
CONSTRAINTS FOR ATTRIBUTE BASED ACCESS CONTROL WITH APPLICATION IN

CLOUD I AA S

APPROVED BY SUPERVISING COMMITTEE:

Ravi Sandhu, Ph.D., Co-Chair

Ram Krishnan, Ph.D., Co-Chair

Weining Zhang, Ph.D.

Gregory White, Ph.D.

Shouhuai Xu, Ph.D.

Accepted:
Dean, Graduate School

DEDICATION

This dissertation is dedicated to my wife, Ms. Nilufar Ferdous, for her innumerable supports

during the most demanding period of our life and, my parents who inspired me each step of the

way with their unconditional love.

CONSTRAINTS FOR ATTRIBUTE BASED ACCESS CONTROL WITH APPLICATION IN

CLOUD I AA S

by

KHALID ZAMAN BIJON, M. Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
May 2015

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3702237
Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3702237

ACKNOWLEDGEMENTS

I would like to express my sincerest appreciation and profoundest gratitude to my advisors Dr.

Ravi Sandhu and Dr. Ram Krishnan for their guidance and support throughout my doctoral studies.

This dissertation would not be accomplished without their inspiring ideas, critical comments, and

constant encouragement. I also thank Farhan Patwa, Associate Director of the ICS@UTSA, for

his help and comments on the OpenStack implementation of thepart of this dissertation.

I would like to extend my gratitude to other members of my committee, Dr. Rajendra Boppana,

Dr. Greg White, and Dr. Shouhuai Xu, for their insightful comments and the time they devoted to

reading the dissertation.

Finally, I would like to thank many colleagues and friends atthe University of Texas at San

Antonio for their help and support during all these years, which made my stay very enjoyable.

This work has been graciously supported by the National Science Foundation grant CNS-

1111925 and CNS-1423481 and by the State of Texas Emerging Technology Fund.

This Doctoral Dissertation was produced in accordance withguidelines which permit the in-
clusion as part of the Doctoral Dissertation the text of an original paper, or papers, submitted for
publication. The Doctoral Dissertation must still conformto all other requirements explained in
the Guide for the Preparation of a Doctoral Dissertation at The University of Texas at San Anto-
nio. It must include a comprehensive abstract, a full introduction and literature review, and a final
overall conclusion. Additional material (procedural and design data as well as descriptions of
equipment) must be provided in sufficient detail to allow a clear and precise judgment to be made
of the importance and originality of the research reported.

It is acceptable for this Doctoral Dissertation to include as chapters authentic copies of pa-
pers already published, provided these meet type size, margin, and legibility requirements. In such
cases, connecting texts, which provide logical bridges between different manuscripts, are manda-
tory. Where the student is not the sole author of a manuscript, the student is required to make an
explicit statement in the introductory material to that manuscript describing the students contribu-
tion to the work and acknowledging the contribution of the other author(s). The signatures of the
Supervising Committee which precede all other material in the Doctoral Dissertation attest to the
accuracy of this statement.

May 2015

iii

CONSTRAINTS FOR ATTRIBUTE BASED ACCESS CONTROL WITH APPLICATION IN

CLOUD I AA S

Khalid Zaman Bijon, Ph.D.
The University of Texas at San Antonio, 2015

Supervising Professors: Ravi Sandhu, Ph.D. and Ram Krishnan, Ph.D.

Recently, attribute based access control (ABAC) has received considerable attention from the

security community for its policy flexibility and dynamic decision making capabilities. The general

idea of ABAC is to determine the authorization decisions of an access request based on various

attributesof the entities involved in the access (e.g., users, subjects, objects, context, etc.). Hence,

in an ABAC system, proper assignment of attribute values to different entities is necessary to

protect against unauthorized access. There has been considerable prior research for ABAC in

various aspects such as formal models, enforcement models,policy composition languages and so

on. However, mechanisms for ensuring proper attribute value assignments to entities have not been

well studied.

In this dissertation, we propose a mechanism to specify and enforce constraints in ABAC that

partially ensures proper assignment of attribute values toentities. We do so by specifying con-

straints on attribute values of a particular entity, so as topreserve various kind of conflicting re-

lations between these values. We develop a declarative language called attribute-based constraint

specification language (ABCL) for such constraints specification. During assignment of attribute

values to entities, the mechanism enforces these specified constraints by prohibiting assignments

that would violate one or more constraints. We validate expressiveness of ABCL by configuring

several well-known constraint policies that include separation of duty and cardinality policies of the

role based access control system. We also demonstrate the practical usefulness of ABCL by con-

figuring various security policies for banking organizations. We discuss enforcement algorithms

for ABCL and analyze their complexity.

We further devise a similar constraints specification mechanism in the concrete domain of cloud

iv

infrastructure-as-a-service (IaaS). In cloud IaaS, both physical resources and virtual resources need

to be mapped to each other in order to build a particular computing environment. Any misconfig-

urations in these mappings may result in potential securityand performance losses. Unlike for

attribute value assignment in ABAC, here, we generate constraints for ensuring proper mappings

among cloud resources. Different properties of IaaS resources can be captured as attribute values

where these values can have several conflicting relations that restrict how these resources can be

mapped to each other. We identify customized versions of ABCL to specify such conflicting rela-

tions in cloud IaaS. In particular, we specify constraints for the following two mappings in cloud

IaaS. (i) In cloud IaaS, a major problem for enterprise-scale tenants concerns orchestrating their

virtual resources in a secure manner where they restrict anyunwanted mapping between two virtual

resources. We develop a constraints specification mechanism in order to restrict possible miscon-

figuration for such mappings, and demonstrate its implementation in the open source OpenStack

cloud platform. We verify the expressiveness of the mechanism by configuring the mappings for 3-

tier business applications and hadoop clusters setup. Also, we develop a constraint mining process

in order to construct constraints automatically for the tenants according to their virtual resources

mapping requirements. (ii) Another major concern arises from the tenants’ lack of control on

mapping of their virtual machines to physical servers operated by a cloud service provider. This

limitation leads to many security and performance issues. We develop a virtual machine scheduler

where the enterprises gain some controls by specifying constraints for this mapping. Our scheduler

also optimizes the number of physical servers while satisfying the specified constraints. We ana-

lyze various performance and usability issues of the scheduler in OpenStack. Together, these two

constraint mechanisms enable cloud tenants to maintain a level of control over their virtual assets

in the cloud that is somewhat comparable to the level of control that was possible to maintain via

their own premises.

v

TABLE OF CONTENTS

Acknowledgements iii

Abstract .. . iv

List of Tables x

List of Figures xi

Chapter 1: Introduction 1

1.1 Motivation .. 2

1.1.1 Attribute Based Access Control 2

1.1.2 Cloud Infrastructure-as-a-Service 3

1.2 Thesis . 6

1.3 Summary of Contributions 7

1.4 Organization of the Dissertation 9

Chapter 2: Background and Literature Review 10

2.1 Overview of Traditional and Existing Access Control Models 10

2.2 Attribute Based Systems 11

2.2.1 Attribute Based Access Control 11

2.2.2 Attribute Based Encryption 12

2.3 Constraints Specification 12

2.4 Policy Specification in cloud Infrastructure-as-a-Service 13

2.4.1 Related to Virtual Resources Mapping Configuration Management 13

2.4.2 Related to Virtual Resource Scheduling 14

2.5 Overview of OpenStack Architecture 16

vi

Chapter 3: The ABCL Model 18

3.1 Motivation and Scope 18

3.2 Attribute Based Constraint Specification Language (ABCL) 21

3.2.1 Basic Components of the ABCL Model 21

3.2.2 Syntax of ABCL . 22

3.2.3 Declared Conflict Sets of ABCL .. . 24

3.3 ABCL Enforcement .. 27

3.3.1 Constraints Hierarchy and Enforcement Complexity 29

3.4 ABCL Use Cases . 30

3.4.1 RBAC Constraints (RCL-2000 and NIST-RBAC SOD) 31

3.4.2 Security policy specifications for Banking Organizations 32

3.5 Performance Evaluation 35

Chapter 4: Foundation of Attribute-Based Constraints Specification in cloud IaaS . . . 38

4.1 Attributes Specification for Virtual Resources 38

4.2 Constraints Specification using ABCL 39

4.2.1 Security policy specification for IaaS Public Cloud 39

4.2.2 ABCL Specification for Public Cloud IaaS 43

4.3 Attribute Based Isolation Management 46

4.3.1 Background: Trusted Virtual Datacenter (TVDc) 47

4.3.2 Formal Isolation Management Model (F-TVDc) 48

4.3.3 Administrative Models .. . 53

Chapter 5: The CVRM model .. . 60

5.1 Motivation .. 60

5.2 Design of CVRM . 63

5.2.1 Formal Specification .. 64

5.2.2 Instantiation .68

vii

5.3 CVRM Enforcement .71

5.3.1 Enforcement in OpenStack .. . 72

5.3.2 OpenStack Overview .72

5.3.3 Constraint Specifier .. . 73

5.3.4 Constraint Enforcer .. . 75

5.3.5 Security Concerns .76

5.4 Prototype Implementation in OpenStack 77

5.4.1 OpenStack Constraints API .. . 78

5.4.2 Constraints Verification in OpenStack 81

5.5 Automated Constraint Construction 83

5.5.1 Mining Overview . 84

5.5.2 Candidate Attribute Relation Construction 85

5.5.3 Meaningful Attribute Relations 91

5.5.4 Implementation and Analysis 93

Chapter 6: Constraint-Aware Virtual Resource Scheduling 96

6.1 Conflict-Free Virtual Resource Scheduling 96

6.1.1 Scheduling Components Specification 97

6.1.2 Conflict-Free Host to VM Allocation 98

6.1.3 Conflict-Free Scheduling of Other Virtual Resources to Physical Resources 102

6.2 Optimization Problem Definition and Solution Analysis 103

6.2.1 MIN_PARTITION: Minimum Conflict-Free Partitions of Attribute-Values . 103

6.2.2 Community Cloud . 106

6.2.3 Private Cloud . 107

6.2.4 ConflictFreeATTR Generation 108

6.2.5 Co-Resident VM Partitions Generation 108

6.2.6 Scheduling VMs to Hosts .110

viii

6.3 Implementation and Evaluation 110

6.4 Incremental Conflicts 116

6.4.1 Types of Conflict Change .. 116

6.4.2 Cost Analysis . 119

6.4.3 Reachability Heuristics 121

6.5 Security Issues and Limitations 121

Chapter 7: Conclusion 124

7.1 Summary . 124

7.2 Future Work .125

Bibliography 126

Vita

ix

LIST OF TABLES

Table 3.1 Basic sets and functions of ABAC 22

Table 3.2 Syntax of Language 23

Table 3.3 Declared ABCL Conflict Sets 24

Table 3.4 Attributes of User, Subject and Object in RBAC 31

Table 3.5 Constraints Specification for RBAC SSOD and DSOD 31

Table 3.6 User Attributes (UA) 33

Table 3.7 ABCL Sets Declaration and Initialization: 34

Table 4.1 Attributes .. . 42

Table 4.2 ABCL Sets Declaration and Initialization: 45

Table 4.3 Basic Sets for F-TVDc 50

Table 4.4 Attributes Specification 51

Table 4.5 IT admin-user Operations 54

Table 4.6 TVDc-ADMIN Operations 56

Table 4.7 Tenant-ADMIN Operations 57

Table 5.1 Constraint Specification Grammar 67

Table 5.2 OpenStackNovaAPI for CVRM Specifications 79

Table 5.3 min_rule Specification Grammar . 83

x

LIST OF FIGURES

Figure 1.1 Cloud Resources Mapping Relation 5

Figure 3.1 ABAC model with ABACα and ABCL Constraints (adapted from ABACα [78]) . 19

Figure 3.2 Attributes Relationship Hierarchy 20

Figure 3.3 Relationship Hierarchy with Required ABCL Functionality. 30

Figure 3.4 Evaluation Graphs of ABCL Constraints 37

Figure 4.1 Attribute Design for Virtual Resources in Cloud IaaS 40

Figure 4.2 TVDc View of the IaaS Cloud Resources [18]. 49

Figure 5.1 Constraints on Virtual Resources Arrangement Configurations 62

Figure 5.2 Constraints Specification for 3-Tier Application System 68

Figure 5.3 Constraints Specification for Hadoop Cluster 71

Figure 5.4 Components of CVRM Enforcement Process in a Service of OpenStack . . 72

Figure 5.5 Operationvolume-attachin Nova . 74

Figure 5.6 Constraint Specifier in Nova 74

Figure 5.7 Constraint Enforcement forvolume-attach 75

Figure 5.8 Database Schema 80

Figure 5.9 Constraints Well-Formedness Validation in OpenStack: An Activity Diagram 82

Figure 5.10 Overview of the Constraint Mining 85

Figure 5.11 Mining Time with Increasing No. ofVMs 94

Figure 5.12 Mining Time with Increasing Scopes 94

Figure 6.1 Conflict-FreeVM-Host Allocation . 99

Figure 6.2 Conflicts of different Systems and CorrespondingConflict Graphs 105

Figure 6.3 Experimental Setup in OpenStack 111

Figure 6.4 Required Time for Small Scope and Confilct-Set 112

xi

Figure 6.5 Required Time for Large Scope and Conflict-Set 113

Figure 6.6 Latency for Conflict-free Scheduling 114

Figure 6.7 Required Number of Hosts for Varying Number of Elements in Conflict-Set 115

Figure 6.8 Required Number of Hosts for Max Degree of Conflicts 116

Figure 6.9 Host Utilization Overhead 117

Figure 6.10 Cost Analysis: X-axis(% of the Total Conflicts for Given Scopes), Y-

axis(% of Total VMs that Require Migrations) 118

xii

Chapter 1: INTRODUCTION

In general, constraints are an important and powerful mechanism for laying out higher-level secu-

rity policies. For instance, in an organization, constraints can specify higher-level policies to put

restriction on the behavior of its employees such as separation of duty constraints in role based

access control whereby a particular employee cannot take both ‘programmer’ and ‘tester’ roles for

the same project. Such a constraint eventually prevents theemployee from simultaneously working

on both developing and testing code for same project. In thisdissertation, we develop constraints

specification in attribute based access control (ABAC) and cloud infrastructure-as-a-service (IaaS).

Generally, ABAC regulates permissions of users or subjectsto access system resources dy-

namically based on associated authorization rules with a particular permission. A user is able to

exercise a permission on an object if the attributes of the user’s subject and the object have a con-

figuration satisfying the authorization rule specified for that permission. Hence, proper assignment

of attribute values (or simply attribute assignment) to these entities is crucially important in an

ABAC system for preventing unintended accesses. In this dissertation, we focus on constraints

specification as an high-level policy specification on attributes assignment to entities in an ABAC

based system as a mechanism to determine which entity shouldget which attribute values. By enti-

ties, we refer to users, subjects and objects which are common in access control systems. A user is

an abstraction of a human being. A subject is an instantiation of a user and can refer to a particular

session much like in role based access control (RBAC) and an object is a resource in the system.

While ABAC is policy neutral, it is also complex to manage since its access management not only

depends on authorization rules but also assigned attributes to the entities. Imposing constraints

on attribute value assignments can mitigate this complexity by imposing centrally designed and

configured constraints on the decentralized process by which specific attribute values are assigned

to individual entities.

Moreover, when an organization migrate to an external cloudIaaS system, such higher level

policies become the only means to capture required securityrequirements. For instance, before

1

moving to cloud, an organization (via its security architects for IT operations) specifies configura-

tion policies for arranging its assets including establishnetworks among particular set of servers,

backups and connecting a specific storage volume to a server,etc. However, when an organization

moves to IaaS cloud, these resources become virtual and remote such as virtual machines (VM) and

virtual networks (NET), so configuration management policies need to be similarly specified to ar-

range the organization’s entire virtual resources. Since acloud service provider (CSP) only allows

it clients to specify higher level policies, a proper constraints specification process can provide an

organization to specify their required security policies in a cloud IaaS system.

1.1 Motivation

We discuss the motivations for constraints specification inABAC and cloud IaaS system.

1.1.1 Attribute Based Access Control

Over the last few years, attribute based access control (ABAC) has been emerging as a flexible

form of access control due to its policy-neutral nature (that is, an ability to express different kinds

of access control policies including DAC, MAC and RBAC) and dynamic decision making ca-

pabilities. Compared to these other access control models,ABAC is more complex to manage.

Authorization of an access request in ABAC requires certainassigned attributes to the entities in-

volved in the access. Hence, proper assignment of the attributes to entities needs to be ensured for

protecting against unauthorized access. To this end, a constraints specification and enforcement

mechanism can configure required attributes assignment policies for an organization. However,

constraints specification in ABAC is more complex than that in other access control models such

as RBAC since there are multiple attributes (unlike a singlerole attribute in RBAC) and attributes

can take different structures (e.g., atomic or single-valued attributes such assecurity-clearanceand

bank-balanceand set-valued attributes such asrole andgroup). Constraints may exist amongst dif-

ferent values of a set-valued attribute (e.g. mutual exclusion on group memberships) and also on

values across different attributes. For instance, supposethat an organization requires that only

2

its vice-presidents can get both a top-secret clearance andmembership in their board-members

email group. The ABAC system should have mechanisms to specify such constraints. In this case,

there are three attributes for each user namelyrole, clearanceandgroup. If the role attribute of

a user is not ‘vice-president’, then the user’sclearanceandgroupattributes cannot take the value

of ‘top-secret’ and ‘board-member-emails’ respectively.Note that these constraints are not con-

cerned about users’ access to objects directly. Instead, they focus on high-level requirements that

a security architect would specify, which will indirectly translate into enabling or disabling certain

accesses.

In general, the more expressive power a model has, the harderit is (if at all possible) to carry

out many types of security analysis. It has already been shown that the safety problem of an ABAC

system with infinite value domain of attributes is undecidable [131]. Nevertheless, ABAC is the

leading mechanism that overcomes the limitations of discretionary access control (DAC) [107],

mandatory access control (MAC) [106] and role-based accesscontrol (RBAC) [78]. NIST recog-

nizes that ABAC allows an unprecedented amount of flexibility and security that makes it a suit-

able choice for large and federated enterprizes relative toexisting access control mechanisms [37].

Given that ABAC is known to be hard to analyze, constraints specification on attribute values is a

powerful means to ensure that essential high-level access control requirements are met in a system

that utilizes ABAC.

1.1.2 Cloud Infrastructure-as-a-Service

When an organization moves to cloud IaaS, two major issues emerge. (i) In a CSP, a customer,

also referred to as a tenant, is forced to re-think their access control and security policies in terms

of configuration management facilities offered by the CSP. (ii) Multi-tenancy, availability and

reliability are some of the major concerns for customers in IaaS cloud. For example, if a customer

is concerned about co-location of their virtual machine in the same physical server with, say,

some other competing tenants, it would be desirable to statethis requirement. However, currently,

there is no simple way for a customer to realize this policy. Our motivation is to investigate and

3

develop robust, flexible, and intuitive virtual resource configuration management mechanisms for

infrastructure as a service (IaaS) cloud — one important piece of the overall cloud security puzzle.

In cloud IaaS, the physical resources in a datacenter are logically arranged by the cloud service

provider (CSP) and virtual resources are hosted on those logical collections of physical resources.

This is illustrated in figure 1.1 where a rack, for example, isa collection of a specific set of physical

servers and network hosts. Other resources such as physicalstorage volumes may be associated

with compute hosts in the rack. This is shown as physical resource to physical resource mapping

(PR-to-PR) in the figure. The single and double-headed arrows indicate the usual “one-to” and

“many-to” mappings respectively. Generally, the PR-to-PRmappings are completely managed by

the CSPs with very little information to tenants.

There are at least two other type of mappings in cloud IaaS where it would be desirable for

tenants to have some level of control by means of constraints. A major issue arises from the fact

that, for a given tenant with large-scale, heterogeneous virtual resources in IaaS, orchestrating

those resources in a secure manner is cumbersome. Virtual tovirtual resource mapping relations

are shown in figure 1.1 as VR-to-VR mappings. Here, orchestration refers to resource management

issues such as creating networks, designing network layouts, applying appropriate images to VMs,

etc. Since, in IaaS resource orchestration operations are performed in software (unlike in the case

of physical resources where, for instance, servers are physically connected via Ethernet cables),

they are highly prone to misconfigurations. that can lead to security issues or increased exposure.

For instance, a web-facing VM can be accidentally connectedto a sensitive internal network or

a low-assurance image may be applied to a VM that is expected to be security-hardened. All

major CSPs including Amazon [3] acknowledge that managing such configurations is beyond their

responsibilities, rather they should be managed by individual tenants. However, current CSPs

fail to offer suitable tools in this regard. This dissertation presents the design, implementation,

and evaluation of attribute-based CVRM (constraint-driven virtual resource management) as an

approach to mitigate such concerns in cloud IaaS.

4

Figure 1.1: Cloud Resources Mapping Relation

Furthermore, in cloud IaaS, physical hardware is also shared by multiple virtual resources for

maximizing utilization and reducing cost. IaaS public or community cloud providers allow multi-

tenancy which multiplexes virtual resources of multiple enterprises upon same hardware. This

includes co-location of virtual machines from different tenants on a single physical host, sharing

physical disk storage, etc. This is illustrated as virtual resource to physical resource mapping

(VR-to-PR) in figure 1.1. This raises many security and performance considerations for a tenant’s

workload in the cloud. For instance, a hypervisor on a host may be inadvertently misconfigured by

a cloud administrator enabling leakage of data between virtual machines on that host that should

otherwise be isolated. More problematically, a tenant’s virtual machines can be attacked by co-

located malicious virtual machines of an adversary tenant.Similarly, highly cpu-intensive co-

located virtual machines may disrupt each other’s expectedperformance. The work of Ristenpart

et al [98, 120, 132, 133] has demonstrated such co-location vulnerabilities in real-world clouds. In

particular, they show that preventing targeted co-location of virtual machines from different tenants

on the same physical server is unlikely to be successful. Their conclusion is that “the best solution

is simply to expose the risk and placement decisions directly to users” (i.e. tenants) [98].

5

Our objective is to address this goal where the tenants and the cloud system provider are able

to schedule virtual resources on physical resources consistent with high-level and fine-grained

constraints. In this respect, even the leading IaaS serviceproviders currently offer minimal sup-

port to their tenants. In particular, tenants have very little influence on how their resources are

scheduled. Of course, certain coarse-grained and static preferences for disaster management are

supported. For instance, the Amazon Web Services cloud infrastructure is hosted at multiple loca-

tions worldwide where a location comprises of multiple geographically isolated datacenters called

a ‘Region’ [1]. Each ‘Region’ also has multiple, isolated locations known as ‘Availability Zones’.

As a client, a tenant can at best specify the ‘Availability Zone’ of its virtual resources and specify

backup Availability Zones for a premium. This concerns engineering for fault tolerance but does

not concern co-location of a tenant’s resources with those of others in a given physical server or a

rack. This dissertation explores a highly dynamic and fine-grained technique for scheduling virtual

resources based on high-level constraints specified by tenants. It is worthwhile to note that multi-

tenancy concerns can arise even in private cloud scenarios involving a single large-scale enterprise

due to various reasons such as the need to separate the resources of various departments within that

enterprise for assurance or compliance reasons. Similar toentities in ABAC, different properties

of the resources of cloud IaaS can be captured as attributes where the attributes can have several

conflicting relations that restrict how those resources to be mapped with each other. This disserta-

tion develop constraints specification mechanisms for cloud IaaS that capture various conflicting

relations among attributes of the resources in cloud and restrict improper mappings accordingly.

1.2 Thesis

The central thesis of this dissertation is as follows:

Attributes can capture various high-level properties of entities and objects in a system and

these attributes preserve specific conflicting relations with each other. By exploiting this fact,

a suitably devised attribute based constraints specification mechanism can provide effective and

expressive capabilities in laying out higher-level security policies for a traditional organization

6

that exercises attribute based access control as well as forthe mapping configuration management

of virtual resources in cloud infrastructure-as-a-service.

1.3 Summary of Contributions

The major contributions of this research are stated as follows:

• We develop an attribute based constraint specification language (ABCL) for specifying con-

straints on attributes assignment. ABCL provides a mechanism to represent different kinds

of conflicting relations amongst attributes in a system in the form of relation-sets. Relation-

sets contain different attribute values and ABCLexpressionsspecify constraints on attributes

assignment based on these values. There is considerable literature, such as [53, 64, 73, 83,

101,109,121], on the utility of attributes in managing various aspects of security in a system.

Our work is the first investigation on how attributes themselves could be managed based on

their intrinsic relationships. We show that ABCL can express many types of constraints in-

cluding those that can be expressed using the role-based constraint language RCL-2000 [12]

and those supported by the NIST standard RBAC model [57]. We demonstrate the usefulness

of ABCL in different usage scenarios such as in banking and cloud computing application

domains. We also discuss ABCL enforcement and its performance.

• We develop the CVRM (constraint driven virtual resource management) framework that en-

ables tenants to express several essential properties of cloud resources as their attributes and

specify constraints on resource mappings (VR-to-VR in figure 1.1) based on those attributes.

We provide a customized language of ABCL for constraints specification which is suitable

for this purpose. We expect such constraints to be specified by a tenant administrative user.

We provide a number of examples illustrating the utility of this technique in practical sit-

uations, such as configuring a 3-tier business application in cloud IaaS. The CSP can then

algorithmically enforce such constraints specified by all of its tenants when a virtual resource

is mapped to another. We demonstrate a comprehensive enforcement process of the CVRM

7

and analyzes security issues of the enforcement process. Weprovide a detailed implemen-

tation of it in the widely-deployed OpenStack, the open-source IaaS cloud software. The

implementation process includes new API declaration, database schema design and identi-

fies different types of attributes in a cloud IaaS system including attributes specific to a tenant

and system attributes across multiple tenants. Finally, wedevelop a system automated con-

straint construction process in which the tenants specify the necessary attributes according to

their business specifications and the required constraintsare automatically constructed. This

construction process includes a novel policy mining algorithm which is designed specifically

for the cloud IaaS system and a process to identify policies which are semantically mean-

ingful with respect to the virtual resources configuration requirements of a tenant in cloud

IaaS.

• Finally, we present a design of an attribute-based framework for specifying co-location con-

straints of virtual resources scheduled on given physical resources. Given that co-location

constraints can drastically affect physical resource utilization, we propose a host optimiza-

tion process while enforcing constraints. Note that, host optimization (i.e., optimizing the

number of hosts necessary for scheduling the VMs in a conflict-free manner) is an important

requirement for achieving energy-efficient datacenter which is also a major concern for the

CSPs for cost optimization [19]. We establish that, in general, the algorithms for host op-

timization while enforcing such constraints are NP-Complete. We demonstrate a subset of

attribute conflicts that are of practical significance in varied application domains and cloud

deployment scenarios (public, private, community, etc.),which can be efficiently enforced

in polynomial time. We develop a prototype of the conflict-free virtual machine schedul-

ing framework in OpenStack [6] and rigorously evaluate the framework on various aspects,

e.g., resource requirements, resource utilization, etc. We analyze issues that arise due to the

incremental changes of conflicts over time.

8

1.4 Organization of the Dissertation

Chapter 2 gives a brief background on constraints specification and reviews related work on at-

tribute based systems and cloud IaaS. Chapter 3 presents constraints specification in ABAC. In

chapter 4, we provides the foundation of attribute-based constraints specification in cloud IaaS

where we provide an example of ABCL configuring security policies in cloud IaaS. This chap-

ter also develops a simple attribute based isolation management system in cloud IaaS where we

show that attributes can represent various properties of users and resources in cloud which can be

utilized for specifying policies for managing isolation. Then, in chapter 5, we develop a constraint-

driven virtual resource orchestration which provides a customized version of ABCL which is more

specific for IaaS and an enforcement of the constraints with experimental analysis. This chap-

ter also includes an automated construction process of the constraints. In Chapter 6, we present

and analyze our developed constraint aware virtual resource scheduling mechanism. Chapter 7

summarizes the completed research and discusses future work.

9

Chapter 2: BACKGROUND AND LITERATURE REVIEW

In this chapter, we provide background on constraints specification in access control systems and

in cloud IaaS. We also provide brief overview of existing literature on traditional access control

systems, attribute based systems and cloud IaaS that are related to this dissertation.

2.1 Overview of Traditional and Existing Access Control Models

Access control has always played a vital role in the securityof a computing system. The earliest

access control approaches consist of discretionary accesscontrol (DAC) [107] and mandatory ac-

cess control (MAC) [106]. DAC enforces control over resources within a system as per resources’

owners discretion. Essentially, the owner is responsible for specifying in which manner a particu-

lar resource is accessible to specific system users. MAC enforces the control over resources in a

partial-ordered lattice of labels and clearances assignedto users and resources. The access is spec-

ified through read and writes rules according to the relations between these labels and clearances.

Over time, systems have adapted to new demands and evolved. As a result, access control mech-

anisms have also been required to follow suit. Role-based access control [104, 107] (RBAC) has

been a popular authorization solution in enterprise software and systems. The use of role constructs

facilitates permissions and users management.

Apart from the above mainstream approaches on access control, other variations of access

control mechanisms exist within the literature. Notably, the following access control mechanisms

are related to the research in this dissertation.

Several approaches have been proposed for combining risk issues in different access control

systems. In those approaches risks are quantified and gives more dynamic capabilities. Bijon et

al [30] provide a generic framework for risk-aware role based access control where they propose

a guideline to incorporate risks around various componentsof a role based access control system

such as user role assignment, role activation, etc. A quantified risk-aware RBAC sessions and role

activation/deactivation framework have been proposed in [29].

10

Provenance-based access control (PBAC) is capable of capturing, storing, and providing such

information, as provenance data, to make access control decisions. Specially Nguyen et al [91,94],

show that Provenance data essentially forms a direct-acyclic graph and provides a linkage structure

of history information of any data object of interest. This characteristic enables and facilitates a

traversal capability on provenance data from which appropriate access control decision can be

made. For instance, Nguyen et al [92] show that PBAC can be used to effectively enforce the

dynamic separation of duty.

Relationship-based Access Control (ReBAC) for online social graphs can also be built on

path patterns of relation edges. Specifically, Cheng et al [45] specify policies that utilizes reg-

ular expression-based path patterns of relationship typesbetween graph entities such as users

and resources for finer-grained and more expressive access control on online social networks.

This generic ReBAC model is later extended to capture various user-to-user, user-to-resource, or

resource-to-resource relationships [44,46].

Besides above described conventional access controls, there exists different models for secure

organizational information sharing. For instance, two different approaches have been proposed for

the organizations that exercise LBAC to securely collaborate with outside specialist/consultants

for certain reasons [27, 28]. Also, an administrative modelhas been proposed in [103] for the

group-centric secure information sharing for community cyber security.

2.2 Attribute Based Systems

2.2.1 Attribute Based Access Control

There is a sizable literature on ABAC in general. Damiani et al [53] described a framework for

ABAC in open environments. Wang et al [121] proposed a framework that models an ABAC sys-

tem using logic programming with set constraints of a computable set theory. The Flexible access

control system [73] can specify various ABAC policies and provide a language that permits the

specification of general constraints on authorizations. Yuan et al [129] described ABAC in the

11

aspects of authorization architecture for web services. Lang et al [83] provided informal configu-

ration of DAC, MAC, and RBAC through ABAC in the context of grid computing. These authors

seek to develop an access control system either for open systems such as web, Internet, etc., or

to overcome the limitations of conventional access controlmodels by utilizing attributes. Park

et al [95] categorized attributes according to their mutability during execution of operations and

developed a mechanism in which attributes of entities can beupdated as a side-effect of an ac-

cess. More recently, Jin et al [78] proposed an attribute based access control model in which they

provide an authorization policy specification language andformal framework using which DAC,

MAC and RBAC policies can be expressed. These works focus on ABAC in general and not so

much on constraints specification on attributes assignmentin ABAC.

2.2.2 Attribute Based Encryption

This body of literature concerns cryptographic enforcement mechanisms for attribute based access

control systems. Sahani et al [101] introduced the concept of Attribute Based Encryption (ABE)

in which an encrypted ciphertext is associated with a set of attributes, and the private key of a user

reflects an access policy over attributes. The user can decrypt if the ciphertext’s attributes satisfy

the key’s policy. Goyel et al [64] improved expressibility of ABE which supports any monotonic

access formula and Ostrovsky [93] enhanced it by including non-monotonic formulas. Several

other works examine different ABE schemes.

2.3 Constraints Specification

Several authors have focussed on issues in constraints specification in access control systems pri-

marily in RBAC. Constraints in RBAC are often characterizedas static separation of duty (SSOD)

and dynamic separation of duty (DSOD). These two issues dateback to the late 1980’s [48], [102].

A number of subsequent papers identify numerous forms of SSOD and DSOD policies [56, 111]

12

and their formal specification them formally in RBAC systems[61, 71]. The RCL-2000 language

for specifying RBAC constraint policies in a comprehensiveway was proposed by Ahn et al [12].

Object constraint language (OCL) [123] is also another well-known language for specifying con-

straints. This language is basically designed to specify constraints in Unified Modeling Language

(UML). UML is a general-purpose modeling language in which we can specify, visualize, and doc-

ument the components of software systems. OCL can specify various type of constraints including

SSOD and DSOD constraints of RBAC which are formally modeledin [113]. More recently, Jin

et al [78] proposed an attribute based access control model in which they provide an authorization

policy specification language that could also specify constraints on attributes assignment. How-

ever, their constraints specification focuses on what values the attributes of subjects and objects

may take given that users are currently assigned with particular attribute values. This is much

like constraints on what roles can be activated in a user’s session in RBAC given that a user is

pre-assigned to a set of roles. Thus, prior work does not address ABAC constraints comprehen-

sively. In this dissertation, we have shown that ABCL can specify various types of constraints for

configuring several of these RBAC constraints, including those expressible by RCL-2000 [12].

2.4 Policy Specification in cloud Infrastructure-as-a-Service

2.4.1 Related to Virtual Resources Mapping Configuration Management

Providing functionality to clients for resource-level permission management has started to receive

more attention recently from cloud IaaS providers. However, this is primarily for managing user or

group privileges to access their virtual resources. AWS Identity and Access Management (IAM)

policies [2] now can construct fine-grained policies to control users’ access to Subnets, Virtual

Private Clouds, Security Groups and also type of virtual machines they can create. Also, the

open source cloud platform OpenStack [6] has developed service called Keystone to manage users

privilege to access cloud resources using a variation of role-based access control. However, both

platforms lack suitable mechanism so that clients can systematically specify policy to manage their

13

virtual resources towards building a desired computing environment that addresses security, scale,

hpc, etc. This increases various security threats for the running workloads from different tenants

in cloud IaaS system. For instance, Shieh at al [110] shows that arbitrary sharing of network, in

cloud, may cause denial of service attack and performance interferences. Wei et al [124] shows that

uncontrolled snapshots and uses of images cause security risk for both creator and user of images.

Sivathanu et al [112] presents an experimental analysis on I/O performance bottleneck when virtual

storages are placed arbitrarily in physical storage and shared by random VMs. Hence, different

performance and security issues exist in cloud IaaS for unorganized multiplexing of resources and

lack of controls, several of which are summarized in [54, 69,76]. Hashizume et al [69] discuss

and enumerates the security threats in cloud IaaS arising due to sharing physical machine, using

images from public repository, sharing networks and storage, and also lack of proper resource

control mechanism.

Recently, for improving these scenarios, several efforts have been conducted by different groups

of researchers. For instance, several improvements on shared network performance management

have been proposed [15, 17, 110]. CloudNaas [17] provides better management of application-

specific address spaces, middlebox traversal, bandwidth reservation, etc. Shieh at al [110] gives

a bandwidth allocation scheme that allows infrastructure providers to define bandwidth sharing in

cloud network with multiple tenants. Sivathanu et al [112] identifies four different factors that af-

fects storage I/O performance and provides guidelines and their experimental analysis to minimize

I/O overhead. Present literature also contains several processes on users authorization and access

control models for cloud IaaS that includes different RBAC models for cloud IaaS [31,39,126].

2.4.2 Related to Virtual Resource Scheduling

Generally scheduling problems are NP-Complete. However, various heuristic and approximate

approaches have been well studied by the research community. For instance, the goal of resource-

constrained multi-project scheduling problem is to minimize average delay per project. A num-

ber of efforts have been made in this scheduling problem including the priority rule based analy-

14

sis [34, 82] which proposes heuristics, such as first-come-first-served, and shortest operation first,

to minimize average delay. Another scheduling problem is tominimize number of bins, while

scheduling a number of finite items in them. This problem is called bin packing. There are sin-

gle and multi capacity bin packing problems based on multiple requirements for scheduling [84].

Multi-capacity bin packing is also applied in resource scheduling in grid computing [114, 115].

One variation of bin packing problem is called bin-packing with conflicts that packs items in a

minimum number of bins while avoiding joint assignments of items that are in conflict. This prob-

lem is analogous to the problem we address in this dissertation. Several bin-packing with conflict

algorithms [74, 75] have been proposed where it is assumed that items can be conflicting in ran-

dom manner. However, we investigate the nature of various conflicts for scheduling items (VMs)

where the items do not have direct conflict with each other, rather the attributes of the items have

conflicts.

Different performance and security issues exist in cloud IaaS for unorganized multiplexing

of resources, which are summarized in [54, 69]. Recently, articles have been published exposing

the vulnerability of state-of-art co-residency system in public cloud IaaS system [132]. However,

the virtual resources schedulers designed by the commercial IaaS clouds such as Amazon and

IBM mainly aim to address performance management or load balancing related issues rather than

security conflicts that we address in this dissertation. Developing proper VM placement algorithms

recently drew attention from the research community. Bobroff et al [32] propose an algorithm that

proactively adapts to demand changes and migrates virtual machines between physical hosts. Yang

et al [128] also propose a load-balancing approach in VM scheduling process. Calcavecchia et

al [38] develop a process to select candidate physical host for a VM by analyzing past behaviors

of a physical host and deploy the request, while Gupta et al [67] propose a process for scheduling

HPC related VMs together. Li et al [85] propose VM-placementthat maximizes a physical hosts

cpu and bandwidth utilization. Also, Mastroianni et al [87]propose a probabilistic approach for

VM scheduling for maximizing CPU and RAM utilization of the physical host. The main focus

of these efforts is scheduling VMs either for the purpose of high-performance computing or load

15

balancing. Our approach is to capture different propertiesof VMs by means of assigned attributes,

and scheduling them while respecting conflicts expressed over those attributes.

2.5 Overview of OpenStack Architecture

In recent years, the popularity and wide use of the open-source OpenStack project [7] has made

it a mature platform on par with mainstream proprietary cloud management platforms such as

Amazon Web Services, Google Compute Engine, and Microsoft Azure Infrastructure Services, to

name a few. This section provides an overview of the OpenStack architecture and several of its

components. Cloud computing consists of three primary service models: Software-as-a-Service,

Platform- as-a-Service, and Infrastructure-as-a-Service (IaaS). Each of the service model type pro-

vides different types of resources that can be shared and used by consumers. The OpenStack

platform provides IaaS, which mainly deals with virtual resources that include virtual networks,

virtual machine images and instances. Other OpenStack components also provide other services

that relate to the mentioned virtual resources, i.e. monitoring resources usage and graphical user

interface. As depicted on OpenStack website, the logical architecture includes the following com-

ponents.

• Nova: provides an API for controlling cloud computing resources and managing the con-

sumers of those resources.

• Glance: provides an API for management of virtual machine images.

• Swift: provides an API for object storage of virtual resources.

• Heat: provides an API for cloud applications orchestration.

• Cinder: provides an API for block storage of virtual resources.

• Neutron: provides an API for defining network connectivity in the cloud.

• Keystone: provides an API for maintenance of users’ information and identity for authenti-

cation and authorization purposes.

16

• Ceilometer: provides an API for monitoring and collecting information on the movements

and usages of virtual resources.

In this dissertation, the focus is on enabling constraint driven virtual resource management

process in OpenStack, specifically, we implement the prototype for virtual machine management

process that is developed on Nova service component.

17

Chapter 3: THE ABCL MODEL

The materials in this chapter are published in the followingvenues [20,22]:

1. Khalid Bijon, Ram Krishman, and Ravi Sandhu. Constraintsspecification in attribute based

access control. ASE Science Journal, 2(3), 2013.

2. Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Towards an attribute based constraints spec-

ification language. In IEEE International Conference on Information Privacy, Security, Risk

and Trust (PASSAT), Washington, DC, September 8-14, 2013

This chapter describes our developed attribute based constraint specification language (ABCL)

for specifying constraints on attributes assignment to entities and their enforcement in an attribute

based access control system.

3.1 Motivation and Scope

Attributes can represent identities, security clearancesand classifications, roles, as well as location,

time, strength of authentication, etc. As such ABAC supplements and subsumes rather than sup-

plants currently dominant access control models includingDAC, MAC and RBAC. Figure 1 [78]

shows a typical ABAC model structure that contains users (U), subjects (S), objects (O) and differ-

ent permissions (P). There are also user attributes (UA), subject attributes (SA) and object attributes

(OA) associated with users, subjects and objects respectively. A subject is the representation of a

user’s particular interaction with the system. Each permission is associated with an attribute-based

authorization policy that determines whether a subject should get that permission on an object. An

authorization policy compares the necessary subject and object attributes to make an authorization

decision. Hence, proper attributes assignment to the entities is crucially important in ABAC.

Recently, an ABAC model called ABACα [78] proposed a policy specification language that

could specify policies for authorizing a permission as wellas constraints on attributes assignment.

The constraints of ABACα are shown in the top row of figure 3.1 (horizontal solid lines with a

18

Figure 3.1: ABAC model with ABACα and ABCL Constraints (adapted from ABACα [78])

single arrow-head). These constraints apply to values a subject attribute may take when the subject

is created, based on its owning user’s attributes, or an object attribute may get when the object is

created or operated-on by a subject. ABACα constraints apply only when specific events such as

a user modifying a subject’s attributes occur. In other words they are event specific. They relate

the user attributes to the subject or the subject to the object depending on the event in question.

ABCL constraints, on the other hand, are event independent and are to be uniformly enforced no

matter what event is causing an attribute value to change. They are specified as restrictions on a

single set-valued attribute or restrictions on values of different attributes of the same entity. ABCL

constraints are depicted in the top row of figure 3.1 as arcs with a single arrow-head.

The central concept in ABCL is conflicting relations on attribute values which can be used to

express notions such as mutual exclusion, preconditions and cardinality, amongst attribute values.

For instance, suppose a banking organization utilizes a set-valued user (customer) attribute called

benefitwhose allowed values are {‘bf1’, ‘bf 2’, ..., ‘bf6’}. Say that the bank wants to specify the

following constraints: (a) a client cannot get bothbenefits‘bf 1’ and ‘bf2’, (b) a client cannot get

more than 2benefitsfrom the subset {‘bf1’, ‘bf 3’, ‘bf 4’}, and (c) in order to get ‘bf6’ the client first

needs to get ‘bf3’. Here, the first policy represents a mutual exclusion conflict between ‘bf1’ and

‘bf 2’, the second one is a cardinality constraint on mutual exclusion and the last one is an example

of a precondition constraint. A number of other conflicts among attributes may also exist.

Figure 3.2 gives a hierarchical classification of the attribute conflict-relationships based on two

parameters: the number of entities and the number of attributes of concern in a conflict relation.

19

Figure 3.2: Attributes Relationship Hierarchy

For example for the user entity, each constraint in level 0 isconcerned with conflicts among values

of a single user attribute and it applies to each user independently. Level 1 allows constraints across

values of different attributes of a single user. Level 2 constraints specify conflicting values of each

attribute individually but across multiple users, while level 3 constraints can be across different

attributes across multiple users. For instance, in the previous banking example, a constraint that

disallows granting bothbenefits‘bf 1’ and ‘bf2’ to a client simultaneously is in level 0. Section 3.4.2

shows examples of several other constraints which fall in different levels of the relationship hier-

archy. Further discussion of this hierarchical model and corresponding ABCL based functional

requirements is given in section 3.3.1.

In the following sections, we present ABCL formalization and discuss them for user attributes

in an ABAC model. However, ABCL is capable of expressing attributes assignment constraints of

other entities as well, e.g. subject and objects. For simplicity, our examples focus exclusively on

user attributes in the rest of this chapter.

20

3.2 Attribute Based Constraint Specification Language (ABCL)

We now formally present the elements of ABCL. ABCL consists of four basic components: the

attributes of different entities in an ABAC model, a few basic sets and functions to capture dif-

ferent relationships amongst attributes, a few declared conflict sets and a language for specifying

constraints using basic sets and functions and the declaredconflict sets.

3.2.1 Basic Components of the ABCL Model

For the purpose of this research, we use the basic framework of the ABACα model [78] as a

representative ABAC model for ABCL. However, note that ABCLis not tailored for ABACα and

can be similarly applied to other ABAC models.

A brief overview of ABACα is provided in table 3.1. Like most access control models, ABACα

consists of familiar basic entities: users (U), subjects (S) and objects (O). Each of these entities

is associated with a respective set of attribute functions or simply attributes(UA, SAandOA re-

spectively). Two types of attributes are considered in ABACα, viz., set-valued and atomic-valued.

For example,role is a set-valued attribute since a user may take multipleroles in an organization.

However,security-clearanceis an atomic-valued attribute since a user takes only a single value for

security clearance such as ‘top-secret’ or ‘secret’. As shown in table 3.1, anattribute is a func-

tion from the respective entity to a set of values that it can take (theRange of theattribute). The

Range could be set or atomic-valued depending on the type of the attribute. A special attribute

calledSubCreator is used to keep track of the user that created a particular subject. Note that a

user can create any number of subjects. The permissions thata subject can exercise on an object

depends on the attribute values of the subject and object, and the attribute-based authorization rule

specified for that permission in the system. Since ABCL is only concerned about constraints on

what values the attributes can take and not on authorizationrules for subject operations on objects

or subject creation and other operations, the overview of ABACα provided in table 3.1 suffices for

our purpose. For specifying ABCL constraints, we specify additional derived functions for conve-

nience. For each attribute, we also defineassignedEntitiesU,att (table 3.1) that identifies the set

21

Table 3.1: Basic sets and functions of ABAC
U, SandO represent finite sets of existing users, subjects and objects.

UA, SAandOA represent finite sets of user, subject and object attribute functions.

For eachatt in UA∪ SA∪ OA, Range(att) represents the attribute’s range,
a finite set of atomic values.

SubCreator: S→ U. For each subject it gives the creator.

attType: UA∪SA∪OA→{set, atomic}.
Given an attribute name, this function will return its type as either set or atomic.

Each attribute function maps elements inU, SandO to atomic or set values.

∀ua∈ UA. ua: U→

{

Range(ua) if attType(ua)=atomic
2Range(ua) if attType(ua)=set

∀sa∈ SA. sa: S→

{

Range(sa) if attType(sa) = atomic
2Range(sa) if attType(sa)=set

∀oa∈ OA. oa: O→

{

Range(oa) if attType(oa)=atomic
2Range(oa) if attType(oa)=set

For convenience, we also use the following derived functions, for eachatt ∈ UA:
assignedEntitiesU, att: Range (att)→ 2U where
assignedEntitiesU,att(attval) = {u ∈ U | attval = att(u)} if attType(att) = atomic
assignedEntitiesU,att(attval) = {u ∈ U | attval ∈ att(u)} if attType(att) = set

of users that are assigned a particular value of that attribute. Similar derived functions can also be

defined for subjects and objects.

3.2.2 Syntax of ABCL

The syntax of ABCL is defined by the grammar in table 3.2 in Backus Normal Form (BNF). The

grammar specifies declaration syntax for two type of relation-setsAttribute_Set and

Cross_Attribute_Set. The definition and structure of these relation-sets are given in the following

section 3.2.3. The grammar also specifies syntax for constraint expressions.

ABCL includes two nondeterministic functions,oneelementandallother, adapted from [12,

42]. The functiononeelement(X) nondeterministically selects one element xi from setX. In a

constraint expression it is written asOE(X). Multiple occurrences ofOE(X) in a single ABCL

22

Table 3.2: Syntax of Language
Declaration of theAttribute_Set and Cross_Attribute_Set:
<attribute_set_declaration> ::= <atribute_set_type> <set_identifier>
<attribute_set_type> ::= Attribute_SetU,<attname> | Attribute_SetS,<attname> | Attribute_SetO,<attname>

<cross_attribute_set_type> ::= Cross_Attribute_SetU,<Aattset>,<Rattset> |
Cross_Attribute_SetS,<Aattset>,<Rattset> | Cross_Attribute_SetO,<Aattset>,<Rattset>

<Aattset> ::= {<attname>, <attname>∗}
<Rattset> ::= {<attname>, <attname>∗}
<set_identifier> ::= <letter> | <set_identifier><letter> | <set_identifier><digit>
<digit> ::= 0|1|2|3|4|5|6|7|8|9
<letter> ::= a|b|c|....|x|y|z|A|B|C|...|X|Y|Z
Constraint Expressions:
<statement> ::= <statement> <connective> <statement> | <expression>
<expression> ::= <token> <atomiccompare> <token> | <token> <atomiccompare> <size>

| <token> <atomiccompare>|<set>| | <token> <atomiccompare> <set> | <token>
<token> ::= <token> <setoperator> <term> | <term> | |<term>|
<term> ::= <function> (<term>) | <attributefun> (<term>) | OE (<relationsets>).<item>

| OE (<term>) | OE (<set>) | AO (<term>) | AO (<set>) | <attval>
<connective> ::= ∧ | ⇒
<setoperator> ::= ∈ | ∪ | ∩ | /∈
<atomicoperator> ::= + | < | > | ≤ | ≥ | 6= | =
<set> ::= U| S| O
<relationsets> ::= <set_identifier>
<attname> ::= ua1 | ua2 | ... | uax | sa1 | sa2 | ... | say | oa1 | ... | oaz
<attval> ::= ‘ua1val1’ | ‘ua1val2’ | ... | ‘uaxvalr ’ | ‘sa1val1’ | ‘sa1val2’ | ... | ‘sayvals’ |

‘oa1val1’ | ... | ‘oazvalt’
<size> ::= φ | 1 | ... | N
<item> ::= limit | attval| attfun(<attname>).limit| attfun(<attname>).attval
<attributefun> ::= ua1 | ua2 | ... | uax | sa1 | sa2 | ... | say | oa1 | ... | oaz
<function> ::= SubCreator | assignedEntitiesU,<attname> | assignedEntitiesS,<attname> |

assignedEntitiesO,<attname>

expression select the same element xi from X. The functionallother(X) returns a subset of elements

from X by removing one element specified by the matchingOE(X). We usually writeallother as

AO. These two functions are related by context. For any setS, {OE(S)}∪AO(S)=S. An example of

OE in an ABCL expression is as follows.

Requirement: No user can get more than three benefits.

ABCL Expression: |benefit(OE(U))| ≤ 3

OE(U) means a nondeterministically chosen single user fromU andbenefit(OE(U)) returns all

benefits that are assigned to that user. This expression specifies that a single user cannot have more

23

Table 3.3: Declared ABCL Conflict Sets
1. Sets that represent conflicts among values of a single attribute
For eachatt∈ UA andattType(att)=set there are zero or more conflict sets
Attribute_SetU,att = {avset1, avset2, ..., avsett}, where
avseti=(attval, limit) in which attval∈ 2Range(att) and 1≤limit≤|attval|.

2. Sets that represent conflicts across values of multiple attributes
For eachAattset⊆ UA andRattset⊆ UA there are zero or more conflict sets

Cross_Attribute_SetU,Aattset,Rattset={attfun1, ..., attfunu}, where
for eachatt∈ Aattset∪ Rattset
attfuni(att)=(attval, limit) in which
attval∈ 2Range(att) if attType(att)=set or
attval∈ Range(att) if attType(att)=atomic
and 0≤limit≤|attval|.

than three benefits. Later, we will see howAO is used in an ABCL expression.

3.2.3 Declared Conflict Sets of ABCL

Conflicts among attribute values can occur in several ways. ABCL recognizes two types of conflict:

values that conflict with other values of the same attribute (referred to as single-attribute conflict)

and values having conflict with values of other attributes (cross-attribute conflict). Note that single-

attribute conflict is applicable only for set-valued attributes (e.g. mutual-exclusive roles) while

cross-attribute conflict applies to both atomic and set-valued attributes. In order to specify these

two types of conflict, ABCL specifies two type of sets that specify potentially conflicting values

for single and cross-attribute conflicts respectively.

Items 1 and 2 in table 3.3 define these two sets for single-attribute and cross-attribute conflicts.

As shown in item 1, eachAttribute_Set contains a set of values of an attribute that may have

a particular type of conflict (mutual exclusion, precondition, etc.). A separateAttribute_Set for

each type of conflict could also be specified. Each element of an Attribute_Set is an ordered pair

(attval, limit) where attval contains the values that have some form of conflict and limit specifies

the cardinality, that is the number of values in attval for which the conflict applies. The semantic

of limit for a particularAttribute_Set can be either at-least, exactly or at-most depending on the

24

constraint expression that uses theAttribute_Set. For instance, the following are the declarations

and initializations of two differentAttribute_Set representing conflicting-relations between the

values ofbenefitattribute of the banking example in section 3.1. The declaration syntax is shown

in table 3.2.

Attribute_SetU,benefitUMEBenefit

UMEBenefit={avset1, avset2} where

avset1=({‘bf 1’,‘bf 2’}, 1) and

avset2=({‘bf 1’,‘bf 3’,‘bf 4’}, 2)

Attribute_SetU,benefitPreconditionBenefit

PreconditionBenefit={avset1} where

avset1=({‘bf 3’, ‘bf 4’}, 1)

Although these two sets structurally look identical, theirpurposes are different.UMEBenefitspec-

ifies the values of thebenefitattribute that are mutually exclusive, hence, they cannot be assigned

to a user simultaneously. As shown above, avset1 in UMEBenefitindicates that the values ‘bf1’ and

‘bf 2’ has limit value 1, therefore, at-most one value from them can be assigned to a user. Similarly,

avset2 indicates that ‘bf1’, ‘bf 3’ and ‘bf4’ has limit value 2, therefore,benefitof a user can get at-

most two values from them. Note that, anAttribute_Set itself cannot specify the semantic meaning

of the limit, rather, generated ABCL expression that uses this relation-set needs to specify it. The

following ABCL expression is generated for this purpose,

ABCL Expression: |benefit(OE(U))∩OE(UMEBenefit).attset| ≤ OE(UMEBenefit).limit

Here, the expression restricts that each user can get at-most specified mutual exclusive values

of benefitwhich are specified in each element ofUMEBenefit. Similarly, in PreconditionBenefit

for avset1 the number of elements from attval,{‘bf3’, ‘bf 4’}, should be at-least the specified limit

which is 1. Now, the following ABCL expression specifies for this purpose,

25

ABCL Expression: |benefit(OE(U))∩OE(PreconditionBenefit).attset| ≥

OE(PreconditionBenefit).limit

As mentioned earlier, there could also be conflicts amongst values across different attributes

of a user. Let us say in the banking example of section 3.1, there is another user attribute called

felonyand its range is {‘fl1’, ‘fl 2’, ‘fl 3’}. The bank seeks to restrict a user tobenefit‘bf 1’ if she

has ever committed felony ‘fl1’ or ‘fl 2’. This is a mutual exclusive conflict relation among the

values ofbenefitandfelony. These relations are represented as another type of relation-set called

Cross_Attribute_Set which is formally defined in table 3.3 item 2. EachCross_Attribute_Set is

declared for two arbitrary sets of user attributes which aredetermined at declaration time. These

two sets of attributes are represented asAattsetandRattsetand combination of certain values of

the attributes inAattsetas a group has specific type of conflicts with certain values ofeach attribute

in Rattset. In other words, values of the attributes ofAattsettogether restrict the values of each

attribute inRattset. Each element of aCross_Attribute_Set is a function calledattfun that returns

the values of the attributes ofAattsetandRattsetas an ordered pair (attval, limit) where attval

represents the values and limit is the cardinality.Cross_Attribute_Set declaration and initialization

for the banking example are as follows (the syntax is shown intable 3.2).

Cross_Attribute_SetU,Aattset,RattsetUMECFB

Here,Aattset= { felony} and Rattset= {benefit}

UMECFB={attfun1} where

attfun1(felony)=({‘fl 1’, ‘fl 2’},1) and attfun1(benefit)=({‘bf 1’},0)

Using the set above, one can state that if at least one value from {‘fl 1’,‘fl 2’} is assigned tofelony

of a user, ‘bf1’ should not be assigned tobenefitof that user. Similar toAttribute_Set, the meaning

of limit is not specified by theCross_Attribute_Set but rather the constraint expression that uses

it. The following expresses this constraint.

ABCL Expression:

|OE(UMECFB)(felony).attset∩ felony(OE(U))| ≥ OE(UMECFB)(felony).limit ⇒

26

|OE(UMECFB)(benefit).attset∩ benefit(OE(U))| ≤ OE(UMECFB)(benefit).limit

3.3 ABCL Enforcement

ABCL constraints are enforced during each attribute assignment to a user. As shown in algorithm

3.1, we design a simple procedure for the set-valued attribute assignment to users. The inputs of

this algorithm are a user (u), a set-valued attribute (att) and a subset of values (attval) ofSCOPEatt

that can be assigned toatt of u. In line-4, the procedure temporarily replace the already assigned

values toatt of the useru. Then, for each already generated constraint expressions (both single

attribute and cross attributes), it calls a function calledEvaluate, in line-6, to check whether the

newly assignment satisfies them all. We assume,ConsExprSetcontains all ABCL constraints for

users. Each invocation ofConsExprSet returns atrue/false. A true indicates that the requested

attribute values can be assigned. If any of the constraints is not satisfied, the user will retain its old

attribute assignment. Similar procedure can also be developed for the atomic-valued attribute.

In ABCL, constraints are generated only for the assignment of values to attributes. We do not

consider constraint enforcement for the delete requests ofalready assigned values of attributes.

However, such constraints can also be generated using ABCL and enforced accordingly. Also, the

specified constraints may restrict an attribute assignmentrequest for different reasons based on the

conflict-relations of the requested values of an attribute with the values of same/other attributes.

In this dissertation, we do not develop a system that automatically notifies the reason for denying

a request. However, such a system can be built on top of our proposed enforcement mechanism

which can identify the reason based on the constraint expression that evaluates to afalse. Then,

proper actions (assign/delete the values of attributes) can be taken so that the requested attribute

value can be assigned. In the following, we list some of the reasons and the actions that can be

taken.

• If the constraint that restricts the assignment request is generated for pre-condition, then

assignment of the prerequisite values of attributes is required to resolve the issue. Note

27

Algorithm 3.1 User Set-Valued Attribute Assignment
/*

For an atomic-valued attribute, line-2 should be replaced by the following line
if u∈U andatt∈UA and attval∈Range(att) then

*/
1: procedureAssignAttributetoUser(u, att, attval)
2: if u∈U andatt∈UA and attval⊆Range(att) then
3: old_value← att(u)
4: att(u)← attval
5: for all cnst∈ ConsExprSet do
6: if Evaluate(cnst)=falsethen
7: att(u)← old_value
8: Returnfalse
9: end if
10: end for
11: Returntrue
12: end procedure

that, if the constraint capture the conflict-relations among the values of single attribute, then

prerequisite value is for same attribute. Therefore, the set of values of the attribute which is

previously requested needs to be modified properly to resolve this. In cross-attribute conflict,

the prerequisite values should be assigned to other attributes.

• In case of the constraints capturing mutual-exclusive relations, it is required to delete/remove

already assigned mutual-exclusive values of the attributes. If the constraint captures single-

attribute conflict, some values from the requested values ofthe attribute need to be removed

in order to resolve the conflict. In cross-attribute conflict, the already assigned values of

other attributes should be deleted.

Similar to RCL-2000 [12], ABCL constraints are representedin the form of restricted first

order predicate logic (RFOPL) expressions for enforcement. RFOPL is a restricted version of

FOPL that contains only universal quantifiers (∀) where in each expression∀ comes first followed

by the predicates. The following is an example of an ABCL constraint and corresponding RFOPL

expression:

ABCL Expression: id(OE(U)) 6= id(OE(AO(U))

28

RFOPL Expression: ∀u1∈U, ∀u2∈U-{u1}: id(u1) 6= id(u2)

Here,OE(U) andOE(AO(U)) is converted to∀u1∈U and∀u2∈U-{ u1} in RFOPL expression. The

general structure of a converted RFOPL expression from ABCLis as follows:

1) The expression has a (possibly empty) sequence of universalquantifiers as a left prefix, and

these are the only quantifiers.

2) The quantifier part will be followed by a predicate separatedby a colon (:) (i.e., universal quan-

tifier part : predicate).

3) The predicate has no free variables or constant symbols. Allvariables are declared in the quan-

tifier part (e.g.,∀u∈U, ∀cben∈MutualExlcusiveBenefit, ∀r∈role(u)).

4) Predicate follows all rules in the syntax of ABCL except the term syntax in table 3.2. The syntax

for term in RFOPL is as follows in which an element is a variable in quantifier part:

<term> ::= <function> (element)| <attributefun> (element)

| element.<item> | element| (<set>-{element}) | <attval>

A loop is created for each quantifier to traverse respective elements and the parser parses predicates

of the expression. The following section discusses the ABCLenforcement complexity.

3.3.1 Constraints Hierarchy and Enforcement Complexity

We discuss the enforcement complexity of the ABCL constraints for each level in attribute conflict-

relationship hierarchy (figure 3.3).

Level 0 (Single User, Single Attribute): In this level, the system neither contains cross attribute re-

lations nor constraints evaluating those relations. The system needs a set of users (U), Attribute_Set

and functionality to evaluate properties of each user separately (OE). Here, a constraint enforce-

ment complexity isO(N×M×P) where N is the number of users, M is the number of elements in

respectiveAttribute_Set and P is number of predicates in the expression.

Level 1 (Single User, Multiple Attributes): Conflict-relations among values across multiple at-

tributes are specified and applied to each user separately. Besides the functionalities of rela-

tionship level 0,Cross_Attribute_Sets are needed in this level. The enforcement complexity is

29

Figure 3.3: Relationship Hierarchy with Required ABCL Functionality

O(N×(M+O)×P) where N is the number of users, M the size ofAttribute_Set, O the size of

Cross_Attribute_Set respectively and P is number of predicates.

Level 2 (Multiple Users, Single Attribute): Constraints are specified based on conflict-relations

among values of an attribute and applied to a set of users collectively. The functionAO is re-

quired in a constraint expression besidesOE for enforcing constraints across different users. The

complexity here isO(N2×M×P). Note that, constraints in this level enable dynamic separation

of attribute values across subjects of a single user. For instance, a constraint might say that two

subjects of a user cannot get ‘president’ role simultaneously.

Level 3(Multiple Users, Multiple Attributes): In this level, all type of constraints can be generated.

The complexity isO(N2×(M+O)×P) and a constraint can specify both single attribute and cross

attribute conflicts and enforce within or across users.

3.4 ABCL Use Cases

We first show an ABCL instantiation for representing constraints in RBAC systems. Then, we

present an extensive case study in which a large set of ABCL expressions is generated to capture

various access control requirements of a banking organization.

30

Table 3.4: Attributes of User, Subject and Object in RBAC
Attribute Name attType Range

UA role set {‘r1’, ‘r 2’, ..., ‘rn’}
SA activerole set {‘r1’, ‘r 2’, ..., ‘rn’}
OA permittedrole set {‘r1’, ‘r 2’, ..., ‘rn’}

Table 3.5: Constraints Specification for RBAC SSOD and DSOD
1. Attribute_Sets Declaration:
Attribute_SetU,role ConflictRoles
ConflictRoles={avset1, avset2, ...} where
avseti = (attval, limit) where attval∈2Range(role) and
(limit=1 (for RCL-2000) or 1≤limit≤|attval| (for NIST-RBAC))

Attribute_SetS,activerole ConflictActiveRoles
ConflictActiveRoles={avset1, avset2, avset3, ...} where
avseti = (attval, limit) where attval∈2Range(activerole) and
(limit=1 (for RCL-2000) or 1≤limit≤|attval| (for NIST-RBAC))

2. ABCL Expression for SSOD of RCL-2000 and NIST-RBAC

Requirement: No user should be assigned to two roles which are in conflict with each other.
Expression: |OE(ConflictRoles).attval∩ role(OE(U))| ≤ OE(ConflictRoles).limit

3. ABCL Expression for DSOD of RCL-2000 and NIST-RBAC

Requirement 1: A Subject of a user cannot activate roles having conflict witheach other.
Expression:|OE(ConflictActiveRoles).attval∩ activerole(OE(S))| ≤ OE(ConflictActiveRoles).limit

Requirement 2: Subjects of a user cannot activate roles having conflict witheach other.
Expression: SubCreator(OE(S))=SubCreator(OE(AO(S)))⇒ |(activerole(OE(S)) ∩
OE(ConflictActiveRoles).attval)∪ (activerole(OE(AO(S))) ∩ OE(ConflictActiveRoles).attval)| ≤
OE(ConflictActiveRoles).limit

3.4.1 RBAC Constraints (RCL-2000 and NIST-RBAC SOD)

In RBAC, users create sessions in which they activate certain roles to perform particular tasks.

The main constraints in RBAC concern static and dynamic separation of duty (termed SSOD and

DSOD respectively). SSOD is applied on role assignment to users and DSOD is for role activation

within or across sessions of a user. An ABAC model could be configured to enforce RBAC by

defining only one attribute calledrole for users, subjects and objects as shown in table 3.4. Here, a

31

subject is synonymous to a session in RBAC. Hence, SSOD is applied during a user’srole attribute

assignment and DSOD foractiveroleassignment to subjects by their owners.

Table 3.5 shows the ABCL expressions for SSOD and DSOD constraints proposed in two well-

known RBAC constraints models: role based constraint language (RCL-2000) [12] and constraints

of NIST-RBAC [57]. RCL-2000 has a set called conflicted role (CR) in which each element ofCR

is a set of roles having conflict with each other. Here, SSOD and DSOD are maintained by allowing

no more than one role assigned to users or activated in any user session respectively from each set

element ofCR. RCL-2000 also provides a constraints specification language for generating various

constraints.

NIST-RBAC includes a cardinality metric with each set element that allows variable number

of roles from each conflicted set instead of always allowing only one. In table 3.5, two instanti-

ations ofAttribute_Set, ConflictRolesandConflictActiveRolesare declared in order to represent

conflicted values ofrole andactiveroleattributes. Each element of these sets is an ordered pair

(attset, limit) where attset is the conflicted values and limit is the cardinality.

Items 2 and 3 of table 3.5 show ABCL constraint expressions for SSOD and DSOD respectively

that capture both RCL-2000 and NIST-RBAC requirements. Similar to conflict role-set, RCL-2000

also has a setCU representing different set of conflicting users. ABCL can generalize the concept

of conflicting users by introducing a user attributeucTypethat represents different types of user

conflict. Therefore, instead of identifying each conflicteduser and creating a conflict set likeCU,

the values ofucTypedetermine the conflict group a user belongs to and restrict user-role assignment

accordingly.

3.4.2 Security policy specifications for Banking Organizations

We present ABCL constraints for several high-level security requirements in a banking organiza-

tion. For simplicity, we only show constraints for user attribute management in this context. In a

banking organization, let us consider a finite set of existing users (U) in which a user is a human

being and could be of different types, e.g. client, junior employee.

32

Table 3.6: User Attributes (UA)
Attribute attType Range

id atomic {‘id1’,‘id 2’, ..., ‘idx’}
uType atomic {‘client’, ‘junior’, ‘senior’, ‘leader’}

orgType set {‘org1’, ‘org2’, ..., ‘org20’}
role set {‘customer’, ‘cashier’, ‘manager’,

‘president’, ‘vice-president’}
benefit set {‘bf1’, ‘bf 2’, ‘bf 3’, ..., ‘bf10’}
felony set {‘fl1’, ‘fl 2’, ‘fl 3’, ..., fl8’}
loan set {‘car’, ‘house’, ‘education’}

cCard set {‘card1’, ‘card2’, ..., ‘card12’}

Table 3.6 shows different user attributes, their types and ranges in this system. Each user is

assigned an attributeid which is a unique identifier. AttributeuTyperepresents the type of a user

andorgTyperepresents the organization a user belongs to. There is arole attribute representing

various job descriptions of a user such as ‘customer’, ‘cashier’, etc. The banks might provide

a number of benefits, e.g., bonus, cash back rate, etc, to customers represented by thebenefit

attribute. Attributefelonyrepresents if the user has any felony record andloanandcCardrepresent

granted loans and credit cards to a user respectively. Suppose that the banking authority wishes

to specify the following security policy requirements for user attribute management. The ABCL

formalism for these requirements are also given. We also show the conflict-relationship level of

each of these constraints.

Req# 1: A user can get at most 5benefits. (Level 0)

Req# 2: A user cannot hold the ‘president’ and ‘vice-president’rolessimultaneously. (Level 0)

Req# 3: A user cannot get bothbenefits‘bf 1’ and ‘bf2’. (Level 0)

Req# 4: A user can get at most 5loansandcCards. (Level 1)

Req# 5: If a user hasfelonyrecords ‘fl1’ and ‘fl2’, she cannot get more than onebenefitfrom {bf1,

bf2, bf3}. (Level 1)

Req# 6: If a user is a ‘client’, she cannot get certainroles, e.g. ‘cashier’, ‘manager’. (Level 1)

Req# 7: No more than 12 users can get a ‘car’loan. (Level 2)

33

Req# 8: idsof two users cannot get the same value. (Level 2)

Req# 9: If a user hasfelony‘fl 1’ and belongs to ‘org1’, no users from ‘org1’ can getbenefit‘bf 1’.

(Level 3)

Formal ABCL Specifications

Table 3.7: ABCL Sets Declaration and Initialization:
1. Attribute_Set Declaration and Initialization:

Attribute_SetU,benefitUMEBenefit
UMEBenefit={avset1, avset2}
avset1=({‘bf 1’, ‘bf 2’}, 1), avset2=({‘bf 2’, ‘bf 3’, ‘bf 4’, ‘bf 5’}, 2)

Attribute_SetU,role UMERole
UMERole={avset1}
avset1=({‘president’, ‘vice-president’}, 1)

2. Cross_Attribute_Set Declaration and Initialization:
Cross_Attribute_SetU, {uType}, { role} UMECTR
UMECTR={attfun1}
attfun1(uType)=({‘client’},1)
attfun1(role)=({‘cashier’,‘manager’,‘president’,‘vice-precident’}, 0)

Cross_Attribute_SetU, { felony}, { benefit} UMECFB
UMECFB={attfun1, attfun2}
attfun1(felony)=({‘fl 1’,‘fl 2’},2)
attfun1(benefit)=({‘bf 1’,‘bf 2’,‘bf 3’},1)
attfun2(felony)=({‘fl 1’},1), attfun2(benefit)=({‘bf 2’}, 0)

Cross_Attribute_SetU, { felony, orgType}, { benefit} UMECFOB
UMECFOB={attfun1}
attfun1(felony)=({‘fl 1’},1), attfun1(orgType)=({‘org 1’}, 1),
attfun1(benefit)=({‘bf 1’}, 0)

Table 3.7 shows declaration and initialization of the ABCL sets for representing necessary re-

lations among attributes for specifying above given security policies.UMEBenefitcontains mutual

exclusive values of thebenefitattribute andUMERolerepresents mutual exclusive roles. Similarly,

mutual exclusive conflicts ofuTypewith role, felonywith benefit, andfelonyandorgTypewith ben-

efit attributes are represented by theCross_Attribute_Sets UMECTR, UMECFB, andUMECFOB

respectively. The following are the required ABCL expressions.

34

Req# 1: |benefit(OE(U))| ≤ 5.

Req# 2: |OE(UMERole).attset∩ role(OE(U))| ≤ OE(UMERole).limit

Req# 3: |OE(UMEBenefit).attset∩ benefit(OE(U))| ≤ OE(UMEBenefit).limit

Req# 4: |cCard(OE(U)) + loan(OE(U))| ≤ 5

Req# 5:|OE(UMECFB)(felony).attset∩ felony(OE(U))| ≥ OE(UMECFB)(felony).limit ⇒

|OE(UMECFB)(benefit).attset∩ benefit(OE(U))| ≤ OE(UMECFB)(benefit).limit

Req# 6: | OE(UMECTR)(uType).attset∩ uType(OE(U))| ≥ OE(UMECTR)(uType).limit ⇒

| OE(UMECTR)(role).attset∩ benefit(OE(U))| ≤ OE(UMECTR)(role).limit

Req# 7: |assignedEntitiesU, loan(‘car’)| ≤ 12

Req# 8: id(OE(U)) 6= id(OE(AO(OE(U))))

Req# 9: |OE(UMECFOB)(felony).attset∩ felony(OE(U))| ≥ OE(UMECFOB)(felony).limit

∧ |OE(UMECFOB)(orgType).attset∩ orgType(OE(U))| ≥

OE(UMECFOB)(orgType).limit ⇒ |OE(UMECFOB)(benefit).attset∩

(benefit(OE(U)) ∪ benefit(OE(AO(U))))| ≤ OE(UMECFOB)(benefit).limit

3.5 Performance Evaluation

In this section, we present experiments aimed at evaluatingthe performance of our ABCL enforce-

ment algorithm during user attribute assignment (discussed in section 3.3). The experiments were

conducted on a machine having the following configuration: 2.40GHz with 2GB RAM running a

Windows 7 enterprize OS and JDK 1.7. As shown in section 3.3, ABCL constraints are represented

as RFOPL expressions for enforcement during attributes assignment to a user and each universal

quantifier of an expression generates a loop for traversing respective elements and checks if the

constraint holds for those elements. Here, an element couldbe a member of the user set (U) or

a declared relation-set and the required time for a constraint enforcement during a user attribute

assignment depends on the size of these sets.

Simulation scenario: We define three user attributes:att1, att2, andatt3 whereatt1 andatt2 are

atomic andatt3 is set valued. We enforce the following two constraints during an attribute assign-

35

ment to a user (shown in RFOPL format).

1)∀u1∈U, ∀u2∈ U-{ u1}, ∀ele∈MUatt1: att1(u1)∈ ele.attval∧ att1(u2)∈ ele.attval⇒ att2(u1)

6= att2(u2).

2) ∀ u∈ U, ∀ ele∈MUatt3: | att3(u)∩ ele.attval| ≤ ele.limit.

Here,MUatt1 andMUatt3 contains mutual exclusive (ME) values ofatt1 andatt3. Expression 1

says ifatt1of two users contains ME values then they can get the sameatt2values and expression

2 says a user cannot get MEatt3values. Inexperiment 1, we compare the required time of our en-

forcement algorithm when the number of users increase. We vary the number from 50 to 500 users

with an increase of 50 at each step and check the required timefor an attribute assignment to a user.

We separately enforce these two constraints and check the timing. Note that, the size of bothMU-

att1andMUatt3are fixed to 5 elements, hence, execution time varies for the first two quantifiers in

constraint 1 and the first quantifier of constraint 2. Figure 3.4(A) shows the results where constraint

1 takes more time as it applies to multiple users (falls in level 1 of the conflict-relationship hier-

archy) while constraint 2 applies to every user separately (falls in level 0). Enforcement time for

constraint 1 is 0.3s for 50 users with comparison to 1.27s for500 users. And, for constraint 2 it is

0.109s to 0.3937s. Therefore, this process is scalable for alarge set of users. Inexperiment 2, we

verify the timing when the number of constraints increase while the total number of users are fixed

to 500. Here, all constraints are similar to the constraint 1which belongs to the hierarchical level

1, thus, applies across users. Figure 3.4(B) shows the required enforcement time when number of

constraints increases from 5 to 30 which is only a 1.84s increase. Inexperiment 3, we analyze

when the elements of a relation-set increases. Here, we enforce constraint 1 with number of users

fixed to 500. Therefore, the required time varies only for the3rd quantifier which depends on the

size ofMUatt1. Figure 3.4(C) shows the enforcement time where number of elements inMUatt1

increases from 5 to 30. This causes an increase of 0.91s whichis negligible, hence, it proves that

the ABCL enforcement algorithm is scalable.

36

Figure 3.4: Evaluation Graphs of ABCL Constraints

37

Chapter 4: FOUNDATION OF ATTRIBUTE-BASED CONSTRAINTS

SPECIFICATION IN CLOUD IaaS

The materials in this chapter are published in following venues [20,24]:

1. Khalid Bijon, Ram Krishman, and Ravi Sandhu. Constraintsspecification in attribute based

access control. ASE Science Journal, 2(3), 2013.

2. Khalid Bijon, Ram Krishnan and Ravi Sandhu, A Formal Modelfor Isolation Management in

Cloud Infrastructure-as-a-Service. In Proceedings 8th International Conference on Network

and System Security (NSS 2014), Xi’an, China, October 15-17, 2014

We show that attributes can represent various properties ofvirtual resources in cloud IaaS.

Given that attributes represent properties of virtual resources, we provide ABCL specifications for

various high-level constraints that can mitigate various security issues in cloud IaaS. We also show

that an existing isolation management of the users and resources in cloud datacenter [18] can be

configured using an attribute based system.

4.1 Attributes Specification for Virtual Resources

Attributes, associated with an virtual resource, can represent various properties of the virtual re-

source. For instance, attributes can represent a virtual machine’s owner tenant, sensitivity-level,

cpu intensity-level of workloads, etc. In this section, we provide a design of attributes for virtual

resources that capture various properties in order to address issues like multi-tenancy, isolation,

scale, etc.. Figure 4.1 shows an example of attributes of different virtual resources where the

classes of virtual resources include virtual machine (VM),virtual machine image (IMG), virtual

network (NET) and virtual storage (STR). Note that, as described in chapter 3, there is only one set

calledOA that specifies the objects in ABAC, whereas, cloud IaaS has different classes of virtual

resources which can be represented in different such sets. In the figure, these virtual resources are

represented as square and attributes are ellipses or hexagons for atomic and set-valued attributes

38

respectively. Each attribute has aRangefrom which the values are assigned to that attribute for

a specific virtual resource. Many of these attributes may represent some trivial properties such as

id represents the identification of a virtual machine andhost represents the physical host where

a virtual machine runs. Attributes can also represent several important properties of the virtual

resources. For instance,sensitivityand cpu_intensiverepresents a virtual machine’s sensitivity

level of the running workloads and cpu requirements respectively. For simplicity, the value of

sensitivitycould be ‘high’, ‘medium’, and ‘low’. Also, VM can be dividedamong different hpc

groups which is represented by attributehpcgroup. Also, virtual resources, i.e. VM, STR, and

IMG, can belong to a particular department or group of a tenant, which is represented asgroup

attribute of these entities. Also,imgSrcspecifies the source of the image of a virtual machine such

as public, private, etc.Statusshows that whether a virtual machine is in running, stop or migrating

mode. Similarly, in figure 4.1, attributes of IMG includesownerTntandallowedTntrepresenting

the tenant that owns the image and the tenants that can use that image respectively. There are also

attributes calledrepositoryandversionthat represents the repository where the image is located

and the version number of the image. Similarly, figure 4.1 shows attributes of STR and NET.

We identify that attributes of these resources have certainconflicting relations with each other

which is similar to what we describe in chapter 3. In the rest of the dissertation, we identify specific

conflicting relations and utilize them to solve various security related issues in the cloud.

4.2 Constraints Specification using ABCL

In this section, we show that ABCL can specify different constraints to solve various security

related issues in cloud IaaS.

4.2.1 Security policy specification for IaaS Public Cloud

In a public cloud IaaS, virtual machines (VMs) are provided by a serviceprovider to its clients

where the physical servers are shared by multiple clients. In the following sections we also refer

to clients as tenants. In this system, VM of a tenant can be compromised by at least four different

39

Figure 4.1: Attribute Design for Virtual Resources in Cloud IaaS

types of personnel: (1) malicious administrative users (admin) of the cloud provider, (2) malicious

VMs of a competing client (tenant), (3) client’s own admins,and (4) outsiders from the cloud sys-

tem. Threats relevant to 3 and 4 are conventional security issues for which well-known protection

mechanisms already exists, e.g. firewall, conventional access control policies. Since, threats 1 and

2 are more specific to IaaS public cloud environments, we aim to specify ABCL constraints for

mitigating these threats.

In an IaaS public cloud, a provider’s admins maliciously or unintentionally may abuse their

privileges to compromise consumer’s confidential data. Cloud service providers claim that they

are aware of this issue and they have mitigation mechanisms [65] such as zero tolerance policy and

isolating physical access to servers. However, zero tolerance policy is useful only after an attack

has occurred. Also, several attacks including stealing of cleartext passwords, private keys, etc. by

a malicious admin do not require any physical access [100]. Bleikertz et al [31] proposed a priv-

ilege management process for cloud admins by proposing three different administrative roles, i.e.

40

hardware-maintenance, remote-maintenance, and security-team, for requiring separation of duties.

An admin with remote-maintenance role only has access and responsibility to maintain the servers

that run client VMs . However, this mechanism cannot restrict certain administrative actions in-

cluding restricting same admin from accessing VMs from competing tenants in multi-tenant public

cloud. Competing tenants are organizations with conflict ofinterests, e.g. business competitors,

conflicting departments of an organization. Thus, access tothe VMs of the competing tenants by

same admin might cause (un)intentional critical information flows from one VM to another. Again,

a malicious VM of a competing tenant might also launch attack. Ristenpart et al [98] showed a

side-channel attack is possible when VMs are co-located in the same server. Berger et al [18]

mentioned other attacks, e.g. denial-of-service, could also be initiated by a malicious VM towards

other VMs sharing same cloud resources, e.g. hosts, network. Hence, a cloud consumer should

demand several security policies from the IaaS cloud providers, e.g. isolate physical location of

their VMs from competing tenants VMs , restrict administrative privileges, etc. Below we enumer-

ate several such issues, including those addressed by [18].We categorize them as admin privilege

management and VM resources management in IaaS cloud.

A. Security issues related to the VM resources management

1) A consumer tenant wants its high sensitive VMs not to be co-located on the same physical server

where VMs of its competing tenants reside.

2) A tenant does not want its VMs to connect to a network (VLAN) towhich VMs from competing

tenants are connected.

3) A group of tenants collaborate together, thus, they want their collaboration-purposed VMs to

reside in same server for enhancing several issues, e.g. performance, security, etc.

4) Collaborating tenants wants their VMs to connect to the samenetwork so that they can securely

share information.

5) Some VMs of a tenant might require to exchange highly critical data for some reasons. Thus,

they need to reside on same physical sever to utilize internal process communication.

6) A tenant wants highly sensitive VMs to reside in different servers so that any kind of service

41

Table 4.1: Attributes
attType Range Description

UA
tenant set ‘t1’, ‘t 2’, ..., ‘t8’ Tenants an admin can access
host set ‘node1 ’, ‘node2’,, ‘node20 ’ Servers an admin has access
adminGrp set ‘hardware_maintenance’, ‘security’, Different groups of an

‘remote_maintenance’ administrative users
role set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’ Admin Roles
SA
acctnt set ‘t1’, ‘t 2’, ..., ‘t8’ Tenants a subject can access
accserver set ‘node1 ’, ‘node2’,, ‘node20 ’ Servers a subject has access
activerole set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’ Admin roles
OA (VM)
otnt atomic ‘t1’, ‘t 2’, ..., ‘t8’ Tenant that owns the VM
host atomic ‘node1 ’, ‘node2’,, ‘node20 ’ Server where the VM resides
purporsetype atomic ‘p1’, ‘p 2’, ‘p 3’, ‘p 4’, ‘p 5’ Job of a VM
sensitivity atomic ‘high’, ‘low’ Sensitivity level of the VM
status atomic ‘Active’, ‘Stop’, ‘Maintenance’, Current status ofthe VM

‘Transferring’
network atomic ‘vlan1 ’, ‘vlan2 ’, ..., ‘vlan20 ’ Network connection a VM can get
permittedRole set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’ Roles that can access the VM

interruption or security issues on that server may only cause partial disruptions.

7) A tenant allows its less sensitive VMs to reside on the same server where VMs of a competing

tenant reside. However, during maintenance, these VMs needto be migrated to a server that does

not contain any VMs from the competing tenants.

B. Security issues on admin-user privileges management

1) A tenant does not allow the same admin to access their sensitive VMs if she has access to the

competing tenant VMs.

2) In general, an admin cannot maintain more than n tenants.

3) A tenant cannot be managed by more than one sessions (subjects) of an admin simultaneously.

4) An admin cannot access more than n VMs of a tenant simultaneously (e.g. in the same session)

for protecting possible aggregation of the critical information.

42

4.2.2 ABCL Specification for Public Cloud IaaS

We presents ABCL constraints specification for the above given security requirements. There are

sets of administrative users (U) and subjects (S) where each subject belongs to a particular admin-

istrative user. In this system, objects are virtual machines (VMs) which are represented as a set (O).

We will see in the following chapters that there will be otherclasses of virtual resources such as

virtual networks, virtual storages. Table 4.1 shows user, subject, and object attributes, their types

and ranges and descriptions of their purpose. The declaration and initialization of the required

ABCL sets are shown in table 4.2.UMETnt, UMEGrp, andUMERolerepresents the mutual ex-

clusive conflicts of the user attributestenant, adminGrp, androle respectively. Mutual exclusive

values of the subject attributeacctntare represented inSMETnt. OConsTntandOMETntcontain

values ofotnt having mutual exclusive and consistency conflicts respectively. ABCL constraints

for the policies are as follows:

A. VM resource management Constraints

Req# 1: High sensitive VMs of a tenant cannot reside on same server that contains VMs from

competing tenants.

Expr: sensitivity(OE(O))=high∧ otnt(OE(O)) ∈ OE(OMETnt).attval∧ otnt(OE(AO(O))) ∈

OE(OMETnt).attval⇒ host(OE(O)) 6= host(OE(AO(O)))

Req# 2: VMs of cooperative tenants reside on same server.

Expr: otnt(OE(O)) ∈ OE(OConsTnt).attval∧ otnt(OE(AO(O))) ∈ OE(OConsTnt).attval⇒

host(OE(O))=host(OE(AO(O)))

Req# 3: Similar purpose VMs reside in same server.

Expr: otnt(OE(O))=otnt(OE(AO(O))) ∧ purporsetype(OE(O)) =purporsetype(OE(AO(O)))

⇒ host(OE(O))=host(OE(AO(O)))

Req# 4: High sensitive VMs of tenants are located to different servers.

Expr: sensitivity(OE(O))=‘high’ ∧ sensitivity(OE(AO(O))) =‘high’ ∧ otnt(OE(O))=otnt(OE(AO(O)))⇒

host(OE(O))6=host(OE(AO(O)))

43

Req# 5: Less sensitive VM of a tenant cannot reside in same server of acompeting tenant during

maintenance.

Expr: status(OE(O))=‘maintenance’∧ sensitivity(OE(O))=‘low’ ∧ otnt(OE(O)) ∈

OE(OMETnt).attval∧ otnt(OE(AO(O)) ∈ OE(OMETnt).attval⇒ host(OE(O)) 6= host(OE(AO(O)))

Req# 6: VMs of tenant cannot connect to same network that is connected to VMs of competing

tenants.

Expr: otnt(OE(O)) ∈ OE(OMETnt).attval∧ otnt(OE(AO(O))) ∈ OE(OMETnt).attval⇒

network(OE(O)) 6= network(OE(AO(O)))

Note that, above given security requirements 1-5 are for managing co-location of the VMs to

the physical servers and security requirements 6 is for managing mapping between two virtual

resources, i.e., VM and NET. We consider these two problems as scheduling problem and con-

figuration management problem respectively. Enforcing such constraints in cloud IaaS may cause

various cloud IaaS specific issues including enforcement complexities and resource optimization.

In this chapter, we do not analyze these issues, rather, we only show that ABCL is capable to spec-

ify various constraints. In chapter 5, we develop a constraint-driven virtual resources management

by utilizing the appropriate subset of ABCL where we analyzethese issues. Also, in chapter 6, we

develop a constraint-aware virtual machine scheduler in which we only use elements from ABCL

which are required to solve this problem.

B. Constraints for admin-user privileges management

Req# 1: An admin can access VMs of a tenant, if he is not an admin of the competing tenants.

Expr: |tenant(OE(U)) ∩ OE(UMETnt).attval| ≤ OE(UMETnt).limit

Req# 2: An administrative user cannot maintain more than 3 tenants.

Expr: |tenant(OE(U))| ≤ 3

Req# 3: A subject cannot access VMs from two ME tenants.

Expr: |acctnt(OE(S)) ∩ OE(SMETnt).attval| ≤ OE(SMETnt).limit

44

Table 4.2: ABCL Sets Declaration and Initialization:
1. Attribute_Set Declaration and Initialization:
Attribute_SetU,tenant UMETnt
UMETnt={avset1, avset2, avset3}
avset1=({‘t 1’,‘t 3’},1), avset2=({‘t 2’,‘t 4’,‘t 5’},2), avset3=({‘t 7’,‘t 8’},1)

Attribute_SetU,adminGrpUMEGrp
UMEGrp={avset1}
avset1=({‘hardware_maintenance’,‘remote_maintenance’},1)

Attribute_SetO,otnt OMETnt
OMETnt= {avset1, avset2, avset3}
avset1=({‘t 1’,‘t 3’},1), avset2=({‘t 7’,‘t 8’},1), avset3=({‘t 2’,‘t 4’,‘t 5’},2)

Attribute_SetU,role UMERole
UMERole={avset1}
avset1=({‘vmMonitor’, ‘vmAdmin’, ‘billAdmin’},1)

Attribute_SetS,acctnt SMETnt
SMETnt={avset1, avset2}
avset1=({‘t 1’,‘t 3’},1), avset2=({‘t 2’,‘t 4’,‘t 5’},1)

Attribute_SetO,otnt OConsTnt
OConsTnt={avset1, avset2},avset1=({‘t 1’,‘t 4’},2), avset2=({‘t 7’,‘t 9’},2)

2. Cross_Attribute_Set Declaration and Initialization:
Cross_Attribute_SetU, {adminGrp}, { role} UMECGR
UMECGR= {attfun1, attfun2, attfun3}
attfun1(adminGrp)=({‘hardware_maintenance’},1)
attfun1(role)=({‘billAdmin’,‘pCreator’,‘vmAdmin’},0)
attfun2(adminGrp)=({‘security’}, 1),
attfun2(role)=({‘billAdmin’, ‘vmMonitor’,‘vmAdmin’},0))
attfun3(adminGrp)=({‘remote_maintenance’},1)
attfun3(role)=({‘pCreator’,‘vmMonitor’},0))

45

Req# 4: A tenant cannot be accessed by more than one subject of an admin.

Expr: SubCreator(OE(S))=SubCreator(OE(AO(S)))⇒ acctnt(OE(S))∩ acctnt(OE(AO(S)))=φ

Req# 5: An admin cannot join both hardware and remote maintenance.

Expr: |OE(UMEGrp).attval∩ adminGrp(OE(U))| ≤ OE(UMEGrp).limit

Req# 6: An admin of hardware-maintenance group cannot getroles ‘billAdmin’ and ‘pCreator’.

Expr: |adminGrp(OE(U)) ∩ OE(UMECGR).attfun(adminGrp).attval| ≥

OE(UMECGR).attfun(adminGrp).limit ⇒ |OE(UMECGR).attfun(role).attval∩ role(OE(U))| ≤

OE(UMECGR).attfun(role).limit

4.3 Attribute Based Isolation Management

Recently, trusted virtual datacenter (TVDc) [18] proposedan isolation management process in

cloud IaaS. In TVDc virtual machines and their associated resources, such as virtual bridge and

virtual local access network (VLAN), are grouped into trusted virtual domains (TVDs). Each TVD,

represented as a security clearance (also referred to as color), enforces an isolation policy towards

its group members. More specifically, resources are only allowed to interact with each other if they

are assigned to same color. For instance, VMs with same colorcan communicate and a VM can

run on a hypervisor only if this hypervisor has the same coloras that VM. The main goal of this

process is to isolate customer workloads from each other. Asdescribed in [18], the purpose of this

isolation is to reduce the threat of co-locating workloads from different customers by preventing

any kind of data flow among these workloads where the data might includes sensitive information

of the customers or any virus or malicious code. Again, this simple management process also

reduces the incidence of misconfiguration of the virtual-resource management tasks. TVDc [18]

also develops a hierarchical administration model based ontrusted virtual domains.

We develop a formal model for TVDc which we call Formalized-TVDc (also referred as

F-TVDc) where we show that the attribute based system can be leveraged to represent different

properties of the virtual resources, such as color. Then, resources with similar attributes will be

46

arranged together to built a particular computing environment. For instance, a VM can run on a

hypervisor, physical host or Host, if the Host has same colorof the VM. This formal model consists

authorization models for three types of administrative-user operations.

4.3.1 Background: Trusted Virtual Datacenter (TVDc)

Trusted virtual datacenter (TVDc) [18] manages isolation by defining a trusted virtual domain

(TVD) for a set of VMs and their associated resources that constitute a common administrative unit.

The boundary of a TVD is maintained by assigning the TVD identifier to the respective VMs and

resources. A TVD identifier represents a security clearance(also referred to as a color to emphasize

there is no ordering or structure). For instance, a color canrepresent the virtual resources of a

particular customer or virtual resources running specific workloads of a customer. Hence, basically,

a color represents a particular context for the assigned VMsand resources. Figure 4.2, from [18],

shows the TVDc view of the virtual resources running two physical data centers and their resources,

such as servers, storage, and network components. The TVDc view separates the association of

physical resources for each color. For instance, in figure 4.2, the red color includes VMs 3, 7, 9,

and 11, and associated storages.

In order to manage this isolation process, three different administrative roles are proposed in

TVDc: IT datacenter administrator, TVDc administrator , and tenant administrator. Administrative

users (also generally referred as admin-users) having IT datacenter administrator role are the super-

users in this system. Their main task is to keep track of the physical and the virtual resources and

group these resources into TVDcs. They also define the security labels or colors. IT datacenter

admin-users further can assign a TVDc group to both TVDc and tenant admin-users, and assign a

set of colors to TVDc admin-users in order to delegate isolation management of resources in that

specific TVDc group. The tasks of a TVDc admin-user include assigning colors to the resources

of a TVDc group, from her assigned set of colors. She also assigns a color to an admin-user if

the admin-user is in the same TVDc group and assigned to the tenant administrator role. The job

function of a tenant admin-user is to perform basic cloud administrative operations on the cloud

47

resources, such as boot a VM and connect a VM to a virtual network, if both the resources and the

tenant admin-user are in same TVDc group and assigned with same color.

This color-driven isolation management process supports four different types of isolation which

are described as follows.

1. Data Sharing: In this model, VMs can share data with each other only if they have common

colors. In order to constrain this, a VM is allowed to connectto a VLAN only if both the

VM and the VLAN have common colors and, therefore, it is restricted to communicate with

VMs having same color.

2. Hyperviosr (Host) Authorization: A Host is assigned to a set of colors and is only allowed

to run a VM having a color in that set. Therefore, a Host’s capability to run VMs is isolated

to its assigned colors.

3. Colocation Management: Two colors can be conflicted with each other if context of op-

eration is mutually exclusive. Colors can be declared to be conflicting and two VMs with

conflicted colors are prohibited from running in same Host. For instance, VMs A and B with

color red and blue respectively which have been declared to be conflicting cannot run on

same Host.

4. Management Constraints: For management isolation, tenant administrative roles arecre-

ated where each user having this role is restricted to perform administrative operation within

a single color.

4.3.2 Formal Isolation Management Model (F-TVDc)

In this section, we formalize the isolation management process in cloud IaaS which is informally

described in TVDc [18]. We call the resulting model as Formalized-TVDc (F-TVDc) for ease

of reference and continuity. In F-TVDc, different properties of the cloud entities are represented

as assigned attributes to them. For instance, a virtual machine(VM) attributecolor represents

48

Figure 4.2: TVDc View of the IaaS Cloud Resources [18]

assigned colors to that VM and an administrative user (admin-user) attributeadminRolerepresents

assigned role to that user. For this purpose we utilize the attribute based system [78], specifically

its attribute representation for the entities in a system. In this attribute based representation of

F-TVDc, the admin-users can manage the resources in data-center by assigning proper attributes

to them. For instance, a TVDc admin-user can assign a set of colors to a Host and, consequently,

the Host is authorized to run a VM if the assigned color of the VM is an element of the set of

colors assigned to the Host. F-TVDc also formally represents an authorization model for these

admin-user privileges.

Basic Components

The sets that contain basic entities of F-TVDc are shown in table 4.3. In F-TVDc,CLR contains

the existing colors/clearances in the system. We will see later that the colors fromCLR will be

assigned to the cloud-resources’ and admin-users’ respective attributes, such as theadmincolor

attribute of an admin-user. The data-center is divided intomultiple virtual data-centers.VDc con-

49

Table 4.3: Basic Sets for F-TVDc
CLR = Finite set of existing colors
VDc = Finite set of existing virtual data centers
AROLE = { itAdmin, tvdcAdmin, tntAdmin}
AU = Finite set of existing admin-users
VM = Finite set of existing virtual machines
VMM = Finite set of existing hypervisors
BR = Finite set of existing virtual bridges
VLAN = Finite set of existing virtual LANs

tains the names of these virtual data-centers. There are three administrative roles: IT administrator

(itAdmin), TVDc administrator (tvdcAdmin), and tenant administrator (tntAdmin) which are con-

tained in setAROLE. The setAU contains all admin-users in the system.VMM andVM contains

the current existing hypervisors (Hosts) and the virtual machines(VMs) in the system. Similarly,

existing virtual LANs and virtual bridges are contained in setVLAN andBR respectively.

Attributes

Attributes characterize properties of an entity and are modeled as functions. F-TVDc recognize

two types of attribute functions for each entity depending on the nature of the function’s values:

atomic-valued and set-valued. For instance, an admin-userattribute functionadminRolecan only

take a single value that indicates the assigned role to that user. On the other hand, the attribute

functionadmincolor, representing the assigned colors to an admin-user, can take multiple values.

For convenience we understand attribute to mean attribute function for ease of reference. Attributes

of an entity, let’s say VM attributes, can be formally definedas follows:

• ATTRVM is the finite set of VM attributes, where

attType: ATTR→ {set, atomic}.

• For eachatt∈ ATTRVM , SCOPEatt is a finite set of atomic values which determines the range

of att as follows:

50

Table 4.4: Attributes Specification
Entity Attributes attType SCOPE

Admin-User adminRole atomic AROLE
adminvdcenter set VDc

admincolor set CLR
Virtual Machine vmvdcenter atomic VDc

vmcolor atomic CLR
host atomic VMM

status atomic {Running, Stop}
bridge set BR

Hypervisor (Host) vmmvdcenter atomic VDc
vmmcolor set CLR

vm set VM
Virtual Bridge brvdcenter atomic VDc

brcolor atomic CLR
vm set VM
vlan atomic BR

Virtual LAN vlanvdcenter atomic VDc
vlancolor set CLR

bridge set BR

Range(att) =























SCOPEatt if attType(att) = atomic

P(SCOPEatt) if attType(att) = set

whereP denotes the power set of a set.

• An attribute is a function that maps each VM∈VM to a value in range, i.e.,

∀att ∈ ATTRVM . att : VM → Range(att)

Similary, attributes of other entities can be defined. Table4.4 shows the necessary attributes

for the entities in F-TVDc which are described as follows.

51

• Admin-User (aUser) attributes:adminRoleattribute of an admin-user (aUser) specifies

the assigned administrative role toaUser. Note that, anaUser can get only one admin-

istrative role, hence,adminRoleis an atomic attribute. Attributeadminvdcenterrepresents

the assigned virtual data-center of anaUser. If the aUser is an IT administrator then its

adminvdcentercontains all the members inVDc. Otherwiseadminvdcenterof anaUser

contains only one element fromVDc. Similarly,admincolorspecifies the assigned colors to

anaUser. If anaUser is an IT administrator then heradmincolorcontains all the elements

of CLR. On the other hand, anaUser havingtvdcAdmin role can get subset of colors from

CLR and atntAdmin gets only one color. Section 4.3.3 represents the operations to assign

values of theseaUser attributes.

• Virtual machine (VM) attributes: The VM attributehost represents the hypervisor (Host)

where a VM is running. Attributebridgerepresents the connected BRs of a VM.vmvdcenter

represents the virtual data-center a VM belongs to andvmcolorspecifies the assigned color

to that VM.

• Hypervisor (Host) attributes: Thevm attribute represents the running VMs in a Host. The

vmmvdcenterattribute represents its virtual data-centers andvmcolorthe assigned colors to

it.

• Virtual Bridge (BR) attributes: Thevm attribute of BR specifies the connected VMs to a

BR. Similarly,vlan specifies the VLAN to which a bridge is connected. Similar to the other

entities,brcolor andbrvdcenterrepresent the virtual data-center and color assigned to a BR.

Note these are atomic in this instance.

• Virtual LAN (VLAN) attributes: Thebridge attribute of a VLAN specifies the connected

virtual bridges to it. Also,vlancolorandvlanvdcenterrepresents the virtual data-center and

colors assigned to a VLAN.

52

4.3.3 Administrative Models

In this section, we discuss administrative operations for the three types of admin-users. Table 4.5

formally specifies the set of administrative operations forthe IT admin-user. The first column

specifies the operation name and parameters. The second column specifies the conditions that

need to be satisfied to authorize the operation. Attributes and sets that will be updated after an

authorized operation are listed in the third column, with the ′ symbol indicating the value after the

update. Administrative operations of Table 4.5 are discussed below.

• CreateVDC: First column of table 4.5 shows that this function takes twoparameters: users

u and a virtual data-center vdc. Then, in second column, these parameters need to satisfy the

given formula which checks if u belongs toAU, adminRoleof u is itAdmin and vdc is not

present inVDc. If the precondition is satisfied, in column 3, vdc is createdby adding it to

setVDc.

• CreateCl andRemoveCl: Using these two operations, anitAdmin can create a new color cl

and remove an existing color cl.

• Add_ClTVDcAdmin : This function takes three parameters: users u1 and u2, and acolor cl.

These parameters need to satisfy the given formula in column2 which checks if u1 has role

itAdmin, u2 has roletvdcAdmin and cl is a valid member inCLR. If so, color cl is assigned

to tvdcAdmin u2 by adding cl totvdcAdmincolorattribute of u2, as shown in column 3.

• Rem_ClTVDcAdmin : Using this operation, anitAdmin removes a color cl from an admin-user

having roletvdcAdmin.

• Assign_VDCAdmin : Using this operation anitAdmin user assigns a virtual data-center vdc

to attributeadminvdcenterof a tvdcAdmin or tntAdmin user.

53

Table 4.5: IT admin-user Operations
Operation Precondition Updates
CreateVDC(u, vdc) u∈AU∧vdc/∈VDc∧ VDc′=VDc∪{vdc}
/*Creates a virtual data-center adminRole(u)=itAdmin
vdc*/
CreateCl(u,cl) u∈AU∧cl/∈CLR∧ CLR′=CLR∪{cl}
/*Creates a color cl*/ adminRole(u)=itAdmin

RemoveCl(u,cl) u∈AU∧cl∈CLR∧ CLR′=CLR-{cl}
/*Removes a color cl*/ adminRole(u)=itAdmin

Add_ClTVDcAdmin (u1,u2,cl) u1∈AU∧adminRole(u1)= admincolor′(u2)←
/*Adds cl to tvdcAdmin u2*/ itAdmin∧u2∈AU∧cl∈CLR∧ admincolor(u2)∪{cl}

adminRole(u2)=tvdcAdmin∧
cl 6∈admincolor(u2)

Rem_ClTVDcAdmin (u1,u2,cl) u1∈AU∧adminRole(u1)= admincolor′(u2)←
/*Removes cl from itAdmin∧u2∈AU∧ admincolor(u2)-{cl}
tvdcAdmin u2*/ adminRole(u2)=tvdcAdmin∧

cl∈admincolor(u2)

Assign_VDCAdmin (u1,u2,vdc) u1∈AU∧adminRole(u1)= adminvdcenter′(u2)←
/*Assigns virtual datacenter vdc itAdmin∧u2∈AU∧ {vdc}
to tvdcAdmin or tntAdmin u2*/ (adminRole(u2)=tvdcAdmin∨

adminRole(u2)=tntAdmin)∧
vdc∈VDc

Assign_VDCVM (u,vm,vdc) u∈AU∧vm∈VM∧vdc∈ vmvdcenter′(vm)←
/*Assigns virtual datacenter VDc∧adminRole(u)=itAdmin vdc
vdc to a VM vm*/

Assign_VDCVMM (u,vmm,vdc) u∈AU∧vmm∈VMM∧vdc∈ vmmvdcenter′(vmm)←
/*Assigns virtual datacenter VDc∧adminRole(u)=itAdmin vdc
vdc to a Host vmm*/

Assign_VDCBR(u,br,vdc) u∈AU∧br∈BR∧vdc∈ brvdcenter′(br)←
/*Assigns virtual datacenter VDc∧adminRole(u)=itAdmin vdc
vdc to a BR br*/

Assign_VDCVLAN (u,vlan,vdc) u∈AU∧vlan∈VLAN∧vdc∈ vlanvdcenter′(vlan)←
/*Assigns virtual datacenter VDc∧adminRole(u)=itAdmin vdc
vdc to a VLAN vlan*/

54

• Assign_VDCVM : A virtual data-center vdc is assigned to thevmvdcenterattribute of a VM

called vm. This value specifies that vm belongs to virtual data-center vdc.

• Assign_VDCVMM : Similarly, a virtual data-center vdc is assigned to thevmmvdcenterat-

tribute of a Host called vmm.

• Assign_VDCBR: This operation assigns a virtual data-center named vdc tobrvdcenterat-

tribute of a BR calledbr.

• Assign_VDCVLAN : A virtual data-center, vdc, is assigned to thevlanvdcenterattribute of a

VLAN called vlan.

Similarly, table 4.6 shows the operations for TVDc admin-users. The TVDc admin-users are re-

sponsible to assign colors to thetntAdmins and the resources in data-centers where the TVDc

admin-users are authorized to exercise their priviledges.The description of these operations are as

follows:

• Assign_ClTAdmin : A tvdcAdmin u1 assigns a color cl to atntAdmin u2. Authorization of this

operation needs to satisfy the precondition that u1 and u2 are in the same virtual data-center.

Also, theadmincolorattribute of u2 must contain cl.

• Rem_ClTAdmin : Using this operation atvdcAdmin removes a color fromtntAdmin.

• Add_ClVMM : This operation adds a color cl to a Host named vmm if vmm andtvdcAdmin

are in same virtual data-center. Note that, a Host can contain multiple colors.

• Assign_ClVM , Assign_ClBR, and Add_ClVLAN : Using first two operations operations a

tvdcAdmin u assigns a color cl to a VM vm and a bridge br respectively. Also, using

Add_ClVLAN the tvdcAdmin adds a color to thevlancolorattribute of a VLAN vlan. Note

that,vlancolorattribute can contain multiple colors since vlan can be connected to multiple

virtual bridges.

55

Table 4.6: TVDc-ADMIN Operations
Operation Precondition Updates
Assign_ClTAdmin (u1, u1∈AU∧u2∈AU∧adminRole(u1)= admincolor′(u2)←
u2,cl) tvdcAdmin∧adminRole(u2)= {cl}
/*Assigns a color cl tntAdmin∧ adminvdcenter(u1)=
to atntAdmin u2*/ adminvdcenter(u2)∧cl∈

admincolor(u1)∧
cl 6∈admincolor(u2)

Rem_ClTAdmin (u1, u1∈AU∧u2∈AU∧adminRole(u1)= admincolor′(u2)←
u2,cl) tvdcAdmin∧adminRole(u2)= φ
/*Removes the color cl tntAdmin∧ adminvdcenter(u1)=
from atntAdmin u2*/ adminvdcenter(u2)∧cl∈

admincolor(u1)∧
cl∈admincolor(u2)

Add_ClVMM (u,vmm,cl) u∈AU∧vmm∈VMM∧cl∈ vmmcolor′(vmm)←
/*Adds a color cl admincolor(u)∧adminRole(u)= vmmcolor(vmm)∪
to a Host vmm*/ tvdcAdmin∧adminvdcenter(u)= {cl}

vmmvdcenter(vmm)

Assign_ClVM (u,vm,cl) u∈AU∧vm∈VM∧cl∈ vmcolor′(vm)←
/*Assigns a color cl admincolor(u)∧adminRole(u)= {cl}
to a VM vm*/ tvdcAdmin∧adminvdcenter(u)=

vmvdcenter(vm)

Assign_ClBR(u,br,cl) u∈AU∧br∈BR∧cl∈ brcolor′(br)←{cl}
/*Assigns a color cl admincolor(u)∧adminRole(u)=
to a BR br*/ tvdcAdmin∧adminvdcenter(u)=

brvdcenter(br)

Add_ClVLAN (u,vlan,cl) u∈AU∧vlan∈VLAN∧cl∈ vlancolor′(vlan)←
/*Adds a color cl to admincolor(u)∧adminRole(u)= vlancolor(vlan)∪
a VLAN vlan*/ tvdcAdmin∧adminvdcenter(u)= {cl}

vmmvdcenter(vlan)

Now, table 4.7 shows the administrative operations for tenant admin-users and preconditions to

authorize these operations. The operations of the tenant admin-users are to manage cloud resources

within their assigned TVD groups, i.e., colors. The operations are described as follows:

• Boot: Using this operation a tenant admin-user u boots a VM vm in a Host vmm. Table 4.7

56

Table 4.7: Tenant-ADMIN Operations
Operation Precondition Updates
Boot(u,vm,vmm) vmcolor(vm)∈admincolor(u)∧ host′(vm)←
/*Boots a VM admincolor(u)∩ vmmcolor(vmm)6= vmm
vm in a Host vmm*/ ∅∧adminvdcenter(u)= vm′(vmm)←

vmvdcenter(vm)∧adminvdcenter(u)∈ vm(vmm)∪vm
vmmvdcenter(vmm)∧vmcolor(vm)∈
vmmcolor(vmm)∧vm∈VM∧vmm∈ status′(vm)←
VMM∧ Evaluate_CLocConst(vm,vmm)∧ Running
u∈AU∧adminRole(u)=tntAdmin∧
status(vm)=Stop

ConVmToBr (u,vm,br) u∈AU∧vmcolor(vm)∈admincolor(u)∧ bridge′(vm)←
/*Connects a VM brcolor(br)=vmcolor(vm)∧brcolor(br)∈ br
vm to a BR admincolor(u)∧br∈BR∧vm∈VM∧ vm′(br)←
br*/ adminvdcenter(u)=vmvdcenter(vm)∧ vm(br)∪

adminvdcenter(u)=brvdcenter(br)∧ {vm}
adminRole(u)=tntAdmin

ConBrToVLAN (u,br,vlan) u∈AU∧brcolor(br)∈admincolor(u)∧ bridge′(vlan)←
/*Connects a BRbr brcolor(br)∈ vlancolor(valn)∧ bridge(vlan)∪
to a VLAN vlan*/ vlancolor(vlan)∩admincolor(u)6= {br}

∅∧br∈BR∧vlan∈VLAN∧ vlan′(br)←
adminvdcenter(u)=vlanvdcenter(vm)∧ vlan
adminvdcenter(u)=vlanvdcenter(br)
∧adminRole(u)=tntAdmin

shows the necessary precondition in order to authorize thisoperation. The precondition

verifies if the u has same color of the vm which is basically an implementation of the man-

agement isolation constraint shown in section 4.3.1. In addition to that, the precondition

also checks if these three entities belong to the same data-center. It also verifies if the Host

vmm’svmmcolorattribute contains the color of the vm’s assigned color invmcolorwhich is

an implementation of Host authorization isolation which isalso shown in section 4.3.1. The

authorization process of this operation also calls Evaluate_CLocConst function to satisfy the

co-location management constraint, also given in section 4.3.1, for vm with other running

VMs in vmm. The algorithm 4.1 shows the evaluation process ofEvaluate_CLocConst.

Upon successful checking of these conditions vm is scheduled to the vmm. In chapter 6, we

57

Algorithm 4.1 Colocation Constraints Verification
1: procedure Evaluate_CLocConst (reqVm,vmm)
2: Flag=True
3: for all vm∈ VM do
4: if host(vm)=vmmthen
5: for all conele∈ConflictColordo
6: if vmcolor(reqVm)6= vmcolor(vm) then
7: if vmcolor(vm)∈conele∧vmcolor(reqVm)∈conele∧status(vm)=Runningthen
8: Flag=False
9: Return Flag
10: end if
11: end if
12: end for
13: end if
14: end for
15: Return Flag
16: end procedure

develop and analyze a novel constraint-driven virtual resource scheduling process.

• ConVmToBr : It connects a VM vm to a BR br. A VM can only connects to br if they have

same color and they belongs to the same data-center.

• ConBrToVLAN : Using this function a tenant admin-user connects a BR br to aVLAN vlan.

They can be connected if color of br is present in thevlancolorattribute of vlan.

Algorithm 4.1 shows the evaluation algorithm of the co-location constraints. It takes two in-

puts: requested VM (reqVm) and the Host (vmm). For each VM running in the vmm, this algo-

rithm verifies if there is any conflict between the assigned color to thevmmcolorattribute of VM

with the assigned color to thevmmcolorof reqVm. Attribute values can have different type of con-

flicts that can represent various relationships among thesesuch as mutual-exclusion, precondition,

etc. A generalized approach to represent the various types of attribute conflict-relations are shown

chapter 3. Here, the conflicting values, i.e. colors, of the attribute vmmcolorare stored in a set

called ConflictColor where each element in the set contains aset colors that are conflicting with

each-other. Formally this set is defined as follows,

58

ConflictColor = {conele1, conele2, ..., conelen} where conelei ⊆ CLR

If algorithm 4.1 identifies no conflicts between reqVm and allrunning VMs in vmm, it returns

True. Otherwise, it returns False.

59

Chapter 5: THE CVRM MODEL

The materials in this chapter are published in following venues [21,26]:

1. Khalid Bijon, Ram Krishnan and Ravi Sandhu, Virtual Resource Orchestration Constraints

in Cloud Infrastructure as a Service. In Proceedings of the 5th ACM Conference on Data

and Application Security and Privacy (CODASPY), March 2-4,2015, San Antonio, Texas.

2. Khalid Bijon, Ram Krishnan and Ravi Sandhu, Automated Constraints Specification for

Virtual Resource Orchestration in Cloud IaaS. Under Reviewin IEEE Transactions on De-

pendable and Secure Computing (IEEE TDSC), 2015.

We discuss our developed attribute based CVRM (constraint-driven virtual resource manage-

ment process). CVRM provides a language to specify constraints which is a customized version

of ABCL that is suitable for this purpose. We also provide an enforcement guideline for these

constraints in the OpenStack cloud platform.

5.1 Motivation

Migrating line-of-business applications to IaaS can be risky for cloud tenants if their virtual re-

sources are not properly configured. A misconfigured system not only hinders expected perfor-

mance but also poses several security threats to a tenant. These threats include (i) malicious image

insertion and inadvertent leakage of sensitive information through snapshot, (ii) sensitive informa-

tion passing from a virtual machine to malicious virtual networks, and (iii) flow of information

from a highly sensitive virtual network to a malicious or less sensitive one. Currently commercial

cloud IaaS providers, including Amazon and Rackspace, offer at best rudimentary capabilities for

such configuration management. For instance, AWS-IAM [2] offers a tenant to specify policies

that can restrict resource-level permissions for certain users where the permissions include snap-

shot a VM, create a virtual storage (STR) with specific capacity, etc. On the other hand, Rackspace

provides a fixed mechanism for isolation management where cloud resources and administrative

60

users of a tenant, also referred as admin-users, can be grouped into different projects where admin-

users can only configure the resources in their assigned projects. These fixed approaches lack

the generality to capture diverse enterprise-specific requirements for configuring virtual resources.

Moreover, in these user-driven configuration management setups, completely relying on the admin-

users increases the risk of possible misconfiguration sinceadmin-users may inadvertently create

incorrect configurations. It also elevates potential for insider threats since there is no independent

mechanism to detect or prevent those misconfiguration.

Motivated by these considerations, we aim to develop CVRM that offers a tenant means to

specify various constraints for configuring the required arrangements of virtual resources. We

address the fact that security concerns due to misconfiguration will vary across line-of-business

applications of the tenants. For instance, a 3-tier business application will be concerned about

protecting unauthorized disclosure of data, while hadoop cluster configurations will seek to ensure

integrity and availability of the resources. CVRM is designed to address tenant-specific constraints

where the constraints are enforced on user-operations thataffect the configurations of virtual re-

sources. Constraints specified by a tenant can be enforced onoperations performed by the tenant’s

admin-users during regular operations or by CSP’s admin-users in case of exceptions and trou-

bleshooting. We believe that, in addition to any access control mechanism implemented in this

system, CVRM provides resource management capability thatprevents misconfiguration caused

by admin-users.

Figure 5.1 shows conceptual view of constraint driven virtual resource management. Con-

straints can be specified for a specific mapping relation (or simply relation) between two virtual

resources. We describe these mapping relations and possible misconfiguration issues. We also pro-

vide examples for 3-tier applications and hadoop cluster configurations. Note that, 3-tier aims to

isolate computational requirements of an organization by three different tiers—presentation (PS),

application (APP), and database (DB), for better security and scalability. Hadoop is a master-slave

architecture for faster analysis of big data where securityissues include integrity and availability of

the resources. Different kinds of virtual resource to virtual resource mappings are briefly discussed

61

Figure 5.1: Constraints on Virtual Resources Arrangement Configurations

below.

• IMG-VM Compatibility Relations: As shown in figure 5.1, a virtual machine image, also

referred as IMG, can be used by multiple VMs. Conversely, from a VM multiple snapshots

can be imaged. This process provides quick replication of a VM into large numbers of cloned

VMs, and also quick migration of a VM to another server. However, incorrect usage of an

IMG can critically affect the security and performance in the system. For instance, in 3-tier,

VMs running the application of each tier require separate IMGs since VMs in different tiers

perform different operations. Thus, an IMG created for DB-tier is not to be used for VMs

of PS-tier, since PS-tier VMs are web-facing and the IMG may expose critical information

about DB-tier. Similarly, in hadoop, each type of VMs such asnameNode and taskTracker

have different functionalities, whereby improper use of anIMG can hamper performance

and availability.

• NET-VM Connectivity Relations: A group of VMs, connect to a virtual network NET,

so as to internally communicate. However, a wrong VM connected to a NET may hamper

communication in NET and availability of information. For instance, in 3-tier application,

62

APP-tier VMs can be connected to each other for faster communications, however, acci-

dental assignment of VMs from other tiers can hamper the flow.Similarly, the taskTracker

VMs performing reduce jobs should be connected with each other and no other VMs should

connect to this network.

• RT-NET Connection Relations: Using a virtual router (RT), VMs of two selected NETs

can communicate. In 3-tier application, VMs of APP-tier andPS-tier should communicate,

however, PS-tier should not directly communicate with DB-tier. Also, connection to the ex-

ternal internet is only authorized for tier-1 VMs. Similarly, in hadoop, a NET for nameNode

VMs should only connect to the NET of jobTracker VMs.

• STR-VM Attachment Relations: A persistent virtual storage (STR), is like a hard-disk

drive which can be attached and detached to multiple VMs, butone at a time, until it is

destroyed. Note that, a STR attached to a VM stores data from the VM. Later, if the STR

is detached and re-attached to another VM without deleting its data, the new VM will get

access to the data of the previous VM.

5.2 Design of CVRM

As discussed in earlier chapters, intuitively, an attribute captures a property of an entity in the

system, expressed as a name:value pair. For instance, clearance can be a user attribute and values of

clearance could be ‘top-secret’, ‘secret’, etc. In the context of cloud IaaS, various useful properties

of the virtual resources, such as VMs and NETs, can be captured by associating attributes to

them. For instance, attributes can represent a VM’s different properties including owner tenant,

operational purpose, workloads sophistication, and connected networks. In CVRM, given that the

properties of the virtual resources are represented by their attributes, a constraint is enforced while

mapping (i.e., connecting) two virtual resources by comparing the specific attributes of the virtual

resources.

In this section, we formally define CVRM that includes representation of the basic elements,

63

relations among virtual resources and the constraints specification language. Then, we instantiate

CVRM for 3-tier architecture and hadoop cluster in cloud IaaS.

5.2.1 Formal Specification

The basic elements of CVRM include representation of existing tenants and virtual resources in a

cloud IaaS system where each virtual resource belongs to a particular tenant. A virtual resource

is also mapped to a particular class of virtual resource suchasVM, NET, IMG, RT, andSTR.

Formally, we have the following.

• VR is the set of all existing virtual resources in CSP.

• CLS is the set of all classes of virtual resources that are supported by the CSP.

• rCls : VR→ CLS, is a function that maps each virtual resource to its class.

• TENANTS is the finite set of existing tenants in CSP.

• tenant: VR→ TENANTS, is a function that maps each virtual resource to the tenant that

owns it.

• VRtnt is the set of virtual resources that are owned by the tenanttnt. Formally,

VRtnt={v∈ VR | tenant(v)=tnt}.

Here,VRtnt contains the virtual resources of a tenanttnt and these virtual resources are parti-

tioned into different sets based on their class. We define such sets of the virtual resources of each

tenant as follows,

• VRtnt,c is the set of virtual resources of classc that are owned by the tenanttnt. Formally,

VRtnt,c={v∈VRtnt | rCls(v)=c}.

In a tenant, a particular class of virtual resources can havespecific type of mapping relations to

virtual resources of another class. For instance, virtual resources of classVM can have connection-

mapping and attachment-mapping relations with virtual resources of classNET andSTR respec-

64

tively. We can define the relations between elements of everytwo classes of virtual resources in a

tenant as follows,

• Rtnt,c
i
,c

j
is the relation between virtual resources of classci andcj in a tenanttnt. For-

mally,

Rtnt,c
i
,c

j
⊆ VRtnt,ci×VRtnt,cj .

However, CVRM restricts the following type of relations,

1. Relations between virtual resources of same class cannotbe specified (i.e.,Rtnt,c
i
,c

i
cannot

be specified).

2. For two classesci 6=cj we can defineRtnt,c
i
,c

j
orRtnt,c

j
,c

i
but not both.

CVRM provides two operations calledAdd andRM respectively to add and remove tuples

to a relation, where each operation is a function that takes as inputs the relation and two virtual

resources of appropriate classes. Each operation also evaluates a specific constraint with respect to

these two virtual resources as discussed below. Formally they are defined as follows (the notation

for defining these operations is similar to the notation of schema used in NIST RBAC [57]),

Add(Rtnt,ci,cj ,vr1,vr2) ⊳

vr1∈VRtnt,ci ∧ vr2∈VRtnt,cj ∧ consEval(δAdd
tnt,ci,cj ,vr1,vr2)

Rtnt,ci,cj
′ =Rtnt,ci,cj ∪ {<vr 1,vr2>}⊲

RM(Rtnt,ci,cj ,vr1,vr2) ⊳

vr1∈VRtnt,ci ∧ vr2∈VRtnt,cj ∧ consEval(δRM
tnt,ci,cj ,vr1,vr2)

Rtnt,ci,cj
′ =Rtnt,ci,cj − {<vr 1,vr2>}⊲

Here,δAdd
tnt,ci,cj andδRM

tnt,ci,cj are constraints that are respectively specified for adding and re-

moving a tuple to the relationRtnt,c
i
,c

j
. A successful execution of an operation is allowed if the

65

constraint is satisfied for the particular virtual resources vr1 and vr2. BothAdd andRM call the

constraint evaluation functionconsEvalwith vr1, vr2 as inputs along with the relevant constraint.

Evaluation of the constraint is a simple evaluation of a logical formula to true or false.

Basically, a constraint compares different properties assigned to the virtual resources vr1 and

vr2 which are evaluated byconsEvalto make a decision. In CVRM, there are attributes of each

class of virtual resource that characterize different properties of the resources and are modeled as

functions. For each attribute function, there is a set of finite constant values that represents the

possible values of that attribute. We assume values of attributes to be atomic,1 therefore, for a

particular element of that resource, the name of the attribute function maps to one value from the

set. For convenience attribute functions are simply referred to as attributes. Formally, we have the

following.

• ATTRci
tnt is the set of attribute functions of a virtual resource classci in tenanttnt. Here, for

a functionatt∈ATTRci
tnt, the domain of the function is the virtual resourcesVRtnt,ci and the

codomain is the values ofatt written asSCOPEatt which is a set of atomic values. Formally,

att : VRtnt,ci→ SCOPEatt whereatt∈ATTRci
tnt.

Now, for eachRtnt,ci,cj , at most two constraints can be specified for the operationsAdd andRM

respectively. Each constraint is used to verify if assignedvalues of specific attributes of two virtual

resources vr1 and vr2 of classci andcj respectively satisfy certain conditions. CVRM uses the

grammar in table 5.1 to specify constraints.

The constraints specification grammar syntax is given in Backus Normal Form (BNF). Basi-

cally, it is a restrictive version of the language ABCL givenin table 3.2. Each constraint statement

contains single or multiple small expressions in the form ofimplication, A→B, joined by logical

1As given in section 5.1, in 3-tier application, an example ofsuch constraints is to restrict communication between
VMs of APP-tier and DB-tier. Here, if the attribute is calledtier and the possible values are presentation, application
and database, a VM can only get one of the three values. However, there might be constraints that require set-valued
attributes where the virtual resources get multiple values. CVRM is not currently designed to express such constraints,
however, can be easily extended to set-valued attributes.

66

Table 5.1: Constraint Specification Grammar
<Quantifier>:= ∀(vr1,vr2)∈ R<Cls>,<Cls> . <Stmt>
<Stmt>:= <Stmt> <connector><Stmt> | (<rule>)
<rule>:= <Token>→ <Token>
<Token>:= (<Token> <connector> <Token>)|(<Term>)
<Term>:= <Attribute>(<resource>) <comperator> <Scope>
<Attribute>::= <letter> | <digit> | <Attribute>
<Scope>::= <letter> | <digit> <Scope>
<connector>::= ∧ | ∨
<comparator>::= = | 6=
<Cls>::= c1 | c2 | . . . | cn

<resoruce> ::= vr1 | vr2
<digit>::= 0|1|2| . . .|8|9
<letter>::= a|b|. . .|y|z|A|B|. . .|Y|Z

connectors. The small expression is also referred to as constraint-rule or justrule. Both A and B

in a rule A→B contain one or more predicates connected by logical connectors, where a predicate

contains an attribute function of a specific class of virtualresource and the function returns the

assigned value to the attribute of a specific instance of thatclass and, then, the predicate compares

the value with a particular value of the attribute. Basically, a rule, A→B, verifies that if assigned

attribute values of a virtual resource vr1 meet the conditions specified in A then assigned attribute

values of vr2 should satisfy the condition in B in order to insert vr1 and vr2 into a relation.

Note that, the grammar is also weakly typed since in each predicate<Attribute> and<Scope>

are replaced by arbitrary names. To this end, we develop a simple static type-checking system that

ensures valid constraint expression. For each predicate ofa constraint, it checks if the value,

specified after the<comparator> sign of the predicate, belongs to the scope of the attribute name

specified before the<comparator>. This is formally defined as follows.

Predicate format:

attribute(<Resource>) <comparator> attribute-value

67

Figure 5.2: Constraints Specification for 3-Tier Application System

Type-Checking Rule:

If attribute-value∈ SCOPEattribute Then

returntrue

Else

returnerror

5.2.2 Instantiation

In this section, we instantiate CVRM for an example of 3-tierbusiness application setup and an

example of hadoop cluster setup.

68

3-Tier Business Application

We focus on the tenant called3-tier. The classes of virtual resources supported by the CSP are

VM, NET, RT, STR andIMG. 3-tier supports relations fromVM-to-NET, NET-to-RT, VM-

to-IMG andVM-to-STR which are written asR3-tier,VM,NET ,R3-tier,NET,RT,R3-tier,VM,STR and

R3-tier,VM,IMG respectively.

Attributes are defined for the instances of each class of virtual resources that characterize dif-

ferent properties necessary to capture the requirements torun3-tier application in cloud. Fig-

ure 5.2-A identifies the attributes of the virtual resourcesof tenant3-tier. It also shows the

mapping relation among virtual resources (represented by arrow-headed lines). Figure 5.2-B gives

the scopes of these attributes. For instance, in A, a VM attributetier represent the tier-operations

a VM performs and B shows the scope oftier which is presentation, application, database. For

each VM,tier assigns a value from the scope to the VM. An example attributeassignment for a

VM that performs as a database server is:tier(VM)= database. Other two attributes of VM called

versionV M andstatus represent the version of a VM in specific tier and the activitystatus re-

spectively. Similarly, IMG also has attributes calledtier andversionIMG that represent the tier

and version respectively for which an IMG is created. For3-tier, we also create a NET attribute

callednetType that specifies the layer for which a NET is created for the communication. For in-

stance, a NET withnetType value psNet should only carry presentation layer data. Figures 5.2-A

and 5.2-B also defines attributes and their scopes for RT and STR respectively.

Generally, in CVRM, tenants can specify attributes for their virtual resources to capture spe-

cific organizational requirements. Also, resources can have certain general properties irrespective

of organizational diversities of the tenants. CVRM categorizes attributes in two types: one that

captures the general properties across all the tenants (referred as inter-tenant attributes) and the

other that captures tenant-specific properties (referred to as intra-tenant attributes).

For a 3-tier application, the tenant specifies VM attribute calledtier, as shown in figure 5.2-A,

for their operational purpose. Here,tier is intra-tenant attribute since this attribute is not mean-

69

ingful in other applications such as hadoop. However,volumeSize attribute of STR represents

the size of the volume and this attribute is required by virtual storage regardless of operational

objectives of different tenants, and is thereby an inter-tenant attribute.

In this setup, proper administration of the attributes is necessary where administration process

should include creation and deletion of the attributes and their scopes as well as assigning cor-

rect attribute values to the virtual resources. Creation and deletion of inter-tenant attributes and

their scopes should be managed by the CSP’s admin-users, while, the attribute value assignment to

virtual resources are performed by CSP’s or tenant’s admin-users or by the IaaS system as appro-

priate. Attribute administration is beyond the scope of this research. However, there is literature

on attribute administration [79] that might apply in this context.

After the attribute specification of the resources, the tenant 3-tier specifies at most two

constraints for the relations of every two classes. Some example constraints with high level de-

scriptions are shown in figure 5.2-C. For instance, constraint δAdd
3-tier,VM,NET applies to theAdd

operation where it checks if a vm is connecting to an appropriate virtual network by comparing

their attributes. Another constraint calledδRM
3-tier,V M,NET applies toRM operation of same rela-

tion where it checks if the a vm is in stop state to disconnect it from a virtual network. Figure 5.2-C

also shows example constraints for other relations.

Hadoop Cluster Setup

The setTENANTS contains the tenanthadoop. The classes of the virtual resources supported

by the CSP areVM, NET, and RT and specified relations are betweenVM-to-NET and NET-to-RT.

The relations are represented asRhadoop,VM,NET andRhadoop,NET,RT.

In this simple hadoop setup, we only define one attribute for each virtual resources (shown in

figure 5.3-A). Here, aVM attributenodeType represent the type of operations a vm performs in

hadoop cluster and figure 5.3-B shows the scope ofnodeType that is clientNode, nameNode,

jobTracker, mapTask, reduceTask. Similarly, two attributesnetType and route are defined for

NET and RT respectively. Note that, other attributes can also defined for more complex hadoop

70

Figure 5.3: Constraints Specification for Hadoop Cluster

configuration management.

After attributes specification of the resources, we show twoconstraints for adding elements in

each of the relations (shown in figure 5.3-C). Here, for instance, constraintδAdd
hadoop,NET,RT applies

to theAdd operation where it restricts all the NETs except outerNet and clientNet to connect a RT

which has value outerRoute inroute attribute. This constraint only allows clientNet to connect to

outer internet.

5.3 CVRM Enforcement

We describe a CVRM enforcement in OpenStack cloud platform.Basically, this discussion and

implementation of the enforcement process are based on the Havana release of OpenStack [8]. We

also analyze some security issues of CVRM.

71

Figure 5.4: Components of CVRM Enforcement Process in a Service of OpenStack

5.3.1 Enforcement in OpenStack

Figure 5.4 shows a conceptual picture of CVRM enforcement process in IaaS. This process in-

cludes a constraint specifier and constraint enforcer components. Constraint specifier specifies

necessary attributes and their scopes for the virtual resources in IaaS. It also specifies the con-

straints for the operations that add/remove configuration-relations between two virtual resources.

When users execute the operations, respective constraintsare enforced. As shown in the figure,

after getting each request from users, the constraint evaluator retrieves the attributes of the virtual

resources and the respective constraints from cloud database and evaluates the constraints to make

decision.

5.3.2 OpenStack Overview

OpenStack comprises various service components that provide functionalities for managing differ-

ent virtual resources. For instance, it has compute servicecalled Nova that offers operations for the

management of VMs where the operations include create, delete, start and stop virtual machines.

Nova also has operations for arranging other virtual resources to VMs, e.g., connect VMs with

72

NETs, attach STRs to VMs, etc. In OpenStack, each resource isa member of a specific project. A

user is authorized to exercise service operations on virtual resources of a project if she is a member

of the project and has the role calledproject-admin. There is also a notion in OpenStack called do-

main where a domain consists multiple projects. A user who isa member of a domain and assigned

to the role calleddomain-adminis responsible to create/delete projects in that domain as well as

add/remove users to specific projects. We can consider such users of a domain and its projects

as the super and regular admin-users of a tenant respectively. There is also a fixed domain called

admin whose members are the CSP’s admin-users. Members of the admin domain are responsible

to manage the cloud such as creating database tables, createand delete other domains, add/remove

users to them, design authorization policies for user access request to service APIs. Generally, in

OpenStack, if a user requests a virtual resource configuration-operation, the authorization service

which is calledkeystone provides a token that contains user information including the projects

where the user is a member and the assigned roles. The operation is allowed if the project of

respective virtual-resources are same as the requesting user.

Figure 5.5 shows execution steps of an user-operation (volume-attach) in OpenStack that at-

taches a STR to a VM. When a user in a project tries to execute the operation, the OpenStack

client program retrieves the token for the user fromkeystone. Then, it forwards the token along

with respective VM and STR names to Nova since Nova managesvolume-attach. Nova verifies

validity of the token and if the user is assigned toproject-adminrole. Also, it collects the tenant

information of VM and STR from its database and it approves ifthe given user, VM and STR are

in same tenant.

5.3.3 Constraint Specifier

Our designed constraint specifier component can be includedin each service in OpenStack. The

specifier extends respective service operations by adding functionalities for the creation and man-

agement of the attributes and their scopes for respective virtual resources. In a tenant (domain),

managing such functionalities are only authorized for the users havingdomain-adminrole in the

73

Figure 5.5: Operationvolume-attachin Nova

Figure 5.6: Constraint Specifier in Nova

domain. Note that, present OpenStack supportsdomain-adminroles only for operations inkey-

stone, however, it can be included to other OpenStack services such as Nova as well. Similarly,

specifier also provides operations for constraints specification. Each constraint is mapped to an

74

Figure 5.7: Constraint Enforcement forvolume-attach

operation-name to which it applies. Operations that specify constraints are also authorized only to

users havingdomain-adminrole. Attributes, their scopes and constraints are stored in databases

of respective service. Entries in a database table across tenants (domains) are isolated by specific

domain ids so that admin-users of a domain cannot access other domains’ information. Constraint

specifier also provides operations to assign values to the attributes of the virtual resources sup-

ported by each service in OpenStack. Unlike previous operations in OpenStack, this operation

should be authorized for theproject-adminusers of respective projects. Detailed implementation

of these operations is discussed in 5.4.

Figure 5.6 shows a Nova operation of the constraint-specifier component that specifies VM

attributes. Database of Nova contains tables for storing attributes and constraints. When a user

tries to create an attribute, the token of the user is verifiedto check if the user hasdomain-admin

role in order to make a decision. The component also containssimilar operations that specify

constraints.

5.3.4 Constraint Enforcer

Similar to constraint specifier, an enforcer component is included in every service in OpenStack.

When a user executes a service operation that affects a relation between two virtual resources, en-

75

forcer verifies the respective constraint which is already specified by constraint specifier. This

process retrieves attributes of the virtual resources and the constraint expression from service

database. It implements an evaluator to evaluate the constraint for making a decision. Note that, in

OpenStack, these operations are authorized only forproject- adminusers.

Figure 5.7 shows extended view of figure 5.5 for the executionof volume-attach. Besides,

comparing the project information of the VM, STR and user, the enforcer component now retrieves

the attributes for VM and STR and constraint forvolume-attachand evaluates the constraints by

considering the VM and STR attributes.

5.3.5 Security Concerns

We present different security issues for enforcing CVRM in practice.

Constraints Specification Process

• Constraints, Attribute and Scope: CVRM aims to restrict privileges of admin-users in

order to mitigate misconfiguration issues of a tenant. Therefore, constraints specification and

modification should be authorized only to selected admin-users of a tenant. In OpenStack,

there are three types of admin-users: CSP-admin, domain-admin and project-admin. In

our developed constraint enforcement in OpenStack we only authorize domain-admins to

manage the constraints, attributes and their scopes where the specified constraints are applied

to all three type of admin-users. A more formal isolation management scheme is given

in [24] that can also be applied here.

• Attribute Value Assignments: An admin-user who can create virtual-resources should also

assign values to their attributes. In CVRM, the project-admin users can assign values to the

attributes. However, one needs to make sure that the admin-users can only assign appropriate

values. For instance, a project-admin can create VMs and assign only her project-id to those

VMs (not ids of other projects). Here, we do not focus on such access control system,

however, existing mechanisms such as [24] might be useful.

76

• Generalized Enforcement Engine with Data Isolation:For scalability, one generalized en-

forcement engine should be designed for the evaluations of the constraints of all the tenants.

In our developed enforcement engine in OpenStack, constraints are stored in the database

separated according to the domain-id of a tenant and only respective admin-users can have

access to their constraints.

Issues on Constraint Structure

• Contradictory Constraint: The sub-expressions of a constraint can be of two types. One re-

stricts the relation of virtual resources of two different classes when values of their attributes

are mutual exclusive. Another one enables the relation whenthe values of the attributes

are congruent. A constraint containing both type of sub-expressions for same combination

of values of the attributes generates contradictory decisions for a relation. We call these

constraints as contradictory constraints and they need to be avoided.

• Deadlock Constraints: In a constraint, a value, let’s say, valx of an attributeattp of the

virtual resources of specific classci can have mutual exclusion relation with all the values

of an attributeattq of the virtual resources of classcj . Then, the virtual resources of classci

with assigned value valx cannot be arranged with any resources ofcj. These constraints are

deadlock constraints and tenants need to handle them properly.

• Redundant CVRM Expressions:In CVRM, a constraint expression is redundant if it spec-

ified multiple times. Redundant expression unnecessarily increase the run-time complexity.

One such example of a redundant expression is multiple occurrences of same sub-expression

in a constraint expression.

5.4 Prototype Implementation in OpenStack

We describe the implemented prototype of CVRM enforcement process. We leverage the DevStack

cloud framework [5], a quick and stand-alone installation of OpenStack, for the implementation

77

and analysis. We choose DevStack as it provides all components of the open source cloud platform

OpenStack. We installed DevStack in a physical server that has 4 cores and 3GB RAM. We

implemented the CVRM components for Nova. Our python-basedimplementation of constraint

specifier, that includes API design to enable users to declare attributes and constraints and the

constraint enforcer that includes a constraint parser to evaluate constraint expressions.

5.4.1 OpenStack Constraints API

In the following, we describe the developed OpenStack APIs for declaring attributes, their scopes,

and constraints in constraint specifier component. We also specify APIs specification for the at-

tributes assignment to virtual resources. Here, we show theAPIs for Nova (compute service),

however, similar APIs are specified for other services in OpenStack. These APIs are REST APIs

where each API comprises a base url to connect to the particular end-point and one of the generic

HTTP methods (GET, POST, DELETE or PUT).

Table 5.2 shows the APIs (with HTTP method and URL) that are registered to Nova APIs of

version 2.0 in OpenStack. Here, API 1-3 and 4-6 are for managing attributes and their scopes

respectively. Then, API 7-9 are for specification of the constraints for a relation of two specific

virtual resources. Finally, API 10 is to set and remove attribute-value to the virtual resources. Note

that, API 10 is already built-in to OpenStack installationsto set and remove meta information of the

virtual resources where each field in meta is akey:valuepair. We use this for assigning attribute-

values toVM where thekey is the name ofVM attribute andvalue is a value from the attribute

scope. We also develop the same APIs, as shown in table 5.2, inOpenStack block-storage service

called Cinder that manages the STRs. Note that, these APIs can be included in an OpenStack

deployment by admin-users of the CSP.

In this specification, each POST and PUT request requires a request body whereas DELETE

and GET do not. A request body is represented as a JSON dictionary format. For instance, from

table 5.2, request body of theatt-create, which creates the name of an attribute, has the format

{“attribute” : {“name” : “{attname}”}}.

78

Table 5.2: OpenStackNovaAPI for CVRM Specifications
Name URL Type

1. att-create /v2/{tenant_id}/attributes POST
Create an attribute
2. att-delete /v2/{tenant_id}/attributes/{id} DELETE
Delete an attribute
3. att-list /v2/{tenant_id}/attributes GET
List all attributes
4. att-value-set /v2/{tenant_id}/scopes PUT
Add a value
5. att-value-del /v2/{tenant_id}/scopes/{id} DELETE
Delete a value
6. att-value-list /v2/{tenant_id}/scopes GET
Get values of attribute
7. policy-add /v2/{tenant_id}/policies POST
Add a constriant
8. policy-del /v2/{tenant_id}/policies/{id} DELETE
Delete a constraint
9. policy-list /v2/{tenant_id}/policies/{id} GET
Get a constraint
10. meta /v2/{tenant_id}/servers/ POST
Assign or deassign {resource_id}/metadata
attribute-value

79

Figure 5.8: Database Schema

Here,{attname} is the name of the attribute specified by the users during executing theatt-

createcommand. Attributes, their scopes and constraints are stored in Nova database (high level

database tables are shown in figure 5.6). We design a databaseschema, as shown in figure 5.8 for

Nova which contains 4 main tables:attribute, scope, constraintsandinstance_metadata. The table

attributestores the declared attribute names andscopestores their values. The constraint represents

the specified constraints for a particular relations between two specific virtual resources. Here,

instance_metadatais a built-in table in Nova that stores the instance meta-data and we use this

table to store assigned values to the attributes of VMs. Similar to the API specifications, databases

are included in an OpenStack deployment by the CSP’s admin-users.

As discussed in section 5.3, specification of attributes, their scopes and the constraint-expressions

are authorized only to thedomain-admins, while the attribute-value assignment to virtual resources

and their arrangement are authorized toproject-admins. API 1-9, shown in table 5.2, are autho-

rized only for the users who aredomain-adminsof a particular tenant. Presently, Nova does not

supportdomain-admins, while, the authorization component of OpenStack calledkeystonesup-

ports. Therefore, Nova policy specification process needs to be extended so that it can support

80

thedomain-admins. In Nova, a file calledpolicy.jsonspecifies authorization policies for the APIs.

Necessary policies for the APIs, shown in table 5.2, can be included inpolicy.json. For instance,

the following policy can be included forattcreateAPI.

rule:attcreate→ (domain_role:domain_admin&& domain_id:%(target_domain_id)s))

In the above policy, it says that users having thedomain_rolecan only call theattcreateAPIs for

creating an attribute within his domain. When a user tries tocreate an attribute name,sf retrieves

this policy frompolicy.jsonand verifies against the user’s information given in the authorization

token fromkeystone. Note that, these policies are specified by the CSP’s admin-users and can

only be modified and altered by them. The admin-users of individual tenants are not authorized to

make any changes inpolicy.json.

5.4.2 Constraints Verification in OpenStack

Constraints verification process includes the well-formedness validation of the constraint expres-

sion and evaluation of the expression to a boolean value.

An specified constraint expression is a character string generated by the language shown in

section 5.2. The expression is a collection of predicates where each predicate contains an attribute

name and attribute value. For well-formedness validation of a constraint expression checks if the

the attributes name are valid and the specified value belongsto the scope of the attribute. In this

implementation, we also capture the concept of intra and inter tenant attributes which we already

discussed in section 5.2.2. Intra-tenant attributes are completely owned and managed by an in-

dividual tenant using the APIs shown in table 5.2, while, inter-tenant attributes are managed by

IaaS admin-users and all tenants can view and use these attributes to specify the constraints. Ex-

amples of these attributes in Nova are the system attributesof VMs such as flavors, image-names,

etc. During specification of a constraints, the specified attributes and the values are validated ac-

cordingly with respect to the intra-tenant and system attributes in OpenStack. Figure 5.9 shows

81

Figure 5.9: Constraints Well-Formedness Validation in OpenStack: AnActivity Diagram

the well-formedness validation process which for each predicate of a constraint expression takes

as input the specified attribute name and value and checks if the name is a valid attribute name

and the value belongs to the scope of the attribute. Once validated, a constraint is then stored in

database table. Recall figure 5.2 where the example of storage-vm connection mapping constraint

expression contains both intra- and inter-tenant attribute which is expressed as follows.

((tier(vm)=presentation)→ (ioType(storage)6=fast))

Here,tier andioTypeare intra-tenant and system attributes respectively. Therefore, fortier, as

shown in figure 5.9, validation process checks in theattribute table for name andscopetable for

value. Whereas, forioTyperespective APIs are checked.

Finally, the specified constraints need to be enforced when arespectiveproject-adminuser of

a project tries to relate two virtual resources (an example is shown in figure 5.7). This process

includes the constraint parser has 257 lines. The parser returns true or false value based on a

constraint expression by considering assigned attribute values for the two virtual resources. The

82

Table 5.3: min_rule Specification Grammar
<Quantifier>:= ∀(vr1,vr2)∈ R<Cls>,<Cls> . <Stmt>
<Stmt>:= <Stmt> <connector><Stmt> | (<min_rule>)
<min_rule>:= <Token>→ <Token>
<Token>:= <Attribute>(<resource>)<comperator><Scope>
<Attribute>::= <letter> | <digit> | <Attribute>
<Scope>::= <letter> | <digit> <Scope>
<connector>::= ∧ | ∨
<comperator>::= = | 6=
<Cls>::= c1 | c2 | . . . | cn

<resoruce> ::= vr1 | vr2
<digit>::= 0|1|2| . . .|8|9
<letter>::= a|b|. . .|y|z|A|B|. . .|Y|Z

parser retrieves the respective attribute values of the virtual resources from the respective tables

that stored the metadata and verifies the values against the constraint expressions.

5.5 Automated Constraint Construction

In this section, we consider approaches for mining CVRM constraints from already specified re-

lations among the instances of two classes of virtual resources. This process can be considered as

the automatic generation of constraints according to a tenant’s specific requirements.

In this process, a collection of restrictedrules, also refereed asmin_rule, are generated where

a min_rule is an implication, a→b, in which both a and b are single predicates. Note that, the

actualrule in the form of A→B as defined in section 5.2.1 allows both A and B to be collections of

predicates connected by∧ and/or∨. Now for a givenRtnt,ci,cj , δ
Add
Rtnt,ci,cj

andδRM
Rtnt,ci,cj

, amin_rule

can be generated by the grammar in table 5.3.

Eachmin_rule is restricted to specify a comparison between only two attributes of virtual

resource classesci andcj. Now let us sayRtnt,ci,cj is a given set of tuples that specifies the relation

between instances of the two classesci andcj . The min_rule mining problem is to construct

all possiblemin_rules. For givenRtnt,ci,cj , ATTRci
tnt, ATTRcj

tnt, attp ∈ ATTRci
tnt, attq ∈ ATTRcj

tnt,

SCOPEattp andSCOPEattq , min_rules can be of four following formats, where each val has to

83

belong to the appropriate attributeSCOPEatt.

• a→b where a≡(attp(vr1)=valx) ∧ b≡(attq(vr2)=valy).

• a→b where a≡(attp(vr1)=valx) ∧ b≡(attq(vr2)6=valy).

• a→b wherea≡(attp(vr1)6=valx) ∧ b≡(attq(vr2)=valy).

• a→b wherea≡(attp(vr1)6=valx) ∧ b≡(attq(vr2)6=valy).

For simplicity, we provide a mining algorithm for the formata→b which is also referred as mu-

tual exclusivemin_rule. An example of the mutual exclusive constraints is storage-vm attachment

mapping constraint in figure 5.2 where the constraint specifies a comparison between the value

‘presentation’ ofVM attributetier to the value ‘fast’ of STR attributeioType. Similar algorithms

can be also generated for othermin_rule formats. We choose mutual exclusivemin_rule format

because we develop mining algorithm on top of a constraint mining algorithm for role based ac-

cess control [86] where they also mine mutual exclusive roles, so it is feasible to compare mutual

exclusivemin_rule to mutual exclusive roles.

5.5.1 Mining Overview

Figure 5.10 shows the steps of ourmin_rule mining approach. As seen in the figure, a configuration-

log stores the assigned relations between instances of of virtual resources two classes ci and cj ,

e.g.,VM-STR attachments, of particular tenanttnt. We can consider the configuration-log as

Rtnt,ci,cj . We also assume that the instances of these virtual resources are assigned with values to

their attributes. Now, our first step is to find the candidate attribute relations from which appropri-

atemin_rules of one of the four formats can construct. We define a candidate attribute relation as a

binary relation between the values inSCOPEattp andSCOPEattq of attributes attp ∈ ATTRci
tnt and

attq ∈ ATTRcj
tnt respectively which can be calculated by a frequent item-setmining algorithm from

Rtnt,ci,cj . In section 5.5.2, we describe our developed mining algorithm for candidate attribute

relation which is based on well-known Apriori algorithm [11]. Step 2 is to extract certain attribute

84

Figure 5.10: Overview of the Constraint Mining

relations from candidate attribute relations which have semantic meaning with correspond to the

cloud IaaS system. We define meaningful attribute relationsas a binary relation between the values

in SCOPEattp andSCOPEattq of attributes attp ∈ ATTRci
tnt and attq ∈ ATTRcj

tnt respectively which

is useful for the current sets of the respective virtual resources in the system such that generated

constraints from that relation will have impact on future configuration requests.Then, final step is

to construct themin_rule from the set of meaningful attribute relations.

5.5.2 Candidate Attribute Relation Construction

The values inSCOPEattp andSCOPEattq of attributes attp ∈ ATTRci
tnt and attq ∈ ATTRcj

tnt respec-

tively is considered as candidate attribute relations is specified as a relation calledCARSCOPEattp ,SCOPEattq
.

CARSCOPEattp ,SCOPEattq
is reflexive and symmetric, but not transitive. Hence, each element in

CARSCOPEattp ,SCOPEattq
is an unordered pair. For any two attributes attp ∈ ATTRci

tnt and attq ∈

ATTRcj
tnt, CARSCOPEattp ,SCOPEattq

is defined as follows.

CARSCOPEattp ,SCOPEattq
⊆ { {x,y} | x 6= y and x∈ SCOPEattp and y∈ SCOPEattq }

For instance, in order to constructmin_rule for STR-VM attachment constraint in figure5.2, a

85

candidate attribute relation is CARSCOPEtier ,SCOPEioType
where an element of it is {presentation,fast}.

In the following, we develop a mining approach to identify the elements in aCARSCOPEattp ,SCOPEattq
.

Specifically, the approach identifies the mutual exclusive relations that will construct mutual exclu-

sivemin_rules. However, similar approaches can be developed for other three type ofmin_rules.

Overview: Mining Constraints in RBAC

Mining association rules has become a fundamental problem in data mining, and it has been studied

extensively. Many algorithms such as FP-growth, Apriori, and Eclat [11] have been developed to

solve this problem in databases containing transactions. Recently, a constraint mining algorithm,

called anti-Apriori, is proposed for role-based access control (RBAC) [86] which is developed

on top of the Apriori algorithm [11]. InRBAC, u androle contains set of users and roles in the

system. A functionuser_roles maps each user to a set of roles that are assigned to the user. Now

the mutual exclusive constraint forRBAC is defined as follows.

A mutual exclusiveRBAC constraint between roles∈ role is an implication of the form

R1→R2 where R1⊂ roleand R2⊂ roleand R1∩R2=∅ anduser_roles(u)⊆R1→ user_roles(u)

∩ R2 =∅ for each user u∈ u. Let D be a set of user-role assignments, the constraint R1→R2 has

confidence c if c% of users inu that are assigned a role in R1 do not have any role from R2, and

it has support s if s% users are assigned a role in R1. The constraint R1→R2 holds forD if it has

certain user-specified minimum support and confidence.

Mining Candidate Attribute Relation in CVRM

In this section, we discuss the mining approaches for mutualexclusive candidate attribute relations.

We first utilize the anti-Apriori algorithm [86] for the mining. Then, we customize the anti-Apriori

algorithm, which we call CVRM-Apriori, in order to get better performance.

A. Reduction to RBAC constraint mining: In this approach, we identify inputs of a mutual ex-

clusive candidate attribute relation mining algorithm andreduce them to the inputs of anti-Apriori.

86

Then, we collect the outputs from anti-Apriori algorithm and construct candidate attribute relation.

Inputs of a min_rule mining algorithm: In CVRM, each mutual exclusive attribute relation

is between one value of an attribute of virtual resources of aparticular class with another value

of an attribute of virtual resources of another class. For givenRtnt,ci,cj , VRtnt,ci , VRtnt,cj , and for

eachattp ∈ ATTRci
tnt and for eachattq ∈ ATTRcj

tnt, the inputs areVRtnt,ci , VRtnt,cj ,Rtnt,ci,cj , attp,

attq, SCOPEattp andSCOPEattq .

Inputs of anti-Apriori: The inputs of the anti-Apriori algorithm areu, role, the user-role

assignment matrix M (M is a u×r dimension boolean matrix where u and r is the size ofu androle

and for each ui ∈ u and rj ∈ role, M[ui][r j]=1 if r j ∈ user_roles(ui) and 0 otherwise), matrix O

where O=M, minconf (minimum confidence) and minsup (minimum support). The inputs of the

min_rule mining algorithm are reduced to the anti-Apriori algorithmas follows.

1. U = VRtnt,ci×VRtnt,cj and R =SCOPEattp ∪ SCOPEattq . Without loss of generality, we

assume the values inSCOPEattp andSCOPEattq are disjoint.

2. M is a |U| × |R| dimensional boolean matrix where, for each u∈U and for each r∈ R,

M[u][r]=1 where (vr1,vr2)=u and attp(vr1)=r or attq(vr2)=r. Also, O=M.

3. minconf and minsup are the values specified by the users.

Now, anti-Apriori generates constraints in following steps,

1. Scan M to find all combinations of Ri ⊆ R in a set F where the support of Ri is greater than

minsup.

2. Scan O to find all combinations of Ri ⊆R in a setF where the support is greater than minsup.

3. For each Ri ∈ F and for eachRj ∈ F, generate mutual exclusive rules in the format of Ri→Rj

if its confidence is greater than minconf and store Ri→Rj in Rules.

87

Creation of Mutual Exclusive Candiate Attribute Relation: Mutual Exclusive Candiate

Attribute Relation isCARSCOPEattp ,SCOPEattq
where each element inCARSCOPEattp ,SCOPEattq

is

{valx,valy} such that valx ∈ Ri and valy ∈ Rj for each Ri→Rj ∈ Rules.

Although, this approach constructsmin_rules, it lacks scalability for the following reasons.

(1) Size of the input parameter U is multiplicative with respective to the virtual resources of two

different class since it is created by the cross product of each pair of virtual resources. It thereby

makes the size of matrix M and O very large, increasing the run-time complexity.

(2) Algorithm anti-Apriori is designed to identify relations among all possible subset of roles,

therefore, it needs multiple scans to database which is verycostly. However, for mining the candi-

date attribute relation should require much simpler approach since it only needs to identify relations

between every two values of two different attributes of the virtual resources.

B. Anti-Apriori for candidate attribute relation (CVRM-Ap riori):

We customize the anti-Apriori algorithm for mining mutual exclusive candidate attribute re-

lations. We specify that {valx,valy} can be a member ofCARSCOPEattp ,SCOPEattq
where valx ∈

SCOPEattp and valy ∈ SCOPEattq for eachattp ∈ ATTRci
tnt and for eachattq ∈ ATTRcj

tnt, if it sat-

isfies certain user-specified minsup and minconf for an already specifiedRtnt,ci,cj of givenVRtnt,ci

andVRtnt,cj . The support and confidence is calculated as follows,

• We define a function calledinsideRattp
tnt,ci,cj that returns a set of elements inRtnt,ci,cj that

has a value valx of an attributeattp ∈ ATTRci
tnt. Formally,

insideR
attp
tnt,ci,cj (valx)={(vr1,vr2) | (vr1,vr2)∈ Rtnt,ci,cj ∧ attp(vr1)=valx}.

• Another function calledoutsideRattq
tnt,ci,cj returns the set of elements inRtnt,ci,cj that does

not have a value valy of an attributeattq ∈ ATTRcj
tnt. Formally,

outsideR
attq
tnt,ci,cj (valy)={(vr1,vr2) | (vr1,vr2)∈ Rtnt,ci,cj ∧ attq(vr2)6=valy}.

• Now, a function calledsupportattptnt,ci,cj calculates support of a value valx of an attributeattp

∈ ATTRci
tnt. Formally,

88

support
attp
tnt,ci,cj (valx) =

|insideR
attp
tnt,ci,cj (valx)|

|Rtnt,ci,cj |
,

that calculates the ratio of the number of tuples inRtnt,ci,cj that contain valx of the attribute

attp ∈ ATTRci
tnt with all tuples inRtnt,ci,cj .

• Similarly, supportattqtnt,ci,cj (valy) =
|outsideR

attq
tnt,ci,cj (valy)|

|Rtnt,ci,cj |
, is another function that calculates the

ratio of the number of tuples inRtnt,ci,cj that do not contain valy of the attributeattq ∈

ATTRcj
tnt with all tuples inRtnt,ci,cj .

• Finally, a function calledconfidenceattp ,attqtnt,ci,cj calculates the confidence which is the ratio of

the number of elements inRtnt,ci,cj that have a value valx of an attributeattp ∈ ATTRci
tnt, but,

simultaneously, do not have a value valy of an attributeattq ∈ ATTRcj
tnt with the total number

of elements inRtnt,ci,cj that have a value valx of an attributeattp ∈ ATTRci
tnt. Formally,

confidence
attp ,attq
tnt,ci,cj (valx,valy) =

|insideR
attp
tnt,ci,cj (valx) ∩ outsideR

attq
tnt,ci,cj (valy)|

|insideR
attp
tnt,ci,cj (valx)|

Now, for a givenRtnt,ci,cj , for eachattp ∈ ATTRci
tnt and for eachattq ∈ ATTRcj

tnt, user specified

min_supattp,attqtnt,ci,cj andmin_confattp,attq
tnt,ci,cj , algorithm 5.1 constructs themin_rules. In algorithm 5.1,

procedure Identify_Frequency identifies each attribute value valx ∈ SCOPEattp and each attribute

value valy ∈ SCOPEattq whose supports satisfymin_supattp,attqtnt,ci,cj and returns them in sets F and

F respectively. Now, the Gen_Candidate procedure takes thesets F andF and for each valx ∈

F and for each valy ∈ F adds {valx,valy} to CARSCOPEattp ,SCOPEattq
if it satisfies the value of

min_confattp,attq
tnt,ci,cj . This algorithm overcomes the scalability issues of anti-Apriori algorithm since

it only identifies relations between two values instead of two subset of values of attributes, and F

andF are specified separately from the scopes of two different attributes.

Now, for each {valx, valy} ∈ CARSCOPEattp ,SCOPEattq
we can construct amin_rule (formatted

asattp(v1)=valx→ attq(v2)6=valy) where valx ∈ SCOPEattp and valy ∈ SCOPEattq .

89

Algorithm 5.1 CVRM-Apriori
1: procedure Identify_Frequency(SCOPEattp ,SCOPEattq , min_supattp,attqtnt,ci,cj)
2: F = {}, F={}
3: for all val∈ SCOPEattp do
4: if supportattptnt,ci,cj (val)≥min_supattp,attqtnt,ci,cj then
5: Insert val into F
6: end if
7: end for
8: for all val∈ SCOPEattq do
9: if supportattqtnt,ci,cj (val)≥min_supattp,attqtnt,ci,cj then
10: Insert val intoF
11: end if
12: end for
13: end procedure
14: procedure Gen_Candidate(F,F,min_confattp ,attq

tnt,ci,cj)
15: for all valx ∈ F and valy ∈ F do
16: if confidenceattp ,attqtnt,ci,cj (valx,valy) ≥ min_confattp,attq

tnt,ci,cj then
17: CARSCOPEattp ,SCOPEattq

= CARSCOPEattp ,SCOPEattq
∪ {valx, valy}

18: end if
19: end for
20: Return Flag
21: end procedure

90

5.5.3 Meaningful Attribute Relations

Each invocation to algorithm 5.1 may add new attribute relations toCARSCOPEattp ,SCOPEattq
based

on the current configuration-logs, and, thenmin_rules are constructed accordingly. However, in

the future, thosemin_rules may not be useful for various reasons in cloud IaaS including varying

configuration requirements of the tenants. We characterizethe candidate attribute relations into

three different types based on some semantic meaning in context of cloud IaaS systems, and then

constructmin_rules only from those meaningful relations.

Definition 1. Strong Meaningful Relation: A relation {valx, valy} ∈ CARSCOPEattp ,SCOPEattq
is

a strong meaningful relation if there exists vr2∈ VRtnt,ci and vr1∈ VRtnt,cj such that attp(vr1) =

valx and attq(vr2) = valy where attp ∈ ATTRci
tnt and attq ∈ ATTRcj

tnt.

Definition 2. Weak Meaningful Relation: A relation {valx,valy} ∈ CARSCOPEattp ,SCOPEattq
is a

weak meaningful relation if there exist vr1∈VRtnt,ci and vr2∈VRtnt,cj such that attp(vr1)=valx or

attq(vr2)=valy (but not both) where attp ∈ ATTRci
tnt and attq ∈ ATTRcj

tnt.

Definition 3. Non-Meaningful Relation: A relation {valx,valy} ∈ CARSCOPEattp ,SCOPEattq
is a

non-meaningful relation if there exist vr1∈VRtnt,ci and vr2∈VRtnt,cj such that (attp(vr1)6=valx ∧

valx 6∈ SCOPEattp) or (valy 6∈ SCOPEattq ∧ attq(vr2)6=valy) where attp ∈ ATTRci
tnt and attq ∈

ATTRcj
tnt.

Definition 1 identifies the relations from which generatedmin_rules are useful since the system

contains instances of both classes of virtual resources with respective attribute values assigned to

them and those instances of virtual resources might be requested soon in future to put into the

respectiveRtnt,ci,cj . However, definition 2 finds relatively weak ones since the system only has

instances from one class of virtual resources assigned withthe respective attribute-values. Absence

of the other class instances make this relation weak in the sense that generatedmin_rule from this

relation will not apply to any mapping configurations. However, there is a possibility that, in

the future, the system will have instances from other virtual resource classes with the respective

91

Algorithm 5.2 Meaningful Attribute Relation andmin_rule
1: procedure min_rule_Construction(CARSCOPEattp ,SCOPEattq

,MARSCOPEattp ,SCOPEattq
)

2: TempR=CARSCOPEattp ,SCOPEattq
∪MARSCOPEattp ,SCOPEattq

3: MARSCOPEattp ,SCOPEattq
=Find_Meaningful(TempR)

4: TempR=Rem_Non_Meaningful(TempR)

5: CARSCOPEattp ,SCOPEattq
= TempR \ MARSCOPEattp ,SCOPEattq

6: for all {valx,valy} ∈ MARSCOPEattp ,SCOPEattq

7: Create_Min_Rule(min_rulei, valx, valy)
8: end for
9: end procedure

attribute values and, then, this relation will be useful. Finally, definition 3 identifies relations

between attribute values that will have no use in the future.For certain reasons, system or the

tenant might delete these values from the respective attribute scopes and none of the current virtual

resource is assigned to these values. Therefore,min_rule generated from this relation will not

apply to any future configuration request.

By utilizing all these definitions, we develop algorithm 5.2to generatemin_rules that have appar-

ent application to the most current set of virtual resources. Here, a meaningful attribute relation

calledMARSCOPEattp ,SCOPEattq
is created with strong meaningful relations from

CARSCOPEattp ,SCOPEattq
. Each time proceduremin_rule_Construction is called, previousmin_rules

are replaced by newmin_rules. The procedure takes as input the candidate relations

CARSCOPEattp ,SCOPEattq
which is generated by algorithm 5.1 and the previously created

MARSCOPEattp ,SCOPEattq
. In figure 5.10, smart-feed is the previously created elements in

MARSCOPEattp ,SCOPEattq
which will be considered for new meaningful relations creation. First, the

procedure combines the elements inCARSCOPEattp ,SCOPEattq
andMARSCOPEattp ,SCOPEattq

to new

relations calledTempR . After that, it calls procedure Find_Meaningful that takesTempR as input

and finds the set of meaningful relations using definition 1 and creates a newMARSCOPEattp ,SCOPEattq

with these new relations. Then, the algorithm removes all the non-meaningful relations from

TempR (according to definition 3) by calling Rem_Non_Meaningful.Now, a new

92

CARSCOPEattp ,SCOPEattq
is created by removing all the common elementsTempR and

MARSCOPEattp ,SCOPEattq
. Note that,CARSCOPEattp ,SCOPEattq

now contains all the weak relations

according to the definition 2. The goal is to keep these weak relations in back burner so that

they might get chance to promote themselves to strong relations in future. Finally, the procedure

constructsmin_rules from MARSCOPEattp ,SCOPEattq
by calling procedure Create_Min_Rule. For

each {valx, valy} ∈MARSCOPEattp ,SCOPEattq
Create_Min_Rule constructs amin_rule of the format

attp(v1)=valx→ attq(v2)6=valy where valx ∈ SCOPEattp and valy ∈ SCOPEattq .

Note that, each time this algorithm is called all the previously generatedmin_rules are deleted

and new set ofmin_rules are created which are useful for the present sets of respective virtual

resources in the system.

5.5.4 Implementation and Analysis

The evaluation of algorithm 5.2 is trivial since its only performs some set operations. The per-

formance of algorithm 5.1 dominates the required time for overall mining process. We compare

the performance of anit-Apriori and CVRM-Apriori algorithms. We implemented and evaluated

both the mining algorithms to constructmin_rules for the add operation forVM-NET connectivity

relations. We define three attributes forVM and two attributes for NET. The value of each attribute

of the virtual resources is specified in their ‘meta’ information. We randomly connect 10 NETs to

VMs where eachVM is assigned to at least 3 NETs. Then, we collect logs ofVM-NET connection

from thenova database of DevStack and evaluate both algorithms. Our firstexperiment verifies

scalability of the algorithms when number ofVMs increases. We gradually increaseVMs from 50

to 500 with a fixed size of scope of each attribute to 10 from which we randomly assign a value for

each attribute ofVMs and NETs. Then, for eachVM attribute and NET attribute pair we separately

execute both algorithms and record time. We repeated this process 10 times for each algorithm.

Figure 5.11 shows the average execution time of both algorithms where time of anti-Apriori is very

high while CVRM-apriori gives much better performance. Forinstance, for 50VMs the average

time of anti-Apriori is 1.3s where it is 14.2s for 500VMs. On the other hand, in CVRM-Apriori, it

93

0

2

4

6

8

10

12

14

50 100 150 200 250 300 350 400 450 500

A
ve

ra
g

e
T

im
e

(S
ec

o
n

d
s)

No. of VMS

Anti-Apriori(RBAC)
CVRM-Apriori

Figure 5.11: Mining Time with Increasing No. ofVMs

0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3

10 12 14 16 18 20

A
ve

ra
g

e
T

im
e

(S
ec

o
n

d
s)

Scope Size of Each Attribute(3 VM and 2 Net Attributes)

Anti-Apriori(RBAC)
CVRM-Apriori

Figure 5.12: Mining Time with Increasing Scopes

is 0.23s and 1.2s. The reason is that the size of U of anti-Apriori is multiplicative with increasing

number ofVMs where in CVRM-Apriori it is only additive.

In second experiment, we fixed theVMs to 100, however, increase the scope of eachVM

attribute from 10 to 20 and executed both algorithms. We alsoexecuted each of them 10 times

and recorded the time. Figure 5.12 shows the evaluation results. Note that, like experiment one,

anti-Apriori gives very poor performance with compare to CVRM-Aprior. For instance, from 10

to 20 values in scope the required time of anti-Apriori increases 1.3s where, in CVRM-Apriori, it

94

remains almost constant. The reason behind this is that anti-Apriori calculates mutual exclusive

relations for all the combination of the values of two attributes which unnecessarily increases time

sincemin_rule only needs to capture separate relations between each two values of attributes.

In general, CVRM-Apriori behaves similar to the 2-frequentApriori algorithm which requires

exactly 2 scans over the database, hence, the required run-time complexity of CVRM-Apriori is as

good as FP-growth algorithm, which is an efficient Apriori algorithm with FP-tree data structure.

Also, the accuracy of CVRM-Apriori is exactly same of the general Apriori algorithm since it does

not discard any items from database for calculating the support and confidence.

95

Chapter 6: CONSTRAINT-AWARE VIRTUAL RESOURCE

SCHEDULING

The materials in this chapter are published in following venues [25]:

1. Khalid Bijon, Ram Krishnan and Ravi Sandhu, Mitigating Multi-Tenancy Risks in IaaS

Cloud Through Constraints-Driven Virtual Resource Scheduling, In Proceedings of ACM

Symposium on Access Control Models and Technologies (SACMAT), June 1-3, 2015, Vi-

enna, Austria.

In this chapter, we present our developed constraint aware virtual resource scheduling process

where tenants can specify their constraints while scheduling their virtual resources in cloud.

6.1 Conflict-Free Virtual Resource Scheduling

Intuitively, an attribute captures a property of an entity in the system, expressed as a name:value

pair. In the context of cloud IaaS, attributes can representa virtual machine’s owner tenant,

sensitivity-level, cpu intensity-level of workloads, etc. For simplicity, we restrict the scope of

this chapter as follows. We confine our attention to virtual to physical resource mapping in the

context of virtual machines and physical compute servers. Then we briefly discuss the possible

extension of this approach to other virtual and physical resources.We restrict the kind of constraint

to “must not co-locate” constraint where the specified conflicts are co-location conflicts that state

whether two VMs can be co-located in the same Host or not. In this section, we formally define

the components of Hosts allocation for the VMs, which we refer as Host-to-VM allocation, in the

presence of various co-location conflicts. Note that, a VM may have multiple attributes each with

its own values. Attribute value of a VM can be assigned eithermanually by a user or automati-

cally by the system. For instance, when an enterprise user creates a VM, an appropriate value is

assigned to thetenantattribute of the VM automatically whereas, the user may needto explicitly

specify the value for asensitivityattribute based on sensitivity of data processed in that VM.De-

96

veloping administration models for such attributes assignment is beyond the scope of this research.

We assume that VMs are assigned with proper attribute values. For our purpose, the values of an

attribute can conflict with each other and the goal is to allowthe VMs to co-locate in samehost

only if their assigned attribute values do not conflict.

6.1.1 Scheduling Components Specification

The scheduling components include two sets calledHOST andVM that contain the existing Hosts

and VMs respectively. There are attributes of VM that characterize different properties of a VM

and are modeled as functions. For each attribute function, there is a set of finite constant values

that represents the possible values of that attribute. For our purpose, we assume values of attributes

to be atomic.1 Therefore, for a particular VM, the name of the attribute function maps to one value

from the set. For convenience, attribute functions are simply referred to as attributes. Also, values

of an attribute can have conflicts with each other and these conflicts are specified in a conflict-set

of the attribute. Conflicts are specified on values of each attribute independent of other attributes.

Formally these components are defined as follows.

• HOST is the finite set of Hosts (physical servers).

• VM is the finite set of VMs.

• Each Host∈ HOST has a capacity, represented as a function calledhW, that maps a Host

to a value greater than 1.0 to a maximum value of the Host capacity2. The capacity restricts

the number of VMs that a Host can contain based on the accumulated capacity of the VMs.

Value of the capacity of a Host remains constant unless explicitly modified, e.g., increasing

RAM size.
1An example of an atomic attribute, given in section 1, issensitivitywhere the values are high, medium and low. A

VM can only get one of the three values forsensitivity. However, there might be cases that require set-valued attributes
such as agroupattribute of a VM which may take multiple values. For simplicity we only consider atomic attributes.
However, the model can be easily extended to set-valued attributes.

2Multi-dimensional weights of a Host, e.g., RAM, CPU, etc., can be reduced to one single normalized weight. For
instance, in OpenStack [6], Hosts are mapped to a single weight which is calculated by theweighted_summethod that
takes weighted average of different metrics of a Host such asRAM, host’s workload, etc.

97

• Similar to the capacity of Host, each VM∈ VM has a capacity represented by a function

calledvW where,vW : VM → k where 0.0< k ≤ 1.0. Also, capacity of a VM remains

constant unless explicitly modified.

• ATTRVM is the set of attribute functions of VM.

• For eachatt∈ ATTRVM, the domain of the function isVM and the codomain is the values of

att written asSCOPEatt which is a set of atomic values. Formally,

att: VM → SCOPEatt, for eachatt ∈ ATTRVM.

The values inSCOPEatt of an att ∈ ATTRVM that conflict with each other are specified as

a relation calledConSetatt. ConSetatt is irreflexive and symmetric, but not transitive. Hence,

each element inConSetatt is an unordered pair. For eachatt ∈ ATTRVM, ConSetatt is defined as

follows.

• ConSetatt is the set of conflicts of the values of eachatt ∈ ATTRVM. Formally,

ConSetatt ⊆ {{x,y} | x 6=y and x,y∈ SCOPEatt}

Note that, for eachatt ∈ ATTRVM, a ConSetatt is similar to the conflict-setAttribute_Set of

ABCL (defined in table 3.3) that captures conflicts among the values of a single attribute.

Part I in figure 6.1 shows two attributes,tenantandsensitivity, and their respective scopes.

Some conflicts among values oftenantandsensitivityattributes are also shown representing con-

flicts among their values. For instance, {{tnt1, tnt2}, {tnt 2,tnt3}, {tnt 4, tnt6}} in ConSettnt speci-

fies that VMs of tnt1 and tnt2, tnt2 and tnt3, and tnt4 and tnt6 conflict with each other and, hence,

cannot be co-located. Also, part IV shows an example of attributes assignment for VMs. For in-

stance, for the VM vm1,tenant(vm1) = tnt3 andsensitivity(vm1) = high. Also note that the value

0.6 denotes the capacity requirement of that VM. That is,vW(vm1)=0.6.

6.1.2 Conflict-Free Host to VM Allocation

Given that theConSetatt specifies conflicting values for an attributeatt ∈ ATTRVM, the conflict-

free Host toVM allocation is concerned about allocation of a Host to a groupof VMs that do not

98

Figure 6.1: Conflict-FreeVM-Host Allocation

conflict with each other. There are 4 steps in this process as illustrated in figure 6.1. Step 1 is to

partition the values of each attribute (i.e.,SCOPEatt of anatt∈ ATTRVM), into a family of subsets

where the elements in each subset do not conflict with each other. We refer to suchpartition as

“Conflict-Free Partition of Attribute-Values.”

Definition 4. (Conflict-Free Partition of Attribute-Values) A conflict-free partition of attribute-

valuesof each att∈ ATTRVM is specified asPARTITIONatt that partitions the values inSCOPEatt

where the values of each element inPARTITIONatt do not conflict with each other, i.e., for each x

∈ PARTITIONatt and for each y∈ ConSetatt, |x∩ y| ≤ 1.

We can state that, for an attributeatt, aPARTITIONatt partitionsSCOPEatt where (1)PARTITIONatt

does not contain∅, (2) elements inPARTITIONatt are pairwise disjoint, (3) the union of the ele-

ments inPARTITIONatt is SCOPEatt, and (4) the values in a set-element ofPARTITIONatt do

not conflict with each other, i.e. no more than one value from that set-element belongs to the same

element inConSetatt.

99

Part II in figure 6.1 shows examples of conflict-free partitions,Partitiontenant andPartitionsensitivity ,

for ConSettenant andConSetsensitivity given in part I. For example, {tnt1, tnt3, tnt6} in Partitiontenant

means these values do not conflict with each other. Note that,there can be multiple candidate

PARTITIONatt for a givenConSetatt of an attributeatt ∈ ATTRVM. Section 6.2 shows that the

selection of an appropriatePARTITIONatt is important for host optimization.

Step 2 combines theconflict-free partitions of attribute-valuesof all attributes. We define a

conflict-free segmentthat consists one element ofPARTITIONatt of each attributeatt ∈ ATTRVM.

We will see later that VMs, mapped to a conflict-free segment,do not conflict with that of others,

hence, can co-locate. Note that a VM can get any value from thescope of an attribute. Therefore,

conflict-free segments should be generated in such a way so that it can map all possible assigned

values to the attributes of the VMs. A cartesian product of thePARTITIONatt for all att∈ ATTRVM

generates all possible segments of conflict-free values of the attributes.

Definition 5. (Conflict-Free Segments of the Values of Attributes) Theconflict-free segments

of the values of attributesis a set, calledConflictFreeATTR, of n-tuples where n =|ATTRVM|

and each tuple is a result of the cartesian product ofPARTITIONatt of all att ∈ ATTRVM, i.e.,

ConflictFreeATTR =
∏

att∈ATTRVM

PARTITIONatt

Each elementconFval ∈ ConflictFreeATTR is an ordered pair which is written as〈Xatt1 , ...,

Xattn〉 where {att1, ...,attn} = ATTRVM and Xatti ∈ PARTITIONatti . We assume that elements of

eachconFval ∈ ConflictFreeATTR can be accessed by the notationconFval[att] for eachatt ∈

ATTRVM.

Part III in figure 6.1 shows an exampleConflictFreeATTR which is produced from the Carte-

sian product of conflict-free partitionsPartitiontenant andPartitionsensitivity . A tuple ({tnt1, tnt3,

tnt6},{high}) is an element inConflictFreeATTR since {tnt1, tnt3, tnt6} and {high} are members

of Partitiontenant andPartitionsensitivity respectively.

Step 3 partitions the setVM such that VMs of each element of the partition can be co-located.

This is achieved by partitioningVM in a way such that each element of the partition can be mapped

to an element ofConflictFreeATTR.

100

Definition 6. (Co-Resident Partition of VM) The Co-Resident Partition ofVM, specified as

CoResidentVMGrp, is a partition ofVM where the assigned values to att∈ ATTRVM of all

VMs in an element of the partition map to the same segment inConflictFreeATTR, i.e.,

for all X ∈ CoResidentVMGrp and for all vmi 6=vmj ∈ X,
∨

conFval∈ConflictFreeATTR
SetResidence(vmi, vmj , conFval,ATTRVM))

where, SetResidence(vmi, vmj, conFval, ATTRVM) =
∧

att∈ ATTRVM

(att(vmi) ∈ conFval[att]∧ att(vmj) ∈ conFval[att])

CoResidentVMGrp partitionsVM if VMs in an element ofCoResidentVMGrp are assigned

to the values, for allatt∈ ATTRVM, that belong to the same element inConflictFreeATTR.

Part IV in figure 6.1 shows an example ofCoResidentVMGrp calculation of 10 VMs where

VMs are mapped to different elements ofConflictFreeATTR based on their attributes. For in-

stance, vm1 is mapped to the segment ({tnt1, tnt3, tnt6},{high}) since it is assigned with ‘tnt3’ and

‘high’ for tenantandsensitivityattributes. Also, vm1 and vm3 belong to the same partition of

CoResidentVMGrp since they are both mapped to the segment ({tnt1, tnt3, tnt6}, {high}).

Finally, step 4 allocates Hosts for the VMs of each partitionin CoResidentVMGrp. A Host

cannot contain VMs from multiple partitions ofCoResidentVMGrp. Also, combined capacity of

the allocated VMs must satisfy the capacity (hW) of the Host. Therefore, for each partition of VMs

in CoResidentVMGrp, multiple Hosts might be required depending on the combinedweight of

the VMs in that partition.

Definition 7. (Conflict-Free Host to VM Allocation) Given VM, HOST, ATTRVM, CoResi-

dentVMGrp, hW and vW, theConflict-Free Host to VM Allocationis a mapping function called

allocate that finds a set of Hosts,HOST′ ⊆ HOST, to allocate all VM∈ VM where the VMs that

reside in a Host form a subset of an element ofCoResidentVMGrp such that their combined

weight does not exceed the weight of Host, i.e., allocate :HOST′ →֒ P(VM) where,

if chost∈ HOST′ and allocate(chost) = lvm, then,

101

lvm⊆ VM ∧
∨

x∈CoResidentVMGrp
lvm⊆ x ∧ (

∑

vm∈lvm
vW(vm))≤ hW(cs)

Part V in figure 6.1 shows an example of Conflict-Free Host to VMAllocation where the total

number of VMs is 10 and they are partitioned into 4 co-resident sets. Note that, here, Host0 and

Host1 are allocated to one co-resident partition of VMs containing {vm0, vm1, vm3} since their

combined weight is more than the weight of a single Host.

6.1.3 Conflict-Free Scheduling of Other Virtual Resources to Physical Resources

The above described virtual machine to physical machine scheduling process (sections 6.1.1 and

6.1.2) can be easily applied to virtual storage to physical storage and virtual router to network host

scheduling with the following modifications.

In physical storage to virtual storage allocation, two setsVM and HOST, defined in sec-

tion 6.1.1, are substituted by setsVS andPS that specifies virtual storage volumes and physi-

cal volumes in the system respectively. Similar to the capacity functions of VM and Host, two

functions can be defined for virtual and physical resources that can map their respective capacities

where the capacity can be a single metric calculated by weighted sum of different properties of a

storage system. Such properties include size, storage i/o speed, etc. Now, similar to theATTRVM,

a set can represent the attributes of the virtual storage volumes. Also,ConSetatt and definition 1-4

can be modified accordingly for the physical storage to virtual storage allocations.

A similar approach can be followed to derive the network hostto virtual router allocation. Here,

two sets calledNH andVR can specify network hosts and virtual routers in the system respectively.

Now the capacity could be the limit of network bandwidth of a network host and the bandwidth

of a virtual router. One motivation of scheduling virtual router across different network hosts is

for load-balancing of the network traffic and ensuring availability. Here, similar to the virtual

machines, necessary attributes of the virtual routers can be generated.ConSetatt and definition

1-4 can be modified for network host to virtual router allocations.

102

6.2 Optimization Problem Definition and Solution Analysis

In this system, the specified conflicts restrict certain VMs from co-locating in the same Host. As

a result, certain Hosts can no longer schedule VMs that conflict with currently scheduled VMs in

those Hosts, despite having the required capacity. That increases the required number of Hosts

a compared to a system without conflicts. Hence, it is desirable to schedule VMs in a way that

minimizes the number of Hosts while satisfying the conflictsleading to an optimization problem.

Definition 8. (Host Optimization Problem) TheHost optimization problemseeks to minimize the

number of Hosts in the mapping, allocate :HOST′ →֒ P(VM), specified inConflict-Free Host to

VM Allocation (Definition 7).

This section investigates algorithms for definition 1 through 4 in order to solve the Host Opti-

mization Problem.

6.2.1 MIN_PARTITION: Minimum Conflict-Free Partitions of A ttribute-Values

More than onePARTITIONatt can be generated for a givenConSetatt. In figure 4, for the given

ConSettenant, candidatePartitiontenant sets could be {{tnt1, tnt3}, {tnt2, tnt6}, {tnt4, tnt5}}

and {{tnt1,tnt3,tnt6},{tnt2, tnt4, tnt5}} with 3 and 2 elements in the sets respectively. Here,

each element of aPARTITIONatt contains conflict-free attribute-values ofatt. Number of ele-

ments inPARTITIONatt affects the total number of conflict-free segments (definition 5) where

the VMs mapped to same conflict-free segment can co-exist. A partition, with minimum num-

ber of elements, reduces the number of conflict-free segments. It also reduces the elements in

CoResidentVMGrp that also minimizes the required number of Hosts. We call such a partition

asMIN_PARTITION.

Finding aMIN_PARTITION is similar to the graph-coloring problem that partitions the ver-

tices of a graph G(V,E) into minimum color classes so that no two adjacent vertices, such as

{v1,v2} ∈ E, fall in the same class. Graph-coloring problem is NP-Complete given that graph col-

oring decisionproblem, called k-coloring, is NP-Complete, which states that given a graph G(V,

103

E) and a positive integer k≤ |V|, can the vertices in V be colored by k different colors?

We show thatMIN_PARTITION is NP-Complete by showing that theMIN_PARTITION de-

cisionproblem, which we refer to asK_PARTITION, is NP-Complete. TheK_PARTITION prob-

lem states that givenSCOPEatt andConSetatt of an att ∈ ATTRVM, and a positive integer k≤

|SCOPEatt|, can the values inSCOPEatt be partitioned into k sets?

Theorem 1. K_PARTITION is NP-Complete.

Proof. We prove thatK_PARTITION is NP-Complete by polynomial-time reduction of k-coloring

to K_PARTITION.

An instanceof k-coloring is a graph G(V, E) and an integer k. We constructSCOPEatt ← V

andConSetatt← E and feedSCOPEatt, ConSetatt, and k toK_PARTITION. The complexity of

this conversion is|V| × |E|.

Now we show that anyes instanceof k-coloring maps to anyes instanceof K_PARTITION

and vice versa.

=⇒ Assume G is anyes instanceof k-coloring and there exists a set of colors C of size k in

G. Thus, for all u∈ V, color(u) ∈ C and for any u, v∈ V, color(u)=color(v) only if {u, v} 6∈

E. Also, for all u∈ SCOPEatt, u belongs to cfs∈ CFS where#CFS is k, and for any u, v∈

SCOPEatt, u, v belongs to the same cfs∈ CFS, if {u, v} 6∈ ConSetatt. Thus, G is anyes instance

of K_PARTITION.

⇐= AssumeSCOPEatt, ConSetatt is anyesinstance ofK_PARTITION and there exists a family

of CFS of size k. Thus, for all u∈ SCOPEatt, u belongs to a cfs∈ CFS, and for any u, v∈

SCOPEatt, u, v belongs to the same cfs∈ CFS, if {u, v} 6∈ ConSetatt. Thus, the vertices in same

cfs∈ CFS can be colored by the same color and there will be k number of colors to color all the

vertices in G. Thus, G is anyes instanceof k-coloring.

Thus,K_PARTITION is NP-Complete.

Therefore,MIN_PARTITION is also NP-Complete. However, there are a number ofapprox-

imate graph-coloring algorithms that can be applied toMIN_PARTITION. The algorithms are

104

Figure 6.2: Conflicts of different Systems and Corresponding Conflict Graphs

approximate in the sense that they may not provide the minimum size ofPARTITIONatt, i.e.,

MIN_PARTITION may not be optimal. This is useful, although not optimal, because the conflicts

are still satisfied. In the following, we discuss approximate algorithms for graph-coloring and their

applications toMIN_PARTITION.

Restricted Conflict Graphs

Certain graphs such as perfect graphs have polynomial graph-coloring solutions. We identify that

certain restricted versions of attribute conflict specification generates such graphs. We explore re-

stricted graphs having polynomial-time solutions and demonstrate their usage scenarios for private,

public, and community cloud deployment scenarios.

Public Cloud

A public cloud provides compute services to multiple tenants. We present two scenarios where

tenants may need isolation depending on the kind of data the VM’s process.

1. Sensitive Organizational Data:Suppose an e-commerce organization moves to a public

cloud. An expectation could be that the VM’s that run the general website may be co-located with

other tenants while those that process sensitive data such as customer’s credit card information

105

or PII should not be co-located. This is infeasible in current public clouds since a tenant can

only manually choose to avail services from clouds and carefully distribute the VM’s across those

clouds based on data sensitivity.

Such scenarios can be easily automated using our conflict specification framework. In this

situation (figure 6.2-A), the cloud provider generates an attribute calleddataSensitivityand for

each tenant it includes two values, e.g., highTnti and lowTnti for tenanti, to represent the high and

low sensitivity of data that will be respectively processedby the VMs. When a tenant creates a VM

it assigns an appropriate value to thedataSensitivityattribute. Here, a VM with highTnti would

conflict with all the VMs of other tenants, however, it does not conflict with VMs of own tenant.

Conflict-Set of this attribute is a split graph, hence, can besolved in polynomial-time [62].

2. Conflict-of-Interest: In a Chinese-Wall policy, an organization can have a conflict-of-

interest with certain other organizations. For instance, all banking tenants of a CSP may have a

conflict-of-interest with each other. Similarly, all the oil-company tenants may conflict. A CSP

can generate an attribute calledtenantthat represents a particular tenant name in the system, e.g,

bank-of-america, and the values oftenantcan be categorized into mutually disjoint conflict-of-

interest classes. The conflict-set generates disjoint cliques of attribute values which can be solved

in polynomial-time [62]. Figure 6.2-B shows such conflict-of-interest use cases.

6.2.2 Community Cloud

In a community cloud, the infrastructure is typically shared between enterprises with a common

interest.One example of a community cloud is a scientific computing cloud infrastructure that

is shared between, say, a set of universities. Figure 6.2-C illustrates an example where compute

resources of participating universities must be isolated if the time-slot assigned to those universities

happen to overlap. If there is no overlap in the time-slot, university 1, for example, can use the

same physical host that was allocated to university 2 (though at a different time). Such a scenario

forms an interval graph for which can be solved in polynomial-time [62].

106

6.2.3 Private Cloud

A private cloud has a single owner and thus does not share infrastructure with other tenants. The

cloud infrastructure is typically hosted and operated in-house by the tenant or sometimes out-

sourced to a service provider, e.g., the private cloud operated by Amazon for the CIA [9].

1. Sensitivity in Military Cloud: Consider a large-scale cloud for the US Department of

Defense (DoD). A fundamental principle in DoD’s move to IaaScloud from their current IT in-

frastructure could be that the different military organizations including army, navy and air-force,

and their operations need to be isolated from each other consistent with the current operational sta-

tus of each organization (currently, most of each organization’s infrastructure is isolated from each

other). To this end, a VM attributemilitaryOrg can be created whereSCOPEmilitaryOrg={army,

navy, airForce, secretaryDoD, jointChief} and all values of militaryOrg would conflict with each

other. The graph generated from this conflict-set is a complete graph as illustrated in figure 6.2-D

which can be solved in polynomial-time [62].

Figure 6.2-E illustrates another DoD example resulting in acomplete graph where VM’s pro-

cessing data belonging to different networks (such as SIPRNet, NIPRNet and JWICS) in the DoD

need to be isolated from each other.

2. Compliance in Healthcare Cloud:Compliance is another major concern in a private cloud.

Consider ahybrid entityin Health Insurance Portability and Accountability Act (HIPAA) that pro-

vides both healthcare and non-healthcare related services. An example of such entity is a uni-

versity that includes a medical center that provides health-care services to the general public and

also research labs in the university that conduct healthcare-related research internally. HIPAA rule

mandates that such a hybrid entity should maintain a strict separation between those departments

while handling protected health information (PHI). In order to comply strictly with HIPAA, vir-

tual resources processing PHI need to be isolated. Such a scenario is illustrated in figure 6.2-D

where bloodTest and cancerUnit are departments that provide healthcare and hence utilize com-

pute services that process PHI. Those compute services needto be isolated from compute services

107

of non-medical departments such as immunobiologyLab. Thisscenario forms a bipartite graph,

thus, solved in polynomial-time [62].

We also develop an exact algorithm, shown in algorithm 6.1, based on backtracking. The com-

plexity of this algorithm is NP since it is an adaptation of the general backtracking algorithm for

the graph-coloring [16]. However, for attributes whose size of the scope is small enough (e.g.sen-

sitivity), the algorithm computes the partition relatively fast. Inalgorithm 6.1, the Make_Partition

procedure is called with scopeSCOPEatt of an attributeatt∈ ATTRVM, ConSetatt, and a partition

PARTITIONk
att that can containk elements. Make_Partition is a recursive backtracking algorithm

that tries all possible combinations ofk partitions and returns true if there is a valid conflict-free

k partition of a givenConSetatt. Before adding an attribute value to a partition, Make_Partition

calls Check_Validity that verifies if the attribute value tobe added is indeed free of conflict with

respect toConSetatt. In section 6.3, we analyze the performance of this algorithm for various

sizes of attribute scopes and conflict sets.

6.2.4 ConflictFreeATTR Generation

This is a trivial algorithm that calculates the values ofConflictFreeATTR specified in definition 5.

The algorithm takes as inputPARTITIONatt for all att∈ ATTRVM, and returnsConflictFreeATTR

which is a Cartesian product ofPARTITIONatt for all att. It also stores the calculated ordered

tuples inConflictFreeATTR. The complexity isO(n×m) wheren andm are the size ofATTRVM

andPARTITIONatt.

6.2.5 Co-Resident VM Partitions Generation

This algorithm takesConflictFreeATTR and VM sets as input, creates a family of sets, called

CoResidentVMGrp (definition 6), where each set contains a subset of VMs that can co-reside.

The number of sets inCoResidentVMGrp is equal to the number of elements inConflictFreeATTR,

where the algorithm maps an element ofConflictFreeATTR to an element inCoResidentVM-

108

Algorithm 6.1 Conflict-Free Partition using Backtracking
1: procedure Check_Validity(attval,ConSetatt, CSet)
2: for all attvali ∈ CSetdo
3: if {attval, attvali} ∈ ConSetatt then
4: Return False
5: end if
7: end for
8: Return True
9: end procedure
10: procedure Make_Partition(SCOPEatt, ConSetatt, PARTITIONk

att)
11: if attval∈ SCOPEatt then
12: for all par∈ PARTITIONk

att do
13: if Check_Validity(attval,ConSetatt, par)then
14: par = par∪ attval
15: if Make_Partition(SCOPEatt-{par},ConSetatt,PARTITIONk

att) then
16: Return True
17: end if
18: par = par− attval
19: end if
20: end for
21: end if
22: Return False
23: end procedure

109

Grp and the mapping is one-to-one and onto. The VMs that map to thesame element inCon-

flictFreeATTR belong to the same partition. The complexity of this algorithm is O(VM ×

ConflictFreeATTR × ATTRVM).

This algorithm works for bothoffline andonline versions ofVM scheduling. In offline, the

total number of VMs is fixed and are given before the algorithmruns. Inonline, the scheduling

request for a VM arrives one at a time. For both versions, the algorithm takes one VM and maps

it, based on assigned values to attributes, to an element inConflictFreeATTR and adds the VM to

a corresponding element inCoResidentVMGrp.

6.2.6 Scheduling VMs to Hosts

This algorithm takesCoResidentVMGrp, and schedules the VMs that belong to each element

in CoResidentVMGrp, together in one or morehosts. ForVMs of each element inCoRes-

identVMGrp, this process might need one or morehosts based on the combined capacity of

the VMs. If the total capacity exceeds the capacity of a singlehost then it will need multi-

ple hosts. This scheduling problem is similar to the bin-packing [50] problem which is NP-

Hard. However, there are a number of known heuristic approaches that can be applied here [87].

Note that the scheduling of VMs tohosts in an optimal way based on capacity is orthogonal to

MIN_PARTITION sinceMIN_PARTITION is solved before this scheduling begins.

6.3 Implementation and Evaluation

We implement and evaluate our conflict-free VM to Host scheduling framework. Since our work

concerns scheduling, to conduct realistic experimentation, we need exclusive access to a large-

scale cloud infrastructure with 100s of physical hosts to meaningfully study resource requirements

and its utilization. First, we setup an IaaS cloud environment using a set of 5 physical machines

(each of them is a Dell-R710 with 16 cores, 2.53 GHz and 98GB RAM). We now treat each of

the VMs that this cloud provides as a physical host. These VMsare configured with 4 cores and

3 GB of RAM. We now create a DevStack-based cloud framework [5], a quick installation of

110

Figure 6.3: Experimental Setup in OpenStack

OpenStack ideal for experimentation, using those VMs as physical hosts to create a virtual cloud

for the purpose of experimentation. Basically, we use the Havana release of OpenStack [8]. Now,

we create the second-level of VMs to get a virtual IaaS cloud and the configuration of these VMs

are varied based on the experiment we perform.

We implemented our Host-to-VM scheduling on the testbed described above. Figure 6.3 illus-

trates our experiment setup. In OpenStack, the component that takes care of VM management and

scheduling is the Nova service. We created a cloud cluster with 61hosts where one of them is the

Nova controller node and another 60 are the Nova compute nodes. The Controller node provides

main services, e.g. database, message queues, etc., while the compute nodes only contain compo-

nents such as hypervisor and nova-compute that are requiredfor running VMs. We deployed the

prototype in the nova controller node. Our python-based implementation of conflict specification

allows tenant admins to specify attribute conflict values and the ability to store conflict values in

nova database (MySQL) (part I in figure 6.1). Our python basedconflict free segments calculation

process (steps 1 and 2 in figure 6.1) has 153 lines of code. Finally, our implementation of conflict-

free Host to VM scheduling (steps 3 and 4 in figure 6.1) has 170 lines of code that maps a VM to

a conflict-free segment based on conflicting-values and assigned attribute values of the VM which

are retrieved from the nova database. For the conflict-free segment, designated Hosts are identified

and weighed based on default Nova weighing factors and the VMis scheduled to the suitable Host.

Experiment 1 -Upper Bound of Algorithm 6.1.This experiment analyzes the runtime of Al-

111

(11,30,0.0056)
(11,30,0.011)

12 15 18 21 24 27 30
No. of Elements in

Attribute Scope

20
24

28
32

36
40

No. of Elements in
Conflict-Set

00.05
0.35
0.85
1.45
1.95
2.45

3
3.5

4

Time
(Sec)

Figure 6.4: Required Time for Small Scope and Confilct-Set

gorithm 6.1. Since the complexity is in NP, here, we identifythe maximum size of scope and

conflict set for which required runtime of the algorithm remains feasible. First, we conduct the

experiment with a small size of scope of an attribute and respective conflict set. We vary scope

size from 10 to 40, and for each scope size, we vary the size of conflict set from 20 to 40. For each

scope and a particular size of the conflict set, we randomly create elements in conflict set and exe-

cute the algorithm. Also, we repeat this process 50 times where conflicts are generated randomly.

Figure 6.4 shows the results where, for a small scope and conflict set, runtime is very low, e.g.,

0.011s for a scope and conflict set size of 18 and 30 respectively. However, for bigger scope and

conflict set sizes, it increases drastically, e.g, for scopesize 30 and conflict set size 35 it becomes

approximately 4s. We also conduct the same experiment for large scope and conflict sets where

we vary the size from 40 to 100 and 60 to 100 respectively. Figure 6.5 shows the results where

the runtime is very high as expected. For instance, for a scope and conflict set size of 50 and 70

respectively, the execution time is more than 7mins. Note that, a high runtime may be acceptable,

since conflict-free partitions are created before startingthe scheduling of VMs and hence it does

not impact the scheduler’s performance drastically. This experiment gives an estimation of delay

112

(50,70,416)

40 50 60 70 80 90 100No. of Elements in
Attribute Scope

40
50

60
70

80
90

100

No. of Elements
in Conflict-Set

0
400
800

1200
1600
2000
2400

Time
(Sec)

Figure 6.5: Required Time for Large Scope and Conflict-Set

the CSP might face before scheduling the VMs if it wants to create conflict-free partitions for a

given scope and conflict set size.

Experiment 2 - Scheduling Latency.In the second experiment, we analyzed the timing over-

head of our conflict-free Host-to-VM scheduler once that conflict-free partitions are calculated by

algorithm 1. In figure 6.6, we study how the amount of time the scheduler takes to schedule a single

VM varies with increasing number of VMs that have already been scheduled. A value of 500 in the

x-axis, for example, indicates that 499 VMs have already been scheduled and the corresponding

value in the y-axis (0.19s) indicates the time to schedule one new VM. The attribute values of the

pre-scheduled VMs were randomly assigned. The scheduler takes a fairly fixed amount of time to

schedule a single VM regardless of the number of conflict-free pre-scheduled VMs.

Experiment 3 - Required Number of Hosts.Our third experiment concerns the impact of

satisfying conflicts on the resource requirements. In our case, the conflict set of a given attribute

can be varied in two significant ways to evaluate the number ofphysical hosts that are necessary.

In figure 6.7, we vary the number of elements in the conflict setwhile fixing the maximum degree

of conflict to a constant value. The highest number of values that conflict with each other in the

113

0

0.05

0.1

0.15

0.2

0.25

0.3

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number of VMs

Conflict-Free VM Scheduler

Figure 6.6: Latency for Conflict-free Scheduling

conflict set is referred to as the maximum degree of conflict for that conflict set. In figure 6.7, we

fix the maximum degree to 2. In figure 6.8, we vary the maximum degree of conflicts with a fixed

attribute scope. Given the server memory capacity to be 3 GB,the VM capacity is varied between

512 MB and 1024 MB. The experiment confirms our intuition thatthat the maximum degree of

conflict dominates the server requirement to schedule VMs. Note that minor spikes and drops (for

example between 100 and 140 on the x-axis for scheduling 100 VMs) are due to the randomness

of the workload we automatically generate and some variability in Devstack. However, overall,

our observation holds true.

Experiment 4 - Host Utilization.Finally, this experiment concerns the impact of conflict-free

scheduling on the overall utilization level of all the physical servers. Since we know from experi-

ment 2 that resource requirements are predominantly impacted by maximum degree, in figure 6.9,

in the x-axis we vary maximum degree while scheduling a varied number of VMs. The y-axis

specifies the aggregate percentage of utilization of all theservers after scheduling the VMs in a

conflict-free manner. For example, given N number of servers, 80% utilization means that 20%

of N servers in total is not utilized. We can see, server utilization dramatically increases with the

114

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100 120 140 160

N
u

m
b

er
o

fS
er

ve
rs

Cardinality of Conflict-Set

Scheduling: 100 VMs 200 VMs 300 VMs

Figure 6.7: Required Number of Hosts for Varying Number of Elements in Conflict-Set

number of VMs that are scheduled. This is because since the max degree dictates server require-

ments, for smaller number of VMs, a minimum of max degree number of servers remain heavily

under-utilized. Once the VMs scale toward real-world numbers, the utilization is above 80% even

with a very high degree of conflict.

Experiment 5 - Limitation of the OpenStack Scheduler.

In Nova, multiple groups can be created, called anti-affinity groups, where VMs in same group

cannot co-locate and a user can manually put a VM to these groups. Then, the Nova scheduler

called ‘filter-scheduler’ schedules the VMs while satisfying the anti-affinity groups. Unlike our

scheduling, ‘filter-scheduler’ does not consider the host optimization problem. It selects a Host

with highest available capacity for a requested VM if already scheduled VMs to that Host are not

in same anti-affinity groups. Let’s say, for example, 3 Hostsh1, h2, and h3 have enough capacity

to schedule 15 VMs (vm1 to vm15). There are 3 anti-affinity groups af1, af2 and af3 where vm1,

vm4, vm7, vm10, vm13, are in af1, vm2, vm5, vm8, vm11, vm14 are in af2 and vm3, vm6, vm9, vm12,

vm15 in af3. If vm1 to vm15 are sequentially requested, after scheduling vm1 to vm9 no Host will

be available. Scheduling of new VM now require migration of already scheduled VMs that incurs

115

0
2
4
6
8

10
12
14
16
18
20
22
24
26

6 9 12 15 18

N
u

m
b

er
o

fS
er

ve
rs

Maximum Degree of Conflicts

Scheduling: 100 VMs 200 VMs 300 VMs

Figure 6.8: Required Number of Hosts for Max Degree of Conflicts

additional cost. However, our scheduling process can schedule all the 15 VMs since it optimizes

Hosts.

6.4 Incremental Conflicts

So far, our conflict-free scheduling approach has assumed that conflicts can be pre-specified and

remains unchanged. However, in practice, conflicts may change, and may be specified incremen-

tally as new tenants join the cloud. We now explore this fundamentally hard problem—if two VMs

that did not conflict at a certain time happen to be co-locatedin a server, but later develop a conflict

due to an update of conflict specification, it is necessary to migrate one of those VMs from that

server, to remain conflict free.

6.4.1 Types of Conflict Change

In general, a conflict-set changes if a new conflict is added oran existing conflict is removed. Given

a ConSetatt and aPARTITIONatt of anatt ∈ ATTRVM, ConSetatt can change to a new conflict

116

0
10
20
30
40
50
60
70
80
90

100

20 40 60 80 100 120 140 160 180 200S
er

ve
r

U
til

iz
at

io
n

(P
er

ce
n

ta
g

e)

Number of VMs

Without Conflicts
Max Degree-of-Conflicts 5

Max Degree-of-Conflicts 10

Max Degree-of-Conflicts 15
Max Degree-of-Conflicts 20

Figure 6.9: Host Utilization Overhead

setConSet′att (a new partitionPARTITION′
att can be calculated accordingly) in three different

ways.

•∆1—this type of change involves operations that only remove anelement fromConSetatt where

|PARTITION′
att| < |PARTITIONatt|. Evidently, it does not add new conflicts, hence, the sched-

uled VMs need not migrate.

• ∆2—this type of change involves operations that add an elementto ConSetatt. However,

PARTITIONatt remains unchanged. If addition of a new conflict results in nochange in conflict-

free partition, scheduled VMs need not be migrated.

•∆3—this type of change adds an element toConSetatt wherePARTITION′
att 6= PARTITIONatt.

Evidently, certain VMs need to be migrated if they need to remain conflict-free.

Consider an attributeatt ∈ ATTRVM and SCOPEatt = {a1,a2,a3,a4,a5,a6}, where the ini-

tial conflict-setConSetatt = {{a1,a2},{a1,a4}, {a2,a4}, {a1,a5}, {a2,a6}, {a4,a6}} and the cor-

responding partition set which is calculated using algorithm 1 is PARTITIONatt={{a1,a3,a6},

{a2,a5}, {a4}}.

117

0

15

30

45

5 10 15 20 25 30 35 40 45 50
(A) Scheduling Process 1(Max. 2)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

0

15

30

45

5 10 15 20 25 30 35 40 45 50
(B) Scheduling Process 2(Max. 4)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

0

15

30

45

5 10 15 20 25 30 35 40 45 50
(C) Scheduling Process 3(Max. 8)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

0

15

30

45

5 10 15 20 25 30 35 40 45 50
(D) Scheduling Process 4(Promiscuous)

Mean of Avg. Per.(%) of Migrations
Mode of Avg. Per.(%) of Migrations

Figure 6.10: Cost Analysis: X-axis(% of the Total Conflicts for Given Scopes), Y-axis(% of Total
VMs that Require Migrations)

Consider a change of type∆1 that removes {a2,a4} fromConSetatt where resultant conflict

set ConSet1att={{ a1,a2}, {a1,a4},{a1,a5},{a2,a6},{a4,a6}} andPARTITION1
att ={{a1,a3,a6},

{a2,a4,a5}}. Here, #PARTITION1
att < #PARTITIONatt and it does affect already scheduled VMs.

Consider a change of type∆2 that adds {a2,a3} toConSetatt where new conflict set

ConSet2att={{a1,a2}, {a1,a4}, {a2,a4}, {a2,a3}, {a1,a5}, {a2,a6}, {a4,a6}} andPARTITION2
att=

{{a1,a3,a6}, {a2,a5},{a4}} which is equal to the previous partition setPARTITIONatt.

Consider a change of type∆3 that adds {a1,a6} toConSetatt whereConSet3att= {{a1,a2},

118

{a1, a4}, {a2,a4}, {a1,a5},{a2,a5},{a2,a6},{a4,a6},{a1,a6}} andPARTITION3
att =

{{a1,a3},{a2},{a4},{a6}}. This clearly affects the previously scheduled VMs because, from

PARTITIONatt, VMs with attribute value a4 are co-located with VMs with attribute values a1 or

a3. Now, those VMs with a4 need to migrate since they cannot co-locate with a1 or a3.

6.4.2 Cost Analysis

In this section, we analyze the cost of continuing to satisfythe conflicts as they change, when

the change is of type∆3. We calculate the cost based on the number of migrations thatare nec-

essary when conflicts change. Based on experimentation, we gain insights on the strategies for

minimizing the cost while handling this type of change.

We define an incremental plan, or simplyplan, as a sequence of operations that adds a number

of conflicts to the current conflict-set resulting in a∆3-type change (i.e., requires migration). Our

strategy for minimizing cost is as follows. Consider an element{a1, a2, a3, a4} of a conflict-free

partition setPARTITIONatt of attributeatt. Since attribute valuesa1 througha3 are conflict-free,

the scheduler is free to co-locate VMs that have those attribute values in a given server. We refer

to this aspromiscuousconflict-free scheduling because it maximizes the mixing ofVMs in a given

server so long as they do not conflict. In contrast, aconservativeapproach minimizes the co-

location of VMs even though their attribute values do not conflict. For instance, VMs with values

a1 or a2 may be co-located in one server, and those with valuesa3 or a4 may be co-located in

another. In this case, if valuesa3 anda1 were to develop a conflict in the future, the migration cost

can be minimal (zero in this scenario). Promiscuous scheduling can have better resource utilization

but higher cost for managing conflict changes. Conservativescheduling can minimize cost when

conflict changes more frequently, at the expense of lower resource utilization.

We conduct an experiment to evaluate the impact of conflict change on the number of migra-

tions for different levels of conservative scheduling. Thesteps of the experiment are:(step-1)

We consider a single VM attribute calledatt where we vary the size ofSCOPEatt from 10 to 35

with an increment of 5.(step-2) For eachSCOPEatt, initially, we randomly populateConSetatt

119

with 5 to 50 elements and calculatePARTITIONatt. We repeatedly perform this step for 50 times

for everystep 1. (step-3) For eachstep-2, we schedule X number of VMs where we vary X

from 500 to 5000. We also schedule them using a promiscuous approach and four conservative

approaches where VMs of samehost can not have more than 1, 2, 4, and 8 different values from

a conflict-free partition respectively. Also, each VM is randomly assigned a value to itsatt. We

repeat each scheduling process for 30 times. We also randomly assign VM memory capacity to

512 and 1024 MB, andhost capacity to 3GHz.(step-4) Finally, we measure migrations for 5

different plans where theplans gradually add random 5%, 10%, 15%, 20%, 25%, 30%, 35%,

40%, 45% and 50% of the total number of conflicts toConSetatt respectively. For eachplan,

step-4 is repeated for 50 times and we count the migrations. Note that these numbers (the number

of times a particular step is repeated) provide sufficient variations, and are primarily dictated by

amount of time it takes to perform these steps.

Figure 6.10 shows the result of our analysis. Parts (A), (B) and (C) are results of different

degrees of conservative scheduling. For example, in part (A), if attribute values{a1, a2, . . . , a8}

are conflict free, we at most schedule VMs with one of two possible conflict-free values in any

given server (e.g. VMs with a1 or a2 are co-located, and thosewith a3 and a4 are co-located in a

different server, etc.). Similarly, in part (B), we co-locate VMs with either of a1, a2, a3 or a4 in

one server and those with a5, a6, a7 or a8 in a different server. Part (D) is the result of promiscuous

scheduling.

We found that the percentage of the migrating VMs does not necessarily increase with the

increasing number of VMs, rather, it depends on the percentage of total number of conflicts that

are newly added. For instance, in figure 6.10(A), for varyingnumber of VMs from 500 to 5000,

mean value of the average percentage of VMs that need to migrate is 29% when number of newly

added conflicts is 35%. Also, the mode is 27%. We found that theaverage difference between

the mean and mode values from all cases is no more than 0.5%. The percentage of migrations

remain constant with respect to the size of the attribute scope and it does not depend on the initial

conflicts for which the VMs are scheduled. Finally, we found that it is always better to schedule

120

VMs with conservative scheduling with minimum degree. For instance, there is no migration using

scheduling process #1 where ahost can only contain VMs with same attribute value. Also, we

notice that addition of a large % of conflicts at a time costs less than combined cost of multiple

additions of comparatively small % of conflicts. For instance, in Figure 6.10(C), 50% conflicts

cost 79% migrations, where 10 different 5% conflicts cost 10×9%=90% migrations.

6.4.3 Reachability Heuristics

Besides analyzing the cost of aplan that leads to a particular conflict set, it is also important

to find thesteps of a plan where each step adds a particular conflict. For instance, identifying

steps of aplan helps to design operations for maintaining conflicts and their authorization process,

although, we consider the designing of such front-end operational model as future work. Here,

we define this problem asplan reachability problem where for a given attribute, its scope, and an

initial conflict-set, what are thesteps with a particular cost that will reach targetplan with specific

values in conflict-set? This problem can be viewed as finding apath from an initial state to a goal

state in a weighted state-transition directed graph where each edge of the graph is the cost for

adding one conflict to the conflict-set. Here, a simple algorithm can construct the state-transition

graph and uses a weighted shortest path algorithm to find a plan in O(nlogn) time [35]. However,

it is infeasible due to a very large number of states where, for a size of scopeN , the number of

conflicts is
(

N

2

)

and possible states are2(
N

2
). Instead, it is possible to use a search algorithm to

construct regions as needed. Proper heuristics can intelligently search forsteps and some well-

known heuristics such as k-lookahead based heuristics may be applied in this domain [35].

6.5 Security Issues and Limitations

In terms of applicability, an attribute of a VM can be appliedto represent properties of a single ten-

ant or multiple tenants. We refer such attributes asintra-tenant andinter-tenant respectively. In

figure 6.1,tenantandsensitivityareinter-tenant andintra-tenant attributes respectively since val-

ues oftenantcan represent different tenant in the system, while,sensitivitycan be very particular

121

to a tenant. We analyze the following security concerns for specifying conflicts of theinter-tenant

attributes in a multi-tenant cloud.

• Privacy of a Tenant.As seen in section 6.1.1, a conflict is specified between a pairof values

of an attribute. However, for aninter-tenant attribute, the values of the attribute can belong to

different tenants. For instance, in public cloud, values ofthetenantattribute of figure 6.1 represent

each tenant in the system and each tenant should not know values oftenantattribute except their

own value for privacy of other tenant in this system. Specifying conflicts of such attributes can

be very tricky where a tenant should be able to specify the conflicts with other tenants without,

basically, knowing them. The CSP could take the initiative to develop a privacy preserving conflict

specification process forinter-tenant attribute where a simple approach could be the classification

of attribute-values based on some class, as shown in section6.2.1 for conflict-of-interest classes,

and a tenant can only mention the class of their attribute values where conflicts will be generated

automatically with other values of the same class.

• Disrupt Multi-tenancy:In public cloud, multiplexing is to share a physical host among the VMs

of multiple tenants. However, if a tenant can specify conflicts with all other tenants in the system,

then its VMs cannot co-locate with any other tenant. This process disrupts the multi-tenancy in the

system and, basically, creates a private cloud for the tenant. The CSP should restrict such specifi-

cations of conflicts.

We discuss following limitations on expressive-power of the generated conflicts by our mecha-

nism.

• Homogeneous and Non-hierarchical.Generated conflicts in a conflict-set are treated equally

and they do not have any hierarchical relationships. In figure 6.1, three different conflicts are

specified inConSetsensitivity of attributesensitivity. Here, each conflict has the same semantics,

122

which is a binary relation between two values ofsensitivity. Also, generated conflicts of the values

of two different attributes are independent and bear equal meaning. In figure 6.1, the values of

ConSetsensitivity andConSettenant do not have any connection and have equal significance.

• Conflicts between the Virtual Resources only.Our scheduling mechanism does not consider

any Host property, such as location or trust-level of a Host,for the scheduling decisions. Rather,

it only focuses on generating attribute and their conflicts only for the VMs and schedule them ac-

cordingly. Also, it does not consider any relationship between Hosts and VMs for the scheduling.

Such type of relations between Hosts and VMs are specified in [77]. A potential future extension

is to consider conflicts between Hosts and VMs for the scheduling decisions while optimizing the

number of Hosts.

123

Chapter 7: CONCLUSION

The following sections summarize contributions of this dissertation and discuss some future re-

search directions that can be further studied.

7.1 Summary

In this research, first, we developed a constraints specification language for ABAC. We identified

different type of relations among attributes and develop a hierarchical relationship structure. We

verified the expressiveness of the language by configuring various separation-of-duty constraints

for role based access control and security policies for banking organizations.

We also developed constraints specification mechanisms in cloud IaaS. First, we formalized

a simple constraints specification mechanism for isolationmanagement at both user level and re-

source level in the cloud. We also developed a formal administrative model for the management

of user privileges. We then presented CVRM, the very first constraints specification process that

enables tenants to specify several virtual resource management policies needed for production en-

terprise applications to run in IaaS clouds. CVRM can be specified as part of a cloud deployment,

and would be installed in every cloud service provided by theIaaS providers. We also identified

that virtual-resource management policies can be discovered and constructed from log file which

is similar to the well-known frequent-itemsets mining problem in database systems. We demon-

strated a constraint mining algorithm for CVRM where the algorithm leverages standard Apriori

algorithm from the data mining literature. We also analyzedwhether the mined constraints pre-

serve semantic meaning with respective to the configurationrequirements of the tenant.

Finally, we presented a generalized attribute-based constraints specification framework for vir-

tual resource to physical resource scheduling in IaaS clouds. The mechanism also optimizes the

number of physical resources while satisfying the conflicts. We developed and analyzed the im-

plementation of this mechanism in OpenStack cloud platform.

124

7.2 Future Work

There are several opportunities for extending the work presented in this dissertation.

In CVRM, there is always option to improve the mining. For instance, in this dissertation, we

consider that the log file is noise free. An obvious future work would be to introduce noise in

this system and develop a more dynamic mining algorithm thatcan mitigate the effect of noise on

mining results. Another future work, would be to develop a misconfiguration detection mechanism

on top of the mining of CVRM.

Another potential future work is to extend our constraint-aware scheduling mechanism to ad-

dress the limitations discussed in section 6.5. Also, a future direction is to develop a suitable

front-end application program interface for specificationand management of the conflicts. The

vision behind this is to expose resource management capabilities to the tenants so they can retain

control when moving to cloud.

This dissertation builds foundations for an attribute based constraint specification system. A

potential future work is to investigate the usefulness of this system in other dynamic domains such

as managing privileges of the android apps in smartphones.

125

BIBLIOGRAPHY

[1] AWS availabiltiy-zones. http://docs.aws.amazon.com/AWSEC2/latest/using-regions-

availability-zones.html/.

[2] AWS identity and access management.https://aws.amazon.com/iam/.

[3] AWS security best practices.http://media.amazonwebservices.com/AWS-Security-Best-

Practices.pdf.

[4] Clique. http://en.wikipedia.org/wiki/Clique.

[5] DevStack.https://wiki.openstack.org/wiki/DevStack.

[6] KeyStone.http://docs.openstack.org/developer/keystone/.

[7] OpenStack.https://wiki.openstack.org/.

[8] OpenStack Havana Release.http://www.openstack.org/software/havana.

[9] Amazon and CIA ink cloud deal. Inhttp://fcw.com/articles/2013/03/18/amazon-cia-

cloud.aspx, 2013.

[10] The internet engineering task force (IETF). Inhttp://www.ietf.org/, 2013.

[11] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules between

sets of items in large databases. InProceedings of International Conference on Management

of Data, pages 207–216. ACM, 1993.

[12] Gail Joon Ahn and Ravi Sandhu. Role-based authorization constraints specification.ACM

Trans. Inf. Syst. Secur., 3(4):207–226, November 2000.

[13] A. Almutairi, M. Sarfraz, S. Basalamah, W.G. Aref, and A. Ghafoor. A distributed access

control architecture for cloud computing.IEEE Software, 29(2), 2012.

126

[14] Abdulrahman Almutairi, Muhammad Sarfraz, Saleh Basalamah, Walid Aref, and Arif

Ghafoor. A distributed access control architecture for cloud computing.Software, 29(2),

2012.

[15] Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Antony IT Rowstron. Towards pre-

dictable datacenter networks. InProcedings of The ACM Special Interest Group on Data

Communication, pages 242–253, 2011.

[16] Edward A Bender and Herbert S Wilf. A theoretical analysis of backtracking in the graph

coloring problem.Journal of Algorithms, 6(2):275–282, 1985.

[17] Theophilus Benson et al. Cloudnaas: a cloud networkingplatform for enterprise applica-

tions. InProceedings of the 2nd Symposium on Cloud Computing. ACM, 2011.

[18] Stefan Berger et al. Security for the cloud infrastructure: Trusted virtual data center imple-

mentation.IBM Journal of Research and Development, 53(4):6–1, 2009.

[19] Andreas Berl et al. Energy-efficient cloud computing.The computer journal, 53(7):1045–

1051, 2010.

[20] Khalid Bijon, Ram Krishman, and Ravi Sandhu. Constraints specication in attribute based

access control.ASE Science Journal, 2(3):pp–131, 2013.

[21] Khalid Bijon, Ram Krishman, and Ravi Sandhu. Automatedconstraints specification for

virtual resource orchestration in cloud IaaS.Under Review in IEEE Transactions on De-

pendable and Secure Computing, 2015.

[22] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Towards anattribute based constraints

specfication language. InPASSAT. IEEE, 2013.

[23] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Towards anattribute based constraints

specification language. InProc. of the PASSAT, 2013.

127

[24] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. A formal model for isolation management

in cloud infrastructure-as-a-service. InProceedings of the 8th International Conference on

Network and System Security (NSS). 2014.

[25] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Mitigating multi-tenancy risks in iaas cloud

through constraints-driven virtual resource scheduling.In Proceedings of ACM Symposium

on Access Control Models and Technologies (SACMAT), SACMAT ’15. ACM, 2015.

[26] Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Virtual resource orchestration constraints

in cloud infrastructure as a service. InProceedings of the 5th ACM Conference on Data and

Application Security and Privacy, CODASPY ’15, pages 183–194, New York, NY, USA,

2015. ACM.

[27] Khalid Bijon, Ravi Sandhu, and Ram Krishnan. A group-centric model for collaboration

with expedient insiders in multilevel systems. InInternational Symp. on Security in Collab-

oration Technologies and Systems, 2012.

[28] Khalid Zaman Bijon, Tahmina Ahmed, Ravi Sandhu, and RamKrishnan. A lattice in-

terpretation of group-centric collaboration with expedient insiders. In8th International

Conference on Collaborative Computing: Networking, Applications and Worksharing (Col-

laborateCom), pages 200–209. IEEE, 2012.

[29] Khalid Zaman Bijon, Ram Krishnan, and Ravi Sandhu. Risk-aware RBAC sessions. In

Information Systems Security, pages 59–74. Springer, 2012.

[30] K.Z. Bijon, R. Krishnan, and R. Sandhu. A framework for risk-aware role based access

control. InIEEE Conference on Communications and Network Security (CNS), pages 462–

469, Oct 2013.

[31] S. Bleikertz et al. Secure cloud maintenance - protecting workloads against insider attacks.

In Proceedings of the ACM Symposium on Information, Computer and Communications

Security, 2012.

128

[32] Norman Bobroff et al. Dynamic placement of virtual machines for managing SLA viola-

tions. InProceedings of the International Symposium on Integrated Network Management.

IEEE, 2007.

[33] Piero A Bonatti and Pierangela Samarati. A uniform framework for regulating service access

and information release on the web.Journal of Computer Security, 10(3), 2002.

[34] Tyson R Browning and Ali A Yassine. Resource-constrained multi-project schedul-

ing: Priority rule performance revisited.International Journal of Production Economics,

126(2):212–228, 2010.

[35] Daniel Bryce and Subbarao Kambhampati. A tutorial on planning graph based reachability

heuristics.AI Magazine, 2007.

[36] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros.Modeling and simulation of scal-

able cloud computing environments and the cloudsim toolkit: Challenges and opportunities.

In HPCS’09, pages 1–11. IEEE, 2009.

[37] Vincent C. Hu et al. Guide to attribute based access control (ABAC) definition and consid-

erations (draft).NIST Special Publication, 2013.

[38] Nicolò Maria Calcavecchia, Ofer Biran, Erez Hadad, andYosef Moatti. VM placement

strategies for cloud scenarios. InProcedings of The International Conference on Cloud

Computing. IEEE, 2012.

[39] Jose M Alcaraz Calero et al. Toward a multi-tenancy authorization system for cloud services.

IEEE Security & Privacy, 8(6):48–55, 2010.

[40] Antonio Celesti, Francesco Tusa, Massimo Villari, andAntonio Puliafito. How to enhance

cloud architectures to enable cross-federation. InProcedings of The IEEE International

Conference on Cloud Computing, 2010.

129

[41] Melissa Chase. Multi-authority attribute based encryption. In Theory of Cryptography,

pages 515–534. Springer, 2007.

[42] Fang Chen and Ravi S. Sandhu. Constraints for role-based access control. InProceedings

of the First ACM Workshop on Role-based Access Control, 1996.

[43] Ge Cheng et al. A prioritized chinese wall model for managing the covert information flows

in virtual machine systems. InIEEE ICYCS, 2008.

[44] Yuan Cheng, Jaehong Park, and Ravi Sandhu. Relationship-based access control for online

social networks: Beyond user-to-user relationships. InThe International Conference on on

Social Computing (SocialCom), pages 646–655. IEEE, 2012.

[45] Yuan Cheng, Jaehong Park, and Ravi Sandhu. A user-to-user relationship-based access

control model for online social networks. InData and applications security and privacy

XXVI, pages 8–24. Springer, 2012.

[46] Yuan Cheng, Jaehong Park, and Ravi Sandhu. Preserving user privacy from third-party

applications in online social networks. InProceedings of the 22nd international conference

on World Wide Web companion, pages 723–728. International World Wide Web Conferences

Steering Committee, 2013.

[47] Ludmila Cherkasova et al. Comparison of the three cpu schedulers in xen.SIGMETRICS

Performance Evaluation Review, 35(2):42–51, 2007.

[48] David D. Clark and David R. Wilson. A Comparison of Commercial and Military Computer

Security Policies. InProceedings of the IEEE S&P, 1987.

[49] Bill Claybrook. Comparing cloud risks and virtualization risks for data center apps.

http://searchdatacenter.techtarget.com/tip/ 0,289483,sid80 gci1380652,00.html.

130

[50] Edward G Coffman Jr, Michael R Garey, and David S Johnson. Approximation algorithms

for bin packing: A survey. InApproximation algorithms for NP-hard problems, pages 46–

93. PWS Publishing Co., 1996.

[51] Jason Crampton. Specifying and enforcing constraintsin role-based access control. In

Proceedings of the eighth ACM symposium on Access control models and technologies,

pages 43–50. ACM, 2003.

[52] Jason Crampton and Hemanth Khambhammettu. A frameworkfor enforcing constrained

rbac policies. InComputational Science and Engineering, 2009. CSE’09. International

Conference on, volume 3, pages 195–200. IEEE, 2009.

[53] Ernesto Damiani, S De Capitani Di Vimercati, and Pierangela Samarati. New paradigms for

access control in open environments. Inproceedings of the ISSPIT, 2005.

[54] Wesam Dawoud, Ibrahim Takouna, and Christoph Meinel. Infrastructure as a service secu-

rity: Challenges and solutions. InProcedings of International Conference on Informatics

and Systems, pages 1–8, 2010.

[55] Leah Epstein and Asaf Levin. On bin packing with conflicts. InApproximation and Online

Algorithms, pages 160–173. Springer, 2007.

[56] David Ferraiolo, Janet Cugini, and Richard Kuhn. Role-based access control (RBAC): Fea-

tures and motivations. InProceedings of the 11th ACSAC, 1995.

[57] David F. Ferraiolo et al. Proposed NIST standard for role-based access control.ACM Tran.

Inf. Sys. Sec., 2001.

[58] Michael R Garey and Ronald L. Graham. Bounds for multiprocessor scheduling with re-

source constraints.SIAM Journal on Computing, 4(2):187–200, 1975.

[59] Michael R Garey and David S Johnson.Computers and intractability: A Guide to the Theory

of NP-Completeness, volume 174. Freeman New York, 1979.

131

[60] Michel Gendreau, Gilbert Laporte, and Frédéric Semet.Heuristics and lower bounds for

the bin packing problem with conflicts.Computers & Operations Research, 31(3):347–358,

2004.

[61] Virgil D Gligor et al. On the formal definition of separation-of-duty policies and their

composition. InProceedings of the IEEE Security and Privacy, 1998.

[62] Martin Charles Golumbic.Algorithmic graph theory and perfect graphs, volume 57. Else-

vier, 2004.

[63] José Fernando Gonçalves, Jorge JM Mendes, and MauricioGC Resende. A genetic algo-

rithm for the resource constrained multi-project scheduling problem.European Journal of

Operational Research, 189(3):1171–1190, 2008.

[64] Vipul Goyal et al. Attribute-based encryption for fine-grained access control of encrypted

data. InProceedings of The ACM Conference on Computer and Communications Security,

2006.

[65] Eric Grosse, John Howie, James Ransome, Jim Reavis, andSteve Schmidt. Cloud comput-

ing roundtable. InProc. of the IEEE S&P, 2010.

[66] Ajay Gulati, Irfan Ahmad, Carl A Waldspurger, et al. Parda: Proportional allocation of

resources for distributed storage access. InFAST, volume 9, pages 85–98, 2009.

[67] Abhishek Gupta et al. HPC-aware VM placement in infrastructure clouds. InIEEE Intl.

Conf. on Cloud Engineering, volume 13, 2013.

[68] Magnús M Halldórsson. A still better performance guarantee for approximate graph color-

ing. Information Processing Letters, 45(1):19–23, 1993.

[69] Keiko Hashizume et al. An analysis of security issues for cloud computing. Journal of

Internet Services and Applications, 4(1):1–13, 2013.

132

[70] Sreekanth Iyer. Top 5 challenges to cloud computing.Cloud Computing Cen-

tral, https://www.ibm.com/ developerworks /community/blogs/c2028fdc-41fe- 4493-8257-

33a59069fa04/entry/top-5- challenges-to-cloud-computing 4?lang=en, 2011.

[71] Trent Jaeger. On the increasing importance of constraints. In Proceedings of the ACM

RBAC, 1999.

[72] Trent Jaeger, Reiner Sailer, and Yogesh Sreenivasan. Managing the risk of covert informa-

tion flows in virtual machine systems. InProceedings of The ACM Symposium on Access

Control Models and Technologies, 2007.

[73] Sushil Jajodia et al. Flexible support for multiple access control policies.ACM TODS,

26(2):214–260, 2001.

[74] Klaus Jansen. An approximation scheme for bin packing with conflicts. InAlgorithm Theory

SWAT’98, pages 35–46. Springer, 1998.

[75] Klaus Jansen. An approximation scheme for bin packing with conflicts. Journal of combi-

natorial optimization, 3(4):363–377, 1999.

[76] Amarnath Jasti, Payal Shah, Rajeev Nagaraj, and Ravi Pendse. Security in multi-tenancy

cloud. InProceedings of the International Carnahan Conference on Security Technology

(ICCST), pages 35–41. IEEE, 2010.

[77] Ravi Jhawar, Vincenzo Piuri, and Pierangela Samarati.Supporting security requirements

for resource management in cloud computing.IEEE CSE, 0:170–177, 2012.

[78] Xin Jin, Ram Krishnan, and Ravi Sandhu. A Unified Attribute-Based Access Control Model

Covering DAC, MAC and RBAC. InDBSec, 2012.

[79] Xin Jin, Ram Krishnan, and Ravi Sandhu. A role-based administration model for attributes.

In Proceedings of the First International Workshop on Secure and Resilient Architectures

and Systems, pages 7–12. ACM, 2012.

133

[80] David Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph coloring by

semidefinite programming. InProc. of 35th Annual Symposium on Foundations of Com-

puter Science, pages 2–13. IEEE, 1994.

[81] Eric Keller, Jakub Szefer, Jennifer Rexford, and Ruby BLee. Nohype: virtualized cloud

infrastructure without the virtualization. InACM SIGARCH Computer Architecture News,

volume 38, pages 350–361, 2010.

[82] Ibrahim S Kurtulus and Subhash C Narula. Multi-projectscheduling: Analysis of project

performance.IIE transactions, 17(1):58–66, 1985.

[83] Bo Lang, Ian Foster, Frank Siebenlist, Rachana Ananthakrishnan, and Tim Freeman. A flex-

ible attribute based access control method for grid computing. Journal of Grid Computing,

7(2):169–180, 2009.

[84] William Leinberger, George Karypis, and Vipin Kumar. Multi-capacity bin packing al-

gorithms with applications to job scheduling under multiple constraints. InProc. of the

International Conference on Parallel Processing, pages 404–412. IEEE, 1999.

[85] Kangkang Li, Jie Wu, and A. Blaisse. Elasticity-aware virtual machine placement for cloud

datacenters. InIEEE 2nd International Conference on Cloud Networking, pages 99–107,

Nov 2013.

[86] Xiaopu Ma, Ruixuan Li, Zhengding Lu, and Wei Wang. Mining constraints in role-based

access control.Mathematical and Computer Modelling, 55(1):87–96, 2012.

[87] Carlo Mastroianni, Michela Meo, and Giuseppe Papuzzo.Probabilistic consolidation of

virtual machines in self-organizing cloud data centers.IEEE Transactions on Cloud Com-

puting, 1(2):215–228, 2013.

134

[88] Kevin Mills, J Filliben, and Christopher Dabrowski. Comparing vm-placement algorithms

for on-demand clouds. InProcedings of The International Conference on Cloud Computing

Technology and Science. IEEE, 2011.

[89] I Morihara, T Ibaraki, and T Hasegawa. Bin packing and multiprocessor scheduling prob-

lems with side constraint on job types.Discrete applied mathematics, 6(2):173–191, 1983.

[90] Michael J Nash and Keith R Poland. Some conundrums concerning separation of duty. In

Research in Security and Privacy, pages 201–207. IEEE, 1990.

[91] Dang Nguyen, Jaehong Park, and Ravi Sandhu. Dependencypath patterns as the founda-

tion of access control in provenance-aware systems. InProceedings of the 4th USENIX

conference on Theory and Practice of Provenance, pages 4–4. USENIX Association, 2012.

[92] Dang Nguyen, Jaehong Park, and Ravi Sandhu. A provenance-based access control model

for dynamic separation of duties. InThe Eleventh Annual International Conference on

Privacy, Security and Trust (PST), pages 247–256. IEEE, 2013.

[93] Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-

monotonic access structures. InProceedings of The ACM Conference on Computer and

Communications Security, 2007.

[94] Jaehong Park, Dang Nguyen, and R. Sandhu. A provenance-based access control model.

In The Tenth Annual International Conference on Privacy, Security and Trust (PST), pages

137–144, July 2012.

[95] Jaehong Park and Ravi Sandhu. The UCONABC usage control model.ACM Transactions

on Information and System Security (TISSEC), 7(1), 2004.

[96] Matthew Pirretti, Patrick Traynor, Patrick McDaniel,and Brent Waters. Secure attribute-

based systems. InProceedings of The ACM Conference on Computer and Communications

Security, pages 99–112, 2006.

135

[97] P Ranjith, Chandran Priya, and Kaleeswaran Shalini. Oncovert channels between virtual

machines.Journal in Computer Virology, 8(3):85–97, 2012.

[98] Thomas Ristenpart et al. Hey, you, get off of my cloud: exploring information leakage

in third-party compute clouds. InProceedings of The ACM Conference on Computer and

Communications Security, 2009.

[99] Janessa Rivera. Gartner identifies the top 10 strategictechnology trends for 2014.

http://www.gartner.com/ newsroom/id/2603623, 2013.

[100] Francisco Rocha and Miguel Correia. Lucy in the sky without diamonds: Stealing confi-

dential data in the cloud. InProc. of the IEEE DSN-W, 2011.

[101] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Proceedings of the

EUROCRYPT. 2005.

[102] Ravi Sandhu. Transaction control expressions for separation of duties. InProceedings of

the 4th ACSAC, 1988.

[103] Ravi Sandhu, Khalid Zaman Bijon, Xin Jin, and Ram Krishnan. Rt-based administrative

models for community cyber security information sharing. In 7th International Confer-

ence on Collaborative Computing: Networking, Applications and Worksharing (Collabo-

rateCom), pages 473–478. IEEE, 2011.

[104] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. The NIST model for role-based access

control: Towards a unified standard. InProceedings of the Fifth ACM Workshop on Role-

based Access Control, pages 47–63. ACM, 2000.

[105] Ravi S Sandhu. A lattice interpretation of the chinesewall policy. In Proceedings of the

15th NIST-NCSC National Computer Security Conference, pages 329–339. Citeseer, 1992.

[106] Ravi S. Sandhu. Lattice-based access control models.IEEE Computer, 26(11), 1993.

136

[107] Ravi S Sandhu and Pierangela Samarati. Access control: Principle and practice.Communi-

cations Magazine, IEEE, 32(9):40–48, 1994.

[108] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control

models.IEEE Computer, 29(2):38–47, 1996.

[109] Christian Schläger, Manuel Sojer, Björn Muschall, and Günther Pernul. Attribute-based

authentication and authorisation infrastructures for e-commerce providers. InProceedings

of the EC-Web. 2006.

[110] Alan Shieh et al. Sharing the data center network. InProceedings of the 8th USENIX

conference on Networked systems design and implementation, 2011.

[111] Richard T Simon and Mary Ellen Zurko. Separation of duty in role-based environments. In

Proceedings of the IEEE CSFW, 1997.

[112] Sankaran Sivathanu, Ling Liu, Mei Yiduo, and Xing Pu. Storage management in virtualized

cloud environment. InProcedings of The International Conference on Cloud Computing,

pages 204–211. IEEE, 2010.

[113] K. Sohr, M. Drouineaud, G.-J. Ahn, and M. Gogolla. Analyzing and managing role-

based access control policies.IEEE Transactions on Knowledge and Data Engineering,

20(7):924–939, July 2008.

[114] M. Stillwell, D. Schanzenbach, F. Vivien, and H. Casanova. Resource allocation using

virtual clusters. InCluster Computing and the Grid, 2009. CCGRID ’09. 9th IEEE/ACM

International Symposium on, pages 260–267, May 2009.

[115] M. Stillwell, F. Vivien, and H. Casanova. Dynamic fractional resource scheduling for HPC

workloads. InIEEE International Symposium on Parallel Distributed Processing (IPDPS),

pages 1–12, April 2010.

137

[116] Jakub Szefer et al. Eliminating the hypervisor attacksurface for a more secure cloud. In

Proceedings of The ACM Conference on Computer and Communications Security, pages

401–412. ACM, 2011.

[117] Bo Tang, Qi Li, and R. Sandhu. A multi-tenant RBAC modelfor collaborative cloud ser-

vices. InProcedings of The International Conference on Privacy, Security and Trust, pages

229–238, 2013.

[118] Bo Tang and R. Sandhu. Cross-tenant trust models in cloud computing. InInformation

Reuse and Integration (IRI), 2013 IEEE 14th International Conference on, pages 129–136,

2013.

[119] Venkatanathan Varadarajan et al. Resource-freeing attacks: improve your cloud perfor-

mance (at your neighbor’s expense). InProceedings of The ACM Conference on Computer

and Communications Security, pages 281–292, 2012.

[120] Venkatanathan Varadarajan, Thawan Kooburat, Benjamin Farley, Thomas Ristenpart, and

Michael M. Swift. Resource-freeing attacks: Improve your cloud performance (at your

neighbor’s expense). InACM CCS, 2012.

[121] Lingyu Wang, Duminda Wijesekera, and Sushil Jajodia.A logic-based framework for at-

tribute based access control. InProc. of the ACM FMSE, 2004.

[122] Meng Wang, Xiaoqiao Meng, and Li Zhang. Consolidatingvirtual machines with dynamic

bandwidth demand in data centers. InINFOCOM, 2011 Proceedings IEEE, pages 71–75,

April 2011.

[123] Jos B Warmer and Anneke G Kleppe.The object constraint language: getting your models

ready for MDA. Addison-Wesley Professional, 2003.

[124] Jinpeng Wei et al. Managing security of virtual machine images in a cloud environment. In

Procedings of the ACM workshop on Cloud computing security, 2009.

138

[125] Avi Wigderson. Improving the performance guarantee for approximate graph coloring.

Journal of the ACM (JACM), 30(4):729–735, 1983.

[126] Ruoyu Wu et al. ACaaS: Access control as a service for IaaS cloud. InProcedings of The

IEEE International Conference on Social Computing and Networking, 2013.

[127] Zhen Xiao, Weijia Song, and Qi Chen. Dynamic resource allocation using virtual machines

for cloud computing environment.IEEE Transactions on Parallel and Distributed Systems,

24(6):1107–1117, 2013.

[128] Chao-Tung Yang et al. A dynamic resource allocation model for virtual machine manage-

ment on cloud. InGrid and Distributed Computing. Springer, 2011.

[129] Eric Yuan and Jin Tong. Attributed based access control (ABAC) for web services. In

proceedings of the IEEE ICWS, 2005.

[130] Fengzhe Zhang et al. Cloudvisor: Retrofitting protection of virtual machines in multi-tenant

cloud with nested virtualization. InProceedings of the ACM Symposium on Operating

Systems Principles, pages 203–216, 2011.

[131] Xinwen Zhang, Ravi Sandhu, and Francesco Parisi-Presicce. Safety analysis of usage con-

trol authorization models. InProc. of the ASIACCS, 2006.

[132] Yinqian Zhang et al. Cross-VM side channels and their use to extract private keys. In

proceedings of the 19th ACM Conference on Computer and Communications Security, 2012.

[133] Yinqian Zhang et al. Cross-tenant side-channel attacks in PaaS clouds. InACM CCS, 2014.

139

VITA

Khalid Bijon was born and grew up in Rajshahi, Bangladesh. Following graduation from Govt.

Laboratory High School, Rajshahi and New Govt. Degree College, Khalid received his Bachelor

of Science degree with a major in Computer Science and Engineering from American International

University Bangladesh, Dhaka, Bangladesh in 2008. He subsequently entered the doctoral program

in the Department of Computer Science at the University of Texas at San Antonio in Fall 2009. He

joined the Institute for Cyber Security at UTSA and started working with Dr. Ravi Sandhu since

2010. His research interests include security and privacy in cyber space. In particular, his focus

is on developing constraints specification mechanism in attribute based access control and cloud

Infrastructure-as-a-Service system.

