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A FORMAL FRAMEWORK FOR ANALYZING SEQUENCE DIAGRAM

Hui Shen, Ph.D.
The University of Texas at San Antonio, 2013

Supervising Professor: Jianwei Niu, Ph.D., Chair

Graphical representations of scenarios, such as UML Sequence Diagrams, serve as a well-

accepted means for modeling the interactions among software systems and their environment

through the exchange of messages. The Combined Fragments of Sequence Diagram permit differ-

ent types of control flows, including interleaving, alternative, and loop, for representing complex

and concurrent behaviors. These fragments increase a Sequence Diagram’s expressiveness, yet

introduce a challenge to comprehend what behavior is possible in the traces that express system

executions. Furthermore, software practitioners tend to use a collection of Sequence Diagrams to

express multiple usages of a software system. It can be extremely difficult to determine manually

that multiple Sequence Diagrams constitute a consistent, correct specification.

This dissertation introduces an approach to codify the semantics of Sequence Diagrams with

Combined Fragments in terms of Linear Temporal Logic (LTL) templates. In each template, dif-

ferent semantic aspects are expressed as separate, yet simple LTL formulas that can be composed

to define the semantics of all the Combined Fragments. In addition, we develop an approach

to transform Sequence Diagrams with Combined Fragments into the input language of model

checker NuSMV. The analytical powers of model checking can be leveraged to automatically de-

termine if a collection of Sequence Diagrams is consistent. Another benefit of this approach is the

ability to specify certain safety properties of a system as intuitive Sequence Diagrams.

We have developed tools to translate Sequence Diagrams to both LTL and NuSMV’s input

language to demonstrate that they can be automatically verified. We validate our techniques by

analyzing two design examples taken from an insurance industry software application. We also

model Health Insurance Portability and Accountability Act of 1996 (HIPAA) Privacy Rule using

Sequence Diagrams to show that high-level policies can be described using Sequence Diagrams.
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Chapter 1: INTRODUCTION

The software development community is adopting models as a viable practice to improve the

productivity and quality of software systems. Models focus on the important features of a system

by abstracting away nonessential details, providing a foundation of detecting errors in the early

stages of software development. In particular, we are interested in scenario-based notations that

are well-accepted by software practitioners for graphically depicting interactions among software

systems and their environment.

The general acceptance of a scenario-based notation, in particular, Sequence Diagram of Uni-

fied Model Language (UML), can be attributed to its relatively intuitive nature and the ability to

describe partial behaviors (as opposed to model-based notations, such as statecharts and process

algebras, that often represent the complete behaviors of a system or its individual component).

However, the semantics of the Sequence Diagram and its control constructs, Combined Frag-

ments, is not formally defined compared to their precise syntax description, making it extremely

difficult to understand what execution traces can be derived from the Sequence Diagram. Even

with a formal semantics, subtle synchronization and communication errors introduced in the Se-

quence Diagrams would be difficult and time-consuming to detect manually.

The objective of this dissertation is to gain theoretical understanding of the Sequence Dia-

gram, so as to integrate formal analysis techniques with Sequence Diagrams, combining their

strengths and avoiding their weaknesses to increase the accessibility of formal methods to soft-

ware practitioners. We develop a formal framework to capture the semantic concerns of Sequence

Diagrams, including interaction among system components and environmental actors via mes-

sages, interleaving, Combined Fragments, and nesting Combined Fragments, as separate linear

temporal logic (LTL) definitions, respectively. The specifics of each Combined Fragments and

variants can be expressed as additional constraints. These smaller definitions can be composed

using logical conjunction to codify the complete semantics of a Sequence Diagram variant. One

of the key benefits of representing Sequence Diagrams in LTL is the ability to specify certain
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system properties or policies as intuitive Sequence Diagrams.

1.1 Sequence Diagram with Combined Fragments

Sequence Diagrams focus on the message interchange among multiple entities. In UML 1, a Se-

quence Diagram is typically used to express a single scenario, which represents an usage using

a sequence of message exchange. UML 2 adds several major features to the Sequence Diagram,

such as Combined Fragments and Interaction Use, in order to allow multiple scenarios to aggre-

gate in a single Sequence Diagram. Combined Fragments permit different types of control flow

for presenting concurrent behaviors. For instance, a Combined Fragment can represent a choice of

multiple behaviors (Alternatives Combined Fragment), an interleaving composition among mul-

tiple behaviors (Parallel Combined Fragment), an atomic behavior (Critical Region Combined

Fragment), or iterations of a behavior (Loop Combined Fragment). One Sequence Diagram can

refer to another Sequence Diagram (copying the contents of the referred Sequence Diagram) via

Interaction Use.

Combined Fragments largely increase the expressiveness of Sequence Diagram. However,

precisely interpreting and analyzing Sequence Diagrams with Combined Fragments, is challeng-

ing. The semantics of Combined Fragments is described in terms of sets of valid and invalid traces

by OMG, but it is not formally defined how to derive the traces compared to their precise syntax

descriptions [55].

Further, Combined Fragments can be nested, providing more combinations of control flows.

For instance, if a Combined Fragment presenting branching behavior is nested within a Combined

Fragment presenting iteration behavior; different choices may be made in different iterations.

Some Combined Fragments need to be nested within others to make them more significant. For

instance, a Combined Fragment representing a critical region on each enclosing Lifeline may be

nested within a Parallel Combined Fragment representing interleaving control flows. The lack

of formal semantics of Sequence Diagrams makes it difficult to comprehend what behavior is
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possible in the traces that express system executions.

1.2 Linear Temporal Logic and Model Checking

Temporal logics express dynamic behaviors which are changing in time [58]. LTL [37] is a tem-

poral logic, specifying the orders of events and states using temporal operators and logical con-

nectives. It models an execution path as an infinite sequence of states or events. As a decision

procedure for LTL, model checking [16] is an automatic technique for verifying reactive system,

which is represented as a finite model. It exhaustively explores all possible executions of the

model to determine if the model satisfies a desired property, which can be expressed using an LTL

formula. If the model satisfies the property, an answer true is shown. Otherwise, a counterexam-

ple is given to demonstrate an error execution.

1.3 Problem Statement

Specifying and analyzing the behaviors of a single system using multiple Sequence Diagrams with

Combined Fragments is a challenging task for several reasons. First, the semi-formal semantics of

Sequence Diagrams, especially of (nested) Combined Fragments, makes it difficult for practition-

ers to understand and use them to precisely model software systems. Next, software practitioners

can construct multiple Sequence Diagrams that represent complementary perspectives of a single

system. Determining that these Sequence Diagrams provide a consistent specification manually

can therefore be extremely difficult. Finally, although there exist automated verification tools,

which can verify whether a behavior model satisfies desired properties, there is a mismatch be-

tween Sequence Diagrams and input language of these tools.

1.4 Related Research Efforts

Many researches have proposed their approaches using different languages, including temporal

logic [40, 42], automata [31, 34, 39], Petri nets (colored Petri nets) [27, 29], PROMELA [47], and
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template semantics [64], to provide a formal semantics for scenario-based notations. Micskei and

Waeselynck [51] survey and categorize 13 approaches of UML Sequence Diagram semantics. As

one of the earliest approach, Storrle [66] proposed a trace-based semantics of the UML 2 Sequence

Diagram, introducing the semantics of all 12 Combined Fragments. Motivated by analyzing sce-

narios based requirements, Kugler et al. [40] and Kumar et al. [42] have described the semantics

of LSC using temporal logic. Their approach focuses on synchronous communication among ob-

jects, which can be applied to UML Sequence Diagrams with synchronous Messages. To support

the Interaction Operators of Combined Fragments of UML 2, especially assert and negate, Harel

and Maoz [34] propose a Modal Sequence Diagram (MSD), which is an extension of the UML 2

Sequence Diagram based on the universal/existential concepts of LSC. Their approaches increase

the expressive power of the Sequence Diagram to specifying liveness and safety properties. They

mainly consider synchronous Messages and Interaction Fragments are combined using Strict Se-

quencing. Grosu and Smolka [31] propose a formal semantics of the UML 2 Sequence Diagrams

based on the observation of positive and negative Sequence Diagrams. The positive and negative

Sequence Diagrams represent liveness and safety properties respectively using Büchi automata.

Their refinement of Sequence Diagrams provides multiple control flows as Combined Fragments.

Haugen et al. present the formal semantics of the UML 2 Sequence Diagram through an approach

named STAIRS [35]. STAIRS provides a trace-based representation for a subset of Combined

Fragments, focusing on the specific definition of refinement for Interactions. To specify and for-

malize temporal logic properties, Autili et al. [8, 9] propose the Property Sequence Chart (PSC),

which is an extension of UML 2 Sequence Diagrams. Their approach eases software engineers’

efforts for defining properties. Most of the work does not cover the semantics of all the Com-

bined Fragments, in particular, nested Combined Fragments, Interaction Constraints, and both

synchronous and asynchronous messages.

Inconsistency among design models in UML notations, can be quite problematic on large soft-

ware development projects where many developers design the same software together. Finkelstein

et al. [30] define the Viewpoints Framework: an approach where each developer has her own view-
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point composed only of models relevant to her. Blanc et al. [11] address the problem of safety

and consistency between multiple use case and requirements models by checking model construc-

tion operations against logical inconsistency rules. Egyed [23] proposes a method for identifying

model dependencies through trace analysis among distinct model elements that represent similar

concepts. Egyed et al. also develop approaches [24] [25] [26] to detect and repair inconsistencies

between Sequence, State, and Class Diagrams using a set of consistency rules to check for well-

formed syntax and coherence among the models. Their approach is based on UML 1.3 modeling

notation and does not include more complicated features like Combined Fragments.

Verification of scenario-based notation is well-accepted as an important and challenging prob-

lem. Lima et al. provide a tool to translate UML 2 Sequence Diagrams into PROMELA-based

models and verify using SPIN, with counterexample visualizations [47]. Their translation does

not support Critical Region, Strict Sequencing, Negative, Assertion, Consider, Ignore Combined

Fragments, synchronous Messages and Interaction Constraint. Van Amstel et al. present four

complementary approaches for analyzing UML 1.5 Sequence Diagrams, which do not support

Combined Fragments [69]. They model check Sequence Diagrams using SPIN. Alawneh et al.

introduce a unified paradigm to verify and validate prominent UML 2 diagrams, including Se-

quence Diagrams, using NuSMV [2]. Their approach supports Alternatives and Parallel Com-

bined Fragments. To model check MSCs, Alur et al. [6, 7] formalize MSC using automata. They

examine different cases of MSC verification of temporal properties and present techniques for

iteratively specifying requirements [5]. They focus on MSC Graph, which is an aggregation of

MSCs. We extend their work to encompass more complicated aggregations using Combined Frag-

ments. Peled et al. perform intensive research on the verification of MSCs [32, 54], in particular,

they present an extension of the High-Level MSC [57]. They specify MSC properties in temporal

logic and check for safety and liveness properties. Kugler et al. improve the technique of smart

play-out, which is used to model check LSCs to avoid violations over computations [41]. They

can detect deadlock of dependent moves while our technique can check for desired properties.

Most of the previous work does not cover the semantics of all the Combined Fragments.
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1.5 Approach

Thesis Statement: The main goal of this work is to provide a formal framework which for-

malizes Sequence Diagrams with Combined Fragments using LTL formulas and NuSMV model.

It enables users to automatically verify multiple Sequence Diagrams are consistent. It can also

express high-level properties and policies using Sequence Diagrams.

To help us use and analyze Sequence Diagram with Combined Fragments, we have developed

a formal framework to represent its semantics in LTL, as LTL is a natural choice for specifying

traces. We use LTL formulas to express the semantic aspects prescribed by Sequence Diagram

constructs, each of which defines the execution orders among events. We deconstruct Sequence

Diagrams and Combined Fragments to obtain fine-grained syntactic constructs, and provide a col-

lection of simple LTL definitions to represent the separate aspects of the semantics to conquer

the complexity of Combined Fragments. The semantics that is common to Sequence Diagrams

and the 12 Combined Fragments is captured as a template, which is a conjunction of those sim-

pler definitions. The specifics of Combined Fragments can be expressed as additional constraints,

conjuncted to the common template to form a complete semantic definition. Nested Combined

Fragments may also be represented as conjunctions of LTL definitions. Our technique supports

all Combined Fragments, the nested Combined Fragments, both asynchronous and synchronous

Messages, and Interaction Constraints. As UML leaves many semantic variation points to be

defined by the users, we believe the LTL definitions provided by our framework can be largely

reused to formalize customizable semantics. We provide the proofs of correctness for the LTL

templates, i.e., the LTL templates capture the semantic aspects of Sequence Diagram with Com-

bined Fragments.

Our approach bridges the gap between intuitive Sequence Diagrams and formal methods, in-

creasing the accessibility of formal verification techniques to practitioners. We choose a veri-

fication tool, NuSMV [15], which is a symbolic model checker and close to industrial systems

standards. We devise an approach to codify the semantics of Sequence Diagrams and Combined
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Fragments in the input language of NuSMV with the help of deconstruction. We formally describe

each Combined Fragment in terms of NuSMV modules. The generated NuSMV model preserves

the structure of the Sequence Diagram. We provide the proofs of correctness for the NuSMV

model, i.e., the NuSMV model captures the semantic aspects of Sequence Diagram with Com-

bined Fragments. To the best of our knowledge, our technique is the first to support all Combined

Fragments and the nested Combined Fragments.

The Assertion and Negative Combined Fragments of Sequence Diagram describe the manda-

tory and forbidden behaviors respectively. Using the LTL templates, we translate the Assertion

and Negative Combined Fragments into LTL specifications to express safety properties of a sys-

tem. The model checking mechanism can explore all possible traces specified in the Sequence

Diagram, verifying if these properties are satisfied. We wish to ensure the system is safe in the

sense that (1) all the valid traces of the system satisfy the mandatory properties represented using

Assertion Combined Fragments, and (2) none of the system traces satisfy the forbidden properties

represented using Negative Combined Fragments. Thus, we can verify that a set of Sequence Di-

agrams is safe against particular properties without requiring users to specify the LTL properties

directly.

Figure 1.1: Architecture of tool suite
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We have developed a proof-of-concept tool suite to implement all of the techniques. Figure

1.1 illustrates the architecture of the tool suite. We have validated our technique by analyzing

and discovering violations in two design examples taken from an insurance industry software

application. We have also created an Occurrence Specification Trace Diagram generator that au-

tomatically produces Sequence Diagram visualizations from NuSMV-produced counterexamples.

This automation will increase the accessibility of our approach by allowing software engineers to

remain focused in the realm of Sequence Diagrams.

1.6 Utility of Sequence Diagrams

As a graphical notation, Sequence Diagram is more intuitive, and easier to understand than logical

expressions or textual representations for users without expertise. In the previous section, we have

discussed that Sequence Diagrams can express safety properties to ease user’s effort for verifying

a software system. In this section, we demonstrate that Sequence Diagrams can be used to express

the security requirements, especially privacy policies.

Nowadays, the storage and transmission of personal information via large-scale networks such

as the Internet, may cause serious risks. Such as personal information can be used for identity

theft, stalking and luring vulnerable individuals, stealing financial assets, achieving political ad-

vantage, intimidation and blackmail. Privacy policy, which is a statement or a legal document,

regulates the use and disclosure of personal information. Understanding and specifying privacy

policies is difficult for users and organizational policy writers without enough experiences. Se-

quence Diagram, which models dynamic behaviors among system actors and their environment

through message passing, is an appropriate candidate for modeling privacy policies.

HIPAA (Health Insurance Portability and Accountability Act of 1996) [1] is the national stan-

dard for electronic health care transactions. It consists of general administrative requirements,

administrative requirements, security rule, and privacy rule. We are interested in HIPAA privacy

rule, which focuses on regulating the transmission and use of confidential health information,
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referred as protected health information (PHI) among covered entities. Covered entities are the

organizations required to comply with HIPAA, including hospitals, insurance companies, doctors

and so on. DeYoung et al. have formalized portion of HIPAA privacy rule, which sets lim-

its and conditions on the use and disclosure of PHI using a privacy logic [21]. We model the

transmission-related HIPAA privacy policies using Sequence Diagrams, which can be translated

into LTL formulas via our tool suite. Our approach assists users to understand the HIPAA privacy

policies. We believe that it also helps the organizational policy writers and users to verify whether

their policies or the transmissions of electronic health information comply with HIPAA privacy

policies.

1.7 Contributions

The main contribution of our research is six-fold:

• This dissertation proposes a technique to represent the semantics of Sequence Diagrams

with Combined Fragments using LTL, including nested Combined Fragments, Interaction

Constraints, and both synchronous and asynchronous messages. It also can be used to

formalize the semantic variations of Sequence Diagrams [61, 64].

• The formal framework enables users to specify high-level objectives, including safety prop-

erties, and policies [59, 61].

• We also propose a technique for translating a Sequence Diagram with Combined Fragments

into a NuSMV model to verify whether the Sequence Diagram meets desired properties

[63].

• We develop a tool suite to implement above techniques and visualize the NuSMV coun-

terexamples with Sequence Diagrams to ease user efforts to locate the violations [63].

• We provide the proofs of the correctness that LTL representation and NuSMV model for a

Sequence Diagram correspond to the Sequence Diagram’s semantic rules respectively [61].
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• We model HIPAA privacy rule using Sequence Diagrams to help user gain a better under-

standing of privacy policies, and validate our techniques and tool suite [61, 65].

1.8 Outline

The remaining chapters of this dissertation are structured as follows. Chapter 2 summarizes the

syntax and semantics of Sequence Diagrams, and presents the deconstructions of Sequence Di-

agram to facilitate the semantic definition. Chapters 3 discusses the trace semantics for LTL

formulas and NuSMV models. Chapter 4 describes the LTL templates to represent the semantics

of Sequence Diagrams with Combined Fragments. Chapter 5 discusses using Negative and As-

sertion Combined Fragments to express the LTL safety properties. Chapter 6 describes the formal

representation of Sequence Diagrams with Combined Fragments in terms of NuSMV modules.

Chapter 7 introduces our framework for automated analysis of Sequence Diagrams and describes

the implementation of our tool suite. Chapter 8 validates our approach via a case study of an

insurance industry software application and modeling HIPAA privacy policies using Sequence

Diagrams. Chapter 9 presents related work. and we conclude with chapter 10.
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Chapter 2: UML 2 SEQUENCE DIAGRAM DECONSTRUCTION

In this section, we outline the syntax and semantics of a Sequence Diagram with Combined Frag-

ments provided by OMG [55], and present the formal definitions of a Sequence Diagram. First,

we introduce the basic Sequence Diagram. Then, we discuss the structured control constructs,

including Combined Fragments and Interaction Use. Next, we give a textual representation of

a Sequence Diagram. Last, we deconstruct a Sequence Diagram and Combined Fragments into

fine-grained syntactic constructs to facilitate the semantic description of Sequence Diagram, in

particular, Weak Sequencing among Occurrence Specifications and Combined Fragments.

a. Basic Sequence Diagram

b. Sequence Diagram with Combined Fragment

Figure 2.1: Sequence Diagram syntax

2.1 Basic Sequence Diagram

We refer to a Sequence Diagram without Combined Fragments as a basic Sequence Diagram

(see figure 2.1a for an example with annotated syntactic constructs). A Lifeline is a vertical

line representing a participating object. A horizontal line between Lifelines is a Message. Each

Message is sent from its source Lifeline to its target Lifeline and has two endpoints, e.g., m1 is

a Message sent from Lifeline L1 to Lifeline L2 in figure 2.1a. Each endpoint is an intersection

with a Lifeline and is called an Occurrence Specification (OS), denoting a sending or receiving

event within a certain context, i.e., a Sequence Diagram. OSs can also be the beginning or end of
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an Execution Specification, indicating the period during which a participant performs a behavior

within a Lifeline, which is represented as a thin rectangle on the Lifeline.

The semantics of a basic Sequence Diagram is defined by a set of traces. A trace is a sequence

of OSs expressing Message exchange among multiple Lifelines. We identify four orthogonal

semantic aspects, each of which is expressed in terms of the execution order of concerned OSs,

must be considered for the basic Sequence Diagram [51, 55]

1. On each Lifeline, OSs execute in their graphical order.

2. Each OS can execute only once, i.e., each OS is unique within a Sequence Diagram.

3. For a single Message, the sending OS must take place before the receiving OS does.

4. In a Sequence Diagram, only one object can execute an OS at a time, i.e., OSs on different

Lifelines are interleaved.

Consider again figure 2.1a. OS r2 can not happen until OS r1 executes on Lifeline L2, which

is prescribed by semantic aspect 1. All six OSs are uniquely defined, which is prescribed by

semantic aspect 2. For Message m1, OS r1 can not happen until OS s1 executes, which is imposed

by semantic aspect 3. OS s1 and s2 can not happen at the same time, which is imposed by semantic

aspect 4.

Messages are of two types: asynchronous and synchronous. The source Lifeline can continue

to send or receive other Messages after an asynchronous Message is sent. If a synchronous Mes-

sage is sent, the source Lifeline blocks until it receives a response from the target Lifeline [55].

2.2 Combined Fragments

Both Combined Fragments and Interaction Use are structured control constructs introduced in

UML 2. A Combined Fragment (CF) is a solid-outline rectangle, which consists of an Inter-

action Operator and one or more Interaction Operands. Figure 2.1b shows example CFs with

12



annotated syntactic constructs. A CF can enclose all, or part of, Lifelines in a Sequence Diagram.

The Interaction Operands are separated by dashed horizontal lines. The Interaction Operator is

shown in a pentagon in the upper left corner of the rectangle. OSs, CFs, and Interaction Operands

are collectively called Interaction Fragments. An Interaction Operand may contain a boolean

expression which is called an Interaction Constraint or Constraint. An Interaction Constraint is

shown in a square bracket covering the Lifeline where the first OS will happen. The CFs can be

classified by the number of their Interaction Operands. Alternatives, Parallel, Weak Sequencing

and Strict Sequencing contain multiple Operands. Option, Break, Critical Region, Loop, As-

sertion, Negative, Consider, and Ignore contain a single Operand. The example in figure 2.1b

contains two CFs: a Parallel with two Operands and a Critical Region with a single Operand.

An Interaction Use construct allows one Sequence Diagram to refer to another Sequence Di-

agram. The referring Sequence Diagram copies the contents of the referenced Sequence Diagram.

The semantics of the seq Sequence Diagram with CFs is defined by two sets of traces, one con-

taining a set of valid traces, denoted as V al(seq), and the other containing a set of invalid traces,

denoted as Inval(seq). The intersection of these two sets is empty, i.e., V al(seq)∩Inval(seq) = .

Traces specified by a Sequence Diagram without a Negative CF are considered as valid traces. An

empty trace is a valid trace. Invalid traces are defined by a Negative CF. Traces that are not speci-

fied as either valid or invalid are called inconclusive traces, denoted as Incon(seq). An Assertion

specifies the set of mandatory traces in the sense that any trace that is not consistent with the traces

of it is invalid, which is denoted as Mand(seq).

Along a Lifeline, OSs that are not contained in the CFs, are ordered sequentially. The order

of OSs within a CF’s Operand which does not contain other CFs in it is retained if its Constraint

evaluates to True. A CF may alter the order of OSs in its different Operands. We first identify

three independent semantic rules general to all CFs, in the sense that, these rules do not constrain

each other.

1. OSs and CFs, are combined using Weak Sequencing (defined below). On a single Life-
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line, a CF’s preceding Interaction Fragment must complete the execution prior to the CF’s

execution, and the CF’s succeeding Interaction Fragment must execute subsequently.

2. Within a CF, the order of the OSs and CFs within each Operand is maintained if the Con-

straint of the Operand evaluates to True; otherwise, (i.e., the Constraint evaluates to False)

the Operand is excluded.

3. The CF does not execute when the Constraints of all the Operands evaluate to False. Thus,

the CF’s preceding Interaction Fragment and succeeding Interaction Fragment are ordered

by Weak Sequencing.

The semantics of each CF Operator determines the execution order of all the Operands. Each

Operator has its specific semantic implications regarding the execution of the OSs enclosed by the

CF on the covered Lifelines as described in the next section.

2.3 Interaction Operator

The execution of OSs enclosed in a CF is determined by its Interaction Operator, which is sum-

marized as follows:

• Alternatives: one of the Operands whose Interaction Constraints evaluate to True is non-

deterministically chosen to execute.

• Option: its sole Operand executes if the Interaction Constraint is True.

• Break: its sole Operand executes if the Interaction Constraint evaluates to True. Otherwise,

the remainder of the enclosing Interaction Fragment executes.

• Parallel: the OSs on a Lifeline within different Operands may be interleaved, but the order-

ing imposed by each Operand must be maintained separately.

• Critical Region: the OSs on a Lifeline within its sole Operand must not be interleaved with

any other OSs on the same Lifeline.
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• Loop: its sole Operand will execute for at least the minimum count (lower bound) and no

more than the maximum count (upper bound) as long as the Interaction Constraint is True.

• Assertion: the OSs on a Lifeline within its sole Operand must occur immediately after the

preceding OSs.

• Negative: its Operand represents forbidden traces.

• Strict Sequencing: in any Operand except the first one, OSs cannot execute until the pre-

vious Operand completes.

• Weak Sequencing: on a Lifeline, the OSs within an Operand cannot execute until the OSs

in the previous Operand complete, the OSs from different Operands on different Lifelines

may take place in any order (cf. Strict Sequencing).

• Consider: any message types other than what is specified within the CF is ignored.

• Ignore: the specified messages types are ignored within the CF.

• Coregion: the contained OSs and CFs on a Lifeline are interleaved.

• General Ordering imposes an order between two unrelated OSs on different Lifelines.

2.4 Definition of Syntactic Constructs

A Sequence Diagram consists of a set of Lifelines and a set of Messages. A Message is the

specification of an occurrence of a message type within the Sequence Diagram, while a message

type is the signature of communications from one Lifeline to another. Each Message is uniquely

defined by its sending OS and receiving OS, each of which is associated with a location of a

Lifeline. Within the Sequence Diagram, an OS represents an occurrence of an event. The textual

representation of a Sequence Diagram is formally defined as below.
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Definition 2.1. A Sequence Diagram is given by a three tuple 〈 L, MSG, FG 〉, in which L is a

non-empty set of Lifelines enclosed in the Sequence Diagram. MSG is a set of Messages directly

enclosed in the Sequence Diagram, i.e., Messages that are not contained by any CF. FG is a set of

CFs directly enclosed in the Sequence Diagram, i.e., the top level CFs, denoted as CF1, CF2, ...,

CFm.

Messages that are directly enclosed in the top-level CFs will be defined in their respective CFs.

Similarly CFs that are directly enclosed in top-level CFs are defined in their enclosing CFs. In

this manner, a Sequence Diagram with CFs can be recursively defined.

Definition 2.2. A Message has the form 〈 name, mform, OSs, OSr 〉, where name is the Message

name, mform denotes it is either a synchronous or an asynchronous Message, OSs denotes its

sending OS and OSr denotes its receiving OS. Each OS has the form 〈li, lock, type〉, where li

denotes its associated Lifeline, lock is the location where the OS takes places on Lifeline li, and

type denotes it is either a sending or a receiving OS.

Each Lifeline li ∈ L has a set of finite locations LOC(li) ⊆ N on it. The locations form a

finite sequence 1, 2, 3, ..., k, k ∈ N. Each location is associated with an OS uniquely and vice

versa, i.e., the relation between set LOC(li) and the set returned by function OSS(li) is a one-

to-one correspondence. Function OSS(li) returns the set of OSs on lifeline li. For example, in

figure 2.1b, the set LOC(l2) contains seven locations, each of which is associated with an OS, i.e.,

OSs r1, s2, r3, s4, r5, r6, r7. Message msg1 is expressed by 〈m1, asynch, s1, r1〉, and OS s1 is

expressed by 〈l1, 1, send〉, where l1 represents a participating object of class L1.

Definition 2.3. A CF CFm has the form 〈 L, oper, OP 〉. L denotes the set of Lifelines enclosed

by CFm, including the Lifelines which may not intersect with the Messages of CFm. oper denotes

the Interaction Operator of CFm. OP denotes the sequence of Interaction Operands within CFm,

i.e., opm_1, opm_2,...,opm_n.

Each opn ∈ OP has the form 〈 L, MSG, FG, cond 〉, where L denotes the set of Lifelines

enclosed by opn; MSG denotes the set of Messages directly enclosed in opn; FG denotes the set
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of CFs directly enclosed in opn; and cond denotes the Interaction Constraint of opn, which is True

if there is no Interaction Constraint. Without loss of generality, cond is represented by a boolean

variable. Comparing the structure between a Sequence Diagram and an Operand, the Sequence

Diagram does not have an Interaction Constraint. In order for an Operand and a Sequence Dia-

gram to share the same form, we assign an Interaction Constraint (which evaluates to True) to a

Sequence Diagram.

Consider figure 2.1b as an example. Sequence Diagram seq is represented by 〈 {l1, l2, l3},

{msg1,msg7}, {CF1} 〉 , where the set of Lifelines enclosed by seq contains three Lifelines,

l1, l2, l3, the set of Messages directly enclosed in seq contains two Messages, msg1,msg7, and

the set of CFs directly enclose in seq contains one CF, CF1. msg1, CF1, and msg7 are combined

using Weak Sequencing. CF1 is represented by 〈 {l1, l2, l3}, par, {op1, op2} 〉 , where l1, l2, l3 are

Lifelines enclosed by CF1, par is the Interaction Operator of CF1, and op1, op2 are the Interaction

Operands of CF1. op1 and op2 preserve their execution order if their Interaction Constraints eval-

uate to True respectively, and the execution order between op1 and op2 are decided by Interaction

Operator par. If both Constraints of op1 and op2 evaluate to False, CF1 is excluded and Messages

msg1 and msg7 are ordered by Weak Sequencing. Operand op1 expresses the Messages and CFs

directly enclosed in it, represented by 〈 {l1, l2, l3}, {msg2}, {CF2}, cond1 〉, where cond1 is op1’s

Interaction Constraint. In this way, the syntax of seq is described recursively.

2.5 Sequence Diagram Deconstruction

To facilitate codifying the semantics of Sequence Diagrams and nested CFs in LTL formulas, we

show how to deconstruct a Sequence Diagram and CFs to obtain fine-grained syntactic constructs.

Eichner et al. have defined the Maximal Independent Set in [27] to deconstruct a Sequence Dia-

gram into fragments, each of which covers multiple Lifelines. Their proposed semantics defines

that entering a Combined Fragment has to be done synchronously by all the Lifelines, i.e., each

Combined Fragment is connected with adjacent OSs and CFs using Strict Sequencing. Recall that
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CFs can be nested within other CFs. OSs and CFs directly enclosed in the same CF or Sequence

Diagram are combined using Weak Sequencing, constraining their orders with respect to each in-

dividual Lifeline only [55]. To express the semantics of Weak Sequencing, we further deconstruct

a Sequence Diagram into syntactic constructs on each Lifeline, which also helps us to define the

semantics of nested CFs.

We project every CF cfm onto each of its covered Lifelines li to obtain a compositional

execution unit (CEU), which is denoted by cfm ↑li . (The large dotted rectangle on Lifeline L1 in

figure 2.2 shows an example).

Definition 2.4. A CEU is given by a three tuple 〈 li, oper, setEU 〉, where li is the Lifeline, onto

which we project the CF, oper is the Interaction Operator of the CF, and setEU is the set of

execution units, one for each Operand opn enclosed in the CF on Lifeline li.

Every Operand opn of CF cfm is projected onto each of its covered Lifelines li to obtain an

execution unit (EU) while projecting cfm onto li, denoted by opn ↑li . If the projected Inter-

action Operand contains a nested Combined Fragment, a hierarchical execution unit (HEU) is

obtained; otherwise a basic execution unit (BEU) is obtained, i.e., an EU is a BEU if it does not

contain any other EUs. (The small dotted rectangle on Lifeline L2 in figure 2.2 shows an example

of a BEU and the large dotted rectangle shows an example of an HEU).

Definition 2.5. A BEU u is given by a pair, 〈Eu, cond 〉, in which Eu is a finite set of OSs on

Lifeline li enclosed in Operand opn, which are ordered by the locations associated with them,

and cond is the Interaction Constraint of the Operand. cond is True when there is no Interaction

Constraint.

Definition 2.6. An HEU is given by 〈 setCEU, setBEU, cond 〉, where setCEU is the set of CEUs

directly enclosed in the HEU, i.e., the CEUs nested within any element of setCEU are not consid-

ered. setBEU is the set of BEUs that are directly enclosed in the HEU.

Projecting a Sequence Diagram onto each enclosing Lifeline also obtains an EU whose Con-

straint is True. The EU is an HEU if the Sequence Diagram contains CFs, otherwise, it is a BEU.
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In an HEU, we also group the OSs between two adjacent CEUs or prior to the first CEU or after

the last CEU on the same level into BEUs, which inherit the parent HEU’s Constraint, cond. (The

dotted rectangle on Lifeline L1 in figure 2.1b shows an example). The constituent BEU(s) and

CEU(s) within an HEU execute sequentially, complying with their graphical order, as do the OSs

in the BEU.

Figure 2.2: Sequence Diagram deconstruction

In the example of figure 2.1b, Lifeline L2 demonstrates the projections of the two CFs. The

Parallel is projected to obtain a CEU. The first Operand of the Parallel is projected to obtain

an HEU, containing the CEU projected from the Critical Region and the BEU composed of the

sending OS of m2. The second Operand of the Parallel is projected to obtain a BEU. The CEU

of the Critical Region contains a BEU projected from its single Operand. The OS prior to the

Parallel is grouped into a BEU.

We provide a metamodel to show the abstract syntax of relations among BEUs, HEUs, and

CEUs in figure 2.3. An EU can be a BEU or an HEU, and one or more EUs compose a CEU. An

HEU contains one or more CEUs.
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Figure 2.3: Execution Unit metamodel

2.6 Nested Combined Fragments

The syntactical definitions and deconstruction enable us to express the semantics of Sequence

Diagram as a composition of nested CFs at different levels. We consider the OSs and CFs directly

enclosed in the Sequence Diagram as the highest-level Interaction Fragments, which are combined

using Weak Sequencing. These OSs are grouped into BEUs on each enclosing Lifeline, which

observe total order within each BEU. For each Message, its sending OS must occur before its

receiving OS. To enforce the interleaving semantics among Lifelines, at most one OS may execute

at a time within the Sequence Diagram. The semantics of the CFs are represented at a lower-

level. Each CF contains one or more Operands, which are composed using the CF’s Interaction

Operator. Each Interaction Operator determines its means of combining Operands without altering

the semantics of each Operand. The semantics of an Operand within each CF are described at the

next level. A Sequence Diagram can be considered as an Operand whose Constraint evaluates to

True. Therefore, the semantics of each Operand containing other CFs can be described in the same

way with that of a Sequence Diagram with nested CFs. An Operand containing no other CF is

considered as the bottom-level, which has a BEU on each enclosing Lifeline. The Operand whose

Constraint evaluates to False is excluded. In this way, the semantics of a Sequence Diagram with

CFs can be described recursively.
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Chapter 3: TRACE SEMANTICS

In this chapter, we discuss the relation between the trace semantics of Sequence Diagram and

the trace semantics of LTL formulas. We also build the system runs to enable the verification of

property traces against the system model.

3.1 Sequence Diagram Trace vs LTL Trace

The semantics of a Sequence Diagram is given by valid and invalid traces. Each trace is a sequence

of OSs (i.e., event occurrences within the context of the Sequence Diagram). For Sequence Dia-

gram seq, (Σseq
sem)∗ represents the set of traces derived from it based on its semantic rules, where

Σseq
sem is the set of OSs of seq. Σseq

sem ⊆ Σ, where Σ is the universe of event occurrences. The

concatenation of trace υ and traces σ is represented as υ · σ. A Sequence Diagram model spec-

ifies complete traces, each of which describes a possible execution of the system, whereas a CF

of the Sequence Diagram defines a collection of their subtraces. These subtraces may interleave

with other OSs appearing in the Sequence Diagram but outside the CF, connecting using Weak

Sequencing to make complete traces of the Sequence Diagram [60]. A trace derived from a Se-

quence Diagram can be finite, denoted as υ[1..n] = υ1υ2...υn. The trace derived from a Sequence

Diagram can also be infinite if it expresses the behavior of infinite iterations in terms of Loop with

infinity upper bound, denoted as υ = υ1υ2...υn....

This paper presents a framework to characterize the traces of Sequence Diagram in Linear

Temporal Logic (LTL). LTL is a formal language for specifying the orders of events and states

in terms of temporal operators and logical connectives. We use LTL formulas to express the

semantic rules prescribed by Sequence Diagram constructs, each of which defines the execution

orders among OSs. Note that an LTL formula represents infinite traces. In the case that a Sequence

Diagram expresses a set of finite traces, we need to handle the mismatch between an LTL formula

and a Sequence Diagram’s finite trace semantics. To bridge the gap, we adapt the finite traces of

Sequence Diagrams without altering their semantics by adding stuttering of τ after the last OS υn
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of each trace [31], where τ is an invisible event occurrence which does not occur in the Sequence

Diagram. For instance, for a given Sequence Diagram, seq, ∀υ.υ ∈ (Σseq
sem)∗, υ is extended to υ ·τω

without changing the meaning of seq, where τ ∈ (Σ \ Σseq
sem). Then, LTL formulas can express

these traces. For instance, (Σseq
LTL)ω represents all infinite traces that satisfy the LTL representation

of seq, where Σseq
LTL = Σseq

sem ∪ {τ}.

A Sequence Diagram with Negative or Assertion CFs can specify desired properties as well

as possible system executions in terms of traces. The Sequence Diagram for specifying desired

properties only consider the OSs related to the properties. We represent the traces of properties

with partial traces semantics, which allows other OSs do not appear in the Sequence Diagram but

appear in the system executions to interleave the partial traces. Our framework supports partial

traces semantics to express certain safety properties with a Sequence Diagram.

We include a summary of temporal operators that are sufficient to understand our LTL tem-

plate. p means that formula p will continuously hold in all future states. p means that formula

p holds in some future state. p means formula p holds in the next state. p means that formula

p holds in the previous state. p means that formula p holds in some past state. p ≡ p

means that formula p holds in some past state, excluding current state. p U q means that formula

p holds until some future state where q becomes true, and p can be either True or False at that

state. The macro p Ũ q ≡ p U(q ∧ p) states that in the state when q becomes True, p stays True.

3.2 System Run vs Trace

A Sequence Diagrams expresses only example event traces of system execution. The complete

behavior of a system is specified as a set of runs, each of which is a sequence of system states.

A run can be finite, denoted as ρ = ρ0ρ1...ρn, or infinite, denoted as ρ = ρ0ρ1.... ρ0 is an initial

state, and ρ may end with a final state ρn if the run is finite. Each ρi ∈ Qω is a system state.

R(ρi, σi+1, ρi+1) is a transition from state ρi to ρi+1 upon taking event occurrence σi+1. Given

a sequence of event occurrences σ ∈ Σω, where Σ is a set of event occurrences, we define the
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run ρ induced by σ as a sequence of states inductively if it exists. ρ0 is the initial state of ρ and

R(ρ0, σ1, ρ1). (σ0 does not exist.) For each i ∈ N, if R(ρi, σi+1, ρi+1), then R(ρi+1, σi+2, ρi+2).

To check if a system run is induced by a trace of a Sequence Diagram, we need to additionally

consider the evaluation of the Constraints of CFs. In Sequence Diagram seq, an OS σi, may take

place if the Constraints of the CFs enclosing σi evaluates to True, denoted as a set of boolean

expressions cond(σi). Recall that CFs can be nested. cond(σi) contains not only the Constraints

of the immediate CF CFi, but also all the CFs that enclose CFi. Given a trace σ and a run ρ, they

are compatible with respect to seq if and only if for each σi ∈ Σseq, where Σseq is the set of all

OSs of seq, the Constraints of cond(σi) evaluate to True in ρi, i.e.,
∧

c∈cond(σi)

[[c]]ρi
= True.

Definition 3.7. We define that σ compatibly induces ρ if and only if σ and ρ are compatible and ρ

is induced by σ.

In order to verify a Sequence Diagram expressing possible system runs, we translate it into

NuSMV modules. Our LTL framework generates the possible system traces represented by the

Sequence Diagram. First, using model checking technique, we can check if the traces induce the

runs of the same Sequence Diagram. Second, we can verify the NuSMV modules against safety

properties represented by Negative and Assertion respectively. Finally, the NuSMV modules can

be checked against desired temporal properties provided by software engineers.
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Chapter 4: SPECIFYING SEQUENCE DIAGRAM IN LTL

In this section, we describe how to use LTL formulas to codify the semantic rules of Sequence

Diagrams as shown in section 2. Formalizing the semantics of a notation can be challenging, es-

pecially if we consider all semantic constraints at once. To reduce the complexity and to improve

the readability, we devise an LTL framework, comprised of simpler definitions, we call templates,

to represent each semantic aspect (i.e., the execution order of event occurrences imposed by in-

dividual constructs) as a separate concern. To capture the meanings of nested CFs, we provide a

recursively defined template, in which each individual CF’s semantics is preserved (e.g., the inner

CF’s semantics is not altered by other CFs containing it). These templates can then be composed

using temporal logic operators and logical connectives to form a complete specification of a Se-

quence Diagram. In this way, if the notation evolves, many of the changes can still be localized to

respective LTL templates.

To facilitate the representation of a Sequence Diagram in LTL, we define a collection of aux-

iliary functions (see table 4.1) to access information of a Sequence Diagram. We provide the

algorithms to calculate some auxiliary functions in Appendix A. These functions are grouped

into two categories. The functions within the first group return the syntactical constructs of a

Sequence Diagram. For instance, function SND(j) returns the sending OS of Message j. The

functions within the second group return the constructs, either whose Constraints evaluate to True

or which are contained in the Constructs whose Constraints evaluate to True. For instance, for Par-

allel CF1 in figure 2.1b, function nested(CF1) returns a singleton set containing Critical Region

CF2 if the Operand of CF2 evaluates to True. Otherwise, nested(CF1) returns an empty set,

and Critical Region CF2 is ignored to reflect the semantic rule 3 which is general to all CFs (see

section 2.2). Functions MSG(p), LN(p), AOS(q) are overloaded where p can be an Interaction

Operand, a CF, or a Sequence Diagram, and q can be p, an EU, or a CEU.
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Table 4.1: Auxiliary functions
Function Explantation
LN(p) return the set of all Lifelines in p.
MSG(p) return the set of all Messages directly enclosed in p.
SND(j) return the sending OS of Message j.
RCV (j) return the receiving OS of Message j.
Reply(u) return the reply Message of a synchronous Message containing OS u.
typeOS(u) return the type of OS u, which is a sending OS or a receiving OS.
typeCF (u) return the Interaction Operator of CF u.
TOP (u) return the set of Interaction Operands whose Constraints evaluate to True within

CF u, i.e., {op|op ∈ OPND(u) ∧ CND(op) = True}, where OPND(u) re-
turns the set of all Interaction Operands in Combined Fragment u, and CND(op)
returns the boolean value representing the Interaction Constraint of Interaction
Operand op, which is lifted to a CF containing a sole Operand.

nested(u) return the set of CFs, which are directly enclosed in CF u’s Interaction Operands
whose Constraints evaluate to True. It can be overloaded to an Interaction
Operand or a Sequence Diagram.

TBEU(u) for CEU or EU u, return a set of directly enclosed BEUs, whose Constrains
evaluate to True, i.e., {beu|beu ∈ ABEU(u) ∧ CND(beu) = True}, where
ABEU(u) returns the set of BEUs directly contained by CEU or EU u.

AOS(q) return the set of OSs which are enabled (i.e., the Constraints associated with it
evaluate to True) and chosen to execute in q.

TOS(u) return the set of OSs of the BEUs directly enclosed in CEU or EU u whose Con-
staints evaluates to True, i.e.,
{os|beu ∈ TBEU(u) ∧ os ∈ AOS(beu)}

pre(u) return the set of OSs which may happen right before CEU u. The set contains an
OS if a BEU whose Constraint evaluates to True prior to u on the same Lifeline.
If a CEU executes prior to u on the same Lifeline, the set may contain a single
or multiple OSs depending on the CEU’s Operator and nested CEUs (if there are
any nested CEUs). If an HEU executes prior to u on the same Lifeline, the set is
determined by the last CEU or BEU nested within the HEU.

post(u) return the set of OSs which may happen right after CEU u, which can be calcu-
lated in a similar way as pre(u).
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4.1 Basic Sequence Diagram

In this section, we provide an LTL template, and prove that it represents the semantics of a basic

Sequence Diagram.

4.1.1 LTL Template of Basic Sequence Diagram

We start with defining an LTL template, called ΠBasic
seq (see figure 4.1), to represent the semantics of

basic Sequence Diagram. The semantic rules for basic Sequence Diagram seq defined in section

2.1 are codified separately using formulas αg, βj , and εseq.

αg focuses on the intra-lifeline behavior to enforce rules 1 and 2. Recall that when projecting

a Basic Sequence Diagram seq onto its covered Lifelines, LN(seq), we obtain BEU g for each

Lifeline i, denoted as seq ↑i. Each BEU g contains a trace of OSs, σ[r..(r + |AOS(g)| − 1)] ,

where (r ≥ 0) and σr is the first OS in BEU g, function AOS(g) returns the set of OSs within

g, and |AOS(g)| has its usual meaning, returning the size of set AOS(g). The first conjunct of

αg enforces the total order of OSs in each BEU g, i.e., for all k ≥ r, OSk must happen (strictly)

before OSk+1, ensured by ¬OSk+1 Ũ OSk. The second conjunct of αg enforces that every OS

in BEU g executes only once. The semantics enforced by each αg does not constrain each other.

Thus, the intra-lifeline semantics of seq is enforced by the conjunction of αg for each Lifeline.

Similarly, the semantics rule 3 is codified by a conjunction of βj for each message j. Formula

βj enforces that, for message j, its receiving OS, RCV (j), cannot happen until its sending OS,

SND(j) happens. Formula εseq enforces interleaving semantics of complete traces among all

the OSs of Sequence Diagram seq in the fourth rule, which denotes that only one OS of seq can

execute at once, and the traces should execute uninterrupted until all the OSs of seq have taken

place. The trace stutters at the end with τ We define the logical operator “unique or” as “
∨̂

”, to

denote that exactly one of its OSs is chosen. A formula with logical connectives,
∧

ai∈S

ai returns

the conjunction of all the elements ai within the set S. It returns True if S is an empty set.
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ΠBasic
seq =(

∧
i∈LN(seq)

g=seq↑i

αg) ∧ (
∧

j∈MSG(seq)

βj) ∧ εseq

αg =(
∧

k∈[r..r+|AOS(g)|−2]

(¬OSk+1 Ũ OSk))) ∧
∧

OSe∈AOS(g)

(¬OSe Ũ (OSe ∧¬OSe))

βj =¬RCV (j) Ũ SND(j)

εseq =((
∨̂

OSm∈AOS(seq)

OSm) ∨ (
∧

OSm∈AOS(seq)

(OSm)))

Figure 4.1: LTL templates for basic Sequence Diagram

4.1.2 Proof for LTL Template of Basic Sequence Diagram

We wish to prove that the LTL templates for basic Sequence Diagram capture the semantics of

basic Sequence Diagram. Recall that the semantic rules of basic Sequence Diagrams have been

presented in section 2.1. We begin by rewriting the LTL template ΠBasic
seq into Π̃Basic

seq (see figure

4.2). We show Π̃Basic
seq is equivalent to ΠBasic

seq with slightly syntactical different form.

Π̃Basic
seq =(

∧
i∈LN(seq)

g=seq↑i

α̃g) ∧ (
∧

j∈MSG(seq)

ρj) ∧ (
∧

j∈MSG(seq)

βj) ∧ εseq

α̃g =
∧

k∈[r..(r+|AOS(g)|−2)]

(¬OSk+1 Ũ OSk)

ρj =(¬SND(j) Ũ (SND(j) ∧¬SND(j))) ∧ (¬RCV (j) Ũ (RCV (j) ∧¬RCV (j)))

βj =¬RCV (j) Ũ SND(j)

εseq =((
∨̂

OSm∈AOS(seq)

OSm) ∨ (
∧

OSm∈AOS(seq)

(OSm)))

Figure 4.2: Rewriting LTL templates for basic Sequence Diagram

In Π̃Basic
seq , sub-formulas βj and εseq keep unchanged from ΠBasic

seq . We can rewrite the sub-

formula
∧

i∈LN(seq)
g=seq↑i

αg into a conjunction of
∧

i∈LN(seq)
g=seq↑i

α̃g and
∧

j∈MSG(seq)

ρj (see figure 4.3). Sub-

formula
∧

i∈LN(seq)
g=seq↑i

αg is equivalent to a conjunction of two sub-formulas (see line 1), where the

first sub-formula is
∧

i∈LN(seq)
g=seq↑i

α̃g (see line 2), enforcing the total order of OSs in BEU g along each
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Lifeline of seq. Recall that an OS is an event occurrence within the certain context, i.e., seq. The

second sub-formula,
∧

i∈LN(seq)
g=seq↑i

(
∧

OSe∈AOS(g)

(¬OSe Ũ (OSe ∧ ¬OSe))), enforcing that, for all

Lifelines, every OS along each Lifeline executes once and only once. It is equivalent to enforcing

that, for each Message, its sending OS and receiving OS execute once and only once respectively

(see line 2), which can be captured using sub-formula
∧

j∈MSG(seq)

ρj (see line 3).

∧
i∈LN(seq)

g=seq↑i

αg =
∧

i∈LN(seq)
g=seq↑i

((
∧

k∈[r..(r+|AOS(g)|−2)]

(¬OSk+1 Ũ OSk)) ∧ (
∧

OSe∈AOS(g)

(¬OSe Ũ (OSe ∧¬OSe))))

=
∧

i∈LN(seq)
g=seq↑i

(
∧

k∈[r..(r+|AOS(g)|−2)]

(¬OSk+1 Ũ OSk)) ∧
∧

i∈LN(seq)
g=seq↑i

(
∧

OSe∈AOS(g)

(¬OSe Ũ (OSe ∧¬OSe))) (1)

=(
∧

i∈LN(seq)
g=seq↑i

α̃g) ∧ (
∧

j∈MSG(seq)

((¬SND(j) Ũ (SND(j) ∧¬SND(j)))

∧ (¬RCV (j) Ũ (RCV (j) ∧¬RCV (j))))) (2)

=(
∧

i∈LN(seq)
g=seq↑i

α̃g) ∧ (
∧

j∈MSG(seq)

ρj) (3)

Figure 4.3: Rewriting ΠBasic
seq into Π̃Basic

seq

For a given basic Sequence Diagram, seq, with j Messages and 2j event occurrences (each

Message has a sending event occurrence and a receiving event occurrence), Σseq
sem is the set of

event occurrences of seq. Σseq
sem ⊆ Σ, where Σ is the universe of event occurrences. The set

of valid traces, (Σseq
sem)∗, contains finite traces derived from seq based on the semantic rules of

Sequence Diagrams. Σseq
LTL is the set of event occurrences of LTL representation of seq, ΠBasic

seq ,

where Σseq
LTL = Σseq

sem ∪ {τ}. τ is an invisible event occurrence which does not occur in seq,

i.e., τ ∈ (Σ \ Σseq
sem). (Σseq

LTL)ω represents all infinite traces that satisfy ΠBasic
seq . For each trace

σ ∈ (Σseq
LTL)ω, function prei(σ) returns the prefix of length i of trace σ, i.e., σ[1..i]. We lift function

prei(σ) to PREi((Σ
seq
LTL)ω) to apply to a set of traces. Function PREi((Σ

seq
LTL)ω) returns the

set of the prefixes of the traces within (Σseq
LTL)ω, where the length of each prefix must be i, i.e.,

PREi((Σ
seq
LTL)ω) = {prei(σ)|σ ∈ (Σseq

LTL)ω}.

Lemma 4.8. For a given Sequence Diagram, seq, with j Messages, if σ ∈ (Σseq
LTL)ω, then σ must
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have the form, σ = σ[1..2j] · τω, where σ[1..2j] contains no τ .

Proof. If σ |= ΠBasic
seq , then σ |= εseq. We can directly infer from sub-formula εseq that, in σ,

only one OS of seq can execute at a time, and σ should execute uninterrupted until all the OSs of

seq have taken place. Similarly, we can infer from the assumption that σ |= ∧
j∈MSG(seq)

ρj . From

sub-formula
∧

j∈MSG(seq)

ρj , we can infer that each OS within seq can execute once and only once

in σ. seq contains j Messages with 2j OSs, so σ should have the form, σ = σ[1..2j] · τω.

The semantics of a basic Sequence Diagram is given by a set of valid, finite traces, while

LTL formulas describe infinite traces. To represent the semantics of a basic Sequence Diagram

using LTL formulas, we need to bridge the gap by adding stuttering of τ after each finite trace of

the Sequence Diagram. For instance, for a given Sequence Diagram, seq, ∀υ.υ ∈ (Σseq
sem)∗, υ is

extended to υ · τω without changing the meaning of seq.

We wish to prove that for a given Sequence Diagram, seq, with j Messages, ∀υ.υ ∈
(Σseq

sem)∗, υ · τω |= ΠBasic
seq , i.e., υ · τω ∈ (Σseq

LTL)ω. The semantic rule of seq defines that each

OS occurs once and only once. Thus, ∀υ.υ ∈ (Σseq
sem)∗, |υ| = 2j. From lemma 4.8, we learn that

∀σ.σ ∈ (Σseq
LTL)ω, σ = σ[1..2j] · τω, where σ[1..2j] contains no τ . σ[1..2j] ∈ PRE2j((Σ

seq
LTL)ω). If

∀υ.υ ∈ (Σseq
sem)∗, υ · τω ∈ (Σseq

LTL)ω, we can infer that, υ ∈ PRE2j((Σ
seq
LTL)ω), i.e., (Σseq

sem)∗ ⊆
PRE2j((Σ

seq
LTL)ω).

We also wish to prove that ∀σ.σ ∈ (Σseq
LTL)ω, σ[1..2j] ∈ (Σseq

sem)∗, i.e., PRE2j((Σ
seq
LTL)ω) ⊆

(Σseq
sem)∗.

Theorem 4.9. For a given Sequence Diagram, seq, with j Messages, (Σseq
sem)∗ and

PRE2j((Σ
seq
LTL)ω) are equal.

We provide the proof of theorem 4.9 in appendix B.1.

4.2 Combined Fragments

A Combined Fragment (CF) can modify the sequential execution of its enclosed OSs on each

Lifeline. Moreover, a Sequence Diagram can contain multiple CFs that can be nested within
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each other. Though these features make a Sequence Diagram more expressive, they increase the

complexity of representing all the traces of CFs. To capture these features, we generalize ΠBasic
seq

to Πseq for expressing Sequence Diagram with CFs (see figure 4.4). We introduce a new template

ΦCF to assert the semantics of each CF directly enclosed in seq. Template Πseq is a conjunction

of the formulas αg, βj , ΦCF and εseq, which is equivalent to the LTL template of basic Sequence

Diagram if seq does not contain any CF.

Πseq =
∧

i∈LN(seq)

(
∧

g∈TBEU(seq↑i)

αg) ∧
∧

j∈MSG(seq)

βj ∧
∧

CF∈nested(seq)

ΦCF ∧ εseq

Figure 4.4: LTL templates for Sequence Diagram with Combined Fragments

When multiple CFs and OSs present in a Sequence Diagram, they are combined using Weak

Sequencing — CFs and OSs on the same Lifeline execute sequentially, whereas CFs and OSs on

different Lifelines execute independently, except the pairs of OSs belonging to Messages. Thus,

we project Sequence Diagram seq with CFs onto Lifelines to obtain a collection of CEUs and

EUs, facilitating us to focus on OSs on each single Lifeline. The OSs directly enclosed in seq are

grouped into BEUs, whose semantics are enforced by a conjunction of αg for each BEU g. The

order of OSs within Messages directly enclosed in seq are enforced by a conjunction of βj for

each Message j. εseq enforces that at most one OS can execute at a time for all the OSs within

seq. One way to implement these formulas is provided in Appendix B. If seq contains a Loop, the

OSs of seq includes OSs in each iteration of the Loop.

Template ΦCF (see figure 4.5) considers three cases. Formula (1) asserts the case that the

CF contains no Operand whose Constraint evaluates to True. Thus, the OSs within the CF are

excluded from the traces. Semantics rule 3 for CFs states Weak Sequencing among the CF’s pre-

ceding Interaction Fragments and succeeding ones, which is enforce by formula ηCF . Functions

pre(CF ↑i) and post(CF ↑i) return the set of OSs which may happen right before and after

CEU CF ↑i respectively. The formula ηCF enforces that the preceding set of OSs must happen

before the succeeding set of OS on each Lifeline i, which sets to True if either pre(CF ↑i) or
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post(CF ↑i) returning empty set. Formula (2) asserts the case that CF contains at least one

Operand whose Constraint evaluates to True, and CF is not an Alternatives or a Loop. The first

conjunct ΨCF defines the semantics of OSs directly enclosed in CF . The second conjunct states

the semantics of each CFi, which are directly enclosed in the CF is enforced by each ΦCFi . In

this way, ΦCF can be defined recursively until it has no nested CFs.

Template ΨCF captures the semantics that is common to all CFs (except Alternatives and

Loop) (see figure 4.6). Sub-formula γCF
i enforces semantic rule 1, which defines the sequential

execution on every Lifeline i. The first conjunct enforces that the preceding set of OSs must

happen before each OS in CF on Lifeline i, and the second conjunct enforces that the succeeding

set of OSs must take place afterwards. θCF states semantic rule 2, which defines the order among

OSs directly enclosed in CF. θCF is a conjunction of αgs and βjs. The αgs is a conjunction of all

αg of each Lifeline, where g is a BEU whose condition evaluates to True. The βjs is a conjunction

of βj of each Message.

Formula (3) asserts the case for Alternatives and Loop, which contain at least one Operand

whose Constraint evaluates to True. For Alternatives, ΨCF
alt defines the semantics of OSs and

CFs directly enclosed in CF . ΨCF
alt and ΦCFi for CFi nested in the Alternatives form an indirect

recursion (see figure 4.11). The semantics of Loop is defined in a similar way (see figure 4.16).

Semantic rule 4 varies for CFs with different Operators, which is enforced by adding different

semantics constraints on ΨCF for each individual CF respectively. The semantics specifics for

different types of CF Operators are defined as below.

4.2.1 Concurrency

The Parallel represents concurrency among its Operands. The OSs of different Operands within

Parallel can be interleaved as long as the ordering imposed by each Operand is preserved. Figure

2.1b is an example of Parallel with two Operands. The OSs within the same Operand respect the

order along a Lifeline or a Message, whereas the OSs from different Operands may execute in any

order even if they are on the same Lifeline. For instance, OS r5 (i.e., the receiving OS of Message
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ΦCF =





ηCF if |TOP (CF )| = 0 (1)
ΨCF ∧ ∧

CFi∈nested(CF )

ΦCFi if (|TOP (CF )| > 0)∧

(typeCF (CF ) 6= alt) ∧ (typeCF (CF ) 6= loop) (2)
ΨCF if (|TOP (CF )| > 0)∧

((typeCF (CF ) = alt) ∨ (typeCF (CF ) = loop)) (3)

ηCF =
∧

i∈LN(CF )

((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (
∧

OSpre∈pre(CF↑i)

(OSpre)))

Figure 4.5: LTL template for nesting Combined Fragment

ΨCF = θCF ∧
∧

i∈LN(CF )

γCF
i

θCF =
∧

i∈LN(CF )

(
∧

g∈TBEU(CF↑i)

αg) ∧
∧

j∈MSG(TOP (CF ))

βj

γCF
i =

∧

OS∈TOS(CF↑i)

((¬OS Ũ (
∧

OSpre∈pre(CF↑i)

(OSpre))) ∧ ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (OS)))

Figure 4.6: LTL template for OSs directly enclosed in Combined Fragment
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m5) and OS r6 on Lifeline L2 maintain their order. OS r2 and OS s5 on Lifeline L1 many execute

in any order since they are in different Operands. Parallel does not add extra constraint to the

general semantic rules of CF. Thus, the semantics of Parallel can be formally defined (see figure

4.7).

ΨCF
par = θCF ∧

∧

i∈LN(CF )

γCF
i

Figure 4.7: LTL formula for Parallel

4.2.2 Branching

Collectively, we call Option, Alternatives and Break Branching constructs.

Representing Option

Figure 4.8: Example for OCF

The Option represents a choice of behaviors that either the (sole) Operand happens or nothing

happens. As Option does not add any extra constraint to the execution of its sole Operand, its

semantics can be formally defined as the template (see figure 4.9).

ΨCF
opt = θCF ∧

∧

i∈LN(CF )

γCF
i

Figure 4.9: LTL formula for Option
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Figure 4.8 is an example of Option. The OSs within the Option execute if cond1 evaluates to

True. Otherwise, the Option is excluded, and its semantics is defined by formula η, i.e., Messages

m1 and m4 are combined with Weak Sequencing.

Representing Alternatives

The Alternatives chooses at most one of its Operands to execute. Each Operand must have an

explicit or an implicit or an “else” Constraint. The chosen Operand’s Constraint must evaluate

to True. An implicit Constraint always evaluates to True. The “else” Constraint is the negation

of the disjunction of all other Constraints in the enclosing Alternatives. If none of the Operands

whose Constraints evaluate to True, the Alternatives is excluded. The translation of an Alterna-

tives into an LTL formula must enumerate all possible choices of executions in that only OSs of

one of the Operands, whose Constraints evaluate to True, will happen. LTL formula ΦCF
alt in fig-

ure 4.11 defines the semantics of Alternatives, which is a conjunction of Φm
alt. Each Φm

alt represents

the semantics of Operand m, whose Constraint evaluates to True, which is achieved by function

TOP (CF ).

The semantics of the chosen Operand (if clause) is described by θ̄CF
m , γ̄CF

i,m and ΦCFt , where

θ̄CF
m defines the partial order of OSs within the chosen Operand and ΦCFt defines the semantics

of CFs directly enclosed in the chosen Operand. Functions Ψm
alt and ΦCFt invoke each other to

form indirect recursion. The sub-formula of the unchosen Operand (else clause) returns True,

i.e., the unchosen Operand does not add any constraint. The Weak Sequencing of the Alternatives

is represented by γ̄CF
i,m instead of γCF

i , which enforces Weak Sequencing between the chosen

Operand and the preceding/succeeding OSs of the Alternatives.

One way to implement the chosen Operand (if clause) is using a boolean variable exe for

each Operand whose Interaction Constraint evaluates to True. The variable exe should satisfy the

following assertion,

∨̂

i∈[1..m]

exei ∧
∧

i∈[1..m]

(exei → condi)
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The first conjunct expresses that only one exe sets to True, i.e., exactly one Operand is chosen.

The second conjunct enforces that the Interaction Constraint of Operand whose exe sets to True

must evaluate to True. Figure 4.10 shows an example of an Alternatives with three Operands

enclosing three Lifelines. We assume the Constraints of the first and the third Operands evaluate

to True, the one of the second Operand evaluates to False. Only one between the first and the

third Operands is chosen by evaluating its variable exe to True.

Figure 4.10: Example for Alternatives

ΨCF
alt =

∧

m∈TOP (CF )

Ψm
alt

Ψm
alt =





θ̄CF
m ∧ ∧

i∈LN(CF )

γ̄CF
i,m ∧ ∧

CFt∈nested(m)

ΦCFt if m is the chosen Operand (1)

True else (2)

θ̄CF
m =

∧

i∈LN(m)

(
∧

g∈TBEU(m↑i)

αg) ∧
∧

j∈MSG(TOP (m))

βj

γ̄CF
i,m =

∧

OS∈TOS(m↑i)

((¬OS Ũ(
∧

OSpre∈pre(CF↑i)

(OSpre))) ∧ ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (OS)))

Figure 4.11: LTL formula for Alternatives

Representing Break

The Break states that if the Operand’s Constraint evaluates to True, it executes instead of the

remainder of the enclosing Interaction Fragment. Otherwise, the Operand does not execute, and
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the remainder of the enclosing Interaction Fragment executes. A Break can be represented as an

Alternatives in a straightforward way. We rewrite the semantics interpretation of Break as an Al-

ternatives with two Operands, the Operand of Break and the Operand representing the remainder

of the enclosing Interaction Fragment. The Constraint of the second Operand is the negation of

the first Operand’s Constraint. For example, the Interaction Fragment enclosing the Break is the

first Operand of the Parallel rather than the Parallel (see figure 4.12). We rewrite the Sequence

Diagram, using Alternatives to replace Break (see figure 4.13). cond3 is the Constraint of Break

and cond4 is the negation of it. In this way, only one Operand can be chosen to execute. Thus,

the LTL representation of Break can be represented as the LTL formula for Alternatives with two

Operands.

Figure 4.12: Example for Break Figure 4.13: Representing Break using Alter-
natives

4.2.3 Atomicity

The Critical Region represents that the execution of its OSs is in an atomic manner, i.e., restricting

OSs within its sole Operand from being interleaved with other OSs on the same Lifeline. In the

example of figure 2.1b, a Critical Region is nested in the first Operand of the Parallel. OSs s2, r5

and r6 can not interleave the execution of OSs r3 and s4. Formula ΨCF
critical presents the semantics

for Critical Region (see figure 4.14). θCF and γCF
i have their usual meanings. δM1,M2 enforces

that on each Lifeline, if any of the OSs within the CEU of Critical Region (representing as the set
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of M1) occurs, no other OSs on that Lifeline (representing as the set of M2) are allowed to occur

until all the OSs in M1 finish. Thus, M1 is guaranteed to execute as an atomic region. Function

“\” represents the removal of the set of OSs for Critical Region from the set of OSs for Sequence

Diagram seq on Lifeline i.

ΨCF
critical =θCF ∧

∧

i∈LN(CF )

γCF
i ∧

∧

i∈LN(CF )

δ(AOS(CF↑i),(AOS(seq↑i)\AOS(CF↑i)))

δM1,M2 =((
∨

OSk∈M1

OSk) → ((
∧

OSj∈M2

(¬OSj)) Ũ (
∧

OSk∈M1

OSk)))

Figure 4.14: LTL formula for Critical Region

4.2.4 Iteration

The Loop represents the iterations of the sole Operand, which are connected by Weak Sequencing.

To restrict the number of iterations, the Operand’s Constraint may include a lower bound, minint,

and an upper bound, maxint, i.e., a Loop iterates at least the minint number of times and at most the

maxint number of times. If the Constraint evaluates to False after the minint number of iterations,

the Loop will terminate. Bounded Loop, whose maxint is given, can be formalized using LTL

formulas. First, we consider fixed Loop. Figure 4.15 is an example of fixed Loop which iterates

exactly three times.

Figure 4.15: Example for Loop

Each OS is an instance of an event, which is unique within a Sequence Diagram. To keep

each OS within different iterations of a Loop unique, one way to implement an OS is defining an

37



array to rename the OS of each iteration. We introduce R, representing the number of iterations

and n, representing the current iteration number on Lifeline i. The Loop in iteration n can be

represented as Loop[n]. For example, the Loop in figure 4.15 has three iterations, Loop [1], Loop

[2] and Loop [3]. Figure 4.16 shows an LTL formula for a Loop. θ̂R overloads θCF , which asserts

the order of OSs during each iteration. γ̂i,R enforces the Weak Sequencing among Loop iterations

and its preceding/following sets of OSs on each Lifeline i, i.e., the first Loop iteration execute

before the preceding set of OSs, and the last Loop iteration execute after the succeeding set of

OSs. An OS and the value of n together represent the OS in a specific iteration, (e.g., the element

(OSk[n]) expresses OSk in the nth iteration). The OSs within nested CFs are renamed with the

same strategy. Template κi,R is introduced to enforce Weak Sequencing among Loop iterations,

e.g., on the same Lifeline, OSj[n + 1] can not happen until OSk[n] finishes execution.

ΨCF
loop,R =θ̂R ∧

∧

i∈LN(CF )

γ̂i,R ∧
∧

i∈LN(CF )

κi,R ∧
∧

n∈[1..R]
CFt∈nested(CF )

ΦCFt[n]

θ̂R =
∧

i∈LN(CF )

(
∧

g∈TBEU(CF↑i)

α̂g,R) ∧
∧

j∈MSG(TOP (k))

β̂j,R

α̂g,R =
∧

k∈[r..r+|AOS(g)|−2]
n∈[1..R]

((¬(OSk+1[n]))Ũ(OSk[n])) ∧
∧

OSe∈AOS(g)
n∈[1..R]

(¬OSe[n] Ũ (OSe[n] ∧¬OSe[n]))

β̂j,R =
∧

n∈[1..R]

((¬RCV (j)[n]) Ũ (SND(j)[n]))

γ̂i,R =
∧

OS∈TOS(CF [1]↑i)

(¬OS Ũ (
∧

OSpre∈pre(CF [1]↑i)

(OSpre)))

∧
∧

OS∈TOS(CF [R]↑i)

((
∧

OSpost∈post(CF [R]↑i)

(¬OSpost)) Ũ (OS))

κi,R =
∧

n∈[1..R−1]

((
∧

OSq∈AOS(CF↑i)

(¬OSq[n + 1]))Ũ(
∧

OSp∈AOS(CF↑i)

(OSp[n])))

Figure 4.16: LTL formula for fixed Loop

If the Loop is not fixed and it does not have infinity upper bound, we need to evaluate the

Interaction Constraint of the its sole Operand during each iteration. Similarly to fixed Loop, the
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finite but not fixed Loop can be unfolded by repeating iterations. To keep the Constraint of each

iteration unique, an array is defined to rename the Constraint, e.g., the Constraint of iteration n is

represented as cond[n]. The order of OSs during each iteration is asserted as the fixed Loop. Two

adjacent iterations are connected using Weak Sequencing. If n ≤ minint, cond[n] sets to True

and the Loop executes. If minint < n ≤ maxint, the Loop executes only if cond[n] evaluates

to True. Otherwise, the Loop terminates and the Constraints of remaining iterations (i.e., from

cond[n+1] to cond[maxint]) set to False. The Loop no longer executes when its iteration reaches

maxint.

4.2.5 Negation

Figure 4.17: Example for Negative

A Negative represents that the set of traces within a Negative are invalid. For example, there

are three traces defined by the Negative in figure 4.17 [s1, s2, r1, r2], [s2, s1, r1, r2], and [s1,

r1, s2, r2], which are invalid traces. Formula ΨCF
neg = θCF formally defines the semantics of

Negative CF, asserting the order of OSs directly enclosed in it. If the Interaction Constraint of

the Negative evaluates to False, the traces within the Negative may be invalid traces or the

Operand is excluded.

4.2.6 Assertion

An Assertion representing, on each Lifeline, a set of mandatory traces, which are the only valid

traces following the Assertion’s preceding OSs. Its semantics is formally defined as ΨCF
assert in

figure 4.19. θCF and γCF
i have their usual meanings. Function λi,seq

(pre(CF↑i),AOS(CF↑i))
represents

that on Lifeline i, if all the OSs in the set of pre happen, no other OSs in Sequence Diagram seq are
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Figure 4.18: Example for Assertion

allowed to happen until all the OSs in assertion complete their execution. The function prevents

the Assertion and its preceding OSs from being interleaved by other OSs, which is required when

the Assertion is nested within other CFs, such as Parallel. For example (see figure 4.18), an

Assertion is nested within a Parallel. The OSs within the CEU of the Assertion execute right after

their preceding OSs finish execution. On Lifeline L3, after the execution of OS r2, OSs s3 and r4

must happen without being interleaved by OS s6.

ΨCF
assert =θCF ∧

∧

i∈LN(CF )

γCF
i ∧

∧

i∈LN(CF )

λi,seq
(pre(CF↑i),AOS(CF↑i))

λi,seq
N1,N2

=(
∧

OSp∈N1

(OSp) → ((
∧

OSq∈(AOS(seq↑i)\N2)

(¬OSq)) Ũ (
∧

OSr∈N2

(OSr))))

Figure 4.19: LTL formula for Assertion

4.2.7 Weak Sequencing

The Weak Sequencing restricts the execution orders among its Operands along each Lifeline Fig-

ure 4.20 is an example of Weak Sequencing, where OS s4 can not happen until OS s3 execute,

whereas OS s4 and r3 may happen in any order as they are on different Lifelines. The LTL

definition of Weak Sequencing is given as below (see figure 4.21)..

Templates θCF and γCF
i have their usual meaning. γm

i specifies the execution orders be-

tween adjacent Operands, as well as enforcing the Weak Sequencing between the CF and its
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Figure 4.20: Example for Weak Sequencing

ΨCF
weak =θCF ∧

∧

i∈LN(CF )

γCF
i ∧

∧

i∈LN(CF )

(
∧

m∈TOP (CF )

γm
i )

Figure 4.21: LTL formula for Weak Sequencing

preceding/succeeding Interaction Fragments (γCF
i ). (The LTL formula keeps γCF

i for clarity and

consistency.)

4.2.8 Strict Sequencing

The Strict Sequencing imposes an order among OSs within different Operands. For an Operand,

all OSs must take place before any OS of its following Operand. In other words, any OS of an

Operand can not execute until all OSs of the previous Operand finish execution. The Strict Se-

quencing enforces the synchronization among multiple Lifelines, i.e., any covered Lifeline needs

to wait other Lifelines to enter the second or subsequent Operand together. (Weak Sequencing

enforces the order among Operands on each Lifeline.) For example, OS s4 will not execute until

all OSs within the first Operand, including s1, r1, s2, r2, s3, and r3 complete execution.

Figure 4.23 presents the semantics of Strict Sequencing. Template θCF has its usual meaning.

The Strict Sequencing and its adjacent Interaction Fragments are connected using Weak Sequenc-

ing, which is expressed by template γCF
i as usual. Function χk asserts the order between each

Operand k and its preceding Operand whose Constraint evaluates to True. Function preEU(u)
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Figure 4.22: Example for Strict Sequencing

returns the set of OSs within EU v which happen right before EU u, i.e., the Constraint of EU v

evaluates to True. Function NFTOP (CF ) returns the set of Interaction Operands whose Con-

straints evaluate to True within CF, excluding the first one.

ΨCF
strict = θCF ∧

∧

i∈LN(CF )

γCF
i ∧

∧

k∈NFTOP (CF )

χk

χk = (((
∧

OS∈AOS(k)

(¬OS))) Ũ (
∧

i∈LN(CF )

(
∧

OSpre∈preEU(k↑i)

(OSpre))))

Figure 4.23: LTL formula for Strict Sequencing

4.2.9 Coregion

Figure 4.24: Example for Coregion

A Coregion is an area of a single Lifeline, which is semantically equivalent to a Parallel that the

OSs are unordered. Figure 4.24 shows an example of Coregion, where OS r3 and r4 may execute

in any order. We represent the Coregion into an LTL formula in a similar way as a Parallel (see

figure 4.25). Each OS within the Coregion is considered as an Operand of the Parallel, no order
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of OSs within a BEU needs to be defined. Template θCF is excluded because a Coregion does not

contain any complete Messages. Complete messages are defined by the CF or Sequence Diagram

which directly encloses them. γCF
i describes the Weak Sequencing between Coregion and its

preceding/succeeding set of OSs. The LTL formula does not describe the Messages containing

the OSs of the Coregion.

ΨCF
coregion = γCF

i

Figure 4.25: LTL formula for Coregion

4.3 Ignore and Consider

So far, all the CFs define a collection of partial traces, which only interleave the OSs appearing in

the Sequence Diagram to form a complete trace. The Ignore and Consider CFs allow other OSs

that are not considered or ignored extend the traces. Ignore and Consider take into consideration

the message types which do not appear in the Sequence Diagram. Generally, the interpretation of

a Sequence Diagram only considers the message types explicitly shown in it. An Ignore specifies

a list of message types which needs to be ignored within the CF. For instance, Messages whose

type is m3 are ignored in the Ignore CF (see figure 4.26). A Consider specifies a list of considered

message types, which is equivalent to specifying other possible message types to be ignored.

For instance, the Consider CF only considers Messages whose types are m2, m3 or m5 (see

figure 4.27). To design well-formed Ignore or Consider, some syntactical constraints need to be

mentioned. For Consider, only Messages whose types specified by the list of considered Messages

can appear in the CF [60]. For Ignore, the ignored message types are suppressed in the CF [60].

Within the Ignore, the Messages appearing in the CF and the Messages which are explic-

itly ignored in the CF need to be constrained (see figure 4.28). θCF and γCF
i have their usual

meaning, which describe the semantics of Messages appearing in the Ignore. Each OS of the

ignored Messages executes only once, which is enforced by α̃ignoreOS(CF ). We introduce func-

tion ignoreMsg(CF ) to return the set of Messages of the ignored message types which occur
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Figure 4.26: Example for Ignore

Figure 4.27: Example for Consider

in CF , which can be finite or infinite. Function ignoreOS(CF ) returns the set of OSs associ-

ated with Messages of ignored message types, which can also be finite or infinite. Formula βk

enforces that, for each ignored Message k, its sending OS must happen before its receiving OS.

Formula γCF
i,ignoreOS(CF↑i)

extends γCF
i , which enforces any OS of the set of the ignored OSs can

only happen within the CEU of the Ignore on each Lifeline, formally,

γCF
i,S =

∧
OS∈S

((¬OS Ũ (
∧

OSpre∈pre(CF↑i)

(OSpre))) ∧ ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (OS)))

where S can be replaced using ignoreOS(CF ↑i). Formula εseq,ignoreOS(CF ) extends εseq to

include the OSs of ignored Messages in the set of OSs of seq, formally,
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εseq,ignoreOS(CF ) = ((
∨̂

OSp∈(AOS(seq)∪ignoreOS(CF ))

OSp) ∨ (
∧

OSp∈(AOS(seq)∪ignoreOS(CF ))

(OSp)))

Thus, function εseq of Sequence Diagram with Ignore enforces the interleaving semantics among

OSs appearing in seq and OSs of the ignored Messages.

As the dual Operator of ignore, the semantics of a CF with Operator consider is equivalent

to ignoring all possible Message types except the considered types. In this way, the LTL for-

mula of Ignore can be adapted to represent the semantics of Consider (see figure 4.29). Function

AllMsg(CF ) \ considerMsg(CF ) returns the Messages which are not considered but occur in

CF , where AllMsg(CF ) returns all possible Messages, including Messages of considered types

and Messages of ignored types. considerMsg(CF ) returns the Messages of considered types.

Function Σ \ considerOS(CF ) returns all possible OSs within CF except the OSs of consid-

ered Messages, where Σ is the set of all possible OSs including considered OSs and ignored OSs,

and considerOS(CF ) returns the set of OSs of considered Messages. In this way, the Sequence

Diagram with Consider or Ignore no longer derive complete traces.

ΨCF
ignore =θCF ∧

∧

i∈LN(CF )

γCF
i ∧ α̃ignoreOS(CF ) ∧

∧

k∈ignoreMsg(CF )

βk ∧
∧

i∈LN(CF )

γCF
i,ignoreOS(CF↑i)

α̃S =
∧

OSe∈S
(¬OSe Ũ (OSe ∧¬OSe))

Figure 4.28: LTL formula for Ignore
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ΨCF
consider =θCF ∧

∧

i∈LN(CF )

γCF
i ∧ α̃Σ\considerOS(CF ) ∧

∧

k∈(AllMsg(CF )\considerMsg(CF ))

βk

∧
∧

i∈LN(CF )

γCF
i,(Σi\considerOS(CF↑i))

Figure 4.29: LTL formula for Consider

4.4 Semantic Variations

OMG provides the formal syntax and semi-formal semantics for UML Sequence Diagrams, leav-

ing semantic variation points for representing different applications. Micskei and Waeselynck

have collected and categorized the interpretations of the variants [51]. In the following subsec-

tions, we discuss how to user our LTL framework to formalize the variations of Negative, Strict

Sequencing, and Interaction Constraints.

4.4.1 Variations of Negative

Recall that the traces defined by a Negative are considered as invalid traces. For example, if the

Operand of Negative S, which does not contain any other Negative, defines a set of valid traces,

then the set of traces defined by S are invalid traces. In the case that the Constraint of the Operand

of S evaluates to False, the interpretation of the semantics of S may be varied, depending on the

requirement of applications. Formula ΨS
neg instantiates the template ΨCF

neg (see subsection 4.2.5)

with S, defining the traces of S, which can be invalid or inconclusive. For example, three traces

defined by the Negative (see figure 4.17), [s1, s2, r1, r2], [s2, s1, r1, r2], and [s1, r1, s2, r2], can

be interpreted as invalid, or inconclusive traces if cond1 evaluates to False.

In the case that, Negative S is enclosed in Sequence Diagram or non-Negative CF R, the

Messages which are not enclosed in S may interleave the sub-traces of S. If the sub-traces of S

are invalid, the traces of R can be interpreted as invalid or inconclusive traces. If the sub-traces of

S are inconclusive traces (i.e., the Constraint of the Operand of S evaluates to False), the traces

of R are also inconclusive traces. For Sequence Diagram R, its traces are defined by formula ΠR,
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which instantiates the template Πseq (see figure 4.4). For non-Negative CF R, its traces are defined

by formula ΦR, which instantiates the template ΦCF (see figure 4.5). For example, trace [s1, s2,

r2, r1, s3, r3] in figure 4.30 is interpreted as an invalid or an inconclusive trace.

Figure 4.30: Example for variation of Negative Combined Fragment

For nested Negative CFs, i.e., Negative CF R encloses Negative CF S, the traces of R are

defined by ΦR. These traces can be interpreted as valid, invalid, or inconclusive traces, depending

on the Constraint of R’s Operand and the interpretation of the sub-traces of S. The sub-traces of S

are invalid or inconclusive depending on the value of its Constraint. Three different interpretations

for the traces of R are provided: (1) If the sub-traces of S are invalid traces and the Constraint of

R’s Operand evaluates to True, the traces of R can be valid, invalid, or inconclusive traces. (2)

If the sub-traces of S are invalid traces and the Constraint of R’s Operand evaluates to False, the

traces of R can be invalid or inconclusive traces. (3) If the sub-traces of S are inconclusive, the

traces of R can be inconclusive traces in despite of the evaluation. Figure 4.31 shows an example

of nested Negative CFs. All the traces [s1, s2, r1, r2], [s2, s1, r1, r2], and [s1, r1, s2, r2] of R can

be valid, invalid, or inconclusive traces depending on the value of cond1 and cond2.

Figure 4.31: Example for nested Negative Combined Fragments
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4.4.2 Variations of Strict Sequencing

Recall that a Strict Sequencing CF represents an order among its Operands that any OS in an

Operand can not execute until the previous Operand completes execution. However, the connec-

tion between the Strict Sequencing and its preceding/succeeding Interaction Fragments can be

varied. According to the semantic rules general to all CFs, the Strict Sequencing is connected

with its preceding/succeeding Interaction Fragments using Weak Sequencing. However, some

applications may require that the Strict Sequencing are connected with its preceding/succeeding

Interaction Fragments using Strict Sequencing. We modify the LTL formula of Strict Sequencing

to formalize the variation (see figure 4.32). The only change we need to make is to replace γCF
i

that enforces Weak Sequencing between the Strict Sequencing and its preceding/succeeding Inter-

action Fragments with νCF . Function νCF enforces the synchronization among multiple Lifelines

when entering or leaving the Strict Sequencing, i.e., any covered Lifeline needs to wait others to

enter or leave the Strict Sequencing together. The first conjunct enforces that the preceding set of

OSs must happen before each OS within the Strict Sequencing, and the second conjunct enforces

that the succeeding set of OSs must take place afterwards.

If an application requires Strict Sequencing to connect any CF with its preceding/succeeding

Interaction Fragments, we can use function νCF to replace function γCF
i in the LTL formula of

the CF.

ΨCF ′
strict = θCF ∧

∧

k∈NFTOP (CF )

χk ∧ νCF

νCF = ((
∧

i∈LN(CF )

(
∧

OS∈TOS(CF↑i)

(¬OS))) Ũ (
∧

i∈LN(CF )

(
∧

OSpre∈pre(CF↑i)

(OSpre))))

∧ ((
∧

i∈LN(CF )

(
∧

OSpost∈post(CF↑i)

(¬OSpost))) Ũ (
∧

i∈LN(CF )

(
∧

OS∈TOS(CF )

(OS))))

Figure 4.32: LTL formula for variation of Strict Sequencing
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4.4.3 Variations of Interaction Constraint

Recall that a CF consists of one or more Interaction Operands, each of which may contain an

Interaction Constraint. An Interaction Constraint is located on a Lifeline with the first OS occur-

ring within the Operand, i.e., an Interaction Constraint is positioned above the first OS occurring

within the Operand. For example, figure 2.1b contains a Parallel covering three Lifelines. In the

first Operand op1 of the Parallel, either OS s2 or OS s3 may be the first OS to execute. As the

Interaction Constraint of op1, cond1, located on Lifeline L2, OS s2 executes before OS s3.

However, if an Interaction Constraint of an Operand is located above a nested CF, it may not

restrict an OS to be the first one to execute. In the example of figure 4.36, Interaction Constraint

cond1 is located above a Parallel, which expresses that the first OS occurring within the Option’s

Operand is contained by the Parallel on Lifeline L2. However, OS s1 and OS s2, either of which

may be the first one to execute within the Parallel, are located on L1. To avoid the contradiction,

we assume an Interaction Constraint can restrict an OS to be the first one to execute only if it is

located above an OS, not a nested CF.

For each Operand whose Constraint evaluates to True, the order between the first OS occurring

within the Operand and any other OSs which are directly enclosed in the Operand is captured by

an LTL formula (see figure 4.37). Function Init(m) returns the first OS occurring within Operand

m, which may return an empty set if the Interaction Constraint is located above a nested CF.

Figure 4.33: Example for CF with Interaction Constraints

Two different semantic interpretations of an Operand whose Interaction Constraint evaluates

to False are provided. 1. The traces expressed by the Operand are interpreted as invalid traces.
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µCF =
∧

m∈TOP (CF )

(
∧

OSp∈Init(m)

OSq∈TOS(m)

(¬OSq Ũ OSp))

Figure 4.34: LTL formula for Constraint of the first occurring OS

2. The Operand is excluded. Our LTL template chooses the second interpretation but also can be

adapted to describe the first interpretation.

4.5 Other Control Constructs

4.5.1 General Ordering

General Ordering imposes order of two unorder OSs. We specify the two OSs of General Ordering

as a pair of ordered OSs. In the LTL formula of General Ordering, OSp and OSq are two OSs

connected by the General Ordering, which specifies that OSq can not execute until OSp completes

execution.

ΥGO = ¬OSq Ũ OSp

4.5.2 Interaction Use

Interaction Use embeds the content of the referred Interaction into the specified Interaction, thus

composing a single, larger Interaction. We consider Interaction Use as a type of CF whose In-

teraction Operator is ref. Formula ΨCF
ref represents the LTL representation of an Interaction Use.

In ΨCF
ref , the first conjunct describes that the OSs directly enclosed in the referred Sequence Dia-

gram obeys their order. The second conjunct enforces that the referred Sequence Diagram and its

adjacent OSs are ordered by Weak Sequencing, which is represented by γCF
i .
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ΨCF
ref = θCF ∧

∧

i∈LN(CF )

γCF
i

4.5.3 Discussion

Figure 4.35: Example for Overlapped CFs

Our work does not address timed events, i.e., the events cannot represent the occurrence of

an absolute time. As the syntactic definition for OS, we do not handle the case that two OSs

are overlapped on a Lifeline, i.e., the relation between the set of OSs and the set of locations

is one-to-one correspondence. The Messages are disallowed to cross the boundaries of CFs and

their Operands [55]. Thereby, gates are not discussed in this paper. We only handle complete

Messages, each of which has both sending and receiving OSs. The lost and found Messages are

out of the scope of this paper.

For nested CFs, our syntactical constraints restrict that the borders of any two CFs can not

overlap each other, i.e., the inner CF can not cover more Lifelines than the outer CF. The example

in figure 4.35 has is ill-formed. In this way, Coregion can only contain OSs and Coregions, no

other CFs can be enclosed within a Coregion.

An Interaction Constraint is located on a Lifeline with the first OS occurring within the

Operand, i.e., an Interaction Constraint is positioned above the first OS occurring within the

Operand. For example, figure 2.1b contains a Parallel covering three Lifelines. In the first Operand
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op1 of the Parallel, either OS s2 or OS s3 may be the first OS to execute. As the Interaction Con-

straint of op1, cond1, located on Lifeline L2, OS s2 executes before OS s3.

However, if an Interaction Constraint of an Operand is located above a nested CF, it may not

restrict an OS to be the first one to execute. In the example of figure 4.36, Interaction Constraint

cond1 is located above a Parallel, which expresses that the first OS occurring within the Option’s

Operand is contained by the Parallel on Lifeline L2. However, OS s1 and OS s2, either of which

may be the first one to execute within the Parallel, are located on L1. To avoid the contradiction,

we assume an Interaction Constraint can restrict an OS to be the first one to execute only if it is

located above an OS, not a nested CF.

For each Operand whose Constraint evaluates to True, the order between the first OS occurring

within the Operand and any other OSs which are directly enclosed in the Operand is captured by

an LTL formula (see figure 4.37). Function Init(m) returns the first OS occurring within Operand

m, which may return an empty set if the Interaction Constraint is located above a nested CF.

Figure 4.36: Example for CF with Interaction Constraints

µCF =
∧

m∈TOP (CF )

(
∧

OSp∈Init(m)

OSq∈TOS(m)

(¬OSq Ũ OSp))

Figure 4.37: LTL formula for Constraint of the first occurring OS
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4.6 Proof for LTL Template of Sequence Diagram with Combined Frag-

ments

We wish to prove that the NuSMV model for a Sequence Diagram with CFs capture the semantics

of the Sequence Diagram. Recall the semantic rules general to all CFs have been presented in

section 2.2, and the semantics of each CF Operator is shown in section 2.3. The LTL template for

Sequence Diagram with CFs, Πseq, is shown in figure 4.4 (see section 4).

Π̃seq =(
∧

i∈LN(seq)
g∈T BEU(seq↑i)

α̃g) ∧ (
∧

j∈MSG(seq)

ρj) ∧ (
∧

j∈MSG(seq)

βj) ∧ (
∧

CF∈nested(seq)

ΦCF ) ∧ εseq

Figure 4.38: Rewriting LTL templates for Sequence Diagram with Combined Fragments

Πseq =
∧

i∈LN(seq)

(
∧

g∈TBEU(seq↑i)

αg) ∧
∧

j∈MSG(seq)

βj ∧
∧

CF∈nested(seq)

ΦCF ∧ εseq

= (
∧

i∈LN(seq)
g∈T BEU(seq↑i)

α̃g) ∧ (
∧

j∈MSG(seq)

ρj) ∧ (
∧

j∈MSG(seq)

βj) ∧ (
∧

CF∈nested(seq)

ΦCF ) ∧ εseq

Figure 4.39: Rewriting Πseq into Π̃seq

We can write LTL template Πseq into Π̃seq (see figure 4.38) by replacing the sub-formula
∧

i∈LN(seq)
g∈TBEU(seq↑i)

αg using sub-formulas
∧

i∈LN(seq)
g∈TBEU(seq↑i)

α̃g and
∧

j∈MSG(seq)

ρj . The procedure (see figure

4.39) follows the one of rewriting LTL template ΠBasic
seq . We can rewrite sub-formula θCF into

θ̃CF (see figure 4.40) to describe the semantics of CF ’s Operands whose Constraints evaluate to

True (see figure 4.41). In sub-formula θCF , function TBEU(CF ↑i) returns the set of BEUs,

whose Constraints evaluate to True, directly enclosed in the CEU of CF on Lifeline i. It is

equivalent to the set of BEUs directly enclosed in the EUs, which are obtained by projecting CF ’s

Operands whose Constraints evaluate to True onto Lifeline i, i.e., TBEU(CF ↑i) = {beu|beu ∈
ABEU(op ↑i) ∧ op ∈ TOP (CF )} (see line 1). Sub-formula

∧
i∈LN(CF )

g∈ABEU(op↑i)

αg is rewritten as the

one of rewriting Πbasic
seq (see line 4). We also rewrite sub-formula γCF

i into γ̃CF
i (see figure 4.40)
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to enforce the sequential execution Lifeline i (see figure 4.42). In sub-formula γCF
i , function

TOS(CF ↑i) returns the set of OSs of the BEUs, whose Constraints evaluate to True, directly

enclosed in the CEU of CF on Lifeline i. It is equivalent to the set of OSs directly enclosed in

the Operands whose Constraints evaluate to True on Lifeline i, i.e., TOS(CF ↑i) = {os|os ∈
AOS(ABEU(op ↑i)) ∧ op ∈ TOP (CF )}.

ΨCF = θ̃CF ∧
∧

i∈LN(CF )

γ̃CF
i ∧ %CF

θ̃CF =
∧

op∈TOP (CF )

((
∧

i∈LN(CF )
g∈ABEU(op↑i)

α̃g) ∧ (
∧

j∈MSG(op)

ρj) ∧ (
∧

j∈MSG(op)

βj))

γ̃CF
i =

∧

op∈TOP (CF )

(
∧

beu∈ABEU(op↑i)
OS∈AOS(beu)

((¬OS Ũ (
∧

OSpre∈pre(CF↑i)

(OSpre))) ∧ ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (OS))))

Figure 4.40: Rewriting LTL template for OSs directly enclosed in Combined Fragment

θCF =(
∧

i∈LN(CF )

(
∧

g∈TBEU(CF↑i)

αg)) ∧ (
∧

j∈MSG(TOP (CF ))

βj)

=(
∧

i∈LN(CF )

(
∧

op∈TOP (CF )

(
∧

g∈ABEU(op↑i)

αg))) ∧ (
∧

op∈TOP (CF )

(
∧

j∈MSG(op)

βj)) (1)

=(
∧

op∈TOP (CF )

(
∧

i∈LN(CF )

(
∧

g∈ABEU(op↑i)

αg))) ∧ (
∧

op∈TOP (CF )

(
∧

j∈MSG(op)

βj)) (2)

=
∧

op∈TOP (CF )

((
∧

i∈LN(CF )
g∈ABEU(op↑i)

αg) ∧ (
∧

j∈MSG(op)

βj)) (3)

=
∧

op∈TOP (CF )

((
∧

i∈LN(CF )
g∈ABEU(op↑i)

α̃g) ∧ (
∧

j∈MSG(op)

ρj) ∧ (
∧

j∈MSG(op)

βj)) (4)

= θ̃CF

Figure 4.41: Rewriting θCF into θ̃CF

Lemma 4.10. A given Sequence Diagram with CFs, seq, directly contains h Message. In the CFs,

p Messages are enclosed in Operands whose Interaction Constraints evaluate to True, i.e., if a

Message is enclosed in multiple nested Operands, all the Interaction Constraints of the Operands

evaluate to True. For other q Messages within the CFs, each Message is enclosed in one Operand
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γCF
i =

∧

OS∈TOS(CF↑i)

((¬OS Ũ (
∧

OSpre∈pre(CF↑i)

(OSpre))) ∧ ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (OS)))

=
∧

op∈TOP (CF )

(
∧

beu∈ABEU(op↑i)
OS∈AOS(beu)

((¬OS Ũ (
∧

OSpre∈pre(CF↑i)

(OSpre))) ∧ ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (OS))))

= γ̃CF
i

Figure 4.42: Rewriting γCF
i into γ̃CF

i

or multiple nested Operands, where at least one Operand’s Interaction Constraint evaluate to

False. If σ ∈ (Σseq
LTL)ω, then σ must have the form, i.e., σ = σ[1..2h+2p] · τω, where σ[1..2h+2p]

contains no τ .

Proof. If σ |= Π̃seq, then σ |= ∧
j∈MSG(seq)

ρj and σ |= ∧
op∈TOP (CF )

(
∧

j∈MSG(op)

ρj). From sub-

formula
∧

j∈MSG(seq)

ρj , we can infer that each OS of the Messages directly enclosed in seq can

execute once and only once in σ. For each CF, we can infer from
∧

op∈TOP (CF )

(
∧

j∈MSG(op)

ρj) that

each OS of the Messages directly enclosed in CF ’s Operands whose Constraints evaluate to True

can execute once and only once. Similarly, if σ |= Πseq, we can deduce that σ |= εseq. It specifies

that only one enabled OS (i.e., the OS is not enclosed in an Operand whose Constraint evaluates

to False) can execute at a time, and σ should execute uninterrupted until all the enabled OSs have

taken place. seq directly contains h Messages with 2h OSs. In the CFs within seq, the Operands

whose Interaction Constraints evaluate to True contain p Messages with 2p OSs. Therefore, σ

should have the form, σ = σ[1..2h+2p] · τω, where σ[1..2h+2p] contains no τ .

A given Sequence Diagram, seqr, directly contains k Lifelines, h Messages and r CFs, which

contain p + q Messages. Each CF does not contain other CFs. For the Messages within the CFs,

p Messages are enclosed in Operands whose Interaction Constraints evaluate to True, while q

Message are enclosed in Operands whose Interaction Constraints evaluate to False.

We wish to prove that ∀υ.υ ∈ (Σseqr
sem)∗, υ · τω |= Π̃seqr , i.e., υ · τω ∈ (Σseqr

LTL)ω. The semantic

rules of seqr define that each OS which is directly enclosed in seqr or an Operand whose Con-

straint evaluates to True, occurs once and only once. Thus, ∀υ.υ ∈ (Σseqr
sem)∗, |υ| = 2h + 2p. From
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lemma 4.10, we learn that ∀σ.σ ∈ (Σseqr

LTL)ω, σ = σ[1..2h+2p] · τω, where σ[1..2h+2p] contains no

τ . σ[1..2h+2p] ∈ PRE2h+2p((Σ
seqr

LTL)ω). If ∀υ.υ ∈ (Σseqr
sem)∗, υ · τω ∈ (Σseqr

LTL)ω, we can infer that,

υ ∈ PRE2h+2p((Σ
seqr

LTL)ω), i.e., (Σseqr
sem)∗ ⊆ PRE2h+2p((Σ

seqr

LTL)ω).

We also wish to prove that ∀σ.σ ∈ (Σseqr

LTL)ω, σ[1..2h+2p] ∈ (Σseqr
sem)∗, i.e.,

PRE2h+2p((Σ
seqr

LTL)ω) ⊆ (Σseqr
sem)∗.

Theorem 4.11. (Σseqr
sem)∗ and PRE2h+2p((Σ

seqr

LTL)ω) are equal.

We provide the proof of theorem 4.11 in appendix B.2.

We consider the Sequence Diagram with nested CFs. A given Sequence Diagram, seqnested,

directly contains k Lifelines, h Messages and r CFs, which contain p + q Messages. Each CF

may contain other CFs. We use layer to define the location of the nested CFs. The Sequence

Diagram’s layer is 0, while the layer of a CF directly enclosed in the Sequence Diagram is 1. If

CF cfm’s layer is m, then the layer of the CFs directly enclosed in cfm is m + 1. We assume

the maximum layer of CF within seqnested is l. For the Messages within the CFs, p Messages

are enclosed in Operands whose Interaction Constraints evaluate to True, i.e., if a Message is

enclosed in multiple nested Operands, all the Interaction Constraints of the Operands evaluate to

True. For other q Messages within the CFs, each Message is enclosed in one Operand or multiple

nested Operands, where at least one Operand’s Interaction Constraint evaluate to False. We wish

to prove that ∀υ.υ ∈ (Σseqnested
sem )∗, υ ·τω |= Π̃seqnested

, i.e., υ ·τω ∈ (Σseqnested

LTL )ω. The semantic rules

of seqnested define that each OS which is directly enclosed in seqr or Operands whose Constraints

evaluate to True, occurs once and only once. Thus, ∀υ.υ ∈ (Σseqnested
sem )∗, |υ| = 2h + 2p. From

lemma 4.10, we learn that ∀σ.σ ∈ (Σseqnested

LTL )ω, σ = σ[1..2h+2p] · τω, where σ[1..2h+2p] contains no

τ . σ[1..2h+2p] ∈ PRE2h+2p((Σ
seqnested

LTL )ω). If ∀υ.υ ∈ (Σseqnested
sem )∗, υ · τω ∈ (Σseqnested

LTL )ω, we can

infer that, υ ∈ PRE2h+2p((Σ
seqnested

LTL )ω), i.e., (Σseqnested
sem )∗ ⊆ PRE2h+2p((Σ

seqnested

LTL )ω).

We also wish to prove that ∀σ.σ ∈ (Σseqnested

LTL )ω, σ[1..2h+2p] ∈ (Σseqnested
sem )∗, i.e.,

PRE2h+2p((Σ
seqnested

LTL )ω) ⊆ (Σseqnested
sem )∗.

Theorem 4.12. (Σseqnested
sem )∗ and PRE2h+2p((Σ

seqnested

LTL )ω) are equal.
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We provide the proof of theorem 4.12 in appendix B.2.
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Chapter 5: EXPRESSING SAFETY PROPERTIES USING SEQUENCE

DIAGRAMS

Practitioners tend to construct multiple Sequence Diagrams to capture the requirements and de-

sign of a system. A Sequence Diagram may present a possible execution, describing how the

environment and system interact with each other, or specifies core requirements or a desired prop-

erty. For the former case, we consider (in the previous section) that all the traces derived from

a Sequence Diagram are complete traces. For the latter case, we adopt partial trace semantics

to define the Sequence Diagram since the OS traces derived from it can be interleaved by OSs

of Messages that do not appear in the property’s Sequence Diagram but appear in a model Se-

quence Diagram. In this section we present how to generate safety properties as LTL formulas

from Sequence Diagrams with Negative and Assertion respectively.

5.1 Safety Property with Negative Combined Fragment

While creating a collection of Sequence Diagrams to specify a system’s behavior, we wish to

ensure that the system is safe in the sense that none of the forbidden traces exist. Two types of

safety properties are provided: the strong safety property and the weak safety property. A system

is strong safe with respect to a Negative if any run of the system is not compatibly induced by

a trace which contains the OSs of the Negative and the OSs are ordered as an invalid trace. The

strong safety properties focus on the order of OSs of invalid traces, which can be specified as an

LTL template ΩSNCF
seq ,

ΩSNCF
seq =¬(ΦCF ∧ εpart

seq )

εpart
seq =((

∨̂

OSm∈AOS(seq)

OSm) ∨ (
∧

OSm∈AOS(seq)

(¬OSm)))

where formula ΦCF asserts the order of OSs enclosed in the Negative, and εpart
seq enforces the
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interleaving semantics of partial traces, i.e., at most one OS of a Sequence Diagram seq can

execute at once; other OSs may occur and interleave the partial traces.

If there is no run of the system, which is compatibly induced by a trace containing an invalid

trace of the Negative as a sub-trace, we consider the system is weak safe with respect to the

Negative. If a system is weak safe but not strong safe with respect to the Negative, we consider

the traces which violate strong safety properties as false positive traces. We define a temporal

logic template, ΩWNCF
seq , to characterize the weak safety property of Sequence Diagram seq with

respect to a Negative. Formally,

ΩWNCF
seq =¬(ΦCF ∧ εpart

seq ∧ δ(AOS(NCF ),(AOS(seq)\AOS(NCF ))))

in which formula δ(AOS(NCF ),(AOS(seq)\AOS(NCF ))) asserts that the traces enclosed in the Negative

are not interleaved by other OSs in Sequence Diagram seq. Formula ΩWNCF
seq asserts that Sequence

Diagram seq is not weak safe if 1. A trace of seq contains the OSs of an invalid trace and these

OSs are ordered as the invalid trace (first conjunct). 2. these OSs are not interleaved by other OSs

of seq (second conjunct).

Figure 5.1 shows an example of a Negative, which we want to verify against the Sequence

Diagram, seq, shown in figure 2.1a. Our techniques define a strong safety property ΩSNCF
seq and a

weak safety property ΩWNCF
seq with respect to the example Negative, which can verify the model

translated from seq. The strong safety property is violated because seq contains a trace [s1, r1, s2,

r2, s3, r3], which orders OSs s1, r1, s3 and r3 as the Negative. The weak safe property is satisfied

in that invalid traces [s1, r1, s3, r3] and [s1, s3, r1, r3] are not shown as sub-traces in the example

Sequence Diagram.
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Figure 5.1: Example for Negative representing safety property

5.2 Safety Property with Assertion Combined Fragment

We define that a collection of Sequence Diagrams is safe with respect to a Sequence Diagram with

an Assertion only if any trace in the Assertion on a Lifeline always follows OSs, which may hap-

pen right before the Assertion on the same Lifeline. Formula ΩASCF
seq in figure 5.3 represents the

safety property of seq with respect to an Assertion. On Lifeline i, two conditions should be satis-

fied if all the OSs in the set of pre happen. (1) No other OSs in Sequence Diagram seq are allowed

to happen until all the OSs in the Assertion complete their execution. (2) The order among OSs

within the Assertion, the Weak Sequencing between the Assertion and its preceding/succeeding

Interaction Fragments, and the interleaving semantics of the Assertion’s partial traces should be

preserved. If an Assertion contains other CFs, the order of OSs within each nested CF CFj on

each Lifeline i is represented by ΦCFj ↑i, which is the restriction of ΦCFj on Lifeline i. Generally,

ΦCFj ↑i is a conjunction of sub-formulas α, γ, and additional sub-formulas (optional and various

for different CFs) on Lifeline i. To obtain ΦCFj ↑i, we need to project the syntactic constructs of

CFj on Lifeline i, and then keep the sub-formulas of ΦCFj which are related to these constructs.

Figure 5.2: Example for Assertion representing safety property

Based on this safety definition, we can verify if a Sequence Diagram, seq, satisfies the safety

constraints set by another Sequence Diagram with an Assertion. For example, we can verify
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ΩASCF
seq =

∧

i∈LN(CF )

((
∧

OSp∈pre(CF↑i)

(OSp) → (((
∧

OSq∈(AOS(seq↑i)\AOS(CF↑i))

(¬OSq))

Ũ (
∧

OSr∈AOS(CF↑i)

(OSr))) ∧ (
∧

g∈TBEU(CF↑i)

αg) ∧
∧

CFj∈nested(CF )

(ΦCFj ↑i)))) ∧ εpart
seq

Figure 5.3: Safety property for Assertion

ΩASCF
seq for the Sequence Diagram in figure 5.2 against the model for seq, in figure 2.1a. The

safety property is violated, and a counterexample trace [s1, r1, s5, r5, s2, s3, r3, s4, r4, r2, s6, r6]

is provided, where mandatory trace [s1, r1, s2, r2] is not always strictly included as a sub-trace.

5.3 Deadlock Property with Synchronous Messages

The deadlock-free property can be verified in a Sequence Diagram with synchronous Messages,

where each synchronous Message must have an explicit reply Message (see example in figure

5.4). Deadlock can occur if multiple Lifelines are blocked, waiting on each other for a reply.

Figure 5.4: Example for deadlock in basic Sequence Diagram with synchronous Messages

Figure 5.5 represents the LTL formula of a basic Sequence Diagram with synchronous Mes-

sages, which conjuncts a constraint ξsync
seq with the LTL formula of a basic Sequence Diagram with

asynchronous Messages. ξsync
seq describes that if a Lifeline sends a synchronous Message, it can

not send or receive any other synchronous Message until it receives a reply Message. We define

some helper functions, where typeOS(OSp) returns that OSp is a sending OS or a receiving OS,

and Reply(OSp) returns the reply Message of a synchronous Message containing OSp. In the ex-
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ample of figure 5.4, all of the Lifelines eventually deadlock since they all send Messages and are

all awaiting replies. The LTL formula is not satisfied when verifying against the NuSMV module,

which will be discussed in section 6.3.1.

Πsync
seq =Πseq ∧ ξsync

seq

ξsync
seq =

∧

i∈LN(seq)

(
∧

OSp∈AOS(seq↑i)

typeOS(OSp)=send

(OSp → ((
∧

OSq∈AOS(seq↑i)
OSp 6=OSq

(¬OSq)) U RCV (Reply(OSp)))))

Figure 5.5: LTL formula for Sequence Diagram with synchronous Messages

5.4 Ignore and Consider within Properties

A property Sequence Diagram may consist of an Ignore or Consider CF. The Messages that are

ignored in such a CF may interleave not only the subtraces of the CF (as we define in section 4),

but also interleave the (partial) property trace. We need to define an LTL formula to address this

issue.

ΨCF
ignore =θCF ∧

∧

i∈LN(CF )

γCF
i

Figure 5.6: LTL formula for Ignore in property

ΨCF
consider =θCF ∧

∧

i∈LN(CF )

γCF
i ∧ ζconsiderOS(CF )\AOS(CF )

ζS =(
∧

OSn∈S
(¬OSn))

Figure 5.7: LTL formula for Consider in property

The LTL formula of Ignore within properties constrains the semantics of Messages appearing

in the Ignore with formulas θCF and γCF
i (see figure 5.6). For Consider, the OSs of consid-
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ered Messages which do not appear in the Consider can not occur to interleave the partial sub-

traces of the CF, which is captured by formula ζconsiderOS(CF )\AOS(CF ) (see figure 5.7). Function

considerOS(CF ) \ AOS(CF ) returns the OSs of the considered Message which do not appear

in CF , where considerOS(CF ) returns the set of Messages of the considered message types.
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Chapter 6: MAPPING SEQUENCE DIAGRAM TO NUSMV MODEL

In the previous sections, we presented a formal framework to formalize the semantics of Sequence

Diagrams with CFs as LTL formulas. This formalization enables a user to express certain prop-

erties using Sequence Diagrams. We hypothesize that such a framework also forms the basis

for a practitioner to use a decision procedure including model checking as a means to verify her

Sequence Diagrams. In this section, we examine this hypothesis by developing techniques and

tools to translate Sequence Diagrams into the input language of NuSMV (a model checking tool),

allowing us to verify properties specified using Negative and Assertion CFs.

In practice, software engineers often construct a collection of Sequence Diagrams that com-

plement each other for specifying system requirements. In many cases, some Sequence Diagrams

for a single system are intended to express valid traces, while others are to express that cer-

tain traces are invalid (using Negative CFs) or mandatory (using Assertion CFs). We translate

Sequence Diagrams for modeling valid behavior into NuSMV modules and others into LTL for-

mulas respectively. Then, the analytical power of NuSMV can be leveraged to determine whether

the collection of Sequence Diagrams is safe (i.e., the set of “intended” valid traces and the set of

invalid traces are disjoint) and consistent (i.e., the set of valid traces is a subset of the mandatory

traces).

This section first provides an overview of NuSMV features that are sufficient for a reader to

understand our approach, followed by an overall mapping strategy from Sequence Diagram to the

input language of NuSMV. Then, we use examples to illustrate how to translate a basic Sequence

Diagram (or a CF’s operand that does not contain other CFs) into NuSMV modules. Finally, we

show how to translate all types of CFs and nested CFs into NuSMV modules.

6.1 NuSMV Overview

NuSMV is a model checking tool, which exhaustively explores all execution traces of a finite

model to determine if a temporal logic property holds. For a property that does not hold, a coun-
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terexample is produced showing an error trace. A NuSMV model consists of one main module

without formal parameters and may include other modules with formal parameters. An instance

of a module can be created using the VAR declaration within another module to create a modular

hierarchy. To access variables of instance modules, the instance name with . (DOT) can be used

followed by the variable name. The composition of multiple modules can be parallel or interleav-

ing. If the modules are indicated as process modules, they are interleaved in the sense that exactly

one of the modules (including main) executes in each step.

NuSMV modules are finite state machines (FSMs). Variables must be of finite types or module

instances, declared inside each module. The initial states are defined by using an init statement of

the form init(x) := EXP, which defines the value or set of values x can assume initially. Transitions

are represented by using the next statements of the form next(x) := EXP, which defines the value

or set of values that x can assume in the following state. All the transitions in a module execute

concurrently in each step. Derived variables (i.e., macros) are defined by using assignment state-

ments of the form x := EXP and they are replaced by EXP in each state. The system’s invariant is

represented with the INVAR statement, which is a boolean expression satisfied by each state.

6.2 Mapping Overview

We base the mapping of a Sequence Diagram to the input language of NuSMV on syntactic

deconstruction and the formal semantics given by our formal framework. A Sequence Diagram is

represented as the main module. We map the Lifelines into respective NuSMV modules, which

are instantiated and declared in the main module. Recall that a CF is projected onto each of its

covered Lifelines to obtain a CEU. Accordingly, its Operand on each of the covered Lifelines

forms an EU. Both CEUs and EUs are represented as NuSMV modules.

Each CEU is declared as a module instance, which we call a submodule in its Lifeline mod-

ule. To enforce that multiple CEUs at the same level on each Lifeline adhere to their graphical

order, we define a derived variable, flag_final, for each CEU module, to indicate whether the CEU
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completes its execution. A CEU is composed of one or more EUs, each of which is instantiated

as a submodule inside the CEU module. The execution order of multiple EUs (i.e., the transfer of

control among them) is determined by the Interaction Operator that composes them into the CEU

(the translation of each Operator is discussed later in this section). In the case that a Sequence

Diagram contains nested CFs (i.e., a CEU consisting of an EU that encloses other CEUs), we map

each enclosed CEU as a submodule of the containing EU’s module. This procedure is recursively

applied until all CEUs and EUs are mapped accordingly.

Within Lifeline or EU modules, a directly enclosed OS is represented as a boolean variable,

which initializes to False (note that a CEU module does not contain OS variables). Once an OS

occurs, its value is set to True and then to False in the following states. This value transition ex-

presses the fact that an OS can occur only once in the Sequence Diagram. To record the execution

of OSs, we introduce an enumerated variable, state, in each Lifeline or EU module. state assumes

an enumeration element to express that respective OSs have taken place and an initial value, sinit,

to express that no OSs have occurred yet. A CEU module contains one boolean variable, cond,

for each of its EUs to represent the Interaction Constraint of the EU.

To express the interleaving semantics among Lifelines, we introduce an INVAR statement in

the main module to assert that at most one OS on one of the Lifelines can take place in each step.

A boolean variable chosen is used for each Lifeline to restrict that: (1) a Lifeline is chosen only

if it is enabled, i.e., there is an OS that is ready to take place on the Lifeline, represented by the

derived variable enabled; (2) either only one Lifeline can be chosen to execute an OS in each

step if Lifelines are enabled (i.e., before all OSs on the Lifelines have occurred); or no Lifeline

can be chosen when all Lifelines are not enabled and all chosen variables remain False thereafter.

A sending OS is enabled to execute if and only if the OSs prior to it on the same Lifeline have

already occurred. A receiving OS is enabled for execution if and only if the OSs prior to it on

the same Lifeline and the sending OS of the same Message have already occurred. To execute the

OSs enclosed in CFs, the variable chosen for each Lifeline is passed to the CEU and EU modules

on that Lifeline as a parameter.
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6.3 Basic Sequence Diagram

In this section, we provide a mapping strategy, and prove that it represents the semantics of a basic

Sequence Diagram.

6.3.1 Basic Sequence Diagram with Asynchronous Messages

In this subsection, we illustrate our mapping strategy with an example basic Sequence Diagram as

shown in figure 2.1a. Figure 6.1 shows the NuSMV description of the example, which contains a

main module for the Sequence Diagram. We map the three Lifelines to three modules, which are

instantiated as submodules l_L1, l_L2, and l_L3 in the main module. We show the implementation

of module L2 here. Module L2 takes modules L1, L3 as parameters. Three OSs on Lifeline L2

are defined as boolean variables OS_r1, OS_r2, and OS_r3 in the VAR section. We define each

OS as OS_sx or OS_rx, where s and r denote they are sending or receiving OSs, and x is the

corresponding Message name. The enumerated variable state has four values, including a initial

value sinit and three values to record the execution of the three respective OSs. A derived variable

enabled for each OS represents the enabling condition of the OS by using the variable state in the

DEFINE section. For instance, r3_enabled for OS OS_r3 is True if and only if the sending OS of

Message m3 and the preceding OS, OS_r2, on Lifeline L2 have taken place, i.e., state on Lifeline

L2 sets to r2 and state on Lifeline L3 sets to s3. The Lifeline L2 can be enabled if and only if

one of r1, r2, and r3 is enabled. The variable flag_final checks whether the last OS r3 on L2

takes place (i.e., state sets to r3. If so, all OSs in module L2 have occurred. The ASSIGN section

defines the transition relation of module L2. For example, OS_r3 is set to False initially. When

it is chosen and enabled, it is set to True. It is set to False in the subsequent states to represent

that an OS can execute exactly once. Variable state is set to r1 in the same state in which OS_r1

occurs.
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MODULE main
VAR
l_L1: L1(l_L2, l_L3);
l_L2: L2(l_L1, l_L3);
l_L3: L3(l_L1, l_L2);

INVAR
(((l_L1.chosen -> l_L1.enabled)
&(l_L2.chosen -> l_L2.enabled)
&(l_L3.chosen -> l_L3.enabled))
&
((l_L1.chosen & !l_L2.chosen & !l_L3.chosen)
|(!l_L1.chosen & l_L2.chosen & !l_L3.chosen)
|(!l_L1.chosen & !l_L2.chosen & l_L3.chosen)
|(!l_L1.enabled & !l_L2.enabled & !l_L3.enabled)))

MODULE L2(L1, L3)
VAR
OS_r1 : boolean;
OS_r2 : boolean;
OS_r3 : boolean;
state : {sinit, r1, r2, r3};
chosen : boolean;
DEFINE
r1_enabled := state = sinit & L1.state = s1;
r2_enabled := state = r1 & (L3.state = s2

| L3.state = s3);
r3_enabled := state = r2 & L3.state = s3;
enabled := r1_enabled | r2_enabled | r3_enabled;
flag_final := state = r3;
ASSIGN
init(state) := sinit;
next(state) :=
case
state = sinit & next(OS_r1) :r1;
state = r1 & next(OS_r2) :r2;
state = r2 & next(OS_r3) :r3;
1 :state;
esac;

init(OS_r1) := FALSE;
next(OS_r1) :=
case
chosen & r1_enabled :TRUE;
OS_r1 :FALSE;
1 :OS_r1;
esac;
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init(OS_r2) := FALSE;
next(OS_r2) :=
case
chosen & r2_enabled :TRUE;
OS_r2 :FALSE;
1 :OS_r2;
esac;

init(OS_r3) := FALSE;
next(OS_r3) :=
case
chosen & r3_enabled :TRUE;
OS_r3 :FALSE;
1 :OS_r3;
esac;

Figure 6.1: Basic Sequence Diagram with asynchronous Messages to NuSMV

6.3.2 Basic Sequence Diagram with Synchronous Messages

The translation of a Sequence Diagram with synchronous Messages is similar to the translation of

a Sequence Diagram with asynchronous Messages, except that the sending Lifeline blocks until a

reply Message is received. We introduce a boolean variable, isBlock, for each Lifeline to capture

this semantic aspect. All OSs on a Lifeline include isBlock as part of their enabling conditions,

thus preventing the OSs from occurring while isBlock is True.

Figure 6.2 represents the NuSMV description of a Sequence Diagram with synchronous Mes-

sages (see figure 5.4), containing a module for Lifeline L1. Each OS name is prefixed with either

sync for a synchronous Message, or reply for a reply Message. Each OS has an enabling condition

!isblock indicating that the OS can not be enabled when the Lifeline is blocked. isBlock initializes

to False and is set to True when the sending OS sync_s1 executes. It is set to False when the OS

reply_r1 of a reply Message arrives and the execution of other OSs resumes. Note that portions

of the module definition have been excluded that are redundant with the module definition for a

basic Sequence Diagram with asynchronous Messages.
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MODULE L1 (L2, L3)
VAR
OS_sync_s1:boolean;
OS_sync_r3:boolean;
OS_reply_r1:boolean;
OS_reply_s3:boolean;
state: {sinit, sync_s1, sync_r3, reply_r1, reply_s3};
chosen :boolean;
isblock:boolean;
DEFINE
sync_s1_enabled := state = sinit & !isblock ;
sync_r3_enabled := state = sync_s1 & !isblock &
(L3.state = sync_s3 | L3.state = reply_s2 |
L3.state = reply_r3);

...
ASSIGN
...
init(OS_sync_s1) := FALSE;
next(OS_sync_s1) := case
chosen & sync_s1_enabled :TRUE;
OS_sync_s1 :FALSE;
1 :OS_sync_s1;
esac;

init(OS_sync_r3) := FALSE;
next(OS_sync_r3) := case
chosen & sync_r3_enabled :TRUE;
OS_sync_r3 :FALSE;
1 :OS_sync_r3;
esac;

...
init(isblock) :=FALSE;
next(isblock) := case
next(OS_sync_s1) & !next(OS_reply_r1) :TRUE;
next(OS_reply_r1) :FALSE;
1 :isblock;
esac;

...

Figure 6.2: Basic Sequence Diagram with synchronous Messages to NuSMV
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6.3.3 Proof for NuSMV Model of Basic Sequence Diagram

We wish to prove that the NuSMV model for basic Sequence Diagram capture the semantics of

basic Sequence Diagram. Recall the semantic aspects of basic Sequence Diagrams have been

represented in section 2.1. Section 6.3.1 describes the mapping strategy for a basic Sequence

Diagram, where an example of NuSMV model for basic Sequence Diagram is shown in figure

6.1.

We can generate all possible execution traces from a NuSMV model. Each execution trace

consists of a sequence of states, each of which is an assignment of variable values. In the initial

state, all the variables for OSs are initialized. In each following state, the value of the executing

OS is changed, triggering the transition from the previous state to the current state. The value of

state of the Lifeline where the executing OS locates on is also changed to record the execution.

Thus, an execution trace can be considered as a sequence of OSs. Each execution trace is infinite

by stuttering at the final state if there is no more state change (i.e., no more OS executes). We wish

to prove that the finite prefix (without stuttering) of each trace generated from a NuSMV model

represents a trace derived from the corresponding Sequence Diagram.

For a given basic Sequence Diagram, seq, with j Messages and 2j event occurrences, Σseq
sem ⊆

Σ is the set of event occurrences of seq. The set of valid traces, (Σseq
sem)∗, contains finite traces

derived from seq based on the semantics of Sequence Diagrams. For the NuSMV model of seq,

Mseq, Σseq
NuSMV is the set of event occurrences of Mseq, where Σseq

NuSMV = Σseq
sem ∪ {τ}. τ is

an invisible event occurrence which does not occur in seq, i.e., τ ∈ (Σ \ Σseq
sem). (Σseq

NuSMV )ω

represents all infinite traces that can be generated from Mseq.

Lemma 6.13. For a given Sequence Diagram, seq, with j Messages, if σ ∈ (Σseq
NuSMV )ω, then σ

must have the form, σ = σ[1..2j] · τω, where σ[1..2j] contains no τ .

Proof. seq contains j Messages with 2j OSs. In the NuSMV model for seq, Mseq, the INVAR

statement asserts that one enabled OS on one Lifeline can take place in each step until no more

OSs are enabled. Therefore, no τ occurs between two OSs in σ. The variables of OSs in the
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Lifeline modules define that each OS can execute once and only once. Thus, we can infer that σ

have the form, σ = σ[1..2j] · τω, where σ[1..2j] does not contain τ .

We wish to prove that for a given Sequence Diagram, seq, with j Messages, ∀υ.υ ∈
(Σseq

sem)∗, υ · τω ∈ (Σseq
NuSMV )ω. The semantic rule of seq defines that each OS occurs once

and only once. Thus, ∀υ.υ ∈ (Σseq
sem)∗, |υ| = 2j. From lemma 6.13, we learn that ∀σ.σ ∈

(Σseq
NuSMV )ω, σ = σ[1..2j] · τω, where σ[1..2j] contains no τ . σ[1..2j] ∈ PRE2j((Σ

seq
NuSMV )ω).

If ∀υ.υ ∈ (Σseq
sem)∗, υ · τω ∈ (Σseq

NuSMV )ω, we can infer that, υ ∈ PRE2j((Σ
seq
NuSMV )ω), i.e.,

(Σseq
sem)∗ ⊆ PRE2j((Σ

seq
NuSMV )ω).

We also wish to prove that ∀σ.σ ∈ (Σseq
NuSMV )ω, σ[1..2j] ∈ (Σseq

sem)∗, i.e.,

PRE2j((Σ
seq
NuSMV )ω) ⊆ (Σseq

sem)∗.

Theorem 6.14. For a given Sequence Diagram, seq, with j Messages, (Σseq
sem)∗ and

PRE2j((Σ
seq
NuSMV )ω) are equal.

We provide the proof of theorem 6.14 in appendix B.3.

6.4 Combined Fragments

A CF enclosing multiple Lifelines is projected onto all the Lifelines to obtain a collection of

CEUs, one for each Lifeline. A CEU contains a collection of EUs, one for each Operand on the

same Lifeline. To preserve the structure of the Sequence Diagram during translation, we map a CF

to NuSMV submodules, one for each Lifeline module, while the EUs are mapped to NuSMV sub-

submodules of their parent CEU submodule separately. We implement the Interaction Constraint

for each Operand with a boolean variable cond. We do not control the value of cond until the

Operand is ready to enter, representing the fact that a condition may change during the execution of

the Sequence Diagram. If cond evaluates to True, the Operand is entered, otherwise, the Operand

is skipped. Afterwards, the value of cond stays the same. While there is no Constraint in an

Operand, cond is defined as constant True. Thus, the NuSMV implementation of Interaction

Constraints is consistent with the LTL semantics of the Constraints. An extra variable op_eva
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for each Operand indicates its respective execution status, including “not ready” (the OSs that

may happen prior to the Operand on the Lifeline have taken place) by enumeration element -1,

“ready but not enabled” (the Constraint evaluates to False) by enumeration element 0, and “start”

(Constraint evaluates to True) by enumeration element 1. cond is evaluated when the Operand

is ready to be entered, i.e., op_eva evaluates to either 0 or 1. Both cond and op_eva for each

Operand are instantiated and declared in the CEU module on the Lifeline where the Interaction

Constraint of the Operand is located. The value of op_eva is passed to other CEUs of the same CF

as parameters, which is further passed to all the EUs of the same operand to coordinate multiple

EUs. From the deconstruction of Sequence diagrams and CFs (see section 3), we define the OSs

as boolean variables in the respective EUs that directly enclose them, instead of the CEUs; OSs

that are not enclosed in any CF are declared as boolean variables in their Lifeline module.

6.4.1 Concurrency

In a Parallel CF, the Operands are interleaved, which is captured using a strategy similar to the

implementation of interleaved Lifelines modules. We introduce a boolean variable chosen for

each EU module to indicate whether the EU is chosen to execute. We add an INVAR statement

for each CEU to assert that (1) either only one EU module is chosen to execute or no EUs are

enabled (i.e., all EUs have completed execution or their Constraints evaluate to False), and (2) an

EU module can be chosen only if it is enabled (i.e., an OS within the EU is enabled to execute).

All INVAR statements are combined using logical conjunctions to form a global invariant in the

main module. An example to illustrate the translation rules is shown and explained in section

6.4.2.

6.4.2 Atomic execution

A Critical Region has a sole Operand with each CEU module having a single EU submodule. We

use a boolean variable, isCritical, for each EU of the Critical Region’s Operand, to restrict the

OSs within the EU from interleaving with other OSs on the same Lifeline. Variable isCritical is
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initialized to False in each EU module of the Critical Region’s Operand. It is set to True if the

EU starts to execute OSs and stays True until the EU finishes execution. Once the EU completes,

isCritical is set to False. The negation of isCritical of an EU is considered as an enabling condition

for each variable of other OSs, which may interleave the EU, on the same Lifeline. See figure 2.1b

for an example. On Lifeline L3, the sending OS of Message m6 takes the negation of isCritical

for the EU on Lifeline L3 as an enabling condition.

Figure 2.1b shows an example Sequence Diagram with nested CFs, i.e., a Parallel containing

a Critical Region. The implementation of its main module and the modules of Lifeline L2 and its

CEUs and EUs are shown in figure 6.3. In the module of Lifeline L2, the Parallel’s CEU module is

initialized as a module instance. Two EUs of the Parallel’s Operands are initialized as two module

instances within its CEU module. The CEU module of the Critical Region is initialized in the

Parallel’s EU module as a module instance and it is declared separately, which contains a module

instance for the EU of the Critical Region’s Operand.

In the Parallel, the Interaction Constraint of its Operand, op1, is located on L2. Thus, cond1

for op1 is initialized and declared in the Parallel’s CEU module on L2. It is set to the value of the

evaluation step and remains that value in the following steps. Variable op1_eva is initialized to -1,

and then is set depending on the value of cond1 when entering the CEU, i.e., it is set to 1 if cond1

evaluates to True or 0 otherwise. In each EU module of the Parallel, a variable chosen is used to

denoted whether the EU is chosen to execute OSs.

In the EU module of the Critical Region’s Operand, variable isCritical is initialized to False

and is set to True if OS r3 has executed, i.e., the EU of the Critical Region’s Operand on Lifeline

L2 starts to execute. It remains True until the EU finishes execution, and then is set to False to

allow other OSs on the same Lifeline to execute. On Lifeline L2, each of the OSs which may

interleave the execution of Critical Region’s EU, e.g., OS r5 and OS r6, takes !isCritical as an

enabling condition, denoting that these OSs may execute only if the control is not in the EU of the

Critical Region.
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MODULE main
VAR
l_L1: L1(l_L2, l_L3);
l_L2: L2(l_L1, l_L3);
l_L3: L3(l_L1, l_L2);

INVAR
(((l_L1.chosen & !l_L2.chosen & !l_L3.chosen)
| (!l_L1.chosen & l_L2.chosen & !l_L3.chosen)
| (!l_L1.chosen & !l_L2.chosen & l_L3.chosen)
| (!l_L1.enabled & !l_L2.enabled & !l_L3.enabled))
& (l_L1.chosen -> l_L1.enabled)
& (l_L2.chosen -> l_L2.enabled)
& (l_L3.chosen -> l_L3.enabled))

INVAR
((( l_L1.CF1.op1.chosen & !l_L1.CF1.op2.chosen)
| (!l_L1.CF1.op1.chosen & l_L1.CF1.op2.chosen)
| (!l_L1.CF1.op1.enabled & !l_L1.CF1.op2.enabled))
& (l_L1.CF1.op1.chosen -> l_L1.CF1.op1.enabled)
& (l_L1.CF1.op2.chosen -> l_L1.CF1.op2.enabled))

INVAR
((( l_L2.CF1.op1.chosen & !l_L2.CF1.op2.chosen)
| (!l_L2.CF1.op1.chosen & l_L2.CF1.op2.chosen)
| (!l_L2.CF1.op1.enabled & !l_L2.CF1.op2.enabled))
& (l_L2.CF1.op1.chosen -> l_L2.CF1.op1.enabled)
& (l_L2.CF1.op2.chosen -> l_L2.CF1.op2.enabled))

INVAR
((( l_L3.CF1.op1.chosen & !l_L3.CF1.op2.chosen)
| (!l_L3.CF1.op1.chosen & l_L3.CF1.op2.chosen)
| (!l_L3.CF1.op1.enabled & !l_L3.CF1.op2.enabled))
& (l_L3.CF1.op1.chosen -> l_L3.CF1.op1.enabled)
& (l_L3.CF1.op2.chosen -> l_L3.CF1.op2.enabled))

MODULE L2(L1, L3)
VAR
OS_r1 : boolean;
OS_r7 : boolean;
state : {sinit, r1, r7};
CF1 : par_L2(state, chosen, L1.CF1, L3.CF1);
chosen : boolean;
DEFINE
r1_enabled := state = sinit & (L1.state = s1

| L1.state = s7);
r7_enabled := state = r1 & CF1.flag_final

& L1.state = s7;
enabled := r1_enabled | r7_enabled | CF1.enabled;
flag_final := state = r7;
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ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_r1) :r1;
state = r1 & next(OS_r7) :r7;
1 :state;

esac;
init(OS_r1) := FALSE;
next(OS_r1) := case
chosen & r1_enabled :TRUE;
OS_r1 :FALSE;
1 :OS_r1;

esac;
init(OS_r7) := FALSE;
next(OS_r7) := case
chosen & r7_enabled :TRUE;
OS_r7 :FALSE;
1 :OS_r7;

esac;
MODULE par_L2(state, L2_chosen, par_L1, par_L3)
VAR
op1 : par_op1_L2(L2_chosen, par_L1.op1, par_L3.op1,

op1_eva);
op2 : par_op2_L2(L2_chosen, par_L1.op2, par_L3.op2,

par_L1.op2_eva, state, op1.CF2.op1.isCritical);
cond1 : boolean;
op1_eva : -1..1;
DEFINE
enabled := op1.enabled | op2.enabled;
flag_final := op1.flag_final & op2.flag_final;
ASSIGN
init(op1_eva) := -1;
next(op1_eva) := case
op1_eva=-1 & next(state)=r1 & !next(cond1) :0;
op1_eva=-1 & next(state)=r1 & next(cond1) :1;
1 :op1_eva;

esac;
init(cond1) := {TRUE, FALSE};
next(cond1) := case
op1_eva = -1 : {TRUE, FALSE};
op1_eva != -1 : cond1;
1 : cond1;

esac;

Figure 6.3: NuSMV module for Parallel
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MODULE par_op1_L2(L2_chosen, par_L1_op1, par_L3_op1,
op1_eva)

VAR
OS_s2 : boolean;
state : {sinit, s2};
CF2 : critical_L2(state, chosen, L2_chosen,

par_L3_op1.CF2);
chosen : boolean;
DEFINE
s2_enabled := state=sinit & op1_eva=1;
enabled := s2_enabled | CF2.enabled;
flag_final := (state=s2 & CF2.flag_final & op1_eva=1)

| op1_eva=0;
ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_s2) :s2;
1 :state;

esac;
init(OS_s2) := FALSE;
next(OS_s2) := case
chosen & L2_chosen & s2_enabled :TRUE;
OS_s2 :FALSE;
1 :OS_s2;

esac;
MODULE critical_L2(state, chosen, L2_chosen, critical_L3)
VAR
op1 : critical_op1_L2(chosen, L2_chosen,

critical_L3.op1, critical_L3.op3_eva, state);
DEFINE
enabled := op1.enabled;
flag_final := op1.flag_final;

MODULE critical_op1_L2(chosen, L2_chosen,
critical_L3_op1, op3_eva, pre_state)

VAR
OS_r3 : boolean;
OS_s4 : boolean;
state : {sinit, r3, s4};
isCritical : boolean;
DEFINE
r3_enabled := state=sinit & op3_eva=1 & pre_state=s2 &
(critical_L3_op1.state=s3 | critical_L3_op1.state=r4);

s4_enabled := state = r3;
enabled := r3_enabled | s4_enabled;
flag_final := (state = s4 & op3_eva=1) | op3_eva=0;
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ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_r3) :r3;
state = r3 & next(OS_s4) :s4;
1 :state;

esac;
init(OS_r3) := FALSE;
next(OS_r3) := case
chosen & L2_chosen & r3_enabled :TRUE;
OS_r3 :FALSE;
1 :OS_r3;

esac;
init(OS_s4) := FALSE;
next(OS_s4) := case
chosen & L2_chosen & s4_enabled :TRUE;
OS_s4 :FALSE;
1 :OS_s4;

esac;
init(isCritical) := FALSE;
next(isCritical) := case
next(state) = r3 :TRUE;
next(state) = s4 :FALSE;
1 :isCritical;

esac;

Figure 6.4: NuSMV module for Critical Region
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6.4.3 Branching

Representing Alternatives

The Alternatives maps to CEU modules, one for each Lifeline, containing EU submodules, one

for each Operand. For each Operand, a boolean variable exe indicates the execution status of

the applicable Operand, i.e., exe is set to True if the Operand is chosen to execute. The variable

exe for each Operand is initialized and declared in the CEU module on the Lifeline where the

Operand’s Constraint is located. The Constraint under INVAR restricts that an Operand’s exe

can be set to True only if the Operand’s cond evaluates to True. It also restricts that at most one

Operand can be chosen to execute, i.e., at most one exe can be set to True at a time, or all Operand

Constraints evaluate to False. The use of exe guarantees that all the enclosed Lifelines choose the

same Operand’s EU module to execute to avoid inconsistent choices (e.g., Lifeline L1 chooses

Operand 1’s EU whereas Lifeline L2 chooses Operand 2’s EU). The cond of the chosen Operand

stays True and those of the unchosen Operands are set to False and stay False.

Figure 4.10 is an example of an Alternatives with three Operands enclosing three Lifelines.

Figure 6.5 shows the Alternatives’s CEU module on Lifeline L2. Three modules are instantiated

to represent three EUs respectively. All the Interaction Constraints for the three Operands are

located on Lifeline L2. Thus, the variables op_eva, cond, and exe for the three Operands are

instantiated and declared in the CEU module on Lifeline L2. For example, variable op1_eva for

Operand op1 initially is set to -1, and then is set depending on the values of exe of op1, i.e., it is

set to 1 if exe evaluates to True, denoting op1 is chosen. Otherwise, op1_eva is set to 0 to denote

op1 is unchosen. cond1 stays True if op1 is chosen, or it is set to False and stays False if op1 is

unchosen. exe1 stays to the value of evaluation in the following steps. The variables of the other

two Operands are defined in the same way as the ones of op1. The INVAR statement in the main

module expresses the strategy of choosing at most one Operand to execute as we described.
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MODULE main
...
INVAR
((l_L2.CF1.exe1->l_L2.CF1.cond1)
&(l_L2.CF1.exe2->l_L2.CF1.cond2)
&(l_L2.CF1.exe3->l_L2.CF1.cond3))

& ((l_L2.CF1.exe1 & !l_L2.CF1.exe2 &
!l_L2.CF1.exe3)
|(!l_L2.CF1.exe1 & l_L2.CF1.exe2 &
!l_L2.CF1.exe3)

|(!l_L2.CF1.exe1 & !l_L2.CF1.exe2 &
l_L2.CF1.exe3)

|(!l_L2.CF1.cond1 & !l_L2.CF1.cond2 &
!l_L2.CF1.cond3))

...
MODULE alt_L2(state, chosen, alt_L3)
VAR
op1 : alt_op1_L2(op1_eva, chosen, alt_L3.op1);
op2 : alt_op2_L2(op2_eva, chosen, alt_L3.op2);
op3 : alt_op3_L2(op3_eva, chosen, alt_L3.op3);
op1_eva : -1..1;
op2_eva : -1..1;
op3_eva : -1..1;
cond1 : boolean;
cond2 : boolean;
cond3 : boolean;
exe1 : boolean;
exe2 : boolean;
exe3 : boolean;
DEFINE
enabled := op1.enabled | op2.enabled | op3.enabled;
flag_final := op1.flag_final & op2.flag_final

& op3.flag_final;
ASSIGN
init(op1_eva) := -1;
next(op1_eva) := case
op1_eva = -1 & next(state) = r1 & !next(exe1) :0;
op1_eva = -1 & next(state) = r1 & next(exe1) :1;
1 :op1_eva;

esac;
...
init(cond1) := {TRUE, FALSE};
next(cond1) := case
op1_eva = -1 : {TRUE, FALSE};
op1_eva = 0 : FALSE;
op1_eva = 1 : TRUE;
1 : cond1;

esac;
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init(exe1) := {TRUE, FALSE};
next(exe1) := case
op1_eva = -1 : {TRUE, FALSE} ;
op1_eva != -1 : exe1;
1 : exe1;

esac;
...

Figure 6.5: NuSMV module for Alternatives

Representing Option

For each Lifeline, The Option CF is mapped to a CEU module and its sole Operand is mapped

to an EU module, using a similar but simpler strategy than the Alternatives. An enumerated

variable, op1_eva, is used to describe the execution status of a single EU module. The variable is

initialized to -1 in the CEU module as is explained in section 6.4. We demonstrate an example of

an Option in figure 4.8. Figure 6.6 represents the implementation of the Option’s CEU module and

its Operand’s EU module on Lifeline L2. If cond1 evaluates to True, op1_eva is set to 1 to allow

the EU module to execute OSs. Otherwise, op1_eva is set to 0 to skip the EU module. Variable

op1_eva is passed to the EU module as an enabling condition of the first OS, s2, in the EU. A

derived variable flag_final of an EU module that evaluates to True represents that the OSs within

the EU will not execute in the following steps, i.e., the OSs have executed or the EU is skipped.

The rest of the EU module is the same as the Lifeline module for a basic Sequence Diagram with

asynchronous Messages.

Representing Break

The Break has been rewritten to an Alternatives with two Operands as we describe in section

4.2.2. Therefore, the Break can be mapped to NuSMV modules as an Alternatives.
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MODULE opt_L2(state, chosen, opt_L1, opt_L3)
VAR
flag_opt : -1..1;
op1 : opt_op1_L2(chosen, opt_L1.op1, opt_L3.op1,

op1_eva);
cond1 : boolean;
op1_eva : -1..1;
DEFINE
flag_final := op1.flag_final;
ASSIGN
init(op1_eva) := -1;
next(op1_eva) := case
op1_eva=-1 & next(state)=r1 & !next(cond1) :0;
op1_eva=-1 & next(state)=r1 & next(cond1) :1;
1 :op1_eva;

esac;
init(cond1) := {TRUE, FALSE};
next(cond1) := case
op1_eva = -1 : {TRUE, FALSE};
op1_eva != -1 : cond1;
1 : cond1;

esac;

MODULE opt_op1_L2(chosen, opt_L1_op1, opt_L3_op1,
op1_eva)

VAR
OS_s2 : boolean;
state : {sinit, s2};
DEFINE
s2_enabled := state = sinit & op1_eva = 1;
enabled := s2_enabled;
flag_final := (state=s2 & op1_eva=1) | op1_eva=0;
ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_s2) :s2;
1 :state;
esac;

init(OS_s2) := FALSE;
next(OS_s2) := case
chosen & s2_enabled :TRUE;
OS_s2 :FALSE;
1 :OS_s2;
esac;
...

Figure 6.6: NuSMV module for Option
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6.4.4 Iteration

We represent a fixed, bounded Loop with NuSMV modules, where the Loop body iterations are

composed using Weak Sequencing. To unfold the Loop, each OS is mapped to an array of boolean

variables, whose length is the number of iterations. The graphical order of the OSs within the same

iteration is maintained, and the OSs among iterations execute sequentially along a Lifeline, i.e.,

OSs in iteration n take place before OSs in iteration n+1.

For example, the NuSMV module in figure 6.7 implements the EU of the Loop’s Operand on

Lifeline L1 in figure 4.15, with three iterations. OSs s1 and r3 are mapped to two arrays of three

boolean variables, i.e., the unfolded EU contains six OSs. The variable state has a value for each

OS to record its execution, e.g., the value of state is set to s1_2, representing OS s1 in the second

iteration has taken place. Between two iterations, the first OS of the succeeding interaction takes

the last OS of the preceding iteration as an enabling condition, e.g., OS_s1[3] representing s1 in

the third iteration, which is enabled only if r3 in the second iteration (OS_r3[2]) has executed.

We also translate the bounded Loop, whose maxint is given, to NuSMV model. To keep each

OS and Constraint within different iterations of a Loop unique, one way to implement an OS or

a Constraint is defining an array to rename the OS or the Constraint of each iteration. For each

Lifeline, We use n to represent the current iteration number. In this way, an OS within the Loop’s

Operand, OS_r1, and Constraint cond in iteration n can be represented as OS_r1[n] and cond[n]

respectively. For example, if a Loop iterates at most three iterations, OS_r1 in different iterations

are defined as OS_r1[1], OS_r1[2] and OS_r1[3].

We need to evaluate the Interaction Constraint of its sole Operand after minimum number of

iterations. If n ≤ minint, the Loop executes. If minint < n ≤ maxint, the Loop executes only

if cond[n] evaluates to True. Otherwise, the Loop terminates and the values of the Constraint of

remaining iterations (i.e., from cond[n + 1] to cond[maxint]) set to False. The Loop no longer

executes when its iteration reaches maxint.
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MODULE loop_op1_L1(chosen, op1_L2, op1_L3, op1_eva)
VAR
OS_s1:array 1..3 of boolean;
OS_r3:array 1..3 of boolean;
state:{sinit, s1_1, r3_1, s1_2, r3_2, s1_3, r3_3};
DEFINE
s1_1_enabled:= state = sinit & op1_eva=1;
r3_1_enabled:= state = s1_1&(op1_L3.state = s3_1

|op1_L3.state = r2_2|op1_L3.state = s3_2
|op1_L3.state = r2_3|op1_L3.state = s3_3);

s1_2_enabled:= state = r3_1;
r3_2_enabled:= state = s1_2&(op1_L3.state = s3_2

|op1_L3.state = r2_3|op1_L3.state = s3_3);
s1_3_enabled:= state = r3_2;
r3_3_enabled:= state = s1_3&(op1_L3.state = s3_3);
enabled:=s1_1_enabled|r3_1_enabled|s1_2_enabled

|r3_2_enabled|s1_3_enabled|r3_3_enabled;
flag_final:= (state = r3_3 & op1_eva=1) | op1_eva=0;
ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_s1[1]) :s1_1;
state = s1_1 & next(OS_r3[1]) :r3_1;
state = r3_1 & next(OS_s1[2]) :s1_2;
state = s1_2 & next(OS_r3[2]) :r3_2;
state = r3_2 & next(OS_s1[3]) :s1_3;
state = s1_3 & next(OS_r3[3]) :r3_3;
1 :state;
esac;

init(OS_s1[1]) := FALSE;
next(OS_s1[1]) := case
chosen & s1_1_enabled :TRUE;
OS_s1[1] :FALSE;
1 :OS_s1[1];
esac;

init(OS_r3[1]) := FALSE;
next(OS_r3[1]) := case
chosen & r3_1_enabled :TRUE;
OS_r3[1] :FALSE;
1 :OS_r3[1];
esac;

init(OS_s1[2]) := FALSE;
next(OS_s1[2]) := case
chosen & s1_2_enabled :TRUE;
OS_s1[2] :FALSE;
1 :OS_s1[2];
esac;
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init(OS_r3[2]) := FALSE;
next(OS_r3[2]) := case
chosen & r3_2_enabled :TRUE;
OS_r3[2] :FALSE;
1 :OS_r3[2];
esac;

init(OS_s1[3]) := FALSE;
next(OS_s1[3]) := case
chosen & s1_3_enabled :TRUE;
OS_s1[3] :FALSE;
1 :OS_s1[3];
esac;

init(OS_r3[3]) := FALSE;
next(OS_r3[3]) := case
chosen & r3_3_enabled :TRUE;
OS_r3[3] :FALSE;
1 :OS_r3[3];
esac;

Figure 6.7: NuSMV module for Loop

6.4.5 Weak Sequencing and Strict Sequencing

Mapping a Weak Sequencing or a Strict Sequencing to the input language of NuSMV obtains a

CEU module for each Lifeline, which contains an EU module for each Operand. The semantics

of the Weak Sequencing enforces the total order among EUs of Operands on the same Lifeline.

To describe the semantics, any EU module (except the first one) takes variable flag_final of the

preceding EU on the same Lifeline as an enabling condition, i.e., the EU can not execute before

the preceding one completes.

Figure 4.20 is an example of a Weak Sequencing, whose EU of the second Operand on Lifeline

L2 is mapped into a NuSMV module (see figure 6.8). In the EU module, the first OS, r4, has an

enabling condition , which is the variable flag_final of the EU occurring immediately before this

EU (the EU of the first Operand). In this way, the order between these two modules on Lifeline

L2 can be enforced.

The semantics of the Strict Sequencing enforces the total order between adjacent Operands.

An EU module of an Operand (other than the first one) within a Strict Sequencing takes the
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MODULE weak_op2_L2(chosen, weak_L1_op2, weak_L3_op2,
weak_L2_op1, op2_eva)

VAR
OS_r4 : boolean;
state : {sinit, r4};
DEFINE
r4_enabled := state = sinit & op2_eva = 1

& weak_L1_op2.state = s4
& weak_L2_op1.flag_final;

enabled := r4_enabled;
flag_final := (state=r4 & op2_eva=1) | op2_eva=0;
ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_r4) :r4;
1 :state;
esac;
init(OS_r4) := FALSE;
next(OS_r4) := case

chosen & r4_enabled :TRUE;
OS_r4 :FALSE;
1 :OS_r4;

esac;
...

Figure 6.8: NuSMV module for Weak Sequencing
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variables flag_final of every EU module within the previous Operand as enabling conditions of

respective OSs. It asserts that all EUs can not execute until its previous Operand completes exe-

cution.

Figure 4.22 is an example of a Strict Sequencing and figure 6.9 shows the EU module of the

second Operand on Lifeline L2. The OS r4 takes the variables flag_final, one for each EU of the

first Operand as enabling conditions to enforce the total order among Operands.

MODULE strict_op2_L2(chosen, strict_L1_op2,
strict_L3_op2, strict_L1_op1,
strict_L2_op1, strict_L3_op1, op2_eva)

VAR
OS_r4 : boolean;
state : {sinit, r4};
DEFINE
r4_enabled := state = sinit & op2_eva=1

& strict_L1_op2.state = s4
& strict_L1_op1.flag_final
& strict_L2_op1.flag_final
& strict_L3_op1.flag_final;

enabled := r4_enabled;
flag_final := (state=r4 & op2_eva=1) | op2_eva=0;
ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_r4) :r4;
1 :state;
esac;
init(OS_r4) := FALSE;
next(OS_r4) := case

chosen & r4_enabled :TRUE;
OS_r4 :FALSE;
1 :OS_r4;

esac;
...

Figure 6.9: NuSMV module for Strict Sequencing
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6.4.6 Ignore and Consider

Ignore and Consider make it possible to execute the Messages not explicitly appear in the CF. An

Ignore specifies a list of types of Messages which do not appear in the Ignore. The Messages of

ignored types can occur and interleave the traces of the Ignore. A Consider specifies a list of types

of Messages which should be considered within the Consider. It is equivalent to ignore other

Message types, i.e., the Message types not in the list do not appear in the Consider, but they may

occur. If a Message type is considered but does not appear in the Consider, then the Messages of

the type can not occur within the Consider. For example, the Consider in figure 4.27 considers

Messages m2, m3, and m5, but only m2 and m3 appear in the Consider. Thus, Message m5 can

not occur within the Consider. To map an Ignore (Consider) into NuSMV modules, we assume

the signature of any Message of ignored (considered) types is given, i.e., the Lifelines where the

sending OS and receiving OS of a Message occur are known.

In a Sequence Diagram with an ICF, each OS of any ignored Message is mapped to a boolean

variable in the EU module of the Ignore on the Lifeline where it is located. An OS of any ignored

Message can be enabled if it has not executed and the control is in the EU module. To record the

status of each ignored Message’s OS, an enumeration type variable os_chosen is introduced, which

is initially -1. It is set to 0 if the OS is chosen to execute and is set to and stays 1 in the following

steps. In each EU module of the ICF, the OSs of ignored Messages and other OSs are interleaved,

which is captured by INVAR statements using the same strategy as the implementation of Parallel.

Figure 4.26 illustrates an example with an Ignore. In the example, the EU of the Ignore on

Lifeline L3 is mapped to an EU module (see figure 6.10). The Message m3 is ignored, whose

receiving OS r3 is mapped to a boolean variable. A boolean variable r3_chosen is used to record

the status of OS r3. OS r3 can be enabled if and only if it has not executed before and the sending

OS of m3 has taken place.

In a Sequence Diagram with a CCF, each OS of the considered type Messages can be defined

as a boolean variable in the EU module of the Consider on the Lifeline where it is located. If the
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MODULE ignore_op1_L3(L3_chosen, op1_L2, op1_eva)
VAR
OS_r2 : boolean;
state : {sinit, r2};
chosen : boolean;
OS_r3 : boolean;
r3_chosen : {-1, 0, 1};
DEFINE
r2_enabled := state = sinit & op1_L2.state = s2

& op1_eva=1;
enabled := r2_enabled;
flag_final := (state = r2 & op1_eva=1) | op1_eva=0;
r3_enabled := r3_chosen != 1 & op1_L2.s3_chosen = 1

& op1_eva=1;
ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_r2) :r2;
1 :state;

esac;
init(OS_r2) := FALSE;
next(OS_r2) := case
chosen & L3_chosen & r2_enabled :TRUE;
OS_r2 :FALSE;
1 :OS_r2;

esac;
init(OS_r3) := FALSE;
next(OS_r3) := case
r3_chosen=0 & L3_chosen & r3_enabled :TRUE;
OS_r3 :FALSE;
1 :OS_r3;

esac;
init(r3_chosen) := {-1, 0};
next(r3_chosen) := case
r3_chosen = -1 :{-1, 0};
next(OS_r3) :1;
1 :r3_chosen;

esac;
...

Figure 6.10: NuSMV module for Ignore
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OS does not appear in the Consider, it is defined as a derived variable, whose value is False to

indicate the OS will never occur. For other known but not considered Messages, their OSs are

defined in the same way as the OSs of ignored Messages in an Ignore. For example, figure 6.11

shows an EU module on Lifeline L2 for the Consider in figure 4.27. Message m5 is considered

but does not appear in the Consider, so its sending OS s5 is mapped to a derived boolean variable

OS_s5 whose value set to False. Message m6 is not considered in the Consider, its sending OS s6

is mapped to a boolean variable OS_s6, whose status is recorded by boolean variable s6_chosen.

In each EU module of the CCF, each OS of the Messages not considered by Consider and other

OSs are interleaved, which is represented by INVAR statements.

6.4.7 Coregion

We represent a Coregion in a similar way as the translation of Parallel. Each OS in a Coregion is

considered as a Parallel Operand on a single Lifeline, and is mapped to an EU module with an OS

variable, a state variable, and variable chosen.

6.4.8 General Ordering

A General Ordering enforces the order between two unordered OSs, which describes that one OS

must occur before the other OS. General Ordering adds the preceding OS as part of the enabling

condition of the succeeding OS, i.e., the succeeding OS can execute only if the preceding OS has

executed.

6.5 Interaction Use

The specified Sequence Diagram of an Interaction Use can be considered as a CF, whose Inter-

action Operator is ref. The CF and the interaction fragments, which are directly enclosed by the

referring Sequence Diagram, are combined using Weak Sequencing. On each Lifeline, the Inter-

action Use CF is mapped to a NuSMV module, which is initialized in the module of the specified
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MODULE consider_op1_L2(L2_chosen, op1_L3, op1_eva)
VAR
OS_s2 : boolean;
OS_s3 : boolean;
state : {sinit, s2, s3};
chosen : boolean;
OS_s6 : boolean;
s6_chosen : {-1, 0, 1};
DEFINE
s2_enabled := state = sinit & op1_eva = 1;
s3_enabled := state = s2;
enabled := s2_enabled | s3_enabled;
flag_final := (state = s3 & op1_eva=1) | op1_eva = 0;
s6_enabled := s6_chosen != 1 & ((op1_eva != 1) |

(op1_eva = 1 & flag_final & op1_L3.flag_final));
OS_s5 := FALSE;
ASSIGN
init(state) := sinit;
next(state) := case
state = sinit & next(OS_s2) :s2;
state = s2 & next(OS_s3) :s3;
1 :state;

esac;
init(OS_s2) := FALSE;
next(OS_s2) := case
chosen & L2_chosen & s2_enabled :TRUE;
OS_s2 :FALSE;
1 :OS_s2;

esac;
init(OS_s3) := FALSE;
next(OS_s3) := case
chosen & L2_chosen & s3_enabled :TRUE;
OS_s3 :FALSE;
1 :OS_s3;

esac;
init(OS_s6) := FALSE;
next(OS_s6) := case
s6_chosen = 0 & L2_chosen & s6_enabled :TRUE;
OS_s6 :FALSE;
1 :OS_s6;

esac;
init(s6_chosen) := {-1, 0};
next(s6_chosen) := case
s6_chosen = -1 :{-1, 0};
next(OS_s6) :1;
1 :s6_chosen;

esac;
...

Figure 6.11: NuSMV module for Consider
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Interaction. If the Interaction contains CFs, each of its CEUs is mapped to a CEU module and

the EUs within each CEU are mapped as per the strategy of that particular CF. In this way, the

Interaction Use CF can be mapped to NuSMV modules recursively.

6.6 Proof for NuSMV Model of Sequence Diagram with Combined Frag-

ments

We wish to prove that the NuSMV model for a Sequence Diagram with CFs capture the semantics

of the Sequence Diagram. Recall that the semantic rules general to all CFs are shown in section

2.2. The semantics of each CF Operator is shown in section 2.3. Section 6.4 describes the mapping

strategy for Sequence Diagram with CFs, where an example of NuSMV model for a Sequence

Diagram with CFs is shown in figure 6.3.

Lemma 6.15. A given Sequence Diagram with CFs, seq, directly contains h Message. In the CFs,

p Messages are enclosed in Operands whose Interaction Constraints evaluate to True, i.e., if a

Message is enclosed in multiple nested Operands, all the Interaction Constraints of the Operands

evaluate to True. For other q Messages within the CFs, each Message is enclosed in one Operand

or multiple nested Operands, where at least one Operand’s Interaction Constraint evaluate to

False. If σ ∈ (Σseq
NuSMV )ω, then σ must have the form, σ = σ[1..2h+2p] · τω, where σ[1..2h+2p]

contains no τ .

Proof. In the NuSMV model for seq, Mseq, the INVAR statement asserts that one enabled OS on

one Lifeline can take place in each step until no more OSs are enabled. Therefore, no τ occurs

between two OSs in σ. In the Lifeline modules, the variables of OSs define that each OS directly

enclosed in seq can execute once and only once. In the CEU modules, variables op_eva of the

EUs whose Constraints evaluate to True set to 1, indicating that the OSs within the EUs can be

enabled to execute. Otherwise, variable op_eva sets to 0, indicating that the OSs within the EUs

whose Constraints evaluate to False cannot be enabled to execute. The variables of OSs in the EU

modules define that each enabled OS can execute once and only once. Therefore, we can infer
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that σ have the form, σ = σ[1..2h+2p] · τω, where σ[1..2h+2p] does not contain τ .

A given Sequence Diagram, seqr, directly contains k Lifelines, h Messages and r CFs, which

contain p + q Messages. Each CF does not contain other CFs. For the Messages within the CFs,

p Messages are enclosed in Operands whose Interaction Constraints evaluate to True, while q

Message are enclosed in Operands whose Interaction Constraints evaluate to False.

We wish to prove that, ∀υ.υ ∈ (Σseqr
sem)∗, υ · τω ∈ (Σseqr

NuSMV )ω. The semantic rules of seqr

define that each OS which is directly enclosed in seqr or an Operand whose Constraint evaluates

to True, occurs once and only once. Thus, ∀υ.υ ∈ (Σseqr
sem)∗, |υ| = 2h + 2p. From lemma 6.15, we

learn that ∀σ.σ ∈ (Σseqr

NuSMV )ω, σ = σ[1..2h+2p] · τω, where σ[1..2h+2p] contains no τ . σ[1..2h+2p] ∈
PRE2h+2p((Σ

seqr

NuSMV )ω). If ∀υ.υ ∈ (Σseqr
sem)∗, υ · τω ∈ (Σseqr

NuSMV )ω, we can infer that, υ ∈
PRE2h+2p((Σ

seqr

NuSMV )ω), i.e., (Σseqr
sem)∗ ⊆ PRE2h+2p((Σ

seqr

NuSMV )ω).

We also wish to prove that ∀σ.σ ∈ (Σseqr

NuSMV )ω, σ[1..2h+2p] ∈ (Σseqr
sem)∗, i.e.,

PRE2h+2p((Σ
seqr

NuSMV )ω) ⊆ (Σseqr
sem)∗.

Theorem 6.16. (Σseqr
sem)∗ and PRE2h+2p((Σ

seqr

NuSMV )ω) are equal.

We provide the proof of theorem 6.16 in appendix B.4.
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Chapter 7: TOOL SUITE IMPLEMENTATION

As a proof-of-concept, we have developed a tool suite, implementing the techniques described in

this dissertation. Recall figure 7.1 illustrates the architecture of the software framework.

Figure 7.1: Architecture of tool suite

The software engineer uses MagicDraw to create a Sequence Diagram, which can be converted

to a textual representation in terms of XML using our MagicDraw plugin. The Sequence Diagram

Translation tool and the LTL Transformation Tool take the XML representation as input, parses

it into a syntax tree, and transforms it into a NuSMV model and a LTL formula respectively.

NuSMV model checker takes as input the generated NuSMV model and a temporal logic formula

that is translated automatically from a Sequence Diagram or specified by the software engineer.

If there are no property violations, the software engineer receives a positive response. If property

violations exist, NuSMV generates a counterexample which is then passed to our Occurrence

Specification Trace Diagram Generator (OSTDG) tool. The output from the OSTDG is an easy-to-

read Sequence Diagram visualization of the counterexample to help the software engineer locate

the property violation faster. Thus, the software engineer may transparently verify a Sequence

Diagrams using NuSMV, staying solely within the notation realm of Sequence Diagrams.

Our tool suite consists of four components, which include an automated tool translating Se-
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quence Diagrams with CFs into LTL formulas, an automated tool translating Sequence Diagrams

with CFs into NuSMV modules, an OSTDG tool, and a user interface. Our tool suite are imple-

mented using Java as described in the following sections.

7.1 Translating Sequence Diagram into LTL Formulas

The LTL Transformation Tool is a tool for translation Sequence Diagrams with CFs into LTL

formulas. It is typically used to generate the LTL properties which are described using Sequence

Diagrams by user. It is designed for users who do not have strong background of temporal logic

to ease their efforts for analyzing their requirements. The tool supports all 12 CFs, nested CFs,

and Interaction Use. The scope of the tool is defined in chapter 4.5.3, e.g., the tool only supports

complete Messages.

This tool accepts the XML representation of a Sequence Diagram, which is converted by our

MagicDraw plugin. We write a parser (i.e., class parseXMLFile) to parse the XML representation

and create the syntax tree of the Sequence Diagram. We define multiple classes to indicate the

structure of a Sequence Diagram, which consists of:

• Class SD: defines the structure of a Sequence Diagram, which contains a set of Lifelines

and a set of CFs.

• Class Lifeline: defines the structure of a Lifeline, which contains a set of OSs not enclosed

in any CEUs and a set of CEUs not enclosed in other CEUs.

• Class CF: defines the structure of a Combined Fragment, which contains its Interaction

Operator, a set of Lifelines enclosed in the CF, and a set of Interaction Operands.

• Class Operand: defines the structure of an Interaction Operand.

• Class OS: defines the structure of an Occurrence Specification.

• Class CEU: defines the structure of a CEU.
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• Class EU: defines the structure of an EU.

• Class Cond: defines the structure of a condition.

• Class Elements: the OSs and CEUs on a Lifeline are called elements of the Lifeline. This

class helps to create the list of OSs and CEUs on the same Lifeline.

We implement class Translate2LTL to translate the syntax tree of the Sequence Diagrams into

LTL formulas. The translation strategy is based on our LTL templates in chapter 4. In our LTL

templates, we evaluate the Interaction Constraints of each Interaction Operand using auxiliary

functions. To implement these auxiliary functions, we need to determine when to evaluate the In-

teraction Constraints. However, for a Sequence Diagram, the value of the Interaction Constraints

in it can be modified by other Sequence Diagrams of the same system. Thus, we need to evaluate

the Interaction Constraint of an Interaction Operand right before entering the Combined Frag-

ment which contains the Interaction Operand, i.e., the Interaction Operand is ready to execute.

The value of the Interaction Constraint is maintained after evaluation to keep the execution of

the Operand is consistent. We have implemented the auxiliary functions which are related to the

Interaction Constraints, e.g., TOP (u), TBEU(u), etc.. We demonstrate and explain the modified

LTL templates in appendix C.

We start with relating each OS with Interaction Constraints. For an Operand, its Interaction

Constraint is associated with all the OSs within it. If an OS is enclosed in multiple nested CFs, the

Interaction Constraints of all the Operands enclosing the OS are associated with the OS. The In-

teraction Constraint of the OS which are directly enclosed in the Sequence Diagram is considered

as evaluating to True.

We translate the structure of the Sequence Diagram into the sub-formulas of our modified LTL

templates. First, we consider the sub-formulas for BEUs which are directly enclosed in a Sequence

Diagram with CFs. These sub-formulas can also be applied to translate basic Sequence Diagrams.

To obtain sub-formula αg for BEU g, we need to represent (1) the order of each pair of adjacent

OSs in g; (2) each OS in g must happen once and only once. To obtain sub-formula βj for Message

96



j, we represent the order between its sending and receiving OSs. For the Sequence Diagram seq,

we need to obtain all the OSs from its enclosing Lifelines and translate the interleaving semantics

as the definition of sub-formula ε̄seq. ε̄seq also enforces that each OS must happen if the Interaction

Constraints associated with it evaluate to True.

Then, we consider the sub-formulas which are general to all CFs. In the modified sub-formula

Φ̄CF , each Operand is translated into a conjunct, which represents the evaluation of the Operand’s

Interaction Constraint, and the order of OSs within the Operand. We evaluate the Interaction Con-

straint of an Operand when the OSs locate before the CF have executed, where these OS should

locate on the Lifeline where the Interaction Constraint locates on. If the Constraint evaluates to

False, the Constraint keeps False and the Constraints of the nested set to False. Otherwise, the

Constraint keeps True and the order of OSs directly enclosed in the Operand are enforced using

sub-formula θ̄m. The nested CFs are translated into Φ̄CF recursively. θ̄m defines the order of OSs

within m using modified ᾱg and β̄j , which specify the OSs order for every state. The order of OSs

in BEU g is translated into ᾱg, and the order of OSs of Message j is translated into β̄j . For each

CF, the order between the preceding/succeeding set of OSs and the OSs within the CF is translated

into γ̄CF . We implement the algorithm (see appendix A) to calculate the preceding/succeeding

set OSs of the CF. The order between the preceding set of OS and the succeeding set of OSs is

translated into η̄CF . We have discussed the first OS occurring with an Operand in chapter 4.5.3.

For each Operand of a CF, the order between the first OS occurring the Operand and other OSs is

translated into µ̄CF .

Finally, we consider the sub-formulas which are specific for each CF. We rewrite the sub-

formula Φ̄CF using Φ̄CF
alt and Φ̄CF

loop for representing the semantics of Alternatives and Loop re-

spectively. An Alternatives is translated into Φ̄CF
alt as a general CF with an additional sub-formula

ϑCF . For each Operand, ϑCF relates its Constraint and its exe, which indicates that if the Operand

is chosen to execute. Each OS within Alternatives is also associated with the exe to indicate its

execution. We translate all iterations of Loop into Φ̄CF
loop, where these iterations are connected us-

ing Weak Sequencing. Operand m of a Critical Region is translated into θ̄m
critical, which conjuncts
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sub-formula δ̄M1,M2 with θ̄m. δ̄M1,M2 enforces that the execution of the OSs within the Critical

Region’s EU on each Lifeline cannot be interrupted by other OSs on the same Lifeline. Similarly,

the Operand of Assertion is translated into θ̄m
assert, whose sub-formula λ̄i,seq

M1,M2 asserts that, for each

Lifeline, the execution of the preceding set of OSs and the OSs within EU of the Assertion cannot

interleaved by other OSs. We translate other CFs into LTL sub-formulas as our LTL templates.

The LTL formulas are printed into a file using Class printOut.

7.2 Translating Sequence Diagram into NuSMV Model

The aim of Sequence Diagram Translation tool is translating UML Sequence Diagrams into the

input language of NuSMV. This tool is used to transform a Sequence Diagram which needs to

be analyzed into a NuSMV model. It helps software engineers to analyze their requirements

automatically. The scope of this tool is the same as the LTL Transformation Tool. The tool accepts

the XML representation of a Sequence Diagram too. To preprocessing the Sequence Diagram, we

can use the parser we developed before to create the syntax tree, which contains OSs, CFs and

other components as we defined.

The translation from the syntax tree of a Sequence Diagram into NuSMV models is imple-

mented using class Translate2SMV. We have presented the translation strategy in chapter 6. We

preserve the structure of a Sequence Diagram when we map it into NuSMV models. First, we

describe the Sequence Diagram using a main module, where the Lifelines within the Sequence

Diagram are instantiated and declared as module instances. Each Lifeline module instance takes

other Lifeline module instances as parameters. We represent the interleaving semantics among

Lifeline using INVAR statements as defined in our mapping strategy. It takes all Lifeline modules

instances of the Sequence Diagram and describes that only one Lifeline is chosen to execute until

the Sequence Diagram finishes execution. In the main module, we also express the interleaving

semantics among EUs in Parallel or OSs in Consider/Ignore using INVAR statements, which will

be discussed when we translate the CFs into NuSMV modules. We map the OSs as boolean vari-
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ables in the Lifeline/EU module which directly encloses them. To access the OS variable, we need

to append the name of every Lifeline/EU which encloses the OS with .(DOT) before the variable

name. In the main module, we define each OS variable using a derived variable to indicate the

access of the variable. For example, we define s1 of Lifeline module L1 as s1 := lL1.s1; in the

main module. This procedure makes the OS variable names in the NuSMV model and the ones in

the LTL formulas are consistent.

Then, we translate each Lifeline into a NuSMV module. In VAR section, the NuSMV module

takes the directly enclosed OSs, the directly enclosed CEUs, state, and chosen as variables. Each

directly enclosed OS is mapped to a boolean variable. Each directly enclosed CEU is instantiated

and declared as a module instance, which carries related CEUs, state and chosen as parameters.

state is an enumerated type variable, which has an initial value an a value for each OS to record the

execution status. chosen is a boolean variable, which is used to specify the interleaving semantics

in main module. If the Interaction Operator of any directly enclose CEU is critical or assert,

the Lifeline module contains variable isCritical or isAssertion for the CEU. We will discuss it

when translating the CFs into NuSMV modules. In DEFINE section, a derived variable, enabled,

is defined for each OS to indicate the OS is ready to execute. Another enabled is defined for the

Lifeline to indicate the Lifeline module is ready to execute. A derived variable, final, is defined for

the Lifeline to indicate the Lifeline module reaches final state. In ASSIGN section, the execution

of the Lifeline module is mapped to the transition relation of variable state. The execution of each

OS is mapped to the transition relation of its variable.

Next, we map each CEU directly enclosed in the Lifelines into a NuSMV module. A CEU

consists of one or more EUs and an Interaction Operator. In VAR section, each EU is instantiated

and declared as a module instance, which carries the related EU instances, chosen, and op_eva

as parameters. For the EU’s Interaction Constraints which locate on the Lifeline, each Constraint

is mapped to boolean variables cond and op_eva. cond records the value of the Constraint, and

op_eva records the execution status of the Operand. If the CEU’s Operator is alt, each Constraint

is also mapped to boolean variable exe to indicate the Operand is chosen to execute. In DEFINE
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section, a derived variable, enabled, is defined to indicate the CEU is ready to execute. Variable

final is defined to indicate the CEU reaches its final state. In ASSIGN section, cond shows the

evaluation of the Constraint. The transition relation of op_eva captures the status that the EU is

ready to execute, the EU will not execute, or the EU states to execute.

Finally, we map each EU of the CEUs into a NuSMV module. The EU module is quite similar

to the Lifeline module. We can reuse some methods for Lifeline modules to translates each EU

into an EU module. Additional variables may be introduced for EU modules with different Inter-

action Operators. For EU whose Operator is par, a variable, chosen is defined for the EU module

to indicate that the EU can be chosen to execute. We have mapped the interleaving semantics of

Parallel to INVAR statements in the main module. For EU whose Operator is critical, the transi-

tion relation of variable isCritical is defined in ASSIGN section. isCritical constraints the CEU of

Critical Region cannot be interleaved by other OSs on the same Lifeline. For EU whose Operand

is loop, each OS or Constraint is defined as an array. The state and derived variables are changed

correspondingly. For EU whose Operand is assert, the transition relation of variable isAssertion is

defined in ASSIGN section. For EU whose Operand is weak or strict, variable enabled for the first

OS takes extra enabling condition to represent the order between EUs. For EU whose Operand

is consider or ignore, each ignored OS is mapped to a boolean variable. We also introduce an

enumerated type variable, chosen, for each ignored OS. The interleaving semantics between the

ignored OSs and other OSs is represented by INVAR statement in main module. The nested

CEUs and EUs are mapped into NuSMV modules recursively by following the same procedure.

The generated NuSMV modules are printed to file using Class printOut.

7.3 Occurrence Specification Trace Diagram Generator (OSTDG) Tool

We develop the OSTDG to generate trace diagram visualizations of counterexamples produced

by the NuSMV model checker. Trace diagram is similar to basic Sequence Diagram with asyn-

chronous Message. It contains one or more Lifelines, which are communicated using Message.
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For the counterexample, we can get the information of Lifelines from the first state, and generate

the Lifeline in the trace diagram. Every state change is triggered by the execution of an OS until

all OSs have executed. We can find the executing OS and the chosen Lifeline for each state, and

generate the OS on the corresponding Lifeline in the trace diagram. Each OS should locate below

its preceding OS. Later, we connect the OSs of the same Message using arrow from the sending

OS to the receiving OS, and add the Message name near the arrow. An example of trace diagram

is shown in figure 7.2.

7.4 User Interface

Figure 7.2: Screenshot of the tool suite (Case Study 1).

In previous sections, we have introduced the components of our tool suite. We build a user

interface to integrate these components and ease users’ effort to utilize our tool suite. Figure

7.2 shows a screenshot of the user interface, which contains of three columns. The left col-

umn shows the Sequence Diagram to be checked, which is translated to a NuSMV model. The

user can load a Sequence Diagram by choosing the item LoadModelSequenceDiagram in the
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menu of File, and translate it into a NuSMV model by clicking the button TranslateModel or

choosing the item TranslateModel in the menu of Translation. The middle column shows the

properties, which can be derived from a Sequence Diagram (the upper box), or specified by the

software engineer (the lower box). The user can load a Sequence Diagram by choosing the item

LoadPropertySequenceDiagram in the menu of File, and translate it into LTL formulas by

clicking the button TranslateProperty or choosing the item TranslateProperty in the menu of

Translation. If the user would like to input some properties as LTL formulas, he can choose the

item AddProperty in the menu of File and type the formulas. With the NuSMV model and LTL

properties, the user can click the button RunAnalysis to verify the model against the properties.

The result of verification is shown in the right column. If the model does not satisfy a property, a

counterexample is generated by the NuSMV model checker. To read the counterexample, the user

can click the item GenerateOSTD in the menu of Translation. The trace diagram of the coun-

terexample will be shown in the right column. Our user interface demonstrates the trace diagram

for one counterexample at a time. If multiple properties are checked together, the user needs to

click GenerateOSTD again to see the trace diagram for the counterexample of the next property.

Figure 7.2 is a screenshot of the user interface when we run the case study example 1, while figure

7.3 is a screenshot of the user interface when we run the case study example 2.
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Figure 7.3: Screenshot of the tool suite (Case Study 2).
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Chapter 8: EVALUATION

In this section, we validate our technique and tool suite with two case studies. First, we evaluate

the tool suite with an insurance industry software application. Second, we evaluate the usability

of our technique by modeling HIPAA privacy policies.

8.1 Verify Insurance Software Application Using Tool Suite

We evaluate our technique with a case study of ISIS (Insurance Services Information System),

a web application currently used by the specialty insurance industry. Our evaluation uses two

Sequence Diagram examples from the design documentation of ISIS.

8.1.1 Case Study Example 1: Adding Location Coverage

The first example addresses adding insurance coverage to a new location. Location type and tier

(a hurricane exposure rating factor) asynchronously determine the coverage premium rate. The

location’s tier is asynchronously determined by zip code. In order to charge the correct premium

for a location’s windstorm coverage, the correct tier value must be determined before the rate is

fetched. The Sequence Diagram of this example is shown in figure 8.1.

8.1.2 Case Study Example 2: End-of-month

The second example concerns an administrative procedure known as “end-of-month" which seals

that month’s billing data and generates end-of-month reports for the insurance carrier. End-of-

month can take several days and involve multiple users. During this time the client must remain

free to continue to use ISIS. However, if end-of-month reporting occurs before the billing data is

sealed, the reports may contain inaccurate data and create inconsistencies in future reports. The

Sequence Diagram of this example contains 3 Lifelines, 16 Messages and a Parallel Combined

Fragment with 2 Operands. The Sequence Diagram of this example is shown in figure 8.3.
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Figure 8.1: Adding coverage to a location

Figure 8.2: Safety property

Figure 8.3: ISIS End-of-Month procedure

Figure 8.4: Consistency property
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8.1.3 Empirical Result

In our first case study example, we ascertain the possibility of obtaining an incorrect rate from

the server (the safety property, which is translated from an NCF shown in figure 8.2). An invalid

trace was discovered in the model by NuSMV, indicating that there is a possibility of incorrect

rate determination. Using a counterexample visualization from the OSTDG (see 8.5), we easily

located the messages involved in the property violation. In reality, locating this bug manually

without our automatic technique involved a great deal more time and effort. Model checking the

safety property of a Sequence Diagram with ASCF (see [62] for the diagram) against example 2’s

model returned true, indicating that end-of-month processing is always followed by end-of-month

reporting.

We used NuSMV to check the two examples on a Linux machine with a 3.00GHz CPU and

32GB of RAM. Case Study example 1 executed in 19 minutes 49 seconds with 3,825 reachable

states out of total 3.71e+012 states. Case Study example 2 executed in 18 minutes 14 seconds

with 192 reachable states out of total 4.95e+012 states.

Figure 8.5: Visualization for the counterexample of case study 1
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8.2 Modeling HIPAA Policy Using Sequence Diagrams

We evaluate our technique by modeling HIPAA regulations using Sequence Diagrams. Our eval-

uation focuses on the transmission-related privacy polices.

8.2.1 HIPAA Overview

Nowadays, the widespread use of electronic information, makes the information management for

organizations, such hospital, bank, and academic institution, become more convenient. How-

ever, the storage and transmission of personal information via networks may cause serious risks.

For instance, hackers in Eastern Europe stole personal information on more than 181, 000 peo-

ple from Department of Technology Services server in Utah [50]. Thus, privacy has become an

important concern for organizations to ensure the use and transmission of personal information

in compliance with the privacy regulations, such as Payment Card Industry (PCI) Data Security

Standard [17] and Health Insurance Portability and Accountability Act of 1996 (HIPAA) [1].

HIPAA provides national standards for insurance portability, fraud enforcement and admin-

istrative simplification of the healthcare industry [10]. It regulates the transmission and use of

confidential health information, which are referred as protected health information (PHI) among

covered entities. Covered entities are the organizations required to comply with HIPAA, including

hospitals, insurance companies, doctors and so on. Covered entities who violate HIPAA regula-

tions may face civil and severe criminal penalties [10]. For instance, a former UCLA Health

System employee was sentenced to prison and fined for unauthorized access to organizational

electronic health record system and to view the medical record [22]. The organizational policies

of the covered entities should comply with the HIPAA policies. Failure to comply with HIPAA

regulations may cause severe loss. For instance, Rite Aid Corporation paid $1 million for vio-

lations of the HIPAA privacy rule, and agreed to improve their policies to safeguard the privacy

of their customers [56]. One goal of HIPAA regulations is to prevent the disclosure of PHI of

individual to unauthorized people or organizations.
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However, as laws are written in legal languages, HIPAA regulations are too complex and dense

for policy writers and users of regulated organization to regulate their organizational policies and

the transmissions of electronic information. DeYoung et al. have formalized the transmission-

related portion of HIPAA privacy rule using a privacy logic, PrivacyLFP, to enforce privacy regu-

lations [20, 21]. Understanding the logical representation is much more complicated and difficult

for users without expertise. As a graphical notation, Sequence Diagram is more intuitive and

user-friendly. It is deployed to model dynamic behaviors among system actors and their environ-

ment through message passing. Thus, Sequence Diagram is an appropriate candidate to model

HIPAA regulations. HIPAA regulations consist of general administrative requirement, adminis-

trative requirements, security rule, and privacy rule. We are interested in HIPAA privacy rule,

which focuses on protecting the privacy of individually identifiable health information during in-

formation transmission.

8.2.2 Mapping Strategy

In HIPAA regulations, subpart E of part 164, which defines policies for privacy of individually

identifiable health information, consists of 17 sections. We are interested in the sections which are

related to information transmission and communication using Sequence Diagrams on the basis of

the formal semantics given by our formal framework. Each section contains multiple paragraphs.

We consider that each paragraph expresses a privacy policy. We categorize the of HIPAA privacy

policies into sufficient policies, necessary policies and exceptional policies. Sufficient policies

provide possible means to regulate the behaviors, i.e., each policy may be satisfied if the trans-

mission’s purpose meets the policy’s purpose. For instance, §164.512(a)(1) expresses a sufficient

policy, which regulates that “a covered entity may use or disclose protected health information to

the extent that such use or disclosure is required by law...”. Necessary policies provide mandatory

means to regulate the behaviors, i.e., each policy must be satisfied if the transmission’s purpose

meets the policy’s purpose. For instance, §164.508(a)(2) expresses a necessary policy, which reg-

ulates that “a cover entity must obtain an authorization for any use or disclosure of psychotherapy
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notes, except...”. §164.508(a)(2) also defines its exceptions, which enumerate the cases that do

not need to meet the policy. We consider that these exceptions express exceptional policies, which

can be either sufficient policies or necessary policies. To combine the policies, each transmission

should satisfy at least one sufficient policy and all the necessary policies. For a policy with excep-

tions, each transmission should satisfy the policy or one of its exceptional policies. A policy may

refer to other policies.

We map each section as a Sequence Diagram with a Parallel CF, where the Parallel contains

two Operands. One Operand contains an Alternatives CF for all the sufficient policies, each of

which is mapped to an Operand of the Alternatives. The other Operand contains a Parallel CF for

all the necessary policies, each of which is mapped to an Operand of the Parallel. Each Operand

of a policy refers to a Sequence Diagram illustrating the detail of the policy using the Interaction

Use.

We model each policy using a Sequence Diagram with Constraints, where the Constraints

represent the purposes of the policy and the predicates in the policy. A predicate represents a

condition which needs to be evaluated by external actors. Each actor is modeled using a Lifeline,

where the actor’s role is modeled using the instance’s class. For instance, a Lifeline’s head can be

p1 : coveredEntity, which represents that the role of actor p1 is a covered entity. The roles of

actors are hierarchial. For a paragraph, the roles in it can be detailed in other paragraphs it refers

to. Each message transmitted among actors is modeled using an asynchronous Message, where the

message name may indicate the information it carries, i.e., the attributes of an actor. To evaluate

the predicates, we add Messages between Lifelines for actors and an external Lifeline representing

the evaluator of the predicates. An actor sends a request of a predicate to the evaluator and the

evaluator replies the result of the evaluation. If the policy has exceptions, the policy is mapped

to a Sequence Diagram with an Alternatives CF, where each exceptional policy is mapped to an

Operand of the Alternatives.
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Figure 8.6: Sequence Diagram for paragraph 164.508(a)(2)
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8.2.3 Sequence Diagram Examples for HIPAA Policy

We illustrate our mapping strategies using two examples. Paragraph 164.508(a)(2) represents

that the use and disclosure of psychotherapy notes requires authorization, and the exceptions.

We map the paragraph into a Sequence Diagram with an Alternatives CF (see figure 8.6). The

Operand whose Constraint is else expresses the necessary policy, i.e., the authorization is manda-

tory. p1 requests the authorization for use and disclosure of q’s psychotherapy notes from q, and

q replies with the authorization. Then, p1 can disclose to p2 q’s psychotherapy notes. p1’s role

is covered-entity, while p2 and q’s role are not defined explicitly. We use HIPAA role to repre-

sent the most general role in HIPAA privacy policies, which can be detailed in the paragraphs

it refers to. Other Operands of the Alternatives enumerate the exceptions, each of which has its

purpose. The first three Operands express the cases for treatment, counseling training programs,

or defense in legal proceeding. The rest Operands express the cases using Interaction Uses, each

of which refers to another Sequence Diagram. One case refers to paragraph 164.512(a), which is

mapped into a Sequence Diagram with an Alternatives CF (see figure 8.7). To represent paragraph

164.512(a), DeYoung et al. only include the necessary policies defined in paragraphs 164.512(c),

164.512(e), and 164.512(f) [21]. Actually, we consider that paragraph 164.512(a) discusses both

sufficient and necessary policies in paragraphs 164.512(c), 164.512(e), and 164.512(f). Para-

graph 164.512(a) defines a sufficient policy, which regulates that a covered entity can use or

disclose PHI, including psychotherapy notes, if it is required by law. In the Sequence Diagram, a

covered entity, p1, requests the external evaluator to evaluate the predicate, i.e., whether the use or

disclosure is required by law, and the evaluator replies the result. If the predicate evaluates to true,

the covered entity should meet the requirements in 164.512(c), 164.512(e), or 164.512(f) to use

or disclose the PHI, which is expressed using the Alternatives CF. The paragraphs of 164.512(c),

164.512(e), and 164.512(f) define sufficient policies, at least one of which should be satisfied.

Operands of a CF may contain different Lifelines, expressing that different actors are involved in

different policies or an actor belongs to different roles in different policies. For instance, q is a
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victim of abuse in 164.512(c), while it is a victim of crime in 164.512(f).

Figure 8.7: Sequence Diagram for paragraph 164.512(a)

8.2.4 Benefit and Limitation

Modeling HIPAA privacy policies using Sequence Diagrams help user to gain a better under-

standing of the policies, avoiding the penalty and loss of the violations. The Sequence Diagrams

expressing privacy policies can also be translated into logical formulas using our tool suite. The

users and organizational policy writers can model their transmissions of electronic health infor-

mation and organizational policies using Sequence Diagrams, which can be verified against the

HIPAA privacy policies with our tool suite. We believe that it helps the the organizational policy

writers and users to verify whether their policies or the transmissions of electronic health infor-

mation comply with HIPAA privacy policies.

Sequence Diagram is used to model the dynamic interaction among actors. Therefore, we

cannot model the static, abstract requirements in HIPAA privacy poicies, such as “a valid autho-
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rization must contain at least the following element.” using Sequence Diagrams.
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Chapter 9: RELATED WORK

This chapter provides a literature review of the works in related fields. We start by discussing other

formalizations of scenario-based modeling languages. Then, we describe related works which

synthesize state-based models from scenario-based models. Finally, we discuss the approaches

verifying the scenario-based notations.

9.1 Semantics of Scenario-Based Models

To the best of our knowledge, our technique is the first to support all CFs and the nested CFs.

Micskei and Waeselynck survey comprehensively formal semantics proposed for Sequence Dia-

grams by 13 groups and present the different options taken in [51]. In these groups, [39] presents

an operational semantics for a translation of an Interaction into automata, which is used to model

check the communication produced by UML state machines with SPIN or UPPAAL. Similarly,

our approach provides safety and liveness properties. Work towards the similar goal, Cavarra

and Filipe propose an approach to express liveness properties using Sequence Diagrams with the

concepts from LSC [3]. They also provide a semantics for these Sequence Diagrams using ab-

stract state machines [4]. On the basis of a denotational semantics of Interactions [13], Cengarle

and Knapp define an operational semantics of Sequence Diagram [14]. The semantics differen-

tiates positive fragments and negative fragments, concentrating on the overspecialized negative

fragments. Eichner et al. introduce a compositional formal semantics of UML 2 Sequence Dia-

gram using colored high-level Petri Nets [27]. The semantics represents a subset of the CFs of

Sequence Diagrams. They also deconstruct a Sequence Diagram into fragments, each of which

covers multiple Lifelines while each of our fragments covers one Lifeline. Fernandes et al. also

formalize UML use case and Sequence Diagram using colored Petri Nets [29]. Their approach

only supports several Operators, including Alternatives, Option, Parallel, Loop, and Interaction

Use. Filipe provides a formal semantics for several Interaction Operators, including Alterna-

tives, Parallel, Weak Sequencing and Interaction Use [43]. To capture the mandatory and possible
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behaviors, The semantics adopts the hot and cold Messages from LSC. Hammal defines a deno-

tational semantics, which also formalizes the time constraints of Sequence Diagram [33] . Dan et

al. present a trace semantics to express multi-threaded objects using Sequence Diagram, where

each Lifeline can capture multiple threads. Only the Messages of the same thread are ordered as

their graphical order. Previously, we also provide a formal semantics of Sequence Diagram using

template semantics [19]. We support most of the Interaction Operators, except for Ignore and

Consider.

Lamsweerde et al. [70] develop an approach for inferring goal specifications, in terms of tem-

poral logic, which covers positive scenarios and excludes negative ones. But, they only con-

sider simple scenarios without control constructs, such as CFs. More recently, Letier and Lam-

sweerde [44] provide a pattern to infer compositional pieces of incremental operational specifica-

tion from declarative temporal property specifications. Whittle presents a three-level notation with

formal syntax and semantics for specifying use cases in [72]. Each use case is defined by a set of

UML Interactions in level-2 and the details of each Interaction are defined in level-3. With this

three-level notation, Whittle and Jayaraman present an algorithm for synthesizing well-structured

hierarchical state machines from scenarios [73]. The generated hierarchical state machines are

used to simulate scenarios and improve readability. Our work focuses on Sequence Diagrams

in level-3. Balancing flexibility and simplicity in expressing temporal properties, Mitchell [52]

demonstrates that there is a unique minimal generalization of a race-free partial-order scenario

even if it is iterative. Mitchell [53] also extends the Mauw and Reniers’ algebraic semantics for

formalizing the MSC to describe the UML 2 Sequence Diagram, whose deadlock property is

defined differently from ours.

9.2 Synthesis of Scenario-Based Models

To analyze multiple scenario-based models of a system, many approaches synthesize state-based

models from scenario-based models, where a state-based model is often to represent the behavior

115



of the entire system. Uchitel et al. [68] synthesize a behavioral specification in the form of a

Finite Sequential Process, which can be checked using their labeled transition system analyzer.

They define the semantics of MSC in terms of labeled transition systems and parallel composition,

and translate scenarios into a behavioral specification, which can be analyzed. Working towards

similar goals, Damas et al. synthesize a labeled transition system model from both positive and

negative scenarios, expressed in MSC [18]. They adopt the semantics definitions from [68]. In

addition, they generate temporal properties from scenarios. Whittle and Schumann [74] develop

an approach to compose UML 1 Sequence Diagrams into UML statecharts. Messages are anno-

tated with pre-conditions and post-conditions in terms of the UML Object Constraint Language

(OCL) to refine their meanings. Similarly, Uchitel et al. synthesize behavior models in terms of

Modal Transition System from a combination of safety properties and scenarios [67]. They would

like to differentiate the required, possible, and proscribed behavior. Our work formalizes all the

CFs in LTL, which helps us to synthesize a collection of Sequence Diagrams.

A comprehensive survey of these synthesis approaches and others’ work can be found in [46],

where the authors survey 21 synthesis approaches. 7 approaches select Sequence Diagram as

the source notation. Makinen and Systa define an interactive algorithm, Minimally Adequate

Synthesizer, to synthesize UML statechart from Sequence Diagrams [49]. They check the com-

pleteness of the Sequence Diagrams and try to detect the implied scenarios. To evaluate MAS,

they implement it and integrate with a software development tool, the Nokia TED. Towards the

similar goal, Maier and Zundorf provide automated tool support to derive statecharts from Se-

quence Diagram [48]. The tool iteratively refines the system, from textual scenario to Java code.

Ziadi et al. start to consider the Interaction Operators of UML 2 Sequence Diagram for syn-

thesis. They provide an algebraic framework to synthesize statecharts from Sequence Diagrams

with Alternatives, Weak Sequencing, or Loop [75]. Nicolas and Martinez use Sequence Diagram

and use case diagram to present the service model [36]. They provide patterns to illustrate the

dependencies between Sequence Diagrams using use case diagram. With the dependencies, they

synthesize state machine from Sequence Diagram and detect the inconsistencies among Sequence

116



Diagrams. In order to generates a user interface prototype from scenarios, Elkoutbi and Keller

translate Sequence Diagrams into Colored Petri Nets [28]. Similarly, Kloul and Kuster-Filipe

translate Sequence Diagram into a process algebra, PEPA [38]. Their approach covers several

CFs, including Alternatives, Parallel, and Loop.

9.3 Analysis of Scenario-Based Models

Approaches which formalize scenario-based models or synthesize state-based models from

scenario-based models have a common use: analysis. In previous sections, we have listed the

approaches which analyze scenario-based models. In addition to these approaches, Alur et al.

present a formal semantics of MSCs based on automata theory [7] to model check MSCs. They

synthesize state machines from MSCs and detect safe realizability to infer missing scenarios for

realizing deadlock-free implementation [6]. They also examine different cases of MSC verifi-

cation of temporal properties and present techniques for iteratively specifying requirements [5].

They focus on MSC Graphs (an aggregation of MSCs) and techniques for determining if a par-

ticular MSC is realized in an MSC Graph. Peled presents an efficient model checking algorithm,

which is an extension to SPIN model checking system, for analyzing MSC [57]. They also spec-

ify safety and liveness properties of MSC in temporal logic. Our technique can be extend to

accommodate their approach as UML 2 Sequence Diagrams have similar expressive features. The

provide an algorithm to validate if some execution traces represented using MSC do not con-

sistent with system specification [54]. Their group also extends the MSC standard to represent

unmatch Message, intending to model asynchronous Message protocols automatically [32]. Leue

et al. translate the MSC specification, especially branching and iteration of High-Level MSC,

into PROMELA to verify MSCs using the XSPIN tool [45]. As Sequence Diagrams have similar

expressive features, our technique can be extended to work with their approach. To relate state-

based behaviors with scenario-based descriptions, Bontemps et al. formally study the problem of

scenario checking, synthesis, and verification of the LSC in [12]. Their work focuses on provid-
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ing an algorithm and proving the complexity for each problem. Walkinshaw and Bogdanov [71]

detail an inference technique to constrain a finite-state model with LTL. These constraints reduce

the number of traces required as input to a model checker for discovery of safety counter exam-

ples. Our work can automatically model check each Sequence Diagram of a system against LTL

properties separately, which helps to alleviate the state explosion problem.
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Chapter 10: CONCLUSION AND FUTURE WORK

As a well-accepted scenario-based notation, Sequence Diagram is widely used to model the in-

teractions among multiple actors and the environment in reactive system at the requirement and

design stages. The lack of formal semantics of Sequence Diagram with CFs makes it difficult to

comprehend and analyze the behavior of the system. Model checking, as a common verification

technique, automatically and exhaustively enumerates all possible executions of a finite model,

and verify whether the executions satisfy desired properties. The gap between graphical notations

and input language of model checking tool prevents us to reason about the Sequence Diagrams

using verification techniques.

In this dissertation, we present a novel formal framework to formalize the semantics of Se-

quence Diagrams and all 12 CFs with LTL formulas. To facilitate codifying the semantics of

Sequence Diagrams, We deconstruct Sequence Diagrams and CFs to obtain fine-grained syntactic

constructs. We provide a collection of simple LTL definitions to represent each semantic aspect

of Sequence Diagram as a separate concern. This enable us to conquer the complexity of CFs.

The semantic aspects common to Sequence Diagrams and all CFs are captured as a conjunction

of the separate simpler LTL definitions. To capture the specific semantic aspect of each CF, we

introduce additional constraints, which can be conjuncted with the LTL definition of common

semantics. Similarly, the semantics of nested CFs can be captured using conjunctions of LTL

definition. To our best knowledge, our formal framework is the first one to support all CFs, the

nested CFs, both asynchronous and synchronous Messages, and Interaction Constraints. We also

prove that the LTL templates capture the semantic aspects of Sequence Diagram with CFs. We

believe our approach can be extended to define the semantics of variants of Sequence Diagram

and even other scenario-based languages.

Our approach enables software practitioners to verify if a Sequence Diagram satisfies specified

properties and if a set of Sequence Diagrams are consistent. We present a Sequence Diagram

with CFs using NuSMV modules. With the help of deconstruction, we codify the semantics of
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Sequence Diagrams and CFs in the input language of NuSMV. We also prove that the NuSMV

model captures the semantic aspects of Sequence Diagram with CFs. Our approach is also the

first to support all CFs and the nested CFs.

One of the key benefit of our formal framework is expressing high-level objectives. We trans-

late the Assertion CFs, which describe the mandatory behaviors, and the Negative CFs, which

describe the forbidden behaviors, into LTL formulas to express safety properties. We can check

the model against the safety properties without specifying the properties directly. If the proper-

ties are not satisfied, counterexamples are visualized as Sequence Diagrams to help practitioners

locate violations. We supplement our technique with a proof-of-concept tool suite.

To validate our technique and tool suite, we provide two case studies. First, we perform a

case study of an industry web application to evaluate our tool suite. Second, we model the HIPAA

privacy policies using Sequence Diagram with CFs. This helps users to gain a better understanding

of the HIPAA regulations, avoiding penalty and loss of violations. We believe our technique and

tool suite can assist users and organizational policy writers to verify whether the transmissions of

electronic health information and organizational policies comply with HIPAA regulations.

Our future work includes two tasks. First, we plan to extend our approach to define the seman-

tics of variants of Sequence Diagrams. We also plan to define the cases discussed in 4.5.3 using

our formal framework. Second, we plan to finish modeling all HIPAA privacy policies which

are related to information transmissions. To represent the policies specifying universal/existential

behaviors, our formal framework may be extended with additional templates. These templates are

composed with existing templates to express the semantics of the Sequence Diagram with uni-

versal/existential constructs. We intend to verify a model for electronic information transmission

or organizational policy using our tool suite to verify whether the model is in compliance with

HIPAA privacy policies.
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Appendix A: AUXILIARY FUNCTIONS

Our formal framework formalizes the Sequence Diagrams with CFs as LTL formulas, which eval-

uates the Interaction Constraints of Operands using auxiliary functions, e.g., function AOS(CF )

is defined to represent a set of OSs which are enabled and chosen to execute in CF , which can be

represented as:

AOS(CF ) =





TOS(CF ) ∪ ⋃
CFi∈nested(CF )

AOS(CFi) if(typeCF (CF ) 6= alt) (1)

TOS(m) ∪ ⋃
CFi∈nested(CF )

AOS(CFi) if(typeCF (CF ) = alt) (2)

where function TOS(u) is overload to Combined Fragment or Interaction Operand u, m is the

chosen Operand if CF is an Alternatives.

Functions TOP (u), TBEU(u), TOS(u) and nested(u) are introduced to make the templates

succinct. For instance, TBEU(u) can be represented as

∧

g∈TBEU(k↑i)

αg =
∧

h∈ABEU(k↑i)

((CND(h) ∧ αh) ∨ (¬CND(h))).

We introduce functions pre(u) and post(u) to return the set OSs which happen right before or

right after CEU u in section 4. The functions pre(u) and post(u) take the CEU u and (by default)

the Sequence Diagram as arguments. To calculate the pre(u) of CEU u, we focus on the CEU or

EU v prior to u on the same Lifeline:

• Case1: If v is a BEU whose condition evaluates to True, pre(u) returns a singleton set

containing the last OS within v.
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• Case2: If v is a CEU with a single BEU whose condition evaluates to True and contains no

nested CEUs, pre(u) returns a singleton set containing the last OS of the BEU.

• Case3: If v is a CEU with multiple BEUs whose conditions evaluate to True and contains

no nested CEU,

– Case3.1: v with Operator “par” obliges pre(u) to return a set containing the last OS of

each BEU;

– Case3.2: v with Operator“alt” forces pre(u) to return a singleton set containing the last

OS of the chosen BEU; (We introduce a variable “exe” for BEU of each Operand to

indicate the chosen BEU
∨̂

i∈[1..m]

exei ∧
∧

i∈[1..m]

(exei → condi), where m is the number

of BEUs.);

– Case3.3: v with Operator “weak” or “strict” makes pre(u) return a singleton set con-

taining the last OS of the last BEU.

• Case4: If v is a CEU with EUs whose conditions evaluate to False or a BEU whose condition

evaluates to False, we check the BEU or CEU prior to v until a BEU or a CEU with at least

one EU whose condition evaluates to True is found. pre(u) returns an empty set while there

is no such BEU or CEU.

• Case5: If v is a CEU containing nested CEUs,

– Case5.1: If v directly contains EU q, which is the only EU whose condition evaluates

to True, we focus on EU q and the last CEU w which is directly enclosed in q,

∗ Case5.1.1: If there is a BEU after w, which is directly enclosed in q, pre(u) returns

the last OS of the BEU.

∗ Case5.1.2: If there is no BEU after w within q, we recursively apply cases 2 to 5

by replacing v with w.

– Case5.2: If v directly contains multiple EUs whose conditions evaluate to True,
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∗ Case5.2.1:v with Operator “par” makes we recursively apply case 1 or case 5.1 to

each EU whose conditions evaluate to True

∗ Case5.2.2:v with Operator“alt” makes we recursively apply case 5.1 to the chosen

EU. (
∨̂

i∈[1..m]

exei ∧
∧

i∈[1..m]

(exei → condi), where m is the number of BEUs.)

∗ Case5.2.3: v with Operator “weak” or “strict” makes we recursively apply case

5.1 to the last EU.

post(u) can be calculated in a similar way.
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Appendix B: PROOFS

In this appendix, we provide the proofs for theorem 4.9, theorem 4.11 and theorem 4.12 in chapter

4. We also provide the proofs for theorem 6.14 and theorem 6.16 in chapter 6.

B.1 Proof of Theorem 4.9

Theorem 4.9. For a given Sequence Diagram, seq, with j Messages, (Σseq
sem)∗ and

PRE2j((Σ
seq
LTL)ω) are equal.

Proof. We use mathematical induction, which is based on the number of Messages, j, within seq.

Base step. Basic Sequence Diagram seq1 contains only one Message, m1. (j = 1)

• Case 1. Sending OS s1, and receiving OS r1 of Message m1 locate on two Lifelines L1, L2

respectively (see figure B.1).

Figure B.1: Case 1 for basic Sequence Diagram with single Message

Σseq1
sem = {s1, r1}, where Σseq1

sem ⊆ Σ. The semantic aspects of seq1 define that, for m1, r1 can

only happen after s1. Only one trace, υ =< s1, r1 > of size 2, can be derived from seq1,

i.e., (Σseq1
sem)∗ = {< s1, r1 >}.

124



We wish to prove that < s1, r1 > ·τω |= Π̃Basic
seq1

, in which Π̃Basic
seq1

for seq1 is shown as below.

Π̃Basic
seq1

=α̃seq↑L1
∧ ρm1 ∧ βm1 ∧ εseq1

ρm1 =(¬s1 Ũ (s1 ∧¬s1)) ∧ (¬r1 Ũ (r1 ∧¬r1))

βm1 =¬r1 Ũ s1

εseq1 =((¬s1 ∧ r1) ∨ (s1 ∧ ¬r1) ∨ ((s1) ∧ (r1)))

Sub-formula α̃seq↑L1
returns true because Lifeline L1 contains only one OS, s1. < s1, r1 >

·τω satisfies sub-formula ρm1 because s1 and r1 only occur once. It satisfies sub-formula βm1

because s1 happens before r1 does. It also satisfies sub-formula εseq1 because only one OS

happens at a time and < s1, r1 > executes uninterrupted. Thus, < s1, r1 > ·τω |= Π̃Basic
seq1

.

We wish to prove that ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, then σ[1..2] ∈ (Σseq1
sem)∗.

σ satisfies sub-formula ρ, which constrains that s1 and r1 can occur once and only once

respectively. Therefore, σ[1..2] can be < s1, r1 > or < r1, s1 >. Sub-formula βm1 represents

that r1 cannot occur until s1 does. Therefore, σ[1..2] can only be < s1, r1 >, which is an

element of (Σseq1
sem)∗. In this way, we can prove σ[1..2] ∈ (Σseq1

sem)∗.

• Case 2. Sending OS s1, and receiving OS r1 of Message m1 locate on a single Lifeline L1

(see figure B.2).

Figure B.2: Case 2 for basic Sequence Diagram with single Message

Besides the semantic aspects discussed in case 1, the OSs on L1 respect their graphical
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order, i.e., s1 occurs before r1. Trace υ =< s1, r1 > of size 2 can be derived from seq1, i.e.,

(Σseq1
sem)∗ = {< s1, r1 >}.

Π̃Basic
seq is reduced to Π̃Basic

seq1
for seq1 as below.

Π̃Basic
seq1

=α̃seq1↑L1
∧ βm1 ∧ ρm1 ∧ εseq1

α̃seq1↑L1
=¬r1 Ũ s1

ρm1 =(¬s1 Ũ (s1 ∧¬s1)) ∧ (¬r1 Ũ (r1 ∧¬r1))

βm1 =¬r1 Ũ s1

εseq1 =((¬s1 ∧ r1) ∨ (s1 ∧ ¬r1) ∨ ((s1) ∧ (r1)))

Comparing to Π̃Basic
seq1

in case 1, only sub-formula α̃seq1↑L1
is changed. α̃seq1↑L1

represents

that s1 happen before r1, which enforces the same order as sub-formula βm1 . Trace <

s1, r1 > ·τω can be generated from Π̃Basic
seq1

, i.e., (Σseq1

LTL)ω = {< s1, r1 > ·τω}.

Similarly, we wish to prove that ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃Basic

seq1
; and

∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, then σ[1..2] ∈ (Σseq1
sem)∗. The proof follows the one of case 1.

To sum up, for a basic Sequence Diagram with one Message, (Σseq
sem)∗ and pre((Σseq

LTL)ω) are

equal.

Inductive step. Basic Sequence Diagram seqn contains n Messages, which are graphically-

ordered, i.e., (mi−1 locates above mi (2 ≤ i ≤ k)). The Messages have 2n OSs, which locate on

k Lifelines. We assume ∀υ.υ ∈ Σ∗, if υ ∈ (Σseqn
sem )∗, then υ · τω |= ΠBasic

seqn
; and ∀σ.σ ∈ Σω, if

σ ∈ (Σseqn

LTL)ω, then σ[1..2n] ∈ (Σseqn
sem )∗ (j = n).

We add a Message, mn+1, at the bottom of seqn graphically to form a new Sequence Diagram,

seqn+1, with n + 1 Messages. We wish to prove ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω |=

ΠBasic
seqn+1

; and ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′[1..2n+2] ∈ (Σseqn+1
sem )∗ (j = n + 1).

(a) We wish to prove ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω |= ΠBasic

seqn+1
.
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The semantic aspects of seqn+1 enforce that only one OS occurs at a time, and each OS

happens once and only once. Σseqn+1
sem = Σseqn

sem ∪ {sn+1, rn+1}, where |Σseqn
sem | = 2n and

|Σseqn+1
sem | = 2n + 2. If υ′ ∈ (Σseqn+1

sem )∗, then υ′ is a finite trace of size 2n + 2, which con-

tains OSs in Σseqn+1
sem . Adding mn+1 at the bottom of seqn does not change the structure of seqn.

Thus, for trace υ′, the order of OSs in Σseqn
sem is still preserved. Message mn+1 restricts that sn+1

must happen before rn+1, i.e., sn+1 locates before rn+1 in υ′.

Π̃Basic
seqn

=
∧

i∈LN(seqn)
g=seqn↑i

α̃g ∧
∧

j∈MSG(seqn)

ρj ∧
∧

j∈MSG(seqn)

βj ∧ εseqn

α̃g =
∧

k∈[r..(r+|AOS(g)|−2)]

(¬OSk+1 Ũ OSk)

ρj =(¬SND(j) Ũ (SND(j) ∧¬SND(j))) ∧ (¬RCV (j) Ũ (RCV (j) ∧¬RCF (j)))

βj =¬RCV (j) Ũ SND(j)

εseqn =((
∨̂

OSm∈AOS(seqn)

OSm) ∨ (
∧

OSm∈AOS(seqn)

(OSm)))

Π̃Basic
seqn+1

=
∧

i∈LN(seqn+1)
g=seqn+1↑i

α̃g ∧
∧

j∈MSG(seqn+1)

ρj ∧
∧

j∈MSG(seqn+1)

βj ∧ εseqn+1

=(
∧

i∈LN(seqn)
g=seqn↑i

α̃g ∧ ςseqn,mn+1) ∧ (
∧

j∈MSG(seqn)

ρj ∧ ρmn+1) ∧ (
∧

j∈MSG(seqn)

βj ∧ βmn+1) ∧ εseqn+1

=(
∧

i∈LN(seqn)
g=seqn↑i

α̃g ∧
∧

j∈MSG(seqn)

ρj ∧
∧

j∈MSG(seqn)

βj) ∧ (ρmn+1 ∧ βmn+1) ∧ ςseqn,mn+1 ∧ εseqn+1

=ιseqn ∧ ϑmn+1 ∧ ςseqn,mn+1 ∧ εseqn+1

ιseqn =
∧

i∈LN(seqn)
g=seqn↑i

α̃g ∧
∧

j∈MSG(seqn)

ρj ∧
∧

j∈MSG(seqn)

βj

ϑmn+1 =ρmn+1 ∧ βmn+1

εseqn+1 =((
∨̂

OSm∈AOS(seqn+1)

OSm) ∨ (
∧

OSm∈AOS(seqn+1)

(OSm)))

Figure B.3: LTL formulas for seqn and seqn+1

Π̃Basic
seq is reduced to Π̃Basic

seqn
and Π̃Basic

seqn+1
for seqn and seqn+1 respectively (see figure B.3). We

group the sub-formulas of Π̃Basic
seqn+1

using ιseqn , ϑmn+1 , ςseqn,mn+1 , and εseqn+1 . In order to prove
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υ′ · τω |= Π̃Basic
seqn+1

, we wish to prove that υ′ · τω satisfies all sub-formulas of Π̃Basic
seqn+1

. Sub-formula

ιseqn enforces the order of OSs within seqn, which includes the order of OSs along each Lifeline,

and the order between OSs of each Message. We assume that if υ ∈ (Σseqn
sem )∗, then υ ·τω |= ΠBasic

seqn
.

It is easy to observe that υ · τω also satisfies ιseqn . As we discussed, the order of OSs within seqn

is still preserved in υ′. Thus, υ′ · τω satisfies ιseqn . Sub-formula ϑmn+1 enforces the order between

OSs of mn+1, i.e., sn+1 and rn+1 happen only once respectively, and sn+1 must occur before rn+1.

υ′ · τω satisfies ϑmn+1 because (1) only one sn+1 and one rn+1 are in υ′, and (2) sn+1 locates

before rn+1 in υ′. Sub-formula εseqn+1 enforces that only one OS of seqn+1 can execute at once,

and the trace should execute uninterrupted. As we discussed, in υ′ · τω, each OS of seqn+1 only

executes once, and the execution of υ′ does not interleaved by τ . Therefore, υ′ ·τω satisfies εseqn+1 .

ςseqn,mn+1 enforces the order between the OSs of seqn and the OSs of mn+1. We wish to prove

that υ′ · τω satisfies ςseqn,mn+1 using four cases as below.

• Case 1: Two OSs of mn+1 locate on two new Lifelines, Lk+1 and Lk+2 (see figure B.4a); or

two OSs of mn+1 locate on one new Lifeline, Lk+1 (see figure B.4b).

The OSs of mn+1 locate on one or two new Lifelines, so mn+1 and the existing Messages,

m1,m2...mn, are interleaved. Therefore, in trace υ′ ∈ (Σseqn+1
sem )∗, sn+1 or rn+1 can locate

(1) between any two OSs of seqn, or (2) before all OSs of seqn, or (3) after all OSs of seqn.

Thus, sn+1 can be the sth OS of υ′, where 1 ≤ s ≤ 2n + 1; and rn+1 can be the rth OS of

υ′, where s < r ≤ 2n + 2.

ςseqn,mn+1 = α̃seq↑Lk+1
∧ α̃seq↑Lk+2

Sub-formula ςseqn,mn+1 is a conjunction of α̃seq↑Lk+1
and α̃seq↑Lk+2

. Only one OS locates on

Lifeline Lk+1. Therefore, α̃seq↑Lk+1
returns true as defined by sub-formula α̃g. Similarly,

α̃seq↑Lk+2
returns true. Thus, ςseqn,mn+1 returns true. υ′ ·τω satisfies ςseqn,mn+1 , i.e., υ′ ·τω |=

ςseqn,mn+1 .

128



a. Example of case 1 b. Example of case 1

c. Example of case 2 d. Example of case 3

e. Example of case 3 f. Example of case 4

Figure B.4: Examples for basic Sequence Diagram with n + 1 Messages

129



• Case 2: Sending OS sn+1 locates on a new Lifeline, Lk+1, and receiving OS rn+1 locates on

an existing Lifeline, Li (1 ≤ i ≤ k) (see figure B.4c).

In seqn, we assume the last OS on Li is OSpre. After adding mn+1 at the bottom of seqn ,

rn+1 becomes the last OS on Li. Therefore, OSpre should happen before rn+1. sn+1 locates

on a new Lifeline, so it is interleaved with the OSs of seqn. However, sn+1 must happen

before rn+1. In trace υ′ ∈ (Σseqn+1
sem )∗, if OSpre is the pth OS, where 1 ≤ p ≤ 2n + 1. Then

sn+1 is the sth OS of υ′, where 1 ≤ s ≤ 2n + 1 and s 6= p; rn+1 is the rth OS of υ′, where

s < r ≤ 2n + 2 and p < r ≤ 2n + 2.

ςseqn,mn+1 = (¬rn+1 Ũ OSpre) ∧ α̃seq↑Lk+1

Sub-formula ςseqn,mn+1 defines that rn+1 does not happen until OSpre does. α̃seq↑Lk+1
returns

true because only one OS locates on Lifeline k + 1. In υ′ · τω, OSpre locates before OSr+1,

i.e., p < r. Thus, υ′ · τω satisfies ςseqn,mn+1 , i.e., υ′ · τω |= ςseqn,mn+1 .

• Case 3: Sending OS sn+1 locates on an existing Lifeline, Li (1 ≤ i ≤ k), and receiving OS

rn+1 locates on a new Lifeline, Lk+1 (see figure B.4d); or two OSs of mn+1 locate on an

existing Lifeline Li (1 ≤ i ≤ k) (see figure B.4e).

Similarly, we assume the last OS on Li in seqn is OSpre. In seqn+1, if sn+1 locates on

Li, OSpre should happen before sn+1 because OSpre locates above sn+1 graphically. For

mn+1, rn+1 must happen after sn+1. In trace υ′ ∈ (Σseqn+1
sem )∗, if OSpre is the pth OS, where

1 ≤ p ≤ 2n. Then sn+1 is the sth OS of υ′, where p < s ≤ 2n + 1; rn+1 is the rth OS of υ′,

where s < r ≤ 2n + 2.

ςseqn,mn+1 = (¬sn+1 Ũ OSpre) ∧ α̃seq↑Lk+1

Sub-formula ςseqn,mn+1 defines that sn+1 cannot happen before OSpre. Only one or none OS

locates on Lifeline k + 1, so α̃seq↑Lk+1
returns true. In υ′ · τω, sn+1 locates after OSpre, i.e.,
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p < s. Therefore, υ′ · τω satisfies ςseqn,mn+1 , i.e., υ′ · τω |= ςseqn,mn+1 .

• Case 4: Two OSs of mn+1 locate on two existing Lifelines. Without loss of generality, we

assume that sending OS sn+1 locates on Lifeline Li (1 ≤ i ≤ k), receiving OS rn+1 locates

on Lifeline Lj (1 ≤ j ≤ k) (see figure B.4f).

In seq, we assume the last OS on Li is OSpres , and the last OS on Lj is OSprer . After adding

mn+1 at the bottom of seqn , sn+1 becomes the last OS of Li, and rn+1 becomes the last OS

of Lj . In trace υ′ ∈ (Σseqn+1
sem )∗, if OSpres is the psth OS, where 1 ≤ ps ≤ 2n, and OSprer is

the prth OS, where 1 ≤ pr ≤ 2n+1. Then sn+1 is the sth OS of υ′, where ps < s ≤ 2n+1;

rn+1 is the rth OS of υ′, where pr < r ≤ 2n + 2.

ςseqn,mn+1 = (¬sn+1 Ũ OSpres) ∧ (¬rn+1 Ũ OSprer)

The first conjunct of sub-formula ςseqn,mn+1 defines that sn+1 cannot happen until OSpres

executes. In υ′ · τω, OSpres locates before sn+1, i.e., ps < s. Therefore, υ′ · τω satisfies

¬sn+1 Ũ OSpres . Similarly, we can prove that υ′ · τω satisfies ¬rn+1 Ũ OSprer . Thus, υ′ · τω

satisfies ςseqn,mn+1 , i.e., υ′ · τω |= ςseqn,mn+1 .

Now we have proven that for all cases, υ′ · τω |= ςseqn,mn+1 .

To conclude, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω |= ΠBasic

seqn+1
.

(b) We wish to prove ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′[1..2n+2] ∈ (Σseqn+1
sem )∗.

If σ′ ∈ (Σ
seqn+1

LTL )ω, we wish to prove that σ′[1..2n+2] respects all the semantic aspects of seqn+1.

For Π̃Basic
seqn+1

, we still group the sub-formulas using ιseqn , ϑmn+1 , ςseqn,mn+1 , and εseqn+1 , i.e.,

Π̃Basic
seqn+1

= ιseqn ∧ ϑmn+1 ∧ ςseqn,mn+1 ∧ εseqn+1

We assume that if σ ∈ (Σseqn

LTL)ω, then σ[1..2n] ∈ (Σseqn
sem )∗. It is easy to infer that σ satisfies

ιseqn . Sub-formula ιseqn enforces the order of OSs in Σseqn
sem and each OS should execute once
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and only once. We can also infer that trace σ′ satisfies ιseqn from σ′ ∈ (Σ
seqn+1

LTL )ω. If σ′ does

not contain an OS in Σseqn
sem , then σ′ does not satisfies ιseqn , which defines that each OS in Σseqn

sem

should happen once. Therefore, all OSs in Σseqn

LTL executes once and only once in σ′[1..2n+2]. We

wish to prove that, in σ′[1..2n+2], all OSs in Σseqn

LTL respect their order defined by semantic aspects of

seqn. ∃OSp, OSq.OSp, OSq ∈ Σseqn

LTL, the semantic aspects of seqn define that OSp must happen

before OSq. In σ′[1..2n+2], we assume that the OSs do not respect the same order, i.e., OSp occurs

after OSq. ιseqn codifies the semantic aspects of seqn, so it constraints that OSp should take

place before OSq. To satisfy ιseqn , OSp must occur before OSq in σ′, which contradicts our

assumption. Therefore, in σ′[1..2n+2], the OSs in Σseqn
sem respect the order defined by semantic aspects

of seqn, i.e., if we remove the OSs not in Σseqn
sem from σ′[1..2n+2] to obtain a new trace σ′′[1..2n], then

σ′′[1..2n] ∈ (Σseqn
sem )∗.

Sub-formula ϑmn+1 specifies that sn+1 must occur before rn+1, and both OSs can occur only

once. sn+1 and rn+1 may not locate on the same Lifeline. Thus, ϑmn+1 codifies the semantics of

Message mn+1 in seqn+1. In σ′[1..2n+2], sn+1 and rn+1 represent the semantics of mn+1. We have

proven each OSs in Σseqn
sem should happen once and only once in σ′[1..2n+2], where |Σseqn

sem | = 2n, and

both of sn+1 and rn+1 occur only once. Thus, we can deduct that εseqn+1 captures the semantics,

which defines only one OS executing at a time and the σ′[1..2n+2] should execute uninterrupted.

Now we wish to prove that sub-formula ςseqn,mn+1 codifies the order between the OSs within

Σseqn
sem and the OSs of mn+1, which is discussed using four cases as below.

• Case 1: Two OSs of mn+1 locate on two new Lifelines, Lk+1 and Lk+2 (see figure B.4a); or

two OSs of mn+1 locate on one new Lifeline, Lk+1 (see figure B.4b).

ςseqn,mn+1 = α̃seq↑Lk+1
∧ α̃seq↑Lk+2

Sub-formula ςseqn,mn+1 is a conjunction of α̃seq↑Lk+1
and α̃seq↑Lk+2

. It returns true only if

none or at most one OS locates on each Lifeline. Therefore only one OS locates on Lk+1 and

Lk+2 respectively. ςseqn,mn+1 represents that mn+1 and the Messages of seqn are interleaved.
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No specific order is defined between the OSs of seqn and the OSs of mn+1. Thus, ςseqn,mn+1

codifies the order between the OSs of seqn and the OSs of mn+1 in seqn+1. In σ′[1..2n+2],

the OSs of seqn and the OSs of mn+1 respect the order defined by the semantic aspects of

seqn+1.

• Case 2: Sending OS sn+1 locates on a new Lifeline, Lk+1 receiving OS rn+1 locates on an

existing Lifeline, Li (i ≤ k) (see figure B.4c).

ςseqn,mn+1 = (¬rn+1 Ũ OSpre) ∧ α̃seq↑Lk+1

Sub-formula ςseqn,mn+1 defines that rn+1 cannot happen until OSpre executes, where OSpre

is the OS which occurs right before rn+1 on Lifeline Li. As the semantic aspect of seqn+1

defined, rn+1 should locate right below OSpre on Lifeline Li and OSs execute in their graph-

ical order. α̃seq↑Lk+1
returns true. It denotes that only sn+1 locates on Lk+1. Thus, ςseqn,mn+1

codifies the order between the OSs of seqn and the OSs of mn+1 in seqn+1. In σ′[1..2n+2], the

OSs of seqn and the OSs of mn+1 respect the order defined by the semantic aspects of

seqn+1.

• Case 3: Sending OS sn+1 locates on an existing Lifeline, Li (i ≤ k), and receiving OS rn+1

locates on a new Lifeline, Lk+1 (see figure B.4d). or two OSs of mn+1 locate on an existing

Lifeline Li (i ≤ k) (see figure B.4e).

ςseqn,mn+1 = (¬sn+1 Ũ OSpre) ∧ α̃seq↑Lk+1

Similarly, sub-formula ςseqn,mn+1 defines that sn+1 cannot happen until OSpre executes,

where OSpre is the OS which occurs right before sn+1 on Lifeline Li. As the semantic

aspect of seqn+1 defined, sn+1 should locate right below OSpre on Lifeline Li and OSs ex-

ecute in their graphical order. α̃seq↑Lk+1
returns true. It denotes that none or only one OS

locates on Lk+1. Therefore rn+1 may locate on Lk+1 or below sn+1 on Li. Thus, ςseqn,mn+1
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codifies the order between the OSs of seqn and the OSs of mn+1 in seqn+1. In σ′[1..2n+2],

the OSs of seqn and the OSs of mn+1 respect the order defined by the semantic aspects of

seqn+1.

• Case 4: Two OSs of mn+1 locate on two existing Lifelines. Without loss of generality, we

assume that sending OS sn+1 locates on Lifeline Li (i ≤ k), receiving OS rn+1 locates on

Lifeline Lj (j ≤ k) (see figure B.4f).

ςseqn,mn+1 = (¬sn+1 Ũ OSpres) ∧ (¬rn+1 Ũ OSprer)

Sub-formula ςseqn,mn+1 defines that sn+1 cannot happen until OSpres has taken place, where

OSpres is the OS occurring right before sn+1 on Lifeline Li, and rn+1 cannot happen until

OSprer has taken place, where OSprer is the OS occurring right before rn+1 on Lifeline Lj .

As the semantic aspect of seqn+1 defined, sn+1 should locate right below OSpres on Lifeline

Li, and rn+1 should locate right below OSprer on Lifeline Lj . OSs execute in their graphical

order along each Lifeline. Thus, ςseqn,mn+1 codifies the order between the OSs of seqn and

the OSs of mn+1 in seqn+1. In σ′[1..2n+2], the OSs of seqn and the OSs of mn+1 respect the

order defined by the semantic aspects of seqn+1.

Now we have proven that σ′[1..2n+2] respects all the semantic aspects of seqn+1, i.e., σ′[1..2n+2] ∈
(Σseqn+1

sem )∗.

To conclude, ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′[1..2n+2] ∈ (Σseqn+1
sem )∗.

B.2 Proof of Theorem 4.11 and Theorem 4.12

Theorem 4.11. (Σseqr
sem)∗ and PRE2h+2p((Σ

seqr

LTL)ω) are equal.

Proof. We use mathematical induction, which is based on the number of CFs, r, directly enclosed

in seqr.

Base step. The sequence Diagram contains at most one CF, cf1. (r ≤ 1)
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• Case 1. Sequence Diagram seq0 contains no CF. (r = 0)

The proof follows the one for basic Sequence Diagram.

• Case 2. Sequence Diagram seq1 contains only one CF, cf1. (r = 1)

Π̃seq1 =(
∧

i∈LN(seq1)
g∈T BEU(seq↑i)

α̃g) ∧ (
∧

j∈MSG(seq1)

ρj) ∧ (
∧

j∈MSG(seq1)

βj) ∧ Φcf1 ∧ εseq1

– Case 2.1 We assume that cf1 has a Operands whose Interaction Constraint evaluate to

False. The bth Operand contains qb Messages, where 1 ≤ b ≤ a.

Φcf1 = ηcf1 =
∧

i∈LN(cf1)

((
∧

OSpost∈post(cf1↑i)

(¬OSpost)) Ũ (
∧

OSpre∈pre(cf1↑i)

(OSpre)))

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Πseq1 .

First, we consider the semantic aspects of the OSs directly enclosed in seq1. We project

seq1 onto each of its covered Lifelines to obtain a EU. We also project cf1 onto each

of its covered Lifeline to obtain a CEU. Therefore, each EU of seq1 may contain a

CEU of cf1 and BEUs grouped by the OSs directly enclosed in the EU. Similar to the

semantics of an BEU within a basic Sequence Diagram, the semantics of any BEU

directly enclosed in the EU of seq1 specifies that OSs are ordered as their graphical

order. If υ ∈ (Σseq1
sem)∗, we can easily infer that υ ·τω |= ∧

i∈LN(seq1)
g∈TBEU(seq1↑i)

α̃g. The semantics

of each Message directly enclosed in seq1 specifies that its receiving OS cannot happen

before the sending OS, and both OS can occur once only once. Accordingly, we can

easily infer that υ · τω |= ∧
j∈MSG(seq1)

ρj , and υ · τω |= ∧
j∈MSG(seq1)

βj .
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Then, we consider the semantics of cf1. It defines that cf1 does not execute when the

Constraints of all the Operands evaluate to False. cf1’s preceding Interaction Frag-

ments and succeeding Interaction Fragments are ordered by Weak Sequencing. In this

case, cf1’s preceding OS must happen before its succeeding OS on each Lifeline. We

use LTL formula ηcf1 to capture cf1’s semantics. ηcf1 does not specify the order of

OSs within Operands because the Operands whose Constraints evaluate to False are

excluded. We assume that if υ·τω does not satisfy ηcf1 , then ηcf1 specifies that, on Life-

line i, cf1’s preceding OS, OSpre, occurs after cf1’s succeeding OS, OSpost. However,

ηcf1 specifies that, on each Lifeline covered by cf1, its succeeding OS cannot happen

until its preceding OS finishes execution. Functions pre(cf1 ↑i) and post(cf1 ↑i) re-

turn the set of OSs which may happen right before and after CEU cf1 ↑i. In this case,

each set contains at most one OS. Thus, OSpre must happen before OSpost, which

contradicts our assumption. In this way, we can prove that υ · τω |= ηcf1 .

Finally, we consider the interleaving semantics of seq1. No OS in cf1 can executes, so

only the OSs directly enclosed in seq1 can be enabled to execute. We can prove that

υ · τω |= εseq1 . The proof follows the one for basic Sequence Diagram.

Now we have proven that if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃seq1 .

(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, σ[1..2h] ∈ (Σseq1
sem)∗.

In Σseq1

LTL, no OS within cf1 is enabled to execute because all the Constraints of cf1’s

Operand evaluate to False. If σ ∈ (Σseq1

LTL)ω, then σ = σ[1..2h] · τω, which follows

Lemma 4.10. We wish to prove that σ[1..2h] respects all the semantics of seq1. σ |=
Π̃seq1 , so σ satisfies all sub-formulas of Π̃seq1 . We prove that the sub-formulas capture

the semantic aspects as below.

First, we discuss the sub-formulas α̃g, ρj , and βj for seq1. Function TBEU(seq1 ↑i)

returns the BEUs directly enclosed in seq1 on Lifeline i. These BEUs, which are

separated using CEU of cf1 on Lifeline i, are formed by the OSs directly enclosed in
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seq1. Function MSG(cf1) returns the set of Messages directly enclosed in cf1. We

can prove that these sub-formulas capture the semantics of OSs directly enclosed in

seq1. The proof follows the one for OSs within basic Sequence Diagram.

Next, we discuss the sub-formula ηcf1 . It defines that, on Lifeline i, OSs in post(cf1 ↑i)

cannot happen until OSs in pre(cf1 ↑i) finish execution. We assume that, if ηcf1

does not capture the semantics of cf1, then on a Lifeline, i, the preceding OS of cf1,

OSpre, happens after the succeeding OS of cf1, OSpost. However, the semantics of

ηcf1 defines the Weak Sequencing between cf1’s preceding OSs and succeeding OSs,

i.e., its preceding OSs must happen before its succeeding OS on the same Lifeline.

Therefore, OSpre must happen before OSpost, which contradicts our assumption. In

this way, we can prove that ηcf1 captures the semantics of cf1.

Finally, we discuss the sub-formula εseq1 . It represents that only one OS in

|AOS(seq1)| execute at a time, or all OSs in |AOS(seq1)| have executed. In this

case, function |AOS(seq1)| returns the set of OSs directly enclosed in seq. We can

prove that εseq1 captures the interleaving semantics of seq1 by following the proof for

basic Sequence Diagram.

Now we have proven that ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, it respects all the semantic

aspects of seq1, i.e., σ[1..2h] ∈ (Σseq1
sem)∗.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃seq1 , and ∀σ.σ ∈ Σω, if

σ ∈ (Σseq1

LTL)ω, then σ[1..2h] ∈ (Σseq1
sem)∗.

– Case 2.2 We assume that cf1 has at least one Operand whose Constraint evaluates to

True. The Operator of cf1 is not “alt” or “loop”.

Φcf1 = Ψcf1 = θ̃cf1 ∧
∧

i∈LN(cf1)

γ̃cf1
i ∧ %cf1
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∗ Case 2.2.1 We assume that, cf1 has two Operands. One Operand contains p Mes-

sages, and its Interaction Constraint evaluates to True. The other Operand con-

tains q Messages, and its Interaction Constraint evaluate to False. (see figure B.5,

where cond1 evaluate to True, and cond2 evaluates to False).

Figure B.5: Example of Sequence Diagram with CF

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Πseq1 .

First, we consider the semantic aspects of the OSs directly enclosed in seq1. We

can prove that υ · τω satisfies
∧

i∈LN(seq1)
g∈TBEU(seq1↑i)

α̃g,
∧

j∈MSG(seq1)

ρj , and
∧

j∈MSG(seq1)

βj .

The proof follows the the one in case 2.1.

Then, we consider the semantic aspects of the OSs within each Operand of cf1.

The semantic aspects specify that only the order of the OSs within each Operand

whose Constraint evaluates to True is maintained. The Operands whose Con-

straints evaluate to False are excluded. Each Operand can be considered as a

basic Sequence Diagram with Constraint. The OSs within each Operand respect

the same order as the OSs within a basic Sequence Diagram. Sub-formula θ̃cf1

describes the semantics of the Operands whose Constraints evaluate to True using
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function TOP (cf1), where the formula for each Operand follows the formula for

a basic Sequence Diagram, i.e., a conjunction of α̃as, βjs, and ρjs. Therefore, we

can prove that υ · τω |= θ̃cf1 by following the proof of basic Sequence Diagram.

Next, we consider the semantic aspects which describe the order between cf1 and

its adjacent OSs. cf1 and its adjacent OSs are connected using Weak Sequenc-

ing, i.e., for Lifeline i(1 ≤ i ≤ j), cf1’s preceding OSs must execute before its

CEU’s execution, and cf1’s succeeding OSs must execute afterwards. Function

pre(cf1 ↑i) returns the set of OSs which may happen right before CEU cf1 ↑i.

The semantics aspect of seq1 defines that, for Lifeline i(1 ≤ i ≤ j) , any OS

within cf1 ↑i cannot execute until all OSs in pre(cf1 ↑i) finish execution. We

wish to prove that the semantic aspect is captured by the first conjunct of sub-

formula γ̃cf1 . We assume that, if υ · τω does not satisfy the first conjunct of γ̃cf1 ,

then γ̃cf1 defines that, on Lifeline i, at least one OS, rc+d (see figure B.5), occurs

before OSpre. OSpre is an OS in pre(cf1 ↑i). The first conjunct of γ̃cf1 specifies

that any OS within cf1 on Lifeline i cannot execute until the OSs in pre(cf1 ↑i)

finish execution, so OSpre must happen before rc+d, which contradicts our as-

sumption. In this way, we can prove that υ · τω satisfies the first conjunct of

γ̃cf1 . Similarly, we can also prove that υ · τω satisfies the second conjunct of γ̃cf1 .

Hence, υ · τω |= γ̃cf1 .

Finally, we consider the semantic aspect for the seq1. We define the OSs which

are directly enclosed in seq1 or Operands whose Constraints evaluate to True as

enabled OS, i.e., these OSs can be enabled to occur. Function AOS(seq1) returns

the set of enabled OSs within seq. The semantic aspect specifies that only one

enabled OS can execute at a time, and all the enabled OSs should execute unin-

terrupted. If υ ∈ (Σseq1
sem)∗, we can deduce that |υ| = |AOS(seq1)| = 2h + 2p. It

is easy to infer that υ · τω |= εseq1 .

Now we have proven that if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃seq1 .
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(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, σ[1..2h+2p] ∈ (Σseq1
sem)∗.

If σ ∈ (Σseq1

LTL)ω, then σ = σ[1..2h+2p] · τω, which follows Lemma 4.10. We wish to

prove that σ[1..2h+2p] respects all the semantics of seq1. σ |= Π̃seq1 , so σ satisfies

all sub-formulas of Π̃seq1 . We prove that the sub-formulas capture the semantic

aspects as below.

First, we discuss the sub-formulas α̃g, ρj , and βj for seq1. We can prove that these

sub-formulas capture the semantics of OSs directly enclosed in seq1. The proof

follows the one in case 2.1.

Then, we discuss the sub-formula θ̃cf1 . Function
∧

op∈TOP (cf1)

returns the set of

Operands whose Constraints evaluate to True within cf1. Hence, θ̃cf1 only cap-

tures the semantics of Operands whose Constraints evaluate to True. It is consis-

tent with the semantic aspect of cf1, which excludes the Operands whose Con-

straints evaluate to False. For each Operand whose Constraints evaluate to True,

we wish to prove that sub-formulas α̃g, ρj , and βj capture its semantics. cf1 con-

tains no other CFs, so ABEU(op ↑i) returns the BEU of op on Lifeline i. We can

consider an Operand with no nested CFs as a basic Sequence Diagram with Inter-

action Constraint. In this way, we can prove that these sub-formulas capture the

Operand’s semantics by following the proof of basic Sequence Diagram. There-

fore, we have proven that θ̃cf1 captures the semantics of Combined Fragment cf1.

Next, we discuss the sub-formula γ̃cf1

i for Lifeline i. We wish to prove that it

captures the order of CEU cf1 ↑i and its preceding/succeeding OSs on Lifeline

i. The first conjunct of γ̃cf1

i defines that any OS in CEU cf1 ↑i cannot happen

before all OSs in pre(cf1 ↑i) finish execution. If it does not capture the semantic

aspect, then we assume that at least an OS in pre(cf1 ↑i), OSpre, occurs after

an OS in cf1 ↑i, rc+d. Function pre(cf1 ↑i) returns the set of OSs which may

happen right before CEU cf1 ↑i. The semantics defines that all OS in pre(cf1 ↑i)

must happen before all OS within CEU cf1 ↑i. Thus, OSpre must occur before
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rc+d, which contradicts our assumption. In this way, we have proven that the

first conjunct of γ̃cf1

i captures the order of CEU cf1 ↑i and its preceding OSs on

Lifeline i. Similarly, we can prove that the second conjunct of γ̃cf1

i captures the

order of CEU cf1 ↑i and its succeeding OSs on Lifeline i. Therefore, we have

proven that γ̃cf1

i captures the order of CEU cf1 ↑i and its preceding/succeeding

OSs on Lifeline i.

Finally, we discuss the sub-formula εseq1 . It represents that only one OS in

|AOS(seq1)| executes at a time, or all OSs in |AOS(seq1)| have executed. Func-

tion |AOS(seq1)| returns the set of OSs which can be enabled to execute in

seq1, i.e., it returns a set which includes the OSs directly enclosed in seq1 and

the OSs within cf1’s Operand whose Constraint evaluates to True. In seq1,

|AOS(seq1)| = 2h+2p. From lemma 4.10, if σ |= εseq1 , then σ = σ[1..2h+2p] · τω.

Therefore, εseq1 captures the semantic aspect, which enforces that only one object

can execute an OS at a time and all enabled OSs of seq1 execute uninterrupted.

Now we have proven that ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, respects all the semantic

aspects of seq1, i.e., σ[1..2h+2p] ∈ (Σseq1
sem)∗.

If cf1 contains more than two Operands, p Messages may be enclosed in multiple

Operands whose Interaction Constraints evaluate to True, and q Messages may be

enclosed in multiple Operands whose Interaction Constraints evaluate to False.

The proof follows the one for cf1 with two Operands.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃seq1 , and ∀σ.σ ∈ Σω, if

σ ∈ (Σseq1

LTL)ω, then σ[1..2h+2p] ∈ (Σseq1
sem)∗.

We have proven that the semantic rules general to all CFs can be captured by our

LTL templates. The semantic rules for each CF with different Operators can be

enforced by adding different semantic constraints, which are captured using LTL

template %CF . Parallel defines that the OSs within different Operands may be

interleaved. Its semantics does not introduce additional semantic rule. Thus, we
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have proven that our LTL templates capture the semantics of Parallel.

We use Strict Sequencing as an example to prove that the semantic rule for each

Operator can be captured by our LTL templates. The cases for CFs with other

Operators can be proven similarly.

∗ Case 2.2.2 We assume that, a given Strict Sequencing, cf strict
1 , has two Operands

whose Interaction Constraints evaluate to True. The first Operand contains p1

Messages, and the second Operand contains p2 Messages. cf strict
1 covers i Life-

lines.

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Πseq1 .

The Strict Sequencing imposes an order among OSs within different Operands.

For an Operand (not the first Operand), any OS cannot occur before the OSs

within the previous Operand finish execution. Function preEU(u) returns the

set of OSs within EU v which happen right before EU u, i.e., the Constraint

of EU v evaluates to True. In this case, preEU(u) returns the last OS in EU

u. The semantic aspect of Strict Sequencing can be considered as that, any OS

in Operand k cannot happen until the OSs in all preEU(u), where u is the EU

of Operand k on Lifeline j(1 ≤ j ≤ i), finish execution. We introduce sub-

formula χk to capture the semantics of Operand k. We assume that, if υ · τω

does not satisfies
∧

k∈NFTOP (cfstrict
1 )

χk, then χk defines that at least one OS, OSs,

in Operand k, occurs before OSpre, which is an OS in preEU((k− 1) ↑j), where

1 ≤ j ≤ i. Sub-formula χk specifies that any OS within preEU(u) on all the

Lifelines covered by the Strict Sequencing must happen before the OSs within

Operand k. Therefore, OSpre must happen before OSs, which contradicts our

assumptions. Thus, we can prove that υ · τω |= ∧
k∈NFTOP (cfstrict

1 )

χk.

We have proven that υ · τω satisfies other general sub-formulas of Πseq1 in case

2.1.2(1). Hence, we can prove that υ · τω |= Πseq1 .

(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, σ[1..2h+2p1+2p2] ∈ (Σseq1
sem)∗.
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If σ ∈ (Σseq1

LTL)ω, then σ = σ[1..2h+2p1+2p2] · τω, which follows Lemma 4.10. We

wish to prove that σ[1..2h+2p1+2p2] respects all the semantics of seq1. σ |= Π̃seq1 ,

so σ satisfies all sub-formulas of Π̃seq1 . We have proven that the sub-formulas α̃g,

ρj , and βj capture the semantics of OS directly enclosed in seq1; sub-formulas

θ̃cfstrict
1 and γ̃

cfstrict
1

i capture the general semantic aspects of cf strict
1 ; sub-formula

εseq1 captures the interleaving semantics of seq1 (see case 2.1.2(1)). Now we need

to prove that sub-formula
∧

k∈NFTOP (cfstrict
1 )

χk captures the semantics of Strict Se-

quencing.

Sub-formula
∧

k∈NFTOP (cfstrict
1 )

χk asserts the order between each Operand k of

Strict Sequencing (k is not the first Operand), and its preceding Operand. Func-

tion preEU(u) returns the set of OSs within EU v which happen right before

EU u. Each OS within k cannot happen until all OS within preEU(u) on all the

Lifelines covered by the Strict Sequencing. If the sub-formula does not capture

the semantics of Strict Sequencing, we assume the semantics defines that at least

an OS in preEU((k − 1) ↑j)(1 ≤ j ≤ i), OSpre, occurs after an OS in Operand

k, OSs. Actually, the semantics of Strict Sequencing defines that in any Operand

except the first one, OSs cannot execute until the previous Operand completes.

Therefore, OSpre must happen before OSs, which contradicts our assumption. In

this way, we can prove that sub-formula
∧

k∈NFTOP (cfstrict
1 )

χk captures the seman-

tics of Strict Sequencing. Hence, we can prove that σ[1..2h+2p] ∈ (Σseq1
sem)∗.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃seq1 , and ∀σ.σ ∈ Σω, if

σ ∈ (Σseq1

LTL)ω, then σ[1..2h+2p] ∈ (Σseq1
sem)∗.

– Case 2.3 The semantics of Alternatives defines that at most one of its Operand whose

Constraints evaluate to True is chosen to execute. The Operands whose Constraints

evaluate to False are still excluded. To capture its semantics, we need to specify the

semantics of the chosen Operand and the connection between the chosen Operand and
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its adjacent OSs. We use LTL formula ΨCF
alt to capture the semantic of Alternatives.

Sub-formulas θ̄CF
m and γ̄CF

i,m can be rewritten into ¯̃θCF
m and ¯̃γCF

i,m by following the same

procedures of rewriting sub-formulas θCF and γCF
i . The LTL formula of Alternatives,

ΨCF
alt , with rewritten sub-formulas is shown in figure B.6.

ΨCF
alt =

∧

m∈TOP (CF )

Ψm
alt

Ψm
alt =





¯̃
θCF

m ∧ ∧
i∈LN(CF )

¯̃γCF
i,m ∧ ∧

CFt∈nested(m)

ΦCFt if m is the chosen Operand (1)

True else (2)
¯̃
θCF

m =(
∧

i∈LN(m)
g∈ABEU(m↑i)

α̃g) ∧ (
∧

j∈MSG(m)

ρj) ∧ (
∧

j∈MSG(m)

βj))

¯̃γCF
i,m =

∧
beu∈ABEU(m↑i)

OS∈AOS(beu)

((¬OS Ũ (
∧

OSpre∈pre(CF↑i)

(OSpre))) ∧ ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ (OS)))

Figure B.6: Rewriting LTL formula for Alternatives

We assume that, a given Alternatives, cfalt
1 , has two Operands whose Interaction Con-

straints evaluate to True. The first Operand contains p1 Messages, and the second

Operand contains p2 Messages. cfalt
1 covers i Lifelines.

Φcf1 = Ψcf1
alt

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Πseq1 .

For Alternatives. We only consider the Operands whose Constraints evaluate to True

as defined by the general semantics rules. If more than one Operand’s Constraint

evaluates to True, at most one Operand is chosen and the order of the OSs within

it should be specified. Sub-formula Ψm
alt defines the semantics of Operand m whose

Constraint evaluates to True. If m is chosen, its semantics is captured by sub-formula
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¯̃θ
cfalt

1
m and ¯̃γ

cfalt
1

i,m . Otherwise, Ψm
alt evaluates to True, denoting that m is excluded. We

can prove that ¯̃θ
cfalt

1
m describes the order among OSs within m by following the proof

for sub-formula θ̃cfalt
1 . Similarly, we can prove that ¯̃γ

cfalt
1

i,m describes the order among

OSs within m and the Alternatives’s adjacent OSs by following the proof for sub-

formula γ̃
cfalt

1
i . Therefore, υ · τω satisfies Ψ

cfalt
1

alt .

We have proven that υ · τω satisfies α̃g, ρj , and βj for seq1 in case 2.1.2(1). For

sub-formula εseq1 , function AOS(seq1) returns the enabled and chosen OSs, i.e., for

Alternatives, only the OSs within the chosen Operand are returned. We can prove that

υ · τω satisfies εseq1 by following the proof in case 2.1.2(1). Hence, we can prove that

υ · τω |= Πseq1 .

(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

LTL)ω, σ[1..2h+2pm] ∈ (Σseq1
sem)∗ (m is

the chosen Operand of cfalt
1 ).

If σ ∈ (Σseq1

LTL)ω, then σ = σ[1..2h+2pm] · τω, which follows Lemma 4.10. We wish

to prove that σ = σ[1..2h+2pm] respects all the semantics of seq1. σ |= Π̃seq1 , so σ

satisfies all sub-formulas of Π̃seq1 . We have proven that the sub-formulas α̃g, ρj , and

βj capture the semantics of OS directly enclosed in seq1; sub-formula εseq1 captures

the interleaving semantics of seq1 (see case 2.1.2(1)). We need to prove that sub-

formula Ψ
cfalt

1
alt captures the semantics of Alternatives.

Sub-formula Ψ
cfalt

1
alt is a conjunction of sub-formula Ψm

alts, where m is an Alterna-

tives’s Operand whose Constraint evaluates to True. Therefore, the Operands whose

Constraints evaluate to False are excluded. Ψm
alt evaluates to False if m is unchosen,

which captures the semantics that the unchosen Operands are excluded. Ψm
alt is a con-

junction of sub-formulas ¯̃θ
cfalt

1
m and ¯̃γ

cfalt
1

i,m when m is the chosen Operand. We can

prove that sub-formula ¯̃θ
cfalt

1
m captures the order among OSs within m by following the

proof of θ̃
cfalt

1
m . We can also prove that sub-formula ¯̃γ

cfalt
1

i,m captures the order between

OSs within m and the Alternatives’s adjacent OSs by following the proof of γ̃
cfalt

1
i . In
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this way, we can prove that sub-formula Ψ
cfalt

1
alt captures the semantics of Alternatives.

Hence, we can prove that σ[1..2h+2pm] ∈ (Σseq1
sem)∗.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃seq1 , and ∀σ.σ ∈ Σω, if

σ ∈ (Σseq1

LTL)ω, then σ[1..2h+2p] ∈ (Σseq1
sem)∗.

– Case 2.4 The Loop represents the iterations of its sole Operand. We capture the se-

mantics of Loop using LTL formula ΨCF
loop,R, which unfolds the iterations and connects

them using Weak Sequencing. Each iteration can be considered as an Operand, whose

semantics can be captured by sub-formulas αg, βj , ρj and γi as proven. We need to

prove that sub-formula
∧

i∈LN(CF )

κi,R captures the Weak Sequencing among iterations.

The proof is quite similar as the proof for sub-formula
∧

k∈NFTOP (CF )

χk of Strict Se-

quencing.

Inductive step. A given Sequence Diagram, seqn, directly contains n CFs. For the Messages

within the CFs, pn Messages are chosen and enabled in Operands whose Interaction Constraints

evaluate to True. We assume ∀υ.υ ∈ Σ∗, if υ ∈ (Σseqn
sem )∗, then υ · τω |= Π̃seqn . ∀σ.σ ∈ Σω, if

σ ∈ (Σseqn

LTL)ω, then σ[1..2h+2pn] ∈ (Σseq
sem)∗. (r = n)

We add a CF, cfn+1, in seqn to form a new Sequence Diagram, seqn+1, with n+1 CFs. cfn+1 is

directly enclosed in seqn+1. In cfn+1, pn+1 Messages are chosen and enabled in Operands whose

Interaction Constraints evaluate to True. We wish to prove that, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗,

then υ′ · τω |= Π̃seqn+1 . ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′[1..2h+2pn+2pn+1]
∈ (Σseqn+1

sem )∗.

The LTL templates Π̃seqn and Π̃seqn+1 are shown as,

Π̃seqn =(
∧

i∈LN(seqn)
g∈T BEU(seqn↑i)

α̃g) ∧ (
∧

j∈MSG(seqn)

ρj) ∧ (
∧

j∈MSG(seqn)

βj) ∧ (
∧

CF∈nested(seqn)

ΦCF ) ∧ εseqn

Π̃seqn+1 =(
∧

i∈LN(seqn+1)
g∈T BEU(seqn+1↑i)

α̃g) ∧ (
∧

j∈MSG(seqn+1)

ρj) ∧ (
∧

j∈MSG(seqn+1)

βj) ∧ (
∧

CF∈nested(seqn)

ΦCF ) ∧ Φcfn+1 ∧ εseqn+1

(a) We wish to prove that, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω |= Π̃seqn+1 .
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First, we consider the semantic aspects of the OSs directly enclosed in seqn+1. We can prove

that υ′ · τω satisfies
∧

i∈LN(seqn+1)

g∈TBEU(seqn+1↑i)

α̃g,
∧

j∈MSG(seqn+1)

ρj , and
∧

j∈MSG(seqn+1)

βj . The proof follows

the the one in case 2.1 of basic case.

Then, we consider the semantic aspects of n CFs, which are captured by LTL formula
∧

CF∈nested(seqn)

ΦCF in seqn. The newly added CF is directly enclosed in seqn+1, so it does not

interact with the existing CFs. Therefore, in seqn+1, the semantics of existing CFs can still be

captured by formula
∧

CF∈nested(seqn)

ΦCF . We can prove that υ′ · τω |= ∧
CF∈nested(seqn)

ΦCF .

Next, we consider the semantic aspects of cfn+1, which is captured using formula Φcfn+1 .

For Φcfn+1 , sub-formulas θ̃cfn+1 , γ̃
cfn+1

i , and the additional ones for each Operator still define

the semantics we have proven in base case. The order of OSs within each CF is not changed.

Therefore, υ′ · τω satisfies θ̃cfn+1 and the additional sub-formulas for each Operand. Sub-formula

γ̃
cfn+1

i still specifies the Weak Sequencing between cfn+1 and its preceding/succeeding Interaction

Fragments. Comparing to base case, cfn+1’s preceding/succeeding Interaction Fragments can be

OSs or CFs. We wish to prove that our algorithms for calculating pre(cfn+1 ↑i) and post(cfn+1 ↑i

) are correct.

Function pre(cfn+1 ↑i) returns the set of OSs which happen right before CEU cfn+1 ↑i. We

focus on the CEU or EU v prior to cfn+1 ↑i on Lifeline i. The EUs whose Constraints evaluate to

False are excluded. Therefore, v should be a CEU containing at least one EU whose Constraint

evaluates to True or an EU whose Constraint evaluates to True. We start from the CEU or EU

prior to cfn+1 ↑i, and check the CEUs and EUs until we find v. If v does not exist, we define

that the first conjunct of γ̃
cfn+1

i evaluates to True. Otherwise, we discuss the return value of the

function by different cases.

• Case i. If v is a BEU, function returns the OS in the bottom of v, OSt. We assume that

if the function returns another OS, OSs, then OSs should happen after OSt. However, the

semantics defines that OSs are ordered graphically in a BEU. OSt is the last one to execute

in v, which contradicts our assumption. Thus, we can prove that the function returns the OS
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in the bottom of v.

• Case ii. If v is a CEU with one BEU whose Constraint evaluates to True, function returns

the OS in the bottom of the BEU as we proven in case 1.

• Case iii. If v is a CEU with multiple BEUs whose Constraints evaluate to True. (1) v

with Operator “par” returns a set containing the last OS of each BEU, as defined by the

semantics of Parallel (We have proven in base case 2.2.1); (2) v with Operator “alt” returns

a set containing the last OS of the chosen BEU, as defined by the semantics of Alternatives

(We have proven in base case 2.3); (3) v with Operator “weak” or “strict” returns a set

containing the last OS of the last BEU, as defined by the semantics of Strict Sequencing

(We have proven in base case 2.2.2).

• Case iv. If v is a CEU with nested CEUs. (1) If v directly contains only one EU whose

Constraint evaluates to True, we find the EU’s last CEU or EU, w, and recursively apply

case 1 to 4 to prove it. (2) If v directly contains multiple EUs whose Constraint evaluates to

True, we recursively apply case 1 to 4 to (a) each EU to prove it (v’s Operator is “par”); (b)

the chosen EU to prove it (v’s Operator is “alt”); (c) the last EU (v’s Operator is “weak” or

“strict”) to prove it.

The proof of the algorithm for calculating post(cfn+1 ↑i) follows the one of the algorithm for

calculating pre(cfn+1 ↑i). Hence, υ · τω |= γ̃cfn+1 .

Finally, we consider the semantic aspect for the seqn+1. Function AOS(seqn+1) returns the set

of chosen and enabled OSs within seqn+1. The semantic aspect specifies that only one enabled OS

can execute at a time, and all enabled OSs should execute uninterrupted. If υ′ ∈ (Σseqn+1
sem )∗, we

can deduce that |υ′| = |AOS(seqn+1)| = 2h+2pn+2pn+1. It is easy to infer that υ′ ·τω |= εseqn+1 .

Now we have proven that if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω |= Π̃seqn+1 .

(b) We wish to prove that, ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′[1..2h+2pn+2pn+1]
∈ (Σseqn+1

sem )∗.

If σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′ = σ[1..2h+2pn+2pn+1] · τω, which follows Lemma 4.10. We wish to
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prove that σ′[1..2h+2pn+2pn+1]
respects all the semantics of seqn+1. σ′ |= Π̃seqn+1 , so σ′ satisfies all

sub-formulas of Π̃seqn+1 . We prove that the sub-formulas capture the semantic aspects as below.

First, we discuss the sub-formulas α̃g, ρj , and βj for seqn+1. We can prove that these sub-

formulas capture the semantics of OSs directly enclosed in seqn+1. The proof follows the one in

case 2.1.

Then, we discuss the sub-formula
∧

CF∈nested(seq)

ΦCF . In seqn, the sub-formula captures the

semantics of n CFs. In seqn+1, adding cfn+1 does not change the semantics of the existing CFs. It

is easy to infer that, sub-formula
∧

CF∈nested(seq)

ΦCF still captures the semantics of the CFs except

for cfn+1.

Next, we discuss the sub-formula formula Φcfn+1 , which is a conjunction of sub-formulas

θ̃cfn+1 , γ̃
cfn+1

i , and the additional one for each Operator. With the proof of base case, θ̃cfn+1

captures the semantics of cfn+1’s Operands, while the additional sub-formula captures the se-

mantics of cfn+1’s Operator. Sub-formula γ̃
cfn+1

i may be different from the base case, since the

preceding/succeeding Interaction Fragment of cfn+1 can be other CFs. On Lifeline i, functions

pre(cfn+1 ↑i) and post(cfn+1 ↑i) return the set of OSs which may happen right before and after

CEU cfn+1 ↑i respectively. We have proven that our algorithms can calculate pre(cfn+1 ↑i) and

post(cfn+1 ↑i) for all the cases. Thus, we can infer that
∧

i∈LN(CF )

γ̃
cfn+1

i still captures the Weak

Sequencing between cfn+1 and its preceding/succeeding Interaction Fragments.

Finally, we discuss the sub-formula εseqn+1 . It represent only one OS in |AOS(seqn+1)| ex-

ecute at a time, or all OSs in |AOS(seqn+1)| have executed. Function |AOS(seqn+1)| returns

the set of OSs which are chosen and enabled to execute in seqn+1. In seqn+1, |AOS(seqn+1)| =

2h + 2pn + 2pn+1. From lemma 4.10, if σ |= εseqn+1 , then σ = σ[1..2h+2pn+2pn+1] · τω. Therefore,

εseqn+1 captures the interleaving semantics of seqn+1.

Now we have proven that ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

LTL )ω, respects all the semantic aspects of

seqn+1, i.e., σ′[1..2h+2pn+2pn+1]
∈ (Σseqn+1

sem )∗.

To conclude, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω |= Π̃seqn+1 , and ∀σ′.σ′ ∈ Σω, if

σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′[1..2h+2pn+2pn+1]
∈ (Σseqn+1

sem )∗.
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Figure B.7: Example of Sequence Diagram with nested CF

If a Sequence Diagram contains nested CFs, the semantics of nested CFs are independent. For

instance, if cf1 whose Operand is op1 contains cf2 whose Operand is op2 (see figure B.7), the

semantic rules of cf1 do not constraint the semantic rules of cf2.

Theorem 4.12. (Σseqnested
sem )∗ and PRE2h+2p((Σ

seqnested

LTL )ω) are equal.

Proof. We use mathematical induction, which is based on the maximal layer of CF, l, within

seqnested.

Base step. seqnested directly contains r CFs, each of which does not contain other CFs. (l = 1)

The proof follows the one for theorem 4.11.

Inductive step. seqnested
n directly contains r CFs. We assume that cfv, which is a CF directly

enclosed in seqnested
n , contains cfw, which is a CF with the maximal layer within seqnested

n . The

maximal layer of CF within seqnested
n is n. For the Messages within the CFs, pn Messages are

chosen and enabled in Operands whose Interaction Constraints evaluate to True. We assume

∀υ.υ ∈ (Σ
seqnested

n
sem )∗, υ · τω |= Π̃seqnested

n
. ∀σ.σ ∈ (Σ

seqnested
n

LTL )ω, then σ[1..2h+2pn] ∈ (Σ
seqnested

n
sem )∗.

(l = n)

We add a CF, cfu, in seqnested
n to form a new Sequence Diagram, seqnested

n+1 , where cfu contains
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cfv. The layer of cfw becomes n + 1, which is the maximal layer of CF within seqnested
n+1 . In

seqnested
n+1 , pn+1 Messages are chosen and enabled in Operands whose Interaction Constraints eval-

uate to True. We wish to prove that, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σ
seqnested

n+1
sem )∗, then υ′ · τω |= Π̃seqnested

n+1
.

∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqnested

n+1

LTL )ω, then σ′[1..2n+2pn+1]
∈ (Σ

seqnested
n+1

sem )∗.

When we add cfu into seqnested
n , then order of the OSs directly enclosed in seqnested

n keep

unchanged. Thus, the semantics of the OSs directly enclosed in seqnested
n+1 can still be captured

using the corresponding sub-formulas of Π̃seqnested
n

. The LTL templates Π̃seqnested
n

and Π̃seqnested
n+1

are shown as,

Π̃seqnested
n

=(
∧

i∈LN(seqnested
n )

g∈T BEU(seqnested
n ↑i)

α̃g) ∧ (
∧

j∈MSG(seqnested
n )

ρj) ∧ (
∧

j∈MSG(seqnested
n )

βj) ∧ (
∧

CF∈nested(seqnested
n )

ΦCF )

∧ εseqnested
n

Π̃seqnested
n+1

=(
∧

i∈LN(seqnested
n+1 )

g∈T BEU(seqnested
n+1 ↑i)

α̃g) ∧ (
∧

j∈MSG(seqnested
n+1 )

ρj) ∧ (
∧

j∈MSG(seqnested
n+1 )

βj) ∧ (
∧

CF∈nested(seqnested
n+1 )

ΦCF )

∧ εseqnested
n+1

=(
∧

i∈LN(seqnested
n )

g∈T BEU(seqnested
n ↑i)

α̃g) ∧ (
∧

j∈MSG(seqnested
n )

ρj) ∧ (
∧

j∈MSG(seqnested
n )

βj) ∧ (
∧

CF∈nested(seqnested
n )

CF 6=cfv

ΦCF )

∧ Φcfu ∧ εseqnested
n+1

(a) We wish to prove that, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σ
seqnested

n+1
sem )∗, then υ′ · τω |= Π̃seqnested

n+1
.

We wish to prove that υ′ · τω satisfies all sub-formulas of Π̃seqnested
n+1

.

First, we consider the OSs directly enclosed in seqnested
n+1 . The semantics of the OSs directly

enclosed in seqnested
n are not altered by adding cfu. Thus, we can prove that υ′ · τω satisfies the

sub-formulas of Π̃seqnested
n+1

capturing the semantics of the OSs directly enclosed in seqnested
n+1 , i.e.,

∧
i∈LN(seqnested

n )

g∈TBEU(seqnested
n ↑i)

α̃g,
∧

j∈MSG(seqnested
n )

ρj , and
∧

j∈MSG(seqnested
n )

βj .

Then, we consider the CFs (except cfu) directly enclosed in seqnested
n+1 . The semantics of these

CFs and the LTL sub-formulas capturing their semantics are not changed. It is easy to infer that
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υ′ · τω satisfies
∧

CF∈nested(seqnested
n )

CF 6=cfv

ΦCF .

Next, we consider CF cfu, whose semantics is captured using Φcfu . We discuss sub-formula

Φcfu using three cases.(1) If all the Constraints of cfu’s Operands evaluate to False, Φcfu = ηcfu .

We can prove that υ′ · τω satisfies Φcfu . The proof follows the one for base case. (2) If not all

the Constraints of cfu’s Operands evaluate to False, and the Operator of cfu is not alt or loop,

Φcfu = Ψcfu ∧ Φcfv . The semantics of cfv is not altered by adding cfu. Hence, we can infer

that υ′ · τω satisfies Φcfv . Ψcfu = θ̃cfu ∧ ∧
i∈LN(cfu)

γ̃cfu

i . We can prove that υ′ · τω satisfies θ̃cfu

and
∧

i∈LN(cfu)

γ̃cfu

i . The proof follows the one for base case. (3) If not all the Constraints of cfu’s

Operands evaluate to False, and the Operator of cfu is alt or loop, Φcfu = Ψcfu

alt or Φcfu = Ψcfu

loop

respectively. Similarly, we can prove that υ′ · τω satisfies Ψcfu

alt or Ψcfu

loop.

Finally, we consider the interleaving semantics of seqnested
n+1 . Function AOS(seqnested

n+1 ) returns

the set of chosen and enabled OSs within seqnested
n+1 . Sub-formula εseqnested

n+1
specifies that only

one OS execute at a state, or all OS have executed. If υ′ ∈ (Σ
seqnested

n+1
sem )∗, we can deduce that

|υ′| = |AOS(seqnested
n+1 )| = 2h + 2pn+1. It is easy to infer that υ′ · τω |= εseqnested

n+1
.

Now we have proven that if υ′ ∈ (Σ
seqnested

n+1
sem )∗, then υ′ · τω |= Π̃seqnested

n+1
.

(b) We wish to prove that, ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqnested

n+1

LTL )ω, then σ′[1..2n+2pn+1]
∈ (Σ

seqnested
n+1

sem )∗.

If σ′ ∈ (Σ
seqnested

n+1

LTL )ω, then σ′ = σ[1..2h+2pn+1] · τω, which follows Lemma 4.10. We wish to

prove that σ′[1..2h+2pn+1]
respects all the semantics of seqseqnested

n+1
. σ′ |= Π̃seqnested

n+1
, so σ′ satisfies all

sub-formulas of Π̃seqnested
n+1

. We prove that the sub-formulas capture the semantic aspects as below.

First, we discuss the sub-formulas α̃g, ρj , and βj for seqnested
n+1 . These sub-formulas are not

changed, so they still capture the semantics of OSs directly enclosed in seqnested
n . We can also

infer that these sub-formulas capture the semantics of OSs directly enclosed in seqnested
n+1

Then, we discuss the sub-formula
∧

CF∈nested(seqnested
n )

CF 6=cfv

ΦCF . For seqn, the sub-formula captures

the semantics of the CFs (except for cfv) directly enclosed in it. In seqn+1, adding cfu does not

change the semantics of the CFs except for cfv. It is easy to infer that, the sub-formula still

captures the semantics of the CFs except for cfv.
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Next, we discuss the sub-formula formula Φcfu using three cases. (1)Φcfu = ηcfu . We

can prove that the sub-formula captures the semantics of cfu when all the Constraints of cfu’s

Operands evaluate to False. The proof follows the one for base case. (2)Φcfu = Ψcfu ∧ Φcfv .

We wish to prove that the sub-formula captures the semantics of cfu if not all the Constraints of

cfu’s Operands evaluate to False, and the Operator of cfu is not alt or loop. With our assumption,

Φcfv still captures the semantics of cfv. Ψcfu = θ̃cfu ∧ ∧
i∈LN(cfu)

γ̃cfu

i . θ̃cfu captures the order of

OSs directly enclosed in cfu, while
∧

i∈LN(cfu)

γ̃cfu

i captures the order between cfu and its preced-

ing/succeeding Interaction Fragments. The proof follows the one for base case. The semantics of

the OSs directly enclosed in cfu and the semantics of cfv are independent. Therefore Ψcfu and

Φcfv are connected using conjunction. In this way, we can prove that Φcfu captures the semantics

of cfu. (3)Φcfu = Ψcfu

alt or Φcfu = Ψcfu

loop respectively. Similarly, we can prove that the sub-formula

captures the semantics of cfu if not all the Constraints of cfu’s Operands evaluate to False, and

the Operator of cfu is alt or loop.

Finally, we discuss the sub-formula εseqnested
n+1

. It represents that only one OS in

|AOS(seqnested
n+1 )| executes at a time, or all OSs in |AOS(seqnested

n+1 )| have executed. Func-

tion AOS(seqnested
n+1 ) returns the set of chosen and enabled OSs within seqnested

n+1 , where

|AOS(seqnested
n+1 )| = 2h + 2pn+1. From lemma 4.10, if σ′ |= εseqnested

n+1
, then σ = σ[1..2h+2pn+1] · τω.

Therefore, εseqnested
n+1

captures the interleaving semantics of seqnested
n+1 .

Now we have proven that ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqnested

n+1

LTL )ω, respects all the semantic aspects

of seqnested
n+1 , i.e., σ′[1..2h+2pn+1]

∈ (Σ
seqnested

n+1
sem )∗.

To conclude, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σ
seqnested

n+1
sem )∗, then υ′ · τω |= Π̃seqnested

n+1
, and ∀σ′.σ′ ∈ Σω, if

σ′ ∈ (Σ
seqnested

n+1

LTL )ω, then σ′[1..2h+2pn+1]
∈ (Σ

seqnested
n+1

sem )∗.

B.3 Proof of Theorem 6.14

Theorem 6.14. For a given Sequence Diagram, seq, with j Messages, (Σseq
sem)∗ and

PRE2j((Σ
seq
NuSMV )ω) are equal.
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Proof. We use mathematical induction, which is based on the number of Messages, j, within seq.

Base step. Basic Sequence Diagram seq1 contains only one Message, m1. (j = 1)

• Case 1. Sending OS s1, and receiving OS r1 of Message m1 locate on two Lifelines L1, L2

respectively (see figure B.1).

Σseq1
sem = {s1, r1}, where Σseq1

sem ⊆ Σ. The semantic aspects of seq1 define that, for m1, r1 can

only happen after s1. Only one trace, υ =< s1, r1 > of size 2, can be derived from seq1,

i.e., (Σseq1
sem)∗ = {< s1, r1 >}.

We wish to prove that < s1, r1 > ·τω ∈ (Σseq
NuSMV )ω. The NuSMV model for seq1 is shown

in figure B.8.

In the Lifeline modules, each variable of OS can become to True only once, which means

each OS can execute once and only once. OS r1 takes the state on L1 as an enabling

condition, which means r1 can be enabled to execute if s1 on L1 has executed. In the main

module, the INVAR statement restricts that at most one Lifeline can execute an OS at a

time. < s1, r1 > ·τω satisfies these restrictions of Mseq1 because (1)s1 and r1 occur once

and only once; (2)s1 happens before r1; and (3)s1 and r1 do not happen at the same state.

Thus, < s1, r1 > ·τω |=∈ (Σseq
NuSMV )ω.

We wish to prove that ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, then σ[1..2] ∈ (Σseq1
sem)∗.

The INVAR statement in the main module restricts that s1 and r1 do not happen at the same

time. Thus, σ[1..2] can be < s1, s1 >, < r1, r1 >, < s1, r1 > or < r1, s1 >. The variables

of OSs in Lifeline modules define that s1 and r1 can occur once and only once respectively.

Therefore, σ[1..2] can be < s1, r1 > or < r1, s1 >. OS r1’s enabling condition represents that

r1 cannot happen before s1. Therefore, σ[1..2] can only be < s1, r1 >, which is an element

of (Σseq1
sem)∗. In this way, we can prove σ[1..2] ∈ (Σseq1

sem)∗.

• Case 2. Sending OS s1, and receiving OS r1 of Message m1 locate on a single Lifeline L1

(see figure B.2).
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MODULE main
VAR
l_L1: L1(l_L2);
l_L2: L2(l_L1);

INVAR
(((l_L1.chosen -> l_L1.enabled)
&(l_L2.chosen -> l_L2.enabled))
&
((l_L1.chosen & !l_L2.chosen)
|(!l_L1.chosen & l_L2.chosen)
|(!l_L1.enabled & !l_L2.enabled)))

MODULE L1(L2)
VAR
OS_s1 : boolean;
state : {sinit, s1};
chosen : boolean;
DEFINE
s1_enabled := state = sinit;
enabled := s1_enabled;
flag_final := state = s1;
ASSIGN
init(state) := sinit;
next(state) :=
case
state = sinit & next(OS_s1) :s1;
1 :state;
esac;

init(OS_s1) := FALSE;
next(OS_s1) :=
case
chosen & s1_enabled :TRUE;
OS_s1 :FALSE;
1 :OS_s1;
esac;

MODULE L2(L1)
VAR
OS_r1 : boolean;
state : {sinit, r1};
chosen : boolean;
DEFINE
r1_enabled := state = sinit & L1.state = s1;
enabled := r1_enabled;
flag_final := state = r1;
ASSIGN
init(state) := sinit;
next(state) :=
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case
state = sinit & next(OS_r1) :r1;
1 :state;
esac;

init(OS_r1) := FALSE;
next(OS_r1) :=
case
chosen & r1_enabled :TRUE;
OS_r1 :FALSE;
1 :OS_r1;
esac;

Figure B.8: seq1 to NuSMV (case 1)

Besides the semantic aspects discussed in case 1, the OSs on L1 respect their graphical

order, i.e., s1 occurs before r1. Trace υ =< s1, r1 > of size 2 can be derived from seq1, i.e.,

(Σseq1
sem)∗ = {< s1, r1 >}.

The NuSMV model for seq1 is shown in figure B.9

Comparing to Mseq1 in case 1, both OSs are defined in module L1. The OSs can still only

happen once, and s1 occurs before r1. Trace < s1, r1 > ·τω can be generated from the

NuSMV model, i.e., (Σseq1

NuSMV )ω = {< s1, r1 > ·τω}.

Similarly, we wish to prove that ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq

NuSMV )ω; and

∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, then σ[1..2] ∈ (Σseq1
sem)∗. The proof follows the one of case 1.

To sum up, for a basic Sequence Diagram with one Message, (Σseq
sem)∗ and pre((Σseq

NuSMV )ω)

are equal.

Inductive step. Basic Sequence Diagram seqn contains n Messages, which are graphically-

ordered, i.e., (mi−1 locates above mi (2 ≤ i ≤ k)). The Messages have 2n OSs, which locate on

k Lifelines. We assume ∀υ.υ ∈ Σ∗, if υ ∈ (Σseqn
sem )∗, then υ · τω ∈ (Σseqn

NuSMV )ω; and ∀σ.σ ∈ Σω, if

σ ∈ (Σseqn

NuSMV )ω, then σ[1..2n] ∈ (Σseqn
sem )∗ (j = n).

We add a Message, mn+1, at the bottom of seqn graphically to form a new Sequence Diagram,
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MODULE main
VAR
l_L1: L1;

INVAR
((l_L1.chosen -> l_L1.enabled)
&(l_L1.chosen |!l_L1.enabled))

MODULE L1
VAR
OS_s1 : boolean;
OS_r1 : boolean;
state : {sinit, s1, r1};
chosen : boolean;
DEFINE
s1_enabled := state = sinit;
r1_enabled := state = s1;
enabled := s1_enabled | r1_enabled;
flag_final := state = r1;
ASSIGN
init(state) := sinit;
next(state) :=
case
state = sinit & next(OS_s1) :s1;
state = s1 & next(OS_r1) :r1;
1 :state;
esac;

init(OS_s1) := FALSE;
next(OS_s1) :=
case
chosen & s1_enabled :TRUE;
OS_s1 :FALSE;
1 :OS_s1;
esac;

init(OS_r1) := FALSE;
next(OS_r1) :=
case
chosen & r1_enabled :TRUE;
OS_r1 :FALSE;
1 :OS_r1;
esac;

Figure B.9: seq1 to NuSMV (case 2)
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seqn+1, with n + 1 Messages. We wish to prove ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω ∈

(Σ
seqn+1

NuSMV )ω; and ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

NuSMV )ω, then σ′[1..2n+2] ∈ (Σseqn+1
sem )∗ (j = n + 1).

(a) We wish to prove ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω ∈ (Σ

seqn+1

NuSMV )ω.

The semantic aspects of seqn+1 enforce that only one OS occurs at a time, and each OS

happens once and only once. Σseqn+1
sem = Σseqn

sem ∪ {sn+1, rn+1}, where |Σseqn
sem | = 2n and

|Σseqn+1
sem | = 2n + 2. If υ′ ∈ (Σseqn+1

sem )∗, then υ′ is a finite trace of size 2n + 2, which con-

tains OSs in Σseqn+1
sem . Adding mn+1 at the bottom of seqn does not change the structure of seqn.

Thus, for trace υ′, the order of OSs in Σseqn
sem is still preserved. Message mn+1 restricts that sn+1

must happen before rn+1, i.e., sn+1 locates before rn+1 in υ′.

When we modify the NuSMV model for seqn (Mseqn) to the NuSMV model for seqn+1

(Mseqn+1), we need to add variables and derived variables of sn+1 and rn+1 in the modules of

the Lifelines where these new OSs are located. Accordingly, we need to modify the variable state

in these Lifeline modules to record the execution of the new OSs. If new OSs locate on the Life-

lines not in seqn, we also need to change the INVAR statement in the main module to include the

new Lifelines into the interleaving semantics. In order to prove υ′ · τω ∈ (Σ
seqn+1

NuSMV )ω, we wish

to prove that υ′ · τω satisfies all the restrictions defined by Mseqn+1 , i.e., the restrictions defined

by Mseqn , the restrictions defined by variables of sn+1 and rn+1, and the restrictions defined by

modifying variable state and INVAR statement. With assumption, we know υ · τω satisfies all

the restrictions defined by Mseqn . As we discussed, the order of OSs within seqn is still preserved

in υ′. Thus, υ′ · τω also satisfies all the restrictions defined by Mseqn . The variables and derived

variables of sn+1 and rn+1 in Mseqn+1 define that sn+1 and rn+1 can occur once and only once,

and sn+1 must happen before rn+1. υ′ · τω satisfies these constraints introduced by the new OSs

because (1) only one sn+1 and one rn+1 are in υ′, and (2) sn+1 locates before rn+1 in υ′. The re-

strictions introduced by modifying variable state of these Lifelines where the new OSs are located

and INVAR statement may be various depending on the locations of the new OSs. We discuss the

location of the new OSs using four cases as below.
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• Case 1: Two OSs of mn+1 locate on two new Lifelines, Lk+1 and Lk+2 (see figure B.4a); or

two OSs of mn+1 locate on one new Lifeline, Lk+1 (see figure B.4b).

In Mseqn+1 , we add two Lifeline modules for Lk+1 and Lk+2 (or one Lifeline module for

Lk+1). sn+1 is defined as a variable in the module for Lk+1, while rn+1 is defined as a

variable in the module for Lk+2 (the module for Lk+1). rn+1 takes the enabling condition

that Lk+2 (or Lk+1) should reach the state indicating sn+1 has occurred, i.e., rn+1 cannot

happen until sn+1 has occurred. No order between sn+1, rn+1 and other OSs within seqn+1

are enforced by Mseqn+1 . In the main module, the INVAR statement is changed to show the

interleaving semantics of all k + 2 (or k + 1) Lifeline modules, i.e., one of enabled Lifeline

modules can execute or no Lifeline modules are enabled.

In trace υ′ ∈ Σseqn+1
sem )∗, no two OSs can happen at the same time, which satisfies the restric-

tion imposed by INVAR statement. The OSs of mn+1 locate on one or two new Lifelines,

so mn+1 and the existing Messages, m1,m2...mn, are interleaved. Therefore, in υ′, sn+1 or

rn+1 can locate (1) between any two OSs of seqn, or (2) before all OSs of seqn, or (3) after

all OSs of seqn. Hence, sn+1 can be the sth OS of υ′, where 1 ≤ s ≤ 2n + 1; and rn+1 can

be the rth OS of υ′, where s < r ≤ 2n + 2. Therefore, υ′ satisfies all the restrictions of

Mseqn+1 .

• Case 2: Sending OS sn+1 locates on a new Lifeline, Lk+1, and receiving OS rn+1 locates on

an existing Lifeline, Li (1 ≤ i ≤ k) (see figure B.4c).

In Mseqn , we assume the last variable for OS in Lifeline module for Li is the variable for

OSpre. In Mseqn+1 , we add a variable for rn+1 in the module for Li. We also add one Lifeline

module for Lk+1, which contains a variable for sn+1. rn+1 takes two enabling conditions

(1)state sets to OSpre to indicate that OSpre has executed; (2)Lk+1 should reach the state

indicating sn+1 has occurred. In the main module, the INVAR statement is changed to

show the interleaving semantics of all k + 1 Lifeline modules, i.e., one of enabled Lifeline

modules can execute or no Lifeline modules are enabled.
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We add mn+1 at the bottom of seqn to form seqn+1, where rn+1 becomes the last OS on

Li instead of OSpre. Therefore, OSpre should happen before rn+1. sn+1 locates on a new

Lifeline, so it is interleaved with the OSs of seqn. However, sn+1 must happen before rn+1.

In trace υ′ ∈ (Σseqn+1
sem )∗, if OSpre is the pth OS, where 1 ≤ p ≤ 2n+1. Then sn+1 is the sth

OS of υ′, where 1 ≤ s ≤ 2n + 1 and s 6= p; rn+1 is the rth OS of υ′, where s < r ≤ 2n + 2

and p < r ≤ 2n + 2. Thus, υ′ satisfies the restrictions imposed by variables for s1 and r1.

In υ′, no two OSs can happen at the same time, which satisfies the restriction imposed by

INVAR statement. Therefore, υ′ satisfies all the restrictions of Mseqn+1 .

• Case 3: Sending OS sn+1 locates on an existing Lifeline, Li (1 ≤ i ≤ k), and receiving OS

rn+1 locates on a new Lifeline, Lk+1 (see figure B.4d); or two OSs of mn+1 locate on an

existing Lifeline Li (1 ≤ i ≤ k) (see figure B.4e).

Similarly, in Mseqn , we assume the last variable for OS in Lifeline module for Li is the

variable for OSpre. In Mseqn+1 , we add a variable for sn+1 in the module for Li. We also

add one Lifeline module for Lk+1, which contains a variable for rn+1 (or the variable for

rn+1 is in the module for Li). sn+1 takes an enabling conditions that state sets to OSpre

indicating OSpre has executed. rn+1 takes an enabling conditions that Li should reach the

state indicating sn+1 has occurred. In the main module, the INVAR statement is changed

to show the interleaving semantics of all k + 1 Lifeline modules (or keep unchanged for k

Lifelines if no Lifeline is added).

We add mn+1 at the bottom of seqn to form seqn+1, where sn+1 becomes the OS locating

below OSpre on Li. Therefore, OSpre should happen before sn+1. rn+1 cannot happen

before sn+1 finishes execution. In trace υ′ ∈ (Σseqn+1
sem )∗, if OSpre is the pth OS, where

1 ≤ p ≤ 2n + 1. Then sn+1 is the sth OS of υ′, where 1 ≤ s ≤ 2n + 1 and s 6= p; rn+1

is the rth OS of υ′, where s < r ≤ 2n + 2 and p < r ≤ 2n + 2. Thus, υ′ satisfies the

restrictions imposed by variables for s1 and r1. In υ′, no two OSs can happen at the same

time, which satisfies the restriction imposed by INVAR statement. Therefore, υ′ satisfies all
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the restrictions of Mseqn+1 .

• Case 4: Two OSs of mn+1 locate on two existing Lifelines. Without loss of generality, we

assume that sending OS sn+1 locates on Lifeline Li (1 ≤ i ≤ k), receiving OS rn+1 locates

on Lifeline Lj (1 ≤ j ≤ k) (see figure B.4f).

In Mseqn , we assume the last variable for OS in Lifeline module for Li is the variable for

OSpres , and the last variable for OS in Lifeline module for Lj is the variable for OSprer .

In Mseqn+1 , we add a variable for sn+1 in the module for Li, and a variable for r1 in the

module for Lj . sn+1 takes an enabling conditions that state sets to OSpres indicating OSpres

has executed. rn+1 takes two enabling conditions (1)state sets to OSprer to indicate that

OSprer has executed; (2)Li should reach the state indicating sn+1 has occurred. The INVAR

statement in the main module is not changed.

Adding mn+1 at the bottom of seqn makes that sn+1 becomes the OS locating below OSpres

on Li, and rn+1 becomes the OS locating below OSprer on Lj . Therefore, OSpres should

happen before sn+1, while OSprer should happen before rn+1. In trace υ′ ∈ (Σseqn+1
sem )∗, if

OSpres is the psth OS, where 1 ≤ ps ≤ 2n, and OSprer is the prth OS, where 1 ≤ pr ≤
2n + 1. Then sn+1 is the sth OS of υ′, where ps < s ≤ 2n + 1; rn+1 is the rth OS of υ′,

where pr < r ≤ 2n + 2. Therefore, υ′ satisfies all the restrictions of Mseqn+1 .

To conclude, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω ∈ (Σ

seqn+1

NuSMV )ω

(b) We wish to prove ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

NuSMV )ω, then σ′[1..2n+2] ∈ (Σseqn+1
sem )∗.

We wish to prove that υ′ · τω satisfies all the restrictions defined by Mseqn+1 ,

We modify Mseqn to Mseqn+1 using several steps. (1) Variables and derived variables for sn+1

and rn+1 are added in the modules of the Lifelines where the OSs are located respectively. (2)

Variable state of these Lifeline modules are changed to record the execution of the new OSs. (3) In

the main module, the INVAR statement may be changed to represent the interleaving semantics of

the existing Lifelines and the new Lifelines. If σ′ ∈ (Σ
seqn+1

NuSMV )ω, we wish to prove that σ′[1..2n+2]
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respects all the semantic aspects of seqn+1. We assume that, if σ ∈ (Σseqn

NuSMV )ω, then σ[1..2n]

respects the semantic aspects of seqn. The modification of the NuSMV module does not alter the

structure of Mseqn , i.e., the order of OSs within seqn are not changed. Therefore, we can infer that

σ′ satisfies the semantic aspects of seqn. In Mseqn+1 , the variables of sn+1 and rn+1 define that sn+1

and rn+1 can occur once and only once respectively. rn+1 takes an enabling condition indicating

sn+1 has executed. Thus, σ′ respects the semantics of mn+1, i.e., each OS of mn+1 happen once

and only once, and sn+1 must happen before rn+1. We wish to prove that the changes of state in

Lifeline modules and INVAR statements in main module make Mseqn+1 respect the order between

the OSs within Σseqn
sem and the OSs of mn+1. which is discussed using four cases as below.

• Case 1: The variables of mn+1’s OSs are added in two new Lifelines modules, the modules

for Lk+1 and Lk+2; or the variables of mn+1’s OSs are added in one new Lifeline module,

the module for Lk+1.

In seqn+1, we assume that sn+1 locates on Lk+1 and rn+1 locates on Lk+2 or both OSs of

mn+1 locate on Lk+1. The new Message, mn+1 and the existing Messages are interleaved.

No order among the existing OSs and new OSs are specified in seqn+1. In Mseqn+1 , variables

for sn+1 and rn+1 are added in new Lifeline modules. If σ′ ∈ (Σ
seqn+1

NuSMV )ω, then no order

among the variables on k Lifelines and the variables on the new Lifelines are restricted in

σ′. The INVAR statement is modified to represent the interleaving semantics of all k +2 (or

k+1) Lifeline modules. Therefore, σ′ respects the semantic aspect that at most one Lifeline

can execute an OS at a time. In this way, σ′ respects the semantic aspects of seqn+1.

• Case 2: The variable of sn+1 is added in a new Lifeline module, the module for Lk+1, and

the variable of rn+1 is added in an existing Lifeline module, the module for Li (i ≤ k).

In seqn, we assume the last OS on Li is OSpre. In seqn+1, rn+1 becomes the last OS on Li

and sn+1 locates on Lk+1. Therefore, OSpre should happen before rn+1. sn+1 is interleaved

with the existing OSs. In Mseqn+1 , one Lifeline module for Lk+1 is added, which contains a

variable for sn+1. A variable for rn+1 is added in the module for Li. rn+1 takes two enabling
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conditions. (1)state sets to OSpre to indicate that OSpre has executed; (2)Lk+1 reaches the

state indicating sn+1 has occurred. Therefore, in σ′, rn+1 cannot happen until OSpre and

sk+1 have executed. Thus, σ′ respects the order among the new OSs and the existing OSs

defined by seqn+1. The INVAR statement is modified to represent the interleaving semantics

of all k + 1 Lifeline modules. Therefore, σ′ respects the semantic aspect that at most one

Lifeline can execute an OS at a time. In this way, σ′ respects the semantic aspects of seqn+1.

• Case 3: The variable of sn+1 is added in an existing Lifeline module, the module for Li

(i ≤ k), and the variable of rn+1 is added in a new Lifeline module, the module for Lk+1;

or the variables of both OSs are added in an existing Lifeline module, the module for Li

(i ≤ k).

Similarly, in seqn, we assume the last OS on Li is OSpre. In seqn+1, sn+1 becomes the OS

below OSpre on Li, and rn+1 locates on Lk+1 (or rn+1 locates below sn+1 on Li). Therefore,

OSpre should happen before sn+1, and sn+1 should happen before rn+1. In Mseqn+1 , a

variable for sn+1 is added in the module for Li, taking an enabling condition that state sets

to OSpre to indicate OSpre has executed. The variable for rn+1 takes an enabling condition

that Li reaches the state indicating sn+1 has occurred. Therefore, in σ′, sn+1 cannot occur

until OSpre executes, while rn+1 cannot occur until sn+1 executes. Thus, σ′ respects the

order among the new OSs and the existing OSs defined by seqn+1. The INVAR statement

is modified to represent the interleaving semantics of all k + 1 Lifeline modules, or keeps

unchanged. Therefore, σ′ respects the semantic aspect that at most one Lifeline can execute

an OS at a time. In this way, σ′ respects the semantic aspects of seqn+1.

• Case 4: The variables of both OSs are added in existing Lifeline modules. Without loss of

generality, we assume that the variable of sn+1 is added in the module for Li (i ≤ k), and

the variable of rn+1 is added the module for Lj (j ≤ k).

In seqn, we assume the last OS on Li is OSpres , while the last OS on Lj is OSprer . In seqn+1,

sn+1 becomes the OS below OSpres on Li, while rn+1 becomes the OS below OSprer on Lj .
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Therefore, OSpres should happen before sn+1, and OSprer should happen before rn+1. In

Mseqn+1 , a variable for sn+1 is added in the module for Li, taking an enabling condition

that state sets to OSpres to indicate OSpres has executed. A variable for rn+1 is added in

the module for Lj , taking an enabling condition that state sets to OSprer to indicate OSprer

has executed. Therefore, in σ′, sn+1 cannot occur until OSpres executes, while rn+1 cannot

occur until OSprer executes. Thus, σ′ respects the order among the new OSs and the existing

OSs defined by seqn+1. The INVAR statement keeps unchanged. Therefore, σ′ respects the

semantic aspect that at most one Lifeline can execute an OS at a time. In this way, σ′

respects the semantic aspects of seqn+1.

Now we have proven that σ′[1..2n+2] respects all the semantic aspects of seqn+1, i.e., σ′[1..2n+2] ∈
(Σseqn+1

sem )∗.

To conclude, ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′[1..2n+2] ∈ (Σseqn+1
sem )∗.

B.4 Proof of Theorem 6.16

Theorem 6.16. (Σseqr
sem)∗ and PRE2h+2p((Σ

seqr

NuSMV )ω) are equal.

Proof. We use mathematical induction, which is based on the number of CFs, r, directly enclosed

in seqr.

Base step. The sequence Diagram contains at most one CF, cf1. (r ≤ 1)

• Case 1. Sequence Diagram seq0 contains no CF. (r = 0)

The proof follows the one for basic Sequence Diagram.

• Case 2. Sequence Diagram seq1 contains only one CF, cf1. (r = 1)

– Case 2.1 We assume that cf1 has a Operands whose Interaction Constraints evaluate

to False. The bth Operand contains qb Messages, where 1 ≤ b ≤ a.

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω.
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We wish to prove that υ · τω satisfies all the restrictions defined by Mseq1 . Similar to

the NuSMV model for basic Sequence Diagram, Mseq1 still contains a main module

and Lifeline modules. Each CEU is declared as a module instance and instantiated in

the module of the Lifeline where the CEU locates. A CEU is composed of one or more

EUs, each of which is instantiated a module instance inside the CEU module.

First, we consider the restrictions defined by the Lifeline modules. The OSs directly

enclosed in the Lifelines are represented as boolean variables. In υ, these OSs respect

the semantic rules of seq. It is easy to infer that these OSs also satisfy the restrictions

of the Lifeline modules. The proof follows the one for basic Sequence Diagram.

Then, we consider the connection between the OSs and CEUs directly enclosed in

each Lifeline. In Mseq1 , the CEU module of cf1 on Lifeline i takes variable state of

Lifeline i as an enabling condition, i.e., if state sets to the value indicating that the

preceding OS of CEU cfi ↑i has executed, then the CEU module starts to evaluate

the Interaction Constraint locating on the same Lifeline, triggering the execution of

the EUs. Therefore, the OSs within a CEU cannot execute until the preceding OS

of the CEU finishes execution. If υ′ · τω does not satisfy this restriction, then we

assume at least one OS within the CEU, OSc, occurs before the preceding OS of the

CEU, OSpre. The semantic aspects of seq1 defines that each CF are combined with

its preceding OSs using Weak Sequencing. Thus, OSpre must completes execution

prior to OSc’s execution, which contradicts our assumption. Therefore, we can prove

υ′ · τω satisfies the restriction of the connection between each CEU and its preceding

OSs. The CEU’s succeeding OS takes variable flag_final of the CEU module as

an enabling condition, which restricts that the succeeding OS cannot execute before

the CEU module finishes execution. Similarly, we can prove that υ′ · τω satisfies the

restriction of the connection between each CEU and its succeeding OSs.

Finally, we consider restriction defined by the CEU modules. On each Lifeline, the
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Interaction Constraints are evaluated when the CEU is ready to execute. Variable

op_eva of each Operand takes the value of the Operand’s Interaction Constraint to

decide if the Operand is enabled to execute. For each EU of the Operand, the variable

of the first OS and variable flag_final take op_eva as a condition. If the Operand

is enabled to execute, the first OS of each EU is enabled to execute. Otherwise, the

first OS of each EU cannot be enabled to execute and flag_final evaluates to True,

indicating that the EU finishes execution. In seq1, all Operands of cf1 evaluate to False.

On each Lifeline, when the preceding OS of cf1’s CEU finishes execution, the CEU

reaches its final state to enable its succeeding OS. Therefore, the CEU’s preceding

OS must happen before its succeeding OS. If υ does not satisfy this restriction, then

we assume that, on Lifeline i, the CEU’s preceding OS, OSpre, cannot occur until

its succeeding OS, OSpost, finishes execution. The semantic aspects of seq1 define

that if all Operands of cf1 evaluate to False, then, on each Lifeline, cf1’s preceding

OS and succeeding OS are ordered by Weak Sequencing, and cf1 does not execute.

Thus, OSpre must complete execution prior to OSpost’s execution, which contradicts

our assumption. Therefore, we can prove υ satisfies the restriction defined by the CEU

modules. We do not consider the EU modules because they do not execute in this case.

Now we have proven that if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω.

(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, σ[1..2h] ∈ (Σseq1
sem)∗.

We wish to prove that σ[1..2h] satisfies all the semantic aspects of seq1. First, we con-

sider the semantic aspect of OSs directly enclosed in seq1. In Mseq1 , variables of the

OSs in the Lifeline modules satisfy the restrictions defined by the Lifeline modules.

It is easy to infer that these variables also respect the semantic aspect of OSs directly

enclosed in seq1. The proof follows the one for basic Sequence Diagram.

Then, we consider the semantic aspect that cf1 does not execute because the Con-

straints of all Operands evaluate to False. As we discussed, in Mseq1 , variable op_eva
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of each Operand takes the value of the Operand’s Interaction Constraint to decide if the

Operand is enabled to execute. For each EU of the Operand, the variable of its first OS

and its variable flag_final take op_eva as a condition. If the Operand’s Constraint

evaluate to True, the first OS of each EU is enabled to execute. Otherwise, the first

OS of each EU is unable to execute and flag_final evaluates to True, indicating that

the EU will not execute. In this way, if σ ∈ (Σseq1

NuSMV )ω, then σ[1..2h] does not contain

the OSs within the Operands whose Constraints evaluate to False. Therefore, σ[1..2h]

respects the corresponding semantic aspect of cf1.

Finally, we consider the semantic aspect that cf1’s preceding OSs and succeeding OSs

are connected using Weak Sequencing, i.e., on the same Lifeline, cf1’s preceding OS

must happen before its succeeding OS. If σ[1..2h] does not respect this semantic aspect,

then we assume that, in the module of Lifeline i, variable of the CEU’s preceding

OS, OSpre, cannot occur until the variable of its succeeding OS, OSpost, has executed.

Each CEU module takes variable state as a condition to determine when it evaluates

the Constraints of its Operands. If state sets to value indicating the CEU’s preceding

OS has executed, then the Constraints evaluate to False, making the CEU reach its

final state and the CEU’s succeeding OS is enabled to execute. Thus, OSpre must

finish execution before OSpost, which contradicts our assumption. Therefore, we can

prove σ[1..2h] respects the semantic aspect of cf1. We do not consider the semantic

aspects of Operands because they do not execute in this case.

Now we have proven that ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, respects all the semantic

aspects of seq1, i.e., σ[1..2h] ∈ (Σseq1
sem)∗.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω, and ∀σ.σ ∈ Σω,

if σ ∈ (Σseq1

NuSMV )ω, then σ[1..2h] ∈ (Σseq1
sem)∗.

– Case 2.2 We assume that cf1 has at least one Operand whose Constraint evaluates to

True.
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First, we wish to prove that the NuSMV model structure general to all CFs captures

the semantics rules general to all CFs.

We assume that, cf1 has two Operands. One Operand contains p Messages, and its

Interaction Constraint evaluates to True. The other Operand contains q Messages, and

its Interaction Constraint evaluates to False. (see figure B.5, where cond1 evaluates to

True, and cond2 evaluates to False).

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Πseq1 .

First, we consider the restrictions defined by the Lifeline modules. We can infer that,

in υ, the OSs directly enclosed in seq1 satisfy the restrictions of the Lifeline modules.

The proof follows the one for basic Sequence Diagram.

Then, we consider the order among the OSs and CEUs directly enclosed in each Life-

line. Each Lifeline module and its CEU module restrict that, the CEU module cannot

happen until its preceding OS executes, and its succeeding OS cannot happen until the

CEU module finishes execution. We can prove that υ satisfies these restriction. The

proof follows the one in case 2.1.

Next, we consider restriction defined by the CEU modules. For each EU module inside

the CEU module, if its Interaction Constraint evaluate to True, the OSs within the EU

can be enabled to execute. Otherwise, the EU module reaches its final state, indicating

that no OS within the EU will execute. We can prove that υ satisfies these restriction.

The proof follows the one in case 2.1.

Finally, we consider restriction defined by the EU modules. The structure of an EU

module is quite similar to the structure of a Lifeline module. An EU module restricts

that (1) Each OS (not within EU takes state as an enabling condition, which defines

that the OS cannot happen until the previous OS finishes execution. (2) For each

Message, its receiving OS takes state of the EU where its sending OS locates as an

enabling condition, which defines that its receiving OS cannot happen until its sending
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OS executes. (3) The variable of each OS defines that each OS can occur once and

only once. We can prove that υ satisfies these restriction. The proof follows the one

for basic Sequence Diagram.

Now we have proven that if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω.

(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, σ[1..2h+2p] ∈ (Σseq1
sem)∗.

We wish to prove that σ[1..2h+2p] satisfies all the semantic aspects of seq1. First, we

consider the semantic aspect of OSs directly enclosed in seq1. We can infer that, in

σ, variables of OSs in Lifeline modules respect the semantic aspects of OSs directly

enclosed in seq1. The proof follow the one in case 2.1.

Then, we consider the semantic aspect that cf1’s preceding/succeeding OSs are com-

bined with cf1 using Weak Sequencing, i.e., on the same Lifeline, cf1’s preceding OS

must happen before its CEU, and cf1’s CEU must happen before its succeeding OS.

If σ[1..2h+2p] does not respect the semantic aspect between cf1 and its preceding OSs,

then we assume that, in the module of Lifeline i, variable of the CEU’s preceding OS,

OSpre, cannot occur until the variable of an OS within the CEU, OSc, has executed.

Each CEU module takes variable state as a condition to determine when it evaluates

the Constraints of its Operands. If state sets to value indicating the CEU’s preceding

OS has executed, then the Constraints may evaluate to True, enabling the OSs within

the CEU to execute. Thus, OSpre must finish execution before OSc, which contradicts

our assumption. Therefore, we can prove that σ[1..2h+2p] respects the semantic aspect

between cf1 and its preceding OSs. Similarly, we can prove that σ[1..2h+2p] respects the

semantic aspect between cf1 and its succeeding OSs.

Next, we consider the semantic aspect that cf1’s Operands whose Constraints evalu-

ate to True can execute, while cf1’s Operands whose Constraints evaluate to False are

excluded. We can prove that σ[1..2h+2p] does not contain the OSs within the Operands

whose Constraints evaluate to False. Therefore, σ[1..2h+2p] respects the semantic as-
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pect. The proof follows the one in case 2.2.

Finally, we consider the semantic aspect that the order of the OSs within each Operand

whose Constraint evaluates to True is maintained. The order of the OSs within each

Operand is similar to the order of the OSs directly enclosed in seq. The order restricts

that (1) on a single Lifeline, the OSs respect their graphical order; (2) for a Message,

its receiving OS cannot happen until its sending OS executes; (3) each OS executes

once and only once. We can prove that σ[1..2h+2p] respects these semantic aspects. The

proof follows the one for basic Sequence Diagram.

Now we have proven that ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, respects all the semantic

aspects of seq1, i.e., σ[1..2h+2p] ∈ (Σseq1
sem)∗.

If cf1 contains more than two Operands, p Messages may be enclosed in multiple

Operands whose Interaction Constraints evaluate to True, and q Messages may be

enclosed in multiple Operands whose Interaction Constraints evaluate to False. The

proof follows the one for cf1 with two Operands.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω |= Π̃seq1 , and ∀σ.σ ∈ Σω, if

σ ∈ (Σseq1

NuSMV )ω, then σ[1..2h+2p] ∈ (Σseq1
sem)∗.

We have proven the semantic rules general to all CFs can be captured by the NuSMV

model general to all CFs. The semantic rules for each CF with different Operator can

be enforced by adding different semantic constraints, which are also captured by our

NuSMV models. We use Parallel, Alternatives as examples to prove that the semantic

rules for each Operator can be captured by the NuSMV model. The cases for CFs with

other Operators can be proven similarly.

∗ Case 2.2.1 We assume that, a given Parallel, cfpar
1 , has two Operands whose In-

teraction Constraints evaluate to True. The first Operand contains p1 Messages,

and the second Operand contains p2 Messages. cf par
1 covers i Lifelines.

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω.
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The Parallel imposes an interleaving semantics among its Operands. In Mseq1 , a

boolean variable, chosen, is introduced for each EU module to indicate if the EU

is chosen to execute. In the main module, an INVAR statement is added for each

CEU to restrict that (1) only one enabled EU is chosen to execute an OS; and (2)

no EUs are enabled. In υ, only one OS within cf1 can happen at a time until cf1

finishes execution. Therefore, we can prove that υ · τω satisfies the restriction

defined by the Parallel.

We have proven that υ · τω satisfies other general restrictions defined by Mseq1 in

case 2.2. Hence, we can prove that υ · τω ∈ (Σseq1

NuSMV )ω.

(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, σ[1..2h+2p1+2p2] ∈
(Σseq1

sem)∗.

The semantic aspect of Parallel defines the concurrency among its Operands, i.e.,

the OSs within the an Operand maintain their order, while the OSs of different

Operands are interleaved. If σ ∈ (Σseq1

NuSMV )ω, the order of OSs within an Operand

is restricted by the EU modules as the general model. The EUs modules inside a

CEU module are interleaved, which is restricted by the INVAR statements in the

main module. Therefore, we can prove that σ[1..2h+2p1+2p2] respects the semantic

aspect of the Parallel.

We have proven that σ[1..2h+2p1+2p2] respects other general semantic aspects of

seq1 in case 2.2. Hence, we can prove that σ[1..2h+2p1+2p2] ∈ (Σseq1
sem)∗.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω, and ∀σ.σ ∈
Σω, if σ ∈ (Σseq1

NuSMV )ω, then σ[1..2h+2p1+2p2] ∈ (Σseq1
sem)∗.

∗ Case 2.2.2 We assume that, a given Alternatives, cfalt
1 , has two Operands whose

Interaction Constraints evaluate to True. The first Operand contains p1 Messages,

and the second Operand contains p2 Messages. cfalt
1 covers i Lifelines.

(a) We wish to prove that, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω.

The semantics of Alternatives defines that at most one of its Operands whose
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Constraints evaluate to True is chosen to execute. The Operands whose Con-

straints evaluate to False are still excluded. Thus, υ only defines the order of the

OSs within the chosen Operand. In Mseq1 , a boolean variable, exe, is introduced

for each Operand to indicate whether the Operand is chosen to execute. Vari-

able op_eva takes exe as a condition, representing that an Operand can execute if

and only if its exe evaluates to True. An INVAR statement is added in the main

module, indicating that only one Operand’s exe can set to True, or none of the

Constraints of the Operands evaluate to True. Thus, Mseq1 only restricts the order

of OSs within the chosen Operand. Therefore, we can infer that, υ · τω satisfies

the restriction defined by the Alternatives.

We have proven that υ · τω satisfies other general restrictions defined by Mseq1 in

case 2.2. Hence, we can prove that υ · τω ∈ (Σseq1

NuSMV )ω.

(b) We wish to prove that, ∀σ.σ ∈ Σω, if σ ∈ (Σseq1

NuSMV )ω, σ[1..2h+2pm] ∈ (Σseq1
sem)∗

(m is the chosen Operand of cfalt
1 ).

Mseq1 restricts that only EUs of the Operand whose exe evaluates to True can

be enabled to execute. The INVAR statement of exe restricts that only one exe

evaluates to True or none of the Constraints evaluate to True. The order of the

OSs within the chosen Operand is still restricted as the general model. If σ ∈
(Σseq1

NuSMV )ω, we can infer that σ[1..2h+2pm] respects the semantics of Alternatives,

i.e. at most one of its Operands whose Constraints evaluate to True is chosen to

execute, where m is the chosen Operand.

We have proven that σ[1..2h+2pm] respects other general semantic aspects of seq1

in case 2.2. Hence, we can prove that σ[1..2h+2pm] ∈ (Σseq1
sem)∗.

To conclude, ∀υ.υ ∈ Σ∗, if υ ∈ (Σseq1
sem)∗, then υ · τω ∈ (Σseq1

NuSMV )ω, and ∀σ.σ ∈
Σω, if σ ∈ (Σseq1

NuSMV )ω, then σ[1..2h+2pm] ∈ (Σseq1
sem)∗ (m is the chosen Operand of

cfalt
1 ).
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Inductive step. A given Sequence Diagram, seqn, directly contains n CFs. For the Messages

within the CFs, pn Messages are chosen and enabled in Operands whose Interaction Constraints

evaluate to True. We assume ∀υ.υ ∈ Σ∗, if υ ∈ (Σseqn
sem )∗, then υ · τω ∈ (Σseqn

NuSMV )ω. ∀σ.σ ∈ Σω,

if σ ∈ (Σseqn

NuSMV )ω, then σ[1..2h+2pn] ∈ (Σseq
sem)∗. (r = n)

We add a CF, cfn+1, in seqn to form a new Sequence Diagram, seqn+1, with n+1 CFs. cfn+1 is

directly enclosed in seqn+1. In seqn+1, pn+1 Messages are chosen and enabled in Operands whose

Interaction Constraints evaluate to True. We wish to prove that, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗,

then υ′ · τω ∈ (Σ
seqn+1

NuSMV )ω. ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

NuSMV )ω, then σ′[1..2n+2pn+2pn+1]
∈ (Σseqn+1

sem )∗.

(a) We wish to prove that, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω ∈ (Σ

seqn+1

NuSMV )ω.

We wish to prove that υ ·τω satisfies all the restrictions defined by Mseqn+1 . We extend Mseqn to

Mseqn+1 by adding the CEU and EU modules of cfn+1. However, the restrictions defined by Mseqn

are not altered. Thus, the restrictions of Mseqn+1 consists of the restrictions of Mseqn , the restriction

of cfn+1 and the restriction defined by the connection between cfn+1 and its preceding/succeeding

Interaction Fragments.

When we add cfn+1 in seqn to form seqn+1, cfn+1 does not change the order of the existing In-

teraction Fragments. Hence, seqn+1 also respects the semantic aspects of seqn. If υ′ ∈ (Σseqn+1
sem )∗,

then υ′ · τω satisfies the the restrictions of Mseqn . We can also prove that υ′ · τω satisfies the re-

strictions of Mseqn . The proof follows the one of base case. We need to prove that υ′ · τω satisfies

the restriction defined by the connection between cfn+1 and its preceding/succeeding Interaction

Fragments. We discuss cfn+1’s preceding Interaction Fragments using two cases.

• Case i. On Lifeline i, if cfn+1’s preceding Interaction Fragments is OS u , then the CEU of

cfn+1 take state of the Lifeline module as an enabling condition, indicating u has executed.

We can prove that υ′ · τω satisfies this restriction. The proof follows the one of base case.

• Case ii. If cfn+1’s preceding Interaction Fragments is CF v, then on Lifeline i, the CEU

of cfn+1 takes variable flag_final of CEU v ↑i as an enabling condition, i.e., OSs within

CEU cfn+1 ↑i cannot happen until CEU v ↑i finishes execution. If υ′ · τω does not satisfy
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this restriction, then we assume at least one OS within the cfn+1 ↑i, OSc, occurs before an

OS within v ↑i, OSpre. The semantic aspects of seqn+1 defines that cfn+1 and its preceding

Interaction Fragment are combined using Weak Sequencing. Thus, OSpre must completes

execution prior to OSc’s execution, which contradicts our assumption. Therefore, we can

prove υ′ · τω satisfies the restriction.

Similarly, we can prove that υ′ · τω satisfies the restriction defined by the connection between

cfn+1 and its succeeding Interaction Fragments. Hence, we have proven that υ′ satisfies all the

restriction of Mseqn+1 .

Now we have proven that if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω ∈ Σ

seqn+1

NuSMV .

(b) We wish to prove that, ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

NuSMV )ω, then σ′[1..2n+2pn+2pn+1]
∈

(Σseqn+1
sem )∗.

If σ′ ∈ (Σ
seqn+1

LTL )ω, then σ′ = σ[1..2h+2pn+2pn+1] · τω, which follows Lemma 6.15. We wish to

prove that σ′[1..2h+2pn+2pn+1]
respects all the semantic aspects of seqn+1. Adding cfn+1 does not

alter the order of the existing Interaction Fragments. Therefore, the semantic aspects of seqn+1

consists of the semantic aspects of seqn, the semantic aspects of mn+1 and the semantic aspects

defined by the connection between seqn and mn+1.

When we extend Mseqn to Mseqn+1 , the restrictions defined by Mseqn keep unchanged. We

can deduce that σ′[1..2n+2pn+2pn+1]
satisfies the restriction of Mseqn . Therefore, σ′[1..2n+2pn+2pn+1]

re-

spects the semantic aspects of seqn. We can also prove that σ′[1..2n+2pn+2pn+1]
respects the semantic

aspects of mn+1. The proof follows the one of base case. We need to prove that υ′ · τω respects

the semantic aspects defined by the connection between cfn+1 and its preceding/succeeding In-

teraction Fragments. On each Lifeline, if cfn+1’s preceding Interaction Fragment is an OS, then

Mseqn+1 restricts that the CEU of cfn+1 takes the preceding OS as an enabling condition, i.e., the

CEU of cfn+1 cannot happen until the preceding OS executes. If cfn+1’s preceding Interaction

Fragment is CF v, then Mseqn+1 restricts that the CEU of cfn+1 takes variable flag_final of v ↑i

as an enabling condition, i.e., the CEU of cfn+1 cannot happen until CEU v ↑i finish execution.
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These restrictions are consistent with the semantic aspect of seqn+1, which defines that, on each

Lifeline, the CEU of cfn+1 must take place after its preceding OS/CEU. Therefore, υ′ ·τω respects

the order between cfn+1 and its preceding Interaction Fragment. Similarly, we can prove that

υ′ · τω respects the order between cfn+1 and its succeeding Interaction Fragment.

Now we have proven that ∀σ′.σ′ ∈ Σω, if σ′ ∈ (Σ
seqn+1

NuSMV )ω, respects all the semantic aspects

of seqn+1, i.e., σ′[1..2h+2pn+2pn+1]
∈ (Σseqn+1

sem )∗.

To conclude, ∀υ′.υ′ ∈ Σ∗, if υ′ ∈ (Σseqn+1
sem )∗, then υ′ · τω ∈ (Σ

seqn+1

NuSMV )ω, and ∀σ′.σ′ ∈ Σω, if

σ′ ∈ (Σ
seqn+1

NuSMV )ω, then σ′[1..2h+2pn+2pn+1]
∈ (Σseqn+1

sem )∗.

The semantic aspects of a Sequence Diagram with nested CFs can also be captured using a

NuSMV model. The Sequence Diagram is mapped to a main module while each of its Lifeline

is mapped to a Lifeline module. Recall that a CF and its Operands are projected onto each of

its covered Lifeline to obtain a CEU and EUs respectively. Each CEU is instantiated as a sub-

module in its Lifeline module, while each EU within the CEU is instantiated as a sub-module in

the CEU module. If an EU encloses other CEUs, each enclosed CEU is mapped to a sub-module

in the EU module. We apply this procedure recursively until all CEUs and EUs are mapped

into NuSMV modules. We wish to prove that the NuSMV model captures the semantics of the

Sequence Diagram precisely. (1) We have proven that the NuSMV model captures the semantics

of the Sequence Diagram with directly enclosed CFs. (2) For nested CEUs, their semantics can be

captured using the corresponding CEU modules. The proof follows the one for the CEUs directly

enclosed in the Sequence Diagram. (3) For EUs which compose the nested CEUs, their semantics

can be captured using the corresponding EU modules. The proof follows the one for the EUs

which compose the CEUs directly enclosed in the Sequence Diagram. With this sketch, we can

prove that the NuSMV model represents the semantics of a Sequence Diagram with nested CFs.
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Appendix C: IMPLEMENTATION OF LTL TEMPLATES

To express these auxiliary functions using LTL formulas, we need to discuss that who evaluate

the Constraints, and when the Constraints are evaluated. For each Operand, its Constraint is

located on the Lifeline where the first OS of the Operand will occur [55]. The Lifeline evaluates

the Constraint and share its value with other Lifelines, which guarantees the consistency among

multiple Lifelines. The time point for evaluating Constraints may be various based on different

semantics. In this section, we provide our approach for handling Constraints with two semantics:

the semantics of an individual Sequence Diagram or the semantics of one of multiple Sequence

Diagrams in a system.

C.1 An Individual Sequence Diagram

In a Sequence Diagram with Messages not carrying parameters, the OSs do not change the values

of variables. Thus, we consider the Interaction Constraints of Operands as rigid variables, which

keep the same value in all states of a trace. In this way, evaluating the Interaction Constraints

at the beginning of the execution of the Sequence Diagram is equivalent to evaluating them at

the beginning of each CF. With this assumption, the Operands whose Constraints evaluate to

True can be selected before the mapping from the Sequence Diagram to LTL formulas, i.e., only

the Operands whose Constraints evaluate to True are mapped to LTL formulas. The auxiliary

functions can avoid evaluating Constraints and be implemented directly, e.g., function TOP(u)

returns the set of all Operands within u which are mapped to LTL formulas. Without loss of

generality, we represent the Interaction Constraints as propositions. Our LTL template can also be

adapt to handle Interaction Constraints as boolean expressions.

In the same way, the non-deterministic choice between multiple Operands of an Alternatives

can also be made at the beginning of the execution of the Sequence Diagram. Only one Operand is

chosen non-deterministically from the Operands whose Constraints evaluate to True and mapped

to LTL formulas.
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C.2 Multiple Sequence Diagrams in a System

The requirement or design of a system can be captured by multiple Sequence Diagrams which may

share variables. In a Sequence Diagram, the values of Interaction Constraints may be modified by

other Sequence Diagrams of the system during execution. Each Interaction Constraint of the CF’s

Operands is evaluated when the CEU of the Lifeline where the Constraint is located is ready to

execute. After evaluation, the value of each Constraint is preserved and applied to the execution of

the OSs of the CF. In this way, the values of Constraints can be considered as fixed after entering

the Combined Fragment.

We append the Interaction Constraints to each OS, which restricts that if an OS can occur,

the Interaction Constraints associated with the OS must evaluate to True (see formula ε̄seq in

figure C.1). An OS can be enclosed into multiple nested CFs, whose Interaction Constraints are

associated with the OS, e.g., condm is the conjunction of the Interaction Constraints associated

with OSm. Function AllOS(seq) replaces function AOS(seq) in all formulas, which returns all

OSs within Sequence Diagram seq. The formula ΦCF is modified as Φ̄CF , which describes the

execution of all CF ’s Operands. For Operand m, if the Lifeline where m’s Constraint is located

is ready to execute the CEU of CF , i.e., the OSs, which happen right before the CEU, have

finished execution, the Constraint is evaluated and stays to the value in the following states. If the

Constraint evaluates to True, function θ̄m is satisfied by the Operand and function Φ̄CFk is satisfied

by each CFk nested within m. Otherwise, the Constraints of Operands of nested CF CFk set to

False, denoting no OS within CFk can occur.

Recall formula α specifies that OSs execute in their graphical order on each Lifeline, and

formula β specifies that sending OS must take place before receiving OS of the same Message.

Both formulas apply the macro ¬OSq Ũ OSp ≡ ¬OSq U(OSp ∧ ¬OSq) to establish the order

between OSp and OSq, i.e., OSq can not execute before OSp. The macro indicates that OSp must

happen in some future state from current state, which can not be guaranteed for all states of a

trace (see formula Φ). To implement the macro with temporal operator , the macro is modified
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as ((¬OSq Ũ OSp) ∨ (OSp)), which describes two cases: 1. OSq can not happen if OSp has

not occurred; 2. OSp has happened before.

Formula γCF
i establishes the order between the OSs within the CEU of CF on Lifeline i and

their preceding/succeeding OSs if the Constraint of any CF ’s Operand evaluates to True. Other-

wise, the CEU’s preceding/succeeding OSs are connected using formula ηCF . Both formulas uses

the macro
∧

OSq∈s

¬OSq Ũ OSp to enforces the OSs of set s can not happen before OSp. However,

the Constraints associated with OSp may be evaluated to False, i.e., OSp may not happen. Thus,

the macro is modified as OSp → (
∧

OSq∈s

(¬OSq) Ũ OSp), which represents that if OSp can

happen, the order is established. Function TAllOS(u) returns the set of OSs of the BEUs directly

enclosed in CEU u. Formula µ̄CF establishes the order between the first occurring OS and other

OSs within the same Operand as we described in section 4.4.3.

For Alternatives, we assume all Operands evaluate their Constraints if any Lifeline where a

Constraint is located is ready to execute the CEU of Alternatives, even if Constraints of Operands

are located on different Lifelines. It guarantees that all Operands whose Constraints evaluate to

True are ready to be chosen at the same time. To choose an Operand non-deterministically, we

have introduced a boolean variable exe for each Operand whose Constraint evaluates to True. The

variable exe states that: 1.Only the exe of the chosen Operand evaluates to True. 2.The Constraints

of unchosen Operands set to False. 3. If any OS within an Operand can occur, the exe for the

Operand evaluate to True.

Both LTL formulas of Critical Region and Assertion use sub-formula
∧

OSk∈M

OSk to denote

that all OSs within M have occurred. Since some OSs may not happen, the sub-formula is modified

as
∧

OSk∈M

(¬OSk), which denotes each OS within M have occurred or can not occur any more.

Figure C.1 shows the modified LTL formulas we have described for LTL implementation. The

LTL formulas of other CFs can be modified in a similar way. We have implemented all CFs using

LTL formulas in our tool.
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Πseq =
∧

i∈LN(seq)

(
∧

g∈ABEU(seq↑i)

αg) ∧
∧

j∈MSG(seq)

βj ∧
∧

CF∈Anested(seq)

Φ̄CF ∧ ε̄seq

ε̄seq =(((
∨̂

OSm∈AllOS(seq)

OSm) ∨ (
∧

OSm∈AllOS(seq)

(¬OSm)) ∧ (
∧

OSm∈AllOS(seq)

(OSm → condm))))

Φ̄CF =
∧

m∈OPND(CF )

(((
∧

OSpre∈pre(CF↑Lm )

(¬OSpre) ∧ condm) → (θ̄m ∧condm ∧
∧

CFk∈Anested(m)

Φ̄CFk))

∧ ((
∧

OSpre∈pre(CF↑Lm )

(¬OSpre) ∧ (¬condm)) → ((¬condm) ∧
∧

n∈AnestedOP (m)

(¬condn))))

∧ γ̄CF ∧ η̄CF ∧ µ̄CF

θ̄m =
∧

i∈LN(m)

(
∧

g∈ABEU(m↑i)

ᾱg) ∧
∧

j∈MSG(m)

β̄j

ᾱg =(
∧

k∈[r..r+|AOS(g)|−2]

((¬OSk+1 Ũ OSk) ∨ (OSk)))

∧ (
∧

OSe∈AOS(g)

((¬OSe Ũ (OSe ∧¬OSe)) ∨ (¬OSe ∧OSe)))

β̄j =(¬RCV (j) Ũ SND(j)) ∨ (SND(j))

γ̄CF =
∧

i∈LN(CF )

(
∧

OSpre∈pre(CF↑i)

(OSpre → ((
∧

OS∈TAllOS(CF↑i)

(¬OS)) Ũ OSpre))

∧
∧

OS∈TAllOS(CF↑i)

(OS → ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ OS)))

η̄CF =
∧

i∈LN(CF )

(
∧

OSpre∈pre(CF↑i)

(OSpre → ((
∧

OSpost∈post(CF↑i)

(¬OSpost)) Ũ OSpre)))

µ̄CF =
∧

m∈OPND(CF )

(
∧

OSp∈Init(m)

OSq∈AllOS(m)

(¬OSq W̃ OSp))

Φ̄CF
alt =

∧

m∈OPND(CF )

((((
∨

m∈OPND(CF )

(
∧

OSpre∈pre(CF↑Lm )

(¬OSpre))) ∧ exem) →

(θ̄m ∧exem ∧condm ∧
∧

CFk∈Anested(m)

Φ̄CFk))

∧ (((
∨

m∈OPND(CF )

(
∧

OSpre∈pre(CF↑Lm )

(¬OSpre))) ∧ (¬exem)) →

((¬exem) ∧(¬condm) ∧
∧

n∈AnestedOP (m)

(¬condn)))

∧ γ̄CF ∧ η̄CF ∧ µ̄CF ∧ ϑCF

ϑCF =((((
∨̂

m∈OPND(CF )

exem) ∧
∧

m∈OPND(CF )

(exem → condm)) ∨ (
∧

m∈OPND(CF )

(¬condm)))

∧
∧

m∈OPND(CF )

(
∧

n∈AllOS(m)

(OSn → exem)))

179



θ̄m
critical =

∧

i∈LN(m)

δ̄(AllOS(m↑i),(AllOS(seq↑i)\AllOS(m↑i)))

δ̄M1,M2 =((
∨

OSk∈M1

OSk) → ((
∧

OSj∈M2

(¬OSj)) Ũ (
∧

OSk∈M1

(¬OSk))))

θ̄m
assert =

∧

i∈LN(m)

λ̄i,seq
(pre(m↑i),AllOS(m↑i))

λ̄i,seq
N1,N2

= (
∧

OSp∈N1

(¬OSp) → ((
∧

OSq∈(AllOS(seq↑i)\N2)

(¬OSq)) Ũ (
∧

OSr∈N2

(¬OSr))))

Figure C.1: LTL formulas for implementation of templates
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