
ATTRIBUTE-BASED ACCESS CONTROL MODELS AND IMPLEMENTATION IN

CLOUD INFRASTRUCTURE AS A SERVICE

APPROVED BY SUPERVISING COMMITTEE:

Ravi Sandhu, Ph.D., Co-Chair

Ram Krishnan, Ph.D., Co-Chair

Rajendra V. Boppana, Ph.D.

Hugh Maynard, Ph.D.

Jianwei Niu, Ph.D.

Accepted:
Dean, Graduate School

Copyright 2014 Xin Jin
All rights reserved.

DEDICATION

This dissertation is dedicated to all my family, particularly to my wife, Xiaoyan, who patiently

support me all the way. I must also thank all my friends.

ATTRIBUTE-BASED ACCESS CONTROL MODELS AND IMPLEMENTATION IN

CLOUD INFRASTRUCTURE AS A SERVICE

by

XIN JIN, M.Sc

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
May 2014

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3621110
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

UMI Number: 3621110

ACKNOWLEDGEMENTS

First, I would like to thank my advisors Prof. Ravi Sandhu and Prof. Ram Krishnan for their

professional guidance. Without their help, I could not accomplish my research. They have pro-

vided guidance on how to do research and also provided great research topics which motivate me

to grow and learn faster. They taught me to learn not only how to find and solve practical technical

problems but also how to be a better person in life. They always emphasized that contributing to

real world problems is more important than just submitting paper to top conferences, which is one

of the most important takeaways from Ph.D life.

Second, I would like to express gratitude to my other committee members Prof. Rajendra V.

Boppana, Prof. Hugh Maynard and Prof. Jianwei Niu for their valuable comments and suggestions.

Third, I would like to thank my colleagues and friends in the lab. We learned the tools for

implementation together and they’ve provided great help when I got stuck in programming issues.

Especially, I want to thank Farhan Patwa, director of our lab. Without him, I could not finish

the implementation project, which is a crucial part of my dissertation. During this period, I gain

industry level experience from which further benefit me in job hunting.

May 2014

iv

ATTRIBUTE-BASED ACCESS CONTROL MODELS AND IMPLEMENTATION IN

CLOUD INFRASTRUCTURE AS A SERVICE

Xin Jin, Ph.D.
The University of Texas at San Antonio, 2014

Supervising Professors: Ravi Sandhu, Ph.D. and Ram Krishnan, Ph.D.

Recently, there has been considerable interest in attribute-based access control (ABAC) to over-

come the limitations of the classical access control models (i.e, discretionary-DAC, mandatory-

MAC and role based-RBAC) while unifying their advantages. The general idea of ABAC is to

determine access control based on the attributes of involved entities. Example user attributes are

department, clearance and role and example object attributes are size, createT ime and owner.

Authorization results are computed based on subject and object attributes and authorization poli-

cies. As attributes can be engineered to reflect appropriately detailed information about users,

subjects and objects, ABAC ensures great flexibility in expressing fine-grained policies which are

increasingly required by applications.

There has been considerable prior work for ABAC in various aspects such as formal models,

enforcement models, implementation standards, policy composition languages and so on. How-

ever, there is no consensus on precisely what is meant by ABAC or the required features of ABAC.

There is no widely accepted formal ABAC model as there are for DAC, MAC and RBAC. Ques-

tions such as what are the core components and configuration points of ABAC, and how are at-

tributes assigned and modified remain to be fully investigated.

In this dissertation, we conduct a systematic study of ABAC models. Based on the sizable

related work on ABAC and on existing classical access control models, we design models that

cover operational and administrative ABAC. More specifically, the contributions are summarized

into two parts. In the formal model part, we first define the ABACα model that has “just sufficient”

features to be “easily and naturally” configured to do DAC, MAC and RBAC. We understand

DAC to mean owner-controlled access control lists, MAC to mean lattice-based access control

v

with tranquility and RBAC to mean flat and hierarchical RBAC. We design basic components,

configuration points and configuration languages for this model and give ABACα configurations

for DAC, MAC and RBAC. To further extend the expressive power, we develop ABACβ model

based on ABACα. The basic motivation is to cover advanced features of the standard RBAC model

as well as RBAC extensions. We show that without additional configuration points, ABACβ is able

to unify numerous well-documented extended features for RBAC. We conjecture that ABACβ can

serve as the most general ABAC model excluding attribute mutability as defined in usage control

models. Secondly, based on the operational model, we design an administrative model called

generalized user-role assignment model (GURA) to manage user attributes using administrative

roles. We carry out comprehensive complexity analysis for the user-attribute reachability problem

in GURA.

In the proof of concept part, we demonstrate the advantage of ABAC by applying it as an

access control model in Infrastructure as a Service (IaaS) cloud, building upon the theoretical

models enumerated above. We show the flexibility of our ABAC model by comparing it with

existing IaaS models, which are primarily role-based. We design operational and administrative

models for cloud IaaS. We define different enforcement models and implement them on a widely

deployed open-source cloud platform OpenStack. Performance evaluation is provided to reflect

the cost incurred by enforcing ABAC.

vi

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . v

List of Tables . xi

List of Figures . xiii

Chapter 1: Introduction and Motivation . 1

1.1 Motivation . 1

1.2 Research Challenges . 5

1.3 Contribution . 7

1.4 Organization . 8

Chapter 2: Related Work . 10

2.1 Classical Access Control Models . 10

2.1.1 Discretionary Access Control . 10

2.1.2 Mandatory Access Control . 10

2.1.3 Role based Access Control Model . 11

2.2 Related Work of ABAC Model . 12

2.2.1 Formal Model . 12

2.2.2 Policy Specification Language . 13

2.2.3 Enforcement Model . 14

2.2.4 Attribute-based Encryption . 14

2.3 Related Work for Attribute Administrative Model 15

vii

Chapter 3: Attribute Based Access Control Models . 17

3.1 Scope . 17

3.2 ABACα Model . 19

3.2.1 Model Requirement . 20

3.2.2 Model Overview . 21

3.2.3 Formal Model . 23

3.2.4 Configurations for Classical Models . 29

3.2.5 Formal Proof of Equivalence . 31

3.3 ABACβ Model . 38

3.3.1 Scope of RBAC Models . 38

3.3.2 Brief Overview of Covered RBAC Extensions 39

3.3.3 Summary of Required Features . 44

3.3.4 Model Overview . 47

3.3.5 Formal Model . 48

3.3.6 Configuration Examples . 53

3.3.7 Expressive Power Discussion . 59

3.4 Conclusion . 61

Chapter 4: Role based User Attribute Administrative Model and Policy Analysis 63

4.1 Scope . 63

4.2 User-Role Assignment Model . 64

4.2.1 The URA97 Grant Model . 65

4.2.2 The URA97 Revoke Model . 66

4.3 Generalized User-Role Assignment Model (GURA) 66

4.3.1 Preliminaries . 67

4.3.2 GURA Models . 70

4.4 User Attribute Reachability Analysis . 72

viii

4.4.1 Motivation for Reachability Analysis . 72

4.4.2 rGURA Scheme . 75

4.4.3 User Attribute Reachability Problem Definition 77

4.4.4 Analysis Result . 80

4.4.5 Formal Proofs . 83

4.4.6 Experimental Results . 96

4.5 Conclusion . 99

Chapter 5: ABAC for Cloud Infrastructure as a Service in Single Tenant 100

5.1 Motivation . 100

5.2 Access Control Approach for Cloud IaaS for Single Tenant 104

5.3 Related Work . 105

5.3.1 Access Control Models in Cloud IaaS . 105

5.3.2 Other IaaS Models in the Literature . 108

5.4 Requirements of Access Control in IaaS Cloud 109

5.5 Formal IaaS Models . 111

5.5.1 The Operational Model IaaSop . 113

5.5.2 The Administrative Model IaaSad . 117

5.6 Openstack Based Proof Of Concept . 124

5.6.1 Access Control in OpenStack . 125

5.6.2 Enforcement Models . 126

5.7 Performance Evaluation . 128

5.7.1 Experiment Content . 128

5.7.2 Experiment Environment and Results . 129

5.7.3 Conclusion . 131

Chapter 6: Conclusion and Future Work . 132

6.1 Summary . 132

ix

6.2 Future Work . 132

Bibliography . 135

Vita

x

LIST OF TABLES

Table 3.1 ABACα Intrinsic Requirements . 20

Table 3.2 Basic Sets and Functions of ABACα . 23

Table 3.3 Policy Configuration Points and Languages of ABACα 25

Table 3.4 Definition of CPL . 25

Table 3.5 Functional Specification . 27

Table 3.6 DAC (Owner-controlled Access Control Lists) Configuration 29

Table 3.7 MAC Configuration . 30

Table 3.8 RBAC Configurations . 31

Table 3.9 Additional Features Required for ABACβ to Cover RBAC and Extended Models . 46

Table 3.10 Basic Sets and Functions of ABACβ . 49

Table 3.11 Policy Configuration Points of ABACβ . 50

Table 3.12 Definition of Enhanced CPL . 50

Table 3.13 ABACβ Configuration for OASIS-RBAC Without Role Membership Rule 53

Table 3.14 ABACβ Configuration for ROBAC . 54

Table 3.15 ABACβ Configuration for Role Template . 55

Table 3.16 ABACβ Configuration for Spatial and Temporal RBAC 56

Table 3.17 ABACβ Configuration for Task-RBAC 2003 57

Table 3.18 ABACβ Configuration for Ubi-RBAC . 58

Table 3.19 ABACβ Configuration for RBAC_ARE 60

Table 4.1 Role Range Notation . 65

Table 4.2 can_assign with Prerequisite Roles . 66

Table 4.3 Examples of can_revoke . 66

Table 4.4 Example User Attributes . 70

Table 4.5 Example Rules in GURA Schemes . 71

xi

Table 4.6 State Transition Function δ : Γ×Request→ Γ 76

Table 5.1 Requirements for Cloud IaaS Access Control 109

Table 5.2 Basic Sets and Functions for IaaSop Model 115

Table 5.3 Complete List of Operations for Tenant Regular Users 117

Table 5.4 Formal Definition For IaaSad Model . 119

xii

LIST OF FIGURES

Figure 1.1 Access Control Example . 2

Figure 1.2 Timeline of Classical Access Control Models [120] 2

Figure 1.3 Current Status of ABAC [120] . 5

Figure 1.4 Structure of RBAC Model . 6

Figure 1.5 Dissertation Contribution . 7

Figure 2.1 The Structure of NIST-RBAC Model [57] . 12

Figure 3.1 Unified ABAC Model Structure . 22

Figure 3.2 RBAC Extesions Covered by ABACβ . 39

Figure 3.3 ABACβ Model Structure . 47

Figure 4.1 Example Role and Administrative Role Hierarchies 64

Figure 4.2 Example User Attribute Reachability Problem 73

Figure 4.3 Complexity Results for Different Classes of Reachability Problems 82

Figure 4.5 Performance Evaluation of Algorithm 1 With Various Parameters 97

Figure 4.6 Performance Evaluation of Algorithm 2 With Various Parameters 98

Figure 5.1 Access Control in IaaS Cloud . 101

Figure 5.2 Access Control Challenges In IaaS Cloud 103

Figure 5.3 Amazon Web Service Access Control in Single Tenant 106

Figure 5.4 OpenStack Access Control in Single Tenant 107

Figure 5.5 IaaSop and IaaSad For Single Tenant Access Control 112

Figure 5.6 Components of OpenStack . 125

Figure 5.7 OpenStack Authorization Using Asymmetric Keys 126

Figure 5.8 Proposed ABAC Enforcement Model I 127

Figure 5.9 Proposed ABAC Enforcement Model II and III 128

xiii

Figure 5.10 OpenStack Installation On Physical Machines 130

Figure 5.11 Average Time for Token Generation in Keystone 130

Figure 5.12 Average Time for Nova Communicating with PolicyEngine 131

xiv

Chapter 1: INTRODUCTION AND MOTIVATION

Access control is one of the earliest problems in computer security and remains a continuing chal-

lenge. Access control component determines whether requests to access resources are granted.

The entity making the request is typically called a subject, which is usually a program or process

operating on behalf of a user. A user is an entity who interacts with the system and accesses re-

sources. As shown in figure 1.1, a subject requests to access objects which are resources (e.g.,

mp3 file, documents, networks) on behalf of users. Objects are protected by access control. After

authenticating the user and receiving the request information from the subject, the access control

component either grants or denies the request based on the provided information and the authoriza-

tion policy. Depending on the information required for authorization and the process of making

decisions, different access control models can be implemented for various purposes.

1.1 Motivation

Starting with Lampson’s access matrix in the late 1960’s, dozens of access control models have

been proposed. Only three have achieved success in practice: discretionary access control (DAC) [123],

mandatory access control (MAC, also known as lattice based access control or multilevel secu-

rity) [121] and role-based access control (RBAC) [57, 122] (see figure 1.2). DAC controls access

based on the identity of subjects and MAC makes access control decision based on the security

level of subjects and objects. In RBAC, permissions are encapsulated in roles which are further

assigned to users. Users activate assigned roles to get the permissions associated with the roles.

These three models have deep conceptual, theoretical and intuitive foundations, and demonstrably

address real-world practitioners’ concerns.

In DAC, information may be accessed by unauthorized users because there is no control on

copies of objects. MAC deals with information flow and solves this problem by attaching security

levels on both users and objects. All users are required to obtain certain clearance to access objects.

Security labels propagate to derivative objects, including copies. However, the policies in DAC and

1

Figure 1.1: Access Control Example

Figure 1.2: Timeline of Classical Access Control Models [120]

MAC are fixed and there is no room for flexible access control. RBAC emerged due to increasing

practitioner dissatisfaction with the then dominant DAC and MAC paradigms, inspiring academic

research on RBAC. Since then RBAC has become the dominant form of access control in practice.

While DAC and MAC emerged in the early 1970’s it took another quarter century for RBAC to

develop robust foundations and flourish.

Recently there has been growing practitioner concern with the limitations of RBAC. For exam-

ple, role explosion is caused by the situation where each role requires different sets of permissions

and large number of roles have to be defined. Role engineering also delays the deployment of

RBAC as it is the most costly process before deployment. Those limitations have been met by re-

searchers in two different ways. On one hand researchers have diligently and creatively extended

RBAC in numerous directions. For examples, role activation process has been extended to be con-

strained by contextual information such as time and location [67, 81], prerequisite roles [17] and

2

so on. Users are associated with additional information besides role, such as organization [151],

group [96] and team [11, 137]. Permission is also extended to include purpose and conditions to

support privacy aware RBAC [103]. More examples can be found in section 2.2. However, those

extensions are proposed for specific purpose where customized RBAC is required. There is no

framework which can combine the advantages of these extensions. Further extension to this model

is not possible unless a new model is designed. The lack of inherent extendability of RBAC dis-

courages deployment of its extensions since they are not general purpose. Beside extensions to

RBAC, other models are proposed to overcome the limitations of traditional models. Examples

are organization based access control [83], task based access control [136], and relationship based

access control [58]. However, they too are developed for specific application context such as social

networks and organizations, rather than for general purpose.

There is growing appreciation that a more general model, specifically attribute-based access

control (ABAC), could encompass the demonstrated benefits of DAC, MAC and RBAC while

transcending their limitations. Intuitively, an attribute is a property expressed as a name:value

pair associated with any entity in the system, including users, subjects and objects and even at-

tributes themselves. Appropriate attributes can capture identities and access control lists (DAC),

security labels, clearances and classifications (MAC) and roles (RBAC). Languages for specifying

permitted accesses based on the values and relationships among these attributes provide policy

flexibility and customization. As such ABAC supplements and subsumes rather than supplants

these currently dominant models. Moreover any number of additional attributes such as location,

time of day, strength of authentication, departmental affiliation, qualification, and frequent flyer

status, can be brought into consideration within the same extensible framework of attributes. Thus

the proliferation of RBAC extensions might be unified by adding appropriate attributes within a

uniform framework, solving many of these shortcomings of core RBAC. At the same time we

should recognize that ABAC with its flexibility may further confound the problem of role design

and engineering. Attribute engineering is likely to be a more complex activity, and a price we may

need to pay for added flexibility. As shown on the left hand side of figure 1.2, ABAC provides

3

richer policy expressive power compared with traditional models. However, the proliferation and

flexibility of policy configuration points in ABAC leads to greater difficulty in policy expression

and comprehension relative to the simplicity of DAC, MAC and RBAC. It will require strong and

comprehensive foundations for ABAC to flourish. As shown on the right hand side of figure 1.2,

ABAC provides automation in access control compared to human administration in classical mod-

els. For example, in RBAC role has to be manually assigned to users before authorization while in

ABAC, once the authorization policy is composed, authorization can be computed at the time of

the request and permissions do not need to be pre-assigned to users.

Although considerable related research has been published and even formal models have been

proposed for ABAC, there is still lack of a comprehensive model which precisely describes the

constituent components and operations of ABAC. The related work mainly falls into the follow-

ing four categories: authorization process, policy specification language, enforcement models and

implementations. For example, UCON [111] and [141] mainly focus on the rich features in au-

thorization process. The problem addressed by UCON is how to process authorization given the

attributes and values from subject1 and object. UCON specifies mutable attributes and continuous

enforcement. [149] focuses on how to enforce ABAC based on the web infrastructure. This work is

not at policy level rather based on certain ABAC enforcement models. [51,75] focus on languages

for specifying interesting and useful policies and propose features of languages such as richer

decision (e.g., grant, deny, not applicable, error) and policy compliance (e.g., HIPPA). This ad-

dresses only one component of ABAC. XACML [2] provides a standardized mechanism to specify

ABAC authorization policy, request and policy evaluation. Many authors following XACML have

focused on conflict resolution (e.g., deny-override), policy integration and redundant resolution.

Further discussion of related work can be found in section 2.

While it is generally accepted that ABAC provides flexible access control and supplements the

limitations of traditional models, there is yet no agreement on a formal ABAC model. Fundamen-

tal questions such as components of core models lack authoritative answers, let alone a widely

1User and subject are not explicitly distinguished in UCON. We later demonstrate this distinction is needed.

4

Figure 1.3: Current Status of ABAC [120]

accepted ABAC model. Formal and systematic study are needed to enhance the concept of ABAC.

The ABAC situation today is analogous to RBAC in its pre-1992 pre-RBAC and 1992-1996 early-

RBAC periods [61]. The development of RBAC model is illustrated in figure 1.3 which shows the

state of RBAC model during the years 1992 to 2008. This figure is adopted from a survey paper

of RBAC [61]. The y-axis shows the number of the related publications and the x-axis shows

the year and publication numbers of RBAC-related paper. Much as RBAC concepts were around

for decades (from early 1970s to 1996) before their formalization as shown in figure 1.3, nascent

ABAC notions have been around for a while (see related work). This dissertation focuses on the

formal model of ABAC, providing foundations towards a widely agreed formal ABAC model.

1.2 Research Challenges

In order to define a formal ABAC model, we start by looking at the development path of the

successful RBAC model from 1992 to date. Firstly, what should a formal model look like and

what are the core features. For this purpose, we review the successful RBAC model in figure 1.4.

This formal model defines the core components and configuration points.

• Core components. This part defines the basic sets and function of the model. Those include

5

the required information for all authorization decisions. In the case of RBAC, user, roles,

objects and operations are defined.

• Model configuration. The green box represents security architects who can configure the

model using configuration points. In RBAC, roles are the only configuration point (other

than defining the basic sets).

In this dissertation we define the similar parts for ABAC models.

Figure 1.4: Structure of RBAC Model

Secondly, administrative model needs to be defined to manage the operational model. In the

context of RBAC, this deals with issues such as user-role assignment, role-permission assignment,

role hierarchy design and so on. The blue box in figure 1.4 represents security administrators

who can decide user-role assignment and role-permission assignment. Similarly, a corresponding

model is required to deal with attribute administration in ABAC.

The above motivation focuses on the need to develop a systematic investigation on formal

ABAC models. However, another challenge is to demonstrate that the ABAC model defined in this

dissertation is well suited to practical applications. Thus, we need to present a concrete example

where an ABAC model satisfies the specific requirements of that application.

6

Figure 1.5: Dissertation Contribution

1.3 Contribution

We summarize the contribution in figure 1.5 and we explain them as follows:

• ABAC Models. Two ABAC models are proposed with increasing expressive power.

– ABACα Model. With the widely deployment of the classical models in many different

areas, an ABAC model that cannot configure these models would not be acceptable

as it will discourage users from adopting ABAC. Thus, an initial ABACα model is

defined with the purpose of establishing the connections between classical models and

ABAC. ABACα is designed with the “least” features to cover DAC, MAC and RBAC.

It provides four configuration points. With proper specifications, this framework can

simulate those classical models. This basic ABAC model serves as the starting point of

our ABAC research.

– ABACβ Model. To further enhance the expressive power of ABAC model, we build

an extended model by exploring the required features of ABAC to express RBAC-

related extensions. We choose this direction because of the wide adoption of RBAC

and proliferation of RBAC-extended models.

• – User attribute administrative model. The assumption in ABAC models is that user

attributes are administered by separate administrative models. In this part, we define

an administrative model GURA (generalized user-role assignment) by extending user-

role administration model. It provides ARBAC97 style user attributes administration. It

7

takes advantages of RBAC to manage user attributes. The core idea is that permissions

to modify user attributes are associated with administrative roles. Administrators are

made members of these roles, thus obtaining associated permissions. It is also possible

to use ABAC to administer ABAC. However, the model we provide here is sufficient

for this purpose and serves as the starting point for future research.

– User attribute reachability analysis. This topic studies the user-attribute reachability

problems in a restricted version of the GURA model called rGURA. For this purpose,

we formalize the model as a state transition system. We show that the reachability

problems for general cases of rGURA are PSPACE-complete. However, we do find

polynomial-time solutions to reachability problems for limited versions of rGURA that

are still useful in practice. The algorithms not only answer reachability problem but

also provide a “plan” of sequential attribute updates by different administrators in order

to reach particular values for user attributes. Some open questions and future research

directions are discussed.

• ABAC model for access control in cloud infrastructure as a service. We demonstrate

proof of concept by utilizing ABAC in the area of access control for Infrastructure as a Ser-

vice cloud. We analyze the requirement of access control in IaaS cloud and motivate the

advantages of ABAC by showing that ABAC satisfies these requirements. More specifically,

we design operational and administrative model for IaaS cloud and implement proof-of-

concept based on widely deployed open-source platform OpenStack. Performance evalua-

tion is carried out to evaluate the cost of enforcing ABAC.

1.4 Organization

Related work is discussed in chapter 2. We introduce formal ABAC models in chapter 3. Chapter

4 introduces administrative model for ABAC. These chapters complete our formal policy level

contributions. Chapter 5 provide proof-of-concept by motivating ABAC as a suitable access control

model for single tenants in cloud IaaS. Our implementation use the widely deployed cloud platform

8

OpenStack. We provide an evaluation of the performance. Chapter 6 concludes the dissertation

and discusses future work.

9

Chapter 2: RELATED WORK

2.1 Classical Access Control Models

2.1.1 Discretionary Access Control

We understand DAC as user-discretionary access control [123]. DAC governs the access of users to

the information on the basis of the user’s identity and authorizations that specify, for each user and

object in the system, the access modes (e.g., read, write, execute) the user is allowed on the object,

i.e., access list for each object. Each request of a user to access an object is checked against the

specified authorization. If there is an authorization specifying that the user can access the object in

the specific mode, the request is granted, otherwise, denied. In user-discretionary access control,

the users become the owner of an object created by them and they are the only one who can specify

the authorization policy on those objects and destroy the object. While some models allow transfer

and sharing of ownership, for the most part ownership cannot be transferred to another user in

DAC models. For example, Alice creates object A in the system and thus becomes the owner. If

user Alice requests to read object A, it is authorized because Alice is the creator of object A. Alice

is the only one who can grant and revoke the access on object A for other users. Alice then can

grant Bob to read and write object A.

DAC has been widely used in industrial and commercial environments. One drawback of DAC

is that the information flow is not enforced. For example, a user who is authorized to read the

data can bypass access controls by creating a copy and sharing it with other users without the

cognizance of the owner. The reason is that DAC does not impose any restriction on copies of

objects.

2.1.2 Mandatory Access Control

Mandatory access control (MAC) [121] governs access based on the classification of subjects and

objects in the system. Each user, subject and object in the system is assigned a security level. The

10

security level associated with an object reflects the sensitivity of the information contained in the

objects, i.e., the potential damage that could result from unauthorized disclosure of the information.

The security level associated with a user also called clearance reflects the user’s trustworthiness

not to disclosure sensitive information to users not cleared to see it. Request from users to object

is granted only if some relationship is satisfied between the security levels associated with the two.

In particular, the following properties hold, where γ signifies the security label of the indicated

subject or object.

• Simple Security Property. Subject s can read object o if the security level of s is equal or

higher than that of the object o, i.e., γ(s) ≥ γ(o).

• Liberal ?-Property. Subject s can write object o if the security level of subject is equal or

lower than that of the object, i.e., γ(s) ≤ γ(o).

• An alternative to liberal star property is Strict ?-Property. Subject can write object if the

security level of subject is the same of that of the object, i.e., γ(s) = γ(o).

However, many practical requirements are not covered by MAC as it rises from rigid environ-

ment (e.g., military, national intelligence, civilian government) and it does not satisfy requirements

of commercial enterprises.

2.1.3 Role based Access Control Model

The basic structure of role based access control (RBAC) [57] is shown in figure 2.1. It regulates

user access control on the basis of the activities the users execute in the system. Roles define the

meanings of the activities and are associated with a set of permissions which are operations on

objects. Users are then assigned to certain set of roles and get the permissions associated with

the roles. Users can activate any subset of the assigned roles in any sessions. A request made by

users with certain roles is authorized if the user has currently activated a role which contains the

permission. Advanced features of RBAC include role hierarchy and constraints. Role hierarchy

defines partial order between roles. Senior roles inherit all permissions from junior roles. This

11

Figure 2.1: The Structure of NIST-RBAC Model [57]

feature in RBAC provides ease in system administration. Many security assurance can be achieved

using RBAC such as least privilege, static and dynamic separation of duties and so on.

2.2 Related Work of ABAC Model

There are a large number of related research and they can be categorized into four classes discussed

as follows.

2.2.1 Formal Model

The first category is theoretical access control models. Role based trust management (RT) [95]

provides a set of role assignment credentials. The only attribute is role and the authorization

policy is the same as that in role based access control and is not configurable. Policy Machine

(PM) [70] is proposed to provide a unified framework to support a wide range of attribute-based

policies or policy combinations through a single mechanism that requires changes only in its data

configuration. The National Institute of Standards and Technology (NIST) recently released a first

draft ABAC model [69]. This draft provides detailed guidelines in various aspects of enterprise

ABAC while no formal model is provided. The UCON usage control model [111] focuses on

usage control where authorizations are based on the attributes of the involved components. It is

attribute-based but, rather than dealing with core ABAC concepts, it focuses on advanced access

control features such as mutable attributes, continuous enforcement, obligations and conditions.

12

UCON more or less assumes that an ABAC model is in place on top of which the UCON model

is constructed. [141] models authorization policy of access control using logic programming with

set constraints of a computable set theory. Similarly with UCON, this work focuses only on one

component in ABAC which is authorization. It is based on the assumption that users and objects

are associated with sets of attributes.

2.2.2 Policy Specification Language

The second category is on authorization policy specification languages. SecPAL [21, 24] has a

concrete syntax consisting of simple statements close to natural language. DYNPAL [23] and

SMP [22] enable specifying modifications to the system state in authorization. [141] proposes to

specify authorization policies using set theory to ensure consistency and completeness. Binder [54]

is an extension to the datalog logical-programming language. In Soutei [112] policies and cre-

dentials are written in a declarative logic-based security language. [28] proposes a formal frame-

work based on C-Datalog language. Rule-based policy specification [12] enables authorization

policy specification based on system behavior. Other examples are SPKI/SDSI [55], extensi-

ble access control markup language (XACML) [2] and enterprise privacy authorization language

(EPAL) [85]. There has been considerable research based on XACML. [114] simplifies XACML

policies by providing an ontology-based attribute management facility. Other examples are pol-

icy integration [99, 115], policy evaluation [97], conformance checking [71] and policy deriva-

tion [143]. Xu et al [146] propose authorization policy mining. PolicyMorth [92] proposes a

framework to support interactive ABAC policy specification and maintenance. In summary, all

these work focus on how authorization policy can be specified and evaluated. While authorization

policy is an important component of ABAC, these authors do not present comprehensive formal

models for ABAC.

13

2.2.3 Enforcement Model

The third category is about concerns on enforcement of ABAC systems. This class deals with

problems such as how to represent, store, transfer and authenticate attributes. In credential based

access control [91], attribute assertions of subject and environment are encoded in verifiable digital

credentials issued by trusted third-party certifiers. [46] demonstrates that ABAC can be used as a

primary authorization and authentication mechanism for legacy or modern enterprise systems, but

it is based only on RT model. Akenti [138] is an authorization service based on X.509. Information

communication between service requester and service provider are investigated. PolicyMaker [32]

proposes an approach to trust management. KeyNote [31] and SPKI/SDSI [47] use credentials to

delegate permissions. Automated trust negotiation [34, 35, 142] deals with credential disclosure

before authorization evaluation. [60] presents an efficient protocol that protects both sensitive cre-

dentials and policies. [13,37,128] deal with privacy concerns in requester attribute release. [86,149]

discusses general ABAC implementation architecture for web service. Although these works pro-

vide tools for enforcing ABAC, they do not present the full picture of theoretical aspect of ABAC

such as subject and user distinction.

2.2.4 Attribute-based Encryption

The fourth category is attribute based encryption (ABE). It is proposed to support fine-grained

sharing of encrypted data. In this kind of systems, cipher-texts are labeled with sets of attributes

and private keys are associated with access structures. The decryption of a ciphertext thus is

possible only if the set of attributes of the user key matches the attributes of the ciphertext. [117]

allowed for decryption when at least k attributes overlap between a cipher-text and a private key.

Key-Policy Attribute-Based Encryption (KP-ABE) [65] extends the above work to associate policy

tree instead of lists of attributes with private keys. Ciphertext-Policy Attribute-Based Encryption

(CP-ABE) [30] on the other hand enables encryptor to associate policy trees with cipher-text. [109]

extends KP-ABE so that private keys can represent non-monotone access formula over attributes.

14

[45] enables multiple authorities to monitor attributes and distribute secret keys. In summary, ABE

is a method for securely enforcing ABAC policies on data sharing and access control. Due to the

complexity and cost, the access control policies (logical AND, OR, NOT, etc.) included in these

techniques are very limited in expressive power.

2.3 Related Work for Attribute Administrative Model

Firstly, we introduce the related work to user-attribute administration model. There are very limited

number of models proposed for this purpose. However, we find that the administrative model

for user-role assignment is highly related. Administrative role based access control (ARBAC97)

[118] manages user-role assignment, permission-role assignment and role-hierarchy for RBAC.

The major concept for user-role assignment is that users need to be previously assigned to certain

roles in order to get new roles. Role based trust management [95] defines credentials for delegating

user-role assignment to third parties to support distributed user-role assignment. However, these

work focus on a single attribute which is role and the connection between attributes of the same

user is not covered.

Secondly, we introduce the related work for reachability analysis for user attributes. The clos-

est category of this work is the role reachability analysis on the role based administrative model

ARBAC97. Li et al [94] presented algorithms and complexity results for analysis of two restricted

versions of ARBAC97–AATU and AAR. However, this work did not consider negative precon-

ditions. Sasturkar et al [124] and Jha et al [76] presented algorithms and complexity results for

analysis of ARBAC policies subject to a variety of restrictions on how the policy can be specified.

Stoller et al [129] proposed the first fixed-parameter-tractable algorithm for analyzing ARBAC

policies. However, the algorithm only applies to rules with one positive precondition and uncon-

ditional role revocation. Stoller et al [130, 131] analyzed security on parameterized RBAC and

ARBAC97. Although the parameters of role can be considered as user attributes, all parameters

are treated as atomic-valued and are only changed together with the modification of role. Simi-

lar works are [9, 14] which presented symbolic analysis for attribute RBAC models. Our work is

15

fundamentally different from these in consideration of administration of multiple attributes includ-

ing atomic valued attributes, whereas the ARBAC97 analysis only deals with a single set-valued

attribute called role. The second category is policy analysis in attribute-based models. Gupta et

al [66] proposed rule-based administrative policy model that controls addition and removal of both

rules and facts, and a symbolic analysis algorithm for answering reachability queries. The facts of

users may be termed as attributes. However, the model does not distinguish atomic and set valued

attributes and the current version of the algorithm is incomplete. Li et al [93] discussed security

analysis in role based trust management (RT). It is different from our work in that the focus is on

delegation and trust. In addition, only one attribute, i.e. role, is considered. Jajodia et al [75] pro-

posed a policy language to express positive and negative authorizations and derived authorizations,

and they give polynomial-time algorithms to check consistency and completeness of a policy. [20]

showed how to eliminate policy mis-configurations using data mining. [53] presented security con-

straint patterns for modelling security system architecture and verifying whether required security

constraints are correctly enforced. However, this framework facilitates design and deployment

of security polices rather than run-time security analysis. [74] developed a graphical constraint

expression model to simplify constraints specification and make safety verification practical, but

does not ensure polynomial time safety checking.

16

Chapter 3: ATTRIBUTE BASED ACCESS CONTROL MODELS

3.1 Scope

Our eventual goal is to develop an authoritative family of foundational models for attribute-based

access control. We believe this goal is best pursued by means of incremental steps that advance

our understanding. ABAC is a rich platform. Addressing it in its full scope from the beginning is

infeasible. There are simply too many moving parts. A reasonable first step is to develop a formal

ABAC model, which we call ABACα, that is just sufficiently expressive to capture DAC, MAC and

RBAC. This provides us a well-defined scope while ensuring that the resulting model has practical

relevance. There have been informal demonstrations, such as [41, 111], of the classical models

using attributes. Our goal is to develop more complete and formal constructions.

In the second step, we develop the ABACβ model based on the observation that RBAC has

been dominant in access control in both industry and academia. Extensions of RBAC have been

proposed in many directions to meet the different requirements of various systems. These systems

are potential applications of ABAC because their practical applications are well-documented in

the literature. ABACβ helps understand the capability of ABAC in expressing different policies. It

also unifies numerous RBAC extensions in a single model.

ABACα and ABACβ are developed based on extensive prior research where practical moti-

vations are well-defined. We believe that ABACα model contains the core features of a future

standard ABAC model. Many extensions can be proposed based on ABACα with ABACβ be-

ing one important example. These models strongly indicate what needs to be provided as core

features of ABAC and the method to make extensions for ABAC. A standard family of ABAC

models analogous to the NIST standard family of RBAC models [57, 122] must include ABACα

and ABACβ as particular instances. Moreover it is likely to incorporate the policy configuration

and administration points identified in these two models.

To make our goals for ABACα precise we characterize DAC, MAC and RBAC as follows.

17

DAC

There are many variations of DAC models [68, 123]. The DAC we define for our purpose is user-

discretionary access control and features the following properties.

• Each user in the system is assigned a unique userID which can uniquely distinguish the

user in the system.

• The user can create a subject which can only be assigned with the same userID as the user.

The creating user becomes the only owner of the subject and only the owner can terminate

the subject. Each subject can create objects in the system. The owner of the creating subject

becomes the only owner of an object and ownership cannot be transferred.

• Each object is associated with access control lists which contain the userIDs who can access

the object in the corresponding access mode. For example, the readlist and writelist of

objects contain lists of users who can read and write the object respectively.

• Only the owner of an object can modify the access control list. The owner can add or remove

any userIDs from the access control list of the objects he or she owns. Only the owner can

destroy the object.

MAC

We understand MAC as lattice based access control (LBAC) [121] with tranquility. More specifi-

cally, we have the following characterizations.

• Each user and subject are labelled with a clearance level. Each object is labelled with a

sensitivity level. Clearance and sensitivity are from the same partially ordered set of security

levels.

• A user can create subjects at his own or lower levels than his assigned clearance and access

resources using the subject. The creating user becomes the only owner of the created subject

and is the only one who can destroy the subject.

18

• The sensitivity of objects cannot be changed after creation and users cannot modify the

clearance level of the subjects they own.

As for authorization policy, we will discuss simple security property, liberal star property and strict

star property in developing ABACα.

RBAC

The RBAC models we consider are RBAC0 and RBAC1 from NIST definition [57] and the RBAC96

model [122]. RBAC0 has the following features.

• There exists a set of roles defined by system architects and there is no partial order among

those roles. Each user is associated with a set of roles which are assigned by administrators.

Each role is associated with a set of permissions which are in the format of operations on

objects.

• Users can create sessions in the system and activate any subset of the assigned roles in a

session. The creating user thus becomes the owner of the session and is the only one who

can delete the session. When a user deletes a session, the association between the session

and activated role is also deleted. A session is essentially equivalent to a subject.

• The owner of a session can activate and deactivate the roles that he is assigned in that ses-

sion. User permissions in each session is determined by the set of activated roles within that

session.

The only difference between RBAC1 and RBAC0 is that the role set in RBAC1 is a partially

ordered where the senior roles inherit all permissions from the junior roles. In addition, users can

activate junior roles of their assigned roles in their sessions.

3.2 ABACα Model

In this section, we present the ABACα model developed to have the “least” features to cover DAC,

MAC and RBAC as defined above.

19

3.2.1 Model Requirement

The intrinsic features of ABACα that follow from the above interpretation of DAC, MAC and

RBAC are highlighted in table 3.1. This table recognizes three kinds of familiar entities: users,

subjects (or sessions in RBAC) and objects. Each user, subject and object has attributes associated

with it. The range of each attribute is either atomic valued or set valued, with atomic values

partially ordered or unordered and set values ordered by subset.

Table 3.1: ABACα Intrinsic Requirements
Subject Object
attribute attribute Subject
values values Attribute attribute

constrained constrained Attribute functions Object modification
by creating by creating range return attributes by creating

user? subject? ordered? set value? modification? user?
DAC YES YES NO YES YES NO
MAC YES YES YES NO NO NO

RBAC0 YES NA NO YES NA YES
RBAC1 YES NA YES YES NA YES
ABACα YES YES YES YES YES YES

Let us consider each column in turn.

Column 1. In all cases subject attribute values are constrained by attributes of the creating user. In

MAC, users can only create subjects whose clearance is dominated by that of the user. In RBAC,

subjects can only be assigned roles assigned to or inherited by the creating user. In DAC, MAC

and RBAC, the subject’s creator is set to be the creating user. Interestingly this is the only column

with YES values for all rows.

Column 2. For object attributes in MAC a subject can only create objects with the same or higher

sensitivity as the subject’s clearance. In DAC there is no constraint on the access control list

associated with a newly created object. It is up to the creator’s discretion. However, we recognize

that DAC has a constraint on newly created objects in that root user usually has all access rights to

every object and the owner cannot forbid this. RBAC does not speak to object creation.

Column 3. In MAC clearances are values from a lattice of security labels. In RBAC1 roles are

partially ordered by permission inheritance. DAC and RBAC0 do not require ordered attribute

20

values.

Column 4. In MAC the clearance attribute is atomic valued as a single label from a lattice.1 In

RBAC0 and RBAC1 attributes are sets of roles, and in DAC each access control list is a set of user

identities.

Column 5. In DAC the user who created an object can modify its access control lists. MAC (with

tranquility) does not permit modification of an object’s classification. RBAC0 and RBAC1 do not

speak to this issue.

Column 6. Modification of subject attributes by the creating user is explicitly permitted in RBAC0

and RBAC1 to allow dynamic activation and deactivation of roles. DAC and MAC do not require

this feature.

Each column imposes requirements on ABACα so we have YES across the entire row. Table

3.1 is, of course, not a complete list of all required features to configure the classical models, but

rather highlights the salient requirements that stem from each classical model.

3.2.2 Model Overview

The structure of the ABACα model is shown in Figure 3.1. The core components of this model are:

users (U), subjects (S), objects (O), user attributes (UA), subject attributes (SA), object attributes

(OA), permissions (P), authorization policies, and constraint checking policies for creating and

modifying subject and object attributes.

An attribute is a function which takes an entity such as a user and returns a specific value from

its range. An attribute range is determined by its scope and type. The scope of an attribute is given

by a finite set of atomic values. An atomic valued attribute will return one value from the scope,

while a set valued attribute will return a subset of the scope. In other words, the range of an atomic

valued attribute is equal to its scope while for a set valued attribute the range is the powerset of

the scope. Each user is associated with a finite set of user attribute functions whose values

are assigned by security administrators (outside the scope of the ABACα model). These attributes

1In the military lattice the lattice labels are constructed as a pair of hierarchical levels and a set of categories. If the
pair is represented as two attributes then MAC attributes can also be regarded as set valued.

21

Figure 3.1: Unified ABAC Model Structure

represent user properties, such as name, clearance, roles and gender. Subjects are created by users

to perform some actions in the system. For the purpose of this model, subjects can only be created

by a user and are not allowed to create other subjects. The creating user is the only one who

can terminate a subject. Each subject is associated with a finite set of subject attribute functions

which require an initial value at creation time. Subject attributes are set by the creating user and are

constrained by policies established by security architects. For example, a subject attribute value

may be inherited from a corresponding user attribute. This is shown in Figure 3.3 as an arrow from

user attributes to subject attributes. Objects are resources that need to be protected. Objects are

associated with a finite set of object attribute functions. Objects may be created by a subject on

behalf of its user. At creation, the object’s attribute values may be set by the user via the subject.

The values may be constrained by the corresponding subject’s attributes. For example, the new

object may inherit values from corresponding subject attributes. In Figure 3.3, the arrow from

subject attributes to object attributes indicates this relationship.

Constraints are functions which return true when conditions are satisfied and false otherwise.

Security architects configure constraints via policy languages. Constraints can apply at subject and

object creation time, and subsequently at subject and object attribute modification time.

Permissions are privileges that a user can hold on objects and exercise via a subject. Permis-

sions enable access of a subject to an object in a particular mode, such as read or write. Permissions

definition is dependent on specific systems built using this model.

22

Table 3.2: Basic Sets and Functions of ABACα
U, S and O represent finite sets of existing users, subjects and objects respectively.

UA, SA and OA represent finite sets of user, subject and object attribute functions respectively. (Henceforth also
referred to as simply attributes.)

P represents a finite set of permissions.

For each att in UA ∪ SA ∪ OA, SCOPEatt is a constant finite set of atomic values.

SubCreator: S→ U. For each subject SubCreator gives its creator.

attType: UA ∪ SA ∪ OA→ {set, atomic}. Specifies attributes as set or atomic valued.

Each attribute function maps elements in U, S and O to atomic or set values.

∀ua ∈ UA. ua : U→
{

SCOPEua if attType(ua) = atomic
2SCOPEua if attType(ua) = set

∀sa ∈ SA. sa : S→
{

SCOPEsa if attType(sa) = atomic
2SCOPEsa if attType(sa) = set

∀oa ∈ OA. oa : O→
{

SCOPEoa if attType(oa) = atomic
2SCOPEoa if attType(oa) = set

Authorization policies are two-valued boolean functions which are evaluated for each access

decision. An authorization policy for a specific permission takes a subject, an object and returns

true or false based on attribute values. More generally, access decision may be three-valued, pos-

sibly returning “don’t know” in addition to true and false. This is appropriate in multi-policy

systems. It suffices for our purpose to consider just two values. Security architects are able to

specify different authorization policies using the languages offered in this model.

3.2.3 Formal Model

The basic sets and functions in ABACα are given in Table 3.2. U is the set of existing users and UA

is a set of attribute function names for the users in U. Each attribute function in UA maps a user in

U to a specific value. This could be atomic or set valued as determined by the type of the attribute

function (attType). We specify similar sets and functions for subjects and objects. SubCreator is

a distinguished attribute that maps each subject to the user who creates it (an alternate would be to

treat this attribute as a function in SA). Finally, P is a set of permissions.

We assume the attribute functions for a given user, subject or object. can all be evaluated in

23

constant time independent of the size of U, S and O. Since the sets S and O are unbounded due

to creation of subjects and objects respectively, the overall storage for maintaining attribute values

will also grow in proportion to the number of subjects and objects. Note that the SCOPE of an

attribute must be a constant finite set, so it cannot be S or O but is permitted to be U since the set

of users remains fixed in ABACα. The latter capability is required to accommodate DAC.

We define four policy configuration points as shown in Table 3.3. The first is for authorization

policies (item 1 in table 3.3). The security architect specifies one authorization policy for each

permission. The authorization function returns true or false based on attributes of the involved

subject and object. The second configuration point is constraints for subject attribute assignment

(item 2 in table 3.3). The third is constraints for object attributes assignment at the time of object

creation (item 3 in table 3.3). The fourth is constraints for object attribute modification after the

object has been created (item 4 in table 3.3). Note that we have not provided separate configuration

points for subject attribute assignment at creation and at modification after it has been created.

Instead a single constraint covers both cases. For objects, however, we have found it is necessary

to have separate constraints in these two cases.

Policy Configuration Languages. Each policy configuration point is expressed using a spe-

cific language. The languages specify what information is available for the functions that configure

the four points discussed above. For example, in ConstrSub function, only attributes from the user

who wants to create the subject as well as the proposed subject attribute values are allowed. Since

all specification languages share the same format of logical structure while differing only in the

values they can use for comparison, we define a template called Common Policy Language (CPL).

CPL is not a complete language since the symbols set and atomic are left unspecified. It can be

instantiated differently for each configuration point by further specifying these two symbols. CPL

is defined in table 3.4.

LAuthorization is a CPL instantiation for specifying authorization policies in which set and

atomic are specified as follows.

set ::= setsa(s) | setoa(o)

24

Table 3.3: Policy Configuration Points and Languages of ABACα
1. Authorization policies.
For each p ∈ P, Authorizationp(s:S,o:O) returns true or false.
Language LAuthorization is used to define the above functions (one per permission), where s and o are formal
parameters.

2. Subject attribute assignment constraints.
Language LConstrSub is used to specify ConstrSub(u:U,s:S,saset:SASET), where u, s and saset are formal parame-
ters. The variable saset represents proposed attribute name and value pairs for each subject attribute. Thus SASET is
a set defined as follows:

SASET=
⋃
∀sa∈SA OneElement(SASETsa) where

SASETsa =

{
{sa} × SCOPEsa if attType(sa) = atomic

{sa} × 2SCOPEsa if attType(sa) = set

We define OneElement to non-deterministically return a singleton subset from its input set.

3. Object attribute assignment constraints at object creation time.
Language LConstrObj is used to specify ConstrObj(s:S,o:O,oaset:OASET), where s, o and oaset are formal param-
eters. The variable oaset represents proposed attribute name and value pairs for each object attribute. Thus OASET is
a set defined as follows:

OASET=
⋃
∀oa∈OA OneElement(OASEToa) where

OASEToa =

{
{oa} × SCOPEoa if attType(oa) = atomic

{oa} × 2SCOPEoa if attType(oa) = set

4. Object attribute modification constraints.
Language LConstrObjMod is used to specify ConstrObjMod(s:S,o:O,oaset:OASET), where s, o and oaset are
formal parameters.

Table 3.4: Definition of CPL

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ ϕ | ∃ x ∈ set.ϕ | ∀ x ∈ set. ϕ | set setcompare set | atomic ∈ set
| atomic atomiccompare atomic

setcompare ::= ⊂ | ⊆ | *
atomiccompare ::= < | = | ≤

25

atomic ::= atomicsa(s) | atomicoa(o)

setsa ∈ {sa | sa ∈ SA ∧ attType(sa) = set}

setoa ∈ {oa | oa ∈ OA ∧ attType(oa) = set}

atomicoa ∈ {oa | oa ∈ OA ∧ attType(oa) = atomic}

atomicsa ∈ {sa | sa ∈ SA ∧ attType(sa) = atomic}

LAuthorization allows one to specify policies based only on the attribute values of the involved

subject and object. Parameters such as s and o in this and following languages are formal parame-

ters as introduced in table 3.3.

LConstrSub is a CPL instantiation for specifying ConstrSub where:

set ::= setua(u) | value

atomic ::= atomicua(u) | value

setua ∈ {ua | ua ∈ UA ∧ attType(ua) = set}

atomicua ∈ {ua | ua ∈ UA ∧ attType(ua)= atomic}

value ∈ {val | (sa, val) ∈ saset ∧ sa ∈ SA}

In this case in the constraint function for subject attributes, only the attributes of the user who

wants to create the subject and the proposed values for subject attributes are allowed.

LConstrObj is a CPL instantiation for specifying ConstrObj where:

set ::= setsa(s) | value

atomic ::= atomicsa(s) | value

setsa ∈ {sa | sa ∈ SA ∧ attType(sa) = set}

atomicsa ∈ {sa | sa ∈ SA ∧ attType(sa)= atomic}

value ∈ {val | (oa, val) ∈ oaset ∧ oa ∈ OA}

Here we use subject attributes instead of user attributes.

LConstrObjMod, used to specify ConstrObjMod, is a instance of CPL where the symbols set

and atomic are defined as follows:

set ::= setsa(s) | setoa(o) | value

atomic ::= atomicsa(s) | atomicoa(o) | value

26

Table 3.5: Functional Specification
Functions Conditions Updates
Administrative functions: Creation and maintenance of user and their attributes.
UASET is a set containing name and value pairs for each user attribute.

uaset =
⋃
∀ua∈UA OneElement(UASETua) where

UASETua =

{
{ua} × SCOPEua if attType(ua) = atomic
{ua} × 2SCOPEua if attType(ua) = set

AddUser u/∈U U′=U∪{u}
(u:NAME,uaset:UASET) forall (ua,va)∈uaset do

ua(u)=va
DeleteUser(u:NAME) u∈U S′=S\{s|SubCreator(s)=u}
/*delete all u’s subjects*/ U′=U\{u}
ModifyUserAtt u∈U forall (ua,va)∈uaset do
(u:NAME,uaset:UASET) ua(u)=va
/*delete all u’s subjects*/ S′=S\{s|SubCreator(s)=u}
System functions: User level operations.
CreateSubject u∈U ∧ s/∈S∧ S′=S∪{s};SubCreator(s)=u
(u: NAME,s:NAME,saset:SASET) ConstrSub(u, s, saset) forall (sa,va)∈saset do

sa(s)=va
DeleteSubject s∈S ∧ u∈U ∧ S′=S\{s}
(u:NAME,s:NAME) SubCreator(s)=u
ModifySubjectAtt s∈S ∧ u∈U ∧ forall (sa,va)∈saset do
(u:NAME,s:NAME,saset:SASET) SubCreator(s)=u ∧ sa(s)=va

ConstrSub(u, s, saset)
CreateObject s∈S ∧ o/∈O ∧ O′=O∪{o}
(s:NAME,o:NAME,oaset:OASET) ConstrObj(s, o, oaset) forall (oa,va)∈oaset do

oa(o)=va
ModifyObjectAtt s∈S ∧ o∈O ∧ forall (oa,va)∈oaset do
(s:NAME,o:NAME,oaset:OASET) ConstrObjMod(s, o, oaset) oa(o)=va
∀ p ∈ P. Authorizationp;
ConstrSub; ConstrObj; /*Left to be specified by security architects*/
ConstrObjMod

Note that this language allows one to compare proposed new attribute values with current attribute

values of an object unlike LConstrObj, where the newly created object has no current attribute

values as such.

Functional Specifications. The ABACα functional specification, as shown in Table 3.5, out-

lines the semantics of various functions that are required for creation and maintenance of the

ABACα model components. The first column lists all the function names as well as required

parameters. The second column represents the conditions which need to be satisfied before the

updates, which are listed in the third column, can be executed. NAME refers to set of all names

27

for various entities in the system.

The first kind of functions are administrative in nature which are designed to be invoked only by

security administrators. We do not specify the authorization conditions for administrative functions

which are outside the scope of ABACα. They mainly deal with user and user attribute management

and will be discussed in chapter 4. One important issue with user management is that the subjects

created by the user are affected because of the user attributes’ change or deletion of the user. We

discuss the various options as follows.

• All subjects created by the user are forced to be terminated whenever user attributes are

modified or the user is deleted. This is required in security critical applications where the

modification to user attributes reflect urgent administrative response to the user’s future per-

missions in the system. Keeping all subjects of the user would be dangerous because all

permissions are actually not authorized any more while the existence of these subjects grants

the permission anyhow.

• A relaxed response is that all subjects are kept if the user is deleted. At this time, the user who

does not exist in the system lost control over the subjects and will not be able to terminate

them. They are kept until the system starts a garbage collection-like process where they are

terminated by the system process. They can be resumed if the user is added again and the

attributes constraints is satisfied. If the user’s attributes are modified, the subjects are still

under control of the user. While at the same time, the permission sets of the subjects are

restricted by the new sets of permissions of the user.

• An alternative of the above response is that the active subjects of the user are kept in the

system till the completion of the task (or for certain length of time after the change) if the

user is not deleted, i.e., only the attributes are changed. Otherwise, they are forced to be

destroyed if the user is deleted.

We understand that the above options are not a complete list and it’s up to the system to choose

an appropriate response. The second kind of functions are system functions which can be invoked

28

Table 3.6: DAC (Owner-controlled Access Control Lists) Configuration
Basic sets and functions
UA={}, SA={}, OA={reader, writer, createdby}
P={read, write}
SCOPEreader = SCOPEwriter = SCOPEcreatedby=U
attType(reader)=attType(writer)=set
attType(createdby)=atomic
Thus, reader : O→ 2U, writer : O→ 2U, createdby : O→ U
The function SubCreator is defined in Table 2.
Configuration points
1. Authorization policy
Authorizationread(s o)≡SubCreator(s)∈reader(o)
Authorizationwrite(s, o)≡SubCreator(s)∈writer(o)
2. Constraint for subject attribute is not required
Note that SubCreator is implicitly captured in function CreateSubject in table 3.2.
ConstrSub(u, s, {}) ≡ return true.
3. Constraint for object attribute at creation time
ConstrObj(s, o, {(reader,val1), (writer,val2), (createdby,val3)})≡ val3=SubCreator(s)
4. Constraint for object attribute at modification time
ConstrObjMod(s, o, {(reader,val1), (writer,val2), (createdby,val3)})≡ createdby(o)=SubCreator(s) ∧ val3 =
createdby(o)

by subjects and users. By default, the first function parameter is the invoker of each function.

For example, CreateSubject is invoked by user u and ModifyObjectAtt is invoked by subject s.

The third kind of functions are authorization policies and subject and object attribute constraint

functions which are left to be configured by security architects.

3.2.4 Configurations for Classical Models

In this section, we show the capability of ABACα in configuring DAC, MAC and RBAC. For this

illustration, we set P = {read, write}.

• DAC (Table 3.6). Each object is associated with the same number of set-valued attributes

as the number of permissions and there is a one-to-one semantic mapping between them.

An object attribute returns the list of users that hold the permission indicated by the object

attribute name. Object attribute createdby is set to be the owner of this object.

29

Table 3.7: MAC Configuration
Basic sets and functions
UA={uclearance}, SA={sclearance}, OA={sensitivity}
P={read,write}
SCOPEuclearance = SCOPEsclearance = SCOPEsensitivity = L
L is a lattice defined by the system.
attType(uclearance)=attType(sclearance)=attType(sensitivity)= atomic
Thus, uclearance : U→ L, sclearance : S→ L, sensitivity : O→ L.
Configuration points
1. Authorization policies
Authorizationread(s, o)≡sensitivity(o)≤sclearance(s)
Liberal Star: Authorizationwrite(s, o)≡sclearance(s)≤sensitivity(o)
Strict Star: Authorizationwrite(s, o)≡sclearance(s)=sensitivity(o)
2. ConstrSub(u, s, {(sclearance,value)})≡value≤uclearance(u)
3. ConstrObj(s, o, {(sensitivity, value)})≡sclearance(s)≤value
4. ConstrObjMod(s, o, {(sensitivity, value)}) returns false.

• MAC (Table 3.7). Each user is associated with an atomic-valued attribute uclearance.

Each subject is also associated with an atomic-valued attribute sclearance. Each object is

associated with an atomic-valued attribute sensitivity. Similar to MAC, the user and subject

attributes represent their clearance in the system. The sensitivity attribute of the object rep-

resents the object’s classification in MAC. The three attributes share the same range which

is represented by a system maintained lattice L.

• RBAC (Table 3.8). Each user and subject is associated with set-valued attributes urole and

srole respectively. Each object is associated with the same number of set-valued attributes as

the number of permissions and there is a one-to-one semantic mapping between them. Each

attribute returns the roles that are assigned the corresponding permission on this specific

object. For example, rrole of object obj returns the roles which are assigned the permission

of reading obj. The ranges of all attributes are the same as that of a system defined set of

role names R which are unordered for RBAC0 and partially ordered for RBAC1. Note that

subjects model sessions in RBAC.

30

Table 3.8: RBAC Configurations
RBAC0 configuration
Basic sets and functions
UA={urole}, SA={srole}, OA={rrole, wrole}
P={read,write}
SCOPEurole= SCOPEsrole= SCOPErrole = SCOPEwrole=R
R is a set of atomic roles defined by the system.
attType(urole)=attType(srole)=attType(rrole)=attType(wrole)=set
Thus, urole : U→ 2R, srole : S→ 2R, rrole : O→ 2R, wrole : O→ 2R

Configuration points
1. Authorization policy
Authorizationread(s, o)≡∃r∈srole(s).r∈rrole(o)
Authorizationwrite(s, o)≡∃r∈srole(s).r∈wrole(o) (same as above)
2. ConstrSub(u, s, {(srole,val1)})≡val1⊆urole(u)
3. ConstrObj(s, o, {(rrole,val1),(wrole,val2)}) returns false.
4. ConstrObjMod(s, o, {(rrole,val1),(wrole,val2)}) returns false.

RBAC1 configuration
Basic sets and functions
The basic sets and functions are the same as RBAC0 except:
R is a partially ordered set defined by the system.
Configuration points
1. Authorization policy
Authorizationread(s, o)≡∃r1∈srole(s). ∃r2∈rrole(o).r2≤r1
Authorizationwrite(s, o)≡∃r1∈srole(s). ∃r2∈wrole(o).r2≤r1 (same as above)
2. ConstrSub(u, s, {(srole,val1)})≡∀r1∈val1.∃r2∈urole(u).r1≤r2
3. ConstrObj(s, o, {(rrole, val1),(wrole, val2)}) returns false.
4. ConstrObjMod(s, o, {(rrole, val1),(wrole, val2)}) returns false.

3.2.5 Formal Proof of Equivalence

In this section, we provide formal proof for the equivalence of the original model and its ABACα

configuration. We only show the formal proof for RBAC0 here. The proofs for other models can

be similarly developed. To show equivalence, we adopt the state-matching reduction method [139]

which was developed to formally compare the expressive power of various access control models.

Before we formally present the proof, we define the following schemes.

Scheme RBAC0.

Although RBAC has been analyzed in [139], the focus there is on state changes caused by

31

user-role assignment and thus the administrative model for RBAC0. In this dissertation, we model

the changes caused by user activating and deactivating their roles in a session. Thus, the scheme

for RBAC0 is formally defined as follows.

• State Γ. They are summarized as the following well-known sets of RBAC0: U (users),

R (roles), URA (user-role assignment), S (sessions), SRA (session-role assignment), USA

(user-session assignment), PRA (permission-role assignment), OP (operations) and O (ob-

jects).

• State transition Ψ. The state can only change by users creating and deleting sessions, and

activating and deactivating roles in a session. The precondition for activating roles is that

those roles are assigned to the user, i.e., there exists appropriate user-role assignment. For-

mally, the possible operations, their preconditions and their effects are defined as follows.

CreateSession(u, s)

Precondition: None

Effect: S ′ = S ∪ {s}, USA′ = USA ∪ {(u, s)}

DeleteSession(u, s)

Precondition: (u, s) ∈ USA

Effect: ∀(s, r) ∈ SRA, SRA′ = SRA\{(s, r)}, S ′ = S\{s},

USA′ = USA\{(u, s)}

ActivateRole(u, s, r)

Precondition: (u, s) ∈ USA ∧ (u, r) ∈ URA

Effect: SRA′ = SRA ∪ {(s, r)}

DeactivateRole(u, s, r)

Precondition: (u, s) ∈ USA ∧ (s, r) ∈ SRA

Effect: SRA′ = SRA\{(s, r)}

• Query Q. On each state in this scheme, the query is whether their exists a session s with role

r. We write a query as r. Other more general queries can be similarly considered.

32

• Entailment relation `. It is defined as follows for a state γ and query r.

– γ ` r = true iff ∃s.(s, r) ∈ SRA

Scheme ABAC-RBAC0. The ABAC instance for RBAC0 is shown in table 3.8. It is expressed

in the notation of [139] as follows.

• State Γ. They are the basic sets and functions shown in table 3.8.

• State transition Ψ. The only state changes are a user creating and deleting a subject or

modifying subject attributes. Formally, these are defined as follows.

CreateSub(u, s, (srole, val))

Precondition: ConstrSub(u, s, (srole, val))= true

Effect: S′ = S ∪ {s}, srole(s) = val

DeleteSub(u, s)

Precondition: SubCreator(s) =u

Effect: S′ = S \ {s}

ModifySubAttr(u, s, (srole, val))

Precondition: ConstrSub(u, s, (srole, val))= true

Effect: srole(s) = val

• Query Q. On each state in this scheme, the query is whether their exists a session s with r ∈

srole(s). We continue to write a query as r.

• Entailment relation `. It is defined as:

– γ ` r = true if r∈srole(s)

– γ ` r = false if r6∈srole(s)

Theorem 1. There exists a state-matching reduction from RBAC0 to ABAC-RBAC0.

Proof. By construction. We present the mappingsReduceState in algorithm 1 andReduceTransition

in algorithm 2 to map the states and transition rules in RBAC0 to those in ABAC-RBAC0. The

33

Algorithm 1 ReduceState from RBAC0 state ABAC-RBAC0 state
1: Input: RBAC0 state
2: Output: ABAC-RBAC0 state
3: Given any RBAC0 state: URBAC0 , SRBAC0 , ORBAC0 , R, URA, SRA, USA, PRA.
4: We have the following sets for ABAC-RBAC0:
5: UABAC−RBAC0

= URBAC0
, SABAC−RBAC0

= SRBAC0
, OABAC−RBAC0

= ORBAC0

6: UA = {urole}, SA = {srole}, OA = {readrole, writerole}
7: For each (u, s) ∈ USA, SubCreator(s) = u.
8: SCOPEurole = SCOPEsrole = R.
9: attType(urole) = attType(srole) = set

10: For each subject s ∈ SABAC−RBAC0
, srole(s) = { r | (s, r) ∈ SRA}

11: For each user u ∈ UABAC−RBAC0
, urole(u) = {r | (u, r) ∈ URA}

12: For each obj ∈ OABAC−RBAC0
, readrole(obj) = { r | (r, (read, obj)) ∈ PRA}

13: For each obj ∈ OABAC−RBAC0 , writerole(obj) = { r | (r, (write, obj)) ∈ PRA}

Algorithm 2 ReduceTransition from RBAC0 transition rule to ABAC-RBAC0 transition rule
1: Input: Transition Rule in RBAC0

2: Output: Transition rule in ABAC-RBAC0

3: CreateSession(u, s) is mapped to CreateSubject(u, s, {(srole, ∅)})
4: ActivateRole(u, s, r) is mapped to ModifySubAttr(u, s, {(srole, val)}) where the proposed value val is srole(s) ∪

{r} and the constraints is: val ∈ urole(u) ∧ SubCreator(s) = u.
5: DeactivateRole(u, s, r) is mapped to ModifySubAttr(u, s, {(srole, val)}) where the proposed value val is srole(s)
\ {r} and the constraints is: SubCreator(s) = u.

6: DeleteSession(u, s) is mapped to DeleteSubject(u,s) and the constraints is: SubCreator(s) = u.

query in RBAC0 : (s, r) ∈ SRA is mapped to a corresponding query: r ∈ srole(s) in ABAC-RBAC0.

We show that they satisfy the properties for a state-matching reduction.

Given any initial state in RBAC as γRBAC0 , the corresponding state in ABAC is γABAC−RBAC0 .

• If there is no transition. Given any state γRBAC0 and query qRBAC0 in RBAC0 scheme,

if γRBAC0 ` qRBAC0 = true, then MAP(γRBAC0) ` MAP(qRBAC0) = true, where MAP is the

process of mapping state and query in RBAC0 scheme to ABAC-RBAC0 scheme. The reason

is that for any subject s and role r, if (s, r) ∈ SRA, then srole(s) = { r | (s, r) ∈ SRA} and

thus, r ∈ srole(s) = true. Similarly, if γRBAC0 ` qRBAC0 = false, i.e., (s, r) 6∈ SRA, then r 6∈

srole(s). Thus, γRBAC0 ` qRBAC0 = γABAC−RBAC0 ` qABAC−RBAC0 .

• Assume that after k transitions (0≤ k≤∞) from the initial state , the two states γ′RBAC0
and

γ′ABAC−RBAC0
is equivalent which means that all queries γ′RBAC0

` qRBAC0 = γ′ABAC−RBAC0

` qABAC−RBAC0 . We want to prove that at state k+1, the result for all queries are also

equivalent. There are the following possible transitions and we consider them one by one:

34

– CreateSession(u, s). After this transition, in γ′RBAC0
, USA′ = USA ∪ {(u, s)}. Corre-

spondingly, the operation in ABAC-RBAC0 scheme isCreateSubject(u, s, {(srole, ∅)}).

In γ′ABAC−RBAC0
, S′ = S ∪ {s} and SubCreator(s) = u, where (u, s) ∈ USA. The only

change in query set is that new queries (s, r) where r ∈ R could be evaluated against

the new state. For any r ∈ R, in RBAC0 , γRBAC0 ` (s, r) = false and in ABAC-RBAC0

scheme, MAP (γABAC−RBAC0) ` (s, r) = false.

– DeleteSession(u, s). After this transition, in γ′RBAC0
, ∀ (s,r) ∈ SRA, SRA′= SRA \

{(s,r)}, and USA′ = USA \ {(u, s)}. Thus, all queries regarding session s will return

false. Queries on other sessions will not change compared with the previous state.

Correspondingly, the operation in ABAC-RBAC0 scheme is DeleteSubject(u, s}). In

γ′ABAC−RBAC0
, S′ = S \ {s}. This transition does not affect existing queries regarding

other subjects.

– AcivateRole(u, s, r). The corresponding transition in ABAC-RBAC0 isModifySubject(u,

s, {(srole, val)}), where val = srole(s) ∪ {r}. There are two situations after this transi-

tion:

∗ The request is not authorized because the precondition is not valid, then the state

does not change. The precondition inModifySubject is also false. Thus, γABAC−RBAC0 ′

is the same as γABAC−RBAC0 . The result for all queries are also the same as previ-

ous state.

∗ In the next state, SRA′ = SRA ∪ {(s, r)}. The only change to all queries is that the

query γ′RBAC0
` (s,r) = true. In ABAC-RBAC0 scheme, srole(s) = val, where val

= srole(s) ∪ {r}. Thus, the only change to all queries is that r ∈ srole(s) = true.

– DeactivateRole(u, s, r). Similarly, there are two possibilities:

∗ The state does not change because the precondition is not satisfied. The results for

all queries do not change compared with the state at transition k.

∗ In the next state, SRA′ = SRA \ {(s, r)}. The only change to all queries is that the

35

Algorithm 3 ReduceState from ABAC-RBAC0 state to RBAC0 state
1: Input: ABAC-RBAC0 state
2: Output: RBAC0 state
3: Given any ABAC-RBAC0 state:
4: We have the following sets for RBAC0:
5: URBAC0

= UABAC−RBAC0
, SRABC0

= SABAC−RBAC0
, ORBAC0

= OABAC−RBAC0

6: RRBAC0
= SCOPEurole

7: URA = {(u, r) | r ∈ urole(u)}
8: SRA = {(s, r) | r ∈ srole(s)}
9: USA = {(u, s) | SubCreator(s) = u}

10: PRA = {((read, obj), r) | r∈readrole(obj)} ∪ {((write, obj), r) | r∈writerole(obj)}

Algorithm 4 ReduceTransition from ABAC-RBAC0 to RBAC0 transition rule
1: Input: Transition rules in RBAC0

2: Output: Transition rules in ABAC-RBAC0

3: CreateSubject(u, s, {(srole, ∅)}) is mapped to CreateSession(u, s)
4: ModifySubAttr(u, s, {(srole, val)}) is mapped to a sequence of ActivateRole(u, s, r) and DeactivateRole(u, s, r)

operations. For all roles r ∈ (val - srole), ActivateRole(u,s,r) and for all roles r ∈ (srole- val), DeactivateRole(u, s,
r).

5: DeleteSubject(u, s) is mapped to DeleteSession(u, s).

query γ′RBAC0
` (s, r) = false. In ABAC-RBAC0 scheme, srole(s) = val, where val

= srole(s) \ {r}. Thus, the only change to all queries is that r ∈ srole(s) = false.

In summary, the mapping is a state matching reduction from RBAC0 to ABAC-RBAC0.

Theorem 2. There exists a state-matching reduction from ABAC-RBAC0 to RBAC0.

Proof. By construction. We present the mappingsReduceState in algorithm 3 andReduceTransition

in in algorithm 4 from ABAC-RBAC0 scheme’s state and transition rule to RBAC0 scheme’s state

and transition rule. Similarly, the query in ABAC-RBAC0 scheme r is mapped to query r in RBAC0

scheme.

We show that the reduction shown above is a state matching reduction.

• No transition. Similar as in the proof for theorem 1, given any state in ABAC-RBAC0, there

exists a corresponding state in RBAC0 such that all queries are with the same result.

• We assume that after k transition, the states γABAC−RBAC0 and γRBAC0 are equivalent. We

want to prove that after the next transition, the states are also equivalent. There are the

following possible transitions and we consider them one by one.

36

– CreateSubejct(u, s). Similar as the proof in theorem 1.

– DeleteSubejct(u, s). Similar as the proof in theorem 1.

– MidifySubject(u, s, {(srole, val)}). There are two possibilities after this transition:

∗ The request is not authorized and the state stays the same. The proof thus is the

same as those in theorem 1.

∗ The request is authorized, then srole(s) = val in γ′ABAC−RBAC0
. After the corre-

sponding transition in RBAC0 scheme, the role of session s is equal to ((val \

(srole(s) - val)) ∪ (val - srole(s)) (the current role excludes the deactivated role and

plus the newly activated roles) which is val. Thus, in the next state, all queries are

with the same result.

In summary, the mapping is a state matching reduction.

Theorem 3. The RBAC0 model and ABAC instance of RBAC0 (ABAC-RBAC0) are equivalent in

expressive power.

Proof. The proof is based on theorem 1, theorem 2 and definition 9 in [139].

37

3.3 ABACβ Model

In this section, we develop the ABACβ model for the purpose of unifying numerous extensions

proposed for the RBAC96 model [119]. We first discuss the scope of RBAC extensions that are

covered by ABACβ model and then summarize the required features of ABACβ . Based on this

analysis, we present the formal model and show configurations for selected RBAC extensions.

3.3.1 Scope of RBAC Models

Generally, extensions to the RBAC model itself falls in two categories: administrative model and

operational model. We include extensions to the operational RBAC model only. More specifi-

cally, we start from the NIST RBAC core model and cover advanced features as well as extensions

to the authorization process of the model. Examples are role hierarchy, dynamic separation of

duty (DSD), role structure, users associated with additional attributes and the structure of per-

missions. We exclude extensions on administrative models regarding user-role and permission-

role assignment. Examples are static separation of duty (SSD), constraints on user-role assign-

ment [6, 43, 72, 87, 88, 95, 110, 134], and constraints on role-permission assignment [6, 27, 100].

Another example is role-based trust management [95] which uses trust credentials to assign users

to roles in different organizations. The central idea to this model is to assign roles to users. It does

not discuss how role is used for authorization.

In addition, some extensions require features such as users modifying attributes of subjects

created by other users, mutable attributes, continuous enforcement and obligations in authoriza-

tion process. For example, [26, 27, 33, 44, 81, 116, 145] require mutable attributes and continuous

enforcement. Workflow enhanced RBAC [29, 84, 140] also requires mutable attributes. These

features are already available in existing attribute-based models such as UCON [111]. Role dele-

gation [18, 59, 150] requires subject attributes to be modified by users other than the creator of the

subject. This needs changes to built-in rules of ABACα. Although these features are important and

interesting, we exclude them and focus on enhancing ABACα.

38

Figure 3.2: RBAC Extesions Covered by ABACβ

3.3.2 Brief Overview of Covered RBAC Extensions

To further analyze the required features for ABACβ , we categorize RBAC extensions that are

covered in ABACβ in figure 3.2. It shows the original RBAC model with advanced features as well

as different groups of extensions marked in association to each related component as indicated by

dashed arrows. For the extension to each component, we will see that they require the same set of

new features for ABACβ . Note that some models do belong to multiple categories. For example,

spatial and temporal RBAC [116] require extensions to not only context but also role activation

process because the context information will be integrated into role activation rules. Privacy aware

RBAC [103] belongs to context and extended permission structure categories. Here we discuss

them only in one category, as shown in figure 3.2, and summarize the required features for each

model at the end of this section.

We first consider the advanced features of core RBAC. These include hierarchical role and dy-

namic separation of duty (DSD) [57]. Since we model role as an attribute of user and subject, role

hierarchy can be expressed using comparison between attribute values. DSD specifies the policy

on whether a set of roles could be activated at the same time in a session. As we model session

as subject in ABACβ , it is straight forward to express DSD constraints using subject attribute

constraints policy where the conflict roles are represented using constant sets in the policy.

39

Extended Constraints on Role Activation

This type of extension puts constraints on role activation process. Examples are the order in which

roles are activated, contextual factors (e.g., location, time) and prerequisite roles. In OASIS-

RBAC [17], role activation is constrained by predefined activation rules. Activation rules are

specified based on active roles, appointment certificate and environmental constraints. Appoint-

ment certificates are credentials which are assigned by other valid users (we skip the details of

appointment certificate and assume that each user is associated with a set of appointment certifi-

cates). This model is concerned with subject attributes. It is straight forward to configure role

activation rules using subject attribute constraints. Appointment certificate can be viewed as one

of the user attributes. An example activation rule could be r1 ` r2 meaning that users can only

activater2 in a session if role r1 is already activated in that same session. Note that this model

requires subject attributes constraint policy to be different at creation time and modification time

because the policy for activating a role in a new session could be different from that at modification

time. This is the first additional feature to ABACα model where subject attributes constraint policy

is the same at subject creation and modification time. In addition, contextual attribute is required

to capture environmental constriants. This is a different kind of attributes as they are not associated

with user, subject or object. Instead, they are associated with the system and thus managed by the

system, contrasted with user attributes being administered by administrators (discussed in chapter

4), subject attributes being managed by users, and object attributes being managed by subjects.

Examples are risk level, time and information of the server. This is the second extension to the

ABACα model.

Ubi-RBAC [105] includes context information in session. The model introduced the concept

of spaces which are a partially ordered set. Users can activate certain roles in each space. If the

user does not specify the roles when creating a space, the session inherits roles from a space which

is the child of the current space and is created by the same user. This requires a new feature from

ABACα which is that subject attributes are also constrained by attributes of subjects created by

40

the same user compared with subject attributes being constrained only by attributes of the creating

users. This feature presents connections between the subjects created by the same user. This is the

third kind of extension to ABACα model. In addition, in order to capture the child of any spaces

in the set, a fourth new feature needs to be supported. This is called meta-attributes. This kind of

attribute is defined as attributes of attributes and it reflects the properties of other attributes. Here

the child of each space is represented as an attributes of the space.

[7, 8] provide models to specify policies which automatically assign users to roles based on

their attributes. This feature can be configured as subject attributes constraints as the mapping

between user attributes and roles can be captured in subject attribute constraints policy. [27, 67]

put geographical constraints on role activation. Roles are only allowed to be activated at certain

locations. The attributes can be captured by modeling location as a user and subject attribute.

Finally, in order to specify the above policies, the policy specification language for each con-

figuration point should be extended. For example, in ABACα, the authorization policy only allows

attributes of the involved subject and object. However, in order to configure authorization policies

for the above models, contextual attributes, meta-attributes and constant values are also allowed to

be used in the policy specification. This is the fifth extension to the ABACα model.

In summary, this category requires five extensions to ABACα model and those extensions will

also be required by the following RBAC extensions.

Extended Concept of Role

The idea of role structure extension is that roles are also associated with a set of parameters [5,56,

62]. Permissions are then parameterized and associated with roles. The actual set of permissions

associated with the parameterized role are determined by the actual role attributes values which

are assigned explicitly when the roles are assigned to users. For example, student(department)

represents a parameterized role. The department parameter is used in an example parameterized

permission: “read any document whose major is the same as the role parameter department”.

If Alice is assigned with student(Business) role, then Alice obtains the permissions of reading

41

documents from Business department. Similar extensions are role template [64] and attributed

role [148]. To configure this kind of extension, an intuitive method is to treat role parameters

as user, subject and object attributes. Parameterized permissions are configured in authorization

policy. When roles are assigned to users, their corresponding attributes are also assigned with

specific values.

Changes in Role-Permission Relationship

Task and Role Based Access Control (Task-RBAC) [106,107] is a model where tasks are associated

with a set of permissions (the same as the permissions in RBAC) and then associated with roles.

Users are made members of roles and thus obtain the permissions. To configure these models,

the connection between role and task are captured by a meta-attribute of role which represents the

tasks that are associated with the role. Tasks are further associated with permissions (i.e., operation

and object pair) the same way role is associated with permissions in ABACα instance of RBAC

(shown in table 3.8)).

Organization and Team

This type of model extends RBAC for collaboration and consolidation. The general idea is to

integrate organizations, groups, teams and so on, into RBAC. In role and organization based access

control (ROBAC) [151], users are assigned to organization and role pair. Objects are assigned to

certain types and organizations. In addition, permission in this model are defined as (op, otyoe)

where op is an operator (the same as that in RBAC) and otype is an object types. Access decisions

are made based on both organizations and roles. Thus, the connection between role and object

type is captured by meta-attributes, i.e., attributes of object type which returns the list of roles

which can access the type of objects. Similar work include domain role based access control [147]

and TeaM based Access Control (TMAC) [11, 137]. Group based RBAC [96] proposes two level

user-role assignment. User can be assigned to roles either through direct assignment (same as

user-role assignment in RBAC) or through groups. Groups are associated with roles and users

42

can activate those corresponding roles if made members of the groups. In role centric attribute

based access control (RABAC) [79], the filtering policy restricts the available permissions in each

session by specifying policies based on user and object attributes. The policy can be expressed

in authorization policies. [19] adds relationship between requester and resource owner to control

access. We model the relationship as another user attribute. For example, doctor and patient

relationship is expressed as an attribute called attendantdoc for each patient user.

Context

In this kind of extension, context information is used in access decision. Examples are [50, 63,

90, 101]. [89] propose context aware RBAC (CA-RBAC). [48] proposes to associate context in-

formation with environmental role. [116] adds spatial and temporal factors to each component

of RBAC. Contextual attributes are required to configure the above models. Generalized RBAC

(GRBAC) [102] extends the traditional RBAC by incorporating subject roles, object roles and en-

vironment roles. Subject roles are like traditional RBAC roles. Object roles abstract the various

properties of objects, such as object type (e.g., text, JPEG, executable) or sensitivity level (e.g.,

classified, top secret) into categories. Environment roles capture environmental information, such

as time of day or system load so it can be used to mediate access control. The policy is specified in

the format of (srole, orole, erole, op), which represents that a subject with role srole is authorized

to perform operation op on a resource with object role orole under environment role erole. To

configure this model, object roles are treated in the same way as subject roles and represented as

an object attribute. In this way, all polices specified in [102] can be configured in authorization

policy.

Extended Permission Structure

In RBAC, permissions are operation and object pairs (op, obj) where op represents an operation

and obj represents an object. Extension to the structure of permission requires additional infor-

mation besides operations and objects. [103] proposed the core privacy aware RBAC (PRBAC)

43

where privacy sensitive data permission (PDP) are associated with roles. PDP is defined as a

tuple (dp, pu, c, o), where dp represents operations on objects (same as (op, obj) in RBAC), pu

represents purpose picked from a predefined finite set, c represents contextual conditions speci-

fied using a language provided in the model, and o represents a subset of predefined finite set of

obligations. In this model, we cover PRBAC excluding its obligations model since that require mu-

table attributes (which has been previously developed in UCON [111] and can be incorporated in

subsequent extensions of ABACβ). Similarly, [98] proposes purpose-aware RBAC. [15] proposes

hierarchical PRBAC. [82] proposes role involved purpose based access control RPAC. In these

models, purpose is modeled as user and subjects attributes. [42] classifies objects into different

types and permissions are defined as operations on different types of objects. Object classes can

be modeled as an object attribute and the permissions can be configured using meta-attribute for

role. This meta-attribute represents the types of objects that the role can access.

3.3.3 Summary of Required Features

In this section, we summarize and show some details on the required features of ABACβ to cover

all RBAC models mentioned in section 3.3.2. There are generally five extensions described as

follows.

• Extension 1: Context attributes. A new and separate component called “context” is de-

fined to manage a finite set of contextual attributes. Examples of such attributes are time,

location, and machine_type. Context is a separate component because this type of at-

tribute is not associated with any specific users, subjects or objects. Rather, these attributes

are global and are managed by the system. For example, the current time of the system

is returned from a system API (e.g., sys.getTime()) and is changed automatically. To ac-

commodate time as an attribute with finite scope we can reduce clock time to a suitable

granularity such as normal-business-hours (say 9am to 5pm), extended-business-hours (say

7am to 7pm) and non-business-hours (7pm to 7am).

44

• Extension 2: Subject attributes constraint policy at creation time is different from modi-

fication time. Subject attributes constraints policy at creation and modification time is dif-

ferently specified and it is not limited to be constrained by the creating user attributes. For

example, in OASIS-RBAC, the constraint policy for creating a subject is different from that

for modifying subjects. Thus, different policies need to be specified for these constraints.

• Extension 3: Subject attribute constrained by attributes of subjects created by the same

user. In ABACα, subject attributes are only constrained by the creating users. To cover Ubi-

RBAC model, attributes of one subject can also be constrained by attributes of other subjects

created by the same user. The roles in one space can be inherited by a senior space belonging

to the same user.

• Extension 4: Enhanced policy specification Language. In ABACα, policy specification

only contains attributes of the involved entities including users, subjects and objects and it

contains conjunctions and disjunctions of value comparison. It should be extended to cover

meta-attributes, contextual attributes as well as constant values.

• Extension 5: Meta-attributes. The concept of meta-attributes deals with the fact that at-

tributes can not only be associated with users, subjects and objects but also with other sets.

For example, users can be associated with roles and role may have properties that are repre-

sented by attributes of roles. In task and role based access control, roles are associated with

tasks and tasks are associated with permissions. Thus, the relationship between role and task

can be captured by attribute of role, that is a meta-attribute.

45

Table 3.9: Additional Features Required for ABACβ to Cover RBAC and Extended Models
Model Context Subject creation and Subject constrained Policy Meta-

Attribute modification time
constraints

by other subjects of
the same user

language Attribute

Extended Constraints on Role Activation
RBAC-DSD-96 [122] NO NO NO YES NO
Attribute-RBAC-2002 [8] YES NO NO YES NO
OASIS-RBAC-2002 [17] YES YES NO YES YES
SRBAC-2003 [67] YES NO NO YES NO
Rule-RBAC-2004 [7] YES YES NO YES NO
GEO-RBAC-2005 [27] YES NO NO YES NO
Ubi-RBAC-2010 [105] YES YES YES YES YES

Extended Concept of Role
Role Template-1997 [64] YES NO NO YES NO
Parameterized-RBAC-2003 [56] NO NO NO YES NO
Parameterized-RBAC-2004 [62] NO NO NO YES NO
Parameterized-Role-2004 [5] NO NO NO YES NO
Attributed Role-2006 [148] NO NO NO YES NO

Change in Role-Permission Relationship
Task-RBAC-2000 [106] YES NO NO YES YES
Task-RBAC-2003 [107] YES NO NO YES YES

Organization and Team
Relationship-RBAC-1999 [19] NO NO NO YES NO
TeamMAC-1997 [137] NO NO NO YES NO
TeamMAC-2004 [11] NO NO NO YES NO
ROBAC-2006 [151] NO NO NO YES YES
Group-RBAC-2009 [96] NO NO NO YES YES
RABAC-2013 [79] NO NO NO YES NO
Domain-RBAC-2013 [147] NO NO NO YES NO

Context
C-TMAC-2001 [63] YES NO NO YES YES
GRBAC-2001 [102] YES NO NO YES NO
Context-Role-2001 [48] YES NO NO YES NO
Context Sensitive RBAC 2002 [90] YES NO NO YES NO
Contextual RBAC-2003 [101] YES NO NO YES NO
STRBAC-2007 [116] YES NO NO YES YES
Modeling Context-2008 [50] YES NO NO YES NO
CA-RBAC-2008 [89] YES NO NO YES NO

Extended Permission Structure
RBAC with Object Class-2007 [42] NO NO NO YES YES
Purpose Aware RBAC-2008 [98] YES NO NO YES NO
PRBAC-2010 [103] YES NO NO YES NO
RPAC-2010 [82] YES NO NO YES NO
Hierarchical PRBAC-2012 [15] YES NO NO YES NO

Based on our analysis in the last section, we summarize the required features for each RBAC-

related model that is covered by ABACβ in table 3.9. This table specifies the required features of

ABACβ to configure each RBAC-related model. Based on the above analysis, we build an ABACβ

46

Figure 3.3: ABACβ Model Structure

model with all five extensions.

3.3.4 Model Overview

As we extend the model based on ABACα, the basic components are the same as in ABACα. The

model structure is shown in figure 3.3. We only elaborate on the extended components as follows.

• Context and context attributes. Context is a single entity. The properties of this compo-

nent is represented by a finite set of contextual attributes which are system dependent. This

kind of attribute is different from user, subject or object attributes in that they cannot be

modified by users or subjects. Rather, they are updated automatically by system or system

administrators. Examples are time, CPU usage, free disk space and risk level. Due

to the nature of these attributes, policies may require continuous enforcement and response

to attribute changes. For example, a policy may require that access is only authorized dur-

ing normal-business-hours. An application may require all authorized permissions to be

revoked automatically outside normal-business-hours, or applications may allow access that

are granted within the time range to be authorized until discretionarily released or suspended

47

by users. In this model, we support such attributes in policy specification but do not deal

with the detail of policy enforcement of such attributes.

• Meta-attributes. We define attributes as functions which contain domain and scope. Do-

main is the set of values this function can take and scope represents the values that the func-

tion can return. In ABACα, attributes are only associated with user, subjects and objects.

Meta-attribute defines attributes whose domain comes from the scope of existing attributes.

Meta-attribute carries the similar properties as other attributes such as they are either set or

atomic-valued. Example of such attributes are the risk level of general attributes, the task

which are associated with roles and so on.

• Configuration points. We add a new configuration point and it is subject attributes con-

straint policy at modification time. In this policy, subject attributes can be constrained by

attributes of the creating user and attributes of subjects created by the same user.

3.3.5 Formal Model

The basic sets and functions in ABACβ are the same as in ABACα model except that context and

contextual attributes and meta-attributes are introduced. We only introduce the additional concepts

here. The symbol c represents the context entity and CA represents a finite set of context attributes

associated with the context c. MA represents a finite sets of meta-attributes. The domain of these

attributes must be from the scope of existing attributes.

Policy Configuration Points. We define five policy configuration points as shown in table

3.11. The first configuration point (item 1 in table 3.11) is authorization policies. The security

architect specifies one authorization policy for each operation. The authorization function returns

true or false based on attributes of the involved subject, object, context and meta attributes. The

second configuration point (item 2 in table 3.11) is constraints for subject attributes at creation

time. The third configuration point (item 3 in table 3.11) is constraints for subject attributes at

modification time. The fourth configuration point (item 4 in table 3.11) is constraints for object

48

Table 3.10: Basic Sets and Functions of ABACβ

U, S and O represent finite sets of existing users, subjects and objects respectively. Symbol c represents
the context entity.
UA, SA OA, CA and MA represent finite sets of user, subject, object, context attribute and meta-attributes
functions respectively. (Henceforth referred to as simply attributes.)
P represents a finite set of permissions.
For each att in UA ∪ SA ∪ OA ∪ CA∪MA, SCOPEatt is a constant finite set of atomic values.
attType: UA ∪ SA ∪ OA ∪ CA ∪MA→ {set, atomic}, specifies attributes as set or atomic valued.
SubCreator: S→ U. For each subject SubCreator gives its creator.
Each attribute in MA, its domain should come from the range of existing attributes. That is, for each
attribute attr ∈ MA, the domain of attribute, domain(attr) ∈ {SCOPEatt | att ∈ UA ∪ SA ∪ OA ∪ CA ∪
MA}.

∀ua ∈ UA. ua : U→
{

SCOPEua if attType(ua) = atomic
2SCOPEua if attType(ua) = set

∀sa ∈ SA. sa : S→
{

SCOPEsa if attType(sa) = atomic
2SCOPEsa if attType(sa) = set

∀oa ∈ OA. oa : O→
{

SCOPEoa if attType(oa) = atomic
2SCOPEoa if attType(oa) = set

∀ca ∈ CA. ca : c→
{

SCOPEca if attType(ca) = atomic
2SCOPEca if attType(ca) = set

∀ma ∈ MA.ma : domain(ma)→
{

SCOPEma if attType(ma) = atomic
2SCOPEma if attType(ma) = set

attributes at creation time. The fifth configuration point (item 5 in table 3.11) is constraints for

object attributes at modification time. Constraints are boolean expressions specified using policy

specification languages presented below.

Policy Configuration Languages. Each policy configuration point is specified using a specific

language. Although some of the RBAC extensions covered in ABACβ provide concrete syntax for

specifying their policies, we provide a level of abstraction and unification such that all models

can be covered. The languages specify what information (e.g., user attribute, subject attribute)

is allowed to be used in the five configuration points. Since all specification languages share the

same logical structure while differing only in the values they can use for comparison, we extend

the common policy language CPL (table 3.4) defined for ABACα to define a similar template CPL

for ABACβ . The enhanced CPL is defined in table 3.12.

Language LAuthorization is used to specify the authorization policy. It is a CPL instance

49

Table 3.11: Policy Configuration Points of ABACβ

1. Authorization policies.
For each p ∈ P, Authorizationp(s:S, o:O) returns true or false.
Language LAuthorization is used to define the above functions (one per permission), where s and o are
formal parameters. c is also usable as a global context for this policy.

2. Subject attribute constraints at creation time.
Language LConstrSub is used to specify ConstrSub(u:U, s:S, saset:SASET), where u, s and saset are
formal parameters. c is also usable as a global context for this policy. The variable saset represents
proposed attribute name and value pairs for each subject attribute (defined in table 3.3).

3. Subject attribute constraints at modification time.
Language LConstrSubMod is used to specify ConstrSubMod(u:U,s:S,saset:SASET), where s, o and
saset are formal parameters. c is also usable as a global context for this policy.

4. Object attribute assignment constraints at creation time.
Language LConstrObj is used to specify ConstrObj(s:S, o:O, oaset:OASET), where s, o and oaset are
formal parameters. The variable oaset represents proposed attribute name and value pairs for each object
attribute (defined in table 3.3). Note that the global context c can not be used here.

5. Object attribute modification constraints.
Language LConstrObjMod is used to specify ConstrObjMod(s:S, o:O, oaset:OASET), where s, o and
oaset are formal parameters. Note that the global context c can not be used here.

Table 3.12: Definition of Enhanced CPL

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ϕ | ∃x ∈ set.ϕ | ∀x ∈ set. ϕ | ϕ → ϕ | expr
expr ::= eatomic copa eatomic | eatomic copm eset | eset cops eset
eatomic ::= eatomic atomic_op eatomic | atomic | |eset|
eset ::= eset set_op eset | set
atomic_op ::= + | − | × | \
set_op ::= ∩ | ∪ | − | M
copa ::=≤ | ≥ | < | > | = | ! =
cops ::=⊂ | ⊆ | *
copm ::=∈ | 6∈

where the symbols set and atomic are specified as follows:

set ::= setsa(s) | setoa(o) | constantSet | setca(c) | setma(entity)

atomic ::= atomicsa(s) | atomicoa(o) | constantAtomic | atomicca(c) | atomicma(entity)

setca ::= {ca | ca ∈ CA ∧ attType(ca) = set}

setma ::= {ma | ma ∈ MA ∧ attType(ma) = set}

atomicca ::= {ca | ca ∈ CA ∧ attType(ca) = atomic}

atomicma ::= {ma | ma ∈ MA ∧ attType(ma) = atomic}

50

LAuthorization allows one to specify policies based on the value of involved subject, object,

context attributes and meta attributes. entity represents the domain of meta-attributes. Parameters

such as s and o in this language are formal parameters as introduced in item 1 in table 3.11. We

adopt the same definition of setsa, setoa, atomicsa and atomicoa from section 3.2. constantSet

and constantAtomic are constant sets and atomic values picked by the policy composer. Example

constantSet is a set of roles {r1, r2, . . . , rn} or organization {org1, org2, . . . , orgn} and example

constantAtomic is a clearance level top secret or a logic time first_Day_of_Month. An ex-

ample authorization policy for context aware RBAC [48, 63, 89, 90, 101] is “manager is authorized

to edit salary data only on the first Monday of each month during business hour in the company”.

The rule can be specified using the following policy:

Authorizationmodify(s, salary) ≡ manager ∈ role(s) ∧ location(s) = company ∧

is_Business_Hour(c) = true ∧ is_First_Monday(c) = true

In this policy, a user is associated with location and role attributes, the context attribute

is_Business_Hour defines whether the current time is in business hour and attribute is_First_Monday

represents whether it is the first Monday of the month.

Language LConstrSub is used to specify subject attribute constraints policy ConstrSub at

creation time. It is a CPL instance where the symbols set and atomic are specified as follows:

set ::= setua(u) | value | constantSet | setca(c) | setsa(sub) | setma(entity)

atomic ::= atomicua(u) | value | constantAtomic | atomicca(c) | atomicsa(sub) |

atomicma(entity)

sub :: = SameCreator(u)

value ∈ {val | (sa, val) ∈ saset ∧ sa ∈ SA}

LConstrSub allows one to specify policies based on the attribute value for involved user, other

subjects created by the same user, context attributes, meta-attributes and the suggested attributes

values for the subject to be created. We adopt setua, atomicua from the definition from section 3.2.

As the policy can refer to attributes of subjects created by the same user, we define SameCreator(s)

which returns the set of subjects created by the same user. That is, ∀ s ∈ S, SameCreator(s) repre-

51

sents the set of subjects that are created by the same user as the creator of s, i.e., SameCreator(s)

= {sub | sub ∈ S ∧ SubCreator(sub) = SubCreator(s)}. where s is the formal parameter.

Language LConstrSubMod is used to specify subject attribute constraint policy ConstrSubMod

at modification time. It is different from LConstrSub in that LConstrSubMod is allowed to refer

to the current value of existing subjects. It is an instance of CPL where the symbols set and atomic

are defined as follows:

set ::= setua(u) | value | constantSet | setca(c) | setsa(sub) | setma(entity) |

setsa(s)

atomic ::= atomicua(u) | value | constantAtomic | atomicca | atomicsa(sub) |

atomicma(entity) |atomicsa(s)

Language LConstrObj is used to specify object attribute constrains policy ConstrObj at creation

time. It is a CPL instance where the symbols set and atomic are specified as follows:

set ::= setsa(s) | value

atomic ::= atomicsa(s) | value

value ∈ {val | (oa, val) ∈ oaset ∧ oa ∈ OA}

Language LConstrObj allows one to specify policies using attributes of the involved subject and

suggested attribute values for the object to be created. Note that different from the above languages,

this policy does not allow context attributes nor meta-attributes. Language LConstrObjMod is

used to specify object attribute constrains policy ConstrObjMod at modification time. It is a CPL

instance where the symbols set and atomic are specified as follows:

set ::= setsa(s) | value | setoa(o)

atomic ::= atomicsa(s) | value | atomicoa(o)

value ∈ {val | (oa, val) ∈ oaset ∧ oa ∈ OA}

LConstrObjMod is different from LConstrObj in that LConstrObjMod can refer to attributes of

the objects whose attributes are to be modified.

52

Table 3.13: ABACβ Configuration for OASIS-RBAC Without Role Membership Rule
1. Basic sets and functions
UA={uap}, SA={srole, sap}, OA={readrole, writerole}, CA = {Mapped from environment constraints},
MA = {}
P={read, write}
attType(srole) = attType(readrole) = attType(writerole)= attType(uap) = attType(sap) =
attType(condition) = set
SCOPEsrole= SCOPEreadrole = SCOPEwriterole = ROLE, where ROLE is a finite set of roles.
SCOPEuap = SCOPEsap = AP, where AP is finite set of appointment certificates in the system.
2. Configuration Points
(1)Authorization policy
Authorizationread(s, o)≡∃ r1 ∈ srole(s).∃r2 ∈ readrole(o). r1>=r2.
Authorizationwrite(s, o)≡∃ r1 ∈ srole(s).∃r2∈ writerole(o). r1>=r2.
(2)Subject attribute constraints at creation time
ConstrSub(u, s, {(srole, v), (sap, vap)})≡ Policy mapped from initial role activation rule (No prerequisite
role is included in this policy).
(3)Subject attribute constraints at modification time.
ConstrSubMod(u, s , {(srole, v), (sap, vap)})≡ Policy mapped from role activation rule (Prerequisite role
is allowed to be included in this policy).
(4)Object attributes constraints at creation time.
ConstrObj(u ,s , {(readrole, read), (writerole, write)})≡ false
(5) Object attributes constraints at modification time.
ConstrObjMod(u ,s , {(readrole, read), (writerole, write)})≡ false

3.3.6 Configuration Examples

We now show the configuration for a sample of RBAC extensions in ABACβ . For each category of

RBAC extensions shown in figure 3.3.2, they share the similar set of extensions in ABACβ . Thus,

we pick one model from each category and show the detailed configuration.

OASIS-RBAC Without Role Membership Rule

Central to the OASIS model is the idea of credential-based role activation. Role can be activated

in a certain session when the user satisfies conditions. There is no changes on other components

in RBAC compared with the original RBAC model. The condition can be specified based on the

following factors associated with the users:

• Appointment certificate. This is assigned by other users specifying that the user can have

special permissions.

53

Table 3.14: ABACβ Configuration for ROBAC
1.Basic Sets and functions
UA = {uorgrole}. SA = {sorgrole}, OA = {org, type}, MA = {readtype, writetype}
P = {read}
attType(uorgrole) = attType(sorgrole) = attType(readtype) = attType(writetype) = set, attType(org) = att-
Type(type) = atomic

SCOPEuorgrole = SCOPEsorgrole = ORG×ROLE, SCOPEorg = ORG, SCOPEtype = TYPE
ORG is finite set of organizations, TYPE is finite set of object types, ROLE is finite set of roles.
readtype: ROLE→ 2TY PE , writetype: ROLE→ 2TY PE

2. Configuration Points
(1) Authorization policy
Authorizationread(s, o)≡ ∃(org, role) ∈ sorgrole(s).(org >= org(o) ∧ type(o) ∈ readtype(role)).
Authorizationwrite(s, o)≡ ∃(org, role) ∈ sorgrole(s).(org >= org(o) ∧ type(o) ∈ writetype(role)).
(2) Subject attribute constraints at creation time
ConstrSub(u, s, {(sorgrole, val)})≡ ∀ (org, role)∈ val.∃(org1, role1) ∈ uorgrole(u). org <= org1 ∧ role
<= role1.
(3) Subject attribute constraints at modification time
ConstrSubMod(u, s, {(sorgrole,val)})≡ ∀ (org, role)∈ val.∃(org1, role1) ∈ uorgrole(u). org <= org1 ∧
role <= role1.
(4) Object attribute constraints at creation time.
ConstrObj(s, o, {(org, o), (type, t)})≡ false
(5) Object attribute constraints at modification time.
ConstrObjMod(s, o, {(org, o), (type, t)})≡ false

• Prerequisite role. The roles that the user has activated in a session.

• Environmental constraints. This represents the context information such as time, risk level

and so on.

Role activation rule is specified using conjunctions of comparisons of the above factors and return

boolean result stating the role activation is allowed or not. Role activation rules are different

for session creation and modification time because at creation time, the policy does not contain

prerequisite roles and at modification time, the prerequisite roles can be included.

In order to configure this model, the first two factors are modeled as user attribute. The envi-

ronment condition is modeled as context attributes. As the OASIS-RBAC model does not specify

a specific set of environment attributes, we assume there exists a set of contextual attributes. The

(initial) role activation rule is configured in subject attribute constraints at creation and nidification

time. Formal configuration is shown in table 3.13. We describe the mapping process from role

activation rule to subject attribute constraints policy as follows:

54

Table 3.15: ABACβ Configuration for Role Template
1. Basic Sets and Functions
UA={ua1, ua2, . . . uan, urole}, SA={sa1, sa2, . . . san, srole}, OA={oa1, oa2, . . . oan, readrole}, MA = {}
The type and range of other attributes depend on specific applications.
P={read}
attType(urole) = attType(srole) = set
SCOPEurole= SCOPEsrole =ROLES, ROLES is finite set of roles in the systems.
2. Configuration Points
(1) A. Authorization policy for flat role template.
Authorizationread(s, o)≡srole(s)∩readrole(o) 6= ∅ ∧ (comparison between subject attribute and object at-
tribute)
B. Authorization policy for nested role template.
Authorizationread(s, o)≡ ∃ role1∈ srole(s).∃role2∈readrole(o). role1>=role2∧ (comparison between
subject attribute and object attribute)
(2) Subject attribute constraints at creation time.
ConstrSub(u, s, {(srole, val), (sa1, v1) . . . (san, vn)})≡ val ⊆ urole(u) ∧ v1 = ua1(u) ∧ vn = uan(u)
(3) Subject attribute constraints at modification time.
ConstrSubMod(u, s, {(srole, val),(other attributes)})≡ val ⊆ urole(u) ∧ v1 = ua1(u) ∧ vn = uan(u)
(4)Object attribute constraints at creation time.
ConstrObj(s, o, {(readrole, role), (oa1, v1) . . . (oan, vn) })≡ false
(5)Object attribute constraints at modification time.
ConstrObjMod(s, o, {(readrole, role), (oa1, v1) . . . (oan, vn) })≡ false

• For each x from R, we map it into x ∈ R. (No need to map this factor in initial role activating

rules.)

• For each x from appointment certificate, we map it to x ∈ uap(u).

• For each x from environment constraints, we map it to x ∈ ca(c) where ca is mapping to a

specific contextual attributes.

They are connected using conjunction. For different rules defined for the same role, we connect

them using disjunction in the subject attribute constraint policy.

Role and Organization based Access Control

In ROBAC, users are assigned with role and organization pair and objects are associated with

organizations. In order for a user to access an object, there are two preconditions: (1) there exists

a role which can access the object and (2) the role is activated in the same organization as the

objects. The only change to the configuration of RBAC model is that users and objects are now

55

Table 3.16: ABACβ Configuration for Spatial and Temporal RBAC
1.Basic Sets and functions
UA = {urole, ulocation}, SA = {srole, slocation}, OA = {readrole, writerole}, CA = {time}, MA = {ac-
Time, acLoc}
P={read}
attType(urole) = attType(srole) = attType(acTime) = attType(acLoc) = set
attType(ulocation) = attType(slocation) = attType(time) = atomic
SCOPEurole = SCOPEsrole = ROLE, a finite set of roles
SCOPEtime = TIME, a finite set of logical times.
SCOPEulocation = SCOPEslocation = LOC, a set of locations.
acTime: ROLE→TIME.
acLoc: ROLE→ LOC.
2. Configuration Points
(1) Authorization policy
Authorizationread(s, o)≡ ∃(role, loc, time) ∈ readrole(o).(role∈ srole(s)∧ slocation(s) = loc ∧ time(c) =
time).
Authorizationwrite(s, o)≡ ∃(role, loc, time) ∈ writerole(o).(role∈ srole(s)∧ slocation(s) = loc ∧ time(c) =
time).
(2) Subject attribute constraints at creation time
ConstrSub(u, s, {(srole,role), (slocation, proloc)})≡ proloc = ulocation(u) ∧ ∀ r∈ srole.(time(c) ∈ ac-
Time(r) ∧ proloc ∈ acLoc(r))
(3) Subject attribute constraints at modification time
ConstrSubMod(u, s, {(srole,role), (slocation, proloc)})≡ proloc = ulocation(u) ∧ ∀ r∈ srole.(time(c) ∈
acTime(r) ∧ proloc ∈ acLoc(r))
Note: The constraints between user and subject location can be either the same or different.
(4) Object attribute constraints at creation time.
ConstrObj(s, o, {(readrole, read), (writerole, write)})≡ false.
(5) Object attribute constraints at modification time.
ConstrObjMod(s, o, {(readrole, read), (writerole, write)})≡ false.

associated with organization attributes which further is included in subject attribute constraints and

authorization policy. The formal configuration is shown in table 3.14.

Role Template-1997

The basic concept of role template is that roles are associated with parameters and parameterized

permissions. Role parameters are modeled as user attributes and object attributes. The permission

further is specified using authorization policy. As the model does not specify a specific set of role

parameters, it is not possible to configure the detailed user attributes in this configuration. Instead,

we show the equivalent scheme and leave the authorization policy to be configured by specific

instance. We show the formal configuration in table 3.15.

56

Table 3.17: ABACβ Configuration for Task-RBAC 2003
1. Basic Sets and functions.
UA={urole}, SA={srole}, OA={readtask, writetask}, MA ={roletask}
P={read, write}
SCOPEreadtask= SCOPEwritetask= SCOPEroletask =TASK
SCOPEurole = SCOPEsrole= ROLES
attType(urole)=attType(srole)=attType(readtask)=attType(readtask)= attType(roletask) = set
roletask: ROLES→ 2TASK

2. Configuration Point.
(1) Authorization policy.
Authorizationread(s, o)≡ ∃ role ∈ srole(s).roletask(role) ∩ readtask(o) ! = ∅
Authorizationwrite(s, o)≡ ∃ role ∈ srole(s).roletask(role) ∩ writetask(o) ! = ∅
(2)Subject attribute constraints at creation time.
ConstrSub(u,s {(srole, val)})≡ val⊂ urole(u)
(3)Subject attribute constraints at modification time.
ConstrSubMod(u,s {(srole, val)})≡ val⊂ urole(u)
(4)Object attribute constraints at creation time.
ConstrObj(s, o, {(readrole, read), (writerole, write)})≡ false
(5)Object attribute constraints at modification time.
ConstrObjMod(s, o, {(readrole, read), (writerole, write)})≡ false

Spatial and Temporal RBAC

In this model, the only extension is that roles, permissions can be activated within certain location

and time. Subject attribute constraints check whether the role can be activated. Authorization

policy further checked whether permissions are allowed at certain time and location. To configure

this model, users and subjects are associated with location attributes besides role. Roles carries

meta-attributes which reflect the time and location to activate. For each object, it carries attributes

which returns the role, time and location to access it. The formal configuration is shown in table

3.16.

Task-RBAC-2003

This model adds an additional level of permission assignment. Permissions on object is associated

with certain tasks which are further associated with roles. Other than that, this model is the same

as the original RBAC model. In order to capture the relationship between task and role, a meta-

attribute needs to be specified. This attribute returns the set of tasks which are associated with

57

Table 3.18: ABACβ Configuration for Ubi-RBAC
1. Basic Sets and functions.
UA ={urolespace}, OA = {readrole, writerole}, SA = {srole, space}
CA = {mapped from contextual constraints}, MA = {child}
SCOPEspace = SPACE, is a partially ordered set of space
attType(urolespace) = attType(readrole) = attType(writerole) = attType(srole) = set
SCOPEreadrole = SCOPEwriterole = SCOPEsrole = ROLE, a finite set of roles.
SCOPEurolespace= ROLE × SPACE
attType(space) = attType(child) = atomic
child: SPACE→SPACE
2. Configuration Point.
(1) Authorization policy.
Authorizationread(s, o)≡ ∃ (r, c) ∈ readrole(o). r ∈ srole(s) ∧ computation on c.
Authorizationwrite(s,o)≡ ∃ (r, c) ∈ writerole(o). r ∈ srole(s) ∧ computation on c.
(2)Subject attribute constraints at creation time.
ConstrSub(u,s {(srole, prorole),(space, prospace)})≡ (¬(∃ s ∈ S.space(s) = prospace) ∧ ∀ r ∈ prorole. (
(∃ sub ∈ SameCreator(s).(space(s) = child(prospace) ∧ r ∈ srole(s))) ∨ (∃(role, valspace) ∈ urolespace(u).
(role=r ∧ valspace = prospace)))
(3)Subject attribute constraints at modification time.
ConstrSubMod(u, s, {(srole, prorole),(space, prospace)})≡ (¬(∃ s ∈ S.space(s) = prospace) ∧ ∀ r ∈
prorole. ((∃ sub ∈ SameCreator(s). (space(s) = child(prospace) ∧ r ∈ srole(s))) ∨ (∃(role, valspace) ∈
urolespace(u). (role=r ∧ valspace = prospace)))
(4)Object attribute constraints at creation time.
ConstrObj(s, o, {(readrole, read), (writerole, write)})≡ false
(5)Object attribute constraints at modification time.
ConstrObjMod(s, o, {(readrole, read), (writerole, write)})≡ false

each role. Each object carries the attribute returning the set of tasks that have certain permission

on them. The formal configuration is shown in table 3.17.

Ubi-RBAC-2010

The core extensions of this model from RBAC1 [122] are in two aspects:

• Each session carries space information. Space is a partially ordered set. In each space, users

can only activate a subset of their assigned roles. If a user activate a session in a space without

specifying the roles, this space, by default will inherit roles from the sessions activated in

the nearest child space.

• Context information. In the structure of permission, contextual constraints are included.

58

Thus, we model space as an attribute of subjects and model contextual constraints in authorization

policy. The formal configuration is shown in table 3.18.

3.3.7 Expressive Power Discussion

ABACβ is designed to cover RBAC extensions in different directions and provide a uniform frame-

work to combine those advantages in scope. We’ve shown that this model is capable to cover a

wide variety of extensions to RBAC model. The benefit of using ABACβ is not limited to express-

ing previously proposed RBAC extensions. Rather, it can be used to discover interesting extensions

to RBAC that have not been proposed. In this section, we present an example RBAC extension in

the format of ABACβ configuration.

RBAC with Automatic Role Enhancing (RBAC-ARE)

In RBAC, permissions are associated with roles by system architects when deploying the system.

The advantage of RBAC is based on the assumption that the set of roles and permissions do not

change frequently. Problem arises when new permissions on newly created objects need to be

associated with roles. The only way to authorize those permissions to users is to redesign roles and

then assign roles to users. Whether new roles are created or permissions are associated with the

existence roles, the complexity increases with the amount and dynamic nature of object creation.

In this section, we extend RBAC by allowing creation of new objects. And at the same time, we

associate the permissions on those newly created objects with existing roles automatically. In this

way, system architects do not need to redesign roles and RBAC scale in dynamic systems. For this

purpose, we allow users to suggest values to be assigned to attributes of objects when they create

new objects. As in ABACα instance of RBAC, each object is associated with the same number

of attributes as permissions. Each attribute is mapped to the permission and represents the set of

roles which can have the permission on that object. For example, readrole is an object attribute and

readrole(file) represents the roles that can read this file. In RBAC configuration, those attribute

values are set at model deployment time. In RBAC_ARE,

59

Table 3.19: ABACβ Configuration for RBAC_ARE
1. Basic sets and functions
UA ={urole}, SA ={srole}, OA ={rrole, wrole, owner}, CA = {}, MA = {}
P ={read,write}
SCOPEurole = SCOPEsrole = SCOPErrole = SCOPEwrole = R, R is a set of atomic roles define by the
system.
SCOPEowner = U.
attType(urole) = attType(srole) = attType(rrole) = attType(wrole) = set.
attType(owner) = atomic.
2. Configuration Points
(1). Authorization policy
Authorizationread(s, o) ≡ ∃r1∈srole(s). ∃r2∈rrole(o).r2≤r1
Authorizationwrite(s, o) ≡ ∃r1∈srole(s). ∃r2∈wrole(o).r2≤r1
(2). Subject attribute constraints at creation time
ConstrSub(u, s, {(srole,val1)}) ≡ ∀r1∈val1.∃r2∈urole(u).r1≤r2
(3). Subject attribute constraints at modification time
ConstrSubMod(u, s, {(srole,val1)}) ≡ ∀r1∈val1.∃r2∈urole(u).r1≤r2
(4). Object attribute constraints at creation time
ConstrObj(s, o, {(rrole,val1),(wrole,val2), (owner, name)}) ≡ name = SubCreator(s) ∧
specified by system architects.
(5). Object attribute constraints at modifcation time
ConstrObjMod(s, o, {(rrole,val1),(wrole,val2), (owner, name)}) ≡ owner(o) = SubCreator(s) ∧ name =
owner(o) ∧specified by system architects.

• When users create new objects, the attributes of the newly created object are assigned and

modified by its creator. That is, the creator can specify the list of roles for each permission

on the objects.

• Only the creator can modify the attributes of the objects.

• Different object attributes constraints result in ABACβ instances with different features.

ABACβ Configuration for RBAC_ARE

In order to configure RBAC_ARE, one change needs to be made to the original ABACβ config-

uration for RBAC [80]. Instead of returning false, the object attribute constraints is specified by

system architects. This change can be applied to both RBAC0 and RBAC1 model. We shows the

hierarchical RBAC configuration in table 3.19.

60

Example Constraints

We show several examples of interesting and practical object attributes constraints and illustrate

them in this section. The examples are as follow:

1. ConstrObj(s, o, {(rrole, val1), (wrole, val2)}) ≡ name = SubCreator(s) ∧ val1 =

{manager} ∧ val2 = {manager}.

2. ConstrObj(s, o, {(rrole, val1), (wrole, val2)}) ≡ name = SubCreator(s) ∧ val1 ⊆

srole(s) ∧ val2 ⊆ srole(s).

3. ConstrObj(s, o, {(rrole, val1), (wrole, val2)}) ≡ name = SubCreator(s) ∧ ∀ r ∈ val1.∀

r1 ∈ srole(s). r>r1 ∧ ∀ r ∈ val2.∀ r2 ∈ srole(s). r<r2.

The first constraint allows users with “manager” role to automatically grow with permissions

on newly created objects by all other users. This is useful in companies where managers need to

review, audit and modify documents from the rest of employees. The second constraint allows the

creator to grant permissions on the object to users with the same roles as the creator. This enables

information sharing among users with the same roles. For example, multiple manager users may

want to share their report with each other within only manager users. The third constraint specifies

information flow in roles with hierarchy. For each newly created objects, only users with roles

which are senior than the object creator can read it and users with roles which are junior than the

object creator can write it.

3.4 Conclusion

In this chapter, we develop ABACα to establish the connections between classical models and

ABAC. We define core components and configuration points of ABAC model. With the formal

configuration of ABAC for classical models, we demonstrate the expressive power of ABACα

model. In addition, we develop ABACβ based on the observation that RBAC has been dominant in

access control in both industry and academia. This model provides richer configuration languages

and covers a wide range of RBAC extensions. Formal configuration for sample RBAC extensions

61

in ABACβ is provided.

62

Chapter 4: ROLE BASED USER ATTRIBUTE ADMINISTRATIVE

MODEL AND POLICY ANALYSIS

4.1 Scope

The ABAC models proposed in the previous section are based on the assumption that all users are

associated with user attributes and each attribute is assigned with certain values. An administration

model is needed to manage user attribute assignment. It’s crucial to regulate the assignment of user

attributes as these attributes are further used in authorization policy and thus determine the permis-

sions a user may obtain. The central contribution in this chapter is to study administrative issues of

user attribute management in ABAC. For this purpose, we use the well-known administrative role

based access control model (ARBAC97) which to our knowledge has not been previously applied

in this domain. Our motivation for choosing ARBAC97 includes its ease of administration and

sizable literature. Our principle finding is that ARBAC97, with proper generalization, is suitable

in large measure to address user attribute assignment administration. In particular, we generalize

the user role assignment model (URA) which is part of ARBAC97. Since role is just one type of

user attribute, this generalization is straight forward yet efficient.

It is straight forward to extend this work to user attribute administration based on attributes

where administrator also has attributes and their permissions to modify attributes is computed by

their attributes and policies. However, in this dissertation, we mainly focus on GURA as it is

sufficient to reflect the context of attributes. In addition, by proposing this initial model, further

work which extends this model will inherit many properties researched here. For example, we con-

duct reachability analysis later in this chapter for the purpose of policy analysis based on GURA.

Clearly, any extensions based on GURA will inherit the systematical study of complexities for

GURA model.

63

4.2 User-Role Assignment Model

Administrative role based access control (ARBAC97) [118] is designed for user-role assignment,

role-permission assignment and role hierarchy specification in RBAC [119]. In this chapter, we

deal with user attribute assignment, and hence discuss the use of user-role assignment (URA)

which is part of ARBAC97. The URA97 model is defined in two steps: granting a user membership

in a role and revoking a user’s membership. The goal of URA97 is to impose restrictions on which

users can be added to a role by whom, as well as to clearly separate the ability to add and remove

users from other operations on the role. The notion of prerequisite condition is a key part of

URA97. All examples included in the following are according to figure 4.1 adapted from [118].

Figure 4.1: Example Role and Administrative Role Hierarchies

64

Table 4.1: Role Range Notation

[x,y]={r∈R | r ≥ x ∧ y ≥ r}
[x,y)={r∈R | r ≥ x ∧ y > r}
(x,y]={r∈R | r > x ∧ y ≥ r}
(x,y)={r∈R | r > x ∧ y > r}

4.2.1 The URA97 Grant Model

User-role assignment is authorized by means of the following relation .

can_assign ⊆ AR× CR× 2R (4.1)

The meaning of can_assign(x, y, {a, b, c}) is that a member of the administrative role x (or a

member of an administrative role that is senior to x) can assign a user whose current membership,

or nonmembership, in regular roles satisfies the prerequisite condition y to be a member of regular

roles a, b, or c. In relation (4.1), AR stands for specific administrative roles such as Project Security

Officer 1 (PSO1). CR is a prerequisite condition which is a boolean expression using the usual ∨

and ∧ operators on terms of the form x and x̄ where x is a regular role. A prerequisite condition

is evaluated for a user u by interpreting x to be true if (∃x′ ≥ x)(u, x′) ∈ URA and x to be true

if (∀x′ ≥ x)(u, x′) /∈ URA, where URA is the user-role assignment relation of RBAC. For a given

set of roles R, we let CR denote all possible prerequisite conditions that can be formed using the

roles in R. 2R represents the roles which can be assigned to the users who satisfy the prerequisite

condition. Here the role sets are specified using the range notation given in table 4.1.

Examples are shown in table 4.2. The first tuple authorizes PSO1 role (and its seniors) to assign

users with prerequisite role ED into roles {E1, QE1, PE1, PL1}. The second tuple authorizes PSO1

role to assign users with prerequisite condition ED ∧ QE1 to PE1. The third tuple authorizes

PSO1 to assign users with prerequisite condition ED ∧ PE1 to QE1. The second and third together

authorize PSO1 to put a user who is a member of ED into one but not both of PE1 and QE1.

65

Table 4.2: can_assign with Prerequisite Roles
Admin. Role Prereq. Condition Role Range
PSO1 ED [PL1, E1]
PSO1 ED ∧ QE1 [PE1, PE1]
PSO1 ED ∧ PE1 [QE1, QE1]

Table 4.3: Examples of can_revoke
Aadmin. Role Role Range
PSO1 [E1, PL1)
PSO2 [E2, PL2)

4.2.2 The URA97 Revoke Model

In URA, the role assignment and revoke permissions are authorized separately. The URA97 model

controls user-role revocation by means of the following relation.

can_revoke ⊆ AR× 2R (4.2)

In relation (4.2), the meaning of can_revoke(x, Y) is that a member of the administrative role x

(or a member of an administrative role senior to x) can revoke membership of a user from any

regular role y ∈ Y . Y is also specified using range notation. Examples are shown in table 4.3. The

first tuple authorizes PSO1 to revoke membership from the roles {E1, PE1, QE1} (represented by

the role range notation). Suppose Alice is member of PSO1 and Bob is member of PE1. Then

Alice is authorized to remove Bob’s membership of PE1. The second tuple authorizes PSO2 to

remove membership from the roles {E2, PE2, QE2}.

4.3 Generalized User-Role Assignment Model (GURA)

The main purpose of the model is to provide policy to specify the permissions for each adminis-

trative role in managing user attributes. We first introduce several concepts and then present the

formal model.

66

4.3.1 Preliminaries

Administrative Requests. In GURA, administrative requests are made by members of adminis-

trative roles to modify attributes of users in U. A request takes effect only if it is authorized by an

administrative rule introduced later in this section. An authorized request is called an action. In

this model we are concerned with the collective power of the administrative roles. We therefore do

not distinguish specific members, and simply ascribe a request to an administrative role rather than

to one of its members. Management of membership in administrative roles is discussed in existing

models such as [118]. Thus, we assume a finite set of administrative roles AR (it may be flat or

hierarchical).

Atomic-valued attributes are modified via an assign action which replaces the current value

with a new value. For set-valued attributes, an add action is used to add a single atomic value to

an existing attribute set, while a delete action is used to remove a specific atomic value from an

existing set. More formally, for each ar ∈ AR, u ∈ U, att ∈ UA and val ∈ SCOPEatt,

• assign(ar, u, att, val) is a request made by (a member of administrative role) ar to assign

value val to the atomic-valued attribute att of user u. Suppose AR ={gameleader, manager}

and Alice’s attribute assignments are as in example 1. The request assign(manager, Alice,

Dept, hardware) is made by (a member of administrative role) manager to assign Alice to

hardware department. If this request is authorized, Alice’s Dept attribute will change from

software to hardware.

• add(ar, u, att, val) is a request made by ar to add value val to the set-valued attribute att

of user u. For instance, add(manager, Alice, Proj, game) is a request made by manager to

add Alice to the game project. If authorized, Proj(Alice) becomes {mobile, social, search,

game}.

• delete(ar, u, att, val) is a request made by ar to delete the value val from the set-valued

attribute att of user u. For instance, delete(manager, Alice, Proj, game) is a request by

67

manager to delete Alice from game project. If authorized, Proj(Alice) would revert back to

{mobile, social, search}.

Definition 1 (Administrative Requests). Administrative requests are made by members of ad-

ministrative roles to modify user attributes. Request = ASSIGN∪ADD∪DELETE denotes the

set of all possible administrative requests where,

• ASSIGN = {assign(ar, u, att, val) | ar ∈ AR ∧ u ∈ U ∧ att ∈ UA ∧ attType(att) =

atomic ∧ val ∈ SCOPEatt}

• ADD = {add(ar, u, att, val) | ar ∈ AR ∧ u ∈ U ∧ att ∈ UA ∧ attType(att) =

set ∧ val ∈ SCOPEatt}

• DELETE = {delete(ar, u, att, val) | ar ∈ AR ∧ u ∈ U ∧ att ∈ UA ∧ attType(att) =

set ∧ val ∈ SCOPEatt}

Administrative Rules. An administrative request takes effect only if it is authorized by

an administrative rule. Administrative rules specify the necessary preconditions for authorizing

administrative requests. A precondition is a logical formula expressed over user attributes that

evaluates to true or false (e.g., Clr(Alice) ≥ classified ∧ game ∈ Proj(Alice)). The power of the

administrative model lies in the expressive power of the preconditions, which can be specified by

different grammars for defining preconditions. We will define the grammar for the two GURA

models defined in section 4.3.2.

Definition 2 (Administrative Rules). An administrative rule specifies the authorization for ad-

ministrative requests. Administrative rules are tuples in the following three relations where C

represents a set of preconditions (specified by a formal grammar for each instance of a GURA

model).

For each atomic-valued attribute aua ∈ UA,

can_assignaua ⊆ AR× C× SCOPEaua

68

The rule 〈ar, c, val〉 ∈ can_assignaua authorizes the requests assign(ar, u, aua, val) if user u

satisfies precondition c.

For each set-valued attribute sua ∈ UA,

can_addsua ⊆ AR× C× SCOPEsua

can_deletesua ⊆ AR× C× SCOPEsua

The rule 〈ar, c, val〉 ∈ can_addsua authorizes the requests add (ar, u, sua, val) if user u sat-

isfies the precondition c, and the rule 〈ar, c, val〉 ∈ can_deletesua similarly authorizes requests

delete(ar, u, sua, val) if user u satisfies precondition c.

Administrative rules are specified using different relations. A can_assign relation is specified

for each atomic-valued attribute. Similarly, can_add and can_delete relations are specified for each

set-valued attribute. We use can_assign to denote the collection of can_assignaua relations for all

atomic-valued attributes. That is,

can_assign = 〈can_assignatt1 , . . . , can_assignattm〉,

where att1, att2, . . . , attm are atomic-valued attributes. Similarly, we use can_add and can_delete

as follows:

can_add = 〈can_addatt′1 , . . . , can_addatt′n〉

can_delete = 〈can_deleteatt′1 , . . . , can_deleteatt′n〉

where att′1, att′2, . . . , att′n are set-valued attributes. We give examples when introducing the two

models.

69

4.3.2 GURA Models

We introduce two GURA models with incremental expressive power in precondition specification

in the policy.

GURA0

This model contains administrative rules defined as above and provide the language for specifying

the preconditions in administrative rules. We first adopt the common structure called CPL shown

in table 3.4 from chapter 3.2.

The language for specifying the preconditions in rules for a set-valued attribute sua is an in-

stance of CPL where the symbols set and atomic are defined as follows:

set ::= sua(u) | constantSet

atomic ::= constantAtomic

This language allows one to specify precondition using only the set-valued attribute sua which is

to be modified and constant set and atomic values. constantSet and constantAtomic are adopted

from chapter 3 and they represent constant set and atomic values respectively. The language for

specifying the preconditions in rules for an atomic-valued attribute aua is an instance of CPL

where the symbols set and atomic are defined as follows:

set ::= constantSet

atomic ::= aua(u) | constantAtomic

This language allows one to specify precondition using only the atomic-valued attribute auawhich

is to be modified and constant set and atomic values.

Table 4.4: Example User Attributes
Attribute Type Scope Range
Clr atomic SCOPEClr = {unclassified, classified, secret, topsecret} Range(Clr) = SCOPEClr

Dept atomic SCOPEDept ={software, hardware, finance, market} Range(Dept) = SCOPEDept

Proj set SCOPEProj ={search, game, mobile, social, cloud} Range(Proj) = P(SCOPEProj)
Skill set SCOPESkill ={web, system, server, win, linux, security} Range(Skill) = P(SCOPESkill)

Example policy for GURA0. We use the attributes information shown in table 4.4 where Clr

70

Table 4.5: Example Rules in GURA Schemes
Example Rules in GURA0 Scheme

N. Relation Admin
Role

Precondition Value

1 can_addProj gameleader mobile ∈ Proj(u) ∧ social ∈ Proj(u) ∧ ¬(cloud ∈ Proj(u)) game
2 can_deleteProj gameleader game ∈ Proj(u) ∧ social ∈ Proj(u) game
3 can_assignDept manager Dept(u) = software market
4 can_assignDept manager Dept(u) = hardware market

Example Rules in GURA1 Scheme
5 can_addProj gameleader mobile ∈ Proj(u) ∧ social ∈ Proj(u) ∧ ¬(cloud ∈ Proj(u)) ∧ Dept(u)

= software ∧ Clr(u) = unclassified ∧ web ∈ Skill(u) ∧ security ∈
Skill(u)

game

6 can_deleteProj gameleader game ∈ Proj(u) ∧ ¬(Clr(u) = topsecret) game
7 can_assignDept manager Dept(u) = software ∧ ¬(Clr(u) = unclassified) ∧ server ∈ Skill(u) ∧

win∈ Skill(u)
market

8 can_assignDept manager Dept(u) = hardware ∧ ¬(Clr(u) = unclassified) ∧ server ∈ Skill(u) ∧
win∈ Skill(u)

market

(Clearance) and Dept (Department) are atomic-valued attributes, while Prj (Project) and Skill are

set-valued. We use the administrative rules specified in table 4.5. The first part shows example

administrative rules in GURA0. We assume that Bob is a member of administrative role “game-

leader” and the attribute assignment for user Alice is: Clr(Alice) = unclassified, Dept(Alice) =

software, Proj(Alice) = {mobile, social, search} and Skill(Alice) = {web, security}. Rule 1 autho-

rizes Bob to add “game” to the Proj attribute of Alice. Bob is also authorized to delete “game”

from Proj attribute of Alice based on rule 2. However, if Proj(Alice) = {mobile, social, cloud},

the add request will not take effect. Rules 3 and 4 are specified for the attribute Dept and they

allow members of “manager” role to assign users who are currently in “software” or “hardware”

department to “market” department. Note that multiple rules can be specified for the same attribute

name and value combinations.

GURA1

Similarly, GURA1 defines the language for specifying preconditions in administrative rules. The

language is an instance of CPL where the symbols set and atomic are defined as follows:

set ::= setua(u) | constantSet

71

atomic ::= atomicua(u) | constantAtomic

This language allows one to specify policies using any attributes values of the same user as well as

constant values. The symbols setua and atomicua are adopted from chapter 3 and they represent

all possible set-valued and atomic-valued user attributes respectively.

Example policy for GURA1. The second part in table 4.5 shows example administration rules

in GURA1 based on attributes in table 4.4. Unlike GURA0, the preconditions of administrative

rules in GURA1 can be specified using any attributes of the user. We assume that Alice has the same

attribute assignment as in example 1. Bob is a member of “gameleader” role. Rule 5 authorizes

Bob to add value “game” to Alice’s Proj attribute. If Clr(Alice) = topsecret, the above request will

not be authorized. Similarly, according to rule 7, Bob is not authorized to assign Alice to “market”

department since Clr(Alice) = unclassfied. Other rules are self-explanatory.

4.4 User Attribute Reachability Analysis

We have defined GURA for user attribute administration. In this section, we study the user-attribute

reachability problem.

4.4.1 Motivation for Reachability Analysis

User attributes are often used in sensitive activities such as authorization, authentication and au-

dit. For example, in attribute-based access control (ABAC) [69, 80, 95], access decisions are made

based on various user attributes compared to identity in discretionary access control (DAC) [123],

clearance in mandatory access control (MAC) [121] and role in role based access control (RBAC)

[119]. A critical question regarding access control policies is whether they ensure certain security

properties. In context of GURA, as user attributes are further utilized for security-sensitive ac-

tivities, it is important to ensure that every user can only be assigned appropriately valid attribute

values. Although administrators might be trusted and expected to exercise due diligence in at-

tribute assignments, it is nevertheless desirable to determine exactly what values of attributes can

72

Figure 4.2: Example User Attribute Reachability Problem

be assigned by a collection of administrators acting cooperatively. Such analysis can also provide

guidance on the sequence of attributes modifications to achieve specific attribute assignments for

specific users. It is not straightforward to understand administrative policies by simple inspection.

Large number of attributes and policies and unexpected actions of administrators complicate the

analysis. Take the scenario in figure 4.2 as an example. Figure 4.2(a) shows that users can only ac-

cess sensitive resources when the three attributes reach certain values simultaneously. Suppose an

administrative user in a manager role can assign a user to “topsecret” clearance if the user is with

“officer” role, with “secret” clearance and not “part time” in work-type. It might seem that a user

can never be “part time” and with “topsecret” clearance at the same time. The policy is summa-

rized in figure 4.2(b). However, the policy may inadvertently allow that. A user may be “full time”

and then assigned to “topsecret” clearance according to rule 1. After that, he can be assigned to

“part time” work-type according to rule 2. Reachability analysis can reveal such anomalies which

may not be explicitly considered or immediately obvious in policy design.

We explore attribute reachability analysis in this work. Policy analysis, which allows pol-

icy designers to check whether their policies meet their security goals, has been recognized as

important in access control [93, 94, 124]. The closest work is role reachability analysis in AR-

BAC97 [66, 94, 124, 129, 131]. Since GURA is an extension to ARBAC which contains more than

one attribute, it is not sufficient to directly use the results from ARBAC97 analysis. In ARBAC97

there is a single set-valued attribute called role. In GURA on the other hand there are multiple

attributes, some set-valued and some atomic-valued with possible constraints across multiple at-

tributes. We study reachability analysis on a restricted version of the GURA model called rGURA.

rGURA is different from GURA in the precondition specification language. It has a restricted ver-

73

sion of the languages provided in GURA models. We start by studying rGURA because even the

reachability of this model, which is not as expressive as GURA model, is challenging. Our main

contributions are as follows.

• The reachability problem asks whether a user can be assigned to specific attributes values

by the actions of a set of administrators. We formally define user attribute reachability by

abstracting the rGURA model as a state transition system. We consider different variations

of queries for set-valued attributes than that in ARBAC study. In ARBAC97 analysis, a

goal (a set of roles) is reached if the user is assigned the roles in goal or a superset of

these. This is because the additional roles cannot reduce authorization in RBAC systems.

With general attributes it is not clear how their values can impact authorization. Additional

values in a set-valued attribute may possibly reduce authorization, depending on how the

authorization policies are specified. Therefore, we also consider the case where set-valued

attributes should be assigned exactly the same values as in goal but not a superset.

• By reductions from the role reachability problem in ARBAC97 and the planning problem

in artificial intelligence, we show that general attribute reachability problems are PSPACE-

complete, along with identified special cases. We also consider special NP-complete or

NP-hard cases.

• We identify polynomial time solvable cases which are useful in practice. As the input to the

algorithms may be large and the analysis may need to be performed frequently, polynomial

performance is always desirable. We further evaluate performance through simulations.

We focus on user attributes. In general, attributes are also associated with other entities such

as subjects, objects and environment in ABAC systems [69]. Our reachability analysis results

apply to attributes of any such entity so long as they are managed using the rGURA style, that is

each attribute is managed by administrative users who can modify it provided the entities’ attributes

satisfy specified preconditions. However, rGURA-style models may not be appropriate for attribute

administration in all possible scenarios. For instance, one may allow subjects of regular users to

74

modify object attributes, especially objects that they create. While the rGURA style is likely

best suited to user attributes it does have broader applicability beyond the scope studied here.

For example, in a cloud computing scenario, the attributes of the same user may be administered

distributively by different attribute providers and users may use these attributes to request the same

online service. These attributes may also be constrained by each other as modeled in GURA.

4.4.2 rGURA Scheme

An rGURA scheme is a state transition system where a state is an attribute assignment for each user

and each attribute. State transitions are caused by authorized administrative requests to modify user

attributes. We give the general definition for an rGURA scheme below, followed by two specific

instantiations rGURA0 and rGURA1 with specific formal grammars for preconditions.

Definition 3 (rGURA Scheme). An rGURA scheme is a state transition system 〈U, UA, AR,

Range[], attType[], SCOPE, Ψ, Γ, δ〉 where,

• U, UA, AR, Range[] and attType[] are defined above.

• SCOPE = 〈SCOPEatt1 . . . SCOPEattn〉 where atti ∈ UA, is the collection of the scopes of

all attributes.

• Ψ = 〈can_assign, can_add, can_delete〉, is the collection of administrative rules for all at-

tributes.

• Γ is the finite set of states. A state γ ∈ Γ records assigned attribute values for each user. The

user attribute assignment in state γ, denoted UAAγ , contains tuples of the form 〈u, att, val〉

for every u ∈ U, att ∈ UA such that att(u) = val. Formally,

UAAγ ={〈u, att, val1〉 | u ∈ U ∧ att ∈ UA ∧

val1 ∈ Range(att) ∧ (∀val2 ∈ Range(att).

val2 6= val1 → 〈u, att, val2〉 /∈ UAAγ)}

75

Table 4.6: State Transition Function δ : Γ×Request→ Γ
(1) Let the source state be γ1. In all requests in the first column, ar ∈AR, u∈U, att∈UA, val′ ∈ SCOPEatt.
(2) Satisfy: U × C × Γ→ {true, false}, returns true if user u ∈ U satisfies precondition c ∈ C in state
γ ∈ Γ, else false.

Request Target State

assign(ar, u, att, val′)
if ∃ 〈ar, c, val〉 ∈ can_assignatt ∧ Satisfy(u, c, γ1)

then transition to target state γ2 where: UAAγ2 = UAAγ1 \ 〈u, att, val〉 ∪ 〈u, att, val′〉
else remain in γ1

add(ar, u, att, val′)

if ∃ 〈ar, c, val〉 ∈ can_addatt ∧ Satisfy(u, c, γ1)

then transition to target state γ2 such that UAAγ2 = UAAγ1 \ 〈u, att , setval〉 ∪ 〈u,
att , setval′〉

where att(u) = setval in state γ1 and setval′ = setval ∪ {val′},
else remain in γ1

delete(ar, u, att, val′)

if ∃ 〈ar, c, val〉 ∈ can_deleteatt ∧ Satisfy(u, c, γ1)

then transition to target state γ2 where: UAAγ2 = UAAγ1 \ 〈u, att , setval〉 ∪ 〈u, att
, setval′〉

where att(u) = setval in state γ1 and setval′ = setval \ {val′},
else remain in γ1

• δ : Γ × Request → Γ is the transition function, where Requestis the set of all possible

administrative requests defined above. Function δ is formally defined in table 4.6.

The rGURA0 Scheme

An rGURA0 scheme is an instance of rGURA scheme where the grammar for specifying precon-

ditions is specified as follows. In each can_assignaua relation for each atomic-valued attribute, the

preconditions in all rules are generated by the following grammar,

ϕ ::=¬ ϕ | ϕ ∧ ϕ | aua(u) = avalue

avalue ::= aval1 | aval2 . . . | avaln

76

where SCOPEaua = {aval1, aval2, . . . , avaln}. In all rules in can_addsua and can_deletesua

relations, the preconditions are formulas generated by the following grammar,

ϕ ::= ¬ ϕ | ϕ ∧ ϕ | svalue ∈ sua(u)

svalue ::= sval1 | sval2 | . . . | svalm

where SCOPEsua = {sval1, sval2, . . . , svalm}.

The rGURA1 Scheme

An rGURA1 scheme is an instance of rGURA scheme where the preconditions in all rules can be

specified using the grammar,

ϕ ::= ¬ϕ | ϕ ∧ ϕ | aua(u) = avalue | svalue ∈ sua(u)

where avalue and svalue could be any value from the scope of any atomic-valued and set-valued

attribute respectively. Similarly, the symbols aua and sua can be any atomic-valued and set-valued

attribute respectively of the user u. Note that each attribute should be compared with a value from

its respective scope, otherwise, the formulas return false.

4.4.3 User Attribute Reachability Problem Definition

The attribute reachability problem (or simply the reachability problem) is informally defined as

follows. Given an initial state with an assignment of each attribute for a particular user, can mem-

bers of a set of administrative roles issue one or more administrative requests that transition the

system to a target state with specific attribute assignments for that user? Before formally defining

the reachability problems in the context of the rGURA0 and rGURA1 schemes defined earlier, we

note two simplifications. Firstly, reachability analysis questions are about one user. Since modifi-

cations to attributes of one user have no impact on potential changes to the attributes of other users,

77

we only consider the attribute assignment of a single user of interest in a state. That is, we assume

U = {u} in all of our analysis. Secondly, reachability problems ask about the power of members of

a set of administrative roles SUBAR⊆AR. In this case, the administrative rules specified for roles

not in SUBAR need not be considered for the analysis. We assume that the scheme is provided

with Ψ which only contains administrative rules for roles in SUBAR, that is, AR = SUBAR.

The above simplification eases our presentation without loss of generality. We now define the

notion of a query which is concerned about whether a particular state “satisfies” specific attribute

assignments for a given user. A query can be satisfied at varying levels. We discuss two levels

here.

A query can be satisfied in a “strict” fashion if every attribute assignment specified in the query

is exactly the same as that in the concerned state. A query can be satisfied in a “relaxed” fashion

if in the concerned state every atomic-valued attribute assignment specified in the query is exactly

the same but if every set-valued attribute assignment in the concerned state is a superset of the

corresponding set-valued attribute assignment specified in the query. Note that both in the strict

and relaxed levels of satisfaction of a query, the atomic-valued attributes in the concerned state

should exactly match the query. The distinction arises in the values of set-valued attributes since

the values in the concerned state can either exactly equal or simply contain (superset) the value

specified in the query. Since atomic-valued attributes do not affect query satisfaction levels, we

illustrate the difference on set-valued attributes. For instance, let UA = {Proj} and U = {Alice}.

An example query is a user attribute assignment: q = 〈 Alice, Proj, {cloud, game}〉. In RP= query

type, q can be satisfied only by states γ where UAAγ = {〈 Alice, Proj, {cloud, game}〉}. While

in RP⊇ query type, q can be satisfied by any state γ′ where UAAγ′ = {〈Alice, Proj, setval〉} and

{cloud, game} ⊆ setval.

Our analysis is confined to these two levels of query satisfaction. We formally specify the

queries and the satisfaction levels below.

Definition 4 (Reachability Query). A Reachability Query specifies value-assignments for selected

attributes of a user in the target state. Let Q denote the set of queries. Each query q ∈Q is a subset

78

of UAAγ .

Definition 5 (Reachability Query Types). Given a scheme 〈U, UA, AR, Range[], attType[],

SCOPE, Ψ, Γ, δ〉, we define two Reachability Query Types:

• RP= queries have the entailment function `RP= : Γ × Q → {true, false} which returns

true (i.e., γ `RP= q) if ∀ 〈u, att, val〉 ∈ q. 〈u, att, val〉 ∈ UAAγ .

• RP⊇ queries have the entailment function `RP⊇ : Γ × Q → {true, false} which returns

true (i.e., γ `RP⊇ q) if ∀ 〈u, att, val〉 ∈ q: (1) 〈u, att, val〉 ∈ UAAγ if attType(att) =

atomic and (2) ∃〈u, att, val′〉 ∈ UAAγ where val′ ⊇ val if attType(att) = set.

Definition 6 (Plan). A plan is a sequence of authorized administrative requests that causes a

transition from one state to another. Given a scheme 〈U, UA, AR, Range[], attType[], SCOPE,

Ψ, Γ, δ〉 and states γ, γ′ ∈ Γ, a sequence of authorized requests 〈 req1, req2, . . ., reqn〉 where reqi

∈ Request(1 ≤ i ≤ n) is called a plan to transition from an initial state γ to the target state γ′ if:

γ
req1→ γ1

req2→ γ2 . . .
reqn→ γ′. The arrow denotes a successful transition from one state to another in

response to an administrative request reqi that is authorized by rules in Ψ. For convenience, we

also write γ
planΨ γ′.

The reachability problem is concerned about whether it is possible to transition an initial state

to some target state where the attribute-value assignments satisfy a particular query.

Definition 7 (Reachability Problems). Given a scheme 〈U, UA, AR, Range[], attType[], SCOPE,

Ψ, Γ, δ〉:

• An RP= Reachability Problem instance I is of the form 〈γ, q〉 where γ ∈ Γ and q ∈ Q and

asks does there exist a plan P for problem instance I such that γ
PΨ γ′ and γ′ `RP= q.

• An RP⊇ Reachability Problem instance I is of the form 〈γ, q〉 where γ ∈ Γ and q ∈ Q and

asks does there exist a plan P for problem instance I such that γ
PΨ γ′ and γ′ `RP⊇ q.

79

4.4.4 Analysis Result

It is evident from the definitions, given the same scheme and problem instance, if the RP= problem

has a positive answer then so does the RP⊇ problem, but not vice versa. The size of input for each

problem instance I is the sum of size of each set in I . Our analysis proves the complexity of

attribute reachability problems for rGURA schemes in general is PSPACE-complete. However,

we have identified instances of the rGURA scheme with some restrictions on the precondition

specification in administrative rules that have more practical time complexity. Moreover, these

instances have many practical applications as will be discussed later. The following restrictions

are considered:

• No negation (N): Ψ satisfies N if no rules in Ψ use negation in preconditions.

• No deletion (D): Ψ satisfies D if for all set-valued attributes sua in UA, can_deletesua is

empty. This restriction applies only to problem instances containing set-valued attributes. It

implies that once a value is added, it can never be deleted.

• Single rule (SR): Ψ satisfies SR if: (1) for each atomic-valued attribute aua ∈ UA, there is

at most one precondition associated with a particular value assignment in the can_assignaua

relations and (2) for each set-valued attribute sua ∈ UA, there is at most one precondition

associated with a particular value assignment in each of the can_addsua and can_deletesua

relations. That is, Ψ satisfies SR if (1) ∀att ∈ UA ∧ attType(att) = atomic. ∀val ∈

SCOPEatt, |{c | 〈ar, c, val〉 ∈ can_assignatt}| ≤ 1 and (2) ∀ att ∈ UA ∧ attType(att)

= set. ∀ val ∈ SCOPEatt, |{c | 〈ar, c, val〉 ∈ can_addatt}| ≤ 1 and |{c | 〈ar, c, val〉 ∈

can_deleteatt}| ≤ 1.

The SR restriction means that the preconditions in can_assign, can_add or can_delete rules

specified for each attribute-value pairs are unique. However, the corresponding rules could

still be assigned to different administrative roles. For instance, if an additional rule is speci-

80

fied in the can_addProj relation in item 1 in table 4.5 as follows:

(manager,mobile ∈ Proj(u) ∧ social ∈ Proj(u)∧¬(cloud ∈ Proj(u)), game)

The SR restriction is still satisfied since given an attribute and value pair (the attribute being

“Proj” and the value being “game”), the preconditions remain the same even though there

are multiple rules that allow adding the same value to that attribute. Here, the two rules allow

members of different administrative roles to add “game” to the attribute “Proj”. If the above

rule were to be specified as follows:

(manager,mobile ∈ Proj(u) ∧ ¬(cloud ∈ Proj(u)), game)

the SR restriction is no longer satisfied. Similar considerations apply to rules in can_deleteatt

and can_assignatt.

Another restriction is the type of attributes contained in the system. It’s possible that a system

deal only with atomic-valued or set-valued attributes. These restrictions are also considered.

Many attribute semantics and applications work well with the above restrictions to be of prac-

tical use. The positive results are that in such situations reachability analysis can be performed

efficiently. For instance, consider a scenario to express necessary prerequisites to register for a

course in a university. Let a “course” attribute keep track of the set of courses a student has earned

credits for. The preconditions to register for a course in this scenario are mostly positive which

commonly check whether the student has successfully completed all the prerequisite courses. This

would satisfy the N restriction. Consider a “Skill” attribute that keeps track of user skills (e.g.,

web, system, etc. as mentioned in table 4.4) which may never need to be deleted after add and

hence satisfies the D restriction. The SR restriction can be satisfied in situations where there are

no alternative preconditions that allow a particular value to be assigned/added/deleted to/from an

attribute. That is, there is exactly one and only way an attribute can obtain a particular value.

81

We use [rGURAx-[atomic, set], Restriction] to denote a specialized rGURA scheme on

which we perform reachability analysis. The subscript x takes a value of 0 or 1 representing an

rGURA0 or rGURA1 scheme and [atomic, set] means that the scheme contains only the specified

type of attributes (if not specified, it represents the general case where both types of attributes are

included). Restriction represents possible combinations of SR, D and N meaning that the

rules in the scheme satisfies those restrictions. Thus [rGURA1-atomic, N] denotes an rGURA1

scheme 〈U, UA, AR, Range[], attType[], SCOPE, Ψ, Γ, δ〉 where UA contains only atomic-

valued attributes and Ψ satisfies N .

Figure 4.3 summarizes our analysis using the above notation. The left column shows the re-

sults for rGURA0 variations and the right column shows the results for rGURA1 variations. Each

scheme is specified in a box which includes theorem and corollary numbers (abbreviated Th and C

respectively) in the paper that provides the proofs for that specific scheme. An arrow from a box

to another shows that the restrictions specified on the arrow which applied to the former box lead

to the latter. Note that for schemes that contain only atomic-valued attributes, only RP= queries

are considered. For schemes that only contain set-valued attributes or both types of attributes,

both RP= and RP⊇ are considered. Reachability analysis in general are intractable except RP= in

[rGURA0-atomic] Some observations are given below.

Figure 4.3: Complexity Results for Different Classes of Reachability Problems

82

• In the rGURA0 column, [rGURA0-atomic] is the only scheme that has a polynomial-time

algorithm without further restrictions. Since this scheme only has atomic-valued attributes,

only the RP= query is considered. However, RP⊇ and RP= in [rGURA0-set] abruptly

escalate to PSPACE-complete. This big jump is caused by negative preconditions and delete

operations. Since [rGURA0-set] is similar to ARBAC97, many of the results from prior work

on reachability analysis in ARBAC97 can be adapted here [124]. Thus ifN is enforced, RP⊇

is polynomial-time solvable. If D is enforced, RP⊇ for [rGURA1-set, D] is in NP.

• In rGURA1, the complexity for reachability problems differs sharply from rGURA0 for sys-

tems containing only atomic-valued attributes (from polynomial-time to intractable) while

not so much for systems containing only set-valued attributes (both are PSPACE-complete).

The huge increase in complexity for schemes containing only atomic-valued attributes is

caused by mutual constraints of attributes on each other in the preconditions for rGURA1.

In order to satisfy a query, attribute values may need to be re-assigned a large number of

times. In addition, each attribute needs to be satisfied simultaneously which also increases

the complexity.

• Also interestingly, similar restrictions work fairly differently on atomic-valued and set-

valued attributes in rGURA1. A notable example is N . RP= in [rGURA1-atomic, N] is

surprisingly intractable while RP= and RP⊇ for [rGURA1-set, N] are in P.

• The [rGURA1-set] scheme is intractable for both RP= and RP⊇. However, two types of

restrictions yield polynomial-time analysis results: [rGURA1-set, N] and [rGURA1-set, SR,

D].

4.4.5 Formal Proofs

In this section, we walk through proofs for the results in figure 4.3. For schemes with PSPACE-

complete complexity, we show reduction to a known problem in that class. For schemes in the

polynomial-time solvable class, we provide polynomial-time algorithms with correctness proofs.

83

There are two parts to a PSPACE-complete proof: a proof to show that the scheme is solvable in

PSPACE and a proof to show that the scheme is PSPACE-hard. The first part is the same for all

schemes in figure 4.3.

Lemma 1. Every scheme in figure 4.3 is in PSPACE.

Proof. Given any problem instance, a Non-deterministic Turing Machine can simulate the fol-

lowing algorithm. In each state, the Turing machine stores the current user-attribute assignments,

attributes scopes, query and administrative policies. These are needed to guess the next possible

states. In each step, it guesses the next possible states it can enter (there maybe more than one

possible next states) by running the administrative policies against the current user-attribute as-

signments. For each next state, the Turing machine checks it against the query. If the query is

satisfied, the process stops. Otherwise, it repeats the same process. The space needed for each

state is polynomial to the input size which includes the initial user-attribute assignments, attributes

scopes1, query and administrative policies. Thus, all problems are in NPSPACE and thus also in

PSPACE as implied by Savitch’s theorem [125].

rGURA0 Schemes

Consider the [rGURA0-atomic] scheme which only contains atomic-valued attributes. In an rGURA0

scheme recall that modifications to one attribute have no impact on future modifications to other

attributes (see section 4.4.2). Hence it is sufficient to confine our analysis to the set of rules spec-

ified for a single attribute, repeating this process for each attribute in turn. In other words, we can

analyze the reachability of each attribute in the query independently and the combine the results.

Note that this strategy does not work for rGURA1 schemes.

Theorem 4. RP= for [rGURA0-atomic] is solvable in P.

1Although some of the attributes ranges may be encoded with smaller space than the number of values it may take
(e.g., a integer with a range of [1,n] can be encoded by O(1) rather than O(n)), the space needed in the input is still
polynomial because the administrative policies cannot be encoded in the same method.

84

Proof. The reachability query for each single attribute is transformed to a path search problem

between two nodes in a directed graph. In this graph, the nodes are the values from the scope of

this attribute. A directed edge from node n1 to node n2 represents an action of assigning n2 to this

attribute if the current value of that attribute is n1.

The following simple algorithm can be used for solving the RP= query (recall that RP⊇ query

does not apply to this scheme). The plan to the original query on all attributes can be obtained

by combining the plan for satisfying each attribute. Based on this observation, the reachability

problem instance I = 〈γ, q〉 for the scheme [rGURA0-atomic] can be reduced to finding whether,

for an attribute att ∈ UA, it is possible to reach a state γ′ from γ that satisfies the condition that

the value of att is the same as the corresponding value specified in the query q. A directed graph

TG = 〈V, E〉 is constructed based on the rules in can_assignatt. In this graph, V = Range(att).

For each val1 and val2 in V , an edge 〈val1, val2〉 is added to E if 〈ar, c, val2〉 ∈ can_assignatt and

att(u) = val1 is a conjunct in c. A query on att is equivalent to a path search problem between the

corresponding two nodes in the graph which can be solved using well-known search algorithms

such as depth first search (DFS). It is straight forward to generate a plan if the target value is

reachable.

We assume that DFS is used. (1) Correctness. The algorithm is well-known to be correct. (2)

Complexity. We first discuss the complexity for querying a single attribute att ∈ UA. The graph

can be created by traversing each rule once. Each rule adds at most |Range(att)| edges to the

graph. The complexity of DFS on a graph 〈V, E〉 is O(|V| + |E|). Thus, the complexity for solving

RP= for attribute att is O(|Range(att)|× |can_assignatt|). For problem instances containing |UA|

attributes, the overall complexity is O(|UA| × |Range(att)| × |can_assignatt|), where att has the

largest |Range(att)| × |can_assignatt| amongst all attributes.

Theorem 5. RP⊇ for [rGURA0-set] is PSPACE-complete.

Proof. Given lemma 1, it suffices to show PSPACE-hardness. As earlier, it is feasible to analyze

the complexity of each attribute independent of each other. Our proof is to show the reduction

from the role reachability problem. Combining the above observation, the fact that role can be

85

treated as simply another set-valued user attribute and [rGURA0-set] has the same expressive as

miniARBAC97 [124], the reduction is straight forward.

Our proof shows the reduction that the RP⊇ problem for [rGURA0-set] is at least as hard

as the role reachability problem in miniARBAC97 which is PSPACE-complete [124]. Its problem

instance can be understood as a 3-tuple 〈γ, goal, ψ〉where γ is an initial state with role assignments

for a particular user, goal is the desired set of roles for that user in some future state and ψ is

a set of administrative rules that guides user-role assignments by a set of administrative roles.

The reachability question asks whether a given set of administrative roles AR can act with the

permissions associated with their roles in ψ and transition γ to a future state γ′ such that the

desired role assignments specified in goal for a particular user is satisfied in γ′. In addition to

can_assign and can_revoke relations for roles, the miniARBAC97 also considers SMER (Static

Mutually Exclusive Roles) constraints which represents a set of conflicting roles that cannot be

assigned to the same user at any time.

The core idea of our construction is to treat roles in miniARBAC97 as a user attribute called

role. We assume that SMER = ∅ since it can be expressed in can_add rules using negative pre-

conditions [124]. The scope of the role attribute is the same as the set of roles in miniARBAC97.

It is straight-forward to specify each of the can_assign and can_revoke rules in miniARBAC97

using corresponding can_addatt and can_deleteatt rules in [rGURA0-set] since the pre-condition

grammar of rGURA0 is similar to that of miniARBAC97. User-role assignment in the initial state

in miniARBAC97 can be mapped to attribute assignment in [rGURA0-set] and the query can be

specified. The reduction process takes O(|γ| + |goal| + |ψ|). For a problem instance containing

|UA| number of attributes, the total complexity is the sum of complexity of reduction for each

attribute which is polynomial. This establishes that RP⊇ for [rGURA0-set] is PSPACE-hard.

The miniARBAC97 work is useful for reduction with respect to RP⊇ queries. However, it does

not deal with RP= for which we utilize the SAS planning problem [16] from artificial intelligence.

86

Theorem 6. RP= for [rGURA0-set] is PSPACE-complete.

Proof. Per lemma 1, it suffices to show PSPACE-hardness. We use the result from SAS planning

problem [16]. An instance of SAS planning problem is a tuple 〈V ,O, s0, s∗〉, where V represents a

finite set of state variables with pre-specified domains for each variable,O represents a finite set of

operators, s0 and s∗ represent initial and goal states and they are both total states (i.e., each variable

is assigned with a value from its domain). An operator 〈pre, prv, post〉 updates state variables in

post if the conditions pre and prv are satisfied in the current state. The conditions pre, prv and post

are members of partial state space (state variables are allowed to be unspecified). The problem is

given an initial state s0, does there exist a sequence of operators (a plan) which transition s0 to s∗?

The plan-existence for the SAS planning problem under U (each operator changes only a single

state variable) and B (boolean domain for state variables) restrictions is PSPACE-complete [16].

We show that RP= for [rGURA0-set] is at least as hard as the [SAS planning, U, B] problem.

As earlier, we consider the complexity of reachability of one attribute att ∈ UA independent of

others. The reduction is as follows, given any SAS planning problem satisfying U and B. (1) Each

state variable is mapped to one value in the scope of att. Thus, the scope of att is a set of values

whose size is the same as V . In each state, if a state variable is set to true, the corresponding

value is added to the attribute att. Thus, s0 is specified using attribute assignment of att and s∗

is specified as a query. (2) The operator which updates a state variable to true is mapped to one

rule in can_addatt and the operator which sets a state variable to false is mapped to one rule in

can_deleteatt (att is mapped to the state variable in the operator). A precondition in an operator

can be specified as the precondition in each administrative rule. The complexity of the reduction

process is O(|V|+ |O|). This establishes that RP= for [rGURA0-set] is PSPACE-hard.

Corollary 1. RP⊇ and RP= for [rGURA0] are PSPACE-complete.

Proof. Since RP⊇ and RP= in [rGURA0] can also be answered by querying each attribute sep-

arately and this scheme supports both atomic and set-valued attributes, this result follows from

87

Lemma 1 and Theorems 4, 5 and 6.

This completes the left hand side of figure 4.3.

rGURA1 Schemes

For rGURA1-atomic schemes we have the following results for RP=. (Recall that RP⊇ does not

apply to rGURA1-atomic schemes.)

Theorem 7. RP= for [rGURA1-atomic, N] is PSPACE-complete.

Proof. By lemma 1, it suffices to show PSPACE-hardness. The SAS planning problem under the

U restriction is PSPACE-complete [16]. We give a reduction from [SAS planning, U] to [rGURA1-

atomic, N]. In the former, only positive conditions are allowed in the operators (pre and post)

which is accommodated by the N restriction. Consider an instance of the SAS planning problem

〈V , O, s0, s∗〉. (1) Map each state variable to one user attribute whose scope corresponds to the

domain of the variable. Thus, s0 and s∗ map to two different attribute assignments. (2) Since each

operator updates only one variable, it can be mapped to one rule in can_assignatt where att is

the corresponding user attribute of the variable updated in the operator. The value to be assigned

is the same as that in post in the operator. The preconditions pre and prv only specifies positive

precondition (no negative comparisons between state variables and values from their domains) and

they can be specified using conjunctions. Negation is not required. The reduction process takes

O(|V|+ |O|). This establishes that RP= for [rGURA0-atomic, N] is PSPACE-hard.

Corollary 2. RP= for [rGURA1-atomic] is PSPACE-complete.

Proof. Follows from Theorem 7 and the fact that [rGURA1-atomic,N] is a sub-problem of [rGURA1-

atomic].

For rGURA1-set we begin with the following observations.

Corollary 3. RP⊇ and RP= for [rGURA1-set] are PSPACE-complete.

88

Proof. This follows from Theorems 5 and 6 and the fact that RP⊇ and RP= for [rGURA0-set] are

sub-problems of RP⊇ and RP= for [rGURA1-set] respectively.

Corollary 4. RP⊇ and RP= for [rGURA1] are PSPACE-complete.

Proof. This follows from Corollaries 2 and 3.

We now consider the RP⊇ problem for [rGURA1-set, N] which can be solved in polynomial-

time by Algorithm 5. The algorithm works as follows. For RP⊇, we only need to consider issuing

add requests to the set-valued attributes. This is because only positive preconditions are allowed,

the rules cannot specify addition of new values to the set-valued attribute based on absence of

certain values in the existing set. So existing values need not be removed in order to successfully

add a new value. Thus, we only need to investigate can_add rules and completely ignore can_delete

rules. Furthermore, additional values can be added to the attribute even if the desired set value is

reached because it deals with the RP⊇ problem. Starting from the given state, we traverse all rules

in can_add and try the add requests allowed by any rule if the corresponding attribute value is

not yet in the current set. Algorithm 5 terminates either when (1) the current set can no longer

be augmented by the rules in can_add, or (2) all attributes are assigned with all values from their

scope. The outer while loop is required because a value added to one or more of the attributes in an

earlier round can potentially enable new additions in subsequent rounds. This is due to rGURA1

preconditions where attributes can constrain each other.

Theorem 8. RP⊇ for [rGURA1-set, N] is in P.

Proof. Algorithm 5 provides a polynomial-time solution.

Correctness. (1) Assume that Algorithm 5 returns a plan. If the plan is empty, the query q is

trivially satisfied in γ. Otherwise, it is ensured that if executed sequentially, there exists at least

one rule in can_add that authorizes each action in the plan. Thus, the plan takes γ to another

state that satisfies q. (2) When Algorithm 5 returns false, there does not exist a plan. We use

contradiction. Assume plan = 〈a1, a2, . . ., an〉 is a valid plan of length n and is not detected

89

Algorithm 5 Plan Generation for RP⊇ in [rGURA1-set, N]
1: Input: problem instance I = 〈γ, q〉 Output: plan or false
2: plan = 〈〉;
3: Begin with state s=γ;
4: if s `RP⊇ q then return plan
5: while true do
6: Let Save = UAAs;
7: for each att ∈ ATTR and 〈ar, c, val〉 ∈ can_addatt do
8: if s satisfies precondition c ∧ (6 ∃ 〈u, att, sv〉
9: ∈ UAAs such that val ∈ sv) then

10: Suppose that 〈u, att, setval〉 ∈ UAAγ ;
11: Go to state t such that
12: UAAt == UAAs \{〈u, att, setval〉} ∪ {〈u, att, setval ∪ {val}};
13: s = t;
14: plan = plan.append(add(ar, u, att, val));
15: end if
16: end for
17: if UAAs == Save then break; else Save = UAAs;
18: end if
19: end while
20: if s `RP⊇ q then return plan else return false end if

by algorithm 5. Without loss of generality, we assume ak (1 ≤ k ≤ n) is not detected and the

state before ak is cur′. Thus, according to line 8 in algorithm 5, either (a) there does not exist

a rule whose preconditions are satisfied in cur′ to authorize ak, or (b) cur′ already contains the

attribute value to be added in request ak. In either case such an ak cannot exist. (3) Algorithm

5 always terminates because the number of attributes and the attribute values to be added to γ

are bounded. Complexity. The complexity is determined by the number of times all the rules in

can_add are traversed. In the worst case, one value is added to one attribute during each round

of rule traversing. Thus, the complexity of Algorithm 5 is O((
∑

att∈UA |SCOPEatt|) × |can_add|)

and it is polynomial. |can_add| represents the size of all rules for all attributes.

Next we consider the RP= problem for [rGURA1-set, N].

Theorem 9. RP= for [rGURA1-set, N] is in P.

Proof. The proof is by reduction to the STRIPS planning problem [36].

We use the result from STRIPS planning problem [36]. An instance of STRIPS planning

problem is a tuple 〈P ,O, I, G〉, where P is a finite set of ground atomic formulas called conditions

90

(each take the value true or false), O is a finite set of operators pre⇒ post, where post updates

the conditions to either positive or negative if pre is satisfied. The pre and post are satisfiable

conjunctions of positive and negative conditions. Any state can be specified by a subset of P ,

indicating that each element in the subset is true and all others are false in the state. G called

goal is a satisfiable conjunction of positive and negative conditions. S is a goal state if S all positive

conditions in goal is in S and none of the negative conditions in goal appears in S. STRIPS planing

explores a sequence of operators which transition the initial state I to a state in which G is satisfied.

PLANSAT is defined as determining whether an instance of STRIPS planing is satisfiable.

[36] shows that [PLANSAT, ∗+preconds, 1 postcond] is polynomial time solvable . Here,

only positive preconditions are allowed and each operator only modifies one condition, setting it

as either positive or negative. We show the reduction: plan existence in [PLANSAT, ∗+ preconds,

1 postcond] is at least as hard as RP= in [rGURA1-Set, N]. The reduction is as follows. Given

any [rGURA1-set, N] scheme: (1) each attribute and value pair (att, value) is mapped to a cor-

responding condition; (2) to specify a state in [rGURA1-set], for each attribute and value pair, the

corresponding condition is set to true. To specify a query in [rGURA1-set], for each attribute and

value pair in the query, the corresponding condition is set to true. For all other attribute and value

pairs not in the query, their corresponding conditions are set to false. This ensures the query is only

satisfiable with exact the same value for each attribute; (3) each rule in can_addatt is specified as

a positive operator which updates the corresponding condition for the specified attribute and value

pair. The precondition is specified as pre, the value to be added is specified in post; and finally

(4) each rule in can_deleteatt rule is specified as a negative operator. The reduction process takes

O((
∑

att∈UA |SCOPEatt|)+|Ψ|) where |Ψ| is the number of all administrative rules (Ψ contains

only can_add and can_delete relations) which is polynomial.

We now consider RP⊇ for [rGURA1-set, SR,D] for which Algorithm 6 provides a polynomial-

time solution. The D restriction obviates the need to include the rules from can_delete relations.

The SR restriction provides a critical advantage in our analysis. Since a unique precondition

facilitates addition of a value to an attribute, the number of paths in the search space is greatly

91

reduced. The algorithm works by traversing backwards from the target state as follows. Assume

that the problem instance is 〈γ, q〉. For at least one attribute, q requires a value which is a superset

of that in γ (otherwise, q is already satisfied by γ). For those attribute values in q not in γ, there

must be a corresponding add action in the plan if it exists. In addition, in order to add those values,

attribute values which appear as positive preconditions in the administrative rules which authorize

those add actions must also be added and so on. Thus, the basic idea is to use backward search

to compute all attribute values that are required to be added in order to satisfy q. This is done by

tracing rules in can_add for attributes and values that need to be added and recursively for those

values required in the previous state (line 5 - line 9). Till now, only positive preconditions have been

considered. If negative preconditions of any add request for values to be added are not satisfied

in γ, q cannot be satisfied (since they can never be deleted). Otherwise, negative preconditions

can only be introduced during each step of adding new values. Thus, those add actions need to

be ordered based on mutual dependencies. This is achieved by creating a directed graph which

reflects dependencies of attribute values (line 16 - line 21). A plan is a topological ordering of the

graph (line 22). If there are cycles in the graph, q can never be satisfied.

Theorem 10. RP⊇ for [rGURA1-set, SR, D] is in P.

Proof. Algorithm 6 provides a polynomial-time solution.

Correctness. (1) If algorithm 6 returns a plan and it is empty, query q is satisfied in γ. If the plan

is not empty, we assume plan = 〈a1, a2, . . . an〉. We prove that the plan is valid. We first prove that

the first action a1 is allowed to be executed. Firstly, its positive precondition is satisfied in γ. The

repeat loop (line 5) only stops when toadd does not change. It means positive preconditions for all

vertices already in toadd are either satisfied by ppre or cur. Since a1 is the first action, its positive

precondition is satisfied in cur. Secondly, its negative precondition is satisfied in γ (otherwise,

line 14 returns false). If request ak (1 ≤ k ≤ n) is authorized, then ak+1 is also allowed because

ak+1’s positive precondition may be satisfied in cur or action ak (and its negative precondition is

satisfied by both cur and ak). Thus, sequentially executing the plan leads to a set of reachable

states. q is satisfiable because in the first round of repeat, toadd contains attribute values in q

92

Algorithm 6 Plan Generation for RP⊇ in [rGURA1-set, SR, D]
1: Input: problem instance I = 〈γ, q〉
2: Output: plan or false
3: toadd = ∅; npre = ∅; cur = ∅; plan = 〈〉;
4: if γ `RP⊇ q then return 〈〉
5: ∀ 〈u, att, vset〉 ∈ UAAγ . ∀ val ∈ vset.
6: cur′ = cur ∪ {(att, val)};
7: ∀ 〈u, att, vset〉 ∈ q. ∀ val ∈ vset.
8: toadd′ = toadd ∪ {(att, val)};
9: Repeat:

10: ∀ (att, val) ∈ toadd
11: ppre = {(att1, val1) | ∃ 〈ar, c, val〉 ∈ can_addatt such that val1 ∈ att1(u) is a conjunct in c};
12: toadd′ = toadd ∪ ppre \ cur;
13: Until toadd does not change
14: if ∃ (att, val) ∈ toadd such that @ 〈ar, c, val〉 ∈ can_addatt
15: then return false end if
16: ∀ (att, val) ∈ toadd
17: npre′ = npre ∪ {att1, val1) | ∃ 〈ar, c, val〉 ∈ can_addatt
18: such that ¬(val1 ∈ att1(u)) is a conjunct in c};
19: if npre ∩ cur != ∅ then return false end if
20: Construct a directed graph G = 〈V,E〉;
21: V = toadd; E = ∅;
22: for each pair of nodes ((att, val), (att1, val1)) ∈ V do
23: if (∃〈ar, c, val1〉 ∈ can_addatt1such that val ∈ att(u) is a conjunct in c) ∨(∃〈ar, c, val〉 ∈ can_addatt such
24: that ¬(val1 ∈ att1(u)) is a conjunct in c)
25: then E′ = E ∪ {〈(att, val), (att1, val1)〉}; end if
26: end for
27: plan = Topological ordering on graph G;
28: if topological ordering is successful then return plan;
29: else return false; end if

while not in γ. (2) If algorithm 6 returns false, there are several reasons: (a) no can_add rule for

some of the attribute values in toadd; (b) some of the negative preconditions are not satisfied in

γ; (c) there are loops in the graph created by lines 17-21. We show that at the least all attribute

values in toadd should be added to reach q. Assume toadd = {(a1, v1), (a2, v2) . . . (an, vn)}.

Without loss of generality, we let vset = toadd \ {(ak, vk)} which if added, transitions γ to a

state in which q is satisfied. Thus (ak, vk) is in ppre and is not in cur in some round of repeat

through lines 5 to 9. If it is not added, it means 〈ar, c, val〉 6∈ can_addak−1
and (ak−1, val) cannot

be added. Thus, other attribute values which depend on these attribute values are unreachable.

Hence, q will not be satisfied. This suffices to prove that situations (a), (b) and (c) are all correct.

(3) Algorithm 6 always terminates. The only loop is from line 5 to line 9. It always ends because

the number of rules and conjuncts in preconditions is finite. Complexity. The graph can be created

93

in polynomial time and the topological sort also takes polynomial time. The total complexity is

O((
∑

att∈UA|SCOPEatt|)× |Ψ|).

A minor extension to algorithm 6 can solve RP= for [rGURA1-set, SR, D]. Since in this

problem, q requires that a state has exactly the same values for each attribute, adding attribute

values which are not specified in q is not allowed (attribute values in q should be superset of

corresponding attribute values in γ, otherwise, q is not satisfiable). Before topologically sorting

the graph, we do the following preprocessing: (1) vset is a set of attribute values which is in

q while not in γ and (2) detect in the created graph whether there exists a vertex in vset which

contains incoming edges from vertices not in vset. If yes, return false. Otherwise, remove all

other vertices not in vset. A topological ordering of the vertex in vset is a valid plan for the

problem.

Theorem 11. RP= for [rGURA1-set, SR, D] is in P.

Proof. Correctness. The only change to algorithm 6 is in the last step (line 22). Because of

the nature of RP=, if there does not exist such a vset as explained earlier, q is never satisfi-

able. Complexity. As described above, there is only one additional process compared to al-

gorithm 6: to detect vset which takes O(
∑

att∈UA|SCOPEatt|). Thus, the total complexity is

O((
∑

att∈UA |SCOPEatt|)× |Ψ|) which is polynomial.

Earlier we’ve shown rGURA schemes for which reachability problems are either PSPACE-

complete or P. Here we briefly go over additional schemes for which the RP⊇ is NP-complete and

NP. Firstly we look at additional results for RP⊇ for [rGURA0-set]. Sizeable results on role reach-

ability in miniARBAC97 can be borrowed directly and utilized for RP⊇ for [rGURA0-set]. The

reason is that [rGURA0-set] is designed with the same expressive power as ARBAC97 (consider-

ing role as one user attribute). Even though there are multiple attributes in [rGURA0-set], their

management is independent of each other [94, 124, 129].

For RP⊇ in [rGURA1-set, N], we look at a relaxed restriction compared to N , PosCanAdd

which is defined as: in all rules in can_add, only positive preconditions are allowed. Thus [rGURA1-

94

set, PosCanAdd] is solvable in P (follows trivially from Theorem 8). We discuss positive pre-

condition in can_add (PosCanAdd) which is defined as: in all rules in can_add, only positive

preconditions are allowed.

Theorem 12. RP⊇ for problem class [rGURA1-set, PosCanAdd] is solvable in polynomial time.

Proof. Proof follows from theorem 8.

For RP⊇ in [rGURA1-set, SR, D], if we take out SR restriction, the complexity increases to

NP-complete.

Theorem 13. RP⊇ for [rGURA1-set, D] is NP-complete.

Proof. NP-hardness is proved through a reduction from role reachability problem in miniAR-

BAC97 policies without revocation which is NP-complete. In addition, The length of any plan

is bounded by
∑

att∈UA|SCOPEatt| as each attribute value can be added at most once. Any plan

can be verified in polynomial time.

Interestingly, even if we further loosen the D restriction to CD (No Conditional Deletion),

the complexity remains to be NP-complete. CD is defined as follows: the can_delete relation is

empty except for a certain set of values for which the delete rules are unconditionally true for

some administrative roles in AR.

Theorem 14. RP⊇ for [rGURA1-set, CD] is NP-complete.

Proof. The proof is borrowed from earlier results of other schemes as shown in [rGURA1-set, D].

We assume that DV = {(att, val) | att ∈UA ∧ val ∈ SCOPEatt} is a set of attribute values that

can be deleted without preconditions. If any attribute value appears in any of the preconditions as

negative conjuncts, it is safe to remove it from the precondition of those rules if it is also in DV for

the purpose of our analysis. Members of administrative roles can delete the values at any time for

all users, it is no need to specify them in preconditions. We pre-process all rules in can_add. There

are two situations when the pre-process is finished: (1) if there are no negation in can_add rules,

95

the problem is equivalent to RP⊇ in [rGURA1-Set, PosCanAdd] and it has been shown earlier

to be solvable in P; (2) if negation exists in the preconditions of some of the rules in can_add,

the problem is then equivalent to RP⊇ in [rGURA1-set, D]. The complexity is proved to be NP-

complete in theorem 13.

Recall that we assumed the roles are flat in AR. However, the analysis results also apply in

hierarchies AR. The rules specified for each administrative role ar ∈ ARh are prorogated to roles

which are senior to ar as they are implicitly assigned with ar. The restrictions defined will not be

violated by the above process because no new preconditions are introduced.

4.4.6 Experimental Results

This section presents the experiments to evaluate the performance of algorithms 5 and 6. We

automate administrative rule generation as follows. There are several parameters: attr represents

the number of attributes, scope represents the size of each attribute scope, ppre and npre represent

the number of positive and negative conjuncts in a precondition respectively, rpp represents the

fixed number of can_add rules for each attribute-value pair. For each randomly generated query,

d represents the total number of desired attribute and value pairs specified in the query where the

desired values are not already available in the initial state. For instance, suppose that UA = {Prj,

Skill} and U ={Alice}. In the initial state, Prj(Alice) ={search} and Skill(Alice) ={web}. If the

query requires Prj(Alice) ={game, mobile}, Skill(Alice) ={web, system, server}, then d would be

4 which is the number of attribute and value pairs not reached in the initial state. We vary all these

parameters to generate instances for both algorithms except that rpp applies to only algorithm 5

and npre applies to only algorithm 6. We generate at least one rule for each attribute and value

pair (In practice, it is possible that no rule is specified for some attribute and value pairs). Each

data reported is an average over 16 instances generated using the same parameter values. In all 16

problem instances, the query is satisfiable and a plan is returned. Times were measured on a 2.53

GHz dual-core CPU with 2 GB RAM.

Results for Algorithm 5. The results are in figure 4.5 . Figure 4.5 (a) shows the impact of

96

Figure 4.5: Performance Evaluation of Algorithm 1 With Various Parameters

the sizes of attr and scope on execution time. We plot the number of attributes on the x-axis and

time consumed on y-axis. We plot a curve for different values of scope. In all instances, we use

ppre = 5, rpp = 3, d = 20. As expected, the general trend is that the execution time increases with

the increase in attribute number and scope size and the change is faster as they become larger. For

instance, the execution time for attr = 30 and scope = 30 is nearly 6 times that of when attr = 10

and scope = 30. The major reason is that the total number of rules are increased (recall that we

generate at least one rule for each attribute and value pair). However, we believe that the number of

the parameters are reasonably small (for example, we do not expect a user to carry 100 attributes)

in practical systems and hence the reachability problems can be solved in a very reasonable amount

of time.

Figure 4.5(b) evaluates the impact of ppre and rpp parameters. We plot ppre on x-axis and time

consumed on y-axis. We plot multiple curves for different rpp values. In all problem instances, we

use attr = 20, scope = 50 and d = 10. Our result shows that there is no trend of time increase with

the size of ppre given the same size of rpp. However, the total time increases with rpp given the

same ppre. The major reason is that the total number of rules affects the algorithm complexity and

it stays the same when rpp remains the same. (The distance between initial state and the final state

satisfying the query is also a factor. Since we set d to be constant, its impact is not visible here.)

Note that since the problem instances are randomly generated, given the same ppre, the time for

97

solving the case of a bigger rpp may be lesser than when the rpp is smaller.

Figure 4.6: Performance Evaluation of Algorithm 2 With Various Parameters

Results for Algorithm 6. The results are in figure 4.6. Figure 4.6(a) shows the impact of attr

and scope on the execution time. The x-axis shows the number of attributes and we plot multiple

curves for different values of scope. In all problem instances, we use npre = 1, d = 5 and ppre =

5. The time consumption increases with attribute and scope size and it increase faster with larger

attr and scope. The major reason is that a larger number of attribute and values pairs may need to

be added to satisfy the query.

Figure 4.6(b) evaluates the impact of ppre and d. We plot the positive precondition size on

x-axis and consider d varying from 10 to 30. In all problem instances, we use npre = 1, attr = 20

and scope = 30. We can see from the figure that the time does not increase significantly with ppre

given the same d. However, the time increases with d given the same ppre. The major reason is

that when the difference between the expected attribute values in the query and the values in the

initial state is larger, more attribute and value pairs need to be added (recursive back tracking of

can_add relations results in more attribute and value pairs to be added). Again, note that in some

instances (e.g. black and pink curves in the figure), the time for a bigger d value is lesser than that

when d is higher due to the randomness in generation of our administrative rules.

98

4.5 Conclusion

This section presents user attribute administrative models GURA0 and GURA1. They take advan-

tage of the ease of administration in RBAC and are based on existing role based administrative

model. We then study the user attribute reachability analysis problem in a restricted GURA model

rGURA. We formally define the problem and prove that it is in general intractable. We provide

restrictions on the precondition specification in administrative rules to show polynomial time so-

lutions. We provide algorithms which determines reachability as well as generates plans for the

query.

99

Chapter 5: ABAC FOR CLOUD INFRASTRUCTURE AS A SERVICE IN

SINGLE TENANT

In this chapter, we demonstrate the advantage of our proposed ABAC model over existing models

in the context of access control in cloud infrastructure as a service (IaaS).

5.1 Motivation

Cloud computing is revolutionizing the way businesses and governments manage their information

technology (IT) assets. Infrastructure as a Service (IaaS) cloud, where traditional IT infrastructure

such as compute resources complemented by storage and networking capabilities are owned and

operated by a cloud service provider (CSP) and offered as a service to its customers, is being

rapidly adopted by many organizations [1, 4]. Many newer companies such as Netflix, Dropbox

and Instagram have eschewed development of proprietary IT infrastructure in favor of CSPs. Es-

tablished companies such as SAP, GE, Adobe and Domino’s Pizza, to name a few, are increasingly

migrating to the cloud. In this work, we use the following terminology. We have CSP, organiza-

tions and tenants/customers. An organization becomes a tenant of a particular CSP when it signs

up for services with that CSP. We use the terms tenant and customer interchangeably.

Although the functional aspects of IaaS are maturing, the security issues involving this tech-

nology are not yet fully understood. Security is often cited as a leading concern in moving to

cloud [39, 49, 132, 133], for reasons including uncertainty in continued control over a customer’s

assets and lack of interoperability between the customer and CSP, and across different CSPs. In

particular, when an organization uses the cloud, it faces unfamiliar and non-standard abstractions

of access control facilities provided by the CSP over its virtualized resources (compute, storage,

networking, etc.). Several challenges arise when an IT infrastructure is outsourced to the cloud.

We illustrate them through figures 5.1(a) and 5.1(b). Figure 5.1(a) shows that CSP#1 has multiple

tenants. Figure 5.1(b) shows that tenant A is a customer of CSP#1 to CSP#N. What access con-

trol requirements arise in this scenario? Consider the resources in IaaS including virtual machines

100

Figure 5.1: Access Control in IaaS Cloud

(VM), storage and network. Before moving to cloud, an organization specifies policies for its IT

personnel over its assets including who can access server rooms, maintain servers, add or remove

server capacity, start, stop or take a snapshot of the server, establish a network, modify network

configurations, add storage, backup, connect a storage volume to a server, etc. When moving to

IaaS cloud, these resources become virtual and remote. Access control policies in the physical

world, in part achieved via physical keys, access cards and fingerprints, will need to be compara-

bly specified and enforced in the cloud. That is, in IaaS, there is a need to mimic policies enforcing

both physical and digital controls in traditional IT operations.

Two major issues emerge in context of figure 5.1(a). Before moving to cloud, each tenant has

its own in-house access control policies. However, when they become a tenant of CSP #1, they

are forced to re-think their native policies in terms of access control facilities offered by the CSP.

A different problem manifests for the CSP. Each customer will want to configure their own access

control policies which may be vastly different from that of others. With an unknown number of

potential customers, it is unrealistic to pre-design and implement all kinds of access control models

in the cloud or design one by one on demand [133]. The cloud platform should provide a flexible

101

and intuitive access control framework such that customers can easily configure their own access

control policies. Furthermore, in order to distribute their resources (for availability reasons, for

example), some organizations may be tenants of multiple CSPs as in figure 5.1(b). In this case,

such an organization encounters an additional problem of dealing with multiple different access

control interfaces and integrating them.

Current access control models for IaaS in the academic literature and industry are mostly built

on role-based access control (RBAC), and fail to tackle the above challenges. RBAC is designed

more for easy management as opposed to flexibility and fine-grained control. As explained earlier,

the tenants may need to configure different access control policies in a CSP. Consider the following

scenarios. Bob, an IT person in tenant A creates a VM. As a creator, he has complete rights over

this VM including the ability to start and stop. However, he may wish to grant selected rights over

this VM to other IT users in tenant A in the form of an access control list to ease management

burden. Consider Alice, an IT person in Tenant B who creates a set of VMs that need to be

highly available. First, she wants to ensure that these VMs are managed only by users with a

role of “networkOperator”. Next, she wants to ensure that not all VMs are in the “stopped” or

“underMaintenance” or “underMigration” state simultaneously to guarantee availability of at least

1 VM to serve user requests. Alice also wants to create a storage volume that will be used to store

sensitive information. Hence she wants to ensure that this storage volume can only be attached

to VMs with an image with the right patches and security updates. That is, a “sensitive” volume

can only be attached to “hardened” VMs. Following the scenarios above, one can appreciate the

diverse access control needs that may arise in IaaS. Virtualized resources offer functional flexibility

and hence to realize the true potential of IaaS there is a need for flexibility in access control.

In spite of its theoretical flexibility [108], RBAC is not appropriate for the scenarios illustrated

above since the number of roles will increase significantly. Attribute-based access control (ABAC)

is a more natural and intuitive candidate. In ABAC, access control decisions are based on attributes

of various entities such as users, subjects and objects. Sufficient abstractions can be built on top

of ABAC in order to closely mimic the access control abstractions expected by each tenant. A

102

Figure 5.2: Access Control Challenges In IaaS Cloud

sufficiently flexible ABAC engine at the CSP-side can be configured to enforce each tenant’s access

control expectations. Thus the requirements of figure 5.1(a) can be met. Figure 5.1(b) requires

standardization of the ABAC IaaS capabilities supported by different CSPs, which may emerge

over time [69].

Although there has been considerable work in ABAC , what is lacking today is an ABAC

framework for IaaS that is intuitive and easy to administer and use, yet with formal foundations.

This is vital for successful adoption of ABAC in IaaS given the complex real-world nature of

the domain. Our contribution in this chapter is to present a comprehensive ABAC approach for

single tenant access control in IaaS cloud. Cross/multi-tenant access control can be achieved by

extending our work. We systematically evaluate major access control models in IaaS cloud in

academia and industry and show limitations of these models. We then present a discussion on

the unique requirements of access control in cloud IaaS and motivate the possibility of ABAC

as a candidate model for cloud IaaS. We present a formal framework of ABAC for cloud IaaS. To

demonstrate practicality, we conduct implementation and evaluation of the models in the prominent

IaaS platform OpenStack [3]. OpenStack is a robust open-source IaaS software for building public,

private, community or hybrid clouds that is developed and maintained by a vibrant community with

participation from more than 200 world-leading organizations.

103

5.2 Access Control Approach for Cloud IaaS for Single Tenant

Our general approach is illustrated in figure 5.2. The users who interact with cloud IaaS in a

management or administrative capacity are categorized into different types (shown in four ovals).

A cloud root user is a user who manages cloud resources for the CSP. Consideration of policies

for this purpose is out of scope. In this model, we focus on tenant-side resource management in

the cloud. For ease of presentation we assume there is a single cloud root user.

On the tenant side, we have there three types of IT users. A tenant root user represents an IT

user who has root access to the tenant. For ease of presentation, we assume that for each tenant,

there is only one root user who has full permissions in the tenant. The tenant root user is created

by the cloud root user. A tenant admin user represents an administrative IT user with admin-

istrative permissions in the tenant. Administrative permissions allow management of regular IT

users (discussed below) and their attributes in a tenant. A tenant regular user is a regular IT user

with permissions for standard IT operations such as creating and deleting virtual machines, stor-

age volumes, networks, etc.,on the tenant’s behalf. Note that in figure 5.2 an administrative ABAC

model is necessary to guide the tasks of tenant root and administrative IT users while an opera-

tional ABAC model is necessary for managing the tasks of regular IT users. The administrative

model facilitates creating and updating attributes while the operational model facilitates specifying

authorization policies that control the actions of regular IT users. We emphasize that non-IT users

of a tenant who only interact with VMs and services are not considered in figure 5.2. They do not

manage any cloud IaaS resources and are controlled by access control mechanisms within the VMs

and within applications running in VMs. These users are beyond the scope.

The general process is as follows. In order to use cloud services, the first step is that an organi-

zation’s representative (say Alice) obtains an account from the CSP typically via some automated

process which is a surrogate for the cloud root user. Thereby the organization becomes a tenant of

the CSP with Alice as that tenant’s root user. Now it is not practical for Alice to create and manage

all the resources herself. Instead, in the second step Alice sets up tenant specific access control and

104

administrative policies using the the CSP-provided facilities, and creates some number of tenant

admin users. Then, the tenant admin users create regular IT users and administer their attributes.

Finally, regular IT users can then create and manage virtual resources as per the policies specified

by the tenant root user and attribute values administered by tenant admin users. Each tenant goes

through a similar process.

5.3 Related Work

In this section we first review access control models in two leading cloud IaaS platforms: Open-

Stack (the Grizzly release) and Amazon Web Services (AWS). We also review models discussed

in the IaaS access control literature. Since our scope is restricted to access control issues within

a single tenant, we omit discussion of features in platforms such as AWS that concern multiple

tenants as well as research papers on cross-tenant issues. Note that the concept of an “account”

in AWS and that of a “project” in OpenStack are the same as the concept of a “tenant” for our

purpose. In our discussion below, we uniformly use the term tenant.

5.3.1 Access Control Models in Cloud IaaS

Access Control in Amazon Web Service

AWS is the commercially dominant cloud IaaS platform. Example services include elastic com-

pute cloud (EC2), simple storage service (S3) and elastic block storage (EBS). Related reviews of

AWS can be found in [113, 144]. We discuss the AWS Identity and Access Management (IAM)

component which concerns access control as related to the above cloud services.

The access control model structure is shown in figure 5.3(a). The major components in each

tenant are Users, Objects, Groups, Policies, Actions, Conditions, User-Group-Assignment, User-

Policy-Assignment and Policy-Group-Assignment. A permission is defined in the format of Ac-

tion on Object under certain Conditions. Conditions are in the form of key-value pairs. Each

key-value pair can be one of following types including String, Numeric, Date & Time, Boolean,

105

Figure 5.3: Amazon Web Service Access Control in Single Tenant

and IP-address. For example, the condition “DateLessThan: {aws : CurrentTime : “2013-09-

01T00:00:00Z”}” uses the Date & Time type DateLessThan condition restricting the requests to

be made before Sep 1, 2013 [144]. A group is a similar concept as the role in RBAC. It is associ-

ated with a set of policies which define a set of permissions. Users can either be assigned to groups

or directly to policies. Each policy is specified using the policy specification language provided

by AWS. Each policy consists of a number of statements which contain a description of the re-

quests they apply to, plus an effect, which may be allow or deny. Each statement contains lists

of actions, lists of resources and lists of principals, plus a number of conditions which must be

met. If multiple statements match a request, then deny effects take precedence over permit effects.

If no statements match, then the effect is referred to as a soft deny: that is to say that final effect

will be deny unless another policy has an effect of permit. The same evaluation logic applies to

multiple policies.

In summary, IAM supports an RBAC-style model as permissions are grouped and assigned to

users. The only configuration point is to specify groups and define permissions for the group. The

formal model is summarized in figure 5.3(b). While this model is slightly more flexible than RBAC

(by extending permissions with policy and condition) it lacks the flexibility necessary to handle

scenarios discussed in the previous sections. The number of groups can increase dramatically for

fine-grained access control policies.

106

Figure 5.4: OpenStack Access Control in Single Tenant

Access Control in OpenStack

OpenStack is an open source IaaS software adopted by many cloud providers such as Rackspace,

IBM, Dell and RedHat. The structure of OpenStack access control model is shown in figure 5.4(a),

where we omit cross-tenant and multi-tenant features as mentioned earlier. The major components

in each tenant include Users, Objects, Roles, Operations, Permissions, and Expressions. A role is

a string such as “professor” or “manager”. An operation and object are respectively the same as

the action and object in the AWS model. A permission is an operation on an object. Each user may

be assigned to multiple roles. Each operation is associated with a boolean expression specified

using the usual ∧ and ∨ operators on terms of the form r and r̄ where r is a role. The expression

is evaluated for a user by interpreting r to be true if the user is assigned with role r and r̄ to be

true if user is not assigned with role r. For example, consider “compute : create_instance: r1 ∧

r2 ∧ r̄3”. It says that the user is authorized to perform the compute : create_instance operation if

he is assigned with roles r1 and r2 and is not assigned with role r3. If a user tries to operate on

an object, the policy check is as follows: the user’s roles in the same tenant as the object should

satisfy the expression associated with the operation. For example, a user is assigned with roles

{r1, r2} in tenant t1 and roles {r1, r3} in tenant t2. According to the above policy, he is authorized

to perform compute : create_instance operation in t1 but not in t2. Access control in OpenStack

is coarse grained because only operation level authorization is supported. If an operation such as

compute : stop_instance is authorized to a user, that user can stop any VM instance in the tenant.

Authorization of this operation for particular tenant VMs and not others cannot be specified. The

107

formal model is summarized in figure 5.4(b).

As this model is also RBAC-based, it has some of the same drawbacks as AWS. In addition,

current OpenStack access control facilities have two major issues. Firstly, all tenants share the

same policy for all OpenStack components such as Nova (compute), Keystone (identity and access

management) and Glance (VM image repository), and these policies can only be configured by

CSP root users. There is no mechanism to support customized access control policies for individual

tenants. This means that all tenants should use the same set of roles and role-operation assignment,

which is unrealistic. Secondly, certain administrative operations can only be assigned across all

tenants rather than on a tenant-by-tenant basis. Operations such as create user, delete user and

assign a role to a user can only be done by CSP root users rather than being delegated to tenant

root users so that each tenant can have autonomy of control over its resources and users.

5.3.2 Other IaaS Models in the Literature

Most of the access control models for IaaS in the literature are based on RBAC. Wu et al. [144]

designed and implemented access control as a service (ACaaS) based on RBAC to extend the AWS

access control model. ACaaSRBAC introduced role hierarchies, sessions, constraints and an admin-

istration model. Domain based access controls (dCloud) [126, 127] were proposed based on the

original RBAC model. The general idea is to group related resources and users in the same domain

such that administration can be delegated to each domain. In this way, distributed administration

can be achieved. Daniel et al. provided an authorization system to control the execution of virtual

machines (VMs) to ensure that only administrators and owners could access them [104]. Berger

et al. [25] proposed an authorization model based on both RBAC and security labels to control

access to shared data, VMs, and network resources. Almutairi et al. [10] proposed a distributed

access control architecture for cloud computing. Chadwick et al. [40] proposed fine-grained access

control in private cloud. This work mainly focus on federated identity management and is specific

to cloud storage systems. Takabi et al. [135] proposed a comprehensive security framework for

cloud computing environments. The work provides a big picture of security requirements in cloud.

108

Table 5.1: Requirements for Cloud IaaS Access Control
Fine-grained Tenant Management

Models Flexibility Least Privilege Access Control Automation of Users
OpenStack NO NO NO NO NO
AWS NO NO YES NO YES
RBAC YES YES NO NO NA
IaaSop YES YES YES YES YES

A common drawback of RBAC-related models is that they do not tackle the challenge of flexible

and heterogeneous access control requirements from different tenants in IaaS.

There are limited number of initial works on using ABAC for cloud in general as opposed to

specifically for IaaS. Cha et al. [38] proposed ABAC in cloud computing environment. Iqbal et

al. [73] proposed semantic-enhanced ABAC for cloud services. Danwei et al. [52] proposed access

control for cloud service based on UCON. However, these works are neither focused on IaaS ac-

cess control nor present a formal ABAC model. In addition, they did not present the functionalities

for the entire lifecycle of tenant management (e.g., tenant creation, policy configuration, admin-

istration, etc.). There is, of course, a considerable body of literature on ABAC in general beyond

cloud IaaS [80,149]. The ABAC literature focuses on issues such as enforcement architectures and

policy languages. Policy languages, while important, by themselves are not sufficient. We need

models that guide policy specification using these languages.

5.4 Requirements of Access Control in IaaS Cloud

In this section, we discuss the requirements of access control model in cloud IaaS and motivate

the usage of ABAC. We first list the requirements of access control in IaaS and then compare the

capability of existing models in satisfying these requirements. For this purpose, we summarize the

requirements in table 5.1. The columns show the list of requirements and the rows show the list of

existing models. This table shows whether each requirement can be satisfied by existing models.

We discuss them below.

• Flexibility. Among all requirements, flexibility is critical for access control in IaaS cloud.

109

As we discussed in section 5.1, the access control engine in cloud should be able to provide

a wide variety of access control features for customers. Since different customers may de-

mand different access control requirements, the cloud provider should provide access control

model that is flexible and intuitive. Hence classical models such as DAC and MAC are fun-

damentally limited in this regard. While RBAC has been successful in enterprises, most of

the existing cloud systems use some augmented version of RBAC. It is reasonable to expect

that RBAC will be further enriched for usage in cloud IaaS in the future. Since ABAC is

a generalized version of RBAC (multiple attributes instead of a single attribute “role”), we

expect ABAC to satisfy the flexibility requirements of cloud IaaS.

• Least Privilege. Users manage resources by logging in to the system. To be secure, they

want to be associated with only the necessary permissions instead of full permissions de-

pending on their tasks during that specific session. For example, to list active virtual re-

sources through public network, they don’t want to be associated with the permissions to

change the status of the virtual machines such as turn off and restart virtual machines. In

this way, even if the session is hijacked, the VMs cannot be modified. This requires the

concept of session and the configuration points to configure session policy. In both AWS

and OpenStack, users cannot choose the permissions in a session. Instead, they always have

full permissions in all sessions.

• Fine-grained access control. Different users have different sets of permissions and this re-

quires fine-grained control over the resources. However, the advantages of RBAC is based on

the assumption that the number of roles is much smaller than the number of users. This will

cause role-explosion problem if each user has different sets of permissions. OpenStack only

provides coarse-grained access control at the operation level. AWS provides fine-grained

access control by considering time, location, address and so on and those can be captured by

ABAC authorization policies.

• Automation. This feature enables users to create objects and set attributes on them. Those

110

attributes are constrained by the attributes of the user himself and can be used in autho-

rization policy for future accesses from other users. For example, an architect from Email

department wants to create a server and label it as Email department. Later on, other archi-

tects belonging to the Email department can access this server. No manual assignment of

the new permissions (i.e., operations on this new virtual machines) to other authorized users

is needed in ABAC. However, in RBAC, these permissions have to be manually associated

with certain roles, which is cumbersome because of the number of potentially new permis-

sions (depending on the number of newly created objects) as well as the expensive cost of

role engineering. In AWS, users are allowed to tag the objects and those tagged information

can be used in authorization policy. However, this tag is not constrained by attributes of the

user, i.e., the user can tag the resources using any name and value pairs.

• Tenants full control of their users. Cloud service provider should support the ability for

tenant to fully manage their own users in the cloud. For this purpose, each tenant should be

able to configure an administrative user who has full permissions within the assigned tenant.

In OpenStack, only the cloud administrative user from cloud service provider can add users

to tenants and assign roles. AWS allows tenant to manage their own users.

We can see that no existing model systems satisfy the critical requirement specified in the table.

With our theoretical work in chapter 3 as a foundation, our proposed ABAC in this chapter captures

all requirements in a single model and distinguishes itself from other similar ABAC models.

5.5 Formal IaaS Models

In this section, we provide a formal specification of two models for IaaS cloud: the operational

model IaaSop and the administrative model IaaSad. IaaSop is built on the unified attribute based

access control model ABACα introduced in chapter 3. It enables specification of authorization

policies for day to day operations of the tenant regular IT users (see figure 5.2). The IaaSad model

is built on the generalized user-role assignment model GURA. It enables specification of policies

111

Figure 5.5: IaaSop and IaaSad For Single Tenant Access Control

for modifying attributes of tenant regular IT users (see figure 5.2). The tenant root users utilize

the administrative model for specifying policies for attribute updates of tenant regular IT users by

tenant administrative IT users.

We choose to build upon ABACα since it provides an intuitive collection of policy configuration

points. The general idea of IaaSop is as follows. Users, subjects and objects are associated with

attributes. Subject and object attributes are set and modified by users and subjects respectively.

The modification of subject and object attributes are guided by constraint policies specified in the

model. A subject is able to perform an action on an object (e.g. stop a VM) as allowed by the

authorization policies in the model.

User provisioning and attribute assignment is covered in the GURA model. We build on the

GURA model because of the lack of administrative models in the literature for ABAC, GURA

being one of the first formally specified models in this regard. In this model, administrative per-

missions such as add and assign user attributes, are associated with administrative roles. Tenant

administrative IT users are then assigned these roles and obtain administrative permissions. In

GURA, it does not discuss the permission of adding and deleting users. In this chapter, we allow

all administrative users to add and delete users. Note that the IaaSad model can be generalized into

an ABAC instance, that is ABAC based administrative model for an ABAC operational model. We

start by providing a simple and clear approach using IaaSad giving us a role-based administrative

model for an ABAC operational model. We define the core components and specify operations for

112

configuring policies in a single tenant in the context of IaaS cloud. We introduce related compo-

nents first and then present the formal model and operations.

5.5.1 The Operational Model IaaSop

Components

The structure of IaaSop is shown in the right part of figure 5.5. The IaaSop model is configured by

the tenant root user. We use “configure” to signify the operation of system architects who design

the elements in the system based on formal models. The major components are regular users

(U), subjects (S), objects (O), user attributes (UA), subject attributes (SA), object attributes (OA),

operations (P), subject (ConstrSub) and object (ConstrObj) attribute constraint and authorization

policies (Authorization).

An attribute is a function which takes an entity and returns certain properties of the entity.

Each attribute is associated with a finite set of atomic values as its scope. There are two types

of attributes: set valued and atomic valued. The major difference is set valued attributes can

take multiple values from their scope while atomic valued attributes take a single value from their

scope. Example set valued attributes are role and division and example atomic valued attributes

are clearance and level.

A user is an entity which interacts with the cloud. We have introduced cloud root user, tenant

root user, tenant administrative user and tenant regular user in section 5.2. User attributes reflect the

properties of users. In this model, only regular users are associated with attributes since we employ

ABAC only for the operational component of IaaS. A subject is a program or process created by

users to access the resources on behalf of the users. Only the creator can terminate a subject. For

example, when a user creates a connection from his mobile phone to the cloud, the connection

is a subject. He can also create another concurrent subject from his laptop. A subject carries

attributes which can be used for authentication and authorization. Examples are ip, timestamp

and networktype (public, private, etc.). Besides those, there may be attributes inherited from

113

user attributes. In some systems, subjects are associated with a signed credential of the users’

information and can be represented as a token (OpenStack [3]) or access key and secret key pair

(Amazon Web Service [1]). The cloud authenticates and authorizes all requests submitted by this

subject based on information included in the token or access key and secret key pair. Subjects

created by a user may take attributes and values that differ from that of its user. Subject attribute

constraint policy specifies the constraints on subject attributes when users create subjects and set

values for subject attributes. For example, if a MAC policy is required, the subject’s clearance

should always be lower or equal to that of the user. A user at top secret clearance level can log

in to the system at either secret or unclassified clearance. In this way, user accesses the tenant

with least privilege.

Objects represent the virtual resources in cloud. Examples are virtual machines, virtual net-

works, images, volumes and storages. Objects are created by subjects on behalf of users. Objects

are also associated with attributes and those attributes are set and modified by their owner who cre-

ates them. There is a difference between this model and the original ABACα model in that different

types of objects may be associated with different sets of object attributes. For example, volumes

may be associated with size and attachedVM attributes while it is not natural to associate virtual

machines with these attributes. When a user sets or modifies the attributes of objects, there are also

constraints. Object attribute constraint policy specifies the constraints on the values that object

attributes may take at and post creation time of the object. An example object attribute constraints

policy may require that when a subject creates a volume, the volume should be labelled with the

same division (or tenant) as the subject and the volume’s owner is set to the subject’s creator.

An operation represents an access mode on objects. Operations are defined by the CSP and

will vary across different CSPs. For example, operations on virtual machines include create, start,

stop and resize. Operations on images include upload and list.

Authorization policy specifies policies for evaluating requests made by subjects (on behalf

of regular IT users). It is specified based on attribute values of the involved subject and object.

It returns either true or false meaning the request is authorized or rejected. For example, if a

114

Table 5.2: Basic Sets and Functions for IaaSop Model

U, S and O represent finite sets of existing regular users, subjects and objects respectively.

UA, SA and OA represent finite sets of user, subject and object attribute functions respectively.

objType: O→ OT. For each object, objType gives its type.

∀ t ∈ OT, Ot = {obj | obj ∈ O ∧ objType(obj) = t}, represents objects of type t.

oaType: OA→ OT. For each object attribute, oaType gives its type.

∀ t ∈ OT, OAt = {oa | oa ∈ OA ∧ oaType(oa) = t}, represents object attributes of type t.

SubCreator: S → U . For each subject SubCreator gives its creator.

For each att in UA ∪ SA ∪ OA, SCOPE represents the attribute’s scope, a finite set of atomic values.

attType: UA ∪ SA ∪ OA→ {set, atomic}. Specifies attributes as set or atomic valued.

P represents finite set of operations.

Each attribute function maps elements in U, S and O to atomic or set values.

∀ua ∈ UA. ua : U→
{

SCOPEua if attType(ua) = atomic
2SCOPEua if attType(ua) = set

∀sa ∈ SA. sa : S→
{

SCOPEsa if attType(sa) = atomic
2SCOPEsa if attType(sa) = set

∀t ∈ OT.∀oa ∈ OAt.oa : Ot →
{

SCOPEoa if attType(oa) = atomic
2SCOPEoa if attType(oa) = set

user requests to stop a virtual machine, the user and the virtual machine should be of the same

division.

Formal Definition

The formal operational model IaaSop is summarized in table 5.2. This model is configured by

tenant root users. The basic sets and functions in IaaSop model are as follows: U, S and O repre-

sent finite sets of tenant regular users, subjects and objects respectively. There is one distinguished

attribute for object, objType, which maps objects to their respective types. OT represents the

scope of this function and thus Ot represents the set of objects of type t. We define a finite set

of object types based on the current architecture of cloud IaaS. For example, OT = {vm, file,

image, network, volume}. UA, SA and OA represent finite sets of user, subject and object

attributes respectively. oaType is a function mapping each object attribute to the type of objects

it applies. For each t in OT, OAt represents the attributes defined for objects of type t. These

could be atomic or set valued as determined by the type of the attribute function (attType). For

115

each attribute, SCOPE represents the finite set of atomic values it can take. SubCreator is a dis-

tinguished attribute for subject. It maps each subject to the user who creates it (an alternate would

be to treat this attribute as a function in SA) and thus the scope of this function is U. Finally, P

represents finite set of operations.

There are three policy configuration points in the IaaSop model. Authorization, ConstrSub,

ConstrObj and ConstrObjMod represent authorization policy, subject attribute constraint pol-

icy at creation and modification time, and object attribute constraints policy at creation time and

modification time. We need a grammar to express these policies which we adopt from chapter 3.

The structure of subject attribute constraint policy is specified by comparing the proposed value

of subject attributes with the attribute values of the creating user. The structure of object attribute

constraint policy is conjunction and disjunction connection of comparison between the proposed

object attribute value and subject attribute value. Similar to subject and object attribute constraints,

authorization policy specifies comparison between attributes of the involved subject and object. We

provide examples of all policies in the next section together with operations of this model.

Operations for tenant regular users

Operations can be submitted by tenant regular users to the cloud. The cloud system updates state

according to the operations if it is authorized. We call the user who submits the operation the

“requester”. The following operations are authorized to regular users if the evaluation result from

authorization policy is true. We adopt the precondition checking for each operation from chapter

3. We briefly introduce the format of each operation in table 5.3. Operation 1 creates a subject,

operation 2 creates an object. Operations 3 and 4 modify subject and object attributes. Operation

5 represents any of the regular operation on resources such as starting a server, creating a volume,

etc. In these operations, OASETt represent the data type in which each element represents an

attribute assignment for all object attributes for object type t. Formally, for each t ∈ OT,

116

Table 5.3: Complete List of Operations for Tenant Regular Users
Operations Updates
1. createSubject(req:U, sub:NAME, saset:SASET) S′ = S ∪ {sub}, for each (sa, val) ∈ SASET,

sa(sub) = val, SubCreator(s) = req
2. createObject(sub:S, obj:NAME, oaset:OASETt, t:OT) O′ = O ∪ {obj}, objType(obj) = t, for each (oa,

val) ∈ OASETt, oa(obj) = val
3. modifySubAttr(req:U, sub:NAME, saset:SASET) For each (sa, val) ∈ SASET, sa(sub) = val
4. modifyObjAttr(sub:S, obj:NAME, oaset:OASETt, t:OT) For each (oa, val) ∈ OASETt, oa(obj) = val
5. Operation(sub:S, obj:O) None

OASETt =
⋃
∀oa∈OA∧objType(oa)=t OneElement(OASEToa) where

OASEToa =


{oa} × SCOPEoa if attType(oa) = atomic

{oa} × 2SCOPEoa if attType(oa) = set

5.5.2 The Administrative Model IaaSad

Components

Recall that cloud root user (CRU) and tenant root user (TRU) have been defined in section 5.2.

The structure of IaaSad model is shown in the left part of figure 5.5. This model is configured by

tenant root user and administered by tenant root users. Here “administer” signifies operations such

as creating users and modifying user role assignment. The major components are tenant adminis-

trative users (TAU), administrative roles (AR) and user role assignment (UAR). Administrative

roles are associated with administrative permissions such as add, delete and assign user attributes.

Administrative users are associated with administrative roles and thus obtain the associated per-

missions.

Formal Definition

The formal administrative model IaaSad is summarized in part I in table 5.4. The basic sets and

functions are CRU, TRU, TAU, AR and UAR. CRU and TRU represent the cloud root user and

tenant root user respectively. TAU represents the set of administrative users, AR represents a finite

117

set of administrative roles, and UAR represents user administrative role assignment.

There is one configuration point for IaaSad model which is administrative policies. They

specify the condition under which certain administrative roles can modify user attributes. The

precondition is specified based on the attribute value of the user whose attributes are to be modi-

fied. For example, users with manager role can assign IT architects to a different division if they

are currently assigned with employee role in that division. AdminPolicy represents finite set of

administrative policies. Again, we need a grammar for specifying these policies which we adopt

from [78]. For each attribute att in UA, can_addatt is a set containing tuples in the format of (ar,

condition, values) where ar is one of the administrative roles, condition is a boolean expression

specified using the current values of attributes of the regular IT users, and values represents a set

of value that can be added. It means that administrative role ar can add (more operations will be

introduced in section 5.5.2) any value from values to the attribute att of user whose attributes sat-

isfy the precondition condition. can_add is defined for set-valued attributes. Similarly, can_delete

is defined for set-valued attributes representing policies for delete permission. Finally, can_assign

is defined for atomic-valued attributes.

Operations

We define a set of operations to maintain the sets and relations defined above and in IaaSop model.

We provide a list of the operations in part II in table 5.4. We illustrate the operations based on a

concrete senario of an organization migrating infrastructure to the cloud. The senario is defined

below:

Scenario 1. A university called TechEdu wants to create their data center in the cloud. The

university contains certain number of colleges under which there are several departments. The

university, each college and each department maintain certain amount of resources of each type.

For consistency, all departments, colleges and the university are called entity. IT architects are

added as users so that they can manage their resources. They are assigned with one or multiple

resource type and entity pairs. Due to security concern, three policies are required to be enforced:

118

Table 5.4: Formal Definition For IaaSad Model
Part I. Basic Sets and Functions

CRU, TRU represent the cloud root user and tenant root user respectively.
TAU represents finite set of tenant administrative users.
AR represents a set of administrative roles and UAR represent user-role assignment, i.e., UAR ⊆ TAU× AR.

Part II. Complete List of Operations
Operations Updates

1. Operations for Cloud Root User
1.1 createTenant(req:CRU, tenant:NAME) T′ = T ∪ {tenant}
1.2 createRootUser(req:CRU, u:NAME, tenant:T) TRU = ∅, TRU = {u}
1.3 removeTenant(req:CRU, tenant:NAME) T′ = T \ {tenant}

2. Operations for Tenant Root User
2.1 createUserAttr(req:TRU, ua:NAME, type: {set, atomic}) UA′ = UA ∪ {ua}, attType(ua) = type
2.2 createUserAttrScope(req:TRU, ua:UA, value:NAME) SCOPE′ua = SCOPEua ∪ {value}
2.3 removeUserAttrScope(req:TRU, ua:UA, value:SCOPEua) SCOPE′ua = SCOPEua \ {value}
2.4 createSubAttr(req:TRU, sa:NAME, type: {set, atomic}) SA′ = SA ∪ {sa}, attType(sa) = type
2.5 createSubAttrScope(req:TRU, sa:SA, value:NAME) SCOPE′sa = SCOPEsa ∪ {value}
2.6 removeSubAttrScope(req:TRU, sa:NAME,
value:SCOPEsa)

SCOPE′sa = SCOPEsa \ {value}

2.7 addSubConstr (req:TRU, policy:POLICY) ConstrSub′ = ConstrSub ∪ {policy}
2.8 removeSubConstr (req:TRU, policy:POLICY) ConstrSub′ = ConstrSub \ {policy}
2.9 createObjAttr (req:TRU, oa:NAME, type:{set, atomic}, oat:
OT)

OA′ = OA ∪ {oa}, attType(oa) = type,
oaType(oa) = oat

2.10 createObjAttrScope(req:TRU, oa:OA, value:NAME) SCOPE′oa = SCOPEoa ∪ {value}
2.11 removeObjAttrScope(req:TRU, oa:OA, value:NAME) SCOPE′sa = SCOPEsa \ {value}
2.12 addObjConstr (req:TRU, policy:POLICY) ConstrObj′ = ConstrObj ∪ {policy}
2.13 removeObjConstr (req:TRU, policy:POLICY) ConstrObj′ = ConstrObj \ {policy}
2.14 addObjConstrMod (req:TRU, policy:POLICY) ConstrObjMod′ = ConstrObjMod ∪ {policy}
2.15 removeObjConstrMod (req:TRU, policy:POLICY) ConstrObjMod′ = ConstrObjMod \ {policy}
2.16 addAuthz (req:TRU, policy:POLICY) Authorization′ = Authorization ∪ {policy}
2.17 removeAuthz (req:TRU, policy:POLICY) Authorization′ = Authorization \ {policy}
2.18 createAdminRole(req:TRU, role:NAME) AR ′ = AR ∪ {role}
2.19 createAdminPolicy(req:TRU, policy:POLICY) AdminPolicy′ = AdminPolicy ∪ {policy}
2.20 removeAdminPolicy(req:TRU, policy:POLICY) AdminPolicy′ = AdminPolicy \ {policy}
2.21 addAminUser(req:TRU, u:NAME) TAU′ = TAU ∪ { u}
2.22 removeAminUser(req:TRU, u:TAU) TAU′ = TAU \ {u}
2.23 addAminUserRole(req:TRU, u:TAU, r:AR) UAR′ = UAR ∪ {(u, r)}
2.24 removeAminUserRole(req:TRU, u:TAU, r:AR) UAR′ = UAR \ {(u, r)}

3. Operations for Tenant Administrative Users (chapter 4)
3.1 addUser(req:TAU, user:NAME) U ′ = U ∪ {user}
3.2 removeUser(req:TAU, user:U) U ′ = U \ {user}
3.3 add(req:TAU, tuser:U, att:UA, value:SCOPEatt) att(tuser)′ = att(tuser) ∪ {value}
3.4 delete(req:TAU, tuser:U, att:UA, value:SCOPEatt) att(tuser)′ = att(tuser) \ {value}
3.5 assign(req:TAU, tuser:U, att:UA, value:SCOPEatt) att(tuser)′ = value

119

(1) When users connect to the cloud, they can choose which entity and type pairs to activate in that

session; (2) when subjects create new resources, they should be labeled with the entity and type

the user is assigned and (3) IT architects are authorized to only access the resources if they are

assigned with the type and same entity of the resource.

To start, assume that we have the following initial state: Rack is a cloud service provider and

Alice is the cloud root user who manages resources in Rack. Bob is a representative from the

organization TechEdu planning to create university servers and services in the cloud.

• Category I. Operations For Cloud Root User

Firstly, we define operations for cloud root user. These operations will only be authorized if

the requester (req) is the cloud root user. That is, req=CRU, where req is the formal parameter

and represents the actual requester in each operation. These operations are summarized in the first

part in table 5.4. NAME is an abstract data type whose elements represent identifiers of entities

(attributes, user name etc.) that are included in the ABAC system.

Operation 1.1 creates a new tenant in the system and operation 1.2 assigns a tenant root user to

a tenant. For simplicity, we assume that a tenant can only have one tenant root user. For example,

Alice (CRU) is authorized to create a tenant named TechEdu and then Alice adds Bob as the tenant

root user. So far Bob has been granted full permissions in tenant TechEdu.

createTenant(Alice, T echEdu)

createRootUser(Alice,Bob, T echEdu)

• Category II. Operations For Tenant Root User

Secondly, we define operations for tenant root user. They are summarized in the second part in

table 5.4. They are authorized if and only if the requester is the tenant root user, i.e., req∈ TRU,

where req is a formal parameter and represents the actual requester in each operation. We look at

operations for configuring IaaSop policy. Operation 2.1 adds a set-valued or atomic-valued user

120

attribute. In scenario 1, each regular user is associated with one attribute entity_type, which

represents the entity and type pairs the user is assigned and it can take more than one such pair. For

example, entity_type(Gary) = {(cs, email), (ece, web)}. Bob creates attribute entity_type:

createUserAttr(Bob, entity_type, set)

We omit the step for defining scopes for attributes. Operation 2.4 adds a set-valued or atomic-

valued subject attribute. Bob creates a set-valued subject attribute sentity_type:

createSubAttr(Bob, sentity_type, set)

Operation 2.7 creates a subject attribute constraints policy. POLICY is an abstract data type

whose elements represent identifiers of policies (authorization policy, subject attribute constraints

policy, etc.) that may appear in IaaSop system. To satisfy policy 1 in scenario 1, Bob creates the

following subject attribute constraint policy.

addSubConstr(Bob, policy)

where policy is:

ConstrSub(u, s, {(sentity_type, val)}) ≡ val ⊂ entity_type(u)

In this policy, val represents the proposed value for subject attribute sentity_type. For example,

if entity_type(Gary) = {(cs, email), (ece, web)}, then Gary is allowed to create a subject sub

such that sentity_type(sub) ={(ece, web)}.

Operation 2.9 adds a set-valued or atomic-valued object attribute. In scenario 1, each object is

associated with two attributes: entity and type. Attribute entity represents the entity to which

the resource belongs and attribute type represents the type of the resource. Thus, each object can

121

only take one value for entity and one value for type. For example, a server cannot be assigned

with {web, email} for type attribute. Bob creates the two object attributes.

createObjAttr(Bob, entity, atomic, vm)

createObjAttr(Bob, type, atomic, vm)

Operation 2.12 adds an object attribute constraints policy at object creation time. To satisfy

policy 2 in scenario 1, Bob creates the following object attribute constraints policy.

addObjConstr(Bob, policy)

where policy is:

ConstrObj(s, o, {(entity, oentity), (type, otype)}) ≡

∃(entity, type) ∈ entity_type(s).entity = oentity ∧ type = otype

In this policy, oentity and otype represents the suggested value of object attributes entity

and type respectively. It means that a subject can only assign the attribute of created object to the

entity and type it is assigned to. For example, if sentity_type(sub) ={(ece, web)}, then sub can

only create object obj such that entity(obj) = ece and type(obj) = web.

Operation 2.16 creates the authorization policy for regular users. To satisfy the requirement in

policy 3 in scenario 1, Bob creates the following policy.

addAuthz(Bob, policy)

122

where policy is:

Authorizationcreate ≡ ∃(entity, type) ∈ entity_type(s)∧

entity = entity(o) ∧ type = type(o)

Now Bob has finished configuring ABAC policy for regular users.

The next step is to configure IaaSad policy such that administrators have permissions to cre-

ate users and modify user attributes. Operation 2.18 creates an administrative role and operation

2.19 creates policies for administrative roles (we adopt the structure and specification language

from [78]). Bob defines an administrative role called CSmanager which is authorized to add IT

architects to cs department and any server type. He achieves those using the following operation:

createAdminRole(Bob, CSmanager)

createAdminPolicy(Bob, policy)

where policy is:

can_addentity_type = {(CSmanager, ITarchitect ∈ role(u),

{(cs, web), (cs, email), (cs, app)})}

Operation 2.23 adds a user-role assignment. Bob adds Frank as a CSmanager.

addAminUserRole(Bob, F rank, CSmanager)

So far, Bob has finished configuring the policy for tenant TechEdu and Frank can create regular

users and assign attributes.

• Category IV. Operations For Tenant Regular Users

The following operations are allowed by tenant root user or administrative users if they are

123

assigned with appropriate administrative roles. We briefly introduce the format and evaluation of

each operation. Operation 3.1 adds a regular user. The operation to add a value to an attribute of

a user is Operation 3.3 which is add(req, target_user, att, value), where req is the requester,

target_user is the user whose attribute is to be added a value, att represents the attribute to be

modified, value represents the value to be added. Similarly, operation 3.4 delete(req, target_user,

att, value) and operation 3.5 assign(req, target_user, att, value) are defined. As Frank is

already an administrative user with CSmanager role, Frank now can add IT architect Gary to

their designated entity and server type.

createUser(Frank,Gary)

add(Frank,Gary, entity_type, (cs, web))

• Category III. Operations For Tenant Administrative Users

We show a few IaaSop operation examples below. Gary becomes a tenant regular user and then

all his operations are evaluated by authorization policy. Gary creates a subject with the suggested

value for sentity_type attribute, then this subject g_sub creates a server on behalf of Gary. Any

subject with cs entity and web type can access serverA and perform operations such as resize.

CreateSub(Gary, g_sub, {(sentity_type, {(cs, web)})})

CreateObj(g_sub, serverA, {(entity, cs), (type, web)}, vm)

resize_server(g_sub, serverA)

5.6 Openstack Based Proof Of Concept

We demonstrate practicality of the models of the previous section by a proof-of-concept OpenStack

implementation. We briefly introduce the authorization and authentication components in Open-

Stack and then propose three different enforcement models. OpenStack contains the following

124

Figure 5.6: Components of OpenStack

components: Nova, Swift, Glance, Cinder, Keystone, Quantum and Horizon (as shown in figure

5.6). Each component acts as a service which communicate with each other via message queues

and hence are loosely-coupled. Nova provides virtual servers upon demand. Swift provides object

storage. Glance provides a catalog and repository for virtual disk images. Horizon provides a mod-

ular web-based user interface for all OpenStack services. Quantum provides network connectivity

as a service between interface devices managed by other OpenStack services. Cinder provides

persistent block storage to guest VMs. Keystone provides authentication and authorization for all

the OpenStack services. In our discussion, we focus on Keystone and Nova.

5.6.1 Access Control in OpenStack

Authorization in OpenStack is enforced by a Policy Enforcement Point in each component. Key-

stone is the component that stores user information including tenant and role assignments. Key-

stone provides the user information in the format of token which is signed user data by Keystone

using its private key. All other components obtain the public key of Keystone when added as a

service. Thus, the public key of Keystone is only distributed to trusted components. They verify

the user information by decoding the user’s token. Other components then authorize the user based

on the user information provided by the token. Generally, Keystone is the policy information point

(PIP) where user information is stored and each component has its own policy enforcement point

(PEP), policy decision point (PDP), policy administration point (PAP), and a PIP where respective

object attributes are stored.

125

Figure 5.7: OpenStack Authorization Using Asymmetric Keys

A general authorization process for Nova component is illustrated in figure 5.7. A user sends

the user name and password to Keystone for authentication and obtains service end point addresses

for various OpenStack services. Keystone then verifies the provided user name and password and

generates a token with signed user data. Keystone sends the token back to the user together with

the service endpoints (e.g., address for Nova service). The user then sends a request to the Nova

service using the token and request details (e.g., operation, arguments). The Nova service’s PEP

component verifies and validates that the provided token is not revoked by communicating with

Keystone. The PEP component then retrieves object data from local PIP and decodes the token

with Keystone’s public key. User and object data together with the request are sent to the PDP

component. The PDP retrieves policy from local files and evaluate the request. A result of true or

false is returned meaning that the request is either authorized or denied.

5.6.2 Enforcement Models

We consider three different enforcement models. The structure of the first enforcement model is

shown in figure 5.8. This method maintains the original architecture of OpenStack. Keystone

stores user attributes definitions, user attribute assignments, subject attributes definitions, subject

attribute assignment and subject attribute constraints policy. When a user authenticates through

Keystone and tries to create a subject with suggested values for each subject attribute, Keystone

126

Figure 5.8: Proposed ABAC Enforcement Model I

verifies the suggested attributes against subject attributes constraints policy and the creating user

attributes. Then Keystone generates a token by signing the suggested subject attributes. The ad-

ministration policy is stored, enforced and decided in Keystone. Components excluding Keystone

stores object attributes, object attribute assignments and policies for authorization and object at-

tribute constraints policy.

Enforcement Model II defines a centralized policy engine. The structure is different from that

of enforcement model I only in the part shown in figure 5.9(a). We design a separate component

called PolicyEngine. It is the central point for policy storage and authorization evaluation. All

other components, instead of calling local policy evaluation engine, forward their authorization

request (containing details about the request and user token) to this component. Included items in

the forwarded request are: subject attributes, object attributes and operation. With the centralized

design, all policies for all tenants are stored centrally in a single component. Thereby policy ad-

ministration is decoupled from the policy enforcement. Object attribute constraints is expressed

using authorization policy. However, this enforcement model sacrifices performance for conve-

nience. There is a network latency because each request is sent to the PolicyEngine as a REST

call.

We propose a third enforcement model III shown in figure 5.9(b). It is different from Enforce-

127

Figure 5.9: Proposed ABAC Enforcement Model II and III

ment model II only in that a centralized object attribute store is provided. All object attributes

are stored. When each component enforces their policies, there are two ways to interact with ob-

ject attribute store: (1) Each component retrieves object attributes from the object attribute store

and forwards the request to the PolicyEngine. (2) The PolicyEngine receives request from other

components and retrieves the object attributes from the centralized object attribute store.

5.7 Performance Evaluation

We evaluate our ABAC implementation in this section.

5.7.1 Experiment Content

We have completed a first stage implementation of ABAC for the Nova and Keystone service

components of OpenStack. Our experiments are in two parts.

Part I. We evaluate the time increase for token generation in Keystone with or without addi-

tional user attributes. As user attributes are included in the token instead of only role information,

it requires a longer time for token generation (remember that a token is a signed user credential).

For simplicity, we ignore subject attribute constraint policy in this experiment. We test the re-

sponse time of token generation for cases with 0, 5, 10, 15 and 20 user attributes where “0” means

that the “role” is the only attribute as originally included in OpenStack. User attributes in the

database are stored as (attname, value, tenant) tuples. We send concurrent requests to keystone

using Keystone Client command and measure the average response time on client side.

128

Part II. We evaluate the network latency introduced by the centralized PolicyEngine in en-

forcement model II. The latency is introduced by the forwarded data size which contains user

token with attributes, object attributes and operation. Thus, we measure the average time taken for

the Nova server to send the request to PolicyEngine and receive a result. We change the number of

user attributes and concurrent requests.

5.7.2 Experiment Environment and Results

Our experiments are based on a private cloud shown in figure 5.10. It is installed on four physical

machines. We install two compute nodes, one networking node and one controller node. The

configuration of controller node and network node is: 24 cores CPU, 24 GB RAM and 1 TB Disk

and the configuration of the two Nova compute node is: 16 cores CPU, 98 GB RAM and 1TB

Disk. There are three networks in this installation: (1) the green line on network interface eth1

shows the administration network which connects different components of OpenStack; (2) the red

lines on network interface eth1 : 1 shows the data network which connects virtual machines with

the Internet and (3) the black line on the eth0 network interface shows the access to the Internet

which is only accessible by Controller node and Networking node. In experiment part II, we install

the centralized PolicyEngine on another machine which has dual core CPU, 4GB RAM and 10 GB

disk.

The result for Part I is shown in figure 5.11. A first observation is that given the same con-

current request, the average time for token generation increases with the number of user attributes.

This is caused by the increase in the length of user data to be signed by Keystone. As each to-

ken contains all user attributes, the signing process and transmission takes a longer to finish as

expected. However, we can see that the increase is not significant. The time is increased by 20%

when the number of user attribute increases from 0 to 20. Another observation is that if the number

of user attributes is the same and we increase the number of concurrent requests, it is not neces-

sary that the average process will time increase. This is due to the internal scheduling mechanism.

Keystone accepts request concurrently and processes them sequentially from a queue. Thus each

129

Figure 5.10: OpenStack Installation On Physical Machines

Figure 5.11: Average Time for Token Generation in Keystone

request got the same time. Note that when the attribute number is 20, the average time for 200 con-

current requests is smaller than that with 100 concurrent requests. This is affected by the current

tasks and the state of the system message queue.

The result for Part II is shown in figure 5.12. It can be seen that the networking latency

increases with the number of user attributes as data to be forwarded to the PolicyEngine component

becomes larger. The latency increases with the number of concurrent request even with the same

number of user attributes. This is due to the reason that the PolicyEngine is installed on a machine

with limited computing power than the machines we installed OpenStack. The waiting time for

130

Figure 5.12: Average Time for Nova Communicating with PolicyEngine

getting a policy decision becomes larger when there are too many requests to be evaluated. The

average time for request with 20 attributes in 500 concurrent requests is almost twice the time of

that with no attributes. However, our implementation of PolicyEngine is not highly optimized.

Furthermore, 20 attributes for access control decisions is a big stretch in practice. This experiment

shows that when the user attributes becomes larger, the increase in time for different number of

concurrent requests becomes larger. That is , when there are 20 attributes, the average time for

500 concurrent requests is around 16 time of the time for 100 concurrent requests. While for zero

attributes, the time for 500 concurrent requests is around 1.7 times of the time for 100 concurrent

requests.

5.7.3 Conclusion

In this chapter, we proposed an ABAC framework for access control in cloud IaaS. We studied

existing models from industry and the academic literature and motivated the need for ABAC by

showing practical examples and limitations of the existing models. ABAC is suitable for cloud

IaaS. We provided formal models for the operational and administrative aspects of our ABAC

framework for cloud IaaS. Based on the proposed ABAC framework, we designed enforcement

models based on the open source cloud platform OpenStack. We then evaluated the performance

of our proposed enforcement models.

131

Chapter 6: CONCLUSION AND FUTURE WORK

6.1 Summary

In this work, we propose ABACα model to provide “least” features to cover DAC, MAC and

RBAC. Further, we extend ABACα on each of its configuration points to cover selected various

RBAC extensions. Based on this framework, we propose GURA model to manage user attribute

assignment. It is an extension to URA component in ARBAC97 model. Further, we analyze

attribute reachability problem on a restricted version of GURA model called rGURA. It is restricted

from GURA in that it has simplified version of precondition specification language.

One important ongoing work is to deploy ABAC in OpenStack, which is one of the main

streams of cloud computing platform. In this dissertation we have described partial progress to-

wards this goal. The ABAC model is applied to regulate the usage of virtual resources such as

disk, RAM, network in single tenant with large number of regular users. To achieve it, we design

mechanisms for tenant administrators to provision attributes and compose GURA policy to manage

user attributes. Further, we provide mechanism for authorization policy composition. Secondly,

we extend GURA model to facilitate automatic user attribute update. In this case, user attributes

can be updated by administrators, users, and system event. Based on this model, we consider user

attribute reachability analysis. Beyond that, objects may be also involved and a more powerful

framework which deals with both user and object attributes can be analyzed.

6.2 Future Work

• ABAC model itself. An example extension is automatic attribute update. Attributes can

be updated automatically by many factors. For example, in order to configure membership

rules in OASIS-RBAC, subject attributes should be able to be automatically updated when

the membership rules for activated roles are not satisfied. Mutable attributes should be de-

fined for ABAC and automatic update policies should be specified. Modeling such a feature

132

requires significant enhancement to the model.

• Administrative model. GURA can be extended to ABAC administration of attributes. At-

tributes can be managed in ad hoc manner where each user can label other users with certain

attributes and values which can further be used in access control. An interesting question

here is the trustworthiness of the attributes values assigned by other users. Generally, the

trustworthiness can be determined by the attributes of the assigned user, relationships be-

tween the users and even their relationship with other users.

• User attribute reachability analysis. The first direction is additional polynomial time solu-

tions. For instance, tractable solutions for the scheme rGURA1-atomic and rGURA1 remain

to be explored. Secondly, the rGURA scheme itself can be extended in many directions. For

instance, administrators could be treated as regular users so administrative role is just another

user attribute. User attributes are utilized in determining administrative privileges as well as

in precondition specification. Precondition in rules could allow specification of other users’

attributes thus connecting related users. Thirdly, additional kinds of queries can be defined.

Except for the examples introduced in other related work (e.g., existence of length-bounded

plan), queries can also be specified on the relationships between the attributes of the same

user.

• ABAC in cloud and possibly other platforms. In the future, we plan to work on policy analysis

of ABAC and administration models. In addition, we plan to study the structure of the policy

and improve the throughput of the PolicyEngine component.

• ABAC with additional issues considered. Besides the proposed work discussed in the ear-

lier chapter, privacy aware ABAC is an interesting topic in future. As attributes represent

information about the users, releasing attributes to the policy evaluating engine is a sensitive

activity as the third party may not be trusted. Although trust negotiation and other tech-

niques have been proposed to regulate the release of information, still, least privilege has to

133

be enforced in ABAC. It means the least set of user attributes are released for the purpose of

request evaluating.

134

BIBLIOGRAPHY

[1] Amazon web services. http://aws.amazon.com.

[2] OASIS, Extensible access control markup language (XACML), v2.0 (2005).

[3] Openstack. http://www.openstack.org/.

[4] Rackspace customers. http://stories.rackspace.com/customers. Accessed:
Dec 2013.

[5] Ali E. Abdallah and Etienne J. Khayat. A formal model for parameterized role-based access
control. In Formal Aspects in Security and Trust, pages 233–246, 2004.

[6] Gail-Joon Ahn and Ravi Sandhu. Role-based authorization constraints specification. ACM
Trans. Inf. Syst. Secur., 3:207–226, 2000.

[7] M. A. Al-Kahtani and R. Sandhu. Rule-based RBAC with negative authorization. In ACSAC,
2004.

[8] Mohammad A. Al-Kahtani and Ravi S. Sandhu. A model for attribute-based user-role as-
signment. In ACSAC, 2002.

[9] F. Alberti, A. Armando, and S. Ranise. Efficient symbolic automated analysis of adminis-
trative attribute-based RBAC-policies. In ACM ASIACCS, pages 165–175, 2011.

[10] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref, and A. Ghafoor. A distributed access
control architecture for cloud computing. IEEE Software, 2012.

[11] F.T. Alotaiby and J.X. Chen. A model for team-based access control (TMAC). In Proceed-
ings. ITCC 2004, 2004.

[12] Grigoris Antoniou, Matteo Baldoni, Piero A Bonatti, Wolfgang Nejdl, and Daniel
Olmedilla. Rule-based policy specification. In Secure data management in decentralized
systems, pages 169–216. Springer, 2007.

[13] C.A. Ardagna, S. De Capitani di Vimercati, G. Neven, S. Paraboschi, F.-S. Preiss, P. Sama-
rati, and M. Verdicchio. Enabling privacy-preserving credential-based access control with
XACML and SAML. In IEEE CIT, pages 1090–1095, 2010.

[14] A. Armando and S. Ranise. Automated and efficient analysis of role-based access control
with attributes. Data and Applications Security and Privacy XXVI, pages 25–40, 2012.

[15] Sanjeev Arora, Eunjee Song, and Yoonjeong Kim. Modified hierarchical privacy-aware
role based access control model. In Proceedings of the 2012 ACM Research in Applied
Computation Symposium, RACS ’12, pages 344–347, 2012.

[16] C. Bäckström and B. Nebel. Complexity results for SAS+ planning. Computational Intelli-
gence, 11(4):625–655, 1995.

135

[17] J. Bacon, K. Moody, and W. Yao. A model of OASIS role-based access control and its
support for active security. TISSEC, 2002.

[18] E. Barka and R. Sandhu. Role-based delegation model/hierarchical roles (RBDM1). In
Computer Security Applications Conference, 2004. 20th Annual, 2004.

[19] J. F. Barkley, K. Beznosov, and J. Uppal. Supporting relationships in access control using
role based access control. In ACM Workshop on RBAC, 1999.

[20] L. Bauer, S. Garriss, and M. K. Reiter. Detecting and resolving policy misconfigurations in
access-control systems. In ACM SACMAT, pages 185–194, 2008.

[21] Moritz Y Becker, Cédric Fournet, and Andrew D Gordon. SecPAL: Design and semantics
of a decentralized authorization language. Journal of Computer Security, 18(4):619–665,
2010.

[22] Moritz Y Becker and Sebastian Nanz. A logic for state-modifying authorization policies. In
Computer Security–ESORICS 2007, pages 203–218. Springer, 2007.

[23] M.Y. Becker. Specification and analysis of dynamic authorisation policies. In IEEE CSF,
2009.

[24] M.Y. Becker, C. Fournet, and A.D. Gordon. Design and semantics of a decentralized au-
thorization language. In Computer Security Foundations Symposium, 2007. CSF ’07. 20th
IEEE, 2007.

[25] S. Berger, R. Cáceres, and K. et al Goldman. Security for the cloud infrastructure: Trusted
virtual data center implementation. IBM J. of Res. and Dev., 2009.

[26] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: A temporal role-based access control
model. TISSEC, 2001.

[27] Elisa Bertino, Barbara Catania, Maria Luisa Damiani, and Paolo Perlasca. GEO-RBAC:
a spatially aware RBAC. In Proceedings of the tenth ACM symposium on Access control
models and technologies, pages 29–37. ACM, 2005.

[28] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework for
reasoning about access control models. ACM Trans. Inf. Syst. Secur., 2003.

[29] Elisa Bertino, Elena Ferrari, and Vijay Atluri. The specification and enforcement of autho-
rization constraints in workflow management systems. ACM TISSE, 1999.

[30] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based encryp-
tion. In IEEE SP’07, pages 321–334, 2007.

[31] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D Keromytis. The role of trust
management in distributed systems security. In Secure Internet Programming, pages 185–
210. Springer, 1999.

136

[32] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. In 1996
IEEE Symposium on Security and Privacy, pages 164–173. IEEE, 1996.

[33] Piero Bonatti, Clemente Galdi, and Davide Torres. ERBAC: Event-driven RBAC. In ACM
SACMAT, pages 125–136, 2013.

[34] Piero A. Bonatti and P. Samarati. Regulating service access and information release on the
web. In ACM CCS, 2000.

[35] Piero A. Bonatti and P. Samarati. A uniform framework for regulating service access and
information release on the web. J. Comp. Secur., 2002.

[36] T. Bylander. The computational complexity of propositional STRIPS planning. Artificial
Intelligence, pages 165–204, 1994.

[37] Jan Camenisch, Sebastian Mödersheim, Gregory Neven, Franz-Stefan Preiss, and Dieter
Sommer. Credential-based access control extensions to XACML. In W3C Workshop on
Access Control Application Scenarios, Luxembourg, volume 17, 2009.

[38] J. Cha, B.and Seo and J. Kim. Design of attribute-based access control in cloud computing
environment. In Int. Conf. on IT Conv. and Sec., pages 41–50. Springer, 2012.

[39] Eric Chabrow. Overcoming the Apprehension of Cloud Computing: Results from the 2012
Cloud Computing Survey. Technical report, SMG Information Security Media Group, 2012.

[40] D. W. Chadwick, M. Casenove, and K. Siu. My private cloud–granting federated access to
cloud resources. Journal of Cloud Computing, 2013.

[41] David W. Chadwick, Alexander Otenko, and Edward Ball. Role-based access control with
X.509 attribute certificates. IEEE Internet Computing, 2003.

[42] Jung Hwa Chae and Nematollaah Shiri. Formalization of RBAC policy with object class
hierarchy. ISPEC, 2007.

[43] Sudip Chakraborty and Indrajit Ray. TrustBAC: integrating trust relationships into the
RBAC model for access control in open systems. In SACMAT, 2006.

[44] Suroop Mohan Chandran and James B. D. Joshi. LoT-RBAC: A Location and time-based
RBAC model. In WISE, 2005.

[45] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptography,
pages 515–534. Springer, 2007.

[46] David JB Cheperdak. Attribute-Based Access Control for Distributed Systems. PhD thesis,
University of Victoria, 2012.

[47] Dwaine Clarke, Jean-Emile Elien, Carl Ellison, Matt Fredette, Alexander Morcos, and
Ronald L Rivest. Certificate chain discovery in SPKI/SDSI. Journal of Computer Secu-
rity, 9(4):285–322, 2001.

137

[48] Michael J. Covington, Wende Long, Srividhya Srinivasan, Anind K. Dey, Mustaque
Ahamad, and Gregory D. Abowd. Securing context-aware applications using environment
roles. In SACMAT, 2001.

[49] S. Crago, K. Dunn, and P. et al Eads. Heterogeneous cloud computing. In 2011 IEEE
CLUSTER, pages 378–385.

[50] Frédéric Cuppens and Nora Cuppens-Boulahia. Modeling contextual security policies. Int.
J. Inf. Sec., 2008.

[51] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponder policy specification language.
In POLICY, 2001.

[52] Chen Danwei, Huang Xiuli, and Ren Xunyi. Access control of cloud service based on
UCON. In Cloud Computing, pages 559–564. Springer, 2009.

[53] Y. Deng, J. Wang, J. JP Tsai, and K. Beznosov. An approach for modeling and analysis of
security system architectures. IEEE TKDE, 15(5):1099–1119, 2003.

[54] J. DeTreville. Binder, a logic-based security language. In Security and Privacy, 2002.
Proceedings. 2002 IEEE Symposium on, pages 105–113, 2002.

[55] Carl Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian Thomas, and Tatu Ylonen.
SPKI certificate theory. Technical report, IETF RFC 2693, September, 1999.

[56] Mark Evered. Supporting parameterized roles with object-based access control. In HICSS,
2003.

[57] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chan-
dramouli. Proposed NIST standard for role-based access control. ACM Trans. Inf. Syst.
Secur., 2001.

[58] Philip W. L. Fong. Relationship-based access control: protection model and policy lan-
guage. In CODASPY, 2011.

[59] Eric Freudenthal, Tracy Pesin, Lawrence Port, Edward Keenan, and Vijay Karamcheti. dR-
BAC: Distributed role-based access control for dynamic coalition environments. In ICDCS,
2002.

[60] Keith Frikken, Mikhail Atallah, and Jiangtao Li. Attribute-based access control with hidden
policies and hidden credentials. IEEE Transactions on Computers, pages 1259–1270, 2006.

[61] L. Fuchs, G. Pernul, and R. Sandhu. Roles in information security: A survey and classifica-
tion of the research area. Comp. and Secur., 2011.

[62] Mei Ge and Sylvia L. Osborn. A design for parameterized roles. In DBSec, 2004.

[63] Christos K Georgiadis, Ioannis Mavridis, George Pangalos, and Roshan K Thomas. Flexible
team-based access control using contexts. In ACM SACMAT, pages 21–27, 2001.

138

[64] Luigi Giuri and Pietro Iglio. Role templates for content-based access control. In ACM
Workshop on RBAC, 1997.

[65] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption
for fine-grained access control of encrypted data. In ACM CCS, pages 89–98, 2006.

[66] P. Gupta, S. D. Stoller, and Z. Xu. Abductive analysis of administrative policies in rule-
based access control. In ICISS, volume 7093, pages 116–130. Springer-Verlag, 2011.

[67] Frode Hansen and Vladimir Oleshchuk. Srbac: A spatial role-based access control model
for mobile systems. In Proceedings of the 7th Nordic Workshop on Secure IT Systems
(NORDSEC), pages 129–141. Citeseer, 2003.

[68] M. A. Harrison, W.L. Ruzzo, and J.D. Ullman. Protection in operating systems. Comm. of
the ACM, pages 461–471, 1976.

[69] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M
Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, and Karen Scarfone. Guide to
attribute based access control (ABAC) definition and considerations (draft). NIST Special
Publication, 800:162, 2013.

[70] Vincent C Hu, Deborah A Frincke, and David F Ferraiolo. The policy machine for security
policy management. In Computational Science-ICCS 2001, pages 494–503. Springer, 2001.

[71] Vincent C Hu, Evan Martin, JeeHyun Hwang, and Tao Xie. Conformance checking of access
control policies specified in XACML. In IEEE COMPSAC, volume 2, pages 275–280, 2007.

[72] J. Huang, D. Nicol, R. Bobba, and J. H. Huh. A framework integrating attribute-based
policies into RBAC. In ACM SACMAT, 2012.

[73] Z. Iqbal and J. Noll. Towards semantic-enhanced attribute-based access control for cloud
services. In IEEE TrustCom, 2012.

[74] T. Jaeger and Jonathon E. Tidswell. Practical safety in flexible access control models. ACM
Trans. Inf. Syst. Secur., pages 158–190, 2001.

[75] S. Jajodia, P. Samarati, and VS Subrahmanian. A logical language for expressing authoriza-
tions. In IEEE Symposium on S&P, pages 31–42, 1997.

[76] S. Jha, N. Li, M. Tripunitara, Q. Wang, and W. Winsborough. Towards formal verifica-
tion of role-based access control policies. IEEE Transactions on Dependable and Secure
Computing, 5(4):242–255, 2008.

[77] X. Jin, R. Krishnan, and R. Sandhu. Reachability analysis for role-based administration of
attributes. In ACM DIM 2013.

[78] X. Jin, R. Krishnan, and R. Sandhu. A role-based administration model for attributes. In
First International Workshop on SRAS. ACM, 2012.

139

[79] X. Jin, R. Sandhu, and R. Krishnan. RABAC: Role-centric attribute-based access control.
In MMM-ACNS, 2012.

[80] Xin Jin, Ram Krishnan, and Ravi Sandhu. A unified attribute-based access control model
covering DAC, MAC and RBAC. In Data and Applications Security and Privacy XXVI,
pages 41–55. Springer, 2012.

[81] J. Joshi, E. Bertino, U. Latif, and A. Ghafoor. A generalized temporal role-based access
control model. IEEE Trans. Knowl. Data Eng., 2005.

[82] Md Enamul Kabir, Hua Wang, and Elisa Bertino. A role-involved purpose-based access
control model. Information Systems Frontiers, 14(3):809–822, 2012.

[83] Anas Abou El Kalam, Salem Benferhat, Alexandre Miège, Rania El Baida, Frédéric Cup-
pens, Claire Saurel, Philippe Balbiani, Yves Deswarte, and Gilles Trouessin. Organization
based access control. In POLICY, 2003.

[84] S. Kandala and R. Sandhu. Secure role-based workflow models. In Proceedings of the
fifteenth annual working conference on Database and application security, DAS, 2002.

[85] Paul Ashley Satoshi Hada Günter Karjoth and Calvin Powers Matthias Schunter Enterprise
Privacy. Authorization language (EPAL 1.1) Oct. 1, 2003 IBM research mts at zurich. ibm.
com. Source: http://www. zurich. ibm. com/security/enterprise-privacy/epal/Specification.

[86] Alan H Karp, Harry Haury, and Michael H Davis. From ABAC to ZBAC: the evolution of
access control models. Hewlett-Packard Development Company, LP, 21, 2009.

[87] A. Kern. Advanced features for enterprise-wide role-based access control. In ACSAC, 2002.

[88] Axel Kern and Claudia Walhorn. Rule support for role-based access control. SACMAT,
2005.

[89] Devdatta Kulkarni and Anand Tripathi. Context-aware role-based access control in perva-
sive computing systems. In ACM SACMAT, pages 113–122, 2008.

[90] Arun Kumar, Neeran Karnik, and Girish Chafle. Context sensitivity in role-based access
control. ACM SIGOPS Operating Systems Review, 36(3):53–66, 2002.

[91] Adam J Lee. Credential-based access control. In Encyclopedia of Cryptography and Secu-
rity, pages 271–272. Springer, 2011.

[92] Michael LeMay, Omid Fatemieh, and Carl A Gunter. Policymorph: interactive policy trans-
formations for a logical attribute-based access control framework. In ACM SACMAT, pages
205–214, 2007.

[93] N. Li, J. C. Mitchell, and W. H. Winsborough. Beyond proof-of-compliance: security anal-
ysis in trust management. Journal of the ACM (JACM), 52(3), 2005.

[94] N. Li and M.V. Tripunitara. Security analysis in role-based access control. In ACM SAC-
MAT, pages 126–135, 2004.

140

[95] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust
management framework. In 2002 IEEE S&P.

[96] Qi Li, Xinwen Zhang, Mingwei Xu, and Jianping Wu. Towards secure dynamic collabora-
tions with group-based RBAC model. Computers & Security, 28(5), 2009.

[97] Alex X Liu, Fei Chen, JeeHyun Hwang, and Tao Xie. Xengine: a fast and scalable XACML
policy evaluation engine. In ACM SIGMETRICS Performance Evaluation Review, pages
265–276, 2008.

[98] Amirreza Masoumzadeh and James BD Joshi. PuRBAC: Purpose-aware role-based access
control. In On the Move to Meaningful Internet Systems: OTM 2008, pages 1104–1121.
2008.

[99] Pietro Mazzoleni, Bruno Crispo, Swaminathan Sivasubramanian, and Elisa Bertino.
XACML policy integration algorithms. ACM TISSEC, page 4, 2008.

[100] C. Moon, D. Park, S. Park, and D. Baik. Symmetric RBAC model that takes the separation
of duty and role hierarchies into consideration. Computers and Security, pages 126–136,
2004.

[101] G. H M B Motta and S.S. Furuie. A contextual role-based access control authorization model
for electronic patient record. IEEE Transactions on Information Technology in Biomedicine,,
7(3):202–207, 2003.

[102] M.J. Moyer and M. Abamad. Generalized role-based access control. In International Con-
ference on Distributed Computing Systems, 2001.

[103] Qun Ni, Elisa Bertino, Jorge Lobo, Carolyn Brodie, Clare-Marie Karat, John Karat, and
Alberto Trombeta. Privacy-aware role-based access control. ACM TISSEC, 13(3):24, 2010.

[104] Daniel Nurmi and Richard et al Wolski. The eucalyptus open-source cloud-computing sys-
tem. In CCGRID, pages 124–131. IEEE, 2009.

[105] Sejong Oh. New role-based access control in ubiquitous e-business environment. Journal
of Intelligent Manufacturing, 21(5):607–612, 2010.

[106] Sejong Oh and Seog Park. Task-role based access control (T-RBAC): An improved access
control model for enterprise environment. In Proceedings of the 11th International Confer-
ence on Database and Expert Systems Applications, 2000.

[107] Sejong Oh and Seog Park. Task–role-based access control model. Information Systems,
28(6):533–562, 2003.

[108] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access control to enforce
mandatory and discretionary access control policies. ACM TISSEC, 2000.

[109] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-
monotonic access structures. In ACM CCS, pages 195–203, 2007.

141

[110] F. Paci, R. Ferrini, and E. Bertino. Identity attribute-based role provisioning for human WS-
BPEL processes. In Web Services, 2009. ICWS 2009. IEEE International Conference on,
pages 535–542, 2009.

[111] Jaehong Park and Ravi Sandhu. The UCONABC usage control model. ACM TISSEC, 2004.

[112] Andrew Pimlott and Oleg Kiselyov. Soutei, a logic-based trust-management system. In
Functional and Logic Programming, pages 130–145. Springer, 2006.

[113] David Power, Mark Slaymaker, and Andrew Simpson. On the modeling and analysis of
Amazon Web Services access policies. Technical Report RR-09-15, Oxford University
Computing Laboratory, November 2009.

[114] T. Priebe, W. Dobmeier, and N. Kamprath. Supporting attribute-based access control with
ontologies. In ARES, pages 8 pp.–, 2006.

[115] Prathima Rao, Dan Lin, Elisa Bertino, Ninghui Li, and Jorge Lobo. An algebra for fine-
grained integration of XACML policies. In ACM SACMAT, pages 63–72, 2009.

[116] Indrakshi Ray and Manachai Toahchoodee. A spatio-temporal role-based access control
model. In Data and Applications Security XXI, pages 211–226. Springer, 2007.

[117] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Advances in Cryptology–
EUROCRYPT 2005, pages 457–473. Springer, 2005.

[118] R. Sandhu, V. Bhamidipati, and Q. Munawer. The ARBAC97 model for role-based admin-
istration of roles. ACM TISSEC, 2(1):105–135, 1999.

[119] R. S. Sandhu, E.J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access control
models. IEEE Computer, 29(2):38–47, 1996.

[120] Ravi S. Sandhu. The authorization leap from rights to attributes: Maturation or chaos?
http://profsandhu.com/miscppt/pst_120716.pptx.

[121] Ravi S. Sandhu. Lattice-based access control models. IEEE Computer, 1993.

[122] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based
access control models. IEEE Computer, 1996.

[123] Ravi S. Sandhu and P. Samarati. Access control: Principles and practice. IEEE Com. Mag.,
1994.

[124] A. Sasturkar, P. Yang, S.D. Stoller, and CR Ramakrishnan. Policy analysis for administrative
role based access control. In IEEE CSFW, 2006.

[125] W. J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of computer and system sciences, 4(2):177–192, 1970.

[126] D. Shin, H. Akkan, W. Claycomb, and K. Kim. Toward role-based provisioning and access
control for infrastructure as a service (IaaS). J. Internet Services and App, 2011.

142

[127] Dongwan Shin and Hakan Akkan. Domain-based virtualized resource management in cloud
computing. In IEEE CollaborateCom, 2010.

[128] Anna Squicciarini, Alberto Trombetta, Abilasha Bhargav-Spantzel, and Elisa Bertino. K-
anonymous attribute-based access control.

[129] S. D. Stoller, Ping Yang, C R. Ramakrishnan, and Mikhail I. Gofman. Efficient policy
analysis for administrative role based access control. In ACM CCS, pages 445–455, 2007.

[130] S.D. Stoller, P. Yang, M.I. Gofman, and CR Ramakrishnan. Symbolic reachability anal-
ysis for parameterized administrative role-based access control. Computers & Security,
30(2):148–164, 2011.

[131] S.D. Stoller, Ping Yang, Mikhail Gofman, and C. R. Ramakrishnan. Symbolic reachability
analysis for parameterized administrative role based access control. In ACM SACMAT,
pages 165–174, 2009.

[132] S Subashini and V Kavitha. A survey on security issues in service delivery models of cloud
computing. Journal of Network and Computer Applications, 2011.

[133] Hassan T., James BD J., and Gail-Joon A. Security and privacy challenges in cloud com-
puting environments. IEEE Security & Privacy, 2010.

[134] H. Takabi, M. Amini, and R. Jalili. Trust-based user-role assignment in role-based access
control. In IEEE/ACS AICCSA, pages 807–814, 2007.

[135] H. Takabi, J. BD Joshi, and G. J. Ahn. Securecloud: Towards a comprehensive security
framework for cloud computing environments. In IEEE COMPSACW, 2010.

[136] R. K. Thomas and R. S. Sandhu. Task-based authorization controls (TBAC): A family of
models for active and enterprise-oriented authorization management. In DBSec, 1997.

[137] Roshan K. Thomas. Team-based access control (TMAC): a primitive for applying role-based
access controls in collaborative environments. In ACM workshop on RBAC, 1997.

[138] Mary R. Thompson, Abdelilah Essiari, and Srilekha Mudumbai. Certificate-based autho-
rization policy in a PKI environment. ACM Trans. Inf. Syst. Secur., pages 566–588, 2003.

[139] Mahesh V Tripunitara and Ninghui Li. A theory for comparing the expressive power of
access control models. Journal of Computer Security, 15(2):231–272, 2007.

[140] Jacques Wainer and Paulo Barthelmess. W-RBAC - a workflow security model incorporat-
ing controlled overriding of constraints. International Journal of Cooperative Information
Systems, 2003.

[141] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia. A logic-based framework for at-
tribute based access control. In Proceedings of the 2004 ACM workshop on Formal methods
in security engineering, pages 45–55. ACM, 2004.

143

[142] W.H. Winsborough, K.E. Seamons, and V.E. Jones. Automated trust negotiation. In Pro-
ceedings DARPA Information Survivability Conference and Exposition, volume 1, pages 88
–102 vol.1, 2000.

[143] Christian Wolter, Andreas Schaad, and Christoph Meinel. Deriving XACML policies from
business process models. In Web Information Systems Engineering–WISE 2007 Workshops,
pages 142–153. Springer, 2007.

[144] R. Wu, X. Zhang, G. Ahn, H. Sharifi, and H. Xie. Design and implementation of access
control as a service for IaaS cloud. SCIENCE, 1(3), 2013.

[145] Z. Xu, D. Feng, L. Li, and H. Chen. UC-RBAC: A usage constrained role-based access
control model. In ICICS, 2003.

[146] Zhongyuan Xu and Scott D Stoller. Mining attribute-based access control policies from rbac
policies. pages 1–6, 2013.

[147] Zan Yang, Jian-xin Wang, Lin Yang, Rui-guang Yang, Bao-sheng Kou, Jie-kun Chen, and
Shu-mei Yang. The RBAC model and implementation architecture in multi-domain envi-
ronment. Electronic Commerce Research, pages 1–17, 2013.

[148] Jianming Yong, Elisa Bertino, Mark Toleman, and Dave Roberts. Extended RBAC with role
attributes. In PACIS, page 8, 2006.

[149] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for web services. In Intl.
ICWS, 2005.

[150] X. Zhang, S. Oh, and R. Sandhu. PBDM: a flexible delegation model in RBAC. SACMAT,
2003.

[151] Z. Zhang, X. Zhang, and R. Sandhu. ROBAC: Scalable role and organization based access
control models. In IEEE TrustCol, 2006.

144

VITA

Xin Jin was born in Anhui China. He received B.S. in Computer Science at Central South

University in Changsha, China in 2009. He got his interim M.Sc degree with a focus on cyber

security in University of Texas at San Antonio in 2013. This is his fourth year as a Ph.D student

working under the supervision of Dr. Ravi Sandhu and Dr. Ram Krishnan at the University of

Texas at San Antonio, and he is currently working in attribute based access control models and

implementations in infrastructure as a service cloud.

	Blank Page

