conditional

obligations. They also presented two algorithms to analyze the dominance and infinite obligation

cascading properties. In addition, they presented other important issues that one needs to consider

when implementing a real obligation system, namely, techniques for analyzing unfulfillable

obligations, sanctions and reward mechanisms. Their obligation model is more expressive than

128

ours. However, they did not address how to decide accountability in such a model. In the same

vein, they also did not investigate the impact of unfulfilled obligations. In this regard, we address

other problems in this dissertation.

May et al. [38] presented a formal model for legal privacy policies of HIPAA. They considered

a basic model of obligations without considering many theoretical issues. They used model

checking to analyze properties with respect to some fixed policy rules. They did not present any

experimental results of the efficiency of their approach.

Swarup et al. [54] presented a model for data sharing agreements in which a set of obligations

is considered as constraints. They also suggested using model checking to verify some properties

in their model, though they did not mention any practical implementation. The nature of the work

that we solve in this dissertation is intrinsically different than their work.

Casassa and Beato [17] provided a formal framework to enforce and specify obligation

policies. In their model, they allowed user and system obligations. Obligations can be triggered

by time or events, and they used a special kind of action called on violation actions for restoring

the security state of the system when some user obligations are violated. Such actions allow the

system to take some counter measures in order to fulfill the missed obligation. By contrast, we

give the administrator some tool support in order to handle violated obligations (e.g., finding the

responsible user for the missed obligations, finding the obligations that can be affected by the

missed obligations, and techniques to restore the accountability of the system).

Katt et al. [37] augmented the UCON model [43] to support post-obligations. Their system

considers two types of obligatory actions , non-trusted obligations and trusted obligations.

Trusted obligations are performed by the system, so they consider that they are never violated.

Non-trusted obligations; however, are user obligations and can be violated. They proposed a

129

mechanism that makes decisions based on the status of fulfillment of the non-trusted obligations

(e.g., if a client did not pay a bill, the system needs to send an email to the client). However, they

did not consider interaction of authorization systems and obligations.

Hilty et al. [29] provide an obligation specification language (OSL) for distributed usage

control. They also show how an OSL can be further translated into a language for expressing

rights, which can be enforced by some existing DRM mechanisms. In contrast to our work, they

consider obligations in a data containment mechanism, whereas we consider obligations and their

interactions with authorization systems.

7.2 Security and Usability

When security policies are more complex, access denial may indicate only that the desired action

cannot be performed under the current circumstances. Recently, researchers have studied various

situations in which understanding and remedying a denial is more difficult. For instance, Kapa-

dia et al. [36] have studied the problem of explaining access denial that is based on environmental

factors, such as time and location of access attempt. Bauer et al. [13] have studied problems that

arise in managing authorization state in large scale systems. Cranor and Garfinkel [21] have stud-

ied the relationship of security and usability in many practical problems (e.g., phishing, password

generation), and how the complexity of correctly configuring security features such as authoriza-

tion state can lead to user errors or to users turning off security mechanisms altogether. In [22],

Cranor et al. have addressed the problem of privacy issues when considering usability. Other au-

thors [8] [20] have studied how user actions can affect security mechanisms. In our work, instead

of explaining an access denial, we present the user with a plan of action that enables her to perform

her desired action. In addition, when the system falls in an unsafe state (i.e., unaccountable), we

provide a set of strategies to the system administrator that enables her to restore the system state to

a safe state (i.e., accountable).

130

7.3 Policy Analysis

Stoller et al. [53] studied the mini-ARBAC/mini-RBAC policy through experimental analysis on

the role reachability problem [33,51]. In this problem, one seeks a sequence of grants and revokes

that modifies the current role memberships of a given user to include a given role. Determining

whether there is such a sequence that leads to the user having a given role is, in the unrestricted

case, PSPACE-complete [51]. This is particularly daunting because RBAC systems used in practice

often have hundreds of roles, thousands of users, and millions of objects [25].

The role reachability problem can be reduced trivially to one of the techniques that we propose

to use for accountability restoration, namely the action failure feedback problem (see chapter 4).

For dealing with a generalized variant of the role-reachability problem that arises in this context,

we have developed an AI planning tool that is often able to find suitable action sequences (provided

the sequences are not too long) [47].

7.4 Workflows

Nowadays, many workflow management systems (WFMS) are deployed in practice [1,3,4]. How-

ever, the majority of the systems assume that the users have the permissions they need when they

attempt to execute a task. Sometimes this assumption is not realistic and makes it difficult to create

more complex security policies, such as separation of duty, Chinese wall, mandatory vacation, job

rotation, etc. To address this problem, Atluri and Huang [10] have introduced a workflow autho-

rization model that is able to give or to remove permissions to users only when they are executing

their tasks. Bertino et al. [14] have presented a workflow management system based on RBAC that

is able to check dynamic and static constraints. They have also presented an AI planning approach

that attempts to generate possible role-user assignments for a given task; nevertheless, their model

does not support temporal or event-based constraints. Kandala and Sandhu [35] have proposed

workflow models that can support separation of duty constraints. However, their models also do

not accept temporal constraints. Instead, they check for separation of duty just at the time the user

131

attempts to take the action. Combi and Pozzi [19] have created a model that helps administrators

to allocate users based on some predefined metrics (e.g., time and user skills). In general, WFMS

have some notions of obligations embedded in it. Typically, WFMS [14,19] are composed of a set

of individual tasks used to achieve a common goal. Such tasks can be obligatory actions, and in

that sense the work presented in this dissertation can be seen as complimentary to the workflow

systems. However, we leave the integration of user obligations and WFMS as a future work.

132

CHAPTER 8: CONCLUSION AND FUTURE WORK

In recent years, with the growth of the Internet and computer networks, more and more orga-

nizations started using computers to assist their business processes. It is clear that in their business

processes, organizations will impose some obligatory actions for their employees. The interaction

of obligations, security policy and business process raise the complexity of managing such envi-

ronments. Thus, computer aided tools are necessary to assist these organizations in managing their

business processes. This dissertation is part of a project investigating authorization systems that as-

sign obligations to users. We are particularly interested in obligations that require authorization to

be performed and that, when performed, may modify the authorization state. In this context, a user

may incur an obligation she is unauthorized to perform. Prior work [31] has introduced properties

of the authorization system state that ensures users will be authorized to fulfill their obligations on

time. The properties are called weak and strong accountability. The stronger version of account-

ability requires that each obligation be authorized throughout its entire time interval. Whereas the

weaker version allows an obligation to be unauthorized during part of its time interval, provided

that if the obligated user waits for other obligations to be fulfilled, it is guaranteed that the action

will become authorized before its deadline. While a reference monitor can mitigate violations of

accountability by denying actions that violate accountability, it cannot prevent them entirely. Al-

though, prior work [31] have addressed many issues in user obligation systems (e.g., accountability

property, blaming assignment, etc.). Still many questions were without answers. To this end, we

present a user obligation architecture and identify several issues that appear when user obligations

can interact with authorization system. Namely, we are interested in studying the scalability and

performance of deciding accountability, how different authorization models can affect the decision

of accountability, the balance between security and usability, and finally, how different types of

obligations can affect the performance of such a system.

The first challenge that we have studied was to check the impact of adding decision procedures

for both weak and strong accountability in a reference monitor. For this, we have presented an

133

algorithm to decide strong accountability and two methods to decide weak accountability. Both

procedures are based on an obligation system that uses mini-ARBAC/mini-RBAC as its authoriza-

tion system. Our experimental results demonstrate that the performance of the algorithm for strong

accountability is excellent. On the other hand, the performance of both methods for weak account-

ability are only adequate for medium to small size problem instances. In fact, we have proved

that even using the simple authorization model, mini-ARBAC/mini-RBAC, the weak accountabil-

ity problem is co-NP complete. Although, the empirical evaluations of our techniques support the

thesis that the strong accountability procedure can be added to a reference monitor, it is important

to note that some limitations might exist. (i) We did not have access to any real obligations sets

and mini-ARBAC/mini-RBAC policies. Thus, our empirical evaluations are based on problem in-

stances that are generated synthetically. We tried our best to construct problem instances that we

think would represent real world obligation sets and policies. To this end, we have hand-crafted

problem instances, we have also used mini-ARBAC/mini-RBAC policies presented in other works,

and we have also non-deterministically generated problem instances. In fact, policy generation and

benchmarks are a rich topic and could be consider a hard problem by itself. (ii) In our techniques,

we have used the simplified version of ARBAC and RBAC. This simplifies accountability deci-

sion, since the simplified authorization model did not support role hierarchies, sessions, changes

to permission-role assignments, or role administration operations, such as creation or deletion of

roles. We believe greater generalization is also possible, for instance, to support ARBAC models

that support role hierarchies and in which the role hierarchy can be modified. However, doing

so seems likely to increase the algorithm’s complexity by a factor of the number of roles in the

system.

Secondly, we have studied the flexibility of our obligation model. To this end, we instantiate our

concrete model to use the extended mini-HRU Access Control Matrix Model as its authorization

system. We have presented a decision procedure for strong accountability using this obligation

model. Our empirical evaluations shows that deciding strong accountability for the extended mini-

HRU authorization models is 13 times slower than a model using mini-ARBAC/mini-RBAC as

134

its authorization model. Despite the higher complexity, the algorithm still runs in less than 90

milliseconds. With this comparison, we have tried to show that our obligation model can support

other authorization models. In fact, it is our believe that to be used in practice our obligation model

needs to support other types of authorization models.

Thirdly, we have presented an approach to solve the action failure feedback problem based

on AI planning. The action failure feedback attempts to address the balance between the security

goal and usability of a system that incorporates explicit management and enforcement of user

obligation. Our approach is based on user obligation system that uses mini-RBAC and mini-

ARBAC as its authorization system. We have also shown that the action failure feedback problem is

PSPACE-hard that partially justifies our approach of using an AI planner to solve the problem. We

have also presented empirical results that demonstrate that our approach can be useful for small size

problem instances. Exploring other AI planners (e.g., GraphPlan, SatPlan) for solving this problem

could lead to more efficient solutions. Another interesting future direction is to explore whether

imposing some restrictions on the problem would yield any efficient solution. One important issue

that arises when someone uses our failure feedback module is that it may be used to compromise

the privacy of a system. This is due to the fact that, when a user receives a plan of actions, it

might contain actions not for himself, but also for others. Based on these actions, he can infer the

system’s security policy. Addressing this problem is a matter of future work.

Fourthly, as mentioned before, the idea of preserving accountability as a system invariant some-

times might not be achieved, as users may fail to fulfill their obligations. For this, we have provided

some restoration techniques that can be used by the system administrator to restore accountabil-

ity. We also have introduced different notions of authorization dependency among obligations.

We also have provided formal specification and techniques for calculating two different notions of

slice that calculates the set of obligations that the administrator needs to consider when applying

the different restoration techniques given a set of violated obligations. In this dissertation, we have

presented slice definitions, but no algorithm to find them. In fact, the design of an efficient algo-

rithm remains an open problem. At minimum, it should compute the dependence relation in a lazy

135

way. Moreover, minimality in the dependence relation will be less of an issue in a real algorithm,

which will focus on constructing the slice, not on the dependence relation that defines it. Closely

related to the accountability-restoration problem is the problem of ensuring that the effect of vio-

lation and restoration leaves the authorization system in the same state it would have been if the

violation had never occurred. The user obligation systems we consider supports two kinds of ac-

tions, namely obligatory and discretionary actions. Obligations to perform administrative actions

can be used to give permissions to users so that they can perform discretionary actions. For in-

stance, if a new employee needs to be granted appropriate permissions to enable her to perform her

job function, restoring accountability by removing obligations to grant those permissions would be

unacceptable. Thus, some administrative obligations must not be removed for reasons other than

their effect on other obligations. The administrator or manager who has the responsibility to re-

store accountability must take this into consideration when selecting an accountability restoration

strategy. We did not address this in this dissertation, and leave this as future work.

Finally, the last problem that we have addressed in this dissertation was whether it is possi-

ble to decide strongly accountability in the presence of cascading of obligations. Thus, we have

presented some restricted notions of cascading obligations, and we have shown a polynomial time

algorithm to decide strong accountability in presence of them. Our empirical evaluations indicated

that depending on the number of new obligations incurred one can decide strongly accountability

in less than 100 milli-seconds. For achieving this performance we have assumed obligations are

authorized by only one policy rules. It seems highly unlikely that permitting multiple policy rules

per action would lead to a tractable accountability decision problem. Other limitation of model is

that we can have an explosion in the number of the cascading of obligations. Without any bound

on the chain length of the cascading, the accountability problem can become intractable. We have

pointed some possible solutions to these problems, we can bound the length of cascading chains,

by establishing a partial order on actions, and requiring that obligatory actions incurred must be

strictly dominated by the actions that cause them to be incurred. Another possibility is to statically

verify the absence of cycles in the policy rules. Or yet, have cascading of obligations only for non

136

administrative actions. In such cases, one does not need to unroll all the non-obligatory obliga-

tions. Instead, it is only necessary unfold the non-administrative obligations one period after the

last non-cascading obligation.

8.1 Future Work

Decentralized Environment The techniques developed and discussed in this dissertation for

deciding and maintaining accountability in a system are based on an assumption that the Policy

Enforcement Point (PEP) is centralized. This signifies that all access request and incurring of

obligations are checked by the centralized reference monitor for permissibility. Now, it is quiet

natural to address whether our techniques could be extended to support systems where the PEP is

decentralized.

We assume that in a distributed systems multiple autonomous domains collaborate to form a

virtual organization. Each of the domains are governed by their own security policy, but can inter-

act with each other (e.g., one domain can assign obligations to other domains). Due to the privacy

concerns it is expected that domains do not reveal their security policy totally to other domains.

Thus, extending our abstract and concrete model to support obligations in such a distributed envi-

ronment is not trivial. Facilitating the support of managing and enforcing user obligations in such

an environment creates some technical issues that must be addressed. First, what changes should

be made to the policy of each of the domains so that one domain can assign obligations to other

domains. Secondly, when one domain (domainA) wants to assign an obligation to another do-

main (domainB) that violates the accountability property of domainB. The question is how does

domainB explain to domainA the reason behind the violation of the accountability without reveal-

ing its policy. Thirdly, how does one determine whether the accountability property is maintained

in the distributed system as a whole.

One possible design could be an existence of a trusted third party (TTP) which acts as the

centralized PEP for the distributed system. All the internal and external obligations are maintained

by the TTP. For this, TTP needs to have full knowledge about the policies of individual domains of

137

the distributed system. Internal obligations here refer to obligations that are incurred by the policy

of the individual domains whereas external obligations are obligations that are assigned by some

external domains. In such a design, TTP is the bottleneck and single point of failure. Furthermore,

by compromising TTP an attacker can gain access to the policies of each of the domains. Thus,

a possible solution would be a design where each domain maintains its obligations (both internal

and external) and knowledge of its own policy. The determination of the accountability property

of the whole system is determined using an intuition that if each domain is in an accountable state,

so then is the distributed system as a whole.

Parametrized ARBAC/RBAC authorizations system The techniques presented in this disser-

tation were using mini-RBAC and mini-ARBAC as the the authorization state. However, to be

practical we may need to extend our techniques to use parametrized version of the ARBAC/RBAC

as the authorization state. Doing so, will permit our obligation architecture to express many differ-

ent types of obligations that exist in real world. For instance, Alice’s doctor is obliged to correct

her protected health information. Role hierarchy, and parametrized roles can be modeled in our

current model without significant modifications.

Support for other types of obligations In this dissertation, we have considered only positive

user obligations triggered by events. One possibly future direction could be relaxing this restriction

and fully support other types of obligations, namely, negative obligations, conditional obligations,

pre-obligations, incremental obligations, etc. Several changes needed to be made in our concrete

model and algorithms to deciding accountability in order to support these new types of obligations.

It going to be necessary to modify how obligations are incurred in our system. Obligations will

need to have states, and in each clock tick the system would need to check whether they changed

or not. Another important issue is how to define accountability in the presence of negative obli-

gations. An obligation system can enforce a negative obligation by denying a user to execute the

action defined in the negative obligations. Or, the obligation system can just monitor any violations

of negative obligations. In our notion of obligation, there is no explicit representation of an obli-

138

gation’s purpose or significance, making it difficult to decide how important an obligation is. So,

we leave it in the hand of the administrator to decide which obligations to remove when restoring

accountability. We can extend our model in order to support purpose of obligations. This will

allow for more efficient automatic tools for restoring accountability, as well as for user allocation.

Functional dependencies In our model, we only consider authorization dependencies. In order

to model a richer obligation system, one might need also to consider functional dependencies

among obligations. Recall that the creation of obligations in our model are governed by policy

rules that have the form p = a(u, o⃗) ← cond(u, o⃗, a) ∶ Fobl(s, u, o⃗). A possible way to introduce

functional dependencies in our model is to hard-code them into the Fobl functions.

139

BIBLIOGRAPHY

[1] IntalioCloud. http://www.intalio.com/. [Online; accessed July-2010].

[2] OASIS eXtensible Access Control Markup Language (xacml). http://www.oasis-
open.org/committees/xacml/. [Online; accessed May-2009].

[3] ProcessMaker. http://www.processmaker.com/. [Online; accessed July-2010].

[4] Websphere MQ Workflow. http://www-01.ibm.com/software/integration/wmqwf/. [Online;
accessed July-2010].

[5] Enterprise privacy authorization language (EPAL) version 1.2, November 2003.
http://www.zurich.ibm.com/pri/projects/epal.html.

[6] Cadence SMV, 2009. http://www.kenmcmil.com/.

[7] Description of the policies used in the experiments, 2009.
https://galadriel.cs.utsa.edu/policies/.

[8] Anne Adams and Martina Angela Sasse. Users are not the enemy. Commun. ACM,
42(12):40–46, 1999.

[9] Ross J. Anderson. Security Engineering: A Guide to Building Dependable Distributed Sys-
tems. Wiley, 2nd edition, 2008.

[10] Vijayalakshmi Atluri and Wei kuang Huang. An authorization model for workflows. In ES-
ORICS ’96: Proceedings of the 4th European Symposium on Research in Computer Security,
pages 44–64, London, UK, 1996. Springer-Verlag.

[11] Arosha Bandara, Jorge Lobo, Seraphin Calo, Emil Lupu, Alessandra Russo, and Morris Slo-
man. Toward a Formal Characterization of Policy Specification Analysis. In Annual Confer-
ence of ITA (ACITA), University of Maryland, USA, September 2007.

[12] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. Privacy and con-
textual integrity: Framework and applications. Security and Privacy, IEEE Symposium on,
0:184–198, 2006.

[13] Lujo Bauer, Lorrie Faith Cranor, Robert W. Reeder, Michael K. Reiter, and Kami Vaniea.
Real life challenges in access-control management. In CHI ’09: Proceedings of the 27th
international conference on Human factors in computing systems, pages 899–908, New York,
NY, USA, 2009. ACM.

[14] Elisa Bertino, Elena Ferrari, and Vijayalakshmi Atluri. A flexible model supporting the spec-
ification and enforcement of role-based authorization in workflow management systems. In
RBAC ’97: Proceedings of the second ACM workshop on Role-based access control, pages
1–12, New York, NY, USA, 1997. ACM.

140

[15] Claudio Bettini, Sushil Jajodia, X. Sean Wang, and Duminda Wijesekera. Provisions and
obligations in policy rule management. J. Netw. Syst. Manage., 11(3):351–372, 2003.

[16] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. Inf. Comput., 98(2):142–170, 1992.

[17] M. Casassa and F. Beato. On Parametric Obligation Policies: Enabling Privacy-Aware In-
formation Lifecycle Management in Enterprises. In Policies for Distributed Systems and
Networks., pages 51 –55, jun. 2007.

[18] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst., 8:244–263,
April 1986.

[19] Carlo Combi and Giuseppe Pozzi. Task scheduling for a temporalworkflow management
system. In TIME ’06: Proceedings of the Thirteenth International Symposium on Temporal
Representation and Reasoning, pages 61–68, Washington, DC, USA, 2006. IEEE Computer
Society.

[20] Lorrie Faith Cranor. A framework for reasoning about the human in the loop. In UPSEC’08:
Proceedings of the 1st Conference on Usability, Psychology, and Security, pages 1–15, Berke-
ley, CA, USA, 2008. USENIX Association.

[21] Lorrie Faith Cranor and Simson Garfinkel, editors. Security and Usability. O’Reilly Media,
2005.

[22] Lorrie Faith Cranor, Praveen Guduru, and Manjula Arjula. User interfaces for privacy agents.
ACM Trans. Comput.-Hum. Interact., 13(2):135–178, 2006.

[23] D. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy Specification Language.
In 2nd International Workshop on Policies for Distributed Systems and Networks, Bristol,
UK, January 2001. Springer-Verlag.

[24] Daniel J. Dougherty, Kathi Fisler, and Shriram Krishnamurthi. Obligations and their inter-
action with programs. In CESORICS ’07: Proceedings of the 12th European Symposium On
Research In Computer Security, Dresden, Germany, September 24-26, 2007, Proceedings,
pages 375–389, 2007.

[25] Michael P. Gallaher, Alan C. Oconnor, and Brian Kropp. The Economic Impact of
Role-Based Access Control, March 2002. Available at http://www.nist.gov/director/prog-
ofc/report02-1.pdf.

[26] Pedro Gama and Paulo Ferreira. Obligation policies: An enforcement platform. In 6th IEEE
International Workshop on Policies for Distributed Systems and Networks (POLICY 2005),
Stockholm, Sweden, June 2005. IEEE Computer Society.

[27] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in operating sys-
tems. Commun. ACM, 19:461–471, August 1976.

141

[28] Health Resources and Services Administration. Health insurance portability and accountabil-
ity act, 1996. Public Law 104-191.

[29] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language for dis-
tributed usage control. In Joachim Biskup and Javier Lopez, editors, Computer Security - ES-
ORICS 2007, volume 4734 of Lecture Notes in Computer Science, pages 531–546. Springer
Berlin, Heidelberg, 2008.

[30] Keith Irwin. A System for Managing User Obligations. PhD thesis, North Carolina State
University, 2008.

[31] Keith Irwin, Ting Yu, and William H. Winsborough. On the modeling and analysis of obli-
gations. In CCS ’06: Proceedings of the 13th ACM conference on Computer and communi-
cations security, pages 134–143, New York, NY, USA, 2006. ACM.

[32] Keith Irwin, Ting Yu, and William H. Winsborough. Assigning responsibilities for failed
obligations. In iTrust ’08: IFIPTM Joined iTrust and PST Conference on Privacy, Trust
Management and Security, pages 327–342. Springer Boston, 2008.

[33] Karthick Jayaraman, Vijay Ganesh, Mahesh Tripunitara, Martin Rinard, and Steve Chapin.
Automatic error finding in access-control policies. In Proceedings of the 18th ACM confer-
ence on Computer and communications security, CCS ’11, pages 163–174, New York, NY,
USA, 2011. ACM.

[34] A. J. I. Jones. On the relationship between permission and obligation. In ICAIL ’87: Pro-
ceedings of the 1st international conference on Artificial intelligence and law, pages 164–169,
New York, NY, USA, 1987. ACM.

[35] Savith Kandala and Ravi Sandhu. Secure role-based workflow models. In Das’01: Proceed-
ings of the fifteenth annual working conference on Database and application security, pages
45–58, Norwell, MA, USA, 2002. Kluwer Academic Publishers.

[36] Apu Kapadia and Geetanjali Sampemane. Know why your access was denied: Regulating
feedback for usable security. In In CCS 04: Proceedings of the 11th ACM conference on
Computer and communications security, pages 52–61. ACM Press, 2004.

[37] Basel Katt, Xinwen Zhang, Ruth Breu, Michael Hafner, and Jean-Pierre Seifert. A general
obligation model and continuity: enhanced policy enforcement engine for usage control. In
Proceedings of the 13th ACM symposium on Access control models and technologies, pages
123–132, New York, NY, USA, 2008. ACM.

[38] Michael J. May, Carl A. Gunter, and Insup Lee. Privacy APIs: Access control techniques
to analyze and verify legal privacy policies. In CSFW ’06: Proceedings of the 19th IEEE
workshop on Computer Security Foundations, pages 85–97, Washington, DC, USA, 2006.
IEEE Computer Society.

[39] L.T. McCarty. Pemissions and obligations. In Proceedings IJCAI-83, 1983.

142

[40] Naftaly H. Minsky and Abe D. Lockman. Ensuring integrity by adding obligations to privi-
leges. In ICSE ’85: Proceedings of the 8th international conference on Software engineering,
pages 92–102, Los Alamitos, CA, USA, 1985. IEEE Computer Society Press.

[41] Qun Ni, Elisa Bertino, and Jorge Lobo. An obligation model bridging access control policies
and privacy policies. In SACMAT 2008: Proceedings of the 13th ACM symposium on Access
control models and technologies, pages 133–142, New York, NY, USA, 2008. ACM.

[42] Qun Ni, Alberto Trombetta, Elisa Bertino, and Jorge Lobo. Privacy-aware role based access
control. In SACMAT ’07: Proceedings of the 12th ACM symposium on Access control models
and technologies, pages 41–50, New York, NY, USA, 2007. ACM.

[43] Jaehong Park and Ravi Sandhu. The uconabc usage control model. ACM Trans. Inf. Syst.
Secur., 7(1):128–174, 2004.

[44] J. Scott Penberthy. Ucpop: A sound, complete, partial order planner for adl. pages 103–114.
Morgan Kaufmann, 1992.

[45] Murillo Pontual, Omar Chowdhury, William Winsborough, Ting Yu, and Keith Irwin. Toward
practical authorization-dependent user obligation systems. In Proceedings of the 5th Inter-
national Symposium on ACM Symposium on Information, Computer and Communications
Security (ASIACCS’2010), pages 180–191. ACM Press, 2010.

[46] Murillo Pontual, Omar Chowdhury, William H. Winsborough, Ting Yu, and Keith Irwin. On
the management of user obligations. In Proceedings of the 16th ACM symposium on Access
control models and technologies, SACMAT ’11, pages 175–184, New York, NY, USA, 2011.
ACM.

[47] Murillo Pontual, Keith Irwin, Omar Chowdhury, William H. Winsborough, and Ting Yu.
Failure feedback for user obligation systems. In Proceedings of the 2010 IEEE Second Inter-
national Conference on Social Computing, SOCIALCOM ’10, pages 713–720, Washington,
DC, USA, 2010. IEEE Computer Society.

[48] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, 1996.

[49] Ravi S. Sandhu. Rationale for the RBAC96 family of access control models. In Proceedings
of the First ACM Workshop on Role-Based Access Control, 1996.

[50] Ravi S. Sandhu, Venkata Bhamidipati, and Qamar Munawer. The ARBAC97 model for
role-based aministration of roles. ACM Transactions on Information and Systems Security,
2(1):105–135, February 1999.

[51] Amit Sasturkar, Amit Yang, Scott D. Stoller, and C.R. Ramakrishnan. Policy analysis for
administrative role based access control. In Computer Security Foundations Workshop, IEEE,
volume 0, pages 124–138, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[52] Bruce Schneier. Secrets and Lies: Digital Security in a Networked World. John Wiley &
Sons, 2004.

143

[53] Scott D. Stoller, Ping Yang, C R. Ramakrishnan, and Mikhail I. Gofman. Efficient policy
analysis for administrative role based access control. In CCS ’07: Proceedings of the 14th
ACM conference on Computer and communications security, pages 445–455, New York, NY,
USA, 2007. ACM.

[54] Vipin Swarup, Len Seligman, and Arnon Rosenthal. A data sharing agreement framework. In
Information Systems Security, Second International Conference, ICISS 2006, Kolkata, India,
December 19-21, 2006, Proceedings, pages 22–36, 2006.

[55] A. Uszok, J. Bradshaw, R. Jeffers, N. Suri, P. Hayes, M. Breedy, L. Bunch, M. Johnson,
S. Kulkarni, and J. Lott. Kaos policy and domain services: Toward a description-logic
approach to policy representation, deconfliction, and enforcement. In POLICY ’03: Pro-
ceedings of the 4th IEEE International Workshop on Policies for Distributed Systems and
Networks, page 93, Washington, DC, USA, 2003. IEEE Computer Society.

[56] Mark Weiser. Program slicing. In Proceedings of the 5th international conference on Software
engineering, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

[57] A. Witten and J.D. Tygar. Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0.
In Proceedings of the 8th USENIX Security Symposium, Monterery, CA, August 1999.

[58] M.E. Zurko, R. Simon, and T. Sanfilippo. A User-Centered, Modular Authorization Service
Built on An RBAC Foundation. In Proceedings of IEEE Symposium on Security and Privacy,
Oakland, CA, May 1999.

144

VITA

Murillo Pontual received B.S. and M.Sc. in Computer Science at the Federal University of

Pernambuco in Recife, Brazil in 2003 and 2005, respectively. He got his M.Sc degree with a

thesis about Secure multi-party computation for privacy-preserving Linear Algebra and Privacy-

Preserving Statistical Computations. This is his third year as a Ph.D student working under the

supervision of Dr. William H. Winsborough at the University of Texas at San Antonio, and he is

currently working in the design and implementation of practical user obligation systems. He has

worked as web programmer in W3 Tecnologia company, network administrator in the Federal Uni-

versity of Pernambuco, and instructor in Santa Maria University, and Unibratec Technical School

(both in Brazil). His professional objective is to get a faculty position in the field of computer

security.

