
A STATISTICAL FRAMEWORK FOR ANALYZING CYBER ATTACKS

APPROVED BY SUPERVISING COMMITTEE:

Shouhuai Xu, Ph.D.

Hugh Maynard, Ph.D.

Kay A. Robbins, Ph.D.

Ravi Sandhu, Ph.D.

Maochao Xu, Ph.D.

Accepted:
Dean, Graduate School



Copyright 2014 Zhenxin Zhan
All rights reserved.



DEDICATION

I lovingly dedicate this dissertation to my family...

in memoriam of my father, who will always be with me.

to my mother, for your selfless support and incitement.

to my two sisters, my best friends.





A STATISTICAL FRAMEWORK FOR ANALYZING CYBER ATTACKS

by

ZHENXIN ZHAN, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPH YIN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
May 2014



All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted.  Also,  if material had to be removed, 

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor,  MI 48106 - 1346

UMI  3621180
Published by ProQuest LLC (2014).  Copyright in the Dissertation held by the Author.

UMI Number:  3621180



ACKNOWLEDGEMENTS

First, I would like to take the opportunity to acknowledge and extend my deepest gratitude to

my advisor, Dr. Shouhuai Xu. Without his guidance, this research could not be accomplished. He

has guided me and also challenged me during this journey. His enthusiasm, insights and patience

has helped me learn not only how to approach a research problem but also taught me how to be a

better person in life.

Second, I would like to thank my co-advisor Dr. Maochao Xu. His expertise and insights have

helped me work out statistical details of this dissertation.

Third, I would like to thank my dissertation committee members Dr. Hugh Maynard, Dr. Kay

A. Robbins and Dr. Ravi Sandhu for their comments.

The research described in the dissertation was partly supported by Dr. Shouhuai Xu’s ARO

Grant # W911NF-13-1-0141. The studies were approved by IRB. We also thank CAIDA for pro-

viding us a blackhole-collected dataset that is analyzed in the disseration.

May 2014

iv



A STATISTICAL FRAMEWORK FOR ANALYZING CYBER ATTACKS

Zhenxin Zhan, Ph.D.
The University of Texas at San Antonio, 2014

Supervising Professor: Shouhuai Xu, Ph.D.

Data-driven cyber security analytics is one important approach to understanding cyber at-

tacks. Despite its importance, there are essentially no systematic studies on characterizing the

statistical properties of cyber attacks. The present dissertation introduces a systematic statistical

framework for analyzing cyber attack data. It also presents three specific results that are obtained

by applying the framework to analyze some honeypot- and blackhole-captured cyber attack data,

while noting that the framework is equally applicable to other data that may contain richer attack

information. The first result is that honeypot-captured cyber attacks often exhibit Long-Range De-

pendence (LRD). The second result is that honeypot-captured cyber attacks can exhibit Extreme

Values (EV). The third result describes spatial and temporal characterizations that are exhibited by

blackhole-captured cyber attacks. The dissertation shows that by exploiting the statistical proper-

ties exhibited by cyber attack data, it is possible to achieve certain "gray-box" predictions with high

accuracy. Such prediction capability can be exploited to guide the proactive allocation of resources

for effective defense.
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Chapter 1: INTRODUCTION

1.1 Research Motivation: Understanding and Characterizing Cyber Attacks

Data-driven analysis is an important approach to understanding cyber attacks. While the impor-

tance is well recognized, there are not many studies in this sub-field perhaps because it demands

both real data and advanced statistical skills. This dissertation studies cybersecurity phenomena,

which are manifested by cyber attack data that can be captured by passive network instruments

such as honeypots and blackholes. Honeypots aim to monitor attacks by emulating (to certain

degrees) vulnerable network services [55]. Blackholes (also known as network telescopes, dark-

spaces, Internet sinks) aim to monitor attacks without setting up any network services and without

interacting with the attackers. Since honeypots need to emulate network services while blackholes

do not, blackholes often have much larger IP address spaces. For example, CAIDA’s blackhole

(www.caida.org) is a /8 network, or 0.4% of the entire Internet IP v4 address space.

1.2 Framework

Figure 1.1: Overview of problem space.

Figure 1.1 hilights the problem space. There are possible 18 combinations of scenarios, and

the dissertation covers some of them. For honeypot-captured data, we aim to identify statistical

properties and exploit the properties for prediction. For blackhole data, we aim to infer the global
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cyber security posture.

Specifically, the statistical framework is characterized as follows. The framework is centered

on the concept we call Stochastic Cyber Attack Processes, a new kind of mathematical objects that

can be instantiated at multiple resolutions. This abstraction can naturally represent cyber attacks.

Empowered by this abstraction, the framework has three orthogonal perspectives:

• Identifying Statistical Properties Exhibited by Cyber Attack Data: What statistical prop-

erties do the attack processes possess? For example, honeypot-captured attack data can ex-

hibit the Long-Range Dependence (LRD) property and Extreme Value phenomenon. LRD

property is also known as long-memory and is in sharp contrast to the memoryless of Pois-

son processes. This is for the first time that LRD is found to be relevant in the cybersecurity

domain, despite that it has been known for two decades to be relevant in the benign traffic

domain (where no attacks present) [37, 38, 72].

• Explaining Cause of the Properties (if possible): Why do the attack processes have those

properties? Answering this question not only will deepen our understanding of mathematical

nature of cyber attacks, but also will lead to effective exploitations of the properties — espe-

cially for prediction. Causes of the properties can be mysterious, but are important to know.

For example, we have found evidences supporting that the cause of LRD in the cybersecurity

domain is probably different from the cause of LRD in the benign-traffic domain.

• Exploiting the Properties for Better Prediction: How can we predict attacks hours (or

even days) ahead of time? In contrast to the folklore that cyber attacks are not predictable,

our preliminary analysis already shows how we can exploit the properties of the attack pro-

cesses to predict the number of incoming attacks hours ahead of time. This would give the

defenders sufficient early-warning time for proactively allocating defense resources. The

prediction power can be attributed to the gray-box prediction methods, which explicitly ac-

commodates the relevant statistical properties. This is in sharp contrast to the practice of

black-box predictions.
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1.3 Data sources

Stochastic cyber attack processes are manifested by various kinds of data. For studying them, we

have identified the following data sources:

• Honeypot-captured cyber attack data: The data is from a honeypot infrastructure. For various

(especially, legal) reasons, the infrastructure is based on low-interaction honeypots, includ-

ing Dionaea [2], Mwcollector [3], Amun [1], and Nepenthes [11]. Basically, low-interaction

honeypots simulate services and passively wait for connections from compromised comput-

ers in the wild. The term “low-interaction" refers to that the simulated service does not cover

the entire protocol software stack, which means that the captured/collected data may not be

sufficient for precisely pinning down the specific attacks.

Each honeypot IP address was assigned to one of these programs and was completely iso-

lated from the other honeypot IP addresses. To save resources, a single honeypot computer

was assigned with multiple IP addresses and thus ran multiple honeypot software programs.

A dedicated computer was used to collect the raw network traffic as pcap files, which are

timestamped at the resolution of microsecond. The vulnerable services offered by all four

honeypot programs are SMB, NetBIOS, HTTP, MySQL and SSH, each of which is associ-

ated to a unique TCP port. This means that each IP address (i.e., honeypot software) opens

the ports corresponding to these services. We call these ports production ports, and the other

ports non-production ports (because they are associated to no services). The concrete attacks

targeting the production ports can be dependent upon the specific vulnerabilities emulated

by the honeypot programs (e.g., the Microsoft Windows Server Service Buffer Overflow

MS06040 and Workstation Service Vulnerability MS06070 for the SMB service).

• Blackhole-captured cyber attack data: This kind of data is collected at large blackholes,

which are routable IP spaces but with no services. We have got access to some data from

CAIDA. Blackhole-captured data is complementary to honeypot-captured data because on

the positive side, blackhole can be much larger (e.g., /8) than honeypot, and on the downside,

3



blackhole-captured data does not have any interaction information with the attackers.
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Chapter 2: ANALYZING LONG-RANGE DEPENDENCE EXHIBITED

BY CYBER ATTACKS

2.1 Introduction

Characterizing cyber attacks not only can deepen our understanding of cyber threats but also can

lead to important implications for effective cyber defense. Honeypot is an important tool for col-

lecting cyber attack data, which can be seen as a “birthmark" of the cyber threat landscape as

observed from a certain IP address space. Therefore, studying this kind of data allows us to extract

useful information about cyber attacks/threats. However, this perspective of cyber security has not

been understood well, perhaps because it requires both real data and fairly involved statistical tech-

niques. Motivated by the need to better understand cyber attacks, this chapter initiates the study of

rigorous statistical properties of cyber attacks as exhibited by honeypot-collected data.

2.1.1 Our Contributions

In this chapter, we aim to rigourously study the statistical properties of cyber attacks as exhibited

by honeypot-collected data. We make two contributions. First, we propose a framework for iden-

tifying, characterizing and exploring statistical properties of honeypot-captured cyber attacks. The

framework is centered on a new concept we call stochastic cyber attack processes, which are a

new kind of mathematical objects for modeling cyber attacks. The framework is geared towards

answering the following questions: (i) What statistical properties do the stochastic cyber attack

processes exhibit? (ii) What are the implications of these properties? (iii) What is the cause of

these properties?

Second, we conduct a case study by applying the framework to analyze a dataset that is col-

lected by a honeypot of 166 IP addresses for five periods of time (220 days cumulative). Findings

of the case study are: (i) Stochastic cyber attack processes are not Poisson. Instead, they might

exhibit Long-Range Dependence (LRD) — a property that is not known to be relevant in the cyber
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security domain until now. (ii) LRD can be exploited to better predict the incoming attacks. This

shows the power of “gray-box" (rather than “black-box") prediction. (iii) The cause of LRD in

cyber security domain might be fundamentally different from the case of LRD in the setting of

benign traffic.

We plan to make our statistical analysis software code publicly available so that other re-

searchers can use it to analyze their data of the same or similar kind.

2.1.2 Related Work

In the literature, honeypot-collected cyber attack data has been studied from the following per-

spectives: analyzing honeypot-observed probing activities [39], characterizing/grouping attacks

[8–10, 20, 21, 42, 53, 54, 67], and identifying methods to detect attacks such as DoS (denial-of-

service) [28], scans [34], worms [25,26], and botnets [41,63]. These perspectives are different from

ours because we study statistical properties that can be exploited to better predict cyber attacks.

On the other hand, LRD was first observed in benign traffic about two decades ago [37,38,61,72].

To our knowledge, LRD is not known to be relevant in the cyber security domain until now.

There have been studies on characterizing blackhole-collected traffic data (see, for example,

[51, 73]) or one-way traffic in live networks [31]. Our study is different from theirs because of the

following. First, honeypot-collected data includes two-way communications; whereas blackhole-

collected data mainly corresponds to one-way communications. Second, we rigorously explore

statistical properties such as LRD; whereas their studies do not pursue such characteristics. Never-

theless, we believe that our analysis framework can be adapted to analyze blackhole-collected data

as well.

The rest of the chapter is organized as follows. Section 2.2 presents the framework for ana-

lyzing honeypot-collected attack data. Section 3.2 briefly reviews some statistical preliminaries,

while some detailed statistical techniques are deferred to the Appendix. Section 2.4 describes a

case study by applying the framework to analyze a specific dataset. Section 4.6 concludes the

chapter with future research directions.
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2.2 Statistical Sub-Framework for Characterizing Honeypot-Captured Cy-

ber Attacks

The framework is centered on the new concept of stochastic cyber attack processes (or attack

processes for short).

2.2.1 The Concept of Stochastic Cyber Attack Processes

Cyber attacks can be naturally modeled as stochastic cyber attack processes, which are in principle

Point Processes [24]. Stochastic cyber attack processes can be instantiated at multiple levels (or

resolutions). Network-level attack processes model cyber attacks against a network of interest;

victim-level attack processes model cyber attacks against individual victim computers or IP ad-

dresses; port-level attack processes model cyber attacks against individual ports of a victim com-

puter; attacker-level attack processes model cyber attacks launched by distinct attackers against a

victim computer. Further, port-level attack processes can be defined with respect to the produc-

tion ports that are associated to some services, or with respect to the non-production ports that are

not associated to any services. The distinction of model resolution is important because a high-

level (i.e., low-resolution) attack process may be seen as the superposition of multiple low-level

(i.e., high-resolution) attack processes, which may help explain the cause of a particular property

exhibited by the high-level processes.

For example, Figure 2.1a illustrates the attacks against individual victim IP addresses, where

the dots on the time line formulate a victim-level attack process. Figure 2.1b further shows that a

victim is attacked by N attackers (or attacking computers) at some ports and the attacks arrive at

time t1, . . . , t9.

2.2.2 The Statistical Analysis Sub-Framework

The framework consists of 5 steps and is geared toward answering the afore-mentioned three ques-

tions.
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(a) Illustration of victim-level stochastic cyber attack processes with respect to individual victim IP ad-
dresses. For a specific victim, the dots represent the attack events against it. The attacks against victim IP
1 arrive at time t1, . . . , t9.

(b) Elaboration of a victim-level attack process where the attacks arrive at time t1, . . . , t9.

Figure 2.1: Illustration of victim-level stochastic cyber attack processes

Step 1: Data pre-processing Honeypot-collected cyber attack data is often organized according

to the honeypot IP addresses. Because the data involves two-way communications between the

honeypot and the remote attackers, we need a pre-processing procedure to take care of two issues.

First, we may need to differentiate the traffic corresponding to the production ports that are as-

sociated to some honeypot programs/services, and the traffic corresponding to the non-production

ports that are not associated to any services.

Second, we need to treat each incoming TCP flow as an attack, especially when the honeypot-

emulated vulnerable services are based on TCP. A TCP flow can be uniquely identified from

honeypot-collected raw pcap data via the attacker’s IP address, the port used by the attacker,

the victim IP address in the honeypot, and the port that is under attack. An unfinished TCP hand-

shake can also be treated as a flow (attack) because an unsuccessful handshake can be caused by

events such as: the port in question is busy (i.e., the connection is dropped). For flows that do not

end with the FIN flag (which would indicate safe termination of TCP connection) or the RST flag
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(which would indicate unnatural termination of TCP connection), we need to choose two parame-

ters in the pre-process. One parameter is the flow timeout time, meaning that a flow is considered

expired when no packet of the flow is received during a time window (e.g., 60 seconds would be

reasonable for low-interaction honeypots that provide limited interactions [7], but a longer time

may be needed for high-interaction honeypots). The other parameter is the flow lifetime, meaning

that a flow is considered expired when a flow lives longer than a pre-determined lifetime, which

can be set as 300 seconds for low-interaction honeypots [7] but a longer time may be needed for

high-interaction honeypots.

Step 2: Basic statistical analysis The basic statistics of cyber attack data can offer hints for

advanced statistical analysis. For stochastic cyber attack processes, the primary statistic is the

attack rate, which describes the number of attacks that arrive at unit time (e.g., minute or hour or

day). The secondary statistic is the attack inter-arrival time, which describes the time intervals

between two consecutive attack events. By investigating the min, mean, median, variance and

max of these statistics, we can identify outliers and obtain hints about the properties of the attack

processes. For example, if the attack events are bursty, an attack process may not be Poisson,

which can serve as a hint for further advanced statistical analysis.

Step 3: Advanced statistical analysis: Identifying statistical properties of attack processes

This step is to identify statistical properties of attack processes at resolutions of interest. A par-

ticular question that should be asked is: Are the attack processes Poisson? If not Poisson, what

properties do they exhibit? It would be ideal that the attack processes are Poisson because we

can easily characterize Poisson processes with very few parameters, and because there are many

mature methods and techniques for analyzing them. For example, we can use the property — the

superposition of Poisson processes is still a Poisson process [27] — to simplify problems when we

consider attack processes at multiple resolutions/levels. In many cases, attack processes may not

be Poisson. For characterizing such processes, we need to use advanced statistical methods, such

as Markov process, Lévy process, and time-series methods [24,52,60]. This step is crucial because
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identifying advanced statistical properties of attack processes can pave the way for answering the

next questions.

Step 4: Exploiting the statistical properties This step addresses the following question: How

can we exploit the statistical properties of stochastic cyber attack processes to do useful things?

One exploitation is to predict the incoming attacks in terms of attack rate. This is so because if the

processes exhibit a certain property (e.g., Long-Range Dependence [61, 71] or Short-Range De-

pendence [15, 52, 69]), the prediction model should accommodate the property in order to achieve

better predictions. We note that although prediction is geared toward honeypot-oriented traffic, it

can be useful for defending production networks as well. This is true because when honeypot-

captured attacks are increasing (or decreasing), the attack rate with respect to production networks

might also be increasing (or decreasing) as long as the honeypots are approximately uniformly

deployed at all IP address space. Moreover, it is possible to characterize the relations between

the attack traffic with respect to a honeypot and the attack traffic with respect to a production net-

work. Although many honeypots are currently deployed at consecutive IP addresses (including the

dataset we use for case study), it is doable in practice to blend honeypot IP addresses into pro-

duction networks. Since being able to predict incoming attacks (especially hours ahead of time) is

always appealing, this would give incentives to deploy honeypot as such, or to study the relations

between the attack traffic against honeypots and the attack traffic against production networks.

Step 5: Exploring cause of the statistical properties This step aims to address the following

question: What caused the statistical properties of stochastic cyber attack processes? This question

is interesting because it reflects a kind of “natural" phenomenon in cyberspace. In order to answer

the question, we propose to study two approaches. One approach is to study the decomposed

lower-level (i.e., higher-resolution) stochastic cyber attack processes. For example, in order to

investigate whether or not a certain property is caused by another certain property of the low-level

(i.e., high-resolution) processes, we can decompose a victim-level attack process into port-level

attack processes that correspond to the individual ports of the victim. This is illustrated in Figure
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2.2a, where the victim-level attack process is decomposed into M port-level attack processes.

(a) Decomposition of a victim-level attack process into multiple port-level attack processes, where the at-
tack process corresponding to Port 1 describes the attacks that arrive at time t2 and t5, the attack process
corresponding to Port 2 describes the attacks that arrive at time t1, t6 and t9, etc.

(b) Attacker-level attack process can be derived from victim-level attack process by ignoring the subsequent
attacks launched by the same attacker. In this example, the attacker-level attack process corresponding to
the victim describes the attacks that arrive at time t1, t2, t3, t4.

Figure 2.2: Two approaches to exploring causes of statistical properties

The other approach is to investigate whether or not a certain property is caused by the intense

(consecutive) attacks that are launched by individual attackers. For this purpose, we can consider

the attacks against each victim that are launched by distinct attackers. As illustrated in Figure 2.2b,

even though an attacker launched multiple consecutive attacks against a victim, we only need to

consider the first attack. If the attacker-level attack processes do not exhibit the property that is

exhibited by the victim-level attack processes, we can conclude that the property is caused by the

intensity of the attacks that are launched by individual attackers.
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2.3 Statistical Preliminaries

2.3.1 Long-Range Dependence (LRD)

A stationary time sequence {Xi, i ≥ 1} is said to possess LRD [61, 71] if its autocorrelation

function

ρ(h) = Cor(Xi, Xi+h) ∼ h−βL(h), h→∞, (2.1)

for 0 < β < 1, where L(·) is a slowly varying function meaning that limx→∞
L(tx)
L(x)

= 1 for all

t > 0. The degree of LRD is expressed by Hurst parameter (H), which is related to the parameter

β in Eq. (2.1) as β = 2 − 2H . This means that for LRD, we have 1/2 < H < 1 and the degree

of LRD increases as H → 1. In the Appendix, we briefly review six popular Hurst-estimation

methods that are used in this chapter.

LRD can be caused by the following: non-stationarity [45], short-range dependent time series

with change points in the mean, slowly varying trends with random noise, stationary parametric

time series with time-varying parameters [56,62]. These are called “spurious LRD" and are not the

focus of the present study. We will remove spurious LRD processes by testing the null hypothesis

that a given time series is a stationary LRD process against the alternative hypothesis that it is

affected by change points or a smoothly varying trend [56]. Specifically, one test is:

H0: Xt is stationary with LRD

vs

Ha: Xt = Zt + µt with µt = µt−1 + ψtηt

where Zt is a stationary short-memory process, ηt is a white noise process and ψt is a Bernoulli

random variable which takes value 1 with probability pn. The other alternative is:

Ha: Xt = Zt + h(t/n),
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where h(·) is a Lipschitz continuous function on [0, 1].

2.3.2 Two Statistical Models for Predicting Incoming Attacks

We call a model LRD-less if it cannot accommodate LRD and LRD-aware if it can accommodate

LRD. Let εt be independent and identical normal random variables with mean 0 and variance σ2
ε .

We consider two popular models.

• LRD-less model ARMA(p, q): This is the autoregressive moving average process of orders

p and q with

Yt =

p∑
i=1

φiYt−i + εt +

q∑
j=1

θjεt−j.

It is one of the most popular models in time series [23].

• LRD-aware model FARIMA(p, d, q): This is the well-known Fractional ARIMA model

where 0 < d < 1/2 and H = d + 1/2 [5, 15, 71]. Specifically, a stationary process Xt

is called FARIMA(p, d, q) if

φ(B)(1−B)dXt = ψ(B)εt,

for some −1/2 < d < 1/2, where

φ(x) = 1−
p∑
j=1

φjx
j and ψ(x) = 1 +

q∑
j=1

ψjx
j,

B is the back shift operator defined by BXt = Xt−1, B2Xt = Xt−2, and so on.

2.3.3 Measurement of Prediction Accuracy

Suppose Xm, Xm+1, . . . , Xz are observed data (all non-negative), and Ym, Ym+1, . . . , Yz are the

predicted data. We can define prediction error et = Xt − Yt for m ≤ t ≤ z. Recall the popular
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statistic PMAD (Percent Mean Absolute Deviation):

PMAD =

∑z
t=m |et|∑z
t=mXt

,

which can be seen as the overall prediction error. We also define a variant of it, called underesti-

mation error, which counts only the underestimations as follows:

PMAD′ =

∑z
t=m et∑z
t=mXt

for et > 0 and corresponding Xt.

This is relevant because if the defender is willing to over-provision some defense resources, the

predicted results are perhaps more useful because underestimation error corresponds to the attacks

that can be overlooked due to insufficient defense resources.

It is also convenient to use the following measurement of overall accuracy (OA for short):

OA = 1− PMAD.

Correspondingly, we can define the following measurement of underestimation accuracy (UA

for short):

UA = 1− PMAD′.

2.4 Applying the Sub-Framework to Analyze Some Real Data

In order to demonstrate the usefulness of the framework, we now conduct a case study by applying

it to analyze a specific dataset. The framework and analysis can be applied to other datasets of the

same or similar kind.
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2.4.1 Step 1: Data Pre-Processing

We use hoenypot dataset as described in section 1.3. Table 2.1 summarizes the dataset, which

corresponds to 166 victim/honeypot IP addresses for five periods of time. These periods are not

strictly consecutive because of network/system maintenance etc.

Table 2.1: Data description
Period Dates Duration (days) # victim IPs

I 11/04/2010 - 12/21/2010 47 166
II 02/09/2011 - 02/27/2011 18 166
III 03/12/2011 - 05/06/2011 54 166
IV 05/09/2011 - 05/30/2011 21 166
V 06/22/2011 - 09/12/2011 80 166

In our pre-processing, we resolve the two issues described in the pre-processing step of the

framework as follows. First, we disregard the attacks against the non-production ports because

such TCP connections are often dropped. The vulnerable services offered by all four honeypot

programs are SMB, NetBIOS, HTTP, MySQL and SSH, each of which is associated to a unique

TCP port. These are the production ports. Note that the specific attacks against the production ports

are dependent upon the vulnerabilities emulated by the honeypot programs (e.g., Microsoft Win-

dows Server Service Buffer Overflow MS06040 and Workstation Service Vulnerability MS06070

for the SMB service). Since low-interaction honeypots do not capture sufficient information for

precisely recognizing the specific attacks, we do not look into specific attack types. Second, for

flows that do not end with the FIN flag (indicating safe termination of TCP connection) or the RST

flag (indicating unnatural termination of TCP connection), we use the following two parameter

values: 60 seconds for the flow timeout time and 300 seconds for the flow lifetime.

2.4.2 Step 2: Basic Statistical Analysis

We consider the per-hour attack rate with respect to the honeypot network, with respect to each

individual victim IP address, and with respect to each production port of each individual victim.

The choice of per-hour is natural, while noting that per-day attack rate is not appropriate because

15



(a) Period I (b) Period II (c) Period III

(d) Period IV (e) Period V

Figure 2.3: Time series plots of the network-level attack processes corresponding to the five peri-
ods. The x-axis indicates the relative time with respect to the start time for each period (unit: hour).
The y-axis indicates the number of attacks (per hour) arriving at the honeypot network during a
period.
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each period is no more than 80 days. Because the numbers of victim-level and port-level attack pro-

cesses are substantially larger than the number of network-level attack processes, different methods

are used to represent their basic statistics.

Basic statistics of network-level attack processes For network-level attack processes, it is fea-

sible and appropriate to plot the time series of the attack rate (per hour), namely the total number

of attacks against the honeypot network of 166 victims.

Figure 2.3 plots the time series of attacks. We make the following observations. First, the five

periods exhibit different attack patterns. For example, Periods I, II and V are relatively stationary.

Second, there are some extremely intense attacks during some hours in Periods III and IV. The

specific hour corresponding to the extreme value in Period III is Apr 01, 2011, 12 Noon (US

Eastern Time); the attacks are against the SSH services. It is evident that the attacks are brute-

forcing password. The peak of attacks during Period IV occurs at May 16, 2011, 3 AM (US

Eastern Time). The intense attacks are against the HTTP service. We find no information from the

Internet whether or not the peaks correspond to (for example) outbreaks of some worm or botnet.

Third, although the five plots exhibit some change-points, a formal statistical analysis (using the

method for removing spurious LRD, which is reviewed in Section 3.2) shows that there are some

change-points only in Period III, which correspond to the largest attack rate. This means that visual

observations can be misleading.

Table 2.2 describes the basic statistics of the attack rate as exhibited by the network-level attack

processes. We observe that on average, the victim network is least intensively attacked during

Period IV because the average per-hour attack rate is about 9861, which is substantially smaller

than the average attack rate during the other periods. We observe that the variances of attack rates

are much larger than the corresponding mean attack rates of the network-level attack processes.

This hints that these processes are not Poisson. As we will see in Section 2.4.3, these processes

actually exhibit LRD instead.
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Table 2.2: Basic statistics of network-level attack processes corresponding to the five periods of
time.

Period MIN Mean Median Variance Max
I 2572 30963.2 28263 401243263.2 151189

II 5155 31576.8 29594 167872819.0 98527
III 6732 20382.3 19579 72436071.5 196210
IV 637 9861.1 6528 93209085.3 89718
V 1417 18960.2 15248.5 205276388.4 120221

Basic statistics of victim-level attack processes For victim-level attack processes, we consider

the attack rate or the number of attacks (per hour) arriving at a victim. Since there are 166 victims

in each period, we cannot afford to plot time series of victim-level attack processes.

Table 2.3: Basic statistics of victim-level attack processes: attack rate (per hour). For a specific
period and a specific statisticX ∈ {Mean,Median,Variance,MAX}, LB (UB) stands for the lower-
bound or minimum (upper-bound or maximum) of statistic X among all the victims and all the
hours. In other words, the LB and UB values represent the minimum and maximum per-hour
attack rate observed during an entire period and among all the victims.

Period Mean(·) Median(·) Variance(·) MAX(·)
LB UB LB UB LB UB LB UB

I 32.1 1810.4 8 1327 1589.9 3219758.8 247 14403
II 49.8 1412.0 43 1112 1466.5 1553585.6 335 10995

III 11.5 1513.5 3 1490 254.0 676860.7 125 5287
IV 3.5 1663.4 1 1184 29.7 2808045.2 41 7793
V 34.0 2228.8 8.5 1526.5 1225.6 4639659.1 274 12267

Table 2.3 summaries the observed lower-bound (minimum) and upper-bound (maximum) val-

ues of per-hour attack rate for each statistic among the 166 victims. By taking Period I as an

example, we observe the following. The average per-hour attack rate (among all the victims and

among all the hours) is some number between 32 and 1810 attacks per hour; the median per-hour

attack rate is some number between 8 and 1327 attacks per hour; the maximum number of attacks

against a single victim can be up to 14403. Boxplots of the four statistics, which are not included

for the sake of saving space, show that the five periods exhibit somewhat similar (homogeneous)

statistical properties. For example, each statistic has many outliers in each period. By looking

into all individual victim-level attack processes, we find that among all the 830 victim-level attack
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processes (166 victims/period × 5 periods = 830 victims), the variance of attack rate is at least 3.5

times greater than the mean attack rate corresponding to the same victim. This fact — the variance

is much larger than the mean attack rate — hints that Poisson models may not be appropriate for

describing victim-level attack processes. This suggests us to conduct formal statistical tests, which

will be presented in Section 2.4.3.

Basic statistics of port-level attack processes For port-level attack processes, Table 2.4 sum-

marizes the lower-bound (minimum value) and upper-bound (maximum value) for each statistic.

By taking Period I as an example, we observe the following. There can be no attacks against some

production ports during some hours, which explains why the Mean per-hour attack rate can be

0. On the other hand, a port (specifically, port 445 at Nov 6, 2010, 9 AM US Eastern time) can

be attacked by 14363 attacks within one hour. Like what is observed from the victim-level attack

processes, we observe that the variance of attack rate is much larger than the mean attack rate. This

means that the port-level attack processes are not Poisson. Indeed, as we will see in Section 2.4.5,

many port-level attack processes are actually heavy-tailed.

Table 2.4: Basic statistics of port-level attack processes: attack-rate (per hour). As in Table 2.3,
LB and UB values represent the minimum and maximum per-hour attack rate observed during an
entire period and among all production ports of the victims.

Period Mean(·) Median(·) Variance(·) MAX(·)
LB UB LB UB LB UB LB UB

I 0 1740.7 0 1196 0 3249318.9 1 14363
II 0 1251.5 0 948 0 1545078.5 1 10992

III 0 1482.1 0 1458 0 661847.3 1 5275
IV 0 1613.4 0 1142 0 2588396.6 1 6961
V 0 2169.8 0 1448.5 0 4629744.3 1 12267

2.4.3 Step 3: Identifying Statistical Properties of Attack Processes

We now characterize the statistical properties exhibited by network-level and victim-level attack

processes. In particular, we want to know they exhibit similar (if not exactly the same) or different

properties. In the above, we are already hinted that the attack processes are not Poisson. In what
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follows we aim to pin down their properties.

Network-level attack processes exhibit LRD The hint that network-level attack processes are

not Poisson suggests us to identify their properties. It turns out that the network-level attack pro-

cesses exhibit LRD as demonstrated by their Hurst parameters. Table 2.5 describes the six kinds

of Hurst parameters corresponding to the network-level attack processes. Although the Hurst pa-

rameters suggest that they all exhibit LRD, a further analysis shows the LRD exhibited in Period

III is spurious because it was caused by the non-stationarity of the process. Therefore, 4 out of the

5 network-level attack processes exhibit (legitimate) LRD.

Table 2.5: The estimated Hurst parameters for network-level attack processes. The six estimation
methods are reviewed in Appendix 6.1.1. Note that a Hurst parameter value being negative or
being greater than 1 means that either the estimation method is not suitable or the attack process is
non-stationary.

Period RS AGV Peng Per Box Wave LRD?
I 0.80 0.95 0.88 1.03 1.00 0.75 Yes
II 0.74 0.59 0.86 0.75 0.97 0.84 Yes
III 0.74 0.52 0.65 0.63 0.63 0.65 No
IV 1.05 0.97 0.95 1.07 0.97 1.22 Yes
V 0.74 0.78 0.74 1.03 0.80 0.80 Yes

Victim-level attack processes exhibit LRD For the 830 (166 victims/period ×5 periods =830)

victim-level attack processes, we first rigorously show that they are not Poisson. Assume that the

attack inter-arrival times are independent and identically distributed exponential random variables

with distribution

F (x) = 1− e−λx, λ > 0, x ≥ 0.

To test the exponential distribution, we first estimate the unknown parameter λ by the maximum

likelihood method. Then, we compute the Kolmogorov-Smirnov (KS), Cramér-von Mises (CM),

and Anderson-Darling (AD) test statistics [32, 57] (cf. Appendix 6.1.3 for a review) and compare

them against the respective critical values.
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Table 2.6: Minimum values of the three test statistics for attack inter-arrival time (unit: second)
corresponding to the victim-level attack processes, where min and max represent the minimal and
maximal minimum values among all victim-level attack processes in a period, and Inf means the
value is extremely large.

Period KS CM AD
(days) min max min max min max

I 0.13 0.54 482.30 59543.87 inf inf
II 0.06 0.50 47.08 20437.82 298.73 inf
III 0.06 0.65 163.71 51434.32 1103.70 inf
IV 0.04 0.81 3.44 31376.27 22.83 inf
V 0.08 0.65 323.39 214543.54 inf inf

CV 0.01 0.22 1.13

Table 2.6 reports the minimum test statistics, where the critical values for the test statistics

are based on significance level .05 and obtained from [18, 19]. Since the values are far from the

critical values, there is no evidence to support the exponential distribution hypothesis. Because

the minimum test statistics violate the exponential distribution assumption already, greater test

statistics must violate the exponential distribution assumption as well.

We also use QQ-plot to evaluate the goodness-of-fit of exponential distributions for the attack

inter-arrival time of victim-level attack processes that simultaneously exhibit the minimum test

statistics in Table 2.6. This is the victim from Period IV with HKS = 0.04, HCM = 3.44 and

HAD = 22.83. If the attack inter-arrival time corresponding to this particular victim does not

exhibit the exponential distribution, we conclude that no attack inter-arrival time in this dataset

exhibits the exponential distribution. The QQ plot is displayed in Figure 2.4a. We observe a large

deviation in the tails. Hence, exponential distribution cannot be used as the distribution of attack

inter-arrival times, meaning that all the victim-level attack processes are not Poisson.

Given that the victim-level attack processes are not Poisson, we suspect they might exhibit LRD

as well. Figure 2.4b shows the boxplots of Hurst parameters of attack rate. We observe that Periods

I and II have relatively large Hurst parameters, suggesting stronger LRD. Table 2.7 summarizes

the minimums and maximums of the estimated Hurst parameters of attack rates. Consider Period I

as an example, we observe that the attack processes corresponding to 163 (out of the 166) victims
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(a) QQ-plot of inter-arrival time of victim-level attack
process that exhibits the minimum KS, CM and AD
value simultaneously

(b) Boxplot of Hurst parameters of attack rate of the
victim-level attack processes corresponding to the 5
periods

Figure 2.4: Victim-level attack processes are not Poisson but exhibit LRD

Table 2.7: The estimated Hurst parameters for attack rate (per hour) of the victim-level attack
processes. The six estimation methods are reviewed in Appendix 6.1.1. Note that a Hurst value
being negative or being greater than 1 means that either the estimation method is not suitable or the
process is non-stationary. The column “# of victims w/ H̄ ∈ [.6, 1]" represents the total number of
victim-level attack processes whose average Hurst parameters ∈ [.6, 1] (where average is among
the six kinds of Hurst parameters), which suggests the presence of LRD. The column “# of victims
w/ LRD" indicates the total number of victim-level attack processes that exhibit LRD rather than
spurious LRD. (The same notations will be used in the description of Tables 2.8 and 2.13.)

Period RS AGV Peng Per Box Wave # victims w/ # victims w/
min max min max min max min max min max min max H̄ ∈ [.6, 1] LRD

I 0.53 1.01 0.46 0.98 0.66 1.14 0.73 1.39 0.55 1.15 0.40 0.96 163 159
II 0.49 0.94 0.40 0.98 0.56 1.37 0.53 1.69 0.33 1.32 -0.55 1.33 130 116

III 0.65 0.95 0.30 0.96 0.53 1.06 0.44 1.22 0.43 0.98 0.33 1.02 93 87
IV 0.40 1.13 0.12 1.00 0.49 1.45 0.33 1.74 0.42 1.32 -0.34 1.47 126 125
V 0.52 1.01 0.14 0.99 0.45 1.22 0.47 1.43 0.57 1.30 -0.16 1.18 158 89

have average Hurst parameters falling into [.6, 1] and thus suggest LRD, where the average is taken

over the six kinds of Hurst parameters. However, only 159 (out of the 163) victim-level attack

processes exhibit legitimate LRD because the other 4 (out of the 163) victim-level attack processes

are actually spurious LRD (i.e., caused by the non-stationarity of the processes). We also observe

that in Period III, there are only 87 victim-level attack processes that exhibit LRD. Overall, 70%
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victim-level attack processes, or 159 + 116 + 87 + 125 + 89 = 576 out of 166 × 5 = 830 attack

processes, exhibit LRD.

Port-level attack processes exhibit LRD Table 2.8 summarizes the Hurst parameters of port-

level attack processes. We observe that there are respectively 316, 397, 399, 328, 406 port-level

attack processes that exhibit LRD. Since there are 5 production ports per victim and 166 victims,

there are 830 port-level attack processes per period. Since there are 5 periods of time, there are

4150 port-level attack processes in total (830 ports/period × 5 periods=4150 ports). This means

that (316 + 397 + 399 + 328406)/4150 = 44.5% port-level attack processes exhibit LRD.

Table 2.8: The estimated Hurst parameters for port-level attack rate (per hour) of the port-level
attack processes.

Period RS AGV Peng Per Box Wave total # of # ports w/ # ports w/
min max min max min max min max min max min max ports H̄ ∈ [.6, 1] LRD

I 0.41 1.01 -0.18 0.98 -0.15 1.23 0.38 1.55 0.39 1.48 -0.18 1.00 830 + 0 349 316
II 0.23 1.50 0.04 0.97 0.18 1.51 0.32 1.68 0.26 1.45 -0.60 1.38 829 + 1 419 397

III 0.14 1.01 -0.02 0.96 0.27 1.08 0.38 1.28 0.34 1.07 0.08 1.00 830 + 0 422 399
IV 0.25 1.17 0.05 1.00 0.24 1.57 0.18 1.70 0.29 1.50 -1.10 1.72 828 + 2 339 328
V 0.43 1.14 0.12 0.99 0.42 1.40 0.45 1.52 0.40 1.41 -1.07 1.43 830 + 0 528 406

Summary In summary, we observe that 80% (4 out of 5) network-level attack processes exhibit

LRD, 70% victim-level attack processes exhibit LRD, and 44.5% port-level attack processes ex-

hibit LRD. This means that defenders should expect that the burst of attacks will sustain, and that

cyber attack processes should be modeled using LRD-aware stochastic processes.

2.4.4 Step 4: Exploiting LRD to Predict Attack Rates

Assuming that the attacks arriving at honeypots are representative of, or related to, the attacks

arriving at production networks (perhaps in some non-trivial fashion that can be identified given

sufficient data), being able to predict the number of incoming attacks hours ahead of time can give

the defenders sufficient early-warning time to prepare for the arrival of attacks. Intuitively, the

model that is good at prediction in this context should accommodate the LRD property. This is

confirmed by our study described below.
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Prediction algorithm Let {X1, . . . , Xn} be the time series of observed attack rates. The basic

idea of prediction is to use some portion of the observed data to build a model (training or model

fitting), which is then used to predict the attack rates corresponding to the rest/future portion of

the observed data. In order to build a reliable model, 50% of the observed data is used as the

training data for building models. Let h be an input parameter indicating the number of steps (i.e.,

hours) we will predict ahead of time, and p be another input parameter indicating location of the

prediction starting point. The algorithm operates as follows:

1. Divide {X1, . . . , Xn} into two parts, {X1, . . . , Xm} and {Xm+1, . . . , Xn}, wherem = bpnc.

2. Repeat the following steps until m > n− h.

(a) Fit {X1, . . . , Xm} to obtain a model denoted by Mm.

(b) Use Mm to predict the number of attacks, denoted by Ym+l, that will arrive during the

(m+ l)th step, where l = 1, . . . , h.

(c) Compute prediction error em+l = Xm+l − Ym+l for l = 1, . . . , h.

(d) Set m = m+ h.

Prediction results for network-level attack processes Now we report the prediction results,

while comparing the LRD-aware FARIMA model and the LRD-less ARMA model. Table 2.9

describes the prediction error of the network-level attack processes. We observe the following.

First, for Periods I and II, both 1-hour ahead and 5-hour ahead FARIMA prediction errors are no

greater than 22%. However, the 10-hour ahead FARIMA prediction is pretty bad. This means that

LRD-aware FARIMA can effectively predict the attack rate even five hours ahead of time. This

would give the defender enough early-warning time.

Second, Period III network-level attack process exhibits spurious LRD. However, both the

LRD-aware FARIMA and the LRD-less ARMA models can predict incoming attacks up to 5 hours

ahead of time. Indeed, the prediction error of FARIMA is slightly greater than the prediction error
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Table 2.9: Prediction error of network-level attack processes using the LRD-aware FARIMA and
the LRD-less ARMA, where prediction errors are defined in Section 3.2. p = 0.5 means that we
start predicting in the midpoint of each network-level attack process.

PMAD PMAD′

Period FARIMA ARMA FARIMA ARMA
1-hour ahead prediction (h = 1, p = 0.5)

I 0.179 0.446 0.173 0.157
II 0.217 0.363 0.149 0.149
III 0.298 0.273 0.305 0.312
IV 0.548 0.526 0.126 0.106
V 0.517 0.529 0.424 0.411

5-hour ahead prediction (h = 5, p = 0.5)
I 0.206 0.556 0.292 0.314
II 0.212 0.351 0.420 0.411
III 0.297 0.272 0.246 0.250
IV 0.847 0.838 0.226 0.207
V 0.526 0.555 0.414 0.417

10-hour ahead prediction (h = 10, p = 0.5)
I 0.869 0.801 0.314 0.281
II 1.024 1.034 0.277 0.284
III 1.00 1.002 0.202 0.201
IV 0.648 0.627 0.282 0.490
V 0.982 0.952 0.402 0.412
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of ARMA. This reiterates that if an attack process does not exhibit LRD, it is better not to use LRD-

aware prediction models; if an attack process does exhibit LRD, LRD-aware prediction models

should be used instead. This highlights the advantage of “gray-box" prediction over “black-box"

prediction.

Third, although Period IV exhibits LRD, even its 1-hour ahead FARIMA prediction is not good

enough, with prediction error greater than 50%. While it is unclear what caused this effect, we note

that the underestimation error PMAD′ for 5-hour ahead prediction is still reasonable for Period IV

(22.6% for FARIMA and ARMA). This means that if one is willing to over-provision defense

resources to some extent, then the prediction for Period IV is still useful.

Table 2.10: Number of victim-level attack processes that can be predicted by the LRD-aware
FARIMA model, which is more accurate than the LRD-less ARMA model. For the column “total
# of victims ((x1, x2)/(y))," y is the total number of victims that exhibited LRD (or non-LRD),
x1 (or x2) is total number (out of the y) of victims for which the Maximum Likelihood Estimator
(MLE) used in the FARIMA (ARMA) algorithm actually converges (i.e., y−x1 and y−x2 victims
cannot be predicted because the MLE does not converge). The column “# of victims w/ average
OA (or UA) ≥ z%" represents the average number of victims (out of the x1 or x2 victims that
can be predicted), which lead to average prediction accuracy in terms of overall-accuracy OA (or
underestimation-accuracy UA) at least z%, where average is taken over all predictions.

total # of victims # of victims # of victims # of victims # of victims
Period ((x1, x2)/(y)) w/ average w/ average w/ average w/ average

OA ≥ 80% OA ≥ 70% UA ≥ 80% UA ≥ 70%
FARIMA ARMA FARIMA ARMA FARIMA ARMA FARIMA ARMA

I LRD: (152,152)/(159) 2 1 29 13 13 4 40 35
non-LRD: (7,7)/(7) 0 0 4 4 1 4 7 6

II LRD: (109,109)/(116) 0 0 3 2 2 1 12 6
non-LRD: (50,49)/(50) 0 0 0 0 4 1 6 2

III LRD: (82,82)/(87) 0 0 4 4 9 5 23 19
non-LRD: (79,79)/(79) 0 0 0 0 0 0 10 7

IV LRD: (118,118)/(125) 0 0 2 2 2 3 4 6
non-LRD: (41,39)/(41) 0 0 0 0 1 0 2 0

V LRD: (73,73)/(89) 0 0 0 0 0 1 2 3
non-LRD: (77,61)/(77) 0 0 0 0 0 0 1 0

Fourth, Period V resists both prediction models in terms of both overall prediction error PMAD

and underestimation error PMAD′. The fundamental cause of the effect is unknown at the mo-

ment, and is left for future studies. Nevertheless, we suspect that Extreme Value Theory could be

exploited to address this problem.
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Prediction results for victim-level attack processes Since there are 166 victims per period,

there are 830 victim-level attack processes for which we will do prediction. Recall that 70%

victim-level attack processes exhibit LRD. We use Table 2.10 to succinctly present the prediction

results, which are with respect to 10-hour ahead predictions during the last 100 hours of each time

period. We make the following observations. First, the LRD-aware FARIMA model performs

better than the LRD-less ARMA model. For example, among the 152 (out of the 159) victim-level

attack processes in Period I that exhibit LRD and are amenable to prediction (i.e., the Maximum

Likelihood Estimator actually converges; the Estimator does not converge for 159-152=7 LRD

processes though), FARIMA can predict for 29 victim-level attack processes about their 10-hour

ahead attack rates with at least 70% overall accuracy (OA), while ARMA can only predict for

13 victim-level attack processes at the same level of accuracy. If the defender is willing to over-

provision some resources and mainly cares about the underestimation error (which could cause

overlooking of attacks), FARIMA can predict for 40 victim-level attack processes while ARMA

can predict for 35.

Second, the victim-level attack processes in Period I exhibit LRD and render more to predic-

tion when compared with the victim-level attacks processes in the other periods, which also exhibit

LRD. Moreover, for non-LRD processes, neither FARIMA nor ARMA can provide good predic-

tions. This may be caused by that (some of) the non-LRD processes are non-stationary. We plan

to investigate into these issues in the future.

Summary It is feasible to predict network-level attacks even 5 hours ahead of time. For attack

processes that exhibit LRD, LRD-aware models can predict their attack rates better than LRD-less

models do. However, there are LRD processes that can resist the prediction of even LRD-aware

models. This hints that new prediction models are needed.
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Table 2.11: For each victim-level attack process that exhibits LRD, some port-level attack pro-
cesses (called “sub-processes" for short) exhibit heavy-tails.

total # of # of victims w/ # of victims with total # Shape # of ports # of ports
Period victims sub-processes certain # of sub-processes of ports mean w/ shape w/ shape Standard

exhibiting exhibiting exhibiting heavy-tail exhibiting value value value deviation
LRD heavy-tail 1 2 3 4 5 heavy-tail ∈ (.5, 1) ≥ 1

I 159 56 50 6 0 0 0 62 .11 1 0 .11
II 116 80 78 11 1 0 0 103 .40 50 0 .22
III 87 47 39 6 2 0 0 57 .22 2 0 .18
IV 125 3 3 0 0 0 0 3 .43 1 0 .35
V 89 32 29 1 2 0 0 37 .30 5 1 .25

2.4.5 Step 5: Exploring Causes of LRD

Despite intensive studies in other settings, the fundamental cause of LRD is still mysterious. One

known possible cause of LRD is the superposition of heavy-tailed processes [37, 38, 72]. Another

candidate cause of LRD is that some attackers launch intense (consecutive) attacks (e.g., brute-

forcing SSH passwords). In what follows we examine the two candidate causes.

LRD exhibited by network-level attack processes is not caused by heavy-tailed victim-level at-

tack processes We want to know whether or not the LRD exhibited by the 4 network-level attack

processes during Periods I, II, IV and V are caused by the superposition of heavy-tailed victim-

level attack processes. That is, we want to know how many victim-level attack processes during

each of the four periods are heavy-tailed. We find that among the vector of (166, 166, 166, 166)

victim-level attack processes during Periods I, II, IV and V, the vector of victim-level attack pro-

cesses that exhibit heavy-tails is correspondingly (101, 0, 24, 31), by using the POT method that

is reviewed in Appendix A-B. This means that Period I is the only period during which majority

of victim-level attack processes exhibit heavy-tails. A few or even none processes in the three

other periods exhibited heavy-tails. This suggests that LRD exhibited by the network-level attack

processes does not have the same cause as what is believed for benign traffic [59].

LRD exhibited by victim-level attack processes is not caused by heavy-tailed port-level attack

processes Now we investigate whether or not the LRD exhibited by victim-level attack processes

is caused by that the underlying port-level attack processes exhibit heavy-tails, a property briefly
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reviewed in Appendix 6.1.2. Table 2.11 shows that only 8% port-level attack processes, or 56 +

80 + 47 + 3 + 32 = 218 out of the (159 + 116 + 87 + 125 + 89 = 576) victims × 5 ports/victim

= 2880 port-level attack processes, exhibit heavy-tails. Moreover, only 29 (out of the 576) victim-

level attack processes have 2 or 3 port-level attack processes that exhibit heavy-tails. Further, there

is only 1 port-level attack process that exhibits infinite mean because the shape value ≥ 1, and

there are 1 + 50 + 2 + 1 + 5 = 59 port-level attack processes that exhibit infinite variance because

their shape values ∈ (.5, 1). The above observations also hint that unlike in the setting of benign

traffic [59], LRD exhibited by victim-level attack processes is not caused by the superposition of

heavy-tailed port-level attack processes.

LRD exhibited by victim-level attack processes is not caused by individual intense attacks

Now we examine whether or not LRD is caused by the individual attackers that launch intense

attacks. For this purpose, we consider attacker-level attack processes, which model the attacks

against each victim that are launched by distinct attackers. In other words, we only consider the

first attack launched by each attacker, while disregarding the subsequent attacks launched by the

same attacker.

Table 2.12 describes the observed lower-bound and upper-bound of the four statistics regarding

the attacker-level processes, where the bounds are among all victims within a period of time. By

taking Period II as an example, we observe the following: on average there are between 48 and 100

attackers against one individual victim within one hour, and there can be up to 621 attackers against

one individual victim within one hour. Further, attacks in Periods III and IV exhibit different

behaviors from the other three periods. From the boxplots of the basic statistic, which are not

presented for the sake of saving space, we observe that the attackers’ behaviors are actually very

different in the 5 periods. In particular, the attacker-level attack processes in Period II have many

outliers in terms of the four statistics, meaning that the attack rate during this period varies a lot.

In order to see whether or not the attacker-level attack processes still exhibit LRD, we describe

their Hurst parameters in Table 2.13. Using Period I as an example, we observe that there are 153
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Table 2.12: Basic statistics of attack rate of the attacker-level attack processes (per hour).
Period Mean(·) Median(·) Variance(·) MAX(·)

LB UB LB UB LB UB LB UB
I 30.2 67.8 4 45 1498.1 4094.3 225 432

II 48.6 100.8 42 93 1195.1 6298.3 306 621
III 11.1 33.0 2 29 223.6 270.8 64 100
IV 1.9 23.8 1 23 26.32 92.7 40 65
V 33.4 127.9 8 105 1132.7 7465.2 266 605

Table 2.13: The estimated Hurst parameters of the attack rate of attacker-level attack processes
(per hour).

Period RS AGV Peng Per Box Wave # victims w/ # victims w/
min max min max min max min max min max min max H̄ ∈ [.6, 1] LRD

I 0.593 0.977 0.851 0.958 0.896 1.111 1.174 1.334 0.942 1.185 0.582 0.843 153 153
II 0.570 0.883 0.616 0.950 0.689 1.070 0.710 1.152 0.663 1.242 -0.360 0.728 92 77
III 0.776 0.994 0.364 0.747 0.630 0.748 0.460 0.679 0.608 0.746 0.389 0.668 163 103
IV 0.657 0.920 0.273 0.955 0.690 0.872 0.559 1.206 0.612 0.952 0.288 1.004 166 165
V 0.495 0.758 0.563 0.727 0.499 0.806 0.898 1.114 0.660 0.977 0.567 0.931 166 77

(out of the 166) victims whose corresponding attacker-level attack processes suggest LRD because

their average Hurst parameter ∈ [.6, 1], where the average is taken over the six kinds of Hurst

parameter methods. Moreover, none of the 153 attacker-level processes exhibit spurious LRD.

Using Period V as another example, we observe that all 166 attacker-level attack processes have

average Hurst parameter ∈ [.6, 1], but only 77 attacker-level attack processes exhibit LRD while

the other 89 attacker-level attack processes exhibit spurious LRD (caused by non-stationarity of

the processes). The above discussion suggests that LRD exhibited by victim-level attack processes

is not caused by the intense (consecutive) attacks launched by individual attackers, simply because

most (or many) attacker-level attack processes also exhibit LRD.

Summary The LRD exhibited by the attack processes is neither caused by the superposition

of heavy-tailed sub-processes, nor caused by the intense attacks that are launched by individual

attackers. While we ruled out the two candidate causes of LRD, it is an interesting and challenging

future work to precisely pin down the cause of LRD in this context.
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2.4.6 Limitation of the Case Study

Although our statistical framework is widely applicable, our case study has three limitations that

are imposed by the specific dataset. First, the dataset, albeit over 47 + 18 + 54 + 21 + 80 = 220

days in total (5 periods of time), only corresponds to 166 honeypot IP addresses. We wish to

have access to significantly larger dataset of this kind. Nevertheless, it is notoriously difficult

to get such data for various reasons. For example, it appears that even the PREDICT project

(https://www.predict.org/) does not offer this kind of data. Still, this chapter explores

an important direction for cyber security research because of the potential reward in understanding

the statistical properties of cyber attacks and in possibly predicting the incoming attacks with good

accuracy.

Second, the dataset is attack-agnostic in the sense that we know the ports/services the attackers

attempt to attack, but not the specific attack details because the data was collected using low-

interaction honeypots. Although this issue can be resolved by using high-interaction honeypots,

there are legitimate concerns about high-interaction honeypots from a legal perspective.

Third, the data is collected using honeypot rather than using production network. For real-life

adoption of the prediction capability presented in the chapter, attack traffic would be blended into

the production traffic. Whether or not the blended traffic also exhibits LRD is an interesting future

study topic. The main challenge again is the legal and privacy concerns. (It may not be a good idea

to simply blend the honeypot traffic with production traffic because this would disrupt the attack

process structure.)

2.5 Conclusion and Future Work

We introduced the concept of stochastic cyber attack processes, which offers a new perspective

for studying cyber attacks. We also proposed a statistical framework for analyzing such processes.

By applying the framework to some honeypot-collected attack data, we found that majority of

the attack processes exhibit LRD. We demonstrated that LRD-aware models can better predict the
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attack rates 5 hours ahead of time, especially for network-level attack processes. This hints that

attacks against enterprise-level networks are probably more amenable to prediction than attacks

against individual computers. The prediction power comes from “gray-box" (rather than “black-

box") models.

The present study introduces a range of interesting problems for future research. First, we

need to further improve the prediction accuracy, despite that the LRD-aware FARIMA model can

predict better than the LRD-less ARMA models. For this purpose, we plan to study some advanced

models with high volatilities. Second, it is important to rigorously explain the fundamental cause

of LRD as exhibited by honeypot-captured cyber attacks. Our study only ruled out two candidate

causes.

Third, the victim-level attack processes and network-level attack processes exhibited similar

phenomena (i.e., LRD). This hints a sort of scale-invariance that, if turns out to hold, would have

extremely important implications (for example) in achieving scalable analysis of cyber attacks.
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Chapter 3: ANALYZING EXTREME VALUES EXHIBITED BY CYBER

ATTACKS

3.1 Introduction

Data-driven analytics can deepen our understanding about the statistical phenomena/properties

of cyber attacks, and can potentially help tackle the fundamental feasibility of predicting cyber

attacks (possibly at some some level of aggregation). Any significant progress in cyber attack

predictability, even for minutes (if not hours) ahead of time and even at an aggregate level, would

give the defender enough earlywarning time to prepare for adequate defense (e.g., the defender

can dynamically allocate sufficient resources for deep packet inspection or flow-level assembly

and analysis). Despite its clear importance, there has been little progress, perhaps because of the

lack of real data and readily usable statistical methodologies.

Recently, we made a first such effort, by proposing a statistical framework to formulate and an-

swer the relevant questions [77]. In the present chapter, we make a further substantial step toward

the ultimate goal, by studying the extreme-value phenomenon exhibited by honeypot-captured cy-

ber attacks. The extreme-value phenomenon refers to the many outliers above certain thresholds,

namely extremely large attack rates (per unit time) against a target of interest (e.g., honeypot in the

context of this chapter). It is important to investigate the extreme-value phenomenon because of

the following.

First, the extreme-value phenomenon is robust because it cannot be filtered out by SNORT. This

means that studying the extreme-value phenomenon exhibited by honeypot-captured cyber attacks

is useful to the defense of production networks, provided that the honeypot is not bypassed by the

attacker (which can be assured by randomizing the locations of honeypots). For example, when the

attacker launch intense new attacks that cannot be detected, the distribution of the extreme attack

rates observed at the honeypots are about the same as the distribution of the extreme attack rates

observed at production networks. This distribution information can be used to adjust the defense
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at the production networks (e.g., using resource-consuming behavior-based detection, rather than

resource-effective signature-based detection). This is especially useful when we can predict the

attack rates even hours ahead of time, which is possible as shown in the chapter.

Second, one might think that the extreme values are caused by denial-of-service attacks. Our

analysis shows that denial-of-service attack is indeed among the most often seen attacks (as recog-

nized by SNORT) for the largest clusters of extreme attack rates (i.e., intense attacks that sustain for

hours). However, the most often seen attack at the hour of highest attack rate (i.e., the hour of most

intense attacks) is not necessarily denial-of-service, but attacks that can be buffer-overflow exploits

(as recognized by SNORT). This further confirms the value of studying the extreme phenomenon.

3.1.1 Our Contributions

We propose a novel methodology for investigating the extreme-value phenomenon exhibited by cy-

ber attacks. To the best of our knowledge, we are the first to study the extreme-value phenomenon

in the domain of cyber security analytics, while noting that the methodology can be seamlessly

incorporated into, and therefore enhance, the framework described in [77]. More specifically, we

make two contributions.

First, we propose a methodology for systematically characterizing the extreme-value phe-

nomenon exhibited by (honeypot-captured) cyber attacks. The methodology aims to integrate

two complementary statistical approaches: the Extreme Value Theory (EVT) and the Time Series

Theory (TST). We investigate a connection between the two approaches, when applying them to

predict extreme attack rates. We conclude that these two predictive approaches should be used

together in practice, because EVT-based methods are more appropriate for long-term predictions

and TST-based methods are more appropriate for short-term predictions. A combination of the two

kinds of predictions can lead to more useful results for guiding the defender’s resource allocation

decision-making. As we will see, a resource allocation strategy based on EVT-predicted magnitude

of attack rates (24 hours ahead of time), but with adjustments based on TST-predicted maximum

attack rates (1 hour ahead of time), can cope with the worst-case scenario (i.e., the largest attack
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rate). This strategy gives the defender more earlywarning time. On the other hand, a more cost-

effective strategy can be based on TST-predicted maximum attack rates (1 hour ahead of time),

while taking into consideration EVT-predicted magnitude of attack rates (24 hours ahead of time),

would be able to cope with the average-case scenarios. This strategy also requires the defender to

be more agile than the previous strategy.

Second, we propose a novel statistical technique for analyzing cyber attack data. Specifically,

we propose a family of time-series FARIMA+GARCH models, which can accommodate both

the extreme-value phenomenon and the Long-Range Dependence (LRD) phenomenon exhibited

by cyber attacks, where GARCH (Generalized AutoRegressive Conditional Heteroskedasticity)

accommodates the extreme-value phenomenon, and FARIMA (Fractional AutoRegressive Inte-

grated Moving Average) accommodates the LRD phenomenon. We show that FARIMA+GARCH

can indeed better fit and predict than existing popular methods. This further highlights the power

of “gray-box" fitting and predictions.

3.1.2 Related Work

Although this chapter is the first to analyze the extreme-value phenomenon exhibited by cyber

attacks, the study is inspired by, and substantially extends, the statistical framework we recently

proposed [77]. The framework formulates a systematic way of thinking in cyber attack analytics,

which is centered on the novel concept of stochastic cyber attack process. A key finding in [77] is

that cyber attacks (i.e., stochastic cyber attack processes) exhibits the LRD phenomenon, and the

FARIMA model (which accommodates LRD) can better fit and predict the attack-rate time series

than the ARMA model (which cannot accommodate LRD). Since we here analyze the extreme-

value phenomenon that is not analyzed in [77], the analysis methodology and techniques described

in the present chapter can be seamlessly incorporated into the framework [77] to enhance its sta-

tistical power.

On the other hand, honeypot-captured cyber attack data has been studied from several different

perspectives, such as: classifying the captured attacks into known and unknown attacks [8], identi-
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fying the traffic characteristics of the same attacks [67], and others [9,10,20,21,29,42,53,54,67].

Loosely related investigations include the analysis of blackhole-captured traffic data (e.g., [51,73])

or one-way traffic [31], which emphasize on classifying the data into classes (e.g. scanning, peer-

to-peer applications, unreachable services, misconfigurations, worms etc). There also have been

studies that aim to extract useful information from honeypot-captured data, such as: probing activ-

ities [39], Denial of Service attacks [28], scans [34], worms [25, 26] and botnets [41, 63].

Our study is at a higher level of abstraction, by considering the statistical properties of the

aggregate data (i.e., attacks coming to an entire honeypot) and focusing on their prediction utility

(i.e., exploiting the exhibited statistical properties for possibly better detection).

The chapter is organized as follows. Section 3.2 briefly reviews some preliminary statistical

knowledge. Section 3.3 describes our statistical analysis methodology. Section 3.4 uses EVT to

analyze the extreme attack rates. Section 3.5 uses TST to analyze the time series data. Section

3.6 discusses a connection between EVT-based and TST-based predictions. Section 4.5 discusses

limitations of the present study and directions for further research. Section 4.6 concludes the

chapter.

3.2 Statistical Preliminaries

We now review the main statistical concepts and techniques that are used in the present chap-

ter. Throughout the chapter, we use the more intuitive terms “extreme values", “extreme events",

“extreme-value events" and the EVT jargon “exceedances" interchangeably. We also use the in-

tuitive term “average inter-arrival time" between consecutive extreme values and the EVT jargon

“return period" interchangeably.

3.2.1 Statistics of Extreme-Value Phenomena

Figure 3.1 illustrates a time series of attack rates (per some unit time), where the threshold line

corresponds to a threshold value µ such that the green dots (above the threshold line) are extreme

attack rates or extreme values. At a high level, the extreme-value phenomenon can be characterized
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from a “spatial" perspective (i.e., the distribution of the magnitude of extreme values), a “time"

perspective (i.e., the inter-arrival time between extreme values), and a “spatial-time" perspective

(i.e., the concept of return level described below).

Figure 3.1: Illustration of extreme-value phenomena: dashed line represents a threshold; green
dots are extreme values or exceedances; black dots are non-extreme values; extremal index θ in-
dicates the clustering degree of extreme values (where a cluster is a set of consecutive extreme
values).

Distribution of extreme values

It is known that if X1, . . . , Xn are stationary, then [Xi − µ|Xi > µ] may follow the standard GPD

(Generalized Pareto Distribution) with survival function

Ḡξ,σ(µ)(x) = 1−Gξ,σ(µ) =


(

1 + ξ
x

σ

)−1/ξ

, ξ 6= 0,

exp{−x/σ}, ξ = 0.
,

where x ∈ R+ if ξ ∈ R+ and x ∈ [0,−σ/ξ] if ξ ∈ R−, ξ and σ are respectively called shape and

scale parameters. If X1, . . . , Xn are from a non-stationary process, then [Xi − µ|Xi > µ] may

follow a non-stationary GPD with time-dependent parameters, namely

Ḡξ(t),σ(t)(x) =


(

1 +
ξ(t)x

σ(t)

)−1/ξ(t)

, ξ(t) 6= 0,

exp{−x/σ(t)}, ξ(t) = 0.
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To fit the distribution of extreme values, we use the POT (Point Over Threshold) method [27, 59].

Extremal index 0 < θ ≤ 1

Intuitively, this index captures the degree that the extreme values are clustered as follows (cf.

Figure 3.1): 1/θ indicates the mean size of the clusters of extreme values; θ = 1 means that each

cluster has one extreme value (i.e., the extreme values do not exhibit the clustering behavior).

Formally, let {X1, X2, . . . , } be a sequence of random variables from a stationary process. Let

Mn = max{X1, . . . , Xn}. Under certain regularity conditions, it holds that

lim
n→∞

P

(
Mn − bn
an

≤ x

)
= Hθ

ξ (x),

where an and bn are normalizing constants,

Hξ(x) =

 exp
{
−(1 + ξ x−µ

σ
)−1/ξ

}
, ξ 6= 0

exp{−e−x−µσ }, ξ = 0
(3.1)

is a non-degenerate distribution function with 1 + ξ x−µ
σ

> 0, and θ ∈ (0, 1] is the extremal index.

Return level

Intuitively, return level captures the expected magnitude of extreme values (but not necessarily

the maximum value). Let T be the average inter-arrival time between consecutive extreme values,

which is also called return period. The probability that an extreme event occurs is p = 1/T . The

concept of return level identifies a special threshold such that there is, on average, a single extreme

event during each return period. Formally, suppose random variable X has a stationary GPD with

shape parameter ξ and scale parameter σ. Then,

P (X > x) = ζµ

[
1 + ξ

(
x− µ
σ

)]−1/ξ

, ξ 6= 0,
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where ζµ = P (X > µ). The return-level xm, which is exceeded on average once per m observa-

tions, is given by xm = µ + σ/ξ
[
(mζµ)ξ − 1

]
. For non-stationary GPD, the return level is given

by xm = µ+ σ(m)/ξ(m)
[
(mζµ)ξ(m) − 1

]
.

3.2.2 Properties and Models of Time Series

Long-Range Dependence (LRD)

Unlike the Poisson process that exhibits the memoryless property, a LRD process exhibits per-

sistent correlations that the autocorrelation decays slowly (i.e., slower than the exponential de-

cay). Formally, a stationary time series {Xt} exhibits LRD if its autocorrelation function is

r(h) = Cor(Xi, Xi+h) ∼ h−βL(h) as h → ∞, where 0 < β < 1 and L(·) is a slowly vary-

ing function [27]. Note that lim
x→∞

L(tx)
L(x)

= 1 for all t > 0, and
∑

h r(h) = ∞. The degree of LRD

is quantified by the Hurst parameter H = 1 − β/2, meaning that 1/2 < H < 1 and the degree of

LRD increases as H → 1.

FARIMA and GARCH Time Series Models

FARIMA (Fractional AutoRegressive Integrated Moving Average) and GARCH (generalized au-

toregressive conditional heteroskedasticity) are two widely used time-series models [23]. FARIMA

can accommodate LRD and GARCH can accommodate the extreme-value phenomenon. Let

φ(x) = 1 −
∑p

j=1 φjx
j , ψ(x) = 1 +

∑q
j=1 ψjx

j , and εt be independent and identical normal

random variables with mean 0 and variance σ2
ε .

A time series {Xt} is called a FARIMA(p, d, q) process if φ(B)(1− B)dXt = ψ(B)εt, where

−1/2 < d < 1/2, and B is the back shift operator BXt = Xt−1, B2Xt = Xt−2, etc.

On the other hand, a time series {Xt} is called a GARCH process [16] if Xt = σtεt, where the

noises (also called innovations) εt’s are the standard white noise distribution.

We consider two variants of GARCH. For the Standard GARCH (SGARCH) model, we have

σ2
t = w +

∑q
j=1 αjε

2
t−j +

∑p
j=1 βjσ

2
t−j .
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For the Integrated GARCH (IGARCH) model, we have

φ(B)(1−B)ε2t = w + (1− ψ(B))vt,

where vt = ε2t − σ2
t .

To accommodate more general noise distributions, we will consider skewed Student-T distri-

bution (SSTD) or skewed Generalized Error distribution (SGED).

3.3 Data and Analysis Methodology

3.3.1 Data Description

The raw data (in pcap format), denoted by D0, was collected by a honeypot of 166 IP addresses,

during five periods in 2010-2011 of time respectively 47, 18, 54, 21 and 80 days (the same as

in [77]). The honeypot ran four low-interaction honeypot programs: Amun [1], Dionaea [2],

Mwcollector [3] and Nepenthes [11]. Each program was associated to a unique IP address. Each

physical computer monitored multiple IP addresses. As we elaborate below, we derived D1 and

D2 from D0, where D1 describes what is observed at the honeypot (i.e., the view at the attacker’s

end) and D2 is closer to what can be observed at production networks with SNORT filtering (i.e.,

the view at the defender’s end).

Specifically, D1 was derived from D0 as follows: We extracted the attack traffic with respect

to production ports (because the traffic corresponding to nonproduction ports contains little useful

information), and treated each remote-end initiated TCP flow as an attack (because the honeypot

does not offer any legitimate service). An unsuccessful TCP handshake was also deemed as attack,

as the handshake could have been dropped by the honeypot computer. For assembling TCP flows,

we set the flow lifetime as 300 seconds (i.e., an attack/flow does not span over 300 seconds) and the

flow timeout time as 60 seconds (i.e., an attack/flow expires if there is no activity for 60 seconds);

these parameters were suggested in [7].

D2 was derived from D0 as follows: We first replayed D0 against the widely used SNORT

intrusion detection system version 2.9.3 [4], which was released on July 20th, 2012 (i.e., about
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8 months after the data was collected as we wanted to know, in a sense, the best-case effect of

SNORT filtering). As such, D2 would be closer to the view of the attacks reaching production

networks (with perimeter defense like SNORT). The output of the replaying procedure is then

assembled into TCP flows as in the case of deriving D1 from D0.

(a) Period I (b) Period II (c) Period III

(d) Period IV (e) Period V

Figure 3.2: Time series plots of attack rates (number of attacks per hour): non-filtered D1 (red)
vs. SNORT-filtered D2 (green): The percentages of attacks filtered by SNORT for Periods I-V are
respectively 14.0%, 33.5%, 11.3%, 19.4% and 16.4%, meaning that SNORT has limited success.
The extreme-value phenomenon is robust and prolific in D1 and D2.

3.3.2 The Extreme-Value Phenomenon

Figure 3.2 plotsD1 andD2 in the five periods of time. We observe the extreme-value phenomenon,

namely the many extreme attack rates (i.e., extreme values or spikes) caused by intense attacks in

D1 of all five periods. Some extreme values in Periods III-V are filtered by SNORT. For example,

the spikes at the 527th hour in Period III and the 165th hour in Period IV are detected by SNORT

as “Malware suspicious FT 200 Banner on Local Port"; the two spikes at the 1237th and 1335th

hours in Period III are detected as “SSH scan"; the spike at the 1693th hour in Period V is detected

as “SIP Invite Message Remote Denial of Service Vulnerability". However, there are still many
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extreme values in D2. This means the extreme-value phenomenon is robust and important for the

defense of production networks, provided that the honeypot is not bypassed by the attacker (which

can be justified by the extreme-value phenomenon itself in this case, and achieved by randomizing

the locations of honeypots in general).

3.3.3 Extreme-Value Analysis Methodology

Our methodology is centered on analyzing statistical properties of extreme attack rates and the fea-

sibility of exploiting the statistical properties to predict the extreme values (for dynamic proactive

defense). For this purpose, we aim to integrate two complementary statistical approaches. The

first approach is based on EVT (Extreme Value Theory), which deals with extreme attack rates.

This approach is appropriate for relatively long-term prediction of extreme events (e.g., 24-hour

ahead of time), because (i) extreme events would not occur often (otherwise, they may not be

extreme events any more), and (ii) the analysis only considers extreme attack rates. The second

approach is based on TST (Time Series Theory), which does not differentiate the extreme values

(above a threshold) and the non-extreme values (below the threshold). This explains why the TST

approach is appropriate for short-term prediction (e.g., 1-hour ahead of time). The two approaches

are complementary to each other because (i) the data/information they use is different (i.e., proper

subset vs. super set), and (ii) the predictions they make are different (i.e., return levels or expected

magnitude of extreme attack rates vs. concrete attack rates). Therefore, it is interesting to seek

connection between the two approaches, especially from the prediction perspective.

For both EVT- and TST-based analyses, we propose to proceed as follows: First, identify the

statistical properties exhibited byD1 andD2, such as: the stationarity of the processes that driveD1

and D2 and the clustering behavior of the extreme values. Second, exploit the identified statistical

properties to fit the relevant data (i.e., “gray-box" fitting). Although there are generic methods

for analyzing the extreme-value phenomenon, our intuition is that the generic methods are not

sufficient because they do not consider the properties exhibited by cyber attacks. This motivates us

to propose new statistical techniques that are relevant to the cyber security domain (e.g., the family
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of FARIMA+GARCH models). Third, predict attack rates by using EVT- and TST-based methods

(i.e., “grad-box" prediction), and explore the relation (especially, the consistency) between the

predicted results.

3.4 EVT-based Extreme-Value Analysis

In order to fit the distribution of extreme values, we need to determine the extreme values are

driven by a stationary process (i.e., the distribution does not change) or non-stationary process,

because we need to use time-invariant or time-dependent distribution parameters. This suggests

us to consider four candidate distributions/models: M1, . . . ,M4, where M1 corresponds to the

stationary process case and the others correspond to the non-stationary process case. Specifically,

• M1: The standard GPD.

• M2: GPD with time-invariant shape parameter ξ but time-dependent scale parameter σ(t) =

exp (β0 + β1 log(t)).

• M3: GPD with time-invariant scale parameter σ but time-dependent shape parameter ξ(t) =

γ1 + γ2t.

• M4: GPD with time-dependent parameters σ(t) = exp (β0 + β1 log(t)) and ξ(t) = γ1 + γ2t.

Since we do not know the stationarity a priori, we first use M1 to fit the extreme attack rates. If M1

cannot fit well, we use non-stationary distributions/models M2, . . . ,M4 to fit the extreme attack

rates. We use standard goodness-of-fit statistics and QQ-plot for evaluating the quality of fitting.

3.4.1 Fitting stationary extreme attack rates

We use Algorithm 3.1 to fit stationary extreme attack rates. The algorithm uses QQ-plot and two

goodness-of-fit statistics called CM and AD, where CM and AD measure the goodness-of-fit of

a distribution. If the p-values of both CM and AD statistics are greater than .1 (which is more

conservative than the textbook criterion .05), and the QQ-plot also confirms the goodness-of-fit,
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the algorithm concludes that the extreme attack rates are stationary and follow the standard GPD;

otherwise, the extreme attack rates are non-stationary and will be fitted via Algorithm 3.2 described

below.

Algorithm 3.1 Fitting stationary extreme attack rates via M1

INPUT: attack-rate time series
OUTPUT: M1 fitting result

1: initialize quantileSet {assuring ≥ 30 extreme values}
2: for q ∈ quantileSet (from the minimum to the maximum in the increase order) do
3: use the standard GPD to fit the extreme attack rates that are greater than threshold quantile

q
4: evaluate goodness-of-fit statistics CM, AD, QQ-plot
5: if fitting is good then
6: estimate GPD parameters (ξ, σ), extremal index θ
7: return (q, ξ, σ, θ) {the first successful fitting}
8: return -1 {stationary distribution fitting failed}

A key ingredient in Algorithm 3.1 is the threshold quantile, namely the threshold specified by a

quantile such that an attack rate above the threshold is an extreme value. Specifically, quantileSet

is an ordered set of quantiles, where the maximum quantile is chosen to guarantee there are at least

30 extreme attack rates (because, as a rule of thumb, 30 is required for the sake of reliable fitting),

and the minimum quantile is 20% difference from the maximum quantile with step-length 5%. For

example, suppose there are 1000 attack rates (corresponding to observations during 1000 hours).

The maximum threshold quantile is 1− 30
1000
×100% = 97% and the minimum threshold quantile is

77%, leading to quantileSet = {77%, 82%, 87%, 92%, 97%}. The algorithm starts with threshold

quantile 77%, and then 82% etc. (i.e., according to the increase order), and halt until the first

successful fitting (in which case, parameters are obtained) or all the fitting attempts fail (i.e., the

process is non-stationary).

Table 3.1 summarizes the fitting results using M1. For non-filtered data D1, Periods III and

V are from stationary processes: the former has threshold quantile q = 0.90 (i.e., there are 130

extreme attack rates that are above the 90% quantile) and extremal index θ = 0.60 (i.e., a cluster

contains, on average, 1/.60 = 1.67 extreme values, or extensive attacks sustain on average 1.67

hours); the latter has threshold quantile q = 0.95 and extremal index θ = .33. For SNORT-filtered
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Table 3.1: EVT-based fitting of stationary attack rates, where (q, ξ, σ, θ) are output by Algorithm
3.1, “# of EV" means “number of extreme values (i.e., extreme attack rates)", “# of C" means
“number of clusters". The last column indicates the best fitting model.

Period q # of EV # of C θ ξ σ model
D1: non-filtered attack-rate time series

III 0.90 130 95 0.73 0.36 3778.19 M1

V 0.95 96 31 0.33 0.16 13553.5 M1

D2: SNORT-filtered attack-rate time series
III 0.95 69 28 0.40 0.95 5722.72 M1

data D2, only Period III is from a stationary process, with threshold quantile q = 0.95, extremal

index θ = 0.40, and shape parameter ξ = 0.95 > 0.5 (meaning infinite variance of extreme attack

rates, namely heavy-tailed extreme attack rates). Combining the above observations and the fact

that the lengths of the five periods are respectively 47, 18, 54, 21, and 80 days, we suspect that

stationary process may not be observed for a period of time shorter than 50 days, which may be

necessary but not sufficient (noting that Period V corresponds to 80 days).

Algorithm 3.2 Fitting non-stationary extreme attack rates
INPUT: non-stationary extreme attack rates
OUTPUT: fitting result

1: initialize quantileSet {same as in Algorithm 3.1}
2: for q ∈ quantileSet (from the minimum to the maximum in the increase order) do
3: use models M2, M3 and M4 to fit the attack rates that are greater than threshold quantile q
4: evaluate goodness-of-fit via AIC and QQ-plot
5: if any of the three models fits well then
6: choose the model with the minimum AIC value, or choose the simpler/simplest model

whose AIC value is fairly close to the minimum AIC value
7: return (q,AIC value) of the selected model Mj

8: return -1 {failed in fitting extreme attack rates}

3.4.2 Fitting non-stationary extreme attack rates

We use Algorithm 3.2 to select the best fitting model for the non-stationary extreme attack rates in

D1 and D2, where quantileSet is the same as in Algorithm 3.1. We use the AIC (Akaike informa-

tion criterion) statistic [23] and QQ-plot to evaluate the goodness-of-fit, where AIC captures the fit-

ting loss (i.e., the smaller the AIC value, the better the fitting). As a thumb of rule, two AIC values
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are considered fairly close when their difference is less than 10. If a model Mj ∈ {M2,M3,M4}

incurs the minimum AIC value that is not fairly close to any of the other two AIC values, we

choose Mj as the best fitting model; otherwise, we choose the simpler/simplest model whose AIC

value is fairly close to the minimum AIC value (model M2 is considered simpler than M3, which

is simpler than M4).

Table 3.2: EVT-based fitting of non-stationary extreme attack rates, where columnMj (2 ≤ j ≤ 4)
represents the AIC value of model Mj ,

√
indicates that QQ-plot confirms fitting well (QQ-plots

are omitted for saving space), and the other notations are the same as in Table 3.1.
Period q # of EV M2 M3 M4 QQ-plot model

AIC values for non-filtered extreme attack rates in D1

I 0.85 168 3656 3653 3656
√

M2

II 0.80 84 1774 1774 1776
√

M2

IV 0.80 105 1774 2014 2016
√

M2

AIC values for SNORT-filtered extreme attack rates in D2

I 0.85 168 3632 3629 3632
√

M2

II 0.80 84 1816 1821 1823
√

M2

IV 0.85 79 1672 1649 1651
√

M3

V 0.85 288 5908 5901 5906
√

M2

Table 3.2 summarizes the fitting results. For non-filtered data D1, the AIC values of all the

three models for Periods I and II are fairly close, and thus we choose the simpler model M2. Since

the AIC value ofM2 in Period IV is the smallest, we chooseM2 as the best fitting model for Period

IV. For SNORT-filtered D2, the AIC values of all the three models in Periods I, II and V are fairly

close, and therefore we choose the simpler M2 as the fitting model. For Period IV, models M3 and

M4 have smaller AIC values that are fairly close to each other, and therefore we choose M3 as the

best fitting model.

3.4.3 Effect of SNORT-filtering on extreme attack rates

The left-hand column in Figure 3.3 plots extreme attack rates with respect to the threshold quantile

values identified in Tables 3.1-3.2. We observe that SNORT-based filtering does not change the

distributions/models of extreme attack rates in Periods I, II and III. This is because as shown in

Tables 3.1-3.2, Period I in D1 and D2 is fitted by M2, Period II in D1 and D2 is fitted by M2, and
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(a) Period I: (0.85, 0.85) (b) Period I: (0.85, 0.85) (c) Period II: (0.80, 0.80) (d) Period II: (0.80, 0.80)

(e) Period III: (0.90, 0.95) (f) Period III: (0.90, 0.95) (g) Period IV: (0.80, 0.85) (h) Period IV: (0.80, 0.85)

(i) Period V: (0.95, 0.85) (j) Period V: (0.95, 0.85)

Figure 3.3: Time series plots of extreme attack rates (left-hand column) and accumulative number
of zero-length intervals between extreme attack rates (right-hand column) with respect to threshold
quantiles (q1, q2), where q1 is the threshold quantile for D1 and q2 is the threshold quantile for
D2. SNORT-based filtering does not make significant difference to the thresholds for D1 and
D2, meaning that the extreme-value phenomenon is robust and is not destroyed by SNORT-based
filtering. The implication is (see text for reasoning): When the attacker launch intense new attacks
(i.e., attacks that are not detected), the distribution of the extreme attack rates observed at the
honeypots are about the same as the distribution of the extreme attack rates with respect to a
production network, provided that the attacker launch attacks without differentiating honeypots and
production networks. This distribution information can be used to adjust the defense at production
networks (e.g., using resource-consuming behavior-based detection, rather than resource-effective
signature-based detection).
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Period III in D1 and D2 is fitted by M1. This can be visually confirmed because the red-colored

curves and the green-colored curves in Figures 3.3a, 3.3c and 3.3e exhibit similar patterns. One the

other hand, SNORT-based filtering does have an impact on Periods IV and V. This is because as

shown in Tables 3.1-3.2, Period IV in D1 is fitted by M2 but in D2 is fitted by M3, and Period V in

D1 is fitted by M1 but in D2 is fitted by M2. This also can be visually confirmed because SNORT

filtered the highest spikes in Figures 3.3g and 3.3i. Nevertheless, all these distributions are in the

GPD family.

The right-hand column in Figure 3.3 plots the accumulative numbers of zero-length intervals

between extreme attack rates, meaning that intense attacks sustain for multiple hours. For each

period, we observe that for both D1 and D2, there are many zero-length intervals. Now we look

into the most often seen attacks inD1 that are recognized by SNORT during the longest consecutive

hours of intense attacks (i.e., largest clusters of extreme attack rates). Period I has 16 consecutive

hours of intense attacks (from the 129th hour to the 144th hour). Each of the 16 consecutive hours

has one of the following attacks as the most intense attack (as identified by SNORT): (i) denial-of-

service vulnerability exploit, (ii) Worm spread attempt, (iii) Apache Buffer Overflow Vulnerability

exploit, (iv) MS SQL exploit attempt, and (v) SSH Scan. Period II has 17 consecutive hours of

intense attacks (from the 322th to the 338th hour). Each of the 17 consecutive hours has one of

the following attacks as the most intense attack: (i) denial-of-service vulnerability exploit, and (ii)

Worm spread attempt. Period III has 24 consecutive hours of intense attacks (from the 1st hour

to the 23th hour). Each of the 24 consecutive hours has the following attack as the most intense

attack: (i) denial-of-service vulnerability exploit. Period IV has 65 consecutive hours of intense

attacks (from the 76th hour to the 140th hour). During majority of the 65 hours, the most often seen

attack is (i) denial-of-service vulnerability, (ii) Worm spread attempt, and (v) SSH scan. Period V

has 18 consecutive hours of intense attacks (from the 1882th hour to the 1899th hour). The most

often seen attacks during the 18 hours are (i) denial-of-service vulnerability exploit, (ii) Worm

spread attempt, (iv) MS SQL exploit attempt, and (v) SSH scan.

The preceding analysis shows that denial-of-service is the most often detected attack (by
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SNORT) during the longest consecutive hours of intense attacks (i.e., the largest cluster of ex-

treme attack rates) in each of the five periods. This makes us wonder whether this is also true for

the hour of largest attack rate (i.e., highest spike). In order to answer this question, we look into

the attacks that are detected by SNORT during the hour of the largest attack rate. The left-hand

column of Figure 3.4 plots the number of attackers vs. the number of attacks they launch. We

observe that a significant number of attackers only launched a single attack, but a small number

of attackers launched a large number of attacks. This hints the possibility of power-law distribu-

tion. A further statistical analysis (details omitted) concludes that Periods I, IV and V in both D1

and D2 follow power-law distributions, but Periods II and III in both D1 and D2 do not follow

the power-law distribution. The right-hand column of Figure 3.4 further plots the five most often

seen attacks (as detected by SNORT) corresponding to the highest spike in D1. Moreover, the

most frequently seen attack is detected by SNORT as “Apache buffer overflow vulnerability" for

Period I and “suspicious FTP scan" for Period IV, which corresponds to majority or even more

than 95% of the detected attacks (as shown in Figures 3.4b and 3.4h). Therefore, denial-of-service

is not necessarily the most often seen attack during the hour of largest attack rate; instead, it can

be buffer-overflow (Period I).

3.5 TST-based Extreme-Value Analysis

Now we study how TST-based models can fit the extreme values.

Since the attack-rate time series exhibit the LRD phenomenon [77] and the extreme-value

phenomenon, we need models that can accommodate both. Since the GARCH model can accom-

modate the extreme-value phenomenon [27] and the FARIMA model can accommodate LRD, we

propose to use the following FARIMA+GARCH model:

φ(B)(1−B)d(yt − µt) = ψ(B)εt,

where φ and ψ are the same as in Section 3.2.2, B is the lag operator, (1−B)d is the LRD process
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(a) Period I: (40, 40) (b) Period I: 40 (c) Period II: (329, 329) (d) Period II: 329

(e) Period III: (1104, 1104) (f) Period III: 1104 (g) Period IV: (165, 378) (h) Period IV: 165

(i) Period V: (1693, 1882) (j) Period V: 1693

Figure 3.4: Left-hand column: number of attackers vs. the number of attacks they launch (as
detected by SNORT) with respect to (a, b), where a indicates that the highest spike in D1 occurs
at the ath hour, and b indicates that the highest spike in D2 occurs at the bth hour. Further analysis
shows that Periods I, IV and V in both D1 and D2 follow power-law distributions (i.e., many at-
tackers only launch small number of attacks and a small number of attackers launch many attacks),
but Periods II and III in both D1 and D2 do not follow any power-law distribution. Right-hand
column: The five most frequently seen attacks as detected by SNORT with respect to a, where a
indicates the highest spike occurs at the ath hour in D1, “DoS 1" is short for “Microsoft Windows
SSL library denial-of-service vulnerability", “DoS 2" is short for “SIP (Session Initiation Proto-
col) invite message remote denial-of-service vulnerability", “Remote code execution 1/2/3/4" are
respectively short for “Microsoft MS06-041/MS06-040/MS05-021/MS08-067 vulnerabilities."
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(a) Period I (b) Period II (c) Period III (d) Period IV (e) Period V

(f) Period I (g) Period II (h) Period III (i) Period IV (j) Period V

Figure 3.5: TST-based model fitting of non-filtered attack rate data D1, where black circles rep-
resent the observed attack rates and red dots represent the fitted values. FARIMA+GARCH fits
Periods I-III better than FARIMA (especially for the extreme attack rates), but not Periods IV-V.

(a) Period I (b) Period II (c) Period III (d) Period IV (e) Period V

(f) Period I (g) Period II (h) Period III (i) Period IV (j) Period V

Figure 3.6: TST-based model fitting of SNORT-filtered attack rate data D2, where black circles
represent the observed attack rates and red dots represent the fitted values. FARIMA+GARCH fits
Periods I-III better than FARIMA (especially the extreme attack rates) but not Periods IV-V.
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with Hurst parameter H satisfying 0 < d = H − .5 < 1, and µt = µ + ξσt with variance σt

following SGARCH (i.e., Standard GARCH) or IGARCH (i.e., Integrated GARCH) with noise

distribution SSTD or SGED (as reviewed in Section 3.2.2). This actually leads to a family of

FARIMA+GARCH models:

• M ′
1: FARIMA+SGARCH+SSTD;

• M ′
2: FARIMA+SGARCH+SGED;

• M ′
3: FARIMA+IGARCH+SSTD;

• M ′
4: FARIMA+IGARCH+SGED.

For comparison, we also consider the FARIMA mode, which can better fit/predict the time series

than the LRD-less ARMA model [77]. To select the best fitting model, we use two model selec-

tion criterions: PMAD (Percent Mean Absolute Deviation) and AIC. To select the best prediction

model, we use PMAD. Suppose Xm, . . . , Xh are the observed attack rates and X ′m, . . . , X
′
h are the

fitted (predicted) attack rates. we have PMAD =
∑m+h

t=m |Xt−X ′t|/
∑m+h

t=m Xt, which captures the

overall fitting (prediction) error (i.e., the smaller the PMAD value, the better the model fitting or

prediction).

Table 3.3 summarizes the fitting results. For Periods I-III inD1, we observe that FARIMA+GARCH

has the smaller AIC values as well as the smaller PMAD values (all < 0.2). For Periods IV-V in

D1, FARIMA+GARCH still has the smaller PMAD and AIC values, but the PMAD values are

greater than 0.3. Therefore, FARIMA+GARCH can fit Periods I-III better than FARIMA, but not

Periods IV-V. For D2, we can draw the same conclusion.

To have a better understanding on what caused the fitting inaccuracy, Figures 3.5-3.6 plot the

actual fitting results of D1 and D2, respectively. We observe that FARIMA+GARCH can indeed

fit the data (especially the extreme attack rates) better than FARIMA. For Periods I-III in both D1

and D2, we observe that the slight inaccuracy of FARIMA+GARCH is mainly caused by that the

extreme values (i.e., spikes) are not fitted 100%.
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Table 3.3: TST-based fitting of attack rates (per hour).
Period FARIMA + GARCH FARIMA

model PMAD AIC PMAD AIC
D1: non-filtered attack-rate time series

I M ′
1 0.170 11.0 0.192 11.8

II M ′
1 0.185 11.4 0.195 11.9

III M ′
3 0.196 10.7 0.239 11.3

IV M ′
3 0.363 9.6 0.439 10.7

V M ′
4 0.441 11.8 0.482 12.0

D2: SNORT-filtered attack-rate time series
I M ′

1 0.159 10.6 0.188 11.6
II M ′

4 0.197 10.8 0.239 11.6
III M ′

3 0.211 10.5 0.297 12.0
IV M ′

3 0.258 9.3 0.545 11.6
V M ′

3 0.426 11.5 0.477 11.8

For Period IV, Figures 3.5d-3.6d show that FARIMA+GRACH should fit D1 and D2 well

enough. However, the significant fitting inaccuracy (as shown in Table 3.3) is still caused by the

missing of the extreme attack rates. For Period V, FARIMA+GARCH clearly cannot fit D1 and

D2 well, possibly because there exist some complex statistical patterns that change rapidly. We are

not aware of any readily available statistical tools that can cope with such time series, and expect

to develop some advanced tools for this purpose in the future.

3.6 EVT- and TST-based Joint Analysis

For prediction, we consider all the models rather than the best fitting models only, because the best

fitting models often are, but not always, the best prediction models.

3.6.1 EVT-based prediction of extreme attack rates

We use EVT-based methods to predict the return level, which gives the expected magnitude of

extreme attack rates (but not necessarily the expected maximum attack rate) within a future period

of time. This is the best EVT can predict. In order to evaluate the accuracy of the return-level

predictions, we use the last 120 hours in each period for prediction. We use Algorithm 3.3 to
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predict return levels for return period h = 24 hours ahead of time, where ` is chosen such that

m = bn`c = n− 120. We use the binomial test [43] to measure the prediction accuracy, such that

the p-value greater than .05 means that prediction is accurate. The prediction results are described

in Table 3.5 and discussed below (for comparison with TST-based predictions).

Algorithm 3.3 EVT-based prediction of return levels
INPUT: extreme attack rates {X1, . . . , Xn} with respect to threshold quantiles described in Tables
3.1-3.2, EVT model family {M1,M2,M3,M4} described in Section 3.4, 0 < ` < 1, h (# of hours
as return period)
OUTPUT: prediction model Mj ∈ {M1,M2,M3,M4}

1: m = bn`c
2: for i = 1 to 4 do
3: while m+ h ≤ n do
4: Using {X1, . . . , Xm} to fit the Mi-type model
5: Use Mi to predict the return level between the (m+ 1)th and the (m+ h)th hours
6: m = m+ h
7: Evaluate prediction accuracy using the binomial test
8: return Mj ∈ {M1,M2,M3,M4} with the highest p-value (or simpler model with the same
p-value)

3.6.2 TST-based prediction of (extreme) attack rates

We showed (in Table 3.3) FARIMA+GARCH provides better fitting than FARIMA. Now we inves-

tigate the prediction power of FARIMA+GARCH. We use Algorithm 3.4 to find the best prediction

model M ′
j ∈ {M ′

1, . . . ,M
′
4}, where we use the last 100 hours for h-hour ahead prediction. In order

to select the h that leads to best predictions, we consider h = 1, 4, 7, 10, which lead to different

values for ` in Algorithm 3.4.

Table 3.4 summarizes the prediction results of the best model. For D1, we observe that for

Periods I-III and IV, the PMAD value of h = 1 in each period is the smallest among the four

prediction resolutions: h = 1, 4, 7, 10. In particular, for Periods I-III, the PMAD value of 1-hour

ahead prediction is smaller than 0.2, indicating accurate prediction. However, Periods IV and V

have PMAD values 0.339 and 0.378 at 1-hour ahead prediction, meaning that the predictions are

inaccurate. For D2, we have similar observations. Therefore, we will compare TST-based 1-hour
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Algorithm 3.4 TST-based prediction of attack rates
INPUT: attack-rate time series {X1, . . . , Xn}, FARIMA-GARCH model family
{M ′

1,M
′
2,M

′
3,M

′
4}, 0 < ` < 1, h (# of hours ahead prediction)

OUTPUT: best prediction model M ′ ∈ {M ′
1, . . . ,M

′
4}

1: for i = 1 to 4 do
2: m = bn`c, j = 0
3: while m+ h ≤ n do
4: use {X1, . . . , Xm} to fit a M ′

i-type model
5: use M ′

i to predict attack rates {X ′m+1, . . . , X
′
m+h}

6: m = m+ h
7: evaluate PMAD value of the predictions
8: return M ′ ∈ {M ′

1,M
′
2,M

′
3,M

′
4} with the smallest PMAD values

ahead predictions of concrete attack rates with EVT-based 24-hour ahread predictions of expected

magnitude of extreme attack rates. This is summarized in Table 3.5 and discussed below.

Table 3.4: TST-based h-hour ahead predictions: h = 1, 4, 7, 10.

Period ` Selected Model
PMAD

h=1H h=4H h=7H h=10H
D1: non-filtered attack-rate time series

I 0.90 M ′
3 0.138 0.172 0.255 0.300

II 0.70 M ′
4 0.121 0.343 0.390 0.386

III 0.90 M ′
3 0.140 0.276 0.316 0.282

IV 0.80 M ′
3 0.339 0.409 0.535 1.152

V 0.95 M ′
3 0.378 0.388 0.470 0.288

D2: SNORT-filtered attack-rate time series
I 0.90 M ′

2 0.133 0.204 0.269 0.302
II 0.70 M ′

1 0.232 0.480 0.545 0.469
III 0.90 M ′

1 0.154 0.299 0.386 0.221
IV 0.80 M ′

3 0.436 1.062 1.084 1.415
V 0.95 M ′

3 0.346 0.494 0.589 0.319

3.6.3 Making use of EVT- and TST-based predictions

Table 3.5 reports EVT-predicted return levels as well as the corresponding p-values of binomial

test, the observed maximum attack rates, and the TST-predicted maximum attack rates as well as

the corresponding PMAD values. We observe the following. First, EVT-based best prediction

models (described in Table 3.5) are respectively simpler than the EVT-based best fitting models
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Table 3.5: Comparison between EVT- and TST-based predictions, where “Ha-b" means the pre-
dictions correspond to time interval between the ath and the bth hours (among the last 120 hours of
each period). For each period, there are three rows: The first row represents EVT-based predictions
of return levels (i.e., expected magnitude of extreme attack rates) and the corresponding p-value
of the predictions, where prediction model Mj is selected by Algorithm 3.3. The second row,
denoted by “obs.", describes the observed (i.e., actual) maximum attack rates. The third row de-
scribes the maximum attack rates derived from TST-predicted attack rates by model M ′

j (selected
by Algorithm 3.4 with h = 1) and the corresponding PMAD value.

Per. H1-24 H25-48 H49-72 H73-96 H97-120
p or

PMAD
D1: Non-filtered attack-rate time series

I
M2 76056 76824 77088 78333 82275 0.07
obs. 53197 60203 57370 62868 82576
M ′

3 50656 53744 52427 58183 71719 0.13

II
M2 60910 60668 63572 62750 60752 0.17
obs. 83157 101937 45186 38218 60274
M ′

4 72457 83073 43942 37267 51853 0.18

III
M1 33263 32916 32836 32733 32654 0.07
obs. 32993 30194 21476 92379 29722
M ′

3 30869 28505 21382 77747 27921 0.21

IV
M2 29747 29622 28622 30048 30514 0.01
obs. 23224 11671 6634 6263 8225
M ′

3 20329 9443 6674 5341 5605 0.40

V
M1 40129 41265 42360 43526 45996 0.00
obs. 101971 105171 114462 120221 109216
M ′

3 40341 43581 50053 54644 55007 0.41
D2: SNORT-filtered attack-rate time series

I
M1 69002 68472 67849 67318 67105 0.07
obs. 45123 44673 50116 56714 69795
M ′

2 39125 40730 42293 49227 58758 0.13

II
M1 50621 53794 61225 59442 58960 0.33
obs. 74838 96757 37897 23722 53100
M ′

1 60426 82960 37656 22967 44048 0.22

III
M1 35373 35232 34998 34894 34922 0.07
obs. 27783 25717 18412 76543 24815
M ′

1 26315 24514 17880 66544 23557 0.22

IV
M2 25692 25605 24355 24546 24929 0.01
obs. 19420 9221 6634 4949 6317
M ′

3 22525 9772 5791 4731 5558 0.43

V
M1 34795 35782 36538 37437 40006 0.00
obs. 60703 17634 18132 52651 35481
M ′

3 37864 37935 42951 53202 48988 0.41
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(described in Tables 3.1-3.2). However, TST-based best prediction models (described in Table 3.5)

are respectively the same as the TST-based best fitting models (described in Table 3.4). This means

that the presence of defense may simplify the prediction of extreme attack rates, but not necessarily

the prediction of attack rates.

Second, we observe consistency between the predictions based on the two approaches. Specif-

ically, EVT-predicted return levels (i.e., expected magnitude of extreme attack rates) are accurate

for Periods I-III in bothD1 andD2 because the p-values are greater than 0.05, while TST-predicted

attack rates are also accurate for Periods I-III in both D1 and D2 because the PMAD values are

smaller than or equal to 0.22. On the other hand, EVT-predicted return levels are inaccurate for

Periods IV-V in both D1 and D2 because the p-values are smaller than 0.02, and TST-predicted

attack rates are also inaccurate for Periods IV-V in both D1 and D2 because the PMAD values are

greater than or equal to 0.40. However, there is a significant difference between Periods IV and

V. For Period IV in both D1 and D2, we observe the TST-predicted maximum attack rates, which

are extracted from TST-predicted attack-rate time series plotted in Figures 3.7g-3.7h, are actually

accurate with respect to the observed maximum attack rates. This means that although TST-based

predictions are not accurate overall, their predicted maximum attack rates can be accurate. This

is useful because the predicted maximum attack rate can be the most important factor for the de-

fender’s resource allocation decision-making. Unfortunately, TST-predicted maximum attack rates

are inaccurate for Period V. A possible cause for Period V is that there may exist some complex

time series pattern, such as cyclical trends or seasonal trends (i.e., some repeated patterns).

Third, for Periods I-III where both EVT and TST provide overall accurate predictions, we ob-

serve that EVT-predicted return levels, which are given to the defender 24 hours ahead of time, can

be used as an evidence for resource allocation. Moreover, EVT-based resource allocations could

be dynamically adjusted by taking into account TST-based 1-hour ahead predictions. Specifically,

Figure 3.7 suggests the following: when a TST-predicted maximum attack rate (which is obtained

only 1 hour ahead of time) is above the EVT-predicted return level (which is obtained 24 hours

ahead of time), the defender can dynamically allocate further resources for the anticipated attack
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rates predicted by TST-based methods (e.g., the highest spikes in Periods II-III as shown in Figure

3.7). This strategy is of course conservative because it (on average) overprovisions resources so

as to cope with the worst-case scenario (i.e., matching the largest attack rates). Nevertheless, this

strategy gives the defender more earlywarning time. An alternate strategy is to use TST-based

predicted maximum attack rates as the initial evidence for allocating defense resources, then take

into consideration EVT-based long-term predictions (e.g., some weighted average). This strategy

might prevent resource overprovisioning, but may not provision sufficient resources to cope with

the largest attack rates (e.g., the highest spike in Period III as shown in Figure 3.7). This strategy

requires the defender to be more agile (than in the preceding strategy).

3.7 Limitations and Future Research Directions

First, the analysis results are limited by the datasets. Nevertheless, the analysis results are sufficient

for justifying the value of the methodology and the newly introduced family of FARIMA+GARCH

models, which are equally applicable for analyzing other datasets (e.g., larger datasets, or datasets

collected by high-interaction honeypots).

Second, the connection between EVT and TST is a good starting point. Especially, we ob-

served that EVT-predicted return levels are often above the actual maximum attack rates, but TST-

predicted maximum attack rates are often below the actual maximum attack rates. We suggested

the possibility of using some weighted average of EVT-predicted return level and TST-predicted

maximum attack rate as the predicted maximum attack rate. This heuristics needs to be justified

rigorously. Moreover, there might be some deeper connections that can be exploited to formulate

more powerful prediction techniques. Finally, there may be some fundamental trade-off between

the earlywarning time we can give to the defender and the prediction accuracy. These connections

have not be investigated by the theoretic statistics community, and our engineering-driven demand

would give statistical theoreticians enough motivation to explore this exciting topic.

Third, Period V cannot be fitted and predicated accurately (even for maximum attack rates

only) possibly because there exist some properties other than LRD and extreme events. Further
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(a) D1: Period I (b) D2: Period I (c) D1: Period II (d) D2: Period II

(e) D1: Period III (f) D2: Period III (g) D1: Period IV (h) D2: Period IV

(i) D1: Period V (j) D2: Period V

Figure 3.7: Comparing EVT-predicted return levels (i.e., expected magnitudes of extreme attack
rates), observed attack rates during the last 120 hours in each period, and TST-based predictions
of attack rates. EVT-predicted return levels are produced by Algorithm 3.3 and summarized in
Table 3.5, and plotted as horizontal lines during the respective intervals of 24 hours. TST-based
predictions are produced by Algorithm 3.4. For Periods I-III, EVT-predicted return levels are
accurate, and TST-predicted attack rates as well as maximum attack rates are also accurate. For
Period IV, EVT-predicted extreme attack rates are about one order of magnitude above the observed
attack rates, but TST-predicted maximum attack rates are accurate. For Period V, neither EVT nor
TST can predict accurately.
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studies are needed for exploring if these are some seasonal or cyclical trends or the extreme values

are generated by some self-exciting process [44].

3.8 Conclusions

We have presented a novel methodology for analyzing the extreme-value phenomenon exhib-

ited by (honeypot-captured) cyber attacks. Our methodology is based on a novel integration of

EVT (Extreme Value Theory) and TST (Time Series Theory), and can be seamlessly incorporated

into the framework we recently proposed [77]. For TST-based analysis, we proposed a family

of FARIMA+GARCH models for fitting and predicting both stationary and non-stationary time

series. We believe that this study will inspire other researchers to devise a complete families of

statistical frameworks and techniques that can adequately satisfy the needs of cyber security.
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Chapter 4: ANALYZING CYBER SECURITY POSTURE

4.1 Introduction

Blackhole [14, 22] (aka darknet [12], network telescope [49], network sink [75]) is a useful in-

strument for monitoring unused, routeable IP address space. Since there are no legitimate services

associated to these unused IP addresses, traffic targeting them is often caused by attacks. This

allowed researchers to use blackhole-collected data (together with other kinds of data) to study, for

example, worm propagation [13,46,48] and denial-of-service (DOS) attacks [33,47]. Despite that

blackhole-collected data can contain unsolicited, but not necessarily malicious, traffic that can be

caused by misconfigurations in remote computers or by Internet background radiation [30,50,74].

Analyzing blackhole-collected data could lead to better understanding of cybersecurity posture

(i.e., security-related situation in Internet).

4.1.1 Our Contributions

In this chapter, we aim to empirically characterize the cybersecurity posture based a dataset col-

lected by CAIDA’s /8 blackhole during the month of March 2013. Our analysis emphasizes on (i)

identifying interesting cybersecurity phenomena and (ii) explaining their (hypothetic) cause. We

analyze both the “as is” data and the data obtained after heuristically filtering some rarely seen

attackers (as an approximation to misconfiguration-caused traffic). Our findings are highlighted as

follows. First, we define the notion of sweep-time, namely the time it takes for most blackhole IP

addresses to be attacked at least once. We find that the sweep-time follows the power-law distribu-

tion. Second, we find that the total number of distinct attackers that are observed by the blackhole

is largely determined by the number of distinct attackers from a certain country code.1

We expect to publish more detailed analysis and (hypothetical) explanations of the newly iden-

1We are fortunate to see the real, rather than anonymized, attacker IP addresses, which allow us to aggregate the
attackers based on their country code. In this chapter, we will not disclose any specific IP address. Our study is
approved by IRB.
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tified phenomena elsewhere shortly.

4.1.2 Related Work

Investigations based on blackhole-collected data can be classified into two categories. The first

category of studies analyze blackhole-collected data only. These studies include the characteriza-

tion of Internet background radiation [50, 74], the characterization of scan activities [6], and the

characterization of backscatter for estimating global DOS activities [33,47], The present study falls

into this category as we analyze blackhole-data only. However, we aim to analyze cybersecurity

posture especially attacks that are likely caused by malicious worm, virus and bot activities. This

explains why we exclude the backscatter data (which is filtered as noise in the present chapter),

with or without filtering the traffic that may be caused by misconfigurations. Due to the lack of

ground truth — a fundamental limitation of blackhole-collected data, our analysis methodology

allows to draw robust statistical conclusions.

The second category of studies aim to analyze blackhole traffic together with other kinds of

relevant data. These studies includes using blackhole data and network-based intrusion detection

and firewall logs to analyze Internet intrusion activities [76], using out-of-band informaiton to help

analyze worm propagation [13, 46, 48], and using active interactions with remote IP addresses to

filter misconfiguration-caused traffic [50]. Somewhat related studies include the identification of

one-way traffic from data where two-way traffic is well understood [6, 17, 36, 68].

All these studies are loosely related to the effort of the present chapter, as we neither assume

the availability of, nor use, any out-of-band information.

The rest of the chapter is organized as follows. Section 4.2 describes the data we analyze.

Section 4.3 analyzes cybersecurity posture from the perspective of victims. Section 4.4 analyzes

cybersecurity posture from the perspective of attackers.

Section 4.5 discusses the limitation of the present study. Section 4.6 concludes the chapter.
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4.2 Data Description and Representation

4.2.1 Data Description

The data we analyze was collected between 3/1/2013 and 3/31/2013 by CAIDA’s Blackhole, which

is a passive monitoring system based on a globally routeable but unused /8 network (i.e., 1/256

portion of the entire Internet IP v4 address space) [65]. Since blackhole collects unsolicited traf-

fic, meaning that the collected traffic would contain malicious traffic that reaches the blackhole

(e.g., automated malware spreading), but may also contain non-malicious traffic — such as In-

ternet Background Radiation (e.g., backscatter caused by the use of spoofed source IP addresses

that happen to belong to the blackhole) and misconfiguration-caused traffic (e.g. mistyping an IP

address by a remote computer). This means that pre-processing the raw data is necessary. We will

analyzeD1 andD2 that are obtained after applying the pre-processing procedures described below.

Data D1. Based on CAIDA’s standard pre-processing [66], the collected IP packets are orga-

nized based on eight fields: source IP address, destination IP address, source port number, desti-

nation port number, protocol, TTL (time-to-live), TCP flags and IP length. The flows are classi-

fied into three classes: backscatter, ICMP request and other. At a high level, backscatter traffic

is identified via TCP SYN+ACK, TCP RST, while ICMP request is identified via ICMP type

0/3/4/5/11/12/14/16/18. (A similar classification method is used in [74].) We are more interested

in analyzing cybersecurity posture corresponding to attacks that are launched through TCP/UDP

protocols. Since (i) backscatter-based analysis of DOS attacks has been studied elsewhere [33,47]

and (ii) ICMP has been mainly used to launch DOS attacks such as ping flooding and smurf or

fraggle attacks [35, 47, 70], we disregard the traffic corresponding to backscatter and ICMP re-

quest. This means that we focus on the TCP/UDP traffic in the other category mentioned above.

We call the resulting data D1, in which each TCP/UDP flow is treated as a distinct attack.

Data D2. Although (i) D1 already excludes the traffic corresponding to backscatter and ICMP

request, and (ii) we consider only TCP/UDP flows in the other category mentioned above, D1
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may still contain traffic caused by misconfigurations. Eliminating misconfiguration-cased traffic

in blackhole-collected data is a hard problem because blackhole is passive, namely that blackhole

does not interact with remote computers to collect rich information about attacks. Indeed, we have

discussed in Section 4.1.2 (Related Work) that existing studies on recognizing misconfiguration-

caused traffic had to use payload information (e.g., [40]), which is however beyond the scope

of blackhole-collected data. Moreover, it is worth mentioning that recognizing one-way traffic

already requires to using extra information such as two-way traffic [30], and that recognizing

misconfiguration-caused traffic is an even harder problem because misconfiguration can cause both

one-way and two-way traffics. These observations suggest us to use some heuristics to filter pos-

sible misconfiguration-caused traffic from D1. Specifically, we obtain D2 by filtering from D1 the

flows that correspond to remote IP addresses that initiated fewer than 10 flows/attacks during the

month. This heuristic method filters possibly many misconfiguration-caused flows in blackhole-

collected data, as well as possibly some number of malicious attacks. Even though the ground

truth (i.e., which TCP/UDP flows correspond to malicious attacks) is not known — a fundamental

limitation of balckhole, D2 might be closer to the ground truth than D1.

4.2.2 Data Representation

In order to analyze the TCP/UDP flow data D1 and D2, we represent the flows through time series

at some time resolution from the perspectives of victims (i.e., blackhole IP addresses that are “hit”

by some remote attacking IP addresses contained in D1 or D2), from the perspective of attackers

(i.e., the remote attacking IP addresses contained in D1 or D2), and from the perspective of attacks

(i.e., TCP/UDP flows initiated from remote attacking IP addresses in D1 or D2 are treated as

attacks). We consider two time resolutions (because a higher resolution may lead to more precise

statistics): hour, denoted by “H”; minute, denoted by “m”. For a given time resolution of interest,

the total time interval [0, T ] is divided into short periods [i, i + 1) according to time resolution

r ∈ {H,m}, where i = 0, 1, . . ., and T = 744 hours (or T = 4, 464 minutes) in this case.

Let V be CAIDA’s fixed set of blackhole IP addresses and A be the rest of IP addresses in
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Figure 4.1: Illustration of attacker-victim relation during time interval [i, i+ 1) at time resolution
r ∈ {H, r}: each dot represents an IP address, a red-colored dot represents an attacking IP address
(i.e., attacker), a pink-colored dot represents a blackhole IP address (i.e., victim), the number of
attackers is |A(r; i, i + 1)| = 5, the number of victims is |V (r; i, i + 1)| = 7, and the number of
attacks is y(r; i, i+ 1) = 8.

cyberspace, where |A| = 232 − |V |. As illustrated in Figure 4.1, for each time interval [i, i + 1)

at time resolution r, let V (r; i, i + 1) ⊆ V be the set of distinct victims that are attacked at least

once during time interval [i, i+ 1), A(r; i, i+ 1) ⊆ A be the set of distinct attackers that launched

attacks against some v ∈ V (r; i, i+1), and y(r; i, i+1) be the number of distinct attacks launched

by the attackers belonging to A(r; i, i + 1) against victims belonging to V (r; i, i + 1). Note that

a victim may be attacked by the same attacker via multiple attacks (i.e., flows), in which case we

treat each flow as a distinct attack.

4.3 Characteristics of Sweep-Time

In this section, we ask and address the following question: How long does it take for most blackhole

IP addresses to be attacked at least once? More precisely, we can naturally extend the notations

introduced above as follows: For time resolution r ∈ {H,m} and any time interval [i, j) with

i + 1 < j, we can naturally use V (r; i, j) =
⋃j−1
`=i V (r; `, ` + 1) to represent the cumulative set of

distinct victims that are attacked at some point during time interval [i, j). As a result, V (r; 0, T ) is

the set of distinct victims that are attacked at least once during time interval [0, T ), where V (r; 0, T )

is actually independent of the time resolution r but we keep r for notational consistence. It is

possible that V (r; 0, T ) ≈ V , meaning that some blackhole IP address is never attacked during

the time interval [0, T ). As such, the question we ask becomes: How long does it take for τ ×
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|V (r; 0, T )| victims to be attacked at least once, where 0 < τ < 1? This suggests us to define the

following notion of sweep-time, which is relative to the starting point of observation time.

Definition 1. The sweep-time starting at the ith time unit of time resolution r, denoted by Ii, is

defined as: ∣∣∣∣∣
Ii−1⋃
`=i

V (r; `, `+ 1)

∣∣∣∣∣ < τ × |V (H; 0, 733)| ≤

∣∣∣∣∣
Ii⋃
`=i

V (r; `, `+ 1)

∣∣∣∣∣ .
By taking into consideration the starting point of observation time i, we naturally obtain a time

series of sweep-time I0, I1, . . .. Our focus is to characterize the time series of sweep-time Ii.

4.3.1 Distribution of Sweep-Time

For dataD1, we have |V (H; 0, 744)| = 16, 657, 796 ≈ 223.99 and |V (H; 0, 744)|/|V | = 16, 657, 796/224 ≈

99.29% of the entire blackhole IP address space are attacked at least once during the month. For

data D2, we have |V ′(H; 0, 744)| = 16, 657, 726 < |V (H; 0, 744)| because D2 filtered some rarely

seen attackers in D1.

(a) Number of victims per hour in D1: |V (H; i, i+ 1)| (b) Number of victims per hour in D2: |V ′
1(H; i, i+ 1)|

Figure 4.2: Time series of the number of distinct victims per hour, namely |V (H; i, i + 1)| for
0 ≤ i ≤ 743 corresponding to D1 and |V ′(H; i, i + 1)| for 0 ≤ i ≤ 743 corresponding to D2,
where (for example) |V (H; 0, 1)| > |V ′(H; 0, 1)| and |V (H; 0, 733)| > |V ′(H; 0, 733)|.

Figures 4.2a-4.2b present the times series of |V (H; i, i + 1)| in D1 and the time series of

|V ′(H; i, i+1)| inD2, respectively. We make the following observations. First, there is a significant

volatility at the 632nd hour, during which the number of distinct victims is as low as 4, 377, 079 ≈

222. A careful examination shows that the total number of distinct attackers during the 632nd hour

66



is very small, which might be the cause.

Second, most blackhole IP addresses are attacked within a single hour. For example, 15,998,907

(or τ = 96% of |V (H; 1, 733)| victims) blackhole IP addresses are attacked at least once during

the first hour. Third, no victims other than V (H; 0, 703) are attacked during the time interval

[704, 744) at the same time resolution.

(a) D1: Time series of sweep-time at 1-minute resolu-
tion.

(b) D2: Time series of sweep-time at 1-minute resolu-
tion.

Figure 4.3: Time series plots of sweep-time (y-axis) with respect to τ ∈
{80%, 85%, 90%, 95%, 99%}, where x-axis represents the starting observation time that is sampled
at every 10 minute. In other words, the plotted points are the sample (0, I0), (10, I10), (20, I20), . . .
rather than (0, I0), (1, I1), . . ..

Since we have observed that the sweep-time is often not exactly 1 or 2 hours, we use finer-

grained time resolution, namely per-minute (rather than per-hour) to measure the sweep-time. Fig-

ure 4.3 plots the time series of sweep-time I0, I10, I20, . . .with respect to per-minute time resolution

(we only consider this sample of I0, I1, I2, . . . because the latter is too time-consuming). We want

to know the distributions of the sweep-time. Our statistical tests show that the sweep-time exhibits

power-law distributions. Specifically, Table 4.1 summarizes the power-law test statistics of the

sweep-time. We observe the following. First, for both D1 and D2, all the α values are very large.

For threshold τ = 80% inD1, xmin is 78 minutes and the number of power-law sweep-times is 475

(10.6% out of 4,462) meaning that all the 89.4% non power-law sweep-times in the range between

0 and 78 minutes. Also, as the threshold τ increases, the xmin values also increase as expected.

However, the number of power-law sweep-times decreases as τ values increase, which means that

power-law distribution only fits smaller portion of the data as τ increases. Second, for the same
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threshold, D1 and D2 have similar xmin values as well as similar numbers of power-law sweep-

times, which means that the "noise" traffic in D1 does not affect the power-law property of D1. For

example, for τ = 80%, D2 has xmin values of 82 minutes which is very close to 78 minutes in D1.

Moreover, D2 has 391 (8.7% out of 4,462) power-law sweep-times which is close to 475 (10.6%

out of 4,462) power-law sweep-times in D1.

Table 4.1: Power-law test statistics of the sweep-time with respect to threshold τ ∈
{80%, 85%, 90%, 95%, 99%}, where α is the fitted power-law exponent (α ∈ (1, 2) means the
mean and variance values does not exist; α ∈ (2, 3) means the mean value exist but the variance
value does not exist), xmin is the cut-off parameter (i.e., we only consider the sweep-times that
are greater than or equal to xmin units of time with respect to time resolution r ∈ {H,m}), KS
is the Kolmogorov-Smirnov statistic for comparing fitted distribution with the input, # ≥ xmin

represents the number of sweep-times that are used for fitting the distribution, which we refer as
power-law sweep-times.

τ α xmin KS p-value # ≥ xmin

Dataset D1 with time resolution 1-minute
80% 7.89 78 .05 .14 475
85% 8.46 94 .04 .52 385
90% 8.89 118 .06 .42 244
95% 9.52 148 .05 .68 193
99% 13.67 215 .04 .98 131

Dataset D2 with time-resolution 1-minute
80% 8.46 82 .05 .19 391
85% 8.37 95 .04 .36 379
90% 9.24 120 .05 .39 237
95% 12.82 170 .04 .99 72
99% 15.23 224 .04 .99 94

4.4 Dominance of the Number of Attackers from a Single Country

For each attacker IP address, we can use the WHOIS service to retrieve its country code. For an

attacker IP address whose country code cannot retrieved from the WHOIS service, we use NULL

instead. The term “total number of attackers" refers to all attackers, no matter whether their country

code can be retrieved or not. This allows us to study the time series of the total number distinct

attackers and the time series of the number of distinct attackers from individual countries. We

report the following interesting phenomenon: The total number of distinct attackers observed by
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the blackhole during the month and the number of distinct attackers from a country (anonymized

as country X) are surprisingly similar to each other.

4.4.1 The Informal Similarity Between Two Time Series

We report that for D1, the top two countries, called X and Y , contribute 29.83% and 28.45% of

the total number of 403,779,397 distinct attackers observed by the blackhole during the month,

respectively. That is, countries X and Y together contribute almost 58% of all distinct attackers.

Specifically, Figure 4.4a compares the times series of the total number of distinct attackers

observed by the blackhole and the time series of the number of distinct attackers from country X

(per hour) in D1. For the time series of the total number of distinct attackers, we observe that

the number of distinct attackers fluctuates between 5,354,919 (≈ 222.35) and 373,183 (≈ 218.5)

blackhole IP addresses. In particular, for time interval [455, 630), namely during the period of

176 hours between the 455th hour (on March 19, 2013) and the 630th hour (on March 27, 2013),

the number of distinct attackers (per hour) is greater than 1,651,184 (≈ 220.66) and can be up

to 4,925,667 (≈ 222.23) attackers. More importantly, it seems that the total number of distinct

attackers is largely determined by the number of distinct attackers from country X . This suggests

us to plot Figures 4.4c and 4.4e.

Figure 4.4c and Figure 4.4e plot the time series starting from 20th hour which is the very first

wave base and the vertical dashed lines are drawn every 24 hours. We observe that the wave bases

are surprisingly periodic with period of 24 hours in both Figure 4.4c and Figure 4.4e. In other

words, the wave bases appear at hours 20, 44, ..., 740, which make 30 wave base ranges. Except

for Figure 4.4e, the number of distinct attackers at the 631th hour is the smallest in the wave base

range of [620, 644], which is marked in the blue rectangle. There are three such exceptions in

Figure 4.4c. The number of distinct attackers at the 461th, the 631th and the 653th hours are

among the smallest in the corresponding wave bases range covering them. After looking into the

time zone of country X , we notice that the wave bases corresponding to the hour between 12:00

noon and 1 pm local time, meaning that least number of attackers are observed during that hour.
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(a) Number of distinct attackers in D1: total vs. country
X .

(b) Number of distinct attackers in D2: total vs. country
X .

(c) D1: Periodicity of total number of distinct attackers.(d) D2: Periodicity of total number of distinct attackers.

(e) D1: Periodicity of number of distinct attackers from
country X .

(f) D2: Periodicity of number of distinct attackers from
country X .

Figure 4.4: Time series of the total number of distinct attackers (per hour) and time series of the
number of distinct attackers (per hour) from country X .
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Analogous to Figures 4.4a, 4.4c and 4.4e that correspond to D1, Figures 4.4b, 4.4d and 4.4f

respectively correspond to D2. We can see from Figure 4.4b that even after eliminating the rarely

seen attackers from D1, the total number of distinct attackers is still dominated by the number of

distinct attackers from country X . Also, Figures 4.4d and 4.4f show the same 24-hour periodicity

exhibited by the total number of distinct attackers and by the number of distinct attackers from

country X . While Figures 4.4d has one exception at wave base range of [620, 644], Figure 4.4f

strongly suggests 24 hours periodicity because there is no exception like the ones shown in Figure

4.4e for D1.

It is also interesting to zoom into each wave base range and see the patterns. We find that each

wave base range demonstrates an “M” shape pattern as illustrated in Figure 4.5. Suppose we have

a wave base range [ti, ti+24] with two wave bases at ti (i.e., 12:00 noon in country X) and ti+24, we

call the very first spike ta and the very last change point tb. We find that for each wave base range,

ta − ti ≈ 5 hours and ti+24 − tb ≈ 10 hours.

Figure 4.5: The “M” shape pattern within each periodic wave base range.

4.4.2 Formal Statistical Similarity Analysis Between the Two Time Series

In the above we have observed the interesting phenomenon that (i) the time series of the number

of distinct attackers from country X resembles (ii) the time series of the total number of distinct

attackers. Now we use statistical methods to quantify the resemblance (similarity) between these

two time series.
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Similarity based on the distance between the two time series. We use the popular dynamic

time warping (DTW) technique to quantify the optimal alignment between the two time series.

DTW is often used to determine time series similarity, and find the corresponding regions between

two time series. For the two time series corresponding to D1, the alignment is displayed in Figure

4.6a. Each blue segment line connects a point in one time series to its corresponding point in the

other time series. If the two time series are identical, all the connection lines would be straight

and vertical because warping is not needed. As shown in Figure 4.6a, the two time series are very

similar expect for the small region from the 470th to the 570th hours. Figure 4.6b shows the one-

on-one mapping between the two times series. The ideal mapping is a straight line which can be

described using linear regression function y = x. It can be seen that from the 470th to the 570th

hours there is discrepancy between two time series.

For the two times series corresponding to D2, we can see from Figures 4.6c and 4.6d that

the two time series matches even better. This suggests the strong dominance of the number of

distinct attackers from country X over the total number of distinct attackers that are observed by

the blackhole. This also suggests that there are a significant number of rarely seen attackers that

indeed might be caused by misconfigurations.

Similarity based on the fitted models. We use the multiplicative seasonal ARIMA model to

fit the two time series corresponding to datasets D1 and D2. The model has nonseasonal orders

(p, d, q), and seasonal orders (P,D,Q), and seasonal period s. The correlogram clearly indicates

that there exists a very strong correlation at lag 24 in both data sets, which suggests that the seasonal

model with s = 24 should be used. For model selection, the parameter sets are:

• (p, d, q) ∈ [0, 5]× {0, 1} × [0, 5];

• (P,D,Q) ∈ [0, 5]× {0, 1} × [0, 5].

72



(a) DTW alignment between the two time series in D1. (b) Warping path between the two times series in D1.

(c) DTW alignment between the two time series in D2. (d) Warping path between the two time series in D2.

Figure 4.6: DTW statistics between the times series of the total number of distinct attackers and
the time series of the number of distinct attackers for country X .
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According to the AIC criterion, bothD1 andD2 and both time series prefer to model ARIMA(1, 0, 1)×

(2, 1, 3)24, namely

Wt = φ1Wt−1 + et + θ1et−1 + Φ1Wt−24 + Φ2Wt−48 + Θ1et−24 + Θ2et−48 + Θ3et−96,

where Wt = |A(r; t, t+ 1)| − |A(r; t− 24, t− 23)|.

Table 4.2: Coefficients and standard deviation for fitted models with respect to the number of dis-
tinct attackers from country X and the total number of distinct attackers observed by the blackhole
during the month.

φ1 θ1 Φ1 Φ2 Θ1 Θ2 Θ3

Time series of the number of distinct attackers from country X in D1

Coefficients 0.82 .39 1.22 -.99 -2.19 2.16 -.91
Standard deviation .02 .03 .01 .007 .06 .13 .078

Time series of the total number of distinct attackers in D1

Coefficients .91 .38 1.22 -.98 -2.15 2.11 -.86
Standard deviation .017 .03 .02 .01 .08 .18 .10
Time series of the number of distinct attackers from country X in D2

Coefficients .79 .4 1.21 -.99 -2.19 2.16 -.9
Standard deviation .02 .04 .02 .007 .06 .13 .07

Time series of the total number of distinct attackers in D2

Coefficients .79 .4 1.21 -.99 -2.18 2.16 -.9
Standard deviation .02 .04 .02 .008 .06 .12 .07

Table 4.2 summarizes the fitting results. We make the following observations. Corresponding

to D1, the two fitted models are similar to each other in terms of the coefficients. Corresponding

to D2, the two fitted models are almost identical to each other.

Figures 4.7a and 4.7b show the fitting results of the two times series in D1. Figures 4.7c and

4.7d show the fitting results of the two time series in D2. We observe that both time series in D1

and D2 are fitted well. For D1, the PMAD (i.e., fitting error) values for fitting the times series of

the total number of distinct attackers and the number of distinct attackers from country X are 0.08

and 0.06, respectively. For D1, the PMAD (i.e., fitting error) values for fitting the times series of

the total number of distinct attackers and the number of distinct attackers from country X are 0.08

and 0.07, respectively.
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(a) Time series of the total number of attackers in D1. (b) Time series of the number of attackers from country
X in D1.

(c) Time series of the total number of attackers in D2. (d) Time series of the number of attackers from country
X in D2.

Figure 4.7: Model fitting of the time series of the total number of distinct attackers and the time
series of the number of distinct attackers from country X , where black-colored dots represent
observed values and red-colored dots represent fitted values.
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In summary, Table 4.2 and Figure lead us to draw the conclusion that the two time series,

especially after filtering the traffic that is likely caused by misconfigurations, exhibit very similar

fittability.

4.5 Limitations of the Study

The present study has several limitations. First, both D1 and D2 may contain misconfiguration-

cause, non-malicious traffic. Due to the lack of interactions between blackhole IP addresses and

remote computers (an inherent limitation of blackhole), it is hard to know the ground truth. There-

fore, better filtering methods are needed so as to make the data approximate the ground truth as

closely as possible.

Second, it is possible that some attackers are aware of the blackhole and therefore can instruct

their attacks to bypass it. As a consequence, the data collected by blackhole may not faithfully

reflect the cybersecurity posture because the data is not a spatial “uniform" sample of the attack

traffic in Internet. Nevertheless, our methodology would be equally applicable to analyze more

representative data, when it becomes available.

Third, the data collected by blackhole does not contain rich information that would allow us to

conduct deeper analysis, such as analyzing the global characteristics of specific attacks. Still, our

methodology is equally useful for analyzing data with richer information (when available).

4.6 Conclusion

We have studied the cybersecurity posture based on the data collected by CAIDA’s blackhole dur-

ing the month of March 2013. We have analyzed both the “as is” data (D1) and the data obtained

after heuristically filtering some rarely seen attackers (D2). We have defined the notion of sweep-

time and found that the sweep-time follows the power-law distribution. We have found that the

total number of distinct attackers that are observed by the blackhole is largely determined by the

number of distinct attackers from a certain country code.
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We expect to publish more detailed analysis and (hypothetical) explanations of the newly iden-

tified phenomena elsewhere shortly.
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Chapter 5: CONCLUSION

5.1 Summary

In this dissertation, we propose a systematic statistical framework for analyzing cyber attacks.

Empowered by this new concept, we present results in the following three frontiers. First, we show

that cyber attacks can exhibit the Long-Range Dependence (LRD) phenomenon, which is for the

first time found to be relevant in the cyber security domain. We demonstrate how to exploit LRD

to achieve gray-box (rather than black-box) prediction. Second, we show that cyber attacks can

exhibit the Extreme Value (EV) phenomenon. We characterize the EV phenomenon and show how

to exploit for even better prediction of extreme events. Third, we characterize spatial and temporal

properties that are exhibited by blackhole-captured cyber attacks. These statistical characteristics

are useful not only from a practice perspective (e.g., guiding proactive allocation of resources

in anticipating the incoming attacks), but also from a theoretical perspective (e.g., guiding the

development of theoretical cyber security models that can accommodate the desired statistical

properties).

5.2 Future Work

Dependence is perhaps inherent to nature and perhaps to cyberspace as well. In theoretic cyber

security models, dependence is often assumed so as to simplify the analysis. However, it may be

possible that we cannot afford to assume away the dependence in question. In order to understand

and characterize the significance of dependence in real cyber attacks, the present chapter studies

the dependence between attack processes at multiple resolutions. Specifically, it plans to study the

following:

• We showed that a network-level attack process is composed (or superposition) of computer-

level attack processes. We want to answer the following questions: Are the computer-level

attack processes dependent upon each other? How strong is the dependence? Intuitively,
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certain kinds of attacks would cause strong dependence (e.g., the attacker is attempting to

attack a chunk of consecutive IP addresses).

• We showed that a computer-level attack process is composed of port-level attack processes.

Are the port-level attack processes dependent upon each other? How strong is the depen-

dence? Intuitively, strong dependence would be exhibited when the attacker attempts to

attack the same computer’s ports one after another.

• Extremal dependence. Dependence between extremal attack processes are very important.

For example, for the port-level attacks, does the computer receive a large number of attacks

from different ports simultaneously? If it does, how to measure this dependence?
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Chapter 6: APPENDIX

6.1 Review of Some Statistical Techniques

6.1.1 Methods for Estimating Hurst Parameter

We used six popular methods (cf. [15] for details) for estimating the Hurst parameter, which is a

well-accepted practice [58, 64].

1) RS method: For a time series {Xt, t ≥ 1}, with partial sum Yt =
∑t

i=1Xi and sample variance

S2
t = 1

t

∑t
i=1X

2
i −

(
1
t

)2
Y 2
t , the R/S statistic is defined as

R

S
(n) =

1

Sn

[
max
0≤t≤n

(
Yt −

t

n
Yn

)
− min

0≤t≤n

(
Yt −

t

n
Yn

)]
.

For LRD series, we have

E

[
R

S
(n)

]
∼ CHn

H , n→∞

where CH is a positive, finite constant independent of n.

2) AGV (aggregated variance) method: Divide time series {Xt, t ≥ 1} into blocks of size m. The

block average is

X(m)(k) =
1

m

km∑
i=(k−1)m+1

Xi, k = 1, 2 . . . .

Take the sample variance of X(m)(k) within each block, which is an estimator of Var(X(m)). For

LRD series, we have β = 2H − 2 and

Var
(
X(m)

)
∼ cm−β, m→∞,

where c is a finite positive constant independent of m.

3) Peng method: The series is broken up into blocks of size m. Compute partial sums Y (i), i =

1, 2 . . . ,m within blocks. Fit a least-square line to the Y (i)’s and compute the sample variance of
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the residuals. This procedure is repeated for each of the blocks, and the resulting sample variances

are averaged. The resulting number is proportional to m2H for LRD series.

4) Per (Periodogram) method: One first calculates

I(λ) =
1

2πN

∣∣∣∣∣
N∑
j=1

Xje
ijλ

∣∣∣∣∣ ,
where λ is the frequency, N is the number of terms in the series, and Xj is the data. A LRD series

should have a periodogram proportional to λ1−2H for λ ≈ 0. A regression of the logarithm of the

periodogram on the logarithm of the frequency gives coefficient 1− 2H .

5) Box (Boxed Periodogram) method: This method was developed to deal with the problem of

having most of the points, which are used to estimate H , on the right-hand side of the graph.

6) Wave (Wavelet) method: Wavelets can be thought of as akin to Fourier series but using wave-

forms other than sine waves. The estimator used here fits a straight line to a frequency spectrum

derived using wavelets [5].

6.1.2 Heavy-tail Distributions

A random variable X is said to belong to the Maximum Domain of Attraction (MDA) of the

extreme value distribution Hξ if there exists constants cn ∈ R+, dn ∈ R such that its distribution

function F that satisfies

lim
n→∞

nF (cnx+ dn) = Hξ(x).

In statistics, X is said to follow a heavy-tailed distribution if F ∈ MDA(Hξ). There are many

methods for estimating parameter α [27,59]. A widely-used method is called Point Over Threshold

(POT). Let X1, . . . , Xn be independent and identically distributed random variables from F ∈

MDA(Hξ), then we may choose a high threshold u such that

lim
u→xF

sup
0<x<xF−u

|F̄u(x)− Ḡξ,β(µ)(x)| = 0,
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where xF is the right end poind point of X , and

Fu(x) = P (X − u ≤ x|X > u), x ≥ 0,

and Ḡξ,β(µ) = 1−Gξ,β(µ) is the survival function of generalized Pareto distribution (GPD)

Ḡξ,β(µ)(x) =


(

1 + ξ
x

β

)−1/ξ

, ξ 6= 0

exp{−x/β}, ξ = 0

where x ∈ R+ if ξ ∈ R+, and x ∈ [0,−β/ξ] if ξ ∈ R−. The POT method states that if X1, . . . , Xn

are heavy-tailed data, then [Xi − u|Xi > u] follows a generalized Pareto distribution.

6.1.3 Goodness-of-fit Test Statistics

We use three popular goodness-of-fit test statistics: Kolmogorov-Smirnov (KS), Cramér-von Mises

(CM), and Anderson-Darling (AD). LetX1, . . . , Xn be independent and identical random variables

with distribution F . The empirical distribution Fn is defined as

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x),

where I(Xi ≤ x) is the indicator function:

I(Xi ≤ x) =

 1, Xi ≤ x,

0, o/w.

The KS test statistic is defined as

KS =
√
n sup

x
|Fn(x)− F (x)| .
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The CM test statistic is defined as

CM = n

∫
(Fn(x)− F (x))2dF (x).

The AD test statistic is defined as

AD = n

∫
(Fn(x)− F (x))2w(x)dF (x),

where w(x) = [F (x)(1− F (x))]−1.
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