
VERIFIABLE DELEGATED COMPUTATION ON OUTSOURCED DATA

APPROVED BY SUPERVISING COMMITTEE:

Shouhuai Xu, Ph.D., Chair

Giuseppe Ateniese, Ph.D.

Rajendra V. Boppana, Ph.D.

Kay A. Robbins, Ph.D.

Ravi Sandhu, Ph.D.

Accepted:
Dean, Graduate School

Copyright 2014 Qingji Zheng

All rights reserved.

DEDICATION

This dissertation is dedicated to

my wife, Qi Li, the love of my life;

my parents, parents in law, brothers and sister, for their invaluable supports.

VERIFIABLE DELEGATED COMPUTATION ON OUTSOURCED DATA

by

QINGJI ZHENG, M. Sc.

DISSERTATION

Presented to the Graduate Faculty of

The University of Texas at San Antonio

In Partial Fulfillment

Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO

College of Sciences

Department of Computer Science

May 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3621182
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3621182

ACKNOWLEDGEMENTS

It is my fortune and honor to be supervised by Dr. Shouhuai Xu, and I would like to express

my special gratitude to him. Without his expertise and guidance, the dissertation cannot be accom-

plished. His enthusiasm on the research, sharp insights on the problems and wide range of interests

and expertise inspired me not only how to approach a technical solution but also how to conduct

research from scratch.

I would like to thank my collaborator, Dr. Gieseppe Ateniese, for his expert perspective and

contributions to the dissertation. I must thank other committee members Dr. Rajendra V. Boppana,

Dr. Kay A. Robbins and Dr. Ravi Sandhu for their helpful comments and suggestions on the

dissertation.

I would like to thank my friend Xinwen Zhang for his various help, and friends at UTSA for

accompanying me on the Ph.D. journey.

The research described in the dissertation was partly supported by Prof. Shouhuai Xu’s NSF

Grant # 1111925.

May 2014

iv

VERIFIABLE DELEGATED COMPUTATION ON OUTSOURCED DATA

Qingji Zheng, Ph.D.

The University of Texas at San Antonio, 2014

Supervising Professor: Shouhuai Xu, Ph.D.

Cloud computing has been an outstanding computing paradigm in the literature. While promis-

ing, it also brings a range of security problems that must be adequately addressed. One class of

security problem is related to untrusted cloud (i.e., cloud infrastructure vendors and cloud service

providers) that might be compromised. While encrypting data outsourced to the cloud can be used

to mitigate such threats, it is insufficient to tackle another difficult problem: How can cloud users

trust the results which are the outputs of some computing tasks conducted by the clouds (“delegated

computation”) on the users’ outsourced encrypted data? This problem leads to a general concept

of “verifiability”, which has not been investigated sufficiently. This dissertation addresses three

problems in this domain, by presenting three families of provably-secure cryptographic protocols.

The first contribution deals with the problem: how to allow secure keyword search on out-

sourced encrypted data while complying with flexible access control policies, and assure that the

cloud faithfully followed the search procedures? We introduces the solution concept of “verifiable

attribute-based keyword search”, which enables data owners to grant keyword search capability

with respect to access control policies and data users to delegate keyword search to the cloud as

long as their attributes satisfy the access control policies, and further allows data users to verify

that the cloud faithfully executed the search operations.

The second contribution is to explore the problem: how can cloud users delegate the set in-

tersection operation to the cloud on their outsourced encrypted data sets, and further verify the

correctness of the intersection set returned from the cloud? We introduce the novel notion of

“verifiable delegated set intersection on outsourced encrypted data”, which is to delegate the set

intersection operation to the cloud, while (i) not giving the decryption capability to the cloud, and

v

(ii) being able to hold the misbehaving cloud accountable.

The third contribution concentrates on the problem: How to achieve verifiable SQL queries on

outsourced databases? We present an efficient solution to support various SQL queries that include

selection, projection, join, and (weighted) aggregation queries? The solution is built on top of two

building blocks: an efficient authenticated data structure to support dynamic update on outsourced

databases, and newly devised homomorphic linear tag, which can efficiently verify the integrity of

query results via aggregation.

vi

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . v

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Dissertation Contributions . 2

1.2.1 Verifiable Attributed-based Keyword Search on Outsourced Encrypted Data 2

1.2.2 Verifiable Set Intersection on Outsourced Encrypted Data 3

1.2.3 Verifiable SQL Queries on Outsourced Dynamic Databases 3

Chapter 2: Verifiable Attribute-based Search on Outsourced Encrypted Data 5

2.1 Introduction . 5

2.1.1 Our Contribution . 5

2.1.2 Related Work . 6

2.2 Preliminaries . 7

2.2.1 Cryptographic Assumptions and Structure 8

2.2.2 Bloom Filter for Membership Query . 9

2.2.3 Access Trees for Representing Access Control Policies 9

2.3 Attribute-Based Keyword Search (ABKS) . 11

2.3.1 ABKS Definition and Security . 12

2.3.2 ABKS Construction . 15

2.4 Verifiable Attribute-based Keyword Search (VABKS) 25

vii

2.4.1 System Model and Threat Model . 25

2.4.2 VABKS Definition and Security . 26

2.4.3 VABKS Construction . 28

2.4.4 Security Analysis . 32

2.5 Performance Evaluation . 36

2.5.1 Efficiency of ABKS . 36

2.5.2 Efficiency of VABKS with Real Data . 38

2.6 Chapter Summary . 39

Chapter 3: Verifiable Delegated Set Intersection on Outsourced Encrypted Data 40

3.1 Introduction . 40

3.1.1 Our Contribution . 41

3.1.2 Related Work . 42

3.2 Cryptographic Preliminaries . 43

3.3 VDSI Model and Definition . 45

3.3.1 System Model . 45

3.3.2 Threat Model and Basic Idea of Defense 46

3.3.3 VDSI Function Definition . 47

3.3.4 VDSI Security Definition . 49

3.4 Building-Block: multi-accumulator . 51

3.4.1 Function and Security Definitions . 51

3.4.2 Construction based on Bilinear Map . 53

3.5 The VDSI Scheme . 57

3.5.1 The Scheme . 58

3.5.2 Security Analysis . 62

3.6 Performance Evaluation . 68

3.6.1 Asymptotic Complexity . 68

viii

3.6.2 Performance Evaluation . 70

3.6.3 Improvement with Parallelization . 72

3.7 Chapter Summary . 72

Chapter 4: Verifiable SQL Queries on Outsourced Dynamic Databases 74

4.1 Introduction . 74

4.1.1 Our Contribution . 74

4.1.2 Related Work . 76

4.2 Problem Formulation . 77

4.2.1 System Model . 77

4.2.2 Functional and Security Definitions . 78

4.3 Building-Block I: Authenticated Data Structure on Outsourced Ordered Data (Au-

thDS) . 81

4.3.1 Definition of AuthDS . 81

4.3.2 Construction and Analysis of AuthDS: Merkle B-Tree 82

4.4 Building Block II: Homomorphic Linear Tag (HLT) 84

4.4.1 Definitions of HLT . 85

4.4.2 Construction and Analysis of HLT . 87

4.5 Verfiable SQL Queries on Outsourced Dynamic Databases 91

4.5.1 High Level Idea . 91

4.5.2 Proposed Construction . 92

4.5.3 Security Analysis . 99

4.6 Performance Evaluation . 103

4.6.1 Asymptotic Performance Analysis . 103

4.6.2 Implementation . 105

4.6.3 Performance Evaluation . 106

4.7 Chapter Summary . 109

ix

Chapter 5: Conclusion . 110

5.1 Summary . 110

5.2 Future Work . 111

Bibliography . 112

Vita

x

LIST OF TABLES

Table 2.1 Possible terms for querying group oracle GT 24

Table 2.2 Asymptotic complexities of ABKS schemes 37

Table 2.3 Execution time of ABKS schemes . 37

Table 3.1 Notations . 45

Table 3.2 Asymptotical compleixty of the multi-accumulator scheme 55

Table 3.3 Asymptotic complexity for VDSI scheme 68

Table 3.4 Asymptotic performance comparison for the VDSI solution and the straight-

forward solution . 68

Table 4.1 Performance comparison for the HLT and HLA 91

Table 4.2 Asymptotic performance comparison . 104

xi

LIST OF FIGURES

Figure 2.1 System model for verifiable attribuate-based keyword search 25

Figure 2.2 Basic idea for achieving verifiability . 28

Figure 2.3 Init, KeyGen, BuildIndex, TokenGen and searchindex algorithms in VABKS

construction . 29

Figure 2.4 Verify algorithm in VABKS construction 31

Figure 2.5 Performance of VABKS schemes . 38

Figure 3.1 System model for verifiable delegated set intersection on outsourced en-

crypted data . 46

Figure 3.2 Performance of VDSI . 69

Figure 3.3 Performance comparison between the VDSI solution and straightforward

solution . 71

Figure 3.4 VDSI Performance with parallelization . 72

Figure 4.1 System model for verifiable SQL queries on outsourced dynamic database . 78

Figure 4.2 High level idea for the VQDDB solution 92

Figure 4.3 Idea for assuring verifiable selection query 95

Figure 4.4 Idea for assuring verifiable projection query 96

Figure 4.5 Comparison of storage overhead . 105

Figure 4.6 The performance of SetUp algorithm run by the data onwer. 107

Figure 4.7 The performance of Update protocol between the data owner and the cloud

server. 108

Figure 4.8 The performance of QueryandVrfy protocol between the querier and the

cloud server. 108

xii

Chapter 1: INTRODUCTION

1.1 Motivation

The emergence of cloud computing enables both enterprises and individual users to use the on-

demand computing resources at the affordable price. Despite various benefits, cloud computing

inevitably brings in new security and privacy concerns, because the cloud (i.e., cloud infrastructure

vendors or cloud service providers) might be malicious by birth or compromised, and therefore

cannot be fully trusted. Cloud is not as promising as it claimed until the relevant security problems

have been adequately addressed.

Specifically, cloud security problems can be classified into categories based on the trust models

as follows.

• Trusted cloud model: The cloud is one who is assumed not to deviate from the protocols in

question. It does not require encrypting the outsourced data and performing verification on

any computation outcome.

• Semi-trusted cloud model(honest-but-curious): A semi-trusted cloud is one who follows the

protocol with the exception that it keeps all its intermediate computations and attempts to

infer something from the data. Whether to encrypt outsourced data depends on its sensitivity.

For example, it needs no encryption for public records (e.g., government employees’ salary),

while it demands encryption for specific records of individuals (e.g., patients’ healthcare

records). There is no need to perform computation verification because the semi-trusted

cloud service provider follows the protocol exactly.

• Untrusted cloud model: A malicious cloud is one who can deviate the protocol arbitrar-

ily. Whether to encrypt outsourced data lies on its sensitivity, and it indeed needs to verify

the correctness of any output from the cloud service provider since the protocol might be

executed arbitrarily.

1

In this dissertation, we center on the security problems in the untrusted cloud model: How

can cloud users assure that the cloud faithfully conducted the specified computation functions? In

other words, can cloud users efficiently verify that the output of the functions has been honestly

computed by the cloud on the right outsourced data?

To resolve this problem, verifiable delegated computation has been introduced and led to a

large volume of prior works. Roughly these works can be classified into three categories. The first

one is the architectural approach, which is to deploy trusted hardware to the server, e.g. secure pro-

cessors [113,120,126] or Trusted Platform Modules (TPMs) [66], for building a secure and trusted

computation environment. The second is the interactive probabilistically checkable approach (in-

teractive proof) [51,60,86,110], where users actively challenge the server and receive the response

to verify the correctness of the statement, initiated by the work about Interactive Proofs [10, 59].

The last one is the non-interactive approach [16,38,46,50,53,64,83,89–92,94,97–99,101,106,125],

where the server sends the proof to users with the computation output in the same round.

1.2 Dissertation Contributions

This dissertation focuses on verifiable delegated computation on outsourced data in cloud com-

puting. More specifically, the dissertation contribution can be summarized into the three parts as

follows.

1.2.1 Verifiable Attributed-based Keyword Search on Outsourced Encrypted Data

With the increasing adoption of cloud computing for data storage, assuring secure data service,

in terms of data confidentiality and retrieval correctness, has been outstanding. While classical

data encryption guarantees confidentiality but makes it impossible for authorized parties to search

on encrypted data. Searchable encryption, on the other end, allows authorized parties to provide

only specific records according to some search criteria, e.g., keywords. Unfortunately, these solu-

tions are not suitable for the case where data owners wish to share data with users by restricting

their search capability to comply with flexible access control policies. In addition, as the cloud

2

providers might deceive users, for example, by returning partial search result or operating on par-

tial, modified, or corrupted data, because of economic incentives or system corruption, we consider

the retrieval correctness when authorized users retrieve data from the cloud. By considering these

issues comprehensively, we investigate the solution of verifiable attribute-based keyword search

for facilitating flexible access control on keyword search on encrypted data and supporting verifi-

cation on search results. This work was presented at the 2014 IEEE INFOCOM [130] and will be

presented in Chapter 2.

1.2.2 Verifiable Set Intersection on Outsourced Encrypted Data

Private set intersection protocol is an essential building block for many cryptographic applications,

which enables data users to compute the set intersection without revealing the non-matching items.

Cloud computing with massive storage and vast computational resource drives the desire to store

the encrypted data in the cloud and also outsource such computations, which can sharply decrease

the cost happening on data users. This leads to a general question: How can the cloud execute the

delegated functions on outsourced encrypted data, without being given the decryption capability?

This question is not trivial to be solved since the outsourced data are encrypted under different

cloud users’ public keys. In addition, How can cloud users verify that the cloud executed the dele-

gated computational functions honestly? We therefore motivate and introduce the novel notion of

Verifiable Delegated Set Intersection on outsourced encrypted data [128], which will be presented

in Chapter 3.

1.2.3 Verifiable SQL Queries on Outsourced Dynamic Databases

As an outstanding application, third-party service providers deploy databases on top of cloud in-

frastructure and provide database-as-a-services, by enjoying overall benefits of cloud computing.

However, outsourcing databases to the cloud also causes security concerns even for databases. In

particular, for the database queirers, they need to verify the correct execution of database queries

to avoid any deliberate or inadvertent misbehavior of the cloud, which is referred to query in-

3

tegrity. Concretely, database queirers need to verify the query integrity in the sense that (1) for

any query request, the query is executed by the cloud on correct data and the returned results have

not been modified; (2) the query result should embrace all data sets satisfying the SQL query; and

(3) the query must be executed on the database of latest version considering frequent updates to

the database. Several schemes have been proposed for query integrity. However, these solutions

incur a significant overhead in practice, either from the perspective of communication or from the

view of computation. Therefore, we explore the approach which can significantly reduce overhead

by devising new cryptographic primitive, and consider flexible SQL queries to better fulfill the

requirements of many practical systems. This work was presented at the 2012 ACM Workshop on

Cloud Computing Security [129], and will be presented in Chapter 4.

4

Chapter 2: VERIFIABLE ATTRIBUTE-BASED SEARCH ON

OUTSOURCED ENCRYPTED DATA

2.1 Introduction

Cloud computing allows data owners to use massive data storage and vast computation capabilities

at a very convenient price. Despite its benefits, data outsourcing deprives data owners of direct

control on their outsourced data. To alleviate such concerns, data owners should adopt encryption

and encrypt their data before storing it into the cloud. However, encryption alone may severely

hinder several functionalities cloud solutions have accustomed users to. For instance, it would be

impossible to search on data owner’s outsourced encrypted data. In addition, a data owner may

not be able to grant search capabilities to data users according to a specified access control policy

(e.g., stating that only certain users can search on sensitive data). While the cloud may search on

encrypted data thanks to current cryptographic techniques, it is not clear how to verify whether it

faithfully followed the requested search operations. As we will elaborate later, existing solutions

cannot achieve these goals simultaneously.

2.1.1 Our Contribution

We propose a novel cryptographic solution by which data owners can control the search and use

of its outsourced encrypted data according to its access control policy, while the legitimate data

users can outsource the often costly search operations to the cloud and can verify whether the cloud

has faithfully executed users’ search operations. More specifically, the solution allows a data user

with proper credentials (according to a data owner’s access control policy) to (i) search on the data

owner’s outsourced encrypted data, (ii) outsource the actual search operations to the cloud, and (iii)

verify whether or not the cloud has faithfully executed the user’s search operations. The solution

is centered on a novel cryptographic scheme, verifiable attribute-based keyword search (VABKS).

In addition to formally define security properties of VABKS, we present the VABKS construc-

5

tion in a modular fashion, by using attribute-based encryption, bloom filter, digital signature, and a

newly introduced building-block called attribute-based keyword search (ABKS), which may be of

independent value. Our application of bloom filter and digital signature allows data users to effi-

ciently verify that the cloud honestly conducted the users’ search operations on some data owner’s

outsourced encrypted data. Experimental evaluation shows that the VABKS (and VABKS) schemes

are practical.

2.1.2 Related Work

To the best of our knowledge, no solution is adequate for what we want to achieve. Nevertheless,

we briefly review the relevant techniques below.

Keyword Search over Encrypted Data. Existing solutions for keyword-based search over en-

crypted data can be classified into two categories: searchable encryption in the symmetric-key

setting (e.g., [32, 34, 37, 43, 58, 71, 73, 74, 80, 114]) and searchable encryption in the public-key

setting (e.g., [11, 14, 22, 26, 119]). In these solutions, the data owner generates some tokens

that can be used by a data user to search over the data owner’s encrypted data. Several vari-

ants (e.g., [24, 63, 85, 112]) have been proposed to support complex queries. Moreover [13, 43]

considered searchable encryption in the multi-users setting, where the data owner can enforce an

access control policy by distributing (stateful) secret keys to authorized users directly and revoke

the secret keys if necessary. However, all these solutions do not solve the problem studied in the

present chapter because (1) some solutions require interactions between data users and data own-

ers (or trusted proxy, e.g., trapdoor generation entity [26]) to grant search capabilities, and (2) all

these silutions (except [32]) assume that the server faithfully executed search operations. In con-

trast, our solution allows a data user with proper credentials to issue search tokens by which the

cloud can perform keyword search on behalf of the user, without requiring any interaction with

the data owner. Moreover, the data user can verify whether or not the cloud has faithfully exe-

cuted the user’s search operations. This is true even for the powerful technique called predicate

encryption [76, 95], which does not offer the desired verifiability.

6

Attribute-Based Encryption (ABE). This technique allows entities with proper credentials to

decrypt a ciphertext in question [108]. It has two variants, depending on how access control is

enforced, called key-policy ABE (KP-ABE), where the decryption key is associated with an access

control policy [65], and ciphertext-policy ABE (CP-ABE), where the ciphertext is associated with

an access control policy [18]. ABE is a popular method for enforcing access control policies via

cryptographic means, and has been enriched with various features (e.g., [35, 36, 82, 96]). In this

chapter, we extend ABE with the novel feature of keyword search, namely attribute-based keyword

search, by which keywords are encrypted with some access control policies so that only data users

with proper cryptographic credentials can generate tokens that can be used to searcher over the out-

sourced encrypted data. This effectively prevents data owners from knowing the keywords a data

user is searching for while requiring no interaction between data users and data owners/trusted au-

thorities. This is even in contrast to [26], where data users should interact with data owners/trusted

authorities to obtain search tokens obliviously.

Verifiable Keyword Search. Recently, verifiable keyword search solutions have been proposed

in [16,50,100], where each keyword is represented as a root of a polynomial. It is possible to check

whether a keyword is present or not by evaluating the polynomial on the keyword and verifying if

its output is zero. However, these approaches work only when keywords are sent in the cleartext

to the cloud, and are not suitable for our purpose because the cloud should not know the keywords

involved. It is worth mentioning that the secure verifiable keyword search in the symmetric-key

setting [32] can be insecure in the public-key setting because the attacker can infer keywords in

question via an off-line keyword guessing attack (in lieu of the off-line dictionary attack against

passwords).

2.2 Preliminaries

Let a← S denote selecting an element a from a set S uniformly at random, || denote the concate-

nation operation and string(S) denote the concatenation of elements of S ordered by their hash

values. Let U = {at1, . . . , atn} be the set of attributes, based on which access control policies are

7

specified.

2.2.1 Cryptographic Assumptions and Structure

Let p be an �-bit prime, and G,GT be cyclic groups of prime order p with generators g, gT respec-

tively. Let e be a bilinear map: e : G×G→ GT satisfying: (i) ∀a, b← Zp, e(ga, gb) = e(g, g)ab,

(ii) e(g, g) �= 1, and (iii) e can be computed efficiently.

Decisional Linear Assumption (DL). Given (g, f, h, f r1 , gr2 , Q) where g, f, h,Q← G, r1, r2 ←

Zp, this assumption says that any probabilistic polynomial-time algorithm A can determine if

Q
?
= hr1+r2 with a negligible advantage in security parameter �, where the advantage is defined as

|Pr[A(g, f, h, f r1 , gr2 , hr1+r2) = 1]− Pr[A(g, f, h, f r1 , gr2 , Q) = 1]|.

Generic Bilinear Group [20]. Let ψ0, ψ1 be two random encodings of the additive group Z
+
p , such

that ψ0, ψ1 are injective maps from Z
+
p to {0, 1}m, where m > 3 log(p). Let G = {ψ0(x)|x ∈ Zp}

and GT = {ψ1(x)|x ∈ Zp}. There is an oracle to compute e : G × G → GT . G is referred to as

a generic bilinear group. Let g denote ψ0(1), g
x denote ψ0(x), e(g, g) denote ψ1(1), and e(g, g)y

denote ψ1(y).

Pseudorandom Generator [75]. A pseudorandom generator H : {0, 1}� → {0, 1}m, � < m, is a

deterministic algorithm that takes as input an �-bit seed and generates a m-bit string that cannot be

distinguished from a m-bit random string by any polynormial-time algorithm (in �).

Attribute-based Encryption (ABE). Let ABE be a secure attribute-based encryption scheme [18,

65], such that ABE = (Setup,KeyGen,Enc,Dec) where Setup is to initialize the system parameter

and master key, KeyGen is to generate credentials for users, Enc is to encrypt the data with the

access control policy and Dec is to decrypt the ciphertext with the user’s credentials.

Symmetric Encryption (SE) [75]. Let SE be a secure symmetric encryption, such that SE =

(KeyGen,Enc,Dec) where KeyGen is to generate symmetric key, Enc is to encrypt the message

and Dec is to decrypt the ciphertext.

8

Digital Signature (Sig) [75]. Let Sig be a secure digital signature, such that Sig = (KeyGen, Sign,

Verify), where KeyGen is to generate public/private key, Sign is to generate a signature for the

message and Verify is to verify whether the message is matched the signature.

2.2.2 Bloom Filter for Membership Query

A Bloom filter [19] is a data structure for succinctly representing a static set of items while allowing

membership queries. A m-bit Bloom filter is an array of m bits, that are initially set to 0. It uses

k independent universal hash functions H ′
1, . . . , H

′
k of range {0, . . . ,m − 1}. For each element

w ∈ S = {w1, . . . , wn}, the bits corresponding to H ′
j(w) are set to 1 for 1 ≤ j ≤ k. To check

whether w is an element of S, it verifies if all bits corresponding to H ′
j(w), 1 ≤ j ≤ k, are

set to 1. If not, w is certainly not an element of S; otherwise, w might be a member of S with

high probability (a false-positive rate should be considered). Suppose the k hash functions are

perfectly random and n elements are hashed into the m-bit Bloom filter, the false positive rate is

(1 − (1 − 1
m
)km)k ≈ (1 − e−kn/m)k. The optimal number of hash functions minimizing the false

positive rate is k = (ln 2)m/n, and the minimal false positive rate is (0.6185)m/n. A m-bit Bloom

filter has two associated algorithms:

• BF← BFGen({H ′
1, . . . , H

′
k}, {w1, . . . , wn}): This algorithm generates a m-bit Bloom filter

by hashing the data set {w1, . . . , wn} with {H ′
1, . . . , H

′
k}.

• {0, 1} ← BFVerify({H ′
1, . . . , H

′
k},BF, w): This algorithm returns 1 if w is an element of S,

and 0 otherwise.

2.2.3 Access Trees for Representing Access Control Policies

Access trees are convenient for representing access control policies [65]. In an access tree, a leaf is

associated with an attribute and an inner node represents a threshold gate. Let numv be the number

of children of the node v, and label the children from the left to the right as 1 to numv. Let kv

be the threshold value associated with node v, so that 1 ≤ kv ≤ numv, where kv = 1 represents

9

the OR gate and kv = numv represents the AND gate as two special cases. Let parent(v) denote

the parent of node v, ind(v) denote the label associated with node v, att(v) denote the attribute

associated with leaf node v, lvs(T) denote the set of leaves of the access tree T, and Tv denote the

subtree of T rooted at the node v (thus, Troot = T).

Given an attribute set Atts ⊆ U, Let F (Atts,Tv) = 1 indicate that Atts satisfies the access con-

trol policy represented by subtree Tv. The evaluation of F (Atts,Tv) can be performed iteratively

as follows:

• In the case v is a leaf: If att(v) ∈ Atts, set F (Atts,Tv) = 1; otherwise, set F (Atts,Tv) = 0.

• In the case v is an inner node with children v1, . . . , vnumv : If there exists a subset I ⊆

{1, . . . , numv} such that |I| ≥ kv and ∀ j ∈ I, F (Atts,Tvj) = 1, then set F (Atts,Tv) = 1;

otherwise, set F (Atts,Tv) = 0.

Given access tree T, we denote the algorithm for distributing a secret s according to T as:

{qv(0)|v ∈ lvs(T)} ← Share(T, s).

The algorithm generates a polynomial qv for each node v in T with the respective threshold value

kv in a top-down fashion according to T (for each leaf node, its threshold value is naturally 1) as

follows.

• If v is the root of T (v = root), set qv(0) = s and randomly pick kv − 1 coefficients for

polynomial qv.

• Else if v is a leaf of T, set qv(0) = qparent(v)(ind(v)).

• Otherwise v is an inner node, set qv(0) = qparent(v)(ind(v)) and randomly select kv − 1

coefficients for polynomial qv.

When the algorithm stops, each leaf v is associated with a value qv(0), which is the secret share of

s.

10

Given access tree T and a set of values {Eu1 , . . . , Eum}, where u1, . . . , um are leaves of T

such that F ({att(u1), . . . , att(um)},T) = 1, Euj
= e(g, h)quj (0) for 1 ≤ j ≤ m, g, h ∈ G, e is a

bilinear map and qu1(0), . . . , qum(0) are secret shares of s according to T , we denote the algorithm

for reconstructing e(g, h)s as

e(g, h)s ← Combine(T, {Eu1 , . . . , Eum}).

The algorithm executes the following steps with respect to node v in a bottom-top fashion accord-

ing to T.

• If F ({att(u1), . . . , att(um)},Tv) = 0, then continue.

• Otherwise, F ({att(u1), . . . , att(um)},Tv) = 1 and it executes below:

– If v is a leaf, set Ev = Euj
(0) = e(g, h)quj (0) where v = uj for some j.

– Otherwise, v is an inner node. Then, for v’s children nodes {v1, · · · , vnumv}, there

should exist a set of indices S, such that |S| = kv, such that j ∈ S, F ({att(u1),

. . ., att(um)}, Tvj) = 1. Let Δvj =
∏

l∈S,l �=j
−j
l−j

so that Ev =
∏

j∈S E
Δvj
vj =

∏
j∈S(e(g, h)

qvj (0))Δvj = e(g, h)qv(0)

When the algorithm stops, the root of T has an associated value Eroot = e(g, h)qroot(0) = e(g, h)s.

2.3 Attribute-Based Keyword Search (ABKS)

This building-block technique, called attribute-based keyword search (ABKS), allows data owners

to specify access control policies with respect to their data and keyword search functions when

outsourcing their encrypted data to the cloud, The data users who possess attributes satisfying a

data owner’s access control policy can search on encrypted keywords without interacting with the

data owner.

This building-block technique has two variants: Key-Policy ABKS (KP-ABKS) where the cryp-

tographic credentials are associated to an access control policy, and Ciphertext-Policy ABKS (CP-

11

ABKS) where the ciphertext is associated to an access control policy. To unify the presentation, let

IEnc denote the input to encryption function Enc and IKeyGen to denote the input to key generation

function KeyGen. In the case of CP-ABKS, IEnc and IKeyGen are respectively the access tree and

attribute set. In the case of KP-ABKS, IEnc and IKeyGen are respectively the attribute set and access

tree. Let F (IKeyGen, IEnc) = 1 denote that IKeyGen satisfies IEnc in CP-ABKS and that IEnc satisfies

IKeyGen in KP-ABKS.

2.3.1 ABKS Definition and Security

Definition 1. An ABKS operates in the following model: A data owner outsources its encrypted

keyword to the cloud, a data user generates the search token with respect to some keyword and

retrieves encrypted data from the cloud, and a cloud provides data storage and retrieval service

upon request. The ABKS consists of algorithm as follows:

• (mk, pm) ← Setup(1�): This algorithm initializes the public parameter pm and generates a

master key mk.

• sk ← KeyGen(mk, IKeyGen): Taking as input the master key mk and IKeyGen, this algorithm

outputs credential sk for a user.

• cph ← Enc(w, IEnc): Taking as input keyword w and IEnc, this algorithm outputs the en-

crypted keyword cph.

• tk ← TokenGen(sk, w): Taking as input credential sk and keyword w, a legitimate (or au-

thorized) data user uses this algorithm to generates a search token tk.

• {0, 1} ← Search(cph, tk): The cloud uses this algorithm to determine whether the encrypted

keyword cph and the token tk correspond to the same keyword. Return 1 if so, and 0 other-

wise.

Correctness of ABKS requires that, given (mk, pm) ← Setup(1�), sk ← KeyGen(mk, IKeyGen)

and F (IKeyGen, IEnc) = 1, for any w, cph ← Enc(w, IEnc) and tk ← TokenGen(sk, w), then 1 ←

12

Search(cph, tk) always holds.

The threat model of ABKS is the following: data owners and authorized data users are trusted,

whereas the cloud is semi-trusted (i.e., trusted but curious). ABKS security requires that the cloud

learn nothing but the search results. Specifically, given a probabilistic polynomial-time adversary

Amodeling the semi-trusted cloud, an ABKS scheme should satisfy the following intuitive security

requirements:

• Selective security against chosen-keyword attack: This notion is to capture that the adver-

sary A cannot deduce any information about keyword only with keyword ciphertexts (i.e.

without being any matched search tokens) in the selective security model, other than what

it already knows from previous results, e.g. querying search tokens by adaptively choosing

keywords. In other words,A cannot distinguish the encryption of two challenge keywords of

its choice. Here the selective security model [30] means thatAmust determine IEnc it intends

to attack before the system parameters are initiated. We formalize this security property via

the following selective chosen-keyword attack game .

• Keyword secrecy: In the public-key setting, it is impossible to protect the information en-

coded by search tokens (aka. predicate privacy [111]) due to the keyword guessing attack: A

can encrypt any keyword of his choice and check whether the resulting keyword ciphertext

and the target token have the same keyword. Therefore, we use a weaker notion, keyword

secrecy, that assures the probability of A learning the keyword from the ciphertext as well

as the search token is no more than that of one random keyword guess. We formalize this

security property via the keyword secrecy game.

Selectively Chosen-Keyword Attack (SCKA) Game:

Setup: A selects a non-trivial challenge I∗Enc (a trivial challenge I∗Enc is one that can be satisfied by

any data user who does not have any credential), and gives it to the challenger. Then the challenger

runs Setup(1�) to generate the public parameter pm and the master key mk.

Phase 1: A can query the following oracles for polynomially many times, and the challenger keeps

13

a keyword list Lkw, which is initially empty.

• OKeyGen(IKeyGen): If F (IKeyGen, I
∗
Enc) = 1, then abort; otherwise, the challenger returns to A

credential sk corresponding to IKeyGen.

• OTokenGen(IKeyGen, w) : The challenger generates credential sk with IKeyGen, and returns to A

a search token tk by running algorithm TokenGen with inputs sk and w. If F (IKeyGen, I
∗
Enc) =

1, the challenger adds w to Lkw.

Challenge phase: A chooses two keywords w0 and w1, where w0, w1 /∈ Lkw. The challenger

selects λ ← {0, 1}, computes cph∗ ← Enc(wλ, I
∗
Enc), and delivers cph∗ to A. Note that the

requirement of w0, w1 /∈ Lkw is to preventA from trivially guessing λ with tokens fromOTokenGen.

Phase 2: A continues to query the oracles as in Phase 1. The restriction is that (IKeyGen, w0) and

(IKeyGen, w1) cannot be the input to OTokenGen if F (IKeyGen, I
∗
Enc) = 1.

Guess: A outputs a bit λ′, and wins the game if λ′ = λ.

Let |Pr[λ = λ′]− 1
2
| be the advantage of A winning the above SCKA game. Thus, we have

Definition 2. An ABKS scheme is selectively secure against chosen-keyword attack if the advan-

tage of any A winning the SCKA game is negligible in security parameter �.

Keyword Secrecy Game:

Setup: The challenger runs Setup(1�) to generate the public parameter pm and the master key mk.

Phase 1: A can query the following oracles for polynomially many times:

• OKeyGen(IKeyGen): The challenger returns toA credential sk corresponding to IKeyGen. It adds

IKeyGen to the list LKeyGen, which is initially empty.

• OTokenGen(IKeyGen, w): The challenger generates credential sk with IKeyGen, and returns to A

a search token tk by running algorithm TokenGen with input sk and w.

Challenge phase: A chooses a non-trivial I∗Enc and gives it to the challenger. The challenger selects

w∗ from the message space uniformly at random and selects I∗KeyGen such that F (I∗KeyGen, I
∗
Enc) = 1.

14

The challenger runs cph← Enc(w∗, I∗Enc) and tk← TokenGen(sk, w∗) and delivers (cph, tk) toA.

We require that ∀IKeyGen ∈ LKeyGen,

F (IKeyGen, I
∗
Enc) = 0.

Guess: After guessing q distinct keywords,A outputs a keyword w′, and wins the game if w′ = w.

Definition 3. An ABKS scheme achieves keyword secrecy if the probability that A wins the key-

word secrecy game is at most 1
|M|−q

+ε, whereM is the keyword space, q is the number of distinct

keywords that the adversary has attempted, and ε is a negligible in security parameter �.

2.3.2 ABKS Construction

The basic idea underlying the ABKS construction is to separate each keyword ciphertext and search

token into two parts: one is associated to the keyword and the other is associated to the attributes

(or access control policy). If the data user’s attributes satisfy the access control policy, it can

determine whether the search token matches the encrypted keyword.

To further highlight the basic idea, let us consider KP-ABKS as example. Assume that H1 :

{0, 1}∗ → G is a secure hash function modeled as random oracle, and H2 : {0, 1}∗ → Zp is a

secure one-way hash function. A data user’s credentials are generated by letting t ← Zp, Av =

gqv(0)H1(att(v))
t, Bv = gt for each leaf v, where g is the generator ofG, qv(0) is the share of secret

ac for leaf v according to access tree T. The keyword ciphertext and search token are generated as

follows:

• Keyword w is encrypted into two parts: one is to “blend” keyword with randomness by

letting W ′ = gcr1 , W = ga(r1+r2)gbH2(w)r1 and W0 = gr2 where ga, gb, gc ∈ G are public

keys and r1, r2 ← Zp, and the other is associated to the attribute set Atts by letting Wj =

H1(atj)
r2 for each atj ∈ Atts. The two parts are tied to r2.

• Given a set of credentials, a search token for keyword w is generated with two parts: one is

associated to the keyword, tok1 = (gagbH2(w))s and tok2 = gcs by selecting s← Zp, and the

other is associated to the credentials by letting A′
v = As

v, B
′
v = Bs

v for each v ∈ lvs(T). The

15

two parts are tied to s.

As long as the attribute set satisfies the access tree T, the cloud can use A′
v, B

′
v and W0,Wj to

recover e(g, g)acr2s, which can be used to test the keyword equality as elaborated below.

KP-ABKS Construction. Let � be the primary security parameter. It consists of the following

algorithms.

Setup(1�): This algorithm selects a bilinear map e : G×G→ GT , such that G and GT are cyclic

groups of order p, an �-bit prime. It selects a, b, c← Zp and g ← G, and sets

pm = (e, g, p, ga, gb, gc, G,GT),mk = (a, b, c).

KeyGen(mk,T): This algorithm executes {qv(0)|v ∈ lvs(T)} ← Share(T, ac) to obtain secret

shares of ac for all leaves in T. For each leaf v in T, it picks t ← Zp, and computes Av =

gqv(0)H1(att(v))
t and Bv = gt. It sets

sk = (T, {(Av, Bv)|v ∈ lvs(T)}).

Enc(w,Atts): This algorithm selects r1, r2 ← Zp, and computesW ′ = gcr1 ,W = ga(r1+r2)gbH2(w)r1

and W0 = gr2 . For each atj ∈ Atts, it computes Wj = H1(atj)
r2 . It sets

cph = (Atts,W ′,W,W0, {Wj|atj ∈ Atts}).

TokenGen(sk, w): This algorithm selects s ← Zp, and computes A′
v = As

v, B
′
v = Bs

v for each

v ∈ lvs(T). It computes tok1 = (gagbH2(w))s and tok2 = gcs. It sets

tk = (tok1, tok2,T, {(A′
v, B

′
v)|v ∈ lvs(T)})

Search(tk, cph): Given the attribute set Atts included in cph, this algorithm selects a attribute set S

satisfying the access tree T included in tk. If S does not exist, return 0; otherwise, for each atj ∈ S,

16

it computes Ev = e(A′
v,W0)/e(B

′
v,Wj) = e(g, g)sr2qv(0), where att(v) = atj for v ∈ lvs(T). Then

it computes e(g, g)sr2qroot(0) ← Combine(T, {Ev|att(v) ∈ S}) so that Eroot = e(g, g)acsr2 . It

returns 1 if e(W ′, tok1)Eroot = e(W, tok2), and 0 otherwise.

Correctness of KP-ABKS can be verified as follows:

e(W ′, tok1)Eroot = e(gcr1 , (gagbH2(w))s)Eroot

= ee(g, g)acsr1e(g, g)bcsH2(w)r1Eroot

= e(g, g)acs(r1+r2)e(g, g)bcsH2(w)r1

e(W, tok2) = ee(ga(r1+r2)gbH2(w)r1 , gcs)

= ee(g, g)acs(r1+r2)e(g, g)bcsH2(w)r1

Security of KP-ABKS is assured by the following theorems.

Theorem 1. Assume that the DL assumption holds, the KP-ABKS scheme is selectively secure

against chosen-keyword attack in the random oracle model.

Proof. We show that if there is a polynomial-time adversary A that wins the SCKA game with

advantage μ, then there is a challenger algorithm that solves the DL problem with advantage μ/2.

Given a DL instance (g, h, f, f r1 , gr2 , Q), where g, f, h,Q ← G and r1, r2 ← Zp, the challenger

simulates the SCKA game as follows.

Setup: The challenger sets ga = h and gc = f where a and c are unknown, selects d ← Zp and

computes gb = fd = gcd by implicitly defining b = cd. Let H2 be an one-way hash function and

pm = (e, g, p, h, fd, f) and mk = (d).

A selects an attribute set Atts∗ and gives it to the challenger. The random oracle OH1(atj) is

defined as follows:

• If atj has not been queried before,

– if atj ∈ Atts∗, select βj ← Zp, add (atj, αj = 0, βj) to OH1 , and return gβj ;

17

– otherwise, select αj, βj ← Zp, add (atj, αj, βj) to OH1 , and return fαjgβj .

• If atj has been queried before, retrieve (αj, βj) from OH1 and return fαjgβj .

Phase 1: A can adaptively query the following oracles for polynomially-many times and the chal-

lenger keeps a keyword list Lkw, which is empty initially.

OKeyGen(T): A gives an access tree T to the challenger. If F (Atts∗,T) = 1, then the challenger

aborts; otherwise, the challenger generates attributes as follows.

Define the following two procedures to determine the polynomial for each node of T:

• PolySat(Tv,Atts
∗, λv): Given secret λv, this procedure determines the polynomial for each

node of Tv rooted at v when F (Atts∗,Tv) = 1. It works as follows: Suppose the threshold

value of node v is kv, it sets qv(0) = λv and picks kv − 1 coefficients randomly to fix the

polynomial qv. For each child node v′ of v, recursively call PolySat(Tv′ ,Atts
∗, λv′) where

λv′ = qv(Index(v
′)).

• PolyUnsat(Tv,Atts
∗, gλv): Given element gλv ∈ G where the secret λv is unknown, this

procedure determines the polynomial for each node of Tv rooted at v when F (Atts∗,Tv) = 0

as follows. Suppose the threshold value of the node v is kv. Let V be the empty set. For each

child node v′ of v, if F (Atts,Tv′) = 1, then set V = V
⋃{v′}. Because F (Atts,Tv) = 0,

then |V | < kv. For each node v′ ∈ V , it selects λv′ ← Zp, and sets qv(Index(v
′)) = λv′ .

Finally it fixes the remaining kv − |V | points of qv randomly to define qv and makes gqv(0) =

gλv . For each child node v′ of v,

– if F (Atts∗,Tv′) = 1, then run PolySat(Tv′ ,Atts
∗, qv(Index(v′)), where qv(Index(v

′)) is

known to the challenger;

– otherwise, call PolyUnsat(Tv′ ,Atts
∗, gλv′), where gλv′ = gqv(Index(v

′) is known to the

challenger.

With the above two procedures, the challenger runs PolyUnsat(T,Atts∗, ga), by implicitly

defining qroot(0) = a. Then for each v ∈ lvs(T), the challenger gets qv(0) if att(v) ∈ Atts∗,

18

and gets gqv(0) otherwise. Because cqv(0) is the secret share of ac, due to the linear property, the

challenger generates credentials for each v ∈ lvs(T) as follows:

• If att(v) = atj for some atj ∈ Atts∗: Select t← Zp, setAv = f qv(0)gβjt = gcqv(0)H1(att(v))
t

and Bv = gt;

• If att(v) /∈ Atts∗ (assuming att(v) = atj): Select t′ ← Zp, set Av = (gqv(0))
−βj
αj (fαjgβj)t

′

and Bv = g
qv(0)

−1
αj gt

′
. Note that (Av, Bv) is a valid credential because

Bv = g
qv(0)

−1
αj gt

′
= g

t′− qv(0)
αj

Av = g
qv(0)

−βj
αj (fαjgβj)t

′

= f qv(0)(fαjgβj)
−qv(0)

αj (fαjgβj)t
′

= f qv(0)(fαjgβj)
t′− qv(0)

αj

= gcqv(0)H1(att(v))
t′− qv(0)

αj

by implicitly letting t = t′ − qv(0)
αj

. Note also that A cannot construct Av and Bv without

knowing αj, βj .

Eventually, the challenger returns sk = {(Av, Bv)|v ∈ lvs(T)} to A.

OTokenGen(T, w): The challenger runs OKeyGen(T) to get sk = (T, {Av, Bv|v ∈ lvs(T)}), computes

tk ← TokenGen(sk, w), and returns tk to A. If F (Atts,T) = 1, the challenger adds w to the

keyword List Lkw.

Challenge phase: A chooses two keywords w0 and w1 of equal length, such that w0, w1 /∈ Lkw.

The challenger outputs cph∗ as:

• Select λ← {0, 1}.

• For each atj ∈ Atts∗, set Wj = (gr2)βj .

• Set W ′ = f r1 , W = Q(f r1)dH2(wλ), and W0 = gr2 .

19

• Set cph∗ = (Atts∗,W ′,W,W0, {Wj|atj ∈ Atts∗}) and return cph∗ to A.

We note that if Q = hr1+r2 , then cph∗ is indeed a legitimate ciphertext for keyword wλ. The reason

is that W ′ = f r1 = gcr1 , W = Qf r1dH2(wλ) = Qgr1cdH2(wλ) = ga(r1+r2)gbr1H2(wλ), W0 = gr2 , and

for atj ∈ Atts∗, Wj = (gr2)βj = H1(atj)
r2 .

Phase 2: A continues to query the oracles as in Phase 1. The only restriction is that (T, w0) and

(T, w1) cannot be the input to OTokenGen if F (Atts∗,T) = 1.

Guess: Finally, A outputs a bit λ′ and gives it to the challenger. If λ′ = λ, then the challenger

outputs Q = hr1+r2; otherwise, it outputs Q �= hr1+r2 .

This completes the simulation. In the challenge phase, if Q = hr1+r2 , then cph∗ is a valid

ciphertext of wλ, so the probability of A outputting λ = λ′ is 1
2
+ μ. If Q is an element randomly

selected from G, then cph∗ is not a valid ciphertext of wλ. The probability of A outputting λ = λ′

is 1
2

since W is an random element in G. Therefore, the probability of the challenger correctly

guessing Q
?
= hr1+r2 with the DL instance (g, h, f, f r1 , gr2 , Q) is 1

2
(1
2
+ μ + 1

2
) = 1

2
+ μ

2
. That

is, the challenger solves the DL problem with advantage μ/2 if A wins the SCKA game with an

advantage μ.

Theorem 2. Given the one-way hash functionH2, the KP-ABKS scheme achieves keyword secrecy.

Proof. We construct a challenger that exploits the keyword secrecy game as follows:

Setup: The challenger selects a, b, c ← Zp, f ← G. Let H2 be an one-way hash function and

pm = (e, g, ga, gb, gc, f) and mk = (a, b, c).

The random oracle OH1(atj) is simulated as follows: If atj has not been queried before, the

challenger selects αj ← Zp, adds (atj, αj) to OH1 , and returns gαj ; otherwise, the challenger

retrieves αj from OH1 and returns gαj .

Phase 1: A can adaptively query the following oracles for polynomially-many times.

OKeyGen(T): The challenger generates sk ← KeyGen(T,mk) and returns sk to A. It adds T to the

list LKeyGen, which is initially empty.

20

OTokenGen(T, w): The challenger runs OKeyGen(T) to obtain sk = (T, {Av, Bv|v ∈ lvs(T)}), com-

putes tk← TokenGen(sk, w), and returns tk to A.

Challenge Phase: A selects an attribute set Atts∗. The challenger chooses an access control policy

that is represented as T∗ such that F (Atts∗,T∗) = 1, computes sk∗ ← KeyGen(mk,T∗). By taking

as input Atts∗ and sk∗, it selects w∗ from keyword space uniformly at random, and computes cph∗

and tk∗ with Enc and TokenGen. Atts∗ should satisfy the requirement defined in the keyword

secrecy game.

Guess: Finally, A outputs a keyword w′ and gives it to the challenger. The challenger computes

cph′ ← Enc(Atts, w′) and if Search(tk∗, cph′) = 1, then A wins the game.

This finishes the simulation. Suppose A has already attempted q distinct keywords before

outputting w′, we can see that the probability of A winning the keyword secrecy game is at most

1
|M|−q

+ ε. This is because the size of the remaining keyword space is |M| − q, and as the H2

is an one way secure hash function, meaning deriving w∗ from H2(w
∗) is at most a negligible

probability ε. Therefore, given q distinct keywords A has attempted, the probability of A winning

the keyword secrecy game is at most 1
|M|−q

+ ε. Thus, our scheme achieves keyword secrecy as in

Definition 3.

CP-ABKS Construction. Let � be the primary security parameter. It consists of the following

algorithms.

Setup(1�): This algorithm selects a bilinear group e : G×G→ GT , such that G and GT are cyclic

groups of order p, an �-bit prime. It selects a, b, c← Zp and g ← G, and sets

pm = (e, g, p, ga, gb, gc, G,GT),mk = (a, b, c).

KeyGen(mk,Atts): This algorithm selects r ← Zp, computes A = g(ac−r)/b. Then for each atj ∈

Atts, it selects rj ← Zp and computes Aj = grH1(atj)
rj and Bj = grj . It sets

sk = (Atts, A, {(Aj, Bj)|atj ∈ Atts}).

21

Enc(w,T): This algorithm selects r1, r2 ← Zp, and computes W = gcr1 , W0 = ga(r1+r2)gbH2(w)r1

and W ′ = gbr2 . It further computes secret shares of r2 for all leaves of T by running {qv(0)|v ∈

lvs(T)} ← Share(T, r2). Then for each v ∈ lvs(T), it computesWv = gqv(0) andDv = H1(att(v))
qv(0).

It sets

cph = (T,W,W0,W
′, {(Wv, Dv)|v ∈ lvs(T)})

TokenGen(sk, w): This algorithm selects s ← Zp, and computes tok1 = (gagbH2(w))s, tok2 = gcs

and tok3 = As = g(acs−rs)/b. Then for each atj ∈ Atts, it computes A′
j = As

j and B′
j = Bs

j . It sets

tk = (Atts, tok1, tok2, tok3, {(A′
j, B

′
j)|atj ∈ Atts}).

Search(tk, cph): Given an attribute set Atts included in tk, this algorithm selects a attribute set

S that satisfies the access tree T included in cph. If S does not exist, return 0; otherwise, for

each atj ∈ S, it computes Ev = e(A′
j,Wv)/e(B

′
j, Dv) = e(g, g)rsqv(0), where att(v) = atj for

v ∈ lvs(T). Then it computes e(g, g)rsqroot(0) ← Combine(T, {Ev|att(v) ∈ S}), so that Eroot =

e(g, g)rsr2 . It returns 1 if e(W0, tok2) = e(W, tok1)Eroote(tok3,W
′), and 0 otherwise.

The correctness of CP-ABKS can be verified similar to that of KP-ABKS. Security of CP-

ABKS is assured by the following theorems. The proof of the latter one is omitted because it is

similar to that of Theorem 2.

Theorem 3. CP-ABKS scheme is selectively secure against chosen-keyword attack in the generic

bilinear group model [20].

Proof. We show that the CP-ABE scheme is selectively secure against chosen-keyword attack in

the generic bilinear group model, where H1 is modeled as a random oracle and H2 is a one-way

hash function.

In the SCKA game, A attempts to distinguish ga(r1+r2)gbr1H2(w0) from ga(r1+r2)gbr1H2(w1) . Given

θ ← Zp, the probability of distinguishing ga(r1+r2)gbr1H2(w0) from gθ is equal to that of distinguish-

ing gθ from ga(r1+r2)gbr1H2(w1). Therefore, if A has advantage ε in breaking the SCKA game, then

22

it has advantage ε/2 in distinguishing ga(r1+r2)gbr1H2(w0) from gθ. Thus, let us consider a modified

game whereA can distinguish ga(r1+r2) from gθ. The modified SCKA game is described as follows:

Setup: The challenger chooses a, b, c ← Zp and sends public parameters (e, g, p, ga, gb, gc) to A.

A chooses an access tree T∗, which is sent to the challenger.

H1(atj) is simulated as follows: If atj has not been queried before, the challenger chooses

αj ← Zp, adds (atj, αj) to OH1 and returns gαj ; otherwise the challenger returns gαj by retrieving

αj from OH1 .

Phase 1: A can query OKeyGen and OTokenGen as follows:

OKeyGen(Atts): The challenger selects r(t) ← Zp and computes A = g(ac+r(t))/b. For each attribute

atj ∈ Atts, the challenger chooses r
(t)
j ← Zp, computes Aj = gr

(t)
gαjr

(t)
j and Bj = gr

(t)
j , and

returns (Atts, A, {(Aj, Bj)|atj ∈ Atts}).

OTokenGen(Atts, w): The challenger queries OKeyGen(Atts) to get sk = (Atts, A, {(Aj, Bj)|atj ∈

Atts}) and returns tk = (Atts, tok1, tok2, tok3, {(A′
j, B

′
j)|atj ∈ Atts}) where tok1 = (gagbH2(w))s,

tok2 = gcs, tok3 = As, A′
j = As

j and B′
j = Bs

j by selecting s ← Zp. If F (Atts,T∗) = 1, the

challenger adds w to the keyword List Lkw.

Challenge phase: Given two keywords w0, w1 of equal length where w0, w1 /∈ Lkw, the challenger

chooses r1, r2 ← Zp, and computes secret shares of r2 for each leaves in T∗. The challenger selects

λ← {0, 1}. If λ = 0, it outputs

W = gcr1 ,W0 = gθ,W ′ = gbr2 ,

{(Wv = gqv(0), Dv = gαjqv(0))|v ∈ lvs(T∗), att(v) = atj}

by selecting θ ∈ Zp; otherwise it outputs

W = gcr1 ,W0 = ga(r1+r2),W ′ = gbr2 ,

{(Wv = gqv(0), Dv = gαjqv(0))|v ∈ lvs(T∗), att(v) = atj}.

23

Table 2.1: Possible terms for querying group oracle GT

a r
(t)
j s(ac+ r(t))/b cr1

b r(t) + αjr
(t)
j s(r

(t)
j) qv(0)

c (ac+ r(t))/b s(r(t) + αjr
(t)
j) αjqv(0)

αj cs s(a+ bH2(w)) br2

Phase 2: This is the same as in the SCKA game.

We can see that if A can construct e(g, g)δa(r1+r2) for some gδ that can be composed from the

oracle outputs he has already queried, thenA can use it to distinguish gθ from ga(r1+r2). Therefore,

we need to show that A can construct e(g, g)δa(r1+r2) for some gδ with a negligible probability.

That is, A cannot gain non-negligible advantage in the SCKA game.

In the generic group model, ψ0 and ψ1 are random injective maps from Zp into a set of p3

elements. Then the probability of A guessing an element in the image of ψ0 and ψ1 is negligible.

Recall thatG = {ψ0(x)|x ∈ Zp} andGT = {ψ1(x)|x ∈ Zp}. Hence, let us consider the probability

of A constructing e(g, g)δa(r1+r2) for some δ ∈ Zp from the oracle outputs he has queried.

We list all terms that can be queried to the group oracle GT in Table 2.1. Let us consider how

to construct e(g, g)δa(r1+r2) for some δ. Because r1 only appears in the term cr1, δ should contain

c in order to construct e(g, g)δa(r1+r2). That is, let δ = δ′c for some δ′ and A wishes to construct

e(g, g)δ
′ac(r1+r2). Therefore,A needs to construct δ′acr2, which will use terms br2 and (ac+r(t))/b

. Because (br2)(ac+r
(t))/b = acr2+r

(t)r2,A needs to cancel r(t)r2, which needs to use the terms

αj, r
(t)+αjr

(t)
j , qv(0) and αjqv(0) because qv(0) is the secret share of r2 according to T∗. However,

it is impossible to construct r(t)r2 with these terms because r(t)r2 only can be reconstructed if the

attributes corresponding to r
(t)
j of r(t) + αjr

(t)
j satisfies the access tree T∗.

Therefore, we can conclude that A gains a negligible advantage in the modified game, which

means that A gains a negligible advantage in the SCKA game. This completes the proof.

Theorem 4. Given the one way hash functionH2, the CP-ABKS scheme achieves keyword secrecy.

24

2.4 Verifiable Attribute-based Keyword Search (VABKS)

In the model of ABKS, the cloud is semi-trusted. VABKS achieves the goal of ABKS in the presence

of possibly malicious cloud, which may cheat in the search operation.

2.4.1 System Model and Threat Model

We consider the system model as illustrated in Figure 4.1, which involves four entities: the data

owner, who outsources its encrypted data which is indexed by keywords that are also encrypted but

can be searched by the data users with the proper credentials; the cloud, which provides storage

services and can conduct the actual keyword search operations on behalf of the data users; the data

user, who is to retrieve the data owner’s encrypted data (i.e. keyword ciphertext and the associated

data ciphertexts) according to some keyword; the trusted authority that issues credentials to the

data owners/users. We assume that the credentials are sent over authenticated private channels

(which can be achieved through another layer of mechanisms).

��������	

���
�

�	�
������	����
��	���
���

�
���

����

�����
�	
������
������
	�	������
�������������������	
������	��������
��� �����	�!

�	�
���
	�
���"�
����

��	���
���
����
����
�����
	�	�������
��
����������
��
�	
�!

#
�

$%
$&

$'

�
(

�	���
�������������	�

Figure 2.1: System model for verifiable attribute-based keyword search on outsourced encrypted

data, where keywords X, Y and V,W have different access control policies.

The data owners are naturally trusted. We assume that both authorized and unauthorized data

users are semi-trusted, meaning that they may try to derive some sensitive information of inter-

est. We assume that the cloud is not trusted as it may manipulate the search operations (already

implying that it manipulates the stored data).

25

2.4.2 VABKS Definition and Security

Let D = (KS,MP, FS) denote the inverted index and the set of data files. KS = {KS1, . . . ,KSl} is

a set of l keyword sets (also referred as “keyword group”), in which elements are encrypted with

the same access control policy. MP = {MP(w)|w ∈ ∪l
i=1KSi} is the set of MP(w), w ∈ ∪l

i=1KSi,

and MP(w) consists of the set of identifiers for identifying data files associated with keyword w.

FS = {F1, . . . , Fn} is the set of n data files.

Definition 4. A VABKS scheme consists of the following algorithms:

• (mk, pm)← Init(1�): The trusted authority runs this algorithm to initialize the system.

• sk ← KeyGen(mk, IKeyGen): The trusted authority runs this algorithm issue credentials sk to

a data user/owner.

• (Au, Index,Dcph) ← BuildIndex({IEnc}l, {I ′Enc}n,D): A data owner runs this algorithm to

encrypt D = (KS,MP, FS) and obtain data ciphertexts Dcph, encrypted index Index and

auxiliary information Au, where {IEnc}l is the set of access control policies to encrypt l

keyword groups in KS and {I ′Enc}n is the set of access control policies to encrypt n data files

in FS.

• tk← TokenGen(sk, w): With credential sk, the data user runs this algorithm to issue search

token tk for keyword w.

• (proof, rslt) ← SearchIndex(Au, Index,Dcph, tk): The cloud uses this algorithm to perform

search operations on encrypted index Index on behalf of a data user. It outputs the search

result rslt and a proof proof.

• {0, 1} ← Verify(sk, w, tk, rslt, proof): The data user runs this algorithm to verify that (rslt, proof)

is valid with respect to search token tk.

Correctness of VABKS requires that, given (mk, pm) ← Init(1�), sk ← KeyGen(mk, IKeyGen),

for any keyword-based data collection D and keyword w, (Au, Index,Dcph)← BuildIndex({IEnc}l,

26

{I ′Enc}n, D), tk ← TokenGen(sk, w) and (proof, rslt) ← SearchIndex(Au, Index,Dcph, tk), then

1← Verify(sk, w, tk, rslt, proof) always holds.

Intuitively, security of VABKS is specified by the following four requirements against untrusted

cloud A.

• Data secrecy: Even given encrypted keywords and search tokens, A still cannot learn any

information (in a computational sense) about encrypted data files. This definition can be

formalized similar to chosen-plaintext security game where the two challenge data D0 =

(KS,MP, FS0),D1 = (KS,MP, FS1) have the same KS and MP, and |FS0| = |FS1|.

• Selective security against chosen-keyword attack: Without seeing the corresponding search

tokens, A cannot guess the keyword that is encrypted. This requirement is extended from

selective security against chosen-keyword attack of ABKS.

• Keyword secrecy: Even given the encrypted data files, the probability of A learning the

keyword from a keyword ciphertext and the search tokens is no more than that of a random

guess. This security definition also can be extended from the keyword secrecy of ABKS.

• Verifiability: If A returns an incorrect search result, then the cheating behavior can be de-

tected with an overwhelming probability. We formalize this security property via the follow-

ing verifiability game.

Verifiability Game:

Setup: The challenger runs (pm,mk) ← Init(1�). A selects D = (KS,MP, FS), {IEnc}l and

{I ′Enc}n and sends them to the challenger. The challenger runs (Au, Index,Dcph)← BuildIndex({IEnc}l,

{I ′Enc}n, D), and gives (Au, Index,Dcph) to A.

Phase 1: A can query the following oracles for polynomially many times.

• OKeyGen(IKeyGen): The challenger returns to A credential sk corresponding to IKeyGen.

• OTokenGen(IKeyGen, w): The challenger generates credential sk with IKeyGen, and returns to A

a search token tk by running algorithm TokenGen with inputs sk and w.

27

• OVerify(IKeyGen, w, tk, rslt, proof): The challenger generates credential sk with IKeyGen, returns

γ to A by running γ ← Verify(sk, w, tk, rslt, proof).

Challenge phase: A selects a non-trivial challenge I∗Enc and a keyword w∗ and gives them to the

challenger. The challenger selects I∗KeyGen such that F (I∗KeyGen, I
∗
Enc) = 1, generates credential sk∗

with I∗KeyGen and returns to A a search token tk∗ by running tk∗ ← TokenGen(sk, w∗).

Guess: A outputs (rslt∗, proof∗) to the challenger. We say A wins the game if 1← Verify(sk∗, w∗,

tk∗, rslt∗, proof∗) and rslt∗ �= rslt, where (rslt, proof) is produced by the challenger by running

SearchIndex(Au, Index, tk∗).

Definition 5. A VABKS scheme is verifiable if the advantage that anyAwins the verifiability game

is negligible in security parameter �.

2.4.3 VABKS Construction

#
�

$%
$&

$'

�
(

�	���
���	��
� �	�������
���	�������
��� ������&

&) *��
� ���	���
���������������	�+��������	����	�	
��	�
��	��������	
��
����� �	,�,+ -�+�-�!���
�	�����	���
��
�� �	
�	.� �����������������	��������� �	
�	.��,�
%)�/	�	
��	�0���1�����	
���
�	�����
�
 ����	���
��+�
	��
� ����
����1��
10	
�+�1������	�0���1�����	
������
��	�
����1��
10	
+�������	�	
��	��������	������	

��
�����	�	,�,+�-2$&!���
���	�1���	��0���1�����	
��	,�,�
2$�&!�������	�
����1��
10	
��� �	
�	.� �	,�,+�� �2$& !,
')�$�
�	�����
�
 +��	�	
��	���������	
��
����� �	,�,+�-&!�
��
��	���
���� �	
�	.��,
3)�/	�	
��	����������	
��
����� �	,�,+�-!���
�����
����1�
�
10	
��� �	
�	.��,

�	���
���	��
� �	�������
���	�������
��� ������%

-&

-%

-
� �$%
� �$&

� �$'

� �#
� ��

� ��
� �(

-�
-�

-4
-�

2$�&
� �2$&

-2$&

2$�%
� �2$%

-2$%

Figure 2.2: Basic idea for achieving verifiability, where data files F1, F2, F3 were encrypted to

cphF1
, cphF2

, cphF3
, keywords X, Y were encrypted to cphX , cphY with access control policy 1,

and keywords V,W were encrypted to cphV , cphW with access control policy 2. Given a search

token tk, for each group i, the cloud provides (σw, cphBFi
) as the proof when it finds some keyword

ciphertext cphw that matches tk, and (cphBFi
,BF′

i, σBFi
) otherwise.

A trivial solution is that data users download all keyword ciphertexts and check whether any of

keyword ciphertexts and the search token has the same keyword, which however incurs prohibited

communication and computation overhead. Instead, we let a data user verify that (1) the cloud

performed search operations over all keyword ciphertexts, and (2) the cloud honestly returned

28

Init(1�): Given security parameter �, the attribute authority chooses k universal hash functions

H ′
1, . . . , H

′
k, which are used to constructm-bit Bloom filter. LetH : {0, 1}� → {0, 1}m be a secure

pseudorandom generator, SE be a secure symmetric encryption scheme, ABE be a secure ABE
scheme and ABKS be a secure ABKS scheme. It executes (ABE.pm,ABE.mk) ← ABE.Setup(1�)
and (ABKS.pm,ABKS.mk) ← ABKS.Setup(1�). It sets pm = (ABE.pm,ABKS.pm, H ′

1, . . . , H
′
k)

which is public known, and mk = (ABE.mk,ABKS.mk).

KeyGen(mk, IKeyGen): The attribute authority runs ABE.sk← ABE.KeyGen(ABE.mk, IKeyGen) and

ABKS.sk ← ABKS.KeyGen(ABKS.mk, IKeyGen), sets sk = (ABE.sk,ABKS.sk), and sends sk to

the data owner/user over an authenticated private channel.

BuildIndex({IEnc}l, {I ′Enc}n,D): The data owner runs (Sig.sk, Sig.pk) ← Sig.KeyGen(1�), keeps

Sig.sk private and makes Sig.pk public. Given D = (KS = {KS1, . . . ,KSl},MP = {MP(w)|w ∈
∪li=1KSi}, FS = {F1, . . . , Fn}), the data owner executes as follows:

1. Encrypt the data file with hybrid encryption: ∀Fj ∈ FS, it generates the ciphertext cphFj
=

(cphskj , cphSEj
) by running SE.skj ← SE.KeyGen(1�), cphSEj

← SE.Enc(SE.skj, Fj), and

cphskj ← ABE.Enc(I ′Encj, SE.skj).

2. Encrypt each keyword and generate keyword signature: Given KSi, 1 ≤ i ≤ l, for each w ∈
KSi, it runs cphw ← ABKS.Enc(IEnci , w), sets MP(cphw) = {IDcphFj

|IDFj
∈ MP(w)}, and

generates σw ← Sig.Sign(Sig.sk, cphw||string({cphFj
|IDcphFj

∈ MP(cphw)})), where IDFj

and IDcphFj
are identities for identifying data file Fj and data ciphertext cphFj

, respectively.

3. Generate a bloom filter, a bloom filter signature and a local signature for each group KSi: Let

BFi ← BFGen({H ′
1, . . . , H

′
k},KSi), cphBFi

← ABE.Enc(IEnci ,M) by randomly selecting

M from the message space of ABE, compute BF′
i = H(M)

⊗
BFi and generate σBFi

←
Sig.Sign(Sig.sk,BF′||cphBFi

). Let σi ← Sig.Sign(Sig.sk, string({cphw|w ∈ KSi})) .

4. Generate the global signature: Let σ = Sig.Sign(Sig.sk, cphBF1
|| . . . ||cphBFl

).

5. Let Au = (σ, σ1, . . . , σl, cphBF1
, . . . , cphBFl

, σBF1 , . . . , σBFl
, {σw|w ∈ ∪l

i=1KSi}), Index =
({cphw|w ∈ ∪li=1KSi}, {MP(cphw)|w ∈ ∪li=1KSi}) and Dcph = ({cphFj

|Fj ∈ FS}).

TokenGen(sk, w): Given credentials sk, a data user generates search token tk ←
ABKS.TokenGen(ABKS.sk, w).
SearchIndex(Au, Index,Dcph, tk): Let rslt be an empty set and proof = (σ) initially. The cloud

enumerates
∏

i = {cphw|w ∈ KSi}, 1 ≤ i ≤ l, which are the keyword ciphertexts with respect to

the same access control policy:

1. For each cphw ∈
∏

i, it runs γ ← ABKS.Search(cphw, tk). If γ = 0, then it continues to next

keyword ciphertext in
∏

i; otherwise it adds the tuple (cphw, {cphFj
|IDcphFj

∈ MP(cphw)})
to rslt and (σw, cphBFi

) to proof.

2. If there exist no γ = 1 after enumerating all cphw in
∏

i, then add (BF′
i, cphBFi

, σBFi
) to

proof.

Figure 2.3: Init, KeyGen, BuildIndex, TokenGen and searchindex in VABKS construction.

29

the search result for each group, which could be either null or one keyword ciphertext and its

associated data ciphertexts. The basic idea is further illustrated in Figure 2.2. More specifically,

the data owner uses the signatures and bloom filters as follows:

• The first type of signature, called keyword signature, is generated for each keyword cipher-

text and its associated data ciphertexts. This prevents the cloud from returning incorrect data

ciphertexts in question as the search result.

• For each group, one bloom filter is built from its keywords. This allows data users to effi-

ciently check that the queried keyword was indeed not in the keyword group when the cloud

returns a null search result, without downloading all keyword ciphertexts from the cloud. A

random number is selected and encrypted with the same access control policy as keywords.

The random number masks the bloom filter for preserving keyword privacy. The second type

of signature, called bloom filter signature, is generated for the masked bloom filter and the

random number ciphertext for assuring their integrity.

• The third type of signature, called global signature, is obtained by signing random number

ciphertexts of all groups. It allows a data user to verify integrity of all random number

ciphertexts.

• The fourth type of signature, called local signature, is generated for all keyword ciphertexts

within the same group. This signature is to validate integrity of keyword ciphertexts within

the group.

The VABKS scheme is depicted in Figure 2.3 and Figure 2.4, making use of a signature scheme

Sig = (KeyGen, Sign,Verify), a symmetric encryption scheme SE = (KeyGen,Enc,Dec), an ABE

scheme ABE = (Setup,KeyGen, Enc,Dec), both of which are used to encrypt data files. The

VABKS scheme is extended from an ABKS scheme ABKS = (Setup,KeyGen,Enc,TokenGen, Search),

which is to encrypt keywords. Here ABE and ABKS are either ciphertext-policy or key-policy,

meaning that we have two variants of VABKS.

30

Verify(sk, w, tk, proof, rslt): The data user verifies the search result from the cloud as follows:

1. Verify integrity of random number ciphertexts: γ = Sig.Verify(Sig.pk, σ,

cphBF1
|| . . . ||cphBFl

). If γ = 0, then return 0; otherwise, continue to execute the follow-

ing.

2. For i = 1, . . . , l, it executes as follows to verify that the cloud indeed returned correct result

for each group:

Case 1: If (cphw, {cphFj
|IDcphFj

∈ MP(cphw)}) ∈ rslt, where cphw corresponds to the same

access control policy as what is specified by cphBFi
, then it runs γ ← ABKS.Search(cphw, tk)

and γ′ ← Sig.Verify(Sig.pk, σw, cphw||string({cphFj
|IDcphFj

∈ MP(cphw)})) to verify

whether or not cphw matches tk and all the associated data ciphertexts are returned by the

cloud. If either γ = 0 or γ′ = 0, then return 0, otherwise it continues to i = i+ 1.

Case 2: If (BF′
i, cphBFi

, σBFi
) ∈ rslt, then it continues to verify integrity of the masked Bloom

filter by running γ′ ← Sig.Verify(Sig.pk, σBFi
,BF′

i||cphBFi
). If γ′ = 0, return 0; otherwise it

executes below:

• If the data user is authorized, it computes M ← ABE.Dec(ABE.sk, cphBFi
), BFi =

H(M)
⊗

BF′
i. It executes δ ← BFVerify({H ′

1, . . . , H
′
k},BFi, w) to check whether w is

present in the keyword group represented by BFi.

– If δ = 0, meaning w is not present in the keyword group represented by BFi, then

it continues to i = i+ 1.

– If δ = 1, it downloads
∏

i = {cphw|w ∈ KSi} and σi from the cloud, and runs η ←
Sig.Verify(Sig.pk, σi, string({cphw|w ∈ KSi})). If η = 0, it returns 0; otherwise

it runs τ ← ABKS.Search(cphw, tk) by enumerating cphw in
∏

i. If there exists

some τ = 1 after enumerating all cphw (meaning there exists some cphw matches

tk), it returns 0; otherwise it continues to i = i+ 1.

• If the data user is unauthorized, then it continues to i = i+1 because cphBFi
cannot be

decrypted.

Case 3: Return 0 since the verification should be executed in either case above if the search

result is correct.

3. Return 1 if all tuples in the search result have been verified, and 0 otherwise.

Figure 2.4: Verify algorithm in VABKS construction.

In algorithm Verify of Figure 2.4, note that when an authorized data user verifies a null search

result for the group {cphw|w ∈ KSi} with respect to a search token that corresponds to keyword

w′, it can happen that 1 ← BFVerify({H ′
1, . . . , H

′
k},BFi, w

′) but the matched keyword ciphertext

was not stored in the cloud due to the false-positive of the Bloom filter. To validate the search

31

result in this case, algorithm Verify has to download {cphw|w ∈ KSi}, and checks one by one. We

stress that this does not incur any significant unnecessary communications from the perspective of

amortization because we can set the false-positive rate as low as possible by choosing appropriate

m and k (i.e., the “wasted" bandwidth communication and computation cost are proportional to this

false-positive rate). For example, in our experiment we set the false-positive rate to be 4.5× 10−9.

2.4.4 Security Analysis

We show that the VABKS scheme satisfies the security requirements with the following theorems.

We show that if there exists polynomial time algorithmA breaking VABKS’s data secrecy, then

it breaks the assumption that CPA-secure ABEand CPA-secure SE. This is formally achieved via

Theorem 5.

Theorem 5. If the ABE and SE are secure against chosen-plaintext attack, the VABKS scheme

achieves data secrecy.

Proof. We show that if there exists a polynomial-time algorithm A breaks VABKS’s data secrecy

with the advantage ρ, then we can break either CPA security for ABE or CPA security for SE with

the advantage ρ
n2 where n is the number of data files to be encrypted.

The challenger proceeds the conventional CPA security game with A. In the challenge phase,

supposeA presents two data collections D0 = (KS,MP, FS0 = {F01, . . . , F0n}), D1 = (KS,MP, FS1 =

{F11, . . . , F1n}), {IEnc}l and {I ′Enc}n. The challenge selects λ← {0, 1} and encrypts FSλ with the

ABE and {I ′Enc}n.

Now let us consider the advantage of A correctly guessing λ. As we know, given two mes-

sages, the advantage of distinguishing which message was encrypted by the hybrid encryption of

ABE and SE is equal. Therefore, given two sets of data files FS0 and FS1, if the advantage of

distinguishing which data set was encrypted is ρ, then the advantage of distinguishing which data

file was encrypted is ρ
n2 by selecting one data file from FS0 and one from FS1.

Therefore, we can see that if A breaks VABKS’s data secrecy of with a non-negligible ad-

vantage ρ, then the advantage of breaking CPA security for ABE or CPA security for SE is ρ
n2

32

–a non-negligible probability, which contracts the assumption that ABE is CPA-secure and SE is

CPA-secure.

We show that if there exists polynomial time algorithmA breaking VABKS’s selective security

against chosen keyword attack, then it breaks the assumption that ABKS achieves the selective

security against chosen keyword attack, given that ABE is CPA-secure and H is a secure pseudo-

random generator. This is formally achieved via Theorem 6.

Theorem 6. If ABE is secure against chosen-plaintext attack, H is a secure pseudorandom gen-

erator and the ABKS is selectively secure against chosen keyword attack, the VABKS scheme is

selectively secure against chosen-keyword attack.

Proof. We show that if there exists a polynomial-time algorithm A breaks the selective security

against chosen-keyword attack of ABKS with the advantage ρ, then we can break the selective

security against chosen-keyword attack game of ABKS with the advantage of ρ
l2

, given that ABE is

CPA-secure and H is a secure pseudorandom generator.

The challenger proceeds selective security against chosen-keyword attack game withA. In the

challenge phase, supposeA presents two data collections D0 = (KS0 = {KS01, . . . ,KS0l},MP, FS),

and {I ′Enc}n. The challenge selects λ ← {0, 1} and encrypts KS with ABKS, and generates

BF′
i, cphBFi

and σi for each keyword group.

Since ABE is CPA-secure and H is a secure pseudorandom generator, the probability of A

inferring λ via BF′
i, cphBFi

is negligible. Then let us consider the advantage ofA correctly guessing

λ from keyword ciphertexts. As we know, given two keywords, the advantage of distinguishing

which keyword was encrypted by ABKS is equal. Therefore, given two keyword sets KS0 and KS1,

if the advantage of distinguishing which keyword set was encrypted is ρ, then the advantage of

distinguishing which keyword was encrypted is ρ
l2

by selecting one keyword from KS0 and one

from KS1.

Therefore, we can see that if A breaks VABKS’s selective security against chosen-keyword

attack with a non-negligible advantage ρ, then the advantage of breaking ABKS’s selective security

33

against chosen-keyword attack is ρ
l2

–a non-negligible probability, which contracts the assumption

that ABKS achieve selective security against chosen-keyword attack, given that ABE is CPA-secure

and H is a secure pseudorandom generator.

We show that if there exists polynomial time algorithm A breaking keyword secrecy of the

VABKS, then it breaks the assumption that ABKS achieves keyword secrecy, given that ABE is

CPA-secure and H is a secure pseudorandom generator. This is formally achieved via Theorem 7.

Theorem 7. If ABE is secure against chosen-plaintext attack, H is a secure pseudorandom gener-

ator and the ABKS achieves keyword secrecy, the VABKS scheme also achieves keyword secrecy.

Proof. We show that if there exists polynomial time algorithm A breaking VABKS’skeyword se-

crecy, then it breaks the assumption that ABKS achieves keyword secrecy.

Suppose A presents a data collection D = (KS = {KS1, . . . ,KSl},MP, FS), {IEnc}l and

{I ′Enc}n. The challenger simulates the keyword secrecy game, where the keyword space con-

sists of keywords specified by FS. We can see that the probability of A inferring the keyword

from a search token and corresponding keyword ciphertext is equal to that of ABKS. Therefore,

if in VABKSA guesses the keyword from the search token and corresponding keyword ciphertext

with the probability more than 1
|M|−q

+ ε after guessing q distinct keywords, then the probabil-

ity of guessing the keyword from the search token and keyword ciphertext in ABKS is more than

1
|M|−q

+ ε after guessing q distinct keywords, which contracts the assumption that ABKS achieves

keyword secrecy.

We show that if there exists polynomial time algorithm A breaking verifiability of the VABKS

then it breaks the Sig’s unforgeability. This is formally achieved via Theorem 8.

Theorem 8. If Sig is a secure signature, the VABKS construction achieves the verifiability.

Proof. We show that under the assumptions that Sig is unforgeable, any polynomial-time adversary

A presents an incorrect search result and succeeds in the verification with negligible probability.

34

The challenger proceeds the verifiability game, where A provides the keyword-based data

D = (KS = {KS1, . . . ,KSl},MP = {MP(w)|w ∈ ∪l
i=1KSi}, FS = {F1, . . . , Fn}), {IEnc}l

and {I ′Enc}n. The challenger runs (Au, Index,Dcph) ← BuildIndex({IEnc}l, {I ′Enc}n,D), and gives

(Au, Index,Dcph) to A.

In the challenge phase, with w∗ and I∗Enc from A, the challenger selects I∗KeyGen such that

F (I∗KeyGen, I
∗
Enc) = 1 where I∗Enc is selected by A, generates credential sk∗ with I∗KeyGen and re-

turns to A a search token tk∗ by running tk∗ ← TokenGen(sk, w∗). A returns (rslt∗, proof∗) to the

challenger.

Suppose that (rslt∗, proof∗) succeeds in the verification. That is, 1← Verify(sk∗, w∗, tk∗, rslt∗,

proof∗). Let us consider the probability of A cheating with incorrect search result.

First, we claim that the global signature σ and random keyword ciphertexts cphBF1
, . . . , cphBFl

are included in proof∗ without being manipulated; otherwise we can break the unforgeability of

Sig.

Second, let us consider the search result within each group with respect to access control poli-

cies, i.e. i = 1, . . . , l:

• If there exists no keyword ciphertext matched the search token tk∗, then we claim that A

cannot cheat the challenger with some keyword ciphertext and data ciphertexts in order to

make VABKS.Verify output 1. The reason is that A cannot forge a keyword signature σw for

the keyword ciphertext and data ciphertexts; otherwise, we can break the unforgeability of

Sig.

• If there exists a keyword ciphertext matched the search token tk∗, then we claim that A

cannot cheat the challenger with a null search result in order to make VABKS.Verify output

1. Suppose A returns a null result and the proof (BF′
i, cphBFi

, σBFi
). Since BF′

i cannot be

manipulated due to σBFi
, the unmasked bloom filter indicates that w∗ is a member within the

group. The challenger downloads cphw1
, . . . , cphw|KSi| and σi without being manipulated;

otherwise we break the Sig’s unforgeability. Then the challenger can conduct the search

35

operation with each keyword ciphertext, and VABKS.Verify will output 0. That is, if there

exists keyword ciphertext matched the search token, A returns a null result, then it cannot

make VABKS.Verify output 1.

To sum up, in order to make VABKS.Verify output 1, A has to faithfully execute search operations

and return the search result honestly; otherwise, we will break Sig’s unforgeability.

2.5 Performance Evaluation

We evaluate efficiency of the ABKS schemes in terms of both asymptotic complexity and actual

execution time, and efficiency of the VABKS scheme in terms of actual execution time. We do not

consider the asymptotic complexity of VABKS because it uses multiple building-blocks (e.g., the

signature and ABE scheme) that can be instantiated with any secure ones. Asymptotic complexity

is measured in terms of four kinds of operations: H1 denotes the operation of mapping a bit-string

to an element ofG, Pair denotes the pairing operation, E denotes the exponentiation operation inG,

and ET denotes the exponentiation operation in GT . We ignore multiplication and hash operations

(other than H1) because they are much more efficient than the above operations [3].

We implemented ABKS and VABKS in JAVA based on the Java Pairing Based Cryptography

library (jPBC) [3]. In our implementations, we instantiated the bilinear map with Type A pairing

(� = 512), which offers a level of security that is equivalent to 1024-bit DLOG [3]. For both CP-

VABKS and KP-VABKS, we instantiated the symmetric encryption scheme with AES-CBC, and

the signature scheme with DSA signature scheme provided by JDK1.6. We instantiated ABKS,

ABE with CP-ABKS, CP-ABE [18] for CP-ABKS, and KP-ABKS, KP-ABE [65] for KP-VABKS,

respectively. Finally, we set the example access control policy as “at1 AND . . . AND atN ."

2.5.1 Efficiency of ABKS

Asymptotic Complexity of the ABKS Schemes. Table 2.2 describes the asymptotic complexities

of the ABKS schemes. We observe that in the CP-ABKS scheme, the complexity of KeyGen is

almost the same as that of Enc. In the KP-ABKS scheme, KeyGen is more expensive than Enc. In

36

both schemes, the two Search algorithms incur almost the same cost.

Table 2.2: Asymptotic complexities of CP-ABKS and KP-ABKS, where S is the number of a data

user’s attributes andN is the number of attributes that are involved in a data owner’s access control

policy (i.e., the number of leaves in the access tree).

KP-
KeyGen 3NE+NH1 2N |G|
Enc (S + 4)E+ SH1 (S + 3)|G|

ABKS
TokenGen (2N + 2)E (2N + 2)|G|
Search (2S + 2)Pair + SET

complexity output size

CP-
KeyGen (2S + 2)E+ SH1 (2S + 1)|G|
Enc (2N + 4)E+NH1 (2N + 3)|G|

ABKS
TokenGen (2S + 4)E (2S + 3)|G|
Search (2N + 3)Pair +NET

ABKS Performance. To evaluate the performance of the ABKS schemes, we ran the experiments

on a client machine with Linux OS, 2.93GHz Intel Core Duo CPU (E7500), and 2GB RAM. We

varied N , the number of attributes that are involved in the example access control policy, from 1 to

50 with step length 10. We ran each experiment for 10 times to obtain the average execution time.

Table 2.3 shows the execution time of the two ABKS schemes.

Table 2.3: Execution time (second) of the algorithms in the KP -ABKS and CP -ABKS schemes,

where N is the number of attributes involved in the example access control policy. The number of

data user’s attributes is also set to N , namely S = N in the experiments.

KP-
KeyGen 0.088 0.786 1.539 2.316 3.081 3.863

Enc 0.108 0.539 1.016 1.492 1.983 2.434

ABKS
TokenGen 0.073 0.331 0.627 0.917 1.211 1.504

Search 0.049 0.275 0.480 0.711 0.947 1.182

S(N) 1 10 20 30 40 50

CP-
KeyGen 0.107 0.686 1.275 1.901 2.525 3.151

Enc 0.121 0.681 1.304 1.923 2.546 3.169

ABKS
TokenGen 0.088 0.349 0.673 0.932 1.228 1.513

Search 0.061 0.329 0.493 0.728 0.97 1.202

From Table 2.3 we observe that for both schemes, the keyword encryption algorithm Enc (run

by the data owner) is more expensive than that of the keyword search algorithm Search (run by the

cloud) with the same N . However, the keyword encryption algorithm is executed only once for

each keyword, whereas the keyword search algorithm will be performed as many times as needed.

Furthermore, we advocate the burden on the data users be further eased by outsourcing the keyword

search operation to the cloud (i.e., taking advantage of the cloud’s computational resources).

37

2.5.2 Efficiency of VABKS with Real Data

To demonstrate the feasibility of VABKS in practice, we evaluated it with real data, which consists

of 2,019 distinct keywords extracted from 670 PDF documents (papers) from the ACM Digital

Library with a total size of 778.1MB. We set k = 28 and m = 10KB for Bloom filter so that

m
n
= 10∗8∗1024

2019
≈ 40 and the false-positive rate is around 4.5 × 10−9. We vary the access control

policy ranging from 1 to 50 attributes with step-length 10. In each experiment, we encrypted all

keywords with the same access control policy. The algorithms run by the data owner and the

data users (i.e. BuildIndex, TokenGen and Verify) were executed on a client machine with Linux

OS, 2.93GHz Intel Core Duo CPU (E7500), and 2GB RAM. The algorithm run by the cloud (i.e.,

SearchIndex) was executed on a server machine (a laptop) with Windows 7, Intel i5 2.60GHz CPU,

and 8GB RAM.

1 10 20 30 40 50
0

1000

2000

3000

4000

5000

6000

7000

S(N)

Ti
m

e
(s

ec
on

d)

CP−VAKBS.BuildIndex
KP−VABKS.BuildIndex

(a) BuildIndex

1 10 20 30 40 50
0

200

400

600

800

1000

S(N)

Ti
m

e
(s

ec
on

d)

CP−VAKBS.SearchIndex
CP−VAKBS.TokenGen
CP−VAKBS.Verify
KP−VABKS.SearchIndex
KP−VABKS.TokenGen
KP−VABKS.Verify

(b) TokenGen, SearchIndex and

Verify

1 10 20 30 40 50
0

5

10

15

20

25

30

S(N)

In
de

x
si

ze
 (M

B
)

CP−VAKBS
KP−VABKS

(c) Size of index and auxiliary infor-

mation

Figure 2.5: Performance of the CP-VABKS and KP-VABKS schemes, where N is the number of

attributes involved in the example access control policy. The number of data user’s attributes is

also set to N , namely S = N in the experiments.

Figure 2.5a shows the execution time of BuildIndex that was run by the data owner. We observe

that with the same attribute/policy complexity, CP-VABKS is more costly than that of KP-VABKS

when running algorithm BuildIndex. Figure 2.5b plots the execution time of the algorithms run

by the data user and the cloud. We simulated that algorithm SearchIndex needs to conduct search

operations on 1,010 keyword ciphertexts to find the matched keyword ciphertext. We observe that

the execution time of TokenGen and Verify is really small, when compared with keyword search

38

algorithm SearchIndex. This again confirms that the data user should outsource keyword search

operations to the cloud. Figure 2.5c plots the size of index and auxiliary information, including

2,019 keyword ciphertexts, bloom filter and signatures. We also see that CP-VABKS consumes

around two times more storage space than KP-VABKS with the same attribute/policy complexity.

These discrepancies should serve as a factor when deciding whether to use CP-VABKS or KP-

VABKS in practice.

2.6 Chapter Summary

We have introduced a novel cryptographic solution called verifiable attribute-based keyword search,

for secure cloud computing on outsourced encrypted data. The solution achieves the following:

Data owners can control the search and use of their outsourced encrypted data according to their

access control policies, while authorized data users can outsource the often costly search operations

to the cloud and forces the cloud to faithfully execute the search operations. Performance evalua-

tion shows that the new tool is practical. Our study focused on static data, and one interesting open

problem for future research is to accommodate dynamic data.

39

Chapter 3: VERIFIABLE DELEGATED SET INTERSECTION ON

OUTSOURCED ENCRYPTED DATA

3.1 Introduction

Cloud computing allows users to outsource their data to the cloud, but the data privacy issue often

makes them reluctant to do so. It is therefore natural to encrypt the outsourced data and delegate

the heavy-duty computational tasks on the outsourced encrypted data to the cloud. This leads to

a general question: How can the cloud execute the delegated functions on outsourced encrypted

data, without being given the decryption capability? Although Fully Homomorphic Encryption

(FHE) [25,56,57] is promising to tackle this problem, it is not practical enough for applications that

involve a large volume of data [81]. Moreover, FHE in general does not solve another important

problem: How can we force the cloud to execute the delegated computational functions honestly?

This calls for solutions that can hold the misbehaving cloud accountable.

In this chapter, we consider the problem of Verifiable Delegated Set Intersection on outsourced

encrypted data (VDSI), which can be seen as the cloud version of the well investigated problem

of Private Set Intersection (PSI) [12, 41, 88]. In the setting of PSI, two parties jointly compute the

intersection of their private data sets such that they learn the intersection set but nothing else (the

sizes of their private data sets may or may not be deemed as confidential [8]).

In the setting of VDSI, two cloud users, Alice and Bob, outsource their encrypted private data

sets to the cloud. They would like to conduct the set intersection operation on their plaintext data

sets. The straightforward solution would be for them to download their outsourced ciphertexts,

decrypt the ciphertexts locally, and then execute a commodity two-party set intersection protocol.

The straightforward solution is not practical, especially when the outsourced data sets are large and

when they use wireless systems such as smartphones. Another drawback of this solution is that

both Alice and Bob must participate simultaneously. For these reasons, Alice and Bob would prefer

delegating the set intersection operation to the cloud, while being able to hold the misbehaving

40

cloud accountable. Note that it is realistic to assume that the cloud is untrusted because it has

the incentive not to honestly execute the protocols (e.g., for saving resources or shortening service

response time). Moreover, the cloud may have been compromised and the attacker may return

Alice and Bob with misleading results.

3.1.1 Our Contribution

We initiate the investigation of a novel notion called VDSI, a useful primitive for delegating the set

intersection operation on outsourced ciphertexts to the untrusted cloud. In contrast to the straight-

forward solution mentioned above, VDSI solves the problem by enabling the cloud to compute the

set intersection, but without giving the decryption capability to the cloud. As such, VDSI can be

seen as a special-purpose homomorphic cryptographic system for use in cloud computing. Since

the cloud is untrusted and possibly malicious, VDSI allows Alice and Bob to verify whether the

cloud has faithfully computed the delegated set intersection protocol or not.

Specifically, we formally define security properties of VDSI, and present a concrete VDSI

scheme. The scheme is based on two ideas: (i) using proxy re-encryption to enable the cloud to

compare equality of plaintexts corresponding to two ciphertexts that are encrypted using different

public keys; (ii) using a novel variant of cryptographic accumulator, which can be used to verify

the membership of multiple elements through a single examination and may be of independent

value, to allow the cloud to show the correctness of the resulting intersection set.

Our VDSI scheme has two appealing features. First, it does not require the participation of Alice

and Bob, because the cloud conducts the delegated computing. Second, it is much more efficient

than the straightforward solution mentioned above. Suppose Alice’s (Bob’s) data set has n (m)

elements, and the intersection set has k elements. Our solution only incurs O(k) computational

and communication costs on Alice and Bob, for decrypting and verifying the results received from

the cloud. This means that our solution is optimal (up to a constant factor). In contrast, the

straightforward solution incurs O(m + n) computational and communication costs on Alice and

Bob. Note that it is possible that m + n >> k. Experimental evaluation confirms that the VDSI

41

scheme is practical,

We believe that the novel concept of VDSI will inspire many fruitful studies. For example, our

solution only achieves a “weak" version of the function output secrecy property, which allows the

untrusted cloud to launch a plaintext guessing attack against Alice’s and Bob’s private data (i.e., the

success probability depends on the size of the plaintext space). It is an outstanding open problem

to settle down whether or not this weak guarantee is inherent to the problem that VDSI aims to

solve; if not, we need to design a better solution that is immune to this attack. Another outstanding

open problem is to enforce fine-grained access control over the delegated set intersection operation,

which may or may not need to be traded from the verifiability.

3.1.2 Related Work

To the best of our knowledge, this is the first work that considers the PSI problem in the cloud

computing setting, where cloud users not only outsource their private data but also outsource their

set intersection operations, while being able to hold the dishonest cloud vendors accountable for

not faithfully executing the delegated operations. Nevertheless, there are prior studies on related

problems.

Private Set Intersection. The PSI (private set intersection) problem was initiated in [52] and has

become an essential building-block for many applications. Many variants of PSI [8, 28, 41, 44,

47, 67–70, 79] have been proposed, with various features (e.g., preventing a malicious party from

choosing arbitrary inputs [28,41], hiding the sizes of the inputs [8]). There have been schemes that

aim to reduce the computational and communication complexities (e.g., the RSA-OPRF-based

protocol [42], the garbled circuit protocol [69], and the garbled bloom filter protocol [47]). Among

the state-of-the-art PSI solutions, the most efficient PSI protocol incurs O(m + n) computational

and communication complexities, wherem and n are sizes of the respective data sets [47]. We note

that [72, 77, 78] considered the problem of server-aided private set intersection, where cloud users

share some secrets with each other to preprocess data sets at the time of outsourcing their data.

Such collaborative preprocessing is not needed in the setting of VDSI. Finally, a recent work [31]

42

studies verifiable complex set operations over outsourced plaintext data sets (i.e., the outsourced

data is not encrypted). In contrast, we consider outsourced computing on outsourced encrypted

data.

Public Key Encryption with Equality Test. The problem of public key encryption with equality

test is to decide whether two ciphertexts that are encrypted using two different public keys cor-

respond to the same plaintext or not [4, 29, 118, 123]. In order to enforce access control over the

equality test operation, a variant of the problem is to allow the data owners to authorize who can

perform the equality test on the outsourced encrypted data [116]. These protocols do not consider

the requirement of verifiability on the equality test results, which is crucial to VDSI in the present

chapter.

Verifiable Computation. How to securely and efficiently delegate the computation of a function

to a remote server has been under active research [17, 33, 40, 50, 54, 55, 61, 102, 107, 117]. In these

solutions, the data owner pre-processes the inputs to the delegated function in question before

outsourcing the data to the cloud, and the cloud needs to prove the correctness of the outcome of

a function execution. However, these solutions do not solve the problem studied in this chapter

because (i) the input to their functions is from a single source and known to the delegator in

advance, and (ii) some solutions do not consider privacy of the input. In contrast, our model

has the following characteristics: the inputs to the delegated functions include other data owners’

private data sets, which are not known to the delegators in advance. Finally, [127] considered the

notion of verifiable private multi-party computation, but not in the setting of outsourcing data and

functions to the cloud.

3.2 Cryptographic Preliminaries

Let (e, g, G,GT , p) ← MapGen(1�) denote that the bootstrapping algorithm MapGen generates a

bilinear map e : G × G → GT , where G and GT are cyclic groups of order p which is an �-bit

prime, g is a generator of G, and the bilinear map e satisfies (i) for a, b ∈ Zp, e(ga, gb) = e(g, g)ab,

(ii) e(g, g) is non-degenerate, and (iii) e can be efficiently computed. The bilinear map e is one-

43

way, i.e. the probability of a probabilistic polonomial algorithm inverting e is negligible, which

holds when G and GT are instantiated with Weil or Tate pairing over MNT curves [21]. Table ??

summaries the notions for the algorithms and parameters in the VDSI scheme, multi-accumulator

scheme and the signature scheme Sig.

Bilinear q-strong Diffie-Hellman assumption (q-SDH) [21]. For given (e, g,G,GT , p)←MapGen(1�),

and gα, gα
2
, . . . , gα

q
where α

R← Zp and q is bounded by a polynomial in �, there exists no prob-

abilistic polynomial-time algorithm A that can compute (s, e(g, g)1/(α+s)) where s ∈ Zp with a

non-negligible probability in �. The probability is defined over the random choices of the parame-

ters and random coins used by A.

Decisional Linear assumption (DL) [21]. For given (e, g, G,GT , p) ← MapGen(1�), and (f , h,

gr1 , f r2 , Q) where f, h,Q
R← G and r1, r2

R← Zp, there exists no probabilistic polynomial-time

algorithm A that can determine Q
?
= hr1+r2 with a non-negligible advantage, where “advantage"

is defined as

Pr[A(g, f, h, gr1 , f r2 , Q) = 1]− Pr[A(g, f, h, gr1 , f r2 , hr1+r2) = 1],

and the probability is defined over the random choices of the parameters and random coins used

by A.

Unforgeable Digital Signature. Let Sig = (sigKeyGen, sigSign, sigVerify) be a secure signature

scheme, where sigKeyGen generates a pair of public and private keys, sigSign generates a signature

for a message, and sigVerify determines if a message matches a signature. Any signature scheme

satisfying the standard definition of unforgeability under adaptive chosen-message attacks [62] is

sufficient for the purpose of this chapter.

44

Table 3.1: Notations for algorithms and parameters in the VDSI, multi-accumulator and the signa-

ture scheme Sig.

Notation Description

Da,Ca Alice’s data set and its encryption form

Db,Cb Bob’s data set and its encryption form

Setup,KeyGen,Enc, Dec, AuGen, SetOp, Verify algorithms of the VDSI
pm, sk, pk, si, au, rslt, proof parameters of the VDSI

acKeyGen, acGen, acProve, acVerify algorithms of the multi-accumulator
acSk, acPk, acDig, acRslt, acWit parameters of the multi-accumulator

sigKeyGen, sigSign, sigVerify algorithms of signature scheme Sig
sigSk, sigPk, σ parameters of the signature scheme

3.3 VDSI Model and Definition

3.3.1 System Model

Figure 4.1 illustrates the system model of VDSI (verifiable delegated set intersection operations on

outsourced encrypted data). The system has four entities: a trusted third party, a cloud, and two

cloud users (i.e., data owners) referred to as Alice and Bob. The trusted third party is responsible

for initializing system public parameters used by the cloud and cloud users. Alice and Bob can be

either individuals or organizations that outsource their private data sets, denoted by Da and Db, to

the cloud in encrypted form, denoted by Ca and Cb, respectively. Alice and Bob want to compute

the intersection set Da ∩ Db, by delegating the set intersection operation to the cloud but without

giving the cloud the capability to decrypt Ca and Cb.

Remark. The above system model can be easily extended to accommodate the following more

general scenarios. First, rather than letting Alice and Bob outsource their encrypted data to the

same cloud, they can outsource their encrypted data to two different clouds (dubbed storage

clouds). Second, rather than letting (one of) the storage cloud(s) conduct the delegated compu-

tation on Ca and Cb, another cloud (dubbed computing cloud) or any other third party can be used

for this purpose. The extension is trivial and omitted.

45

����� ��	

����

�������
�����������

5
0���
 �
�1	�	
�

��
�0

�0��

�� �0

Figure 3.1: VDSI system model: data owners Alice and Bob encrypt their data sets (denoted by

Da and Db), using their respective public keys, outsource to the cloud the resulting ciphertexts

(denoted by Ca and Cb), and delegate the computation of Da ∩ Db to the cloud but without giving

it the capability to decrypt Ca and Cb.

3.3.2 Threat Model and Basic Idea of Defense

We assume that the cloud users (i.e., data owners) are honest-but-curious, meaning that they act

according to the protocols and use their real data sets as inputs to the protocols, but are curious

about each other’s private data. However, the cloud is possibly malicious. This means that the

cloud can attempt to breach the secrecy of the data outsourced to the cloud, manipulate the integrity

of the outsourced data, and deviate from the protocols arbitrarily. The cloud may be controlled by

an attacker, who also has control over all the communication channels. This means that denial-of-

service attack is inevitable and should be addressed orthogonally by another layer of defense. We

will use “the attacker" and “the cloud" interchangeably.

The basic idea for defending against the possibly malicious cloud is to ask the cloud to generate

a proof, which shows that it has faithfully executed the delegated set intersection operation. By

“examining" the result and proof returned by the cloud, Alice and/or Bob can verify whether or

not the cloud has faithfully executed the delegated set intersection operations on Ca and Cb or not.

46

3.3.3 VDSI Function Definition

In order to simplify the description of both the definition and the concrete scheme that will be pre-

sented later, we assume that there is an authenticated user-to-cloud private communication channel,

which is used by a cloud user to send some secret information to the cloud (e.g., the secret infor-

mation that allows the cloud to conduct the delegated set intersection operation). This assumption

does not impose any significant restriction because in the case the cloud is controlled by the at-

tacker, the secret information is given to the attacker any way. In practice, the channel can be

readily realized by encrypting the secret information under the cloud’s public key.

With loss of generality, denote by Alice’s plaintext data set Da = {da,0, . . . , da,n} and Bob’s

plaintext data set Db = {db,0, . . . , db,m}. Alice (Bob) outsources her (his) encrypted version of Da

(Db), denoted by Ca (Cb), to the cloud. Alice and Bob want to compute Da ∩ Db by delegating the

computation to the cloud, but without giving the cloud capability to decrypt Ca and Cb.

Definition 6. A VDSI scheme has seven algorithms:

• pm ← Setup(1�): Given security parameter �, the trusted third party runs this algorithm to

bootstrap the public parameters pm.

• (pka, ska) ← KeyGen(pm): Alice runs this randomized algorithm to generate a pair of pub-

lic and private keys (pka, ska), where pka is made public and ska is kept secret by Alice.

Similarly, we denote Bob’s pair of public and private keys by (pkb, skb).

• (Ca, sia)← Enc(pka,Da): Alice runs this encryption algorithm to encrypt her data set Da to

ciphertext Ca, which is outsourced to the cloud, and some secret information sia, which is

kept secret by Alice. Bob can generate (Cb, sib) similarly.

• {D′,⊥} ← Dec(ska, rslta): Alice runs this decryption algorithm to decrypt ciphertext rslta,

which is the output of the delegated set intersection operation conducted by the cloud on

ciphertexts Ca and Cb, to obtain the intersection set D′ = Da ∩Db. In the case the decryption

47

fails, the algorithm outputs ⊥ instead. Note this decryption algorithm also can be used to

decrypt Ca.

• aua ← AuGen(ska, sia, pkb): In order to allow the cloud to conduct the set intersection op-

eration on the outsourced ciphertexts Ca and Cb, Alice runs this algorithm to generate some

auxiliary information aua, which is sent to the cloud through the authenticated user-to-cloud

private communication channel (see justification above), where sia is the Alice’s secret in-

formation generated by Enc(pka,Da). Similarly, Bob can generate and send aub to the cloud,

where aub ← AuGen(skb, sib, pka).

• {(rslta, proofa), (rsltb, proofb)} ← SetOp(Ca, aua, Cb, aub): This is the delegated set in-

tersection operation run by the cloud. Depending on the application, the cloud may return

(rslta, proofa) and (rsltb, proofb) respectively to Alice and Bob, or return (rslta, proofa) to

Alice or (rsltb, proofb) to Bob who requested the delegated set intersection operation, where

proofa and proofb are proofs that can show that the cloud has faithfully executed the SetOp

protocol.

• {0, 1} ← Verify(ska, sia, rslta, proofa): Alice runs this algorithm to verify whether rslta is

faithfully generated by the cloud according to the SetOp protocol. If so (with output 1),

Alice calls the Dec(ska, rslta) algorithm to decrypt rslta; otherwise (with output 0), the cloud

is cheating.

48

We say a VDSI scheme is correct if the following holds:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pm← Setup(1�),

(pka, ska)← KeyGen(pm), (pkb, skb)← KeyGen(pm),

∀ Da,Db, (Ca, sia)← Enc(pka,Da), (Cb, sib)← Enc(pkb,Db),

aua ← AuGen(ska, sia, pkb), aub ← AuGen(skb, sib, pka),

{(rslta, proofa), (rsltb, proofb)} ← SetOp(Ca, aua,Cb, aub) :

1← Verify(ska, sia, rslta, proofa),

1← Verify(skb, sib, rsltb, proofb),

Da ∩ Db = Dec(ska, rslta) = Dec(skb, rsltb)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1.

3.3.4 VDSI Security Definition

Informally, VDSI aims to achieve the following security properties against the afore-discussed

threat model. We consider three security properties: outsourced data secrecy, function output

secrey and verifiability, which are formally defined below. Let ε be a negligible function in security

parameter �. We consider a probabilistic polynomial-time (in �) adversaryA controlling the cloud.

Outsourced Data Secrecy: Similar to security against chosen-plaintext attack, this property means

that the attacker A cannot breach secrecy of the outsourced data, unless that A is given the respect

auxiliary information.

Definition 7. (outsourced data secrecy) A VDSI scheme achieves outsourced data secrecy if the

following holds:

∣∣∣∣∣∣∣∣∣∣∣∣∣

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

pm← Setup(1�), (pk, sk)← KeyGen(pm),

(D0,D1)← AEnc(pk), s.t.|D0| = |D1|,

λ
R← {0, 1}, (Cλ, siλ)← Enc(pk,Dλ),

λ′ ← AEnc(pk,Cλ,D0,D1) : λ = λ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
− 1

2

∣∣∣∣∣∣∣∣∣∣∣∣∣

≤ ε

This property is necessary but not sufficient because it only assures the secrecy of outsourced

49

data when A is not given the delegated set intersection operation capability. The following prop-

erty, function output secrecy, is used to capture the secrecy of oursouced data after A is granted

the capability (i.e, A is given the auxiliary information au).

Function Output Secrecy: This property means that A cannot breach secrecy of the resulting

intersetction set Da ∩Db. Ideally, given a target ciphertext and the auxiliary information, A cannot

learn the plaintext with a non-negligible probability.

Definition 8. (function output secrecy) A VDSI scheme achieves function output secrecy if

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pm← Setup(1�),

(pka, ska)← KeyGen(pm), (pkb, skb)← KeyGen(pm),

∀Da,Db, (Ca, sia)← Enc(pka,Da), (Cb, sib)← Enc(pkb,Db),

∀cph ∈ (Ca ∪ Cb),

aua ← AuGen(ska, sia, pkb), aub ← AuGen(skb, sib, pka),

{d1, . . . , dq} ← AEnc,SetOp,Verify(pka, aua,Ca, pkb, aub,Cb, cph) :

∃i ∈ [1, q], di = d

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ f(�, q, |M|),

where q is the maximum number of guessing against cph, d is the plaintext with respect to cph,

andM is the plaintext domain.

Remark. Ideally, we want f(�, q, |M|) to be a negaligible function in � as well. Unfortunately,

we are only able to construct a scheme that achieves f(�, q, |M|) = q
|M| + ε, which is a non-

negligible function in � because |M| would not be exponentially in �. The intuition behind q
|M|

is that A can launch a plaintext-guessing attack (in a way similar to the online dictionary attack

against passwords), which is specific to our scheme that will be presented later. Designing a VDSI

scheme that achieves negligible f(�, q, |M|) in � is left as an open problem for future research.

Nevertheless, our definition is general enough to accommodate that scenario.

Verifiability: This property means that anyA not faithfully executing the SetOp protocol is bound

to be caught.

50

Definition 9. (verifiability) A VDSI scheme is verifiable if

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pm← Setup(1�),

(pka, ska)← KeyGen(pm), (pkb, skb)← KeyGen(pm),

(Da,Db)← AEnc,AuGen,SetOp,Verify(pka, pkb),

(Ca, sia)← Enc(pka,Da), (Cb, sib)← Enc(pkb,Db),

aua ← AuGen(ska, sia, pkb),

aub ← AuGen(skb, sib, pka),

{(rslta, proofa), (rsltb, proofb)} ← AEnc,SetOp,Verify

(pka, aua,Da,Ca, sia, pkb, aub,Db,Cb, sib) :

1← Verify(ska, sia, rslta, proofa) ∧ 1← Verify(skb, sib, rsltb, proofb)∧

(Dec(ska, rslta) �= Dec(skb, rsltb) ∨ Dec(ska, rslta) �= (Da ∩ Db))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ ε

3.4 Building-Block: multi-accumulator

A cryptography accumulator is a primitive for a verifier to examine the membership of an element

with respect to a (static or dynamic) data set. The examination is based on some public data and

membership proof provided by a prover. In a single-accumulator scheme, each membership proof

allows a verifier to examine the membership of a single element with respect to a data set. The idea

of single-accumulator has been studied extensively (see, e.g., [27,45,93]). We introduce the idea of

multi-accumulator by which, each membership proof allows a verifier to examine the membership

of multiple elements with respect to a data set. in the context of set intersection operations, multi-

accumulator allows Alice (Bob) to verify, via a single examination, that Da ∩ Db ⊆ Da (⊆ Db).

3.4.1 Function and Security Definitions

Suppose Alice has a data set acDa and outsources it to the cloud (as the prover). Bob (as the

verifier) has a dataset acDb and queries the cloud for acDa ∩ acDb.

Definition 10. A multi-accumulator scheme has the following algorithms:

51

• (acSk, acPk)← acKeyGen(1�): The trusted third party runs this algorithm to generate a pair

of public and private key (acPk, acSk).

• acDiga ← acGen(acPk, acDa): Alice runs this algorithm to generate a digest acDig for acDa,

which is outsourced to the cloud. Similarly, Bob can generate acDigb with respect to acDb.

• (acRslt, acWit)← acProve(acPk, acDb, acDa): Given the data set acDb from Bob, the cloud

runs this algorithm to generate acRslt = (acDb∩acDa) with an accompanying witness acWit

for this fact.

• {0, 1} ← acVerify(acPk, acDigb, acRslt, acWit, acDiga): Bob runs this algorithm to examine

if acRslt = acDb ∩ acDa, where acDigb is the digest with respect to acDb and acDig is the

digest with respect to acDa. If so, output 1; otherwise, output 0.

A multi-accumulator scheme is correct if

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∀ acDa, acDb

(acSk, acPk)← acKeyGen(1�),

acDigb ← acGen(acPk, acDb), acDiga ← acGen(acPk, acDa),

(acRslt, acWit)← acProve(acPk, acDb, acDa) :

1← acVerify(acPk, acDigb, acRslt, acWit, acDiga)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1.

A multi-accumulator scheme is secure if a malicious probabilistic polynomial-time prover A

can cheat the honest verifier without being caught. Let � be a security parameter and ε be a negli-

gible function in �. Formally, we have:

52

Definition 11. A multi-accumulator scheme is secure if

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(acPk, acSk)← acKeyGen(1�),

acDa ← AacProve,acVerify(acPk), acDiga ← acGen(acSk, acDa),

(acDb, acRslt, acWit)← AacProve,acVerify(acPk, acDa) :

acDigb ← acGen(acPk, acDb),

1← acVerify(acPk, acDigb, acRslt, acWit, acDiga),

acRslt �= acDb ∩ acDa

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ ε.

3.4.2 Construction based on Bilinear Map

A multi-accumulator scheme can be based on a single-accumulator scheme that supports both

membership and non-membership proofs, as follows: the cloud generates a witness for each el-

ement of acDb showing the element is a member or non-member of acDa and simply puts them

together as the witness for acRslt = acDb∩acDa. However, this straightforward approach is costly

because both the computational and communication complexities are linear to |acDb|.

We present a multi-accumulator scheme, where the size of the witness is constant (i.e., indepen-

dent of |acDb|). The proposed multi-accumulator scheme is extended from the single-accumulator

scheme due to [45,93], while adapting the basic idea underlying [104] as follows: Suppose Alice’s

data set is acDa = {da,1, . . . , da,n}, Bob’s data set is acDb = {db,1, . . . , db,m}, and acRslt = acDa∩

acDb. We can encode acDa via polynomial R(x) =
∏

t∈acDa
(x + t), encode acDb via polynomial

W (x) =
∏

t∈acDb
(x+t), encode the intersection set acRslt via polynomial T (x) =

∏
t∈acRslt(x+t),

and encode the subset acDb−acRslt via polynomialQ(x) =
∏

t∈(acDb−acRslt)(x+t). These polyno-

mials satisfy the following: (i) T (x)Q(x) = W (x), (ii) T (x) is a divisor of R(x), and (iii) Q(x) is

co-prime to R(x). For the special case acRslt = ∅, the three conditions also hold since T (x) = 1,

Q(x) = W (x) =
∏

t∈acDb
(x + t) and R(x) =

∏
t∈acDa

(x + t). Therefore, based on this idea, the

multi-accumulator scheme allows the cloud to show the correctness of the intersection set, which

can be either empty or non-empty. It can be constructed as follows:

53

• acKeyGen(1�): Let (e, g, G,GT , p) ← MapGen(1�), set α
R← Zp and acPk = (gα, gα

2
,

. . . , gα
q
), acSk = (α), where q is bounded by a polynomial in security parameter �.

• acGen(acPk, acDa): Given Alice’s data set acDa = {da,1, . . . , da,n} ∈ Z
n
p where n ≤ q,

compute its digest as

acDiga = g
∏n

i=1(da,i+α).

• acProve(acPk, acDb, acDa): Given Bob’s data set acDb = (db,1, . . . , db,m) ∈ Z
m
p where m ≤

q, compute acRslt = acDb ∩ acDa, and generate a witness as follows:

– Let T ′(x) =
∏

t∈(acDa−acRslt)(x+ t) and compute gT
′(α) by substituting x with α.

– LetQ(x) =
∏

t∈(acDb−acRslt)(x+t) andR(x)=
∏

t∈acDa
(x+t), and find two polynomials

Q′(x), R′(x) such that Q(x)Q′(x) + R(x)R′(x) = 1 mod p by taking advantage of

gcd(Q(x), R(x)) = 1. Compute (gQ(α), gQ
′(α), gR

′(α)) by substituting x with α.

Set acRslt = acDb ∩ acDa and acWit = (gQ(α), gQ
′(α), gR

′(α), gT
′(α)).

• acVerify(acPk, acDigb, acRslt, acWit, acDiga): Given acWit and acRslt from the prover, the

verifier proceeds as follows:

1. If acRslt �= ∅, compute gT (α) according to T (x) =
∏

t∈acRslt(x + t). Otherwise, let

T (x) = 1 and gT (α) = g.

2. If e(gQ(α), gT (α))) �= e(acDigb, g), return 0; otherwise, proceed to next step.

3. If e(gT (α), gT
′(α)) �= e(acDiga, g), return 0; otherwise, proceed to next step.

4. If e(gQ(α), gQ
′(α))e(acDiga, g

R′(α)) �= e(g, g), return 0; otherwise, return 1.

Correctness of the multi-accumulator scheme can be verified easily. We describe its asymptotic

efficiency in Table 3.2. It is worth noting that (i) the witness generated by algorithm acProve only

consists of four group elements, meaning that the complexity is independent of k = |acDb∩acDa|,

and (ii) the computational complexity of algrorithm acVerify is linear to k = |acDb ∩ acDa|.

Now we prove its security.

54

Table 3.2: Asymptotical efficiency of the multi-accumulator scheme, where Exp denotes the

exponentiation operation, Pairing denotes the pairing operation, n = |acDa|, m = |acDb| and

k = |acDa ∩ acDb|.
acGen acProve acVerify

Computation nExp (n+m)Exp kExp+ 7Pairing
Output Size |G| 4|G| N/A

Theorem 9. Assume that the q-SDH assumption holds, the multi-accumulator scheme is secure

with respect to Definition 11.

Proof. We show that if there is an adversary A that can break the multi-accumulator scheme with

a non-negligible probability, there is an algorithm B that can break the q-SDH assumption with a

non-negligible probability.

Suppose B is given a challenge instance (gα, gα
2
, . . . , gα

q
), where α

R← Zp and α is unknown.

B simulates the multi-accumulator scheme for A, according to the game implied by Definition 11.

For acDa = {da,1, . . . , da,n} with digest acDiga = g
∏

t∈acDa
(α+t), suppose A returns acDb, acRslt

and acWit = (gQ(α), gQ
′(α), gR

′(α), gT
′(α)). If A breaks the security of the multi-accumulator with

non-negligible probability, then there exists acDb, acRslt and acWit such that the followings hold:

(i) 1 ← acVerify(acPk, acDigb, acRslt, acWit, acDiga) where acDigb ← acGen(acPk, acDb), and

(ii) acRslt �= acDb ∩ acDa, and then B can break the q-SDH assumption by presenting a tuple

(t′, e(g, g)1/(α+t′)) where t′ ∈ Zp.

First, we claim that ∀t ∈ acRslt, it holds that t ∈ acDb. To prove this, suppose there exists

t′ ∈ acRslt but t′ /∈ acDb, meaning that polynomial
∏

t∈acDb
(x + t) cannot be divided by (x +

t′). Therefore, polynomial
∏

t∈acDb
(x + t) can be represented (in polynomial-time) as U(x)(x +

t′) + λ where λ �= 0, and U(x) is a polynomial of degree |acDb| − 1. On the other hand, 1 ←

acVerify(acPk, acDigb, acRslt, acWit, acDiga) implies the following:

e(gQ(α), g
∏

t∈acRslt(α+t)) = e(acDigb, g) = e(g
∏

t∈acDb
(α+t), g).

By substituting
∏

t∈acDb
(α+ t) with U(α)(α+ t′) + λ in the right-hand of the above equation, we

55

have

e(gQ(α), g
∏

t∈acRslt(α+t)) = e(gU(α)(α+t′)+λ, g).

This leads to:

e(gQ(α), g
∏

t∈acRslt,t �=t′ (α+t)) = e(gU(α)+ λ
α+t′ , g).

Therefore,

e(g, g)
1

α+t′ = (e(gQ(α), g
∏

t∈acRslt,t �=t′ (α+t))e(g, g)−U(α))
1
λ .

That is, if (i) A breaks the multi-accumulator scheme with a non-negligible probability and (ii)

∃t′ ∈ acRslt such that t′ /∈ acDb, then B can break the q-SDH assumption by outputting (t′,

e(g, g)1/(α+t′)) with a non-negligible probability.

Second, we claim that ∀t ∈ acRslt it holds that t ∈ acDa. This can be proved similarly.

Third, we claim that ∀t ∈ (acDb − acRslt), it holds that t /∈ acDa. To prove this, suppose there

exists t′ ∈ (acDb − acRslt) but t′ ∈ acDa. This means that there exists polynomials

Q′(x)(x+ t′)
t �=t′∏

t∈(acDb−acRslt)

(x+ t) +R′(x)(x+ t′)
t �=t′∏

t∈acDa

(x+ t) = 1,

which means

Q′(x)
t �=t′∏

t∈(acDb−acRslt)

(x+ t) +R′(x)
t �=t′∏

t∈acDa

(x+ t) =
1

(x+ t′)
.

On the other hand, 1← acVerify(acPk, acDb, acRslt, acWit, acDiga) implies:

e(gQ
′(α), g

∏
t∈(acDb−acRslt)(α+t))e(gR

′(α), g
∏

t∈acDa
(α+t)) = e(g, g).

56

Therefore, we have

e(g, g)
1

(α+t′) = e(gQ
′(α), g

∏
t∈(acDb−acRslt),t �=t′ (α+t))e(gR

′(x),g
∏

t∈acDa,t �=acDa
(α+t)

).

That is, if (i) A breaks the multi-accumulator scheme with a non-negligible probability and (ii)

there exists t′ ∈ (acDb − acRslt) such that t′ ∈ acDa, then B can break the q-SDH assumption by

outputting (t′, e(g, g)1/(α+t′)) with a non-negligible probability.

To sum up, since ∀t ∈ acRslt it holds that t ∈ acDb and t ∈ acDa, and ∀t′ ∈ (acDb − acRslt)

it holds that t′ /∈ acDa, we conclude that acRslt = acDb ∩ acDa. Therefore, the multi-accumulator

scheme is secure with respect to Definition 11.

3.5 The VDSI Scheme

Basic Ideas. In order to attain a VDSI scheme, we need to resolve two issues: (i) How can we

enable the cloud to compare the equality of two ciphertexts that are encrypted under two different

public keys pka and pkb, respectively? (ii) How can we enable the cloud to generate a proof for

showing that it has faithfully executed the SetOp protocol, ideally without using zero-knowledge

proof for the sake of better efficiency?

To resolve the above (i), we adopt the idea of proxy re-encryption as follows: Alice can generate

a re-key and send it to the cloud, which can use the re-key to transform ciphertext Ca (encrypted

under Alice’s public key pka) into an intermediate form, say Ta. Similarly, the cloud can transform

ciphertext Cb (encrypted under Bob’s public key pkb) into the same kind fo intermediate form,

denoted by Tb. Then, the cloud can “compare" Ta and Tb to determine whether they correspond

to the same plaintext or not. More specifically, a data item da,i ∈ Da is encrypted using pka =

(gβa , gγa) as (gr2 , gγar1 , da,ig
βa(r1+r2)), where r1, r2

R← Zp. Alice can give the re-key rka = gβa/γa ,

rather than her private key ska = (βa, γa) to the cloud, which now can transform the ciphertext into

e(da,ig
βa(r1+r2), g)

e(gγar1 , gβa/γa)e(gr2 , gβa)
= e(da,i, g).

57

Similarly, for data item db,i ∈ Db, the cloud can transform the corresponding ciphertext into

e(db,i, g). If da,i = db,i, then e(da,i, g) = (db,i, g). While this method is sufficient to allow the

cloud to determine whether the two ciphertexts correspond to the same plaintext or not, it does

not achieve the desired semantic security because the cloud can launch the plaintext guess attack

against elements da,i and db,i. We have tried without success to eliminate this attack while preserv-

ing the other properties (especially the verifiability). We therefore leave it as an open problem.

To resolve the above issue (ii), we observe that the cloud, as illustrated above, can generate

e(da,i, g) for each da,i ∈ Da and e(db,i, g) for each db,i ∈ Db. As a result, the cloud can use the multi-

accumulator scheme to generate a proof as follows: For Bob, let e(da,i, g)’s as acDa and e(db,i, g)’s

as acDb, the cloud applies acProve to generate witness acWitb for showing acRslt = acDa∩acDb is

the correct intersection set with respect to e(da,i, g)’s and e(db,i, g)’s. Given witness acWitb, digest

acDigb of e(db,i, g)’s and digest acDiga of e(da,i, g), Bob can verify the correctness of acRslt, which

can be computed from the returned intersection set of Ca and Cb. Similarly, the cloud can generate

witness acWita for Alice, who can then conduct the same kind of verification. That is, by using

the multi-accumulator scheme in section 3.4, the cloud users can verify the correctness of the

intersection set, which contains zero or more common elements.

3.5.1 The Scheme

The scheme is a modular construction based on (i) a secure multi-accumulator scheme Ac =

(acKeyGen, acGen, acProve, acVerify) such as the one described in Section 3.4, and (ii) a secure

digital signature scheme Sig = (sigKeyGen, sigSign, sigVerify). The digital signature scheme is

used to authenticate the encryption form of the accumulator digest, which assures that the cloud

cannot manipulate it without being detected. Specifically, the scheme is described as follows:

Setup(1�): Given security parameter �, the trusted third party runs (e, g,G,GT , p)← MapGen(1�).

Let H : GT → Zp be a collision-resistant hash function. The trusted third party also runs

58

(acPk, acSk)← KeyGen(1�) and sets the public parameter as

pm = (acPk, e, p, g, G,GT).

KeyGen(pm): Alice runs (sigPka, sigSka)← sigKeyGen(1�), selects βa, γa
R← Zp, and sets

ska = (βa, γa, sigSka), pka = (gβa , gγa , sigPka).

Similarly, Bob generates skb = (βb, γb, sigSkb) and pkb = (gβb , gγb , sigPkb).

Enc(pka,Da): Alice, with Da = (da,1, . . . , da,n) where da,i ∈ G for 1 ≤ i ≤ n, executes as follows:

• Select da,0
R← G (for a security purpose that will be elaborated later).

• For 0 ≤ i ≤ n, select ri1, ri2
R← Zp and compute

cpha,i = (gri2 , gγari1 , da,ig
βa(ri1+ri2)).

• For 0 ≤ i ≤ n, let Ti = H(e(da,i, g)) and compute acDiga ← acGen(acPk, {T0, . . . , Tn}).

• Set Ca = {cpha,0, . . . , cpha,n} and sia = acDiga.

Similarly, Bob, with Db = (db,1, . . . , db,m) where db,i ∈ G for 1 ≤ i ≤ m, can obtain Cb =

{cphb,0, . . . , cphb,m} and sib = acDigb.

Dec(ska, rslta): Given the cloud-generated ciphertext intersection set rslta = {cpha,j, . . . , cpha,k}

where 1 ≤ j, k ≤ n, Alice decrypts ciphertexts cpha,i for j ≤ i ≤ k as follows:

da,i = da,ig
βa(ri1+ri2))/(gri2)βa(gγari1)βa/γa .

The decryption of rslta is Da ∩ Db = {da,j, . . . , da,k}. Note that this algorithm can also be used to

decrypt Ca without involving any delegated set operations. In this case, the integrity of Ca can be

easily assured by acDiga since the plaintexts of Ca should be accumulated to acDiga.

59

Similarly, Bob can decrypt the cloud-generated ciphertext intersection set rsltb = {cphb,j , . . .,

cphb,k} where 1 ≤ j, k ≤ m to obtain Da ∩ Db.

AuGen(ska, sia, pkb): Given private key ska, Alice generates re-key rka = (gβa/γa). Alice encrypts

the secret information sia using Bob’s public key pkb to obtain ciphertext cphB = (gr2 , gγbr1 ,

acDigag
βb(r1+r2)), where r1, r2

R← Zp. Then, Alice runs σa ← sigSign(sigSka, cphB) to obtain a

signature σa on message cphB. Finally, Alice sets aua = (rka, cphB, σa).

Similarly, Bob can generate aub = (rkb, cphA, σb).

SetOp(Ca, aua,Cb, aua): Given Ca = {cpha,0, . . ., cpha,n}, Cb = {cphb,0, . . . , cphb,m}, aua =

(rka = gβa/γa , cphB, σa), and aub = (rkb = gβb/γb , cphA, σb), the cloud executes as follows:

• Transform ciphertexts cpha,i for 0 ≤ i ≤ n into

Ta,i =
e(da,ig

βa(ri1+ri2), g)

e(gγari1 , gβa/γa)e(gri2 , gβa)
= e(da,i, g),

and compute Ta = {H(Ta,0), . . . , H(Ta,n)}.

• Transform ciphertexts cphb,i for 1 ≤ i ≤ m into

Tb,i =
e(db,ig

βb(ri1+ri2), g)

e(gγbri1 , gβb/γb)e(gri2 , gβb)
= e(db,i, g)

and compute Tb = {H(Tb,0), . . . , H(Tb,m)}.

• Generate the intersection set rslta and a proof with respect to Ca as follows: Run (acRslt, acWita)←

acProve(acPk, Ta, Tb) and set

rslta = {cpha,i|H(Aa,i) ∈ acRslt},

proofa = (acWita, cphA, σb).

• Generate the intersection set rsltb and a proof with respect to Cb as follows: Run (acRslt, acWitb)←

60

acProve(acPk, Tb, Ta) and set

rsltb = {cphb,i|H(Ab,i) ∈ acRslt},

proofb = (acWitb, cphB, σa).

Verify(ska, sia, rslta, proofa): Given rslta and proofa, Alice verifies that the cloud faithfully exe-

cuted the SetOp protocol as follows:

• Verify the integrity of cphA by running sigVerify(sigPkb, cphA, σb). If it outputs 0, then return

0; otherwise, proceed to next step.

• Decrypt cphA using private key ska according to

acDigb = acDigbg
βa(r1+r2))/(gr2)βa(gγar1)βa/γa .

• If rslta is not empty, decrypt rslta to obtain the plaintexts and compute Ya = {e(da,i, g)|cpha,i ∈

rslta}. Otherwise, let Ya = ∅.

• Run acVerify(acPk, acDiga, Ya, acWita, acDigb). If it outputs 0, then return 0; otherwise,

return 1.

If the algorithm returns 1, Dec(ska, rslta) is called to obtain Da ∩ Db.

Similarly, Bob can run the same algorithm to verify that the cloud does not cheat.

Remark: why using da,0 and db,0?

Since Alice needs to know the accumulator digest acDigb for the sake of verifying the correct-

ness of rslta, we need to assure that Alice cannot use acDigb to infer useful information about Db.

This is achieved by “blending” the accumulator digest with the randomness, namely the hash value

of the randomly selected db,0. This eliminates the usage of zero-knowledge proofs [5, 48], while

assuring no useful information is leaked.

61

Remark. Our VDSI scheme only offers coarse-grained access control in the following sense.

Suppose Alice and Bob allow the cloud to conduct the delegated set intersection operation on Ca

and Cb, and Alice and Carlos allow the cloud to conduct the delegated set intersection operation on

Ca and Cc. Then, the cloud is able to conduct the set intersection operation on Cb and Cc without

the authorization from Bob and Carlos. It is a future work to enforce fine-grained access control in

VDSI.

3.5.2 Security Analysis

Correctness of the VDSI scheme can be examined easily. In what follows, we focus on its security

properties.

Theorem 10. Under the DL assumption, the scheme achieves outsourced data secrecy (Definition

7).

Proof. The proof strategy is: we first show that the VDSI scheme achieves outsourced data secrecy

when the challenge data set |D0| = |D1| = 1, which is then used as a “building-block" to show that

the VDSI scheme achieves outsourced data secrecy when |D0| = |D1| = n.

First, we show that given |D0| = |D1| = 1, the VDSI scheme achieves outsourced data secrecy

under the DL assumption. To prove that, we show that if there is a probabilistic polynomial-time

adversary A that can break outsourced data secrecy with a non-negligible probability, then there

is an algorithm B that can break the DL assumption with a non-negligible probability.

Suppose B is given a DL instance (f, g, h, gr1 , f r2 , Q), where f, g,Q
R← G, r1, r2

R← Zp and

r1, r2 are unknown to B. Now B can simulate the game as follows:

Setup: B treats f = gγ and h = gβ for some unknown γ and β, runs (acPk, acSk)← acKeyGen(1�)

and (sigPk, sigSk) ← sigKeyGen(1�), sets pm = (acPk, e, p, g, G,GT) and pk = (sigPk, f, g, h)

and sk = (sigSk), and finally sends public key pk and public parameter pm to adversary A.

Phase 1: A can query the following oracle polynomially-many (in �) times:

• OEnc(pk,D): Given D = {d1, . . . , dn}, B encrypts di as cphi = (gri2 , f ri1 , dih
(ri1+ri2)) where

62

ri1, ri2
R← Zp, sets C = {cph1, . . . , cphn}, runs acDig ← acGen(acPk, {H(e(di, g)), . . .,

H(e(dn, g))}), and returns C to A.

Challenge: A outputs two data sets (D0 = {d0},D1 = {d1}) where |D0| = |D1| = 1 and D0 �= D1.

B selects λ
R← {0, 1}, and computes cphλ = (gr1 , f r2 , dλQ). Let cph be the ciphertext of a selected

random value unkown to A, C = {cph, cphλ}, acDig← acGen(acPk, {H(e(dλ, g))}). B returns C

to A.

Phase 2: A can query the oracle the same as Phase 1.

Guess: Lastly, A outputs λ′. If λ′ = λ, then the challenge outputs h(r1+r2) = Q; otherwise, it

outputs h(r1+r2) �= Q.

We can see that if Q = h(r1+r2), then cphλ is the valid ciphertext. In this case the probability of

A outputting λ = λ′ is 1
2
+μ. IfQ is a random element fromG, then the probability ofA outputting

λ = λ′ is 1
2
. Therefore, the probability of B correctly guessingQ

?
= h(r1+r2) is 1

2
(1
2
+μ+ 1

2
) = 1

2
+ μ

2
.

That is, given the challenge data sets |D0| = |D1| = 1, if A can break outsourced data secrecy of

the proposed scheme with non-negligible advantage μ, then there exists a challenger breaking the

DL assumption with non-negligible advantage μ
2
.

In what follows we show that given arbitrary size of data sets, e.g. |D0| = |D1| = n (or m), the

proposed scheme achieves outsourced data secrecy. Given the data sets D0 = (d1, ..., dn) and D1 =

(d′1, ..., d
′
n) from adversary A, let C(i) denote the encryption form of (d1, . . . , di, d

′
i+1, . . . , d

′
n), so

that C(n) is the encryption form of D0 and C(0) is the encryption form of D1. We simulate the

challenge phase with an additional adversary A′ as follows:

• A′ selects an index i
R← [1, n] and presents (di, d

′
i) to B. The challenger returns cphi by

encrypting di if λ = 0 and d′i otherwise.

• A′ encrypts (d1, . . . , di−1) and (d′i+1, . . . , d
′
n), and sends (cph1, . . . , cphn) to A. A′ outputs

λ′ that is output by A.

We can see that A′ sends to A the ciphertexts C(i) when λ = 0 and C(i−1) when λ = 1. Now

let’s consider the probability of A′ winning the security game, and have (we denote as A(C(i)) the

63

guess of A with ciphertexts C(i))

Pr[A′outputs 0|λ = 0] =
n∑

i=1

1

n
Pr[A(C(i)) = 0]

Pr[A′outputs 1|λ = 1] =
n∑

i=1

1

n
Pr[A(C(i−1)) = 1]

Therefore, the probability of A′ winning the selective security game is

1

2
Pr[A′outputs 0|λ = 0] +

1

2
Pr[A′outputs 1|λ = 1]

=
n∑

j=1

1

2n
Pr[A(C(j)) = 0] +

n∑
j=1

1

2n
Pr[A(C(j−1)) = 1]

=
n

2n
+

1

2n
Pr[A(C(n)) = 0] +

1

2n
Pr[A(C(0)) = 1]

=
n

2n
+

1

n
(
1

2
Pr[A(C(n)) = 0] +

1

2
Pr[A(C(0)) = 1])

≤ 1

2
+ ε

Here ε is negligible probability of the advantage of A′ winning the security game to guess λ.

Therefore, the probability of A distinguishing C(0) and C(n) is

1

2
Pr[A(C(n)) = 0] +

1

2
Pr[A(C(0)) = 1] ≤ 1

2
+ nε

That is, the advantage of A distinguishing C(0) and C(n) is at most nε, which is negligible with

respect to �. Therefore, we show that the proposed scheme achieves outsourced data secrecy under

the DL assumption.

Theorem 11. Given that the bilinear map e is one-way, the VDSI scheme achieves the function

output secrecy property (Definition 8).

Proof. We show that given a ciphertext and corresponding re-key, any probabilistic polynomial-

time adversary A infers the plaintext with the probability q
|M| + ε at most ifA has q times to guess

the plaintexts, whereM is the plaintext space.

64

Setup: The challenger B runs pm← Setup(1�) and makes pm publicly known.

Challenge: The challenger runs KeyGen(pm) to obtain ska = (sigSka, βa, γa) and pka = (sigPka,

gβa , gγa) for Alice, and runs KeyGen(pm) to obtain skb = (sigSkb, βb, γb), pkb = (sigPkb, g
βb , gγb)

for Bob. B selects two data sets Db,Db, elements of which are randomly selected from the plain-

text space M, then runs (Ca, sia) ← Enc(pka,Da) and (Cb, sib) ← Enc(pkb,Db), aua ← AuGen

(ska, si, pkb) and aub ← AuGen(skb, sib, pka), and returns Ca, Cb, pka, pkb, aua, aub to A.

Phase 1: A can query the following oracles polynomially many times.

• OEnc(pka,D
′
a) : Given the data set D′

a, the challenger runs (C′
a, si

′
a) ← Enc(pka,D

′
a) and

returns C′
a, si

′
a to A.

• OEnc(pkb,D
′
b) : Given the data set D′

b, the challenger runs (C′
b, si

′
b) ← Enc(pkb,D

′
b) and

returns C′
b, si

′
b to A.

• OVerify(pka, rslta, proofa) : The challenger runs Verify(ska, sia, rslta, proofa) and returns the

output to A, where sia is the secret information with respect to the data set Da .

• OVerify(pkb, rsltb, proofb) : The challenger runs Verify(skb, sib, rsltb, proofb) and returns the

output to A, where sib is the secret information with respect to the data set Db .

Guess: The challenger selects a ciphertext cph from Ca ∪ Cb uniformly at random. A has q times

to guess the keyword with respect to cph.

We can see that given the ciphertexts Ca,Cb and aua, aub, A can only get the values e(da,i, g)

for da,i ∈ Da and e(db,i, g) for db,i ∈ Db. Therefore, as the bilinear map e is an one-way function,A

inverts the plaintext from the pairing value with negligible probability ε. The only way of inferring

the plaintext with respect to cph is with brute-force method by enumerating possible elements

within the plaintext space. Hence, given that A has q times to guess plaintexts, the probability of

A outputting correct plaintext is q
|M| + ε.

65

Theorem 12. Assume that Sig is an unforgeable signature scheme, Ac is a secure multi-accumulator

scheme and H is a collision resistance hash function, the VDSI scheme achieves the verifiability

property (Definition 9).

Proof. We show that if there exists a probabilistic polynomial-time adversary A breaking the ver-

ifiability of the VDSI scheme (i.e. presenting an incorrect intersection result and succeeding in the

verification with non-negligible probability), there exists an algorithm B breaking the assumptions

that Sig is a secure signature scheme, Ac is a secure multi-accumulator scheme or H is a collision

resistant hash function. B proceeds as follows.

Setup: B runs pm ← Setup(1�) and makes pm public known. It then runs KeyGen(pm) to

obtain ska = (sigSka, βa, γa) and pka = (sigPka, g
βa , gγa), runs KeyGen(pm) to obtain skb =

(sigSkb, βb, γb), pkb = (sigPkb, g
βb , gγb), and returns pka, pkb to A.

Phase 1: A can query the following oracles polynomially many times.

• OEnc(pka,Da) : Given the data set Da, B runs (Ca, sia)← Enc(pka,Da) and returns Ca, sia to

A.

• OEnc(pkb,Db) : Given the data set Db, B runs (Cb, sib)← Enc(pkb, Db) and returns Cb, sib to

A.

• OAuGen(pka,Da, pkb): B runs aua ← AuGen(ska, sia, pkb) and returns aua to A.

• OAuGen(pkb,Db, pka): B runs aub ← AuGen(skb, sib, pka) and returns aua to A.

• OVerify(pka, rslta, proofa) : B runs Verify(ska, sia, rslta, proofa) and returns the output to A,

where sia is the secret information with respect to the data set Da .

• OVerify(pkb, rsltb, proofb) : B runs Verify(skb, sib, rsltb, proofb) and returns the output to A,

where sib is the secret information with respect to the data set Db .

Challenge: A selects Da,Db of its choice, and sends them to B. B runs (Ca, sia) ← Enc(pka,Da)

66

and (Cb, sib) ← Enc(pkb,Db), aua ← AuGen (ska, sia, pkb) and aub ← AuGen(skb, sib, pka), and

returns Ca, sia, aua,Cb, sib, aub to A, where sia = (acDiga) and sib = (acDigb).

Phase 2: A can query the oracles the same as Phase 1.

Guess: A outputs (rslta, proofa), (rsltb, proofb) to B.

This completes the simulation. First let us consider the verification for (rslta, proofa). Note

that cphA specifed by proofa cannot be manipulated, otherwise it breaks the unforgeability of Sig.

B decrypts cphA to obtain acDigb. In addition, B decrypts Dec(ska, rslta) , and obtains Ta =

{H(e(d′a,i, g))|cpha,i ∈ rslta} where d′a,i is the plaintext with respect to cpha,i .

Suppose T = {H(e(da,i, g))|da,i ∈ Da}∩{H(e(db,i, g))| db,i ∈ Db}. IfA breaks the verifiabil-

ity with (rslta, proofa), then at least one of the following cases should hold:

Case 1:

1← acVerify(acPk, acDiga, Ta, acWita, acDigb)

1← acVerify(acPk, acDiga, T, acWita, acDigb)

Ta = T

∃d′a,i �= da,i, s.t.H(e(d′a,i, g)) = H(e(da,i, g))

Case 2:

1← acVerify(acPk, acDiga, Ta, acWita, acDigb)

1← acVerify(acPk, acDiga, T, acWita, acDigb)

T �= Ta

If A breaks the verifiability with (rslta, proofa) with respect to case 1, then it breaks the as-

sumption that H is collision resistant. This is because d′a,i �= da,i leads to e(d′a,i, g)) �= e(da,i, g)

while H(e(d′a,i, g)) = H(e(da,i, g)).

IfA breaks the verifiability with (rslta, proofa) with respect to case 2, then it breaks the security

67

of the multi-accumulator scheme by presenting acRslt = Ta, which is different from T .

Therefore, we prove thatA breaks the verifiability of VDSI scheme with respect to (rslta, proofa)

in a negligible probability under the assumptions that Sig is unforgeable, H is collision resistant

and Ac is a secure multi-accumulator scheme. Similarly, we can prove that A breaks the verifiable

of VDSI scheme with respect to (rsltb, proofb) in a negligible probability.

3.6 Performance Evaluation

3.6.1 Asymptotic Complexity

Table 3.3: Asymptotic complexity for VDSI scheme, where Exp denotes the exponentiation oper-

ation, Pairing denotes the pairing operation, n = |acDa|, m = |acDb| and k = |Da ∩ Db|.
Algorithm Computational Complexity

Enc 3nExp+ nPairing + acGen
Dec 2nExp

AuGen 4Exp+ sigSign
SetOp 3(n+m)Pairing + 2acProve
Verify 2(k + 1)Exp+ kPairing + acVerify + sigVerify

Table 3.3 describes the asymptotic complexity of algorithms in the VDSI scheme. While al-

gorithm SetOp is more costly when compared with the other algorithms, it is worth noting that

algorithm SetOp is executed by the cloud rather than by the users.

Table 3.4: Asymptotic performance comparison for the VDSI scheme and the straightforward

solution. We assume that the straightforward solution adopting the encryption and decryption

algorithms of the VDSI scheme. Here n is the size of Alice’s data set, m is the size of Bob’s

data set, k is the size of set intersection, and Comp(PSI) and Comm(PSI) denotes the respective

computation and communication complexity of the private set intersection protocol. Note that

Comp(PSI) and Comm(PSI) are both linear to the size of data sets (m+ n) for the state-of-the-art

solution [47].
VDSI solution Straightforward solution

Phase Alice Bob Cloud Alice Bob Cloud

Data outsourcing
Computation O(n) O(m) N/A O(n) O(m) N/A

Communication O(n) O(m) O(n+m) O(n) O(m) O(n+m)

Set operation
Computation O(k) O(k) O(m+ n) O(n)+Comp(PSI) O(m)+Comp(PSI) N/A

Communication O(k) O(k) O(k) O(n) +Comm(PSI) O(m) +Comm(PSI) O(n+m)

Table 3.4 summarizes the communication and computational overhead incurred by the VDSI

68

solution, which is grouped into two phases: (i) data outsourcing phase, during which the cloud

users outsource their encrypted private data sets to the cloud (i.e. Enc); (ii) set operation phase,

during which the cloud users attain the intersection set (i.e. AuGen, SetOp and Verify). We compare

the overhead with its counterpart that is incurred by the straightforward solution, namely that Alice

and Bob download their outsourced encrypted data from the cloud, decrypt their data, and then run

a PSI protocol to jointly compute the intersection set. From the perspective of cloud users, we

observe that the VDSI scheme outperforms the straightforward solution in both communication

and computational complexities. Assume that the data sets have been stored in the cloud, the VDSI

scheme only incurs O(k) computational complexity to obtain the intersection set (including the

cost for verification) and O(k) communication complexity for returning the intersection set to the

user, where k is the size of intersection set. This means that the VDSI scheme is optimal (up to a

constant factor). In contrast, the straightforward solution incurs O(m + n) in computational and

communication overhead where m and n are the sizes of the two data sets. The advantage of VDSI

scheme is most substantial when k << m or k << n.

1024 32768
0

500

1000

1500

2000

2500

Set Size

Ti
m

e
(s

ec
on

d)

Enc
Dec

(a) Performance of Enc and Dec

1024 32768
0

2000

4000

6000

8000

10000

Set Size

Ti
m

e
(s

ec
on

d)

SetOp
Verify
AuGen

(b) Performance of AuGen, SetOp and Verify

Figure 3.2: Performance of VDSI, where Alice and Bob outsource their data sets of the same size

(i.e.,m = n), algorithms Enc, Dec, AuGen and Verify run on the CLIENT MACHINE, and algorithm

SetOp runs on the SERVER MACHINE.

69

3.6.2 Performance Evaluation

Implementation We implemented the VDSI scheme in JAVA based on the Java Pairing Based

Cryptography library (jPBC) [3]. In our implementation, we instantiated the bilinear map with

Type A pairing (� = 512), which offers a level of security that is comparable to 1024-bit DLOG

[3]. We instantiated the signature scheme with the DSA signature scheme provided by JDK1.6.

We varied the set size (m and n) from 210 to 215. The algorithms run by the cloud users (i.e.,

Enc,Dec,AuGen and Verify) were executed on a CLIENT MACHINE with Linux OS, 2.93GHz

Intel Core Duo CPU (E7500), and 2GB RAM. The algorithm run by the cloud (i.e., SetOp) was

executed on a SERVER MACHINE with Linux OS, 4 processors of 2.40GHz Intel Xeon CPU, and

8GB RAM.

Evaluation and result In our experiments we set the same size for data sets owned by the two

cloud users, i.e.,m = n, and set the size of intersection set k = n/2. For algorithms Enc,Dec,AuGen

and Verify, we evaluated each algorithm’s execution time for both cloud users and treat their aver-

age execution time as the real execution time. Figure 3.2a plots the execution time of Enc and Dec

that are run by the cloud users. We observe that the execution times for both algorithms are almost

linear to the size of data sets. We also can see that the execution of Enc is more expensive than

that of Dec. However, Enc is executed only once when the cloud user outsources data sets. Figure

3.2b shows the execution time of SetOp (run by the cloud) and the execution time of AuGen and

Verify (run by the cloud users). We observe that the execution time of AuGen and Verify is much

more smaller than that of the algorithm SetOp. This suggests that cloud users should leverage the

cloud’s computation resources by delegating set intersection operations.

Performance Comparison In order to understand the benefit and limitation of the VDSI solution,

we compare it with the straightforward solution, where data sets are encrypted by the algorithm

Enc and Dec of the VDSI, and the private set operations between two data users are performed by

the protocol (Java version) in [47], which is the most efficient PSI protocol in the literature.

We ran the experiments on the same SERVER MACHINE with Linux OS, 4 processors of

70

2.40GHz Intel Xeon CPU, and 8GB RAM, with the data sets each consisting of 32768 elements.

We vary the size of the intersection set as 25%, 50% and 75% of the size of the data set respectively,

and compare the communication and computation overhead in the set operation phase (we did not

compare the cost of the data outsourcing phase because they are the same for both solutions),

which is shown in Figure 3.3. From Figure 3.3a we observe that the computation overhead in the

VDSI solution decreases when the size of the intersection set decreases. However, the computation

overhead in the straightforward solution remains the same regardless the size of the intersection

set. We also can see in Figure 3.3b that the communication overhead for the data users in the VDSI

solution is linear to the size of intersection set, and is much less than that of the straightforward

solution. This advantage can become more substantial when the size of the intersection size is far

less than the size of data set owned by the data users. We note that while the straightforward so-

lution can use other efficient encryption schemes (e.g., symmetric encryption) to encrypt/decrypt

data sets to achieve higher efficiency, it cannot reduce the communication cost that is linear to the

size of data set. Therefore, our VDSI solution is extremely suitable for computing intersection set

whose size is far less than that of the data sets.

25% 50% 75%
0

2000

4000

6000

8000

10000

The size of intersection set / the size of data set

Ti
m

e
(s

ec
on

d)

VDSI−Cloud
VDSI−User
User

(a) Computation overhead.

25% 50% 75%
0

20

40

60

80

100

The size of intersection set / the size of data set

C
om

m
un

ic
at

io
n

ov
er

he
ad

 (M
B

)

VDSI−User
User

(b) Communication overhead.

Figure 3.3: Performance comparison between our VDSI solution and the straightforward solution,

where each data user outsourced the data set of 32768 elements. We vary the size of the intersection

set with 25%, 50% and 75% of the size of the data set respectively. VDSI-User and VDSI-Cloud

denote the costs spent by the cloud and each data user in the VDSI solution and User represents the

cost spent by each data user in the straightforward solution.

71

3.6.3 Improvement with Parallelization

In our proposed scheme, the execution of Enc,Dec, SetOp and Verify can be implemented more

efficiently with parallelization, because operations related to elements of data sets are independent.

In practice, we implemented the algorithms by using multiple threads to compute independent

operations (e.g. encrypting elements of the data sets, decrypting ciphertexts, and transforming

ciphertexts into a value of GT). In the parallelization version, we created 4 threads and ran the

algorithms Enc,Dec, SetOp and Verify on the SERVER MACHINE with Linux OS, 4 processors of

2.40GHz Intel Xeon CPU, and 8GB RAM. To understand the efficiency gain of parallelization, we

also ran the algorithms without parallelization on the same SERVER MACHINE. Figure 3.4 shows

the performance comparison, which indicates that the algorithms using parallelization are about 2

times faster than their counterparts that do not use parallelization. This means that our scheme can

leverage the multi-core architecture, and that our scheme is suitable for delegating set intersection

over outsourced large data sets.

1024 32768
0

2000

4000

6000

8000

10000

Set Size

Ti
m

e
(s

ec
on

d)

Enc
Dec
SetOp
Verify
P−Enc
P−Dec
P−SetOp
P−Verify

Figure 3.4: Performance comparison for algorithms Enc, Dec, AuGen and Verify executed on

SERVER MACHINE. The algorithms with prefix “P-” were implemented with parallelization, and

the algorithms without prefix were implemented without parallelization.

3.7 Chapter Summary

We have introduced the novel notion of VDSI, which allows two users to outsource to the cloud

their encrypted data sets as well as the set intersection operation on ciphertexts. This is achieved

72

without giving the cloud the capability to decrypt the encrypted data, while enabling the users to

hold the misbehaving cloud accountable.

Our study brings interesting and challenging open problems for future research. In addition to

the ones mentioned in the chapter (e.g., incorporating fine-grained access control, if possible), we

need to design the same kinds of solutions for other set operations.

73

Chapter 4: VERIFIABLE SQL QUERIES ON OUTSOURCED DYNAMIC

DATABASES

4.1 Introduction

Outsourcing databases to the cloud has been a popular trend in cloud computing because cloud

users, which can be either home users or enterprise users, can access and process the outsourced

databases from anywhere and at any time, and enjoy the benefits such as cost saving, on-demand

self-service, resource elasticity, etc. In spite of those appearling advantages, outsourcing databases

to the cloud also raises security concerns (even for non-confidential databases) , which hinders the

potential cloud users from outsourcing their databases to the cloud.

One of the security concerns is that cloud users who query the outsourced databases may

wonder whether or not the queries had been executed faithfully by the cloud servers. This is

because large-scale cloud infrastructures exposes vast vulnerability surfaces, ranging from hard-

ware/software failures, operation errors and even malicious attacks, and the cloud infrastructure

providers have the incentive not to honestly execute the protocols (e.g., for saving resources or

better service response time). This naturally leads to the question that how can database queriers

assure that the cloud server honestly executed the SQL queries? Another security concerns is

related to data privacy for outsourced confidential databases, which can be accessed by either in-

siders (e.g., database administrators) or potential outside attackers. The importance of assuring the

privacy of outsourced private data has led to legislations, such as EU Data Protection Directive [1]

and U.S. HIPAA [2]. Therefore, This naturally leads to the advanced question: How can assure

that the cloud faithfully executed the SQL queries on outsourced databases?

4.1.1 Our Contribution

We present a novel solution for verifiable SQL queries on outsourced dynamic databases (VQDDB).

In particular, by comparing with the current state-of-the-art solutions that supports selection / pro-

74

jection / join queries simultaneously (other works only support a single type of queries and are thus

limited in scope and applicability), our solution can be characterized from three perspectives:

• From the perspective of functionality, our solution supports four kinds of queries — selec-

tion, projection, join, and aggregate. As we will discuss in detail, the two state-of-the-art

solutions [83, 99] support selection, projection and join queries but do not support aggre-

gate queries (see Table 4.2). Moreover, our solution supports more flexible join queries, in

the sense that they do not have to be defined with respect to pre-defined keyword attributes

(more on this later).

• From the perspective of security, our solution is provably secure as long as the two underly-

ing building-blocks are secure with respect to standard security definitions. This is thanks to

our “compiler”-like modular construction. The idea is to start from relatively simple build-

ing blocks and compile them into a full-fledged scheme. As long as the building blocks are

secure, the complete scheme is also secure under the same assumptions. Clearly, building

blocks can be later substituted with improved versions without affecting the security of the

final scheme.

• From the perspective of efficiency, our solution is characterized as follows. The efficiency

of our mechanism mainly comes from a new cryptographic primitive, dubbed Homomorphic

Linear Tag (HLT), which is weaker than the Homomorphic Linear Authenticator introduced

in [7] and may be of independent value. Let m be the number of attributes and n be the

number of tuples.

1. Our solution incurs O(n) storage complexity at the cloud side, in contrast to O(mn)

of [83, 99].

2. For projection query, our solution incurs O(n) modular exponentiations at the querier

side. This is not as efficient as O(n) hash operations of [83], but is in sharp contrast to

O(nk) exponentiation operations on bilinear map of [99] where k ≤ m is the number

75

of attributes in the projection operation. Our solution incurs O(n+m) communication

complexity, which is in sharp contrast to O((m − k)n) attribute values of [83] where

k ≤ m is the number of attributes in the projection operation, and is the same as in [99].

3. For selection query, our solution incursO(n) exponentiations at the querier side, which

is not as efficient as O(n) hash operations of [83], but is more efficient than O(n)

exponentiation operations on bilinear map of [99]. Our solution incurs communication

of O(n) tags, which is less efficient than O(log n) values of [83], and comparable to

O(n) of [99].

4. For join query with respect to two tables of n tuples and m attributes, our solution

incurs O(n) modular exponentiations at the querier side, which is not as efficient as

O(n log n) hash operations of [83], but more efficient than O(n) exponentiation oper-

ations on bilinear map of [99]. Our solution incurs the communication complexity of

O(n+m) tags, which is much more efficient thanO(n(log n)) hash values of [83], and

comparable to O(n) of [99].

4.1.2 Related Work

The problem of achieving verifiable SQL query in the context of outsourced databases has at-

tracted a fair amount of attention. There are two main approaches to this problem. The tree-based

approach mainly used Merkle hash tree [87] or its variants to index search keys [46, 64, 83, 89, 90,

94, 97, 125]. Roughly speaking, this approach leads to logarithmic complexity in terms of both

communication and verification. To enable efficient verification, Goodrich et al [64] used Merkle

hash tree to maintain signatures at multiple hash tree levels. The state-of-art solution regarding

tree-based approach is due to Li et al [83], which proposed Merkle B-tree and Embedded Merkle

B-tree in order to reduce the I/O operations.

The signature-based approach mainly used the signature aggregation technique [23, 91] to ag-

gregate the validity evidence of query answers [91, 92, 98, 99]. Roughly speaking, this approach

can lead to low (even constant) communication complexity, but may require special treatment to

76

handle more powerful (e.g., projection) queries and often leads to large storage and computational

complexities. The state of the art solution is due to [99], which will be compared with our solution

in Section 4.6. Essentially, [99] used aggregate signatures to dramatically reduce the proof size.

It signed each attributes so that only a single signature will be returned as the proof for projection

query. On the other hand, it applied a chaining signing technique to build the index for the search

key to facilitate range queries. To deal with dynamic updates, a certified bitmap must be published

at every update period which complicates the verification of a query result. In summary, [99]

incurs a large storage and communication overhead, but it also involves complex and expensive

operations, such as exponentiations and pairing operations.

In addition to the above, there are works on authenticating the answers to aggregate queries

using authenticated prefix-sums trees [84], authenticating the answers to join queries [124], and on

authenticating count query with respect to multi-dimensional data in a privacy-preserving fashion

[122]. These solutions do not apply to our specific class of problems and do not provide the

solution we are after. For example, the scheme presented in [122] does not support selection nor

projection queries. Finally, probabilistic integrity assurance was also investigated in [121].

Another related topic is outsourced verifiable computation [6, 39, 53], attaining operation-

sensitive verification on general functionalities. However, they are inadequate to meet other func-

tionalities, e.g., public verifiability and dynamic updates. Certification of data structure was studied

in [115], where solutions are introduced for general query types.

4.2 Problem Formulation

4.2.1 System Model

We consider the system model of Verifiable SQL Queries on Outsourced Dynamic Databases

(VQDDB) illustrated in Figure 4.1, which consists of three participants: a cloud server, which

provides storage services and can perform SQL queries on outsourced databases on behalf of data

owners, a data owner, who outsources its plaintext database to the cloud and updates the databases

77

as necessary, and a data querier (e.g. business partners of the data owner), who issues SQL queries

towards the outsourced databases and receives query answers from the cloud. More specifically,

the data owner owns a relational database D, which consists of multiple tables having multiple

tuples and multiple attributes. After the database D was outsourced to the cloud, the data owner

can update D by interacting with the cloud and should be able to verify that the cloud honestly

executed the updates. The data querier can issue any SQL query qry to the cloud, receive query

answers from the cloud, and verify that the query qry is faithfully executed with respect to the

database D.

����
����� ����
����

����

����0��	�

Figure 4.1: System model of verifiable SQL queries on outsourced dynamic database, where the

data owner outsources the databases to the cloud and can update them as necessary, and the data

queirer can query the databases stored in the cloud and retrieve query answers from the cloud.

We assume that the data owner and data user are trusted. The cloud server is not trusted since it

may manipulate the SQL queries on stored databases, which implicitly implies that the cloud may

manipulate the outsourced databases as well the answer of SQL queries.

4.2.2 Functional and Security Definitions

We present the functional and security definitions of verifiable SQL queries on outsourced dy-

namic database (VQDDB), which was somewhat inspired by the definitions of Authenticated Data

Structures that allow verifiable queries on dynamic sets [103, 105].

Definition 12. (VQDDB) A scheme for verifiable SQL queries on outsourced dynamic database

consists of the following algorithms:

78

• KeyGen: This algorithm is run by the data owner to generate a pair of private and public keys

(sk, pk) by taking as input the primary security parameter �. It can be denoted as

(sk, pk)← KeyGen(1�).

• SetUp: This algorithm is executed by a data owner O before outsourcing its database D to

the cloud server. By taking as input the private key sk and the database D, this algorithm

outputs some cryptographic auxiliary information au and state information state. Both D

and au will be outsourced to the cloud server and state will be made public (so as to allow

third parties to verify the query answers). It can be denoted as

(state, au, D)← SetUp(sk, D)

• Update: This protocol is executed between a data ownerO and the cloud server S to perform

update operations, the detail of which is described by upd. By taking as input the private

key sk and the current state information state, the data owner interacts with the cloud server,

which takes as input the stored database D and the cryptographic auxiliary information au.

The data owner O updates its state information to state′ with respect to the update informa-

tion upd, and the server obtains au′ and D′ by updating the stored database accordingly. It

can be denoted as

(au′, state′, D′)← (O(sk, state, upd)↔ S(au, D))

• QueryandVrfy: This protocol is executed between a data querier Q, who issues a SQL query

qry, and the server S, which answers the query with the result rslt and a proof prf. The data

querier verifies the result rslt with corresponding prf, and outputs reject if rslt is not valid

with respect to the query qry and the state state; otherwise, the data user accepts rslt and prf.

79

It can be denoted as

{(reject), (accept, rslt, prf)} ← (Q(pk, qry, state)↔ S(au, D))

Correctness of the VQDDB scheme requires that, for any honest cloud server, given (sk, pk)←

KeyGen(1�), (state, au, D) ← SetUp(sk, D) and (aui, statei, Di) ← (O(sk, statei−1, updi−1) ↔

S(aui−1, Di−1)), 1 ≤ i ≤ n where n is a polynomial number, the following always holds that for

any query qry

(accept, rslt, prf)← (Q(pk, qry, staten)↔ S(aun, Dn))

Intuitively, a VQDDB scheme should satisfy the security requirement – soundness – even in the

presence of a probabilistic polynomial time adversary (i.e. the cloud server). The intuition of the

soundness is to assure that the cloud cannot return incorrect query answer without being detected

by the data querier since the cloud server is untrusted. Specifically, we say a VQDDB scheme is

sound if for any query qry on database D, the cloud server can not return an incorrect rslt such that

(accept, rslt, prf)← (Q(pk, qry, staten)↔ S(aun, Dn)).

Formally, we define the security game between the adversary A and the challenger as follows:

Setup: The challenger runs (sk, pk)← KeyGen(1�) and gives pk to the adversary A.

Phase 1: A interacts with the challenger as follows:

• A makes oracle access to SetUp, by presenting a database D0. The challenger computes

(state0, au0, D0)← SetUp(sk, D0),

and gives state0, au0 to A. The challenger makes state0 public.

• A is allowed to ask for updating D0 adaptively with updi, n ≤ i ≥ 1. The challenger

80

interacts with A to compute

(aui, statei, Di)← (O(sk, statei−1, updi−1, aui−1, Di−1)↔ S(aui−1, Di−1)).

Challenge: A outputs a query qry and a query result rslt with proof prf. We say A wins the game

if

(accept, rslt, prf)} ← (Q(pk, qry, staten)↔ S(aun, Dn))

for some k ≥ 0 and rslt �= localRst, where localRst ← LocalQuery(qry, Dn) is produced by the

challenger that faithfully executes query qry on database Dn

Definition 13. Let Λ = (KeyGen, SetUp,Update,QueryandVrfy) be a VQDDB scheme andA be a

probabilistic polynomial-time adversary. We say that Λ is sound if any polynomial-time algorithm

A can win the security game with at most a negligible probability.

4.3 Building-Block I: Authenticated Data Structure on Outsourced Ordered

Data (AuthDS)

In this section, we introduce a building block that is to assure verifiable range query on an ordered

data set, which is outsourced to the server. This building-block is called Authenticated Data Struc-

ture on Outsourced Ordered Data (AuthDS), the definition and security requirement of which are

similar to those of VQDDB.

4.3.1 Definition of AuthDS

Definition 14. (AuthDS) The scheme of authenticated data structure on outsourced ordered data

is operated in the following model: The data owner owns an ordered data set E and preprocesses

it before outsourcing it to the cloud server. The data querier can query the cloud server to retrieve

data that falls within the range [a, b] and be able to verify that the returned is correct with respect to

the outsourced ordered data set and the range query. More specifically, an AuthDS scheme consists

81

of the following algorithms, which are similar to those in Definition 12:

• KeyGen: This key generation algorithm generates the public/private key as KeyGen in Defi-

nition 12.

• SetUp: This setup algorithm is the same as SetUp in Definition 12, except that the database

is replaced with an ordered set E.

• Update: This update protocol proceeds is the same as Update in Definition 12, except that

the update operations are element insertion/deletion/update on the ordered data set E.

• QueryandVrfy: This query protocol is the same as QueryandVrfy in Definition 12, except that

it only supports range query qry(a, b) that asks for all elements in the interval [a, b].

The correctness of AuthDS can be defined similar to that of VQDDB scheme.

Definition 15. (soundness of AuthDS) Given an AuthDS scheme, Λ = (KeyGen, SetUp, Update,

QueryandVrfy), we consider the security game as in Definition 13, except that (i) the initial database

is replaced with an ordered set E, (ii) the update operation is element insertion, deletion or update

on the ordered data set, and (iii) the queries are only range queries qry(a, b) that ask for elements

in the interval [a, b]. We say that Λ is sound if any polynomial-time algorithm A can win the game

with at most a negligible probability.

4.3.2 Construction and Analysis of AuthDS: Merkle B-Tree

Now we describe an AuthDS scheme, which is a Merkle B-tree (MB-tree) and has been extensively

studied in [83, 90]. Merkle B-tree applies the basic idea of Merkle tree on a B+ tree structure,

where the operations on Merkle B-tree (e.g., insertion and deletion) are similar to those on B+

tree. The primary advantage of B+ tree is that it has a large fan-out, which can reduce the number

of I/O operations when searching for an element [83]. Let Sig = (KeyGen, Sign,Verify) be a secure

signature scheme. Let E be an ordered set. The Merkle B-tree scheme consists of algorithms as

follows:

82

• (sk, pk) ← KeyGen(1�): This algorithm runs Sig.KeyGen(1�) to obtain a pair of private and

public keys (sk, pk).

• (state, au) ← SetUp(sk, E): This algorithm outputs a succinct signature which can be used

for verification. The structure of Merkle B-tree T is similar to B+ tree, where the leaves

store elements in the ordered set E, and the values of internal nodes are computed from the

concatenation of the values of their children via an appropriate hash function. The root of

the tree will be signed to produce the state information, denoted by state = Sig.Sign(T) and

au = T .

• Update: The update protocol fulfills update operations. For simplicity, we consider the

example of the replacement operation while assuming that the replacement preserves the

order of the elements. We refer to [83] for details about the insertion and deletion operations.

Suppose upd = “update the element Ei to E ′
i”. Upon receiving upd from the data owner, the

server updates E to E ′ by replacing Ei with E ′
i, and updates T to T ′. The server provides

a proof, a path of Ei in T , namely a sequence including values of the nodes from Ei to the

root of MB-tree as well as the values of these nodes’ siblings. The data owner can hash the

path ofEi from the bottom to the top and verify whether the root is valid with respect to state

state or not. If so, the data owner updates the path from the bottom to the top by replacingEi

with E ′
i, which will result in a new root, signs the new root, and sets state′ = Sig.Sign(T ′);

otherwise, the data owner aborts.

• QueryandVrfy: Given a range query qry(a, b), the server outputs a proof prf showing that rslt

contains all elements in [a, b].

– If rslt is empty, which means there exists some s, such that Es <= a, b <= Es+1. The

server returns the proof prf including two paths: a path of Es and a path of Es+1. The

querier hashes each path from bottom to the top, and verify whether the roots match

the state state, and Es is neighbor to Es+1. If so, the querier returns the null set rslt,

prf, and accept. Otherwise, abort.

83

– If rslt is not null, suppose the query result is (Es, . . . , Et), s ≤ t. The server returns

the proof prf including two paths: one path of the left-most neighbor leaf of Es, and

the other path of the right-most leaf of Et. Then the querier uses prf and the result rslt

to construct a B+ tree, and verifies whether the root of the this B+ tree is valid for

state = Sig.Sign(T). If so, the querier returns (rslt, prf, accept); otherwise, the querier

aborts.

Theorem 13. Assuming that Sig is a secure signature scheme and the hash function is collision

resistant, the Merkle B-tree scheme is sound with respect to Definition 15.

4.4 Building Block II: Homomorphic Linear Tag (HLT)

Now we present the second building block, called Homomorphic Linear Tag (HLT) scheme. Intu-

itively, HLT offers the following property: Given messages M1, . . . ,Mn and their respective tags

σ1, . . . , σn generated by HLT, then for coefficients c1, . . . , cn in a pre-defined coefficient space, the

aggregate message M =
∑n

i=1 ciMi can be verified via the aggregate tag σ of σ1, . . . , σn and the

coefficients c1, . . . , cn. HLT can be divided into two types according to the necessary requirement

for verifiability:

• Publicly verifiable HLT: It allows anyone (without knowing any secret) to conduct the ver-

ification of aggregated messages and corresponding tags. In order to allow any third party

to verify the integrity of query answers, this type of HLT is needed for the purpose of the

present chapter.

• Privately verifiable HLT: It allows someone who knows the relevant secret to conduct the

verification. Putting this into the context of the present chapter, this type of HLT can be

used to allow the data owner (but not third parties) to verify the integrity of query answers.

Therefore, this type of HLT will not be discussed further in the chapter.

The concept of HLT was inspired by the notion of Homomorphic Linear Authenticator (HLA),

which was formally introduced in [9]. The difference between them is that HLT is weaker than

84

HLA because HLT only considers attacks that do not attempt to tamper the individual tags (which

is dealt with by another layer of protection for free, namely by the first building-block); whereas,

HLA explicitly accommodates attacks that aim to tamper the individual tags. This makes it possible

to construct HLT schemes that are more efficient that their HLA counterparts. It is worthwhile to

point out the following feature of HLT and HLA: the aggregated messageM and the aggregated tag

σ are sufficient to allow the verifier to test their validity without knowing the individual messages

M1, . . . ,Mn. This is not the case for aggregate signatures [23], batch RSA [49], and condensed

RSA [91], which are not sufficient for the purpose of HLT or HLA.

4.4.1 Definitions of HLT

Definition 16. (publicly verifiable HLT) A publicly verifiable HLT scheme consists of the follow-

ing algorithms:

• (pk, sk) ← KeyGen(1�): This algorithm takes as input a security parameter �, and outputs a

pair of public and private keys (pk, sk). It may optionally specify a coefficient domain C and

a message spaceM.

• σi ← TagGen(sk,Mi): This algorithm takes as input the private key sk and a message

Mi ∈M, and outputs a tag σi for Mi.

• σ ← HLTAgg(�c, �Tag): This linear aggregation algorithm takes as input a vector of tags

�Tag = (σ1, . . . , σn) with respect to a vector of messages �M = (M1, . . . ,Mn) and a vector

of coefficients �c = (c1, . . . , cn). It outputs an aggregate tag σ with respect to the aggregated

message M =
∑n

i=1 ciMi.

• {0, 1} ← Vrfy(pk,M ′, σ′): This deterministic algorithm takes as input the public key pk, a

candidate message M ′, and a tag σ′. It outputs 1 if σ′ is valid with respect to M ′, and outputs

0 otherwise.

85

We require a HLT scheme to be correct, meaning that any faithfully aggregated message M

and tag σ are always accepted as valid. Formally, this means that for (pk, sk) ← KeyGen(1�),

�M = (M1, . . . ,Mn) ∈ Mn, �Tag = (σ1, . . . , σn) where σi ← TagGen(sk,Mi) for 1 ≤ i ≤ n, and

�c = (c1, . . . , cn) ∈ Cn, then σ ← HLTAgg(�c, �Tag) implies 1← Vrfy(pk,
∑n

i=1 ciMi, σ).

Informally, the security of HLT requires that for any tag σ, there is no probabilistic polynomial

time adversary that can present M ′ such that 1 ← Vrfy(pk,M ′, σ) in the follwing cases: (i) M ′ �=

M if σ is the tag of message M ; or (ii) M ′ �= ∑
ciMi if σ is the aggregated tag with respect to

messages M1, . . . ,Mn with coefficients c1, . . . , cn. Formally, we define the secuity game between

the adversary A and the challenger as follows:

Setup: The challenger runs (pk, sk) ← KeyGen(1�) and gives pk to A. The optional coefficient

domain C and the message spaceM are specified by KeyGen.

Phase 1: A can make the oracle query to TagGen and HLTAgg as follows:

• A may make oracle queries to TagGen by adaptively selecting M1, . . . ,Mn from the mes-

sage space M to obtain the HLT tag for 1 ≤ i ≤ n. The challenger computes σi ←

TagGen(sk,Mi) for 1 ≤ i ≤ n and returns σi to A. The challenger keeps the lists of mes-

sages and tags: (M1, . . . ,Mn) and (σ1, . . . , σn).

• Amay make oracle queries to HLTAgg by selecting a vector of coefficients �c = (c1, . . . , cn),

obtain the aggregate tag σ, and run Vrfy with the aggregate tag σ and the aggregated message

∑n
i=1 ciMi. This can be performed polynomially many times.

Challenge: Eventually, A selects a vector of coefficients �c = (c1, . . . , cn), where ci ∈ C, and

some M ′ ∈ M. We say A wins the game if M ′ �= ∑n
i=1 ciMi and 1 ← Vrfy(pk,M ′, σ), where

σ ← HLTAgg(�c, �Tag) was computed by the challenger, where �Tag = (σ1, . . . , σn) corresponds to

the message vector (M1, . . . ,Mn) that can be identified by the coefficient vector �c = (c1, . . . , cn)

provided by the adversary A.

86

Definition 17. Let Λ = (KeyGen,TagGen,HLTAgg,Vrfy) be a HLT scheme andA be a probabilis-

tic polynomial-time adversary. We say Λ is secure if no probabilistic polynomial-time algorithm

A can win the game with a non-negligible probability in the security parameter �.

From the security game, we observe that the adversary A is only allowed to manipulate the

messages M1, . . . ,Mn but not the tags. This further explains why HLT is weaker than the afore-

mentioned HLA (Homomorphic Linear Authenticator) [7, 9, 109], where the adversary is allowed

to manipulate both messages and tags. This can be captured by the following Lemma:

Lemma 1. Any secure HLA scheme as defined in [9] is also a secure HLT scheme as defined above.

4.4.2 Construction and Analysis of HLT

We present a HLT scheme whose security is based on the Discrete Logarithm (DLOG) problem.

The scheme consists of the following algorithms.

• (sk, pk)← KeyGen(1�): This algorithm generates private and public keys as follows:

1. Let q be a �-bit prime and p be another large prime such that q|(p− 1).

2. Select v1 and v2 uniformly at random from Z∗
p such that the order of v1 and v2 is q.

3. Select sj1, sj2 uniformly at random from Z∗
q and set zj = v

−sj1
1 v

−sj2
2 mod p, for 1 ≤

j ≤ m.

4. Let sk = {(s11, s12), . . . , (sm1, sm2)} and pk = {v1, v2, z1, . . . , zm}.

5. The coefficient domain C is [0, q) and the message space isM = [0, q)m.

• σi ← TagGen(sk,Mi): For Mi ∈M, the tag σi is computed by selecting r1, r2 uniformly at

87

random from Z∗
q and setting:

x = vr11 v
r2
2 mod p,

y1 = r1 +
m∑
j=1

Mi[j]sj1 mod q,

y2 = r2 +
m∑
j=1

Mi[j]sj2 mod q.

Let σi = (x, y1, y2).

• σ ← HLTAgg(�c, �Tag): Given tags �Tag = (σ1, . . . , σn) with σi = (xi, yi1, yi2), and �c =

(c1, . . . , cn), the aggregate tag σ = (x, y1, y2) is computed as:

x =
n∏

i=1

xcii mod p,

y1 =
n∑

i=1

ciyi1 mod q,

y2 =
n∑

i=1

ciyi2 mod q.

• {0, 1} ← Vrfy(pk,M, σ): To verify that M is valid with respect to tag σ, check whether:

x
?
= vy11 v

y2
2

m∏
j=1

z
M [j]
j mod p.

If it holds, return 1; otherwise, return 0.

88

Given M =
∑n

i=1 ciMi and the aggregated tag σ, the correctness of HLT can be verified as

follows:

vy11 v
y2
2

m∏
j=1

z
M [j]
j = v

∑n
i=1 ciyi1

1 v
∑n

i=1 ciyi1
2

m∏
j=1

z
∑n

i=1 ciMi[j]
j

=
n∏
i=i

vciyi11

n∏
i=i

vciyi22

m∏
j=1

z
∑n

i=1 ciMi[j]
j

=
n∏
i=i

(vciyi11 vciyi22

m∏
j=1

z
ciMi[j]
j)

=
n∏
i=i

xcii = x

Theorem 14. Assuming DLOG problem is hard, the HLT scheme is secure according to Definition

17.

Proof. LetM1, . . . ,Mn be the messages adaptively selected byA and σ1 = (x1, y11, y12), . . . , σn =

(xn, yn1, yn2) be the corresponding tags generated by the challenger. Assume the adversary wins

the security game with a non-negligible probability. That is, it outputs a vector of coefficients �c =

{c1, . . . , cn} and a message M ′ ∈ M, such that M ′ �= M =
∑n

i=1 ciMi but 1 ← Vrfy(pk,M ′, σ),

where σ ← HLTAgg(�c, �Tag), and �Tag = (σ1, . . . , σn). We show that if A wins the security game

with a non-negligible probability, then we can solve the DLOG problem: given v1, v2 randomly

selected from Z∗
p , find logv2(v1).

Suppose σ = (x, y1, y2). Since 1← Vrfy(pk,M ′, σ), we have

x = vy11 v
y2
2

m∏
j=1

z
M ′[j]
j .

On the other hand, as σ ← HLTAgg(�c, �Tag), we have

x = vy11 v
y2
2

m∏
j=1

z
M [j]
j ,

89

where M =
∑n

i=1 ciMi. Therefore, we have

m∏
j=1

z
M ′[j]
j =

m∏
j=1

z
M [j]
j ,

namely

m∏
j=1

z
M ′[j]−M [j]
j = 1.

As M ′ �=M , let ΔM [j] =M ′[j]−M [j] for 1 ≤ j ≤ m. Since zj = v
−sj1
1 v

−sj2
2 , we have

v
∑m

j=1 −sj1ΔM [j]

1 v
∑m

j=1 −sj2ΔM [j]

2 = 1.

We claim that
∑m

j=1−sj1ΔM [j] mod q = 0 with negligible probability because sj1 for 1 ≤

j ≤ n are kept secret. Then we have

v1 = v

∑m
j=1 sj2ΔM [j]

∑m
j=1

−sj1ΔM [j]

2 .

HLT Performance As stated in Lemma 1, any secure HLA scheme is also a secure HLT scheme.

Now we show that HLT constructions can be significantly more efficient than HLA schemes.

Specifically, we compare our HLT with two HLA schemes presented in [7, 109]. We use com-

parable parameters that offer the same level of security. Specifically, the parameter q is 140-bit and

p is 512-bit in our HLT scheme, p is 160-bit in [109] and N is 1024-bit in [7]. We consider n mes-

sages, namely Mi = (Mi[1], . . . ,Mi[m]) for 1 ≤ i ≤ n, and compare the costs of the respective

operations.

As shown in Table 4.1, the HLA scheme presented in [109] has the shortest tag but incurs the

most expensive computation. Recall that exponentiations and multiplications in pairing groups are

much less efficient than those in integer groups (e.g., the cost of one pairing is about that of 6-20

90

Table 4.1: Performance comparison between the HLT and HLA, where Ex denotes exponentiation

and Mu denotes multiplication.
HLT HLA [109] HLA [7]

assumption DLOG CDH Factoring

pairing-based? No Yes No

tag size 790 bits 160 bits 1024 bits

tagGen 2n Ex+ mnMu mnEx+ mnMu mnEx+ mnMu
verify (single) mEx 2Pairing + mEx mEx
verify (aggregate) mEx+ mn Mu 2Pairing + (m+ n)Ex+ mn Mu (m+ n)Ex+mn Mu
tagAggregate nEx+ 2n Mu nEx+ n Mu nEx+ n Mu

exponentiations [15]).

4.5 Verfiable SQL Queries on Outsourced Dynamic Databases

In this section, we begin with a discussion on the high level idea. Then, we present the main

construction and analyze its security. Efficiency evaluation and comparison to the state-of-the-art

solutions is deferred to Section 4.6.

4.5.1 High Level Idea

The state-of-the-art solutions to the verifiable query problems fall into two approaches. The first

approach is tree-based [83]. This approach incurs the least computational complexity because of

the hash operations, but O(n log n) communication overhead. The second approach is signature-

based [99]. This approach incurs high computational complexity of O(kn) exponentiation oper-

ations on bilinear map, and communication complexity of O(n) bitmaps (a small constant bits).

Both approaches incur O(mn) extra storage complexity in the cloud.

Our solution is based on a third approach. It substantially reduces the extra complexity in

the cloud side from O(mn) to O(n). It achieves a balanced trade-off between computational and

communication communications. Specifically, it is less efficient than the tree-based solution in

terms of computational complexity but substantially more efficient than the tree-based solution in

terms of communication complexity. It is also substantially more efficient than the signature-based

solution in terms of computational complexity but less efficient than the signature-based solution

in terms of communication complexity. Perhaps more importantly, our solution can accommodate

91

aggregate queries, while they do not [83, 99].

67������

����	
/	�	
��	����	
67������ 	
��
 �	

/	�	
��	�
�
��	������	�
�������

��

	
�4	
�67������
������
	��
�	
	��0��8&

�
 �	� �����0�	�9��
�	
	��0��8& 8
��	������	���������

��

	��4	

�
���

�	���
�	
	������
&

�

Figure 4.2: High-level idea of our solution that are composed by the two building blocks AuthDS
and HLT: Given the table R with tuples ordered by A1, it generates a HLT tag σ for each tuple, and

then constructs the AuthDS over the tuples of (r.A1, σ) that are ordered by r.A1.

The high-level idea of our solution is straight-forward as shown in Figure 4.2: The HLT scheme

generates a tag for each tuple in the table, so that we can use the AuthDS scheme to build the

authenticated data structured ove tags, which are ordered by the search key A1. Intuitively, the

AuthDS scheme provides two functionalities: one is to verify the correntness of the range query

and the other is to guarantee the tag integrity, addressing the problem of preventing HLT tags

from being manipulated. By that, the HLT scheme can efficiently verify the integrity of the tuples

by aggregating these tuples and tags. The promising performance benefit comes from the HLT

scheme, due to the fact that only one aggregate tuple is needed to verify the integrity of (parts

of) tuples, which is critical for the projection query as its query result only contains a portion of

attributes from all tuples.

4.5.2 Proposed Construction

Let R be a table of n tuples with schema (A1, . . . , Am). Assume A1 is the search key and

r1, . . . , rn are tuples ordered by A1. Let L and U be the lower and upper bound of the search key

A1. Let ΛRS be an AuthDS scheme and ΛHLT be an HLT scheme, s.t. ΛRS = (KeyGen, SetUp,

QueryandVrfy, Update) and ΛHLT = (KeyGen, Tag, Vrfy, HLTAgg). The VQDDB can be con-

92

structed as follows:

• KeyGen: Given the primary security parameter �, the data owner obtains two secondary

security parameters �1 and �2, and generates the private/public keys (sk, pk),

1. Compute (ΛRS.sk,ΛRS.pk)← ΛRS.KeyGen(1
�1)

2. Compute (ΛHLT.sk,ΛHLT.pk)← ΛHLT.KeyGen(1
�2)

3. Let sk = {ΛRS.sk,ΛHLT.sk} and pk = {ΛRS.pk,ΛHLT.pk}

4. ΛHLT.KeyGen specifies the coefficient domain C and the message spaceM, s.t. (ri.A1,

. . ., ri.Am) ∈M for ri ∈ R, 1 ≤ i ≤ n.

• SetUp: The data owner takes as inputs the private key sk and the table R, and obtains state

and au as follows:

1. Let r0 and rn+1 be two tuples added at both ends of table R in order to facilitate range

query, where r0.A1 = L and rn+1.A1 = U .

2. Compute σi ← ΛHLT.TagGen(ΛHLT.sk, ri), for tuple ri, 0 ≤ i ≤ n+ 1.

3. Let ERS be the ordered set, s.t. ERS = {(r0.A1, σ0), . . . , (rn.A1, σn+1)} ordered by

A1, and compute (stateRS, auRS, ERS) ← ΛRS.SetUp(ΛRS.sk, ERS). Note here values

ri.A1, 0 ≤ i ≤ n+ 1 are used to implicitly specify the order of the tags and efficiently

locate the target tags within the authenticated data structure.

4. Let state = stateRS, au = (auRS, ERS). R and au will be outsourced to the server. Note

that the data owner makes state public and maintains R and au optionally.

• Update: The data owner updates the table R with the update information upd and asks the

server to update the stored table accordingly. Suppose upd is “update table R set A3 = d

where r.A1 = a” where a, d are constant values:

93

1. The data owner runs QueryandVrfy with selection query "select * fromR where r.A1 =

a" to get the tuple r (Note that QueryandVrfy can guarantee that the returned tuple is

correct, which is presented shortly).

2. Let r′ be the tuple of r by setting A3 = d, and the data owner computes σ′ ←

ΛHLT.TagGen(ΛHLT.sk, r).

3. Let updRS be “update (r.A1, σ) with (r′.A1, σ
′)” where σ is the HLT tag of tuple r . The

data owner, taking as input updRS,ΛRS.sk and auRS, runs the ΛRS.Update protocol with

the server, who takes as input updRS and auRS. Eventually, the data owner outputs the

new state′RS and au′RS, and updates ERS to E ′
RS where E ′

RS = {. . . , (r′.A1, σ
′), . . . , }.

The server also updates auRS to au′RS and ERS to E ′
RS correspondingly.

4. The data owner delivers upd to the server, so that the server updates the table R to R′.

In the following we present the construction of QueryandVrfy protocol according to different

types of query: selection/ projection / join /aggregate queries. Recall that state = stateRS and

au = (auRS, ERS).

QueryandVrfy on Selection Query As shown in Figure 4.3, the basic idea to assure verifiable

selection query is that the querier can use the authenticated data structure to ensure that the HLT

tags and its corresponding search keys satisfy the condition clause (aka. range query) and use the

HLT scheme to verify the integrity of query result. Especially, assume that the selection query

issued by the querier is qry =“select * from R where A1 ≥ a and A1 ≤ b”. Suppose that the

result rslt is not null, saying rslt = {rs, . . . , rt}, 1 ≤ s ≤ t ≤ n, s.t. rs−1.A1 < a ≤ rs.A1 and

rt.A1 ≤ b < rt+1.A1. The protocol executed by the cloud and the querier proceeds as follows:

1. The server: Let rslt = {rs, . . . , rt} and prf = {(rs.A1, σs), . . . , (rt.A1, σt)}, and send rslt, prf

to the querier.

2. The querier: Run the protocol ΛRS.QueryandVrfy with the server for the range query (a, b)

to assure that {(rs.A1, σs), . . . , (rt.A1, σt)} is the correct answer. If the output is reject, then

94

67������

����	

�
 �	� �����0�	�9��
�	
	��0��8& 8
��	������	���������

��

	
�4	
��
���

�	���
�	
	������
&

�

:
	
������	

���

8��
	���	��:
	
������	
���������

;������
����<
��1
�	��0����	�:
	
�	

Figure 4.3: Idea for assuring verifiable selection query: Given the SQL query qry= “select * from

R where A1 ≥ a and A1 ≤ b’, the AuthDS is used to guarantee that the server honestly returned

all tuples (r.A1, σ) where a ≤ r.A1 ≤ b (implying the integrity of HLT tag σ), and the HLT is used

to verify that the integrity of the query answer.

abort.

3. The querier: Select a vector of coefficients �c = (cs, . . . , ct) randomly, compute σ ←

ΛHLT.HLTAgg(�c, �Tag) where �Tag = (σs, . . . , σt), and verify ΛHLT.Vrfy(ΛHLT.pk,
∑t

i=s ciri,

σ). If the output is 1, then return accept and rslt, otherwise return reject.

If the result rslt is null, saying there exist two consecutive tuples (rs.A1, σs) and (rs+1, σs+1), 0 ≤

s ≤ n, such that rs.A1 < a, b < rs+1.A1. The querier runs the protocol ΛRS.QueryandVrfy on the

range query (a, b), and verifies that no tuple is located in the interval ((rs.A1, σs), (rs+1.A1, σs+1)).

QueryandVrfy on Projection Query The basic idea of assuring verifiable projection query is

shown in Figure ??: The querier use the authenticated data structure to assure the integrity of HLT

tags, and use the HLT tags to verify the integrity of queried attributes together with the aggregate

unqueried attributes computed by the server. More concretely, assume that the projection query

issued by the querier is qry =“select A1, . . . , Ak from R” (k ≥ 1). The protocol executed by the

server and the querier proceeds as follows:

95

:
	
������	

���

8��
	���	��:
	
������	
���������

;������
����< ��1
�	��0����	�:
	
�	

67�������
 �	� �����0�	�9��
�	
	��0��8&

&

�

����	

8
��	������	���������

��

	
�4	
��
���

�	���
�	
	������

Figure 4.4: Idea for assuring verifiable projection query: The server returns all the queried at-

tributes as the query answer, and aggregates all unquried attributes, which are presented as the

proof, as well as all tuples (r.A1, σ). The AuthDS assures the integrity of all tuples (r.A1, σ) and

the HLT guarantees the integrity of the query answer.

1. The server: Let rslt = {(ri.A1, . . . , ri.Ak), 1 ≤ i ≤ n} and have {(r1, σ1), . . . , (rn, σn)} be

part of prf.

2. The querier: Run the protocol ΛRS.QueryandVrfy with the server for the range query (L,U)

to assure that {(r1, σ1), . . . , (rn, σn)} is the correct answer. If the output is reject, then abort.

3. The querier: Select a vector of coefficients �c = (c1, . . . , cn) randomly and send it to the

server.

4. The server: Compute r.Aj =
∑n

i=1 ciri.Aj for j = k + 1, . . . ,m, and send it to the querier

as part of prf.

5. The querier: Compute r.Aj =
∑n

i=1 ciri.Aj , for j = 1, . . . , k from rslt = {(ri.A1, . . .,

ri.Ak), 1 ≤ i ≤ n}, and the aggregate tag σ = ΛHLT.HLTAgg(�c, �Tag), where �Tag =

{σ1, . . . , σn}.

6. The querier: Compute ΛHLT.Vrfy(ΛHLT.pk,M, σ) where M = (r.A1, . . . , r.Am). If the out-

put is 1, then return accept and rslt, otherwise return reject.

96

QueryandVrfy on Join Query The idea of achieving verifiable join query is quite straightforward:

Given the join query, The verifiabile projection query can be used to assure that the query answer

contains all tuples satisfying the join condition. To be specific, we run the verifiable projection

query to obtain attributes related to the join condition, locally identify corresponding tuples sat-

isfying the join condition, and then can use the HLT scheme to assure that tuples of the query

answer are intact. Suppose P is another table with schema (B1, . . . , Bm), which is processed by

algorithm SetUp before being outsourced to the server.. For convenience, assume P has n tuples,

B1 is the search key of table P and A2, B2 are respective primary key for the table B,P , uniquely

identifying the tuples respectively. Assume the join query issued by the querier is is qry =“select

R.∗, U.∗ from R,P where R.As = P.Bt” (1 ≤ s, t ≤ m). The protocol executed by the cloud and

the querier proceeds as follows:

1. The server: Return the tuples in R and P satisfying R.As = P.Bt, denoted as R∗ and P ∗.

Let rslt = (R∗, P ∗).

2. The querier: Execute the projection queries, qry =“select A2, As from R” and qry′ =“select

B2, Bt from P ” respectively. After succeeding in executing the projection queries, it obtains

the tuples {(ri.A2, ri.As, σi), 0 ≤ i ≤ n+ 1} and {(pj.B2, pj.Bt, σ
′
j), 0 ≤ j ≤ n+ 1}.

3. The querier: Identify tuples s.t. R.As = P.Bt from {(ri.A2, ri.As, σi), 1 ≤ i ≤ n} and

{(pj.B2, pj.Bt, σ
′
j), 1 ≤ j ≤ n}. Suppose α ⊆ {1, . . . , n}, and β ⊆ {1, . . . , n} be two

set of indexes, such that a ∈ α, b ∈ β, ra.As = pb.Bt. It obtains two sets of tuples,

{(ri.A2, ri.As, σi)|i ∈ α} and {(pj.B2, pj.Bt, σ
′
j), |j ∈ β}. Make sure that R∗ has the same

size with {(ri.A2, ri.As, σi), i ∈ α}, and P ∗ has the same size with {(rj.B2, pj.Bt, σ
′
j), j ∈

β}. Otherwise abort.

4. The querier: Select a vector of coefficients �c = (c1, . . . , c|α|) randomly, obtain σ by aggre-

gating the tags {σi, i ∈ α}, and compute ΛHLT.Vrfy with �c, σ, R∗ and ΛHLT.pk. Similar

action was taken towards P ∗. If both output 1, then return accept, as well as the query result,

otherwise return reject.

97

QueryandVrfy on Aggregate Query The idea of assuring verifiable aggregate query is analogue

to that of selection query, where the authenticator data structure is used to assure the integrity of

HLT tags and their corresponding search keys, and the HLT tags can be further used to assure the

correctness of the aggregate value. More specifically, assume the aggregate query issued by the

querier is qry =“select SUM(A2) from R where A1 ≥ a and A1 ≤ b”. Suppose 1 ≤ s ≤ t ≤ n,

rs−1.A1 < a ≤ rs.A1 and rt.A1 ≤ b < rt+1.A1. The protocol executed by the cloud and the

querier proceeds as follows if the query result is not null (meaning there exist some tuples whose

A1 falls in the range of a and b):

1. The server: Compute r.Aj =
∑t

i=s ri.Aj for j = 1, . . . ,m. Let rslt = {r.A2} and

{(rs.A1, σs), (rt.A1, σt), r.A1, r.A3, · · · , r.Am} as part of proof prf.

2. The querier: Make sure rs−1.A1 < a ≤ rs.A1 and rt.A1 ≤ b < rt+1.A1, otherwise abort.

Run the protocol ΛRS.QueryandVrfy on the range query (σs, σt). If the output is reject, then

abort, otherwise, it obtains the range query result rsltRS = (σs, . . . , σt) and prfRS which

should contain σs−1, σt+1.

3. The querier: Run the protocol ΛRS.QueryandVrfy with the server for the range query (a, b)

to assure that {(rs.A1, σs), . . . , (rt.A1, σt)} is the correct answer. If the output is reject, then

abort.

4. The querier: Compute σ ← ΛHLT.HLTAgg(�c, �Tag), where �c is a vector of 1s and �Tag =

(σs, . . . , σt). Then it compute ΛHLT.Vrfy(ΛHLT.pk,M, σ) where M = {r.A1, · · · , r.Am}. If

the output is 1, then return accept and rslt, otherwise return reject.

In the case that the queried result is null, then the querier and the server proceeds the same as the

case in selection query.

Remark 1:It is worth noting that for selection/projection/join query, we use randomly selected

the coefficient vector �c to prevent aggregate attack. To see this, let us consider the case without

using �c, namely �c is composed of 1s. The server has r′i = ri, s − 1 ≤ i ≤ t + 1, and manipulates

98

two tuples re, re+1, s ≤ e ≤ t − 1, to obtain r′e = (re.A1, re.A2 + 1, re.A3, . . .) and r′e+1 =

(re.A1, re.A2 − 1, re.A3, . . .), which makes
∑t

i=s ri =
∑t

i=s r
′
i. With that, the server could make

ΛHLT.Vrfy output 1 with manipulated {r′s, . . . , r′t}.

Remark 2: Our solution toward the aggregate query only supports the SUM queries and the

weighted SUM queries. On the other hand, our solution supports more flexible join queries, in the

sense that they do not have to be defined with respect to pre-defined keyword attributes

4.5.3 Security Analysis

Theorem 15. Assume ΛRS is a secure authenticated data structure scheme for range query and

ΛHLT is a secure homomorphic linear tag scheme. The proposed scheme for verifiable SQL queries

on outsourced dynamic database achieves the soundness regarding the selection/ projection/ join/

aggregate query.

The basic idea to prove the soundness is if, for any probabilistic polynomial time adversary, it

can break the soundness of the proposed solution, we can break the security of either ΛRS or ΛHLT.

Proof. The challenger executes (sk, pk) ← KeyGen(1�), keeping sk privately and giving pk to

the adversary. Let state, au and R be the latest version of state information, auxiliary informa-

tion and the table, after one execution of SetUp and polynomially many executions of Update

between the adversary and the challenger, where state = stateRS, au = (auRS, ERS) and ERS =

{(r0.A1, σ0), . . . , (rn+1.A1, σn+1)}. We prove that the proposed solution is sound with respect to

each query separately.

Soundness of Selection Query Assume the adversary chooses a selection query qry and gives out

the query result rslt and the proof prf which wins the security game. Namely, given qry =“select *

from R where A1 ≥ a and A1 ≤ b”, rslt = {r′s, . . . , r′t} and prf = {rsltRS, prfRS}, where rsltRS =

{(r′s.A1, σ
′
s), . . . , (r

′
t.A1, σ

′
t)} and the tuple (rsltRS, prfRS) is the result and proof for the range query

(a, b) by running the ΛRS.QueryandVrfy. Suppose the challenger randomly selects the coefficient

vector �c = (cs, . . . , ct), and computes σ′ ← ΛHLT.HLTAgg(�c, �Tag), where �Tag′ = (σ′
s, . . . , σ

′
t)

99

As the adversary wins the game, the following should hold:

(accept, rsltRS, prfRS)← (Q(ΛRS.pk, qry(a, b), stateRS)↔ S(auRS, ERS))

1← ΛHLT.Vrfy(ΛHLT.pk,
t∑

i=s

cir
′
i, σ

′)

rslt �= localRst

where localRst← LocalQuery(qry, R) computed by the challenger.

First, we claim that rsltRS = {(r′s.A1, σ
′
s), . . . , (r

′
t.A1, σ

′
t)} is the correct query result with

respect to the range query (a, b). Otherwise, we can break the soundness of ADS for range query.

That is, (σ′
s, . . . , σ

′
t) are exact the HLT tags with respect to the tuples whose search keys (A1 values)

fall into the range (a, b).

Suppose localRst = {rs, . . . , rt}. We now claim that ri = r′i for i = s, . . . , t. The challenger

executes σ ← ΛHLT.HLTAgg(�c, �Tag) where �Tag = (σ′
s, . . . , σ

′
t). Therefore, we have σ = σ′ .

Because (σs, . . . , σt) correspond to the tuples {rs, . . . , rt}, we have

1 ← ΛHLT.Vrfy(ΛHLT.pk,
w∑

i=u

ciri, σ) (4.1)

So if the adversary wins the security game, then

1← ΛHLT.Vrfy(ΛHLT.pk,
t∑

i=s

cir
′
i, σ

′) (4.2)

Therefore, with Eq. 4.1 and Eq. 4.2, if r′i �= ri for i = s, . . . , t, then
∑t

i=s ciri �=
∑t

i=s cir
′
i, which

break the security of HLT. That is, localRst = rslt, so that it contracts the assumption that the

adversary wins the game.

To sum up, we can see that the soundness of selection query is assured given the assumption

that ΛRS and ΛHLT are secure as their definitions.

Soundness of Projection Query Assume the adversary chooses a projection queryqry and

100

A1 ≤ b” and gives out the query result rslt and the proof prf, which wins the security game.

Namely, given qry =“select A1, . . . , Ak from R” (k ≥ 1), the adversary sends the query re-

sult rslt = {(r′i.A1, . . . , r
′
i.Ak), 1 ≤ i ≤ n} to the challenger. It also sends to the challenger

rsltRS = {((r′1.A1, σ
′
1), . . . , (r

′
n.A1, σ

′
n)}, which is part of the proof prf.

After receiving rslt, the challenger randomly selects �c = (c1, . . . , cn) and sends it to the ad-

versary. The challenger computes r′.Aj =
∑n

i=1 cir
′
i.Aj, j = 1, . . . , k and aggregates the tags by

σ′ ← ΛHLT.HLTAgg(�c,
�Tag′), where �Tag′ = (σ′

1, . . . , σ
′
n).

When receiving �c, the adversary computes r′.Aj =
∑n

i=1 cir
′
i.Aj for j = k+1, . . . ,m, and lets

r′.Ak+1, . . . , r
′.Am be part of proof prf. If the adversary wins the game, the following should hold:

(accept, rsltRS, ∅)← (Q(ΛRS.pk, qry(L,U), stateRS)↔ S(auRS, ERS))

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, . . . , r

′.Am), σ
′)

rslt �= localRst

where localRst← LocalQuery(qry, R) computed by the challenger locally.

First, we claim that rsltRS = {(r′1.A1, σ
′
1), . . . , (r

′
n.A1, σ

′
n)} is the correct query result with

respect to the range query qry(L,U). Otherwise, we can break the soundness of ADS for range

query. That is, (σ′
s, . . . , σ

′
t) are exact the HLT tags with respect to the tuples whose search keys (A1

values) fall into the range (a, b).

Then we claim that rslt = localRst where localRst = {(r1.A1, . . . , r1.Ak), . . ., (rn.A1, . . .,

rn.A1)}. To prove that, we have

1← ΛHLT.Vrfy(ΛHLT.pk, (
n∑

i=1

ri.A1, . . . ,
n∑

i=1

ri.Ak, . . . , r
′.Am), σ

′) (4.3)

and if the adversary wins the games, then

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, . . . , r

′.Ak, . . . , r
′.Am), σ

′) (4.4)

101

If rslt �= localRst, then there exist some j, 1 ≤ j ≤ k, s.t.
∑n

i=1 ciri.Aj �= r′.Aj . That is , if

rslt �= localRst, we can break the security of HLT scheme with Eq. 4.3 and Eq. 4.4. Therefore,

rslt = localRst, contradicting the assumption that the adversary wins the game.

To sum up, we can see that the soundness of projection query is assured given the assumption

that ΛRS and ΛHLT are secure as their definitions.

Soundness of Join Query It is readily to prove soundness for join query, because the soundness

for projection query holds and HLT is secure.

Soundness of Aggregate Query Assume the adversary chooses an aggregate query qry and

gives out the query result rslt and the proof prf in order to win the security game. Namely, given

qry=“select SUM(A2) from R where A1 ≥ a and A1 ≤ b”, the adversary computes r′.Aj =
∑t

i=s ri.Aj for j = 1, . . . ,m, and return the query result rslt = r′.A2, and prf = {r′.A1, r
′.A3,

. . . , r′.Am, rsltRS, prfRS}, where rsltRS = {(r′s.A1, σ
′
s), . . . , (r

′
t.A1, σ

′
t)} and (rsltRSprfRS) is the

result and proof for the range query (a, b) by running the ΛRS.QueryandVrfy.

Assume the challenger computes σ′ ← ΛHLT.HLTAgg(�c,
�Tag′), where �Tag′ = (σ′

s, . . . , σ
′
t) and

�c is 1s. If the adversary wins the game,the following should hold:

(accept, rsltRS, prfRS)← (Q(ΛRS.pk, qry(a, b), stateRS)↔ S(auRS, ERS))

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, . . . , r

′.Am), σ
′)

rslt �= localRst

where localRst← LocalQuery(qry, R) computed by the challenger.

First, we claim that rsltRS = {(r′s.A1, σ
′
s), . . . , (r

′
t.A1, σ

′
t)} is the correct query result with

respect to the range query (a, b). Otherwise, we can break the soundness of ADS for range query.

That is, (σ′
s, . . . , σ

′
t) are exact the HLT tags with respect to the tuples whose search keys (A1 values)

fall into the range (a, b).

Then we prove that rslt = localRst. Namely, r′.A2 = r.A2.

Since r.A1, . . . , r.Am is the aggregate message for rs, . . . , rt and σ is the corresponding aggre-

102

gate tag, so we have

1 ← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, r.A2, . . . , r

′.Am), σ)

If the adversary wins the security game, it should

1← ΛHLT.Vrfy(ΛHLT.pk, (r
′.A1, r

′.A2, . . . , r
′.Am), σ

′)

If r′.A2 �= r.A2, then we can break the security of HLT. Therefore, r′.A2 = r.A2, which contradicts

the assumption that the adversary wins the game.

To sum up, we can see that the soundness of aggregate query is assured given the assumption

that ΛRS and ΛHLT are secure as their definitions.

4.6 Performance Evaluation

4.6.1 Asymptotic Performance Analysis

We compare the asymptotic performance of our solution and that of the two state-of-the-art solu-

tions [83,99], which are the only one supporting selection / projection / join queries in the dynamic

database simultaneously.

As shown in Table 4.2, our solution is more expressive because it additionally supports aggre-

gate queries, such as: “select SUM(A2) fromR whereA1 > a." Moreover, our solution allows join

query with respect to arbitrary attributes, such as: “selectR.∗, P.∗ fromR,P whereR.A3 = P.B4"

without requiring R.A3 and P.B4 to be search keys. Whereas, this type of join queries cannot be

handled by the state-of-the-art solutions [83, 99].

For pre-processing the database before outsourcing it to the cloud, our solution is more efficient

than Pang et al. [99], and as efficient as Li et al. [83]. In addition, our solution incurs the least extra

storage complexity. To see this, we compare the three solutions with parameters in Table 4.1. Our

103

Table 4.2: Asymptotic performance comparison, where Hash is 160 bits, Sig is 1024 bits, AggSig=

160 bits, Tag= 792 bits, Bitmap is a small constant, Ex denotes modular exponentiation, Mu de-

notes modular multiplication Pairing denotes pairing operation, m is the number of attributes of

the table, k is the number of attributes in projection query, attribute is an attribute value in R,

λ is the number of attributes to be aggregated, R∗ denotes unmatched tuples in R, and assume

|R| = |P | = n in join query. Note that our solution supports aggregate queries and more flexible

join queries, and we do not count the basic search operation in comparison.
Li et al. [83] Pang et al. [99] Our solution

Functions Selection, Projection, Join Selection, Projection, Join Selection, Projection,

Join, Aggregate

Technique Merkle-based Hash Tree Aggregate Signature Merkle-based Hash Tree

Technique with Chaining and HLT
Security Sound Sound Sound

Data PreProcessing O(n)Hash O(mn)Ex O(n)Hash+ O(n)Ex
Storage Overhead O(mn)Hash O(mn)AggSig O(n)Hash + O(n)Tag

Selection

ComputationS N/A O(n)Mu N/A

Communication O(logn)Hash O(n)Bitmap O(logn)Hash+O(n)Tag
ComputationV O(n)Hash O(n)Ex O(logn)Hash+O(n)Ex

Projection

ComputationS N/A O(kn)Mu O(n)Mu
Communication O((m− k)n)attribute O(n)Bitmap O(n+m)Tag
ComputationV O(n)Hash O(kn)Ex O(n)Ex

Join

ComputationS N/A O(n)Mu O(n)Mu
Communication O(n log (n))Hash+R∗ O(n)Bitmap+R∗ O(n+m)Tag
ComputationV O(n log (n))Hash O(n)Ex O(n)Ex

Aggregate

ComputationS N/A N/A N/A

Communication N/A N/A O(logn)Hash+O(λ)Tag
N/A N/A N/A O(logn)Hash+O(λ)Ex

Update
ComputationS O(logn)Hash N/A O(logn)Hash
Communication O(1) O(1) O(1)

ComputationO O(logn)Hash O(m)Ex O(logn)Hash

solution is storage-space more efficient than [83, 99] as long as the number of attributes is greater

than Tag/Hash, which is often the case. Moreover, as shown in Figure 4.5, the storage-space

requirement in our solution is independent of the number of attributes; in contrast, the storage-

space complexity of [83, 99] increases linearly with respect to the number of attributes.

For selection queries, projection queries and join queries, our solution incurs O(log n)Hash

plus O(n)Ex, O(n)Ex and O(n)Ex at the querier side in order to aggregate HLT tags. However,

our solution still outperforms [99], which requiresO(n)Ex,O(kn)Ex andO(n)Ex on bilinear group

respectively.

For projection queries and join queries, our solutions incurs O(n +m) tags. In contrast, [83]

requires O((m − k)n) attribute values for projection queries, and O(n log n) hash values plus

104

102 104 1060

0.5

1

1.5

2 x 109

of Tuples

S
to

ra
ge

 O
ve

rh
ea

 (b
its

) Pang et al.
Li et al.
Ours

(a) m = 10 (i.e. each tuple has 10 attributes)

10 15 20 25 30
0

1

2

3

4

5 x 107

of Tuples

S
to

ra
ge

 O
ve

rh
ea

 (b
its

) Pang et al.
Li et al.
Ours

(b) n = 104 (i.e. the table has 104 tuples)

Figure 4.5: Comparison of storage overhead between our VQDDB scheme and the state-of-the-art

solutions [83, 99].

those unmatched tuples in R for join queries. Although [99] only requires O(n) certified bitmap

(recording updated tuples in on update period) for projection queries, it requires at least O(n)

certified bitmap plus those unmatched tuples in R for join queries. It is due to the fact that [83,99]

have to fetch at least one table (either R or P) for join queries.

For aggregate queries, regardless of the number of attributes the querier wants to aggregate, the

computational and communication complexities are the same. For example, “select SUM(A1), . . .,

SUM(Ak) from R where A1 > a and A1 < b" and “select SUM(A1) from R where A1 > a and

A1 < b", our solution incurs the same complexity.

4.6.2 Implementation

We have implement the cryptographic components (i.e. HLT scheme and AuthDS scheme) in Java.

In our implementation, we instantiated the algebraic group of the HLT with the default Schnorr

group provided by the DSA signature where p is 512-bit and q is 160-bit. We also instantiated

the Merkle B tree of the AuthDS with the SHA-1 hash function. We measure the performance of

the algorithms/protocols in the VQDDB on a machine with Linux OS, 2.93GHz Intel Core Duo

CPU (E7500), and 2GB RAM. Specifically, we evaluated the performance mainly with two kinds

105

of synthetic datasets stored in the MySQL databases:

• SmallD: The tuples in this dataset have 10 attributes, and the number of tuples increases

from 103 to 106 with scale 10.

• LargeD: The tuples in this dataset have 30 attributes, and the number of tuples increases

from 103 to 106 with scale 10.

Each tuple has a search key (i.e., the attribute for the range query) generated uniformly at random

from the domain of [1, 109] and a primary key (i.e. the attribute uniquely identifying the tuple),

and each attribute occupies 18 bytes.

4.6.3 Performance Evaluation

Setup Performance Figure 4.6 shows the execution time and storage overhead when running the

SetUp algorithm, which should be executed by the data owner. Figure 4.6a illustrates the execution

time of SetUp algorithm, measuring the cost of reading tuples from the databases, generating HLT

tags, building Merkle B tree and storing them in the disk. We can see that although the tuples in

LargeD has 20 more attributes than that of SmallD, the execution cost underlying the same number

of tuples is quite close. The reason is that when generating HLT tag, exponentiation operation plays

a dominant role comparing with hashing and multiplication operations (our experiment show that

the cost of one exponentiation is approximate to the cost of 100 multiplications). Figure 4.6b shows

that the VQDDB scheme incurs the same storage overhead regardless the number of attributes in

each tuples. This confirms that the VQDDB scheme costs storage overhead independent of the

number of attributes of the tuple.

Update Performance To understand the performance of Update protocol between the data owner

and the cloud server, we conducted the expriments for the INSERT, UPDATE and DELETE

queries, each of which is to update one tuple (i.e., insert/update/delete one tuple). We measured

the average number of (update) queires that can be completed by the data owner within one sec-

ond. Figure 4.7a shows the results. We can see that when the number of the tuples stored in the

106

102 104 1060

500

1000

1500

2000

of Tuples

Ti
m

e
(s

ec
on

d)

SmallD
LargeD

(a) Execution time of SetUp algorithm

102 104 1060

0.5

1

1.5

2 x 105

of Tuples

S
to

ra
ge

 o
ve

rh
ea

d
(K

B
) SmallD

LargeD

(b) Storage overhead

Figure 4.6: The performance of SetUp algorithm run by the data onwer.

database increases, the number of queries that can be completed per second will decrease. The

reason is that the data owner has to spend more time to validate the proofs. Figure 4.7b shows the

communication overhead between the data owner and the cloud server. Because we runs the data

owner and the cloud server on the same machine and cannot simulate additional network latency,

we serialized the proof (provided by the cloud server) to the disk so that we can measure the com-

munication overhead exactly. We can see that the communication overhead is propositional to the

number of tuples stored in the databases as it is dominated by the number of hash values in the

Merkle B tree. We also can observe that given the same number of tuples stored in the databases,

the communication overhead is the same regardless the dataset SmallD and LargeD. That is, the

communication overhead is independent of the number of attributes in the tuples.

Query-Verification Performance We evaluated the performance of the QueryandVrfy protocol for

the respect selection/ projection/ join/ aggregate queries. For the selection and aggregate queries,

we set 20 percent of the tuples in the table satisfying the condition clauses (i.e., 20% search keys are

in the range [a, b]). The projection query is to select 5 attributes of all tuples (i.e., select A1, . . . , A5

from R). For join queries, the involved two tables have the same number of tuples and we set

20 percent of the entire tuples matched each other. Similar to the evaluation of Update protocol,

we evaluated the size of proofs that are transferred between the querier and the server without

107

102 103 104 105 106280

300

320

340

360

380

400

of Tuples

Q
ue

rie
s

pe
r S

ec
on

d
SmallD−Insert
SmallD−Delete
SmallD−Update
LargeD−Insert
LargeD−Delete
LargeD−Update

(a) Number of (update) queries that can be com-

pleted by the data owner within one second.

102 104 106200

300

400

500

600

700

800

of Tuples

P
ro

of
 S

iz
e

(B
yt

e)

SmallD−Insert
SmallD−Delete
SmallD−Update
LargeD−Insert
LargeD−Delete
LargeD−Update

(b) Communication overhead for Update protocol

Figure 4.7: The performance of Update protocol between the data owner and the cloud server.

simulating the network latency.

102 104 1060

500

1000

1500

2000

of Tuples

Ti
m

e
(S

ec
on

d)

SmallD−Selection
SmallD−Projection
SmallD−Join
SmallD−Aggregate
LargeD−Selection
LargeD−Projection
LargeD−Join
LargeD−Aggregate

(a) Performance of QueryandVrfy protocol exe-

cuted by the querier.

102 104 1060

1

2

3

4 x 105

of Tuples

P
ro

of
 S

iz
e

 (K
B

)

SmallD−Selection
SmallD−Projection
SmallD−Join
SmallD−Aggregate
LargeD−Selection
LargeD−Projection
LargeD−Join
LargeD−Aggregate

(b) Communication overhead for QueryandVrfy
protocol

Figure 4.8: The performance of QueryandVrfy protocol between the querier and the cloud server.

Fig 4.8a shows the execution time spent by the querier to validate proofs for respect queries.

We can see that the validation costs for the data sets SmallD and LargeD are almost the same

with respect to the four kinds of queries, which means that the execution time of validating proofs

is almost independent of the number of attributes in the tuples. We also can observe that the

verification costs for selection and aggregate queries are far less when comparing with join and

projection queries. The reason is that the verification for selection and aggregate queries only need

108

to aggregate 20 percent of HLT tags while for join and projection queries they involve the entire

HLT tags. Fig 4.8b shows the communication overhead. Note that the communication overhead

for validating selection/ projection/ aggregate queries is linear to the number of tuples satisfying

the conditional clause, whereas the communication overhead for the join query is related to the

number of tuples, regardless of the size of result for the join query.

4.7 Chapter Summary

We presented an efficient VQDDB solution to the problem of query integrity in the setting of out-

sourced dynamic relational database. The VQDDB allows a querier, the data owner or a third party,

to verify that its queries were faithfully executed by the cloud server. Compared with the state-

of-the-art solutions, our solution is not only more powerful by additionally supporting aggregate

queries (in addition to selection, projection, and join queries), but also more efficient by eliminat-

ing a logarithmic or even linear multiplication factor (depending on the type of the queries) from

the overall cost.

Our solution still incurs linear complexity since we always requires the tags, whose tuples

satisfy the condition clause in the SQL query, being returned to the queriers. An outstanding

direction for future research is to address the following open problem: Can we attain verifiable

SQL queries with logarithmic (or constant) complexity?

109

Chapter 5: CONCLUSION

5.1 Summary

In this dissertation, we present the studies on “verifiable delegated computation”, which enable

cloud users to verify the correctness of the delegated computation results on outsourced data.

We first introduce the concept of “verifiable attribute-based keyword search on outsourced en-

crypted data”, which allows data users to conduct secure keyword search on outsourced encrypted

data while complying with flexible access control policies, and assures that the cloud faithfully

followed the search procedures. We propose the concrete solution, which enables data owners

to grant keyword search capability with respect to access control policies and data users to dele-

gate keyword search to the cloud, and further allows data users to verify that the cloud faithfully

executed the search operations.

Secondly, we initiate the problem of “verifiable set intersection on outsouced encrypted data”,

which allows cloud users to delegate the set intersection operation to the cloud on their outsourced

encrypted data sets, and further verify the correctness of the intersection set returned from the

cloud. We present a solution, which is based on two ideas: (i) using proxy re-encryption to enable

the cloud to compare equality of plaintexts corresponding to two ciphertexts that are encrypted

using different public keys; (ii) using a novel variant of cryptographic accumulator, which can be

used to verify the membership of multiple elements through a single examination and may be of

independent value, to allow the cloud to show the correctness of the resulting intersection set.

Finally, we study the problem of “verifiable SQL queries on outsourced dynamic database”,

which allows database queriers verify the correctness of query result returned from the cloud on

outsourced dynamic databases? We propose an efficient solution to support multiple kinds of SQL

queries that include selection, projection, join, and (weighted) aggregation queries. The solution is

built on top of two building blocks: an authenticated data structure to support dynamic update on

outsourced databases, and newly devised homomorphic linear tag, which can efficiently verify the

110

integrity of query results via aggregation.

5.2 Future Work

Support Data Dynamic. In the problem of “verifiable attribute-based keyword search on out-

sourced encrypted data”, the proposed solution only supports the static data set, i.e. without sup-

porting adding new keyword and deleting keywords. The reason is that one of the building-blocks,

bloom filter, cannot support keyword deletion. One of the future work is to construct solutions that

allow data owners to dynamically maintain outsourced keywords and data files.

Support Fine-grained Access Control. In the problem of “verifiable delegated set intersection on

outsourced encrypted data”, the proposed solution only offers coarse-grained access control in the

following sense. Suppose Alice and Bob allow the cloud to conduct the delegated set intersection

operation on Ca and Cb, and Alice and Carlos allow the cloud to conduct the delegated set inter-

section operation on Ca and Cc. Then, the cloud is able to conduct the set intersection operation

on Cb and Cc without the authorization from Bob and Carlos. One of the future work is to enforce

fine-grained access control while achieving the goals.

More Efficient Solution for Verifiable SQL Queries. In the problem of “verifiable SQL queries

on outsourced dynamic databases”, the proposed solution still incurs linear complexity since we

always requires the tags, whose tuples satisfy the condition clause in the SQL query, being returned

to the queriers. One of the future work is to seek more efficient approach to attain verifiable SQL

queries with logarithmic (or constant) complexity?

111

BIBLIOGRAPHY

[1] Data protection directive in eu. http://ec.europa.eu/justice/policies/privacy/docs/95-46-

ce/dir1995-46_part1_en.pdf.

[2] The health insurance portability and accountability act.

[3] The java pairing based cryptography library. http://gas.dia.unisa.it/projects/jpbc/.

[4] Martín Abadi, Dan Boneh, Ilya Mironov, Ananth Raghunathan, and Gil Segev. Message-

locked encryption for lock-dependent messages. In CRYPTO (1), pages 374–391, 2013.

[5] Tolga Acar, Sherman S. M. Chow, and Lan Nguyen. Accumulators and u-prove revocation.

In Financial Cryptography, pages 189–196, 2013.

[6] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. From secrecy to soundness: Efficient

verification via secure computation. In Samson Abramsky, Cyril Gavoille, Claude Kirchner,

Friedhelm Meyer auf der Heide, and Paul Spirakis, editors, Automata, Languages and Pro-

gramming, volume 6198 of Lecture Notes in Computer Science, pages 152–163. Springer

Berlin / Heidelberg, 2010. 10.1007/978-3-642-14165-2_14.

[7] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary

Peterson, and Dawn Song. Provable data possession at untrusted stores. In Proc. of ACM

CCS, pages 598–609, 2007.

[8] Giuseppe Ateniese, Emiliano De Cristofaro, and Gene Tsudik. (if) size matters: Size-hiding

private set intersection. In Public Key Cryptography, pages 156–173, 2011.

[9] Giuseppe Ateniese, Seny Kamara, and Jonathan Katz. Proofs of storage from homomor-

phic identification protocols. In Proceedings of the 15th International Conference on the

Theory and Application of Cryptology and Information Security: Advances in Cryptology,

ASIACRYPT ’09, pages 319–333, Berlin, Heidelberg, 2009. Springer-Verlag.

112

[10] L Babai. Trading group theory for randomness. In Proceedings of the seventeenth annual

ACM symposium on Theory of computing, STOC ’85, pages 421–429, New York, NY, USA,

1985. ACM.

[11] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key encryption with key-

word search revisited. In Proc. of ICCSA, pages 1249–1259, 2008.

[12] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.

Countering gattaca: efficient and secure testing of fully-sequenced human genomes. In

ACM Conference on Computer and Communications Security, pages 691–702, 2011.

[13] Feng Bao, Robert H. Deng, Xuhua Ding, and Yanjiang Yang. Private query on encrypted

data in multi-user settings. In Proc. of ISPEC, pages 71–85, 2008.

[14] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic and efficiently

searchable encryption. In Proc. of CRYPTO, pages 535–552, 2007.

[15] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a

general forking lemma. In ACM Conference on Computer and Communications Security,

pages 390–399, 2006.

[16] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of compu-

tation over large datasets. In Proc. of CRYPTO, pages 111–131, 2011.

[17] Siavosh Benabbas, Rosario Gennaro, and Yevgeniy Vahlis. Verifiable delegation of compu-

tation over large datasets. In CRYPTO, pages 111–131, 2011.

[18] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-

tion. In Proc. of IEEE S&P, pages 321–334, 2007.

[19] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.

ACM, 13(7):422–426, July 1970.

113

[20] Dan Boneh, Xavier Boyen, and Eu-Jin Goh. Hierarchical identity based encryption with

constant size ciphertext. In Proc. of EUROCRYPT, pages 440–456, 2005.

[21] Dan Boneh, Xavier Boyen, and Hovav Shacham. Short group signatures. In In proceedings

of CRYPTO ï¿œ04, LNCS series, pages 41–55. Springer-Verlag, 2004.

[22] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and Giuseppe Persiano. Public key

encryption with keyword search. In Proc. of EUROCRYPT, pages 506–522, 2004.

[23] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and verifiably en-

crypted signatures from bilinear maps. In Proceedings of the 22nd international conference

on Theory and applications of cryptographic techniques, EUROCRYPT’03, pages 416–432,

Berlin, Heidelberg, 2003. Springer-Verlag.

[24] Dan Boneh and Brent Waters. Conjunctive, subset, and range queries on encrypted data. In

Proc. of TCC, pages 535–554, 2007.

[25] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic en-

cryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical Com-

puter Science Conference, ITCS ’12, pages 309–325, New York, NY, USA, 2012. ACM.

[26] Jan Camenisch, Markulf Kohlweiss, Alfredo Rial, and Caroline Sheedy. Blind and anony-

mous identity-based encryption and authorised private searches on public key encrypted

data. In Proc. of PKC, pages 196–214, 2009.

[27] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In Proceedings of the 22nd Annual International

Cryptology Conference on Advances in Cryptology, CRYPTO ’02, pages 61–76, London,

UK, UK, 2002. Springer-Verlag.

[28] Jan Camenisch and Gregory M. Zaverucha. Private intersection of certified sets. In Financial

Cryptography, pages 108–127, 2009.

114

[29] Sébastien Canard, Georg Fuchsbauer, Aline Gouget, and Fabien Laguillaumie. Plaintext-

checkable encryption. In CT-RSA, pages 332–348, 2012.

[30] Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext security from identity-

based encryption. In EUROCRYPT, pages 207–222, 2004.

[31] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos. Verifiable

set operations over outsourced databases. Cryptology ePrint Archive, Report 2013/724,

2013. http://eprint.iacr.org/.

[32] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption for semi-honest-but-

curious cloud servers. In Proc. of ICC, pages 917–922, 2012.

[33] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption for semi-honest-but-

curious cloud servers. In ICC, pages 917–922, 2012.

[34] Yan-Cheng Chang and Michael Mitzenmacher. Privacy preserving keyword searches on

remote encrypted data. In Proc. of ACNS, pages 442–455, 2005.

[35] Melissa Chase. Multi-authority attribute based encryption. In Proc. of TCC, pages 515–534,

2007.

[36] Melissa Chase and Sherman S.M. Chow. Improving privacy and security in multi-authority

attribute-based encryption. In Proc. of ACM CCS, pages 121–130, 2009.

[37] Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Proc.

of ASIACRYPT, pages 577–594, 2010.

[38] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using

fully homomorphic encryption. In Proceedings of the 30th annual conference on Advances

in cryptology, CRYPTO’10, pages 483–501, Berlin, Heidelberg, 2010. Springer-Verlag.

115

[39] Kai-Min Chung, Yael Kalai, and Salil Vadhan. Improved delegation of computation using

fully homomorphic encryption. In Proceedings of the 30th annual conference on Advances

in cryptology, CRYPTO’10, pages 483–501, Berlin, Heidelberg, 2010. Springer-Verlag.

[40] Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of compu-

tation using fully homomorphic encryption. In CRYPTO, pages 483–501, 2010.

[41] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols

with linear computational and bandwidth complexity. IACR Cryptology ePrint Archive,

2009:491, 2009.

[42] Emiliano De Cristofaro and Gene Tsudik. Practical private set intersection protocols with

linear complexity. In Financial Cryptography, pages 143–159, 2010.

[43] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable symmetric

encryption: improved definitions and efficient constructions. In Proc. of, pages 79–88,

2006.

[44] Dana Dachman-Soled, Tal Malkin, Mariana Raykova 0001, and Moti Yung. Efficient robust

private set intersection. In ACNS, pages 125–142, 2009.

[45] Ivan Damgård and Nikos Triandopoulos. Supporting non-membership proofs with bilinear-

map accumulators. IACR Cryptology ePrint Archive, 2008:538, 2008.

[46] Premkumar Devanbu, Michael Gertz, Charles Martel, and Stuart G. Stubblebine. Authentic

data publication over the internet. J. Comput. Secur., 11(3):291–314, April 2003.

[47] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data:

An efficient and scalable protocol. Cryptology ePrint Archive, Report 2013/515, 2013.

http://eprint.iacr.org/.

[48] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. J. Cryptol., 1(2):77–

94, August 1988.

116

[49] Amos Fiat. Batch rsa. In Proceedings on Advances in cryptology, CRYPTO ’89, pages

175–185, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[50] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large polynomials and

matrix computations, with applications. In Proc. of ACM CCS, pages 501–512, 2012.

[51] Lance Fortnow and Carsten Lund. Interactive proof systems and alternating time-space

complexity. In Selected papers of the 8th annual symposium on Theoretical aspects of

computer science, STACS ’91, pages 55–73, Essex, UK, 1991. Elsevier Science Publishers

Ltd.

[52] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set

intersection. In EUROCRYPT, pages 1–19, 2004.

[53] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:

outsourcing computation to untrusted workers. In Proceedings of the 30th annual confer-

ence on Advances in cryptology, CRYPTO’10, pages 465–482, Berlin, Heidelberg, 2010.

Springer-Verlag.

[54] Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable computing:

Outsourcing computation to untrusted workers. In CRYPTO, pages 465–482, 2010.

[55] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span pro-

grams and succinct nizks without pcps. In EUROCRYPT, pages 626–645, 2013.

[56] Craig Gentry. Computing arbitrary functions of encrypted data. Commun. ACM, 53(3):97–

105, March 2010.

[57] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with poly-

log overhead. In Proceedings of the 31st Annual International Conference on Theory and

Applications of Cryptographic Techniques, EUROCRYPT’12, pages 465–482, Berlin, Hei-

delberg, 2012. Springer-Verlag.

117

[58] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216, 2003. http:

//eprint.iacr.org/2003/216/.

[59] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof

systems. SIAM J. Comput., 18(1):186–208, February 1989.

[60] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:

interactive proofs for muggles. In Proceedings of the 40th annual ACM symposium on

Theory of computing, STOC ’08, pages 113–122, New York, NY, USA, 2008. ACM.

[61] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:

interactive proofs for muggles. In STOC, pages 113–122, 2008.

[62] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A digital signature scheme secure

against adaptive chosen-message attacks. SIAM J. Comput., 17(2):281–308, April 1988.

[63] Philippe Golle, Jessica Staddon, and Brent Waters. Secure conjunctive keyword search over

encrypted data. In Proc. of ACNS, pages 31–45, 2004.

[64] Michael Goodrich, Roberto Tamassia, and Nikos Triandopoulos. Super-efficient verification

of dynamic outsourced databases. In Tal Malkin, editor, Topics in Cryptology ï¿œC CT-RSA

2008, volume 4964 of Lecture Notes in Computer Science, pages 407–424. Springer Berlin

/ Heidelberg, 2008.

[65] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption

for fine-grained access control of encrypted data. In Proc. of ACM CCS, pages 89–98, 2006.

[66] Trusted Computing Group. Trusted platform module main specification,version 1.2, revision

103,. Technical report, July 2007.

[67] Carmit Hazay and Yehuda Lindell. Efficient protocols for set intersection and pattern match-

ing with security against malicious and covert adversaries. J. Cryptology, 23(3):422–456,

2010.

118

[68] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious ad-

versaries. In Public Key Cryptography, pages 312–331, 2010.

[69] Y. Huang, D. Evans, and Jonathan Katz. Private set intersection: Are garbled circuits better

than custom protocols? 19th Network and Distributed Security Symposium, 2012.

[70] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with appli-

cations to adaptive ot and secure computation of set intersection. In TCC, pages 577–594,

2009.

[71] Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In Proc. of FC, pages 136–

149, 2010.

[72] Seny Kamara, Payman Mohassel, Mariana Raykova, and Saeed Sadeghian. Server-aided

private set intersection: Scaling to million element sets, 2013. http://research.

microsoft.com/pubs/194141/sapsi.pdf.

[73] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Cs2: A searchable crypto-

graphic cloud storage system. Microsoft Technical Report, 2011. http://research.

microsoft.com/apps/pubs/?id=148632.

[74] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic searchable symmet-

ric encryption. In Proc. of ACM CCS, pages 965–976, 2012.

[75] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and

Hall/CRC Press, 2007.

[76] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions,

polynomial equations, and inner products. In Proc. of EUROCRYPT, pages 146–162, 2008.

[77] Florian Kerschbaum. Collusion-resistant outsourcing of private set intersection. In SAC,

pages 1451–1456, 2012.

119

[78] Florian Kerschbaum. Outsourced private set intersection using homomorphic encryption.

In ASIACCS, pages 85–86, 2012.

[79] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In CRYPTO,

pages 241–257, 2005.

[80] Kaoru Kurosawa and Yasuhiro Ohtaki. Uc-secure searchable symmetric encryption. In

Proc. of FC, pages 285–298. Springer Berlin / Heidelberg.

[81] Kristin Lauter, Michael Naehrig, and Vinod Vaikuntanathan. Can homomorphic encryption

be practical? Cryptology ePrint Archive, Report 2011/405, 2011. http://eprint.

iacr.org/.

[82] Allison B. Lewko and Brent Waters. New proof methods for attribute-based encryption:

Achieving full security through selective techniques. In Proc. of CRYPTO, pages 180–198,

2012.

[83] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Dynamic authenti-

cated index structures for outsourced databases. In Proceedings of the 2006 ACM SIGMOD

international conference on Management of data, SIGMOD ’06, pages 121–132, New York,

NY, USA, 2006. ACM.

[84] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Authenticated index

structures for aggregation queries. ACM Trans. Inf. Syst. Secur., 13(4):32:1–32:35, Decem-

ber 2010.

[85] Ming Li, Shucheng Yu, Ning Cao, and Wenjing Lou. Authorized private keyword search

over encrypted data in cloud computing. In Proc. of ICDCS, pages 383–392, 2011.

[86] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for

interactive proof systems. J. ACM, 39(4):859–868, October 1992.

120

[87] Ralph C. Merkle. A certified digital signature. In Proceedings on Advances in cryptology,

CRYPTO ’89, pages 218–238, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[88] Ghita Mezzour, Adrian Perrig, Virgil Gligor, and Panos Papadimitratos. Privacy-preserving

relationship path discovery in social networks. In Cryptology and Network Security, volume

5888 of Lecture Notes in Computer Science, pages 189–208. Springer Berlin Heidelberg,

2009.

[89] Kyriakos Mouratidis, Dimitris Sacharidis, and Hweehwa Pang. Partially materialized digest

scheme: an efficient verification method for outsourced databases. The VLDB Journal,

18(1):363–381, January 2009.

[90] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Providing authentication and in-

tegrity in outsourced databases using merkley hash trees. In UCI-SCONCE Technical Re-

port.

[91] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentication and integrity in

outsourced databases. Trans. Storage, 2(2):107–138, May 2006.

[92] Maithili Narasimha and Gene Tsudik. Authentication of outsourced databases using sig-

nature aggregation and chaining. In Proceedings of the 11th international conference on

Database Systems for Advanced Applications, DASFAA’06, pages 420–436, Berlin, Hei-

delberg, 2006. Springer-Verlag.

[93] Lan Nguyen. Accumulators from bilinear pairings and applications. In Proceedings of the

2005 international conference on Topics in Cryptology, CT-RSA’05, pages 275–292, Berlin,

Heidelberg, 2005. Springer-Verlag.

[94] Glen Nuckolls. Verified query results from hybrid authentication trees. In Proceedings

of the 19th annual IFIP WG 11.3 working conference on Data and Applications Security,

DBSec’05, pages 84–98, Berlin, Heidelberg, 2005. Springer-Verlag.

121

[95] Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-

products. In Proc. of ASIACRYPT, pages 214–231, 2009.

[96] Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with gen-

eral relations from the decisional linear assumption. In Proc. of CRYPTO, pages 191–208,

2010.

[97] Bernardo Palazzi, Maurizio Pizzonia, and Stefano Pucacco. Query racing: fast completeness

certification of query results. In Proceedings of the 24th annual IFIP WG 11.3 working con-

ference on Data and applications security and privacy, DBSec’10, pages 177–192, Berlin,

Heidelberg, 2010. Springer-Verlag.

[98] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying complete-

ness of relational query results in data publishing. In Proceedings of the 2005 ACM SIG-

MOD international conference on Management of data, SIGMOD ’05, pages 407–418, New

York, NY, USA, 2005. ACM.

[99] HweeHwa Pang, Jilian Zhang, and Kyriakos Mouratidis. Scalable verification for out-

sourced dynamic databases. Proc. VLDB Endow., 2(1):802–813, August 2009.

[100] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct com-

putation. Cryptology ePrint Archive, Report 2011/587, 2011. http://eprint.iacr.

org/.

[101] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct com-

putation. In Proceedings of the 10th theory of cryptography conference on Theory of Cryp-

tography, TCC’13, pages 222–242, Berlin, Heidelberg, 2013. Springer-Verlag.

[102] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures of correct com-

putation. In TCC, pages 222–242, 2013.

122

[103] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Authenticated

hash tables. In Proceedings of the 15th ACM conference on Computer and communications

security, CCS ’08, pages 437–448, New York, NY, USA, 2008. ACM.

[104] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal verifi-

cation of operations on dynamic sets. Cryptology ePrint Archive, Report 2010/455, 2010.

http://eprint.iacr.org/.

[105] Charalampos Papamanthou, Roberto Tamassia, and Nikos Triandopoulos. Optimal verifi-

cation of operations on dynamic sets. In Phillip Rogaway, editor, Advances in Cryptology

ï¿œC CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pages 91–110.

Springer Berlin / Heidelberg, 2011.

[106] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify

in public: verifiable computation from attribute-based encryption. In Proceedings of the

9th international conference on Theory of Cryptography, TCC’12, pages 422–439, Berlin,

Heidelberg, 2012. Springer-Verlag.

[107] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to delegate and verify in

public: Verifiable computation from attribute-based encryption. In TCC, pages 422–439,

2012.

[108] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proc. of EUROCRYPT,

pages 457–473, 2005.

[109] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Proceedings of the

14th International Conference on the Theory and Application of Cryptology and Information

Security: Advances in Cryptology, ASIACRYPT ’08, pages 90–107, Berlin, Heidelberg,

2008. Springer-Verlag.

[110] Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, October 1992.

123

[111] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Proc.

of TCC, pages 457–473, 2009.

[112] Elaine Shi, John Bethencourt, Hubert T.-H. Chan, Dawn Xiaodong Song, and Adrian Perrig.

Multi-dimensional range query over encrypted data. In Proc. of IEEE S&P, pages 350–364,

2007.

[113] Sean W. Smith, Elaine R. Palmer, and Steve Weingart. Building a high-performance, pro-

grammable secure coprocessor. In Computer Networks, pages 831–860, 1999.

[114] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical techniques for searches

on encrypted data. In Proc. of IEEE S&P, pages 44–, 2000.

[115] Roberto Tamassia and Nikos Triandopoulos. Certification and authentication of data struc-

tures. In AMW, 2010.

[116] Qiang Tang. Towards public key encryption scheme supporting equality test with fine-

grained authorization. In ACISP, pages 389–406, 2011.

[117] Brian Thompson, Stuart Haber, William G. Horne, Tomas Sander, and Danfeng Yao.

Privacy-preserving computation and verification of aggregate queries on outsourced

databases. In Privacy Enhancing Technologies, pages 185–201, 2009.

[118] Boyang Wang, Ming Li, S.S.M. Chow, and Hui Li. Computing encrypted cloud data effi-

ciently under multiple keys. In Communications and Network Security (CNS), 2013 IEEE

Conference on, pages 504–513, Oct 2013.

[119] Brent R. Waters, Dirk Balfanz, Glenn Durfee, and Diana K. Smetters. Building an encrypted

and searchable audit log. In Proc. of NDSS, 2004.

[120] Yuanfeng Wen, Yuanfeng Wen, Jonghyuk Lee, Ziyi Lu, Qingji Zheng, Weidong Shi,

Shouhuai Xu, and Taeweon Suh. Multi-processor architectural support for protecting virtual

124

machine privacy in untrusted cloud environment. In Proceedings of 2013 ACM International

Conference on Computing Frontiers, CF’13, 2013.

[121] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. Integrity auditing of outsourced

data. In Proceedings of the 33rd international conference on Very large data bases, VLDB

’07, pages 782–793. VLDB Endowment, 2007.

[122] Jia XU and Ee-Chien CHANG. Authenticating aggregate range queries over multidimen-

sional dataset. Cryptology ePrint Archive, Report 2010/050, 2010. http://eprint.

iacr.org/.

[123] Guomin Yang, Chik How Tan, Qiong Huang, and Duncan S. Wong. Probabilistic public key

encryption with equality test. In CT-RSA, pages 119–131, 2010.

[124] Yin Yang, Dimitris Papadias, Stavros Papadopoulos, and Panos Kalnis. Authenticated join

processing in outsourced databases. In Proceedings of the 35th SIGMOD international

conference on Management of data, SIGMOD ’09, pages 5–18, New York, NY, USA, 2009.

ACM.

[125] Yin Yang, Stavros Papadopoulos, Dimitris Papadias, and George Kollios. Spatial outsourc-

ing for location-based services. In Proceedings of the 2008 IEEE 24th International Con-

ference on Data Engineering, ICDE ’08, pages 1082–1091, Washington, DC, USA, 2008.

IEEE Computer Society.

[126] Bennet Yee. Using secure coprocessors. Technical report, Carnegie Mellon University,

1994.

[127] Lan Zhang, Xiang-Yang Li, Yunhao Liu, and Taeho Jung. Verifiable private multi-party

computation: Ranging and ranking. In INFOCOM, pages 605–609, 2013.

125

[128] Qingji Zheng and Shouhuai Xu. Verifiable delegated set intersection operations on out-

sourced encrypted data. Cryptology ePrint Archive, Report 2014/178, 2014. http:

//eprint.iacr.org/.

[129] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. Efficient query integrity for outsourced

dynamic databases. In Proceedings of the 2012 ACM Workshop on Cloud computing secu-

rity workshop, CCSW ’12, pages 71–82, New York, NY, USA, 2012. ACM.

[130] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. Vabks: Verifiable attribute-based key-

word search over outsourced encrypted data. Cryptology ePrint Archive, Report 2013/462,

2013. http://eprint.iacr.org/.

126

VITA

Qingji Zheng was born in Fujian province, China. He received his B.S. degree from Beihang

University in 2006, and M.SC. degree from Shanghai Jiaotong University in 2009. He started his

Ph.D. study at University of Texas at San Antonio from September 2009.

	Blank Page

