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Recently, attribute based access control (ABAC) has redetonsiderable attention from the
security community for its policy flexibility and dynamiccision making capabilities. The general
idea of ABAC is to determine the authorization decisions mfaacess request based on various
attributesof the entities involved in the access (e.g., users, sufyjebjects, context, etc.). Hence,
in an ABAC system, proper assignment of attribute valuesifferdnt entities is necessary to
protect against unauthorized access. There has been emtsi prior research for ABAC in
various aspects such as formal models, enforcement mgadilsy composition languages and so
on. However, mechanisms for ensuring proper attributesvatisignments to entities have not been
well studied.

In this dissertation, we propose a mechanism to specify afat@ constraints in ABAC that
partially ensures proper assignment of attribute valuesntdgies. We do so by specifying con-
straints on attribute values of a particular entity, so agréserve various kind of conflicting re-
lations between these values. We develop a declarativeidaegcalled attribute-based constraint
specification language (ABCL) for such constraints speatifoci. During assignment of attribute
values to entities, the mechanism enforces these specdiestraints by prohibiting assignments
that would violate one or more constraints. We validate esgiveness of ABCL by configuring
several well-known constraint policies that include satian of duty and cardinality policies of the
role based access control system. We also demonstrateattecpt usefulness of ABCL by con-
figuring various security policies for banking organizaso We discuss enforcement algorithms
for ABCL and analyze their complexity.

We further devise a similar constraints specification meigma in the concrete domain of cloud

iv



infrastructure-as-a-service (laaS). In cloud laaS, bbtfsjal resources and virtual resources need
to be mapped to each other in order to build a particular caimgenvironment. Any misconfig-
urations in these mappings may result in potential secarity performance losses. Unlike for
attribute value assignment in ABAC, here, we generate caings for ensuring proper mappings
among cloud resources. Different properties of laaS ressucan be captured as attribute values
where these values can have several conflicting relatiatgdistrict how these resources can be
mapped to each other. We identify customized versions of ARGspecify such conflicting rela-
tions in cloud laaS. In particular, we specify constraimtisthe following two mappings in cloud
laaS. (i) In cloud laaS, a major problem for enterpriseestahants concerns orchestrating their
virtual resources in a secure manner where they restriatiawganted mapping between two virtual
resources. We develop a constraints specification mechanisrder to restrict possible miscon-
figuration for such mappings, and demonstrate its impleatemt in the open source OpenStack
cloud platform. We verify the expressiveness of the medmaitiy configuring the mappings for 3-
tier business applications and hadoop clusters setup, wisdevelop a constraint mining process
in order to construct constraints automatically for theatd@s according to their virtual resources
mapping requirements. (ii) Another major concern arisesfthe tenants’ lack of control on
mapping of their virtual machines to physical servers oigerdy a cloud service provider. This
limitation leads to many security and performance issuesd&elop a virtual machine scheduler
where the enterprises gain some controls by specifyingi@nts for this mapping. Our scheduler
also optimizes the number of physical servers while satigfthe specified constraints. We ana-
lyze various performance and usability issues of the sdeeduOpenStack. Together, these two
constraint mechanisms enable cloud tenants to maintawveldécontrol over their virtual assets
in the cloud that is somewhat comparable to the level of cbthat was possible to maintain via

their own premises.
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Chapter 1: INTRODUCTION

In general, constraints are an important and powerful nr@shafor laying out higher-level secu-
rity policies. For instance, in an organization, constiazan specify higher-level policies to put
restriction on the behavior of its employees such as saparaf duty constraints in role based
access control whereby a particular employee cannot take frogrammer’ and ‘tester’ roles for
the same project. Such a constraint eventually preventntpdoyee from simultaneously working
on both developing and testing code for same project. Indisisertation, we develop constraints
specification in attribute based access control (ABAC) dodctinfrastructure-as-a-service (laaS).

Generally, ABAC regulates permissions of users or subjectccess system resources dy-
namically based on associated authorization rules withricpéar permission. A user is able to
exercise a permission on an object if the attributes of tlee'sisubject and the object have a con-
figuration satisfying the authorization rule specified faattpermission. Hence, proper assignment
of attribute values (or simply attribute assignment) tosthentities is crucially important in an
ABAC system for preventing unintended accesses. In thisediation, we focus on constraints
specification as an high-level policy specification on bittieés assignment to entities in an ABAC
based system as a mechanism to determine which entity spetaMehich attribute values. By enti-
ties, we refer to users, subjects and objects which are canmraxcess control systems. A user is
an abstraction of a human being. A subject is an instantiati@ user and can refer to a particular
session much like in role based access control (RBAC) andpgatiois a resource in the system.
While ABAC is policy neutral, it is also complex to managecsgrits access management not only
depends on authorization rules but also assigned attsliatéhe entities. Imposing constraints
on attribute value assignments can mitigate this compldytimposing centrally designed and
configured constraints on the decentralized process byhwdpecific attribute values are assigned
to individual entities.

Moreover, when an organization migrate to an external claa& system, such higher level

policies become the only means to capture required sea@dyirements. For instance, before



moving to cloud, an organization (via its security archigdor IT operations) specifies configura-
tion policies for arranging its assets including estabtistworks among particular set of servers,
backups and connecting a specific storage volume to a seteeklowever, when an organization
moves to laaS cloud, these resources become virtual andesonch as virtual machines (VM) and
virtual networks (NET), so configuration management pescieed to be similarly specified to ar-
range the organization’s entire virtual resources. Sindewd service provider (CSP) only allows
it clients to specify higher level policies, a proper coastts specification process can provide an

organization to specify their required security policiesicloud laaS system.

1.1 Motivation

We discuss the motivations for constraints specificatiohBAC and cloud laaS system.

1.1.1 Attribute Based Access Control

Over the last few years, attribute based access control (AB#as been emerging as a flexible
form of access control due to its policy-neutral naturet(ibaan ability to express different kinds
of access control policies including DAC, MAC and RBAC) anghdmic decision making ca-
pabilities. Compared to these other access control moA&AC is more complex to manage.
Authorization of an access request in ABAC requires cerasigned attributes to the entities in-
volved in the access. Hence, proper assignment of thewattgho entities needs to be ensured for
protecting against unauthorized access. To this end, d@raoms specification and enforcement
mechanism can configure required attributes assignmertigmfor an organization. However,
constraints specification in ABAC is more complex than timadther access control models such
as RBAC since there are multiple attributes (unlike a single attribute in RBAC) and attributes
can take different structures (e.g., atomic or single-edlattributes such agcurity-clearancand
bank-balancend set-valued attributes suchrake andgroup). Constraints may exist amongst dif-
ferent values of a set-valued attribute (e.g. mutual examfusn group memberships) and also on

values across different attributes. For instance, supfiagean organization requires that only
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its vice-presidents can get both a top-secret clearanceremibership in their board-members
email group. The ABAC system should have mechanisms tofypmeoth constraints. In this case,

there are three attributes for each user namally, clearanceandgroup. If the role attribute of

a user is not ‘vice-president’, then the usesaranceandgroup attributes cannot take the value

of ‘top-secret’ and ‘board-member-emails’ respectivéliote that these constraints are not con-
cerned about users’ access to objects directly. Insteay ftitus on high-level requirements that
a security architect would specify, which will indirectiahslate into enabling or disabling certain
accesses.

In general, the more expressive power a model has, the hiaid€if at all possible) to carry
out many types of security analysis. It has already been siioat the safety problem of an ABAC
system with infinite value domain of attributes is undecldd31]. Nevertheless, ABAC is the
leading mechanism that overcomes the limitations of dismrary access control (DAC) [107],
mandatory access control (MAC) [106] and role-based acomsisol (RBAC) [78]. NIST recog-
nizes that ABAC allows an unprecedented amount of flexibditd security that makes it a suit-
able choice for large and federated enterprizes relatiegiiing access control mechanisms [37].
Given that ABAC is known to be hard to analyze, constrainecgation on attribute values is a
powerful means to ensure that essential high-level acacagsot requirements are met in a system

that utilizes ABAC.

1.1.2 Cloud Infrastructure-as-a-Service

When an organization moves to cloud laaS, two major issuesgan (i) In a CSP, a customer,
also referred to as a tenant, is forced to re-think their sgcentrol and security policies in terms
of configuration management facilities offered by the CSi. Multi-tenancy, availability and

reliability are some of the major concerns for customersas! cloud. For example, if a customer
is concerned about co-location of their virtual machinehia same physical server with, say,
some other competing tenants, it would be desirable to #tseequirement. However, currently,

there is no simple way for a customer to realize this policyr @otivation is to investigate and



develop robust, flexible, and intuitive virtual resourcafiguration management mechanisms for
infrastructure as a service (laaS) cloud — one importamtepdd the overall cloud security puzzle.

In cloud laaS, the physical resources in a datacenter ai@lbgarranged by the cloud service
provider (CSP) and virtual resources are hosted on thosealagpllections of physical resources.
Thisis illustrated in figure 1.1 where a rack, for example, t®llection of a specific set of physical
servers and network hosts. Other resources such as phygicade volumes may be associated
with compute hosts in the rack. This is shown as physicaluresoto physical resource mapping
(PR-to-PR) in the figure. The single and double-headed arindicate the usual “one-to” and
“many-to” mappings respectively. Generally, the PR-to+tR&ppings are completely managed by
the CSPs with very little information to tenants.

There are at least two other type of mappings in cloud laaSevihevould be desirable for
tenants to have some level of control by means of constrafteajor issue arises from the fact
that, for a given tenant with large-scale, heterogeneorsaliresources in laaS, orchestrating
those resources in a secure manner is cumbersome. Virtuatdal resource mapping relations
are shownin figure 1.1 as VR-to-VR mappings. Here, orchigstreefers to resource management
issues such as creating networks, designing network layapplying appropriate images to VMs,
etc. Since, in laaS resource orchestration operationsesfermed in software (unlike in the case
of physical resources where, for instance, servers areigdilysconnected via Ethernet cables),
they are highly prone to misconfigurations. that can leacktmsty issues or increased exposure.
For instance, a web-facing VM can be accidentally connettesl sensitive internal network or
a low-assurance image may be applied to a VM that is expeotdx tsecurity-hardened. All
major CSPs including Amazon [3] acknowledge that managiiet) sonfigurations is beyond their
responsibilities, rather they should be managed by indalidenants. However, current CSPs
fail to offer suitable tools in this regard. This disseatipresents the design, implementation,
and evaluation of attribute-based CVRM (constraint-drivatual resource management) as an

approach to mitigate such concerns in cloud laaS.
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Furthermore, in cloud laaS, physical hardware is also shiayanultiple virtual resources for
maximizing utilization and reducing cost. laaS public omeounity cloud providers allow multi-
tenancy which multiplexes virtual resources of multipléegprises upon same hardware. This
includes co-location of virtual machines from differemaats on a single physical host, sharing
physical disk storage, etc. This is illustrated as virtiedaurce to physical resource mapping
(VR-to-PR) in figure 1.1. This raises many security and penénce considerations for a tenant’s
workload in the cloud. For instance, a hypervisor on a hostlnesinadvertently misconfigured by
a cloud administrator enabling leakage of data betweenalirhachines on that host that should
otherwise be isolated. More problematically, a tenant'tual machines can be attacked by co-
located malicious virtual machines of an adversary ten&imilarly, highly cpu-intensive co-
located virtual machines may disrupt each other’'s expgutefbrmance. The work of Ristenpart
et al [98, 120, 132, 133] has demonstrated such co-locatiorevabilities in real-world clouds. In
particular, they show that preventing targeted co-locatiovirtual machines from different tenants
on the same physical server is unlikely to be successfulir Thaclusion is that “the best solution

is simply to expose the risk and placement decisions dyréatlisers” (i.e. tenants) [98].



Our objective is to address this goal where the tenants andlttud system provider are able
to schedule virtual resources on physical resources densiwith high-level and fine-grained
constraints. In this respect, even the leading laaS seprimaders currently offer minimal sup-
port to their tenants. In particular, tenants have verielittfluence on how their resources are
scheduled. Of course, certain coarse-grained and statierpnces for disaster management are
supported. For instance, the Amazon Web Services clouasirnircture is hosted at multiple loca-
tions worldwide where a location comprises of multiple gepdically isolated datacenters called
a ‘Region’ [1]. Each ‘Region’ also has multiple, isolated¢&tions known as ‘Availability Zones'.
As a client, a tenant can at best specify the ‘Availabilitynbof its virtual resources and specify
backup Availability Zones for a premium. This concerns aegring for fault tolerance but does
not concern co-location of a tenant’s resources with thésgeh®rs in a given physical server or a
rack. This dissertation explores a highly dynamic and firergd technique for scheduling virtual
resources based on high-level constraints specified bytenk is worthwhile to note that multi-
tenancy concerns can arise even in private cloud scenatiolving a single large-scale enterprise
due to various reasons such as the need to separate thecessoinvarious departments within that
enterprise for assurance or compliance reasons. Simikamtibes in ABAC, different properties
of the resources of cloud laaS can be captured as attribuitesevthe attributes can have several
conflicting relations that restrict how those resourcesetonapped with each other. This disserta-
tion develop constraints specification mechanisms forcl@aS that capture various conflicting

relations among attributes of the resources in cloud anidaesnproper mappings accordingly.

1.2 Thesis

The central thesis of this dissertation is as follows:

Attributes can capture various high-level properties ofitegs and objects in a system and
these attributes preserve specific conflicting relationthwiach other. By exploiting this fact,
a suitably devised attribute based constraints specificathechanism can provide effective and

expressive capabilities in laying out higher-level setyugolicies for a traditional organization
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that exercises attribute based access control as well athéomapping configuration management

of virtual resources in cloud infrastructure-as-a-seeic

1.3 Summary of Contributions

The major contributions of this research are stated aswsllo

e We develop an attribute based constraint specificatiorulagg (ABCL) for specifying con-
straints on attributes assignment. ABCL provides a medmano represent different kinds
of conflicting relations amongst attributes in a system anftirm of relation-sets. Relation-
sets contain different attribute values and AB&{pressionspecify constraints on attributes
assignment based on these values. There is considerap&uite, such as [53, 64, 73, 83,
101,109,121], on the utility of attributes in managing was aspects of security in a system.
Our work is the first investigation on how attributes themssicould be managed based on
their intrinsic relationships. We show that ABCL can exgregny types of constraints in-
cluding those that can be expressed using the role-bassttaion language RCL-2000 [12]
and those supported by the NIST standard RBAC model [57]. &exhstrate the usefulness
of ABCL in different usage scenarios such as in banking anddccomputing application

domains. We also discuss ABCL enforcement and its perfocean

e We develop the CVRM (constraint driven virtual resource agggment) framework that en-
ables tenants to express several essential propertiesuaf sources as their attributes and
specify constraints on resource mappings (VR-to-VR in figud) based on those attributes.
We provide a customized language of ABCL for constraintcjgation which is suitable
for this purpose. We expect such constraints to be specifiedtbnant administrative user.
We provide a number of examples illustrating the utility bisttechnique in practical sit-
uations, such as configuring a 3-tier business applicatiarhaud laaS. The CSP can then
algorithmically enforce such constraints specified by filstenants when a virtual resource

is mapped to another. We demonstrate a comprehensive enfent process of the CVRM



and analyzes security issues of the enforcement procesprdVele a detailed implemen-
tation of it in the widely-deployed OpenStack, the openrsedaaS cloud software. The
implementation process includes new API declaration,lidet@ schema design and identi-
fies different types of attributes in a cloud laaS systenuidiclg attributes specific to a tenant
and system attributes across multiple tenants. Finallydewelop a system automated con-
straint construction process in which the tenants spelsdynecessary attributes according to
their business specifications and the required constraiatautomatically constructed. This
construction process includes a novel policy mining aloniwhich is designed specifically
for the cloud laaS system and a process to identify policiehvare semantically mean-
ingful with respect to the virtual resources configuratiequirements of a tenant in cloud

laaS.

Finally, we present a design of an attribute-based framlevawrspecifying co-location con-
straints of virtual resources scheduled on given physesburces. Given that co-location
constraints can drastically affect physical resourcézatilon, we propose a host optimiza-
tion process while enforcing constraints. Note that, h@sinozation (i.e., optimizing the
number of hosts necessary for scheduling the VMs in a cotfiféet manner) is an important
requirement for achieving energy-efficient datacenterciing also a major concern for the
CSPs for cost optimization [19]. We establish that, in gahehe algorithms for host op-
timization while enforcing such constraints are NP-Cortglé\Ve demonstrate a subset of
attribute conflicts that are of practical significance iniedrapplication domains and cloud
deployment scenarios (public, private, community, etghich can be efficiently enforced
in polynomial time. We develop a prototype of the confli&ervirtual machine schedul-
ing framework in OpenStack [6] and rigorously evaluate tlaenfework on various aspects,
e.g., resource requirements, resource utilization, etcakalyze issues that arise due to the

incremental changes of conflicts over time.



1.4 Organization of the Dissertation

Chapter 2 gives a brief background on constraints specéditand reviews related work on at-
tribute based systems and cloud laaS. Chapter 3 preserggaiats specification in ABAC. In
chapter 4, we provides the foundation of attribute-basetstraints specification in cloud laaS
where we provide an example of ABCL configuring security giebk in cloud laaS. This chap-
ter also develops a simple attribute based isolation manegesystem in cloud laaS where we
show that attributes can represent various propertiesestund resources in cloud which can be
utilized for specifying policies for managing isolatiorhdn, in chapter 5, we develop a constraint-
driven virtual resource orchestration which provides dauszed version of ABCL which is more
specific for laaS and an enforcement of the constraints wileemental analysis. This chap-
ter also includes an automated construction process ofahstraints. In Chapter 6, we present
and analyze our developed constraint aware virtual resoscbeduling mechanism. Chapter 7

summarizes the completed research and discusses futuke wor



Chapter 2: BACKGROUND AND LITERATURE REVIEW

In this chapter, we provide background on constraints §ipation in access control systems and
in cloud laaS. We also provide brief overview of existingiéture on traditional access control

systems, attribute based systems and cloud laaS that aredréb this dissertation.

2.1 Overview of Traditional and Existing Access Control Mocels

Access control has always played a vital role in the secofity computing system. The earliest
access control approaches consist of discretionary acoaes®! (DAC) [107] and mandatory ac-
cess control (MAC) [106]. DAC enforces control over res@srwithin a system as per resources’
owners discretion. Essentially, the owner is responsiiespecifying in which manner a particu-
lar resource is accessible to specific system users. MAG@&gdhe control over resources in a
partial-ordered lattice of labels and clearances assigmesers and resources. The access is spec-
ified through read and writes rules according to the relatimetween these labels and clearances.
Over time, systems have adapted to new demands and evolgealreésult, access control mech-
anisms have also been required to follow suit. Role-baseésaccontrol [104,107] (RBAC) has
been a popular authorization solution in enterprise sothaad systems. The use of role constructs
facilitates permissions and users management.

Apart from the above mainstream approaches on access kaottier variations of access
control mechanisms exist within the literature. Notalig following access control mechanisms
are related to the research in this dissertation.

Several approaches have been proposed for combining sskdgsn different access control
systems. In those approaches risks are quantified and gimessdgnamic capabilities. Bijon et
al [30] provide a generic framework for risk-aware role lthaecess control where they propose
a guideline to incorporate risks around various componeiésrole based access control system
such as user role assignment, role activation, etc. A diieshtisk-aware RBAC sessions and role

activation/deactivation framework have been propose@% [
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Provenance-based access control (PBAC) is capable ofraaptstoring, and providing such
information, as provenance data, to make access contrsioles. Specially Nguyen et al [91,94],
show that Provenance data essentially forms a directdaayeph and provides a linkage structure
of history information of any data object of interest. Thisatacteristic enables and facilitates a
traversal capability on provenance data from which appat@raccess control decision can be
made. For instance, Nguyen et al [92] show that PBAC can bé tseffectively enforce the
dynamic separation of duty.

Relationship-based Access Control (ReBAC) for online alographs can also be built on
path patterns of relation edges. Specifically, Cheng et &l $pecify policies that utilizes reg-
ular expression-based path patterns of relationship tipeéseen graph entities such as users
and resources for finer-grained and more expressive acoas®lcon online social networks.
This generic ReBAC model is later extended to capture varimer-to-user, user-to-resource, or
resource-to-resource relationships [44, 46].

Besides above described conventional access controte, éRists different models for secure
organizational information sharing. For instance, twdeiddént approaches have been proposed for
the organizations that exercise LBAC to securely collateovath outside specialist/consultants
for certain reasons [27, 28]. Also, an administrative mduesd been proposed in [103] for the

group-centric secure information sharing for communitgeaysecurity.

2.2 Attribute Based Systems
2.2.1 Attribute Based Access Control

There is a sizable literature on ABAC in general. Damianilg¢b3] described a framework for
ABAC in open environments. Wang et al [121] proposed a fraorkhat models an ABAC sys-
tem using logic programming with set constraints of a coraplgt set theory. The Flexible access
control system [73] can specify various ABAC policies andyute a language that permits the

specification of general constraints on authorizationsanyat al [129] described ABAC in the
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aspects of authorization architecture for web servicesglet al [83] provided informal configu-
ration of DAC, MAC, and RBAC through ABAC in the context of grcomputing. These authors
seek to develop an access control system either for opeansgguch as web, Internet, etc., or
to overcome the limitations of conventional access controtiels by utilizing attributes. Park
et al [95] categorized attributes according to their mdiigbduring execution of operations and
developed a mechanism in which attributes of entities caopaated as a side-effect of an ac-
cess. More recently, Jin et al [78] proposed an attributedbascess control model in which they
provide an authorization policy specification language famchal framework using which DAC,
MAC and RBAC policies can be expressed. These works focusBACAIn general and not so

much on constraints specification on attributes assignmexiBAC.

2.2.2 Attribute Based Encryption

This body of literature concerns cryptographic enforcetmegchanismes for attribute based access
control systems. Sahani et al [101] introduced the conckepttabute Based Encryption (ABE)

in which an encrypted ciphertext is associated with a settobates, and the private key of a user
reflects an access policy over attributes. The user can plei€the ciphertext’s attributes satisfy
the key’s policy. Goyel et al [64] improved expressibility ABE which supports any monotonic
access formula and Ostrovsky [93] enhanced it by includioig-monotonic formulas. Several

other works examine different ABE schemes.

2.3 Constraints Specification

Several authors have focussed on issues in constraintfisgigan in access control systems pri-
marily in RBAC. Constraints in RBAC are often characterizsdstatic separation of duty (SSOD)
and dynamic separation of duty (DSOD). These two issuedadatieto the late 1980’s [48], [102].

A number of subsequent papers identify numerous forms off5&a@ DSOD policies [56, 111]
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and their formal specification them formally in RBAC systéjéis, 71]. The RCL-2000 language
for specifying RBAC constraint policies in a comprehensixgy was proposed by Ahn et al [12].
Object constraint language (OCL) [123] is also anotherketwn language for specifying con-
straints. This language is basically designed to specifigraints in Unified Modeling Language
(UML). UML is a general-purpose modeling language in whighagn specify, visualize, and doc-
ument the components of software systems. OCL can specifyugtype of constraints including
SSOD and DSOD constraints of RBAC which are formally modéhefd 13]. More recently, Jin
et al [78] proposed an attribute based access control moaeiich they provide an authorization
policy specification language that could also specify aaists on attributes assignment. How-
ever, their constraints specification focuses on what galbie attributes of subjects and objects
may take given that users are currently assigned with pdatiattribute values. This is much
like constraints on what roles can be activated in a usessige in RBAC given that a user is
pre-assigned to a set of roles. Thus, prior work does noteaddABAC constraints comprehen-
sively. In this dissertation, we have shown that ABCL carcdgevarious types of constraints for

configuring several of these RBAC constraints, includirgsthexpressible by RCL-2000 [12].

2.4 Policy Specification in cloud Infrastructure-as-a-Sevice
2.4.1 Related to Virtual Resources Mapping Configuration Maagement

Providing functionality to clients for resource-level pgssion management has started to receive
more attention recently from cloud laaS providers. Howgtes is primarily for managing user or
group privileges to access their virtual resources. AWatileand Access Management (IAM)
policies [2] now can construct fine-grained policies to cohtisers’ access to Subnets, Virtual
Private Clouds, Security Groups and also type of virtual mraes they can create. Also, the
open source cloud platform OpenStack [6] has developedcseralled Keystone to manage users
privilege to access cloud resources using a variation eflpalsed access control. However, both

platforms lack suitable mechanism so that clients can syeieally specify policy to manage their
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virtual resources towards building a desired computingrenment that addresses security, scale,
hpc, etc. This increases various security threats for thaing workloads from different tenants
in cloud laaS system. For instance, Shieh at al [110] shoatsatbitrary sharing of network, in
cloud, may cause denial of service attack and performanedanences. Wei et al [124] shows that
uncontrolled snapshots and uses of images cause secskifpriboth creator and user of images.
Sivathanu et al [112] presents an experimental analysi&bpdrformance bottleneck when virtual
storages are placed arbitrarily in physical storage andeshiay random VMs. Hence, different
performance and security issues exist in cloud laaS forgamzed multiplexing of resources and
lack of controls, several of which are summarized in [54,/), Hashizume et al [69] discuss
and enumerates the security threats in cloud laaS arisiagalsharing physical machine, using
images from public repository, sharing networks and sw®ramd also lack of proper resource
control mechanism.

Recently, for improving these scenarios, several effat®libeen conducted by different groups
of researchers. For instance, several improvements ordin@twork performance management
have been proposed [15,17,110]. CloudNaas [17] providdsrbmanagement of application-
specific address spaces, middlebox traversal, bandwidérvation, etc. Shieh at al [110] gives
a bandwidth allocation scheme that allows infrastructuoc¥igers to define bandwidth sharing in
cloud network with multiple tenants. Sivathanu et al [11dntifies four different factors that af-
fects storage /O performance and provides guidelinestaidexperimental analysis to minimize
I/O overhead. Present literature also contains severabpses on users authorization and access

control models for cloud laaS that includes different RBAGdals for cloud laaS [31, 39, 126].

2.4.2 Related to Virtual Resource Scheduling

Generally scheduling problems are NP-Complete. Howeatpus heuristic and approximate
approaches have been well studied by the research commiaitinstance, the goal of resource-
constrained multi-project scheduling problem is to mirienaverage delay per project. A num-

ber of efforts have been made in this scheduling problenudicf the priority rule based analy-
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sis [34, 82] which proposes heuristics, such as first-comsederved, and shortest operation first,
to minimize average delay. Another scheduling problem iminimize number of bins, while
scheduling a number of finite items in them. This problem ifedebin packing. There are sin-
gle and multi capacity bin packing problems based on meltiptjuirements for scheduling [84].
Multi-capacity bin packing is also applied in resource stthimg in grid computing [114, 115].
One variation of bin packing problem is called bin-packinghwonflicts that packs items in a
minimum number of bins while avoiding joint assignmentsteiiis that are in conflict. This prob-
lem is analogous to the problem we address in this dissemtafeveral bin-packing with conflict
algorithms [74, 75] have been proposed where it is assunsdtédms can be conflicting in ran-
dom manner. However, we investigate the nature of varionflicts for scheduling items (VMs)
where the items do not have direct conflict with each othénerathe attributes of the items have
conflicts.

Different performance and security issues exist in clowbldor unorganized multiplexing
of resources, which are summarized in [54, 69]. Recentticlas have been published exposing
the vulnerability of state-of-art co-residency system il cloud laaS system [132]. However,
the virtual resources schedulers designed by the comréaeid clouds such as Amazon and
IBM mainly aim to address performance management or loaahioalg related issues rather than
security conflicts that we address in this dissertation.ebgyng proper VM placement algorithms
recently drew attention from the research community. Bfflatoal [32] propose an algorithm that
proactively adapts to demand changes and migrates virtaethimes between physical hosts. Yang
et al [128] also propose a load-balancing approach in VM dalireg process. Calcavecchia et
al [38] develop a process to select candidate physical bost ¥M by analyzing past behaviors
of a physical host and deploy the request, while Gupta et@lgfopose a process for scheduling
HPC related VMs together. Li et al [85] propose VM-placentiiat maximizes a physical hosts
cpu and bandwidth utilization. Also, Mastroianni et al [§fppose a probabilistic approach for
VM scheduling for maximizing CPU and RAM utilization of thégsical host. The main focus

of these efforts is scheduling VMs either for the purposeighperformance computing or load
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balancing. Our approach is to capture different propedidds by means of assigned attributes,

and scheduling them while respecting conflicts expressedtbese attributes.

2.5 Overview of OpenStack Architecture

In recent years, the popularity and wide use of the openesoO@penStack project [7] has made
it a mature platform on par with mainstream proprietary dlananagement platforms such as
Amazon Web Services, Google Compute Engine, and MicrosaitéInfrastructure Services, to
name a few. This section provides an overview of the OpekStethitecture and several of its
components. Cloud computing consists of three primaryieemodels: Software-as-a-Service,
Platform- as-a-Service, and Infrastructure-as-a-Serf{faaS). Each of the service model type pro-
vides different types of resources that can be shared ardl wseonsumers. The OpenStack
platform provides laaS, which mainly deals with virtualoesces that include virtual networks,
virtual machine images and instances. Other OpenStack @oamps also provide other services
that relate to the mentioned virtual resources, i.e. manigaresources usage and graphical user
interface. As depicted on OpenStack website, the logiclitacture includes the following com-

ponents.

e Nova: provides an API for controlling cloud computing resms and managing the con-

sumers of those resources.
e Glance: provides an API for management of virtual machinages.
e Swift: provides an API for object storage of virtual res@sc
e Heat: provides an API for cloud applications orchestration
e Cinder: provides an API for block storage of virtual res@s.c
e Neutron: provides an API for defining network connectivitythe cloud.

e Keystone: provides an API for maintenance of users’ infdromeand identity for authenti-
cation and authorization purposes.
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e Ceilometer: provides an API for monitoring and collectimformation on the movements

and usages of virtual resources.

In this dissertation, the focus is on enabling constraiintedr virtual resource management
process in OpenStack, specifically, we implement the pyptofor virtual machine management

process that is developed on Nova service component.
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Chapter 3: THE ABCL MODEL

The materials in this chapter are published in the followsggues [20, 22]:

1. Khalid Bijon, Ram Krishman, and Ravi Sandhu. Constraspescification in attribute based

access control. ASE Science Journal, 2(3), 2013.

2. Khalid Bijon, Ram Krishnan, and Ravi Sandhu. Towards #&nbate based constraints spec-
ification language. In IEEE International Conference owitnfation Privacy, Security, Risk

and Trust (PASSAT), Washington, DC, September 8-14, 2013

This chapter describes our developed attribute basedreartstpecification language (ABCL)
for specifying constraints on attributes assignment tgieatand their enforcement in an attribute

based access control system.

3.1 Motivation and Scope

Attributes can represent identities, security clearaaoelclassifications, roles, as well as location,
time, strength of authentication, etc. As such ABAC supgm@eta and subsumes rather than sup-
plants currently dominant access control models inclufAg¢, MAC and RBAC. Figure 1 [78]
shows a typical ABAC model structure that contains uséis gubjects §), objects Q) and differ-
ent permissions (P). There are also user attribllés, (subject attributes3A and object attributes
(OA) associated with users, subjects and objects respectifedybject is the representation of a
user’s particular interaction with the system. Each pesiarsis associated with an attribute-based
authorization policy that determines whether a subjeatikhget that permission on an object. An
authorization policy compares the necessary subject ajedtaitributes to make an authorization
decision. Hence, proper attributes assignment to thaesis crucially important in ABAC.
Recently, an ABAC model called ABAC[78] proposed a policy specification language that
could specify policies for authorizing a permission as vasltonstraints on attributes assignment.

The constraints of ABAC are shown in the top row of figure 3.1 (horizontal solid lineighva
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Figure 3.1 ABAC model with ABAC, and ABCL Constraints (adapted from ABAG78])

single arrow-head). These constraints apply to valuesjectditribute may take when the subject
is created, based on its owning user’s attributes, or arcbbj&ribute may get when the object is
created or operated-on by a subject. ABAEnstraints apply only when specific events such as
a user modifying a subject’s attributes occur. In other wditeey are event specific. They relate
the user attributes to the subject or the subject to the bdgmending on the event in question.
ABCL constraints, on the other hand, are event independehtiee to be uniformly enforced no
matter what event is causing an attribute value to changey @re specified as restrictions on a
single set-valued attribute or restrictions on values fiégnt attributes of the same entity. ABCL
constraints are depicted in the top row of figure 3.1 as arttsasingle arrow-head.

The central concept in ABCL is conflicting relations on diite values which can be used to
express notions such as mutual exclusion, preconditiotn€ardinality, amongst attribute values.
For instance, suppose a banking organization utilizes-aadeed user (customer) attribute called
benefitwhose allowed values are {'Bf ‘bf,’, ..., ‘bfs’}. Say that the bank wants to specify the
following constraints: (a) a client cannot get bdtnefitsbf,’” and ‘bf,’, (b) a client cannot get
more than Denefitdrom the subset {'bf’, ‘bf 5’, ‘bf ,’}, and (c) in order to get ‘bf’ the client first
needs to get ‘bf. Here, the first policy represents a mutual exclusion confietween ‘bf’ and
‘bf,’, the second one is a cardinality constraint on mutual esioluand the last one is an example
of a precondition constraint. A number of other conflicts agnattributes may also exist.

Figure 3.2 gives a hierarchical classification of the attietconflict-relationships based on two

parameters: the number of entities and the number of attisbof concern in a conflict relation.
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Conflict-Relationship Level 3
(Multiple Entities (same type), Multiple Attributes)
- represents conflicts among values

across attributes
- a constraint applies across attributes
of multiple entity members, e.g. multiple

Conflict-Relationship Level 1 users
(Single Entity, Multiple Attributes) Conflict-Relationship Level 2

- represents conflicts among values (Multiple Entities (same type), Single Attribute)

across attributes - represents conflicts among values
- a constraint applies across attributes : — of each attribute individually

of each entity member, e.g. user, Conflict-Relationship Level 0 - a constraint applies on single attribute

separately (Single Entity, Single Attribute) of multiple entity members, e.g. multiple

- represents conflicts among values Users

| of eachattibute individually

- a constraint applies on single attribute
of each entity member, e.g. user,
separately

Figure 3.2 Attributes Relationship Hierarchy

For example for the user entity, each constraint in levelddiscerned with conflicts among values
of a single user attribute and it applies to each user incigaty. Level 1 allows constraints across
values of different attributes of a single user. Level 2 ¢t@ists specify conflicting values of each
attribute individually but across multiple users, whilede3 constraints can be across different
attributes across multiple users. For instance, in theipus\vbanking example, a constraint that
disallows granting bothenefitsbf,’ and ‘bf,’ to a client simultaneously is in level 0. Section 3.4.2
shows examples of several other constraints which fall flerint levels of the relationship hier-
archy. Further discussion of this hierarchical model andesponding ABCL based functional
requirements is given in section 3.3.1.

In the following sections, we present ABCL formalizatiordadiscuss them for user attributes
in an ABAC model. However, ABCL is capable of expressingilatiies assignment constraints of
other entities as well, e.g. subject and objects. For soipliour examples focus exclusively on

user attributes in the rest of this chapter.
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3.2 Attribute Based Constraint Specification Language (ABQ)

We now formally present the elements of ABCL. ABCL considt$onr basic components: the
attributes of different entities in an ABAC model, a few lzasets and functions to capture dif-
ferent relationships amongst attributes, a few declaredlicosets and a language for specifying

constraints using basic sets and functions and the dediargtict sets.
3.2.1 Basic Components of the ABCL Model

For the purpose of this research, we use the basic framewaitkecABAC, model [78] as a
representative ABAC model for ABCL. However, note that ABGLnot tailored for ABAC, and

can be similarly applied to other ABAC models.

A brief overview of ABAG, is provided in table 3.1. Like most access control modelsABB
consists of familiar basic entities: usetd)( subjects § and objects@). Each of these entities
is associated with a respective set of attribute functiorgraply attributes(UA, SAand OA re-
spectively). Two types of attributes are considered in ABAGz., set-valued and atomic-valued.
For examplerole is a set-valued attribute since a user may take multgdesin an organization.
Howeversecurity-clearances an atomic-valued attribute since a user takes only aeswajue for
security clearance such as ‘top-secret’ or ‘secret’. Aswshim table 3.1, arattributeis a func-
tion from the respective entity to a set of values that it ke t(theRange of the attribute). The
Range could be set or atomic-valued depending on the type of tmibatit. A special attribute
calledSubCreator is used to keep track of the user that created a particulgeculNote that a
user can create any number of subjects. The permissiona thiject can exercise on an object
depends on the attribute values of the subject and objetthemattribute-based authorization rule
specified for that permission in the system. Since ABCL iy @ancerned about constraints on
what values the attributes can take and not on authorizaties for subject operations on objects
or subject creation and other operations, the overview oA@Bprovided in table 3.1 suffices for
our purpose. For specifying ABCL constraints, we specifgitanal derived functions for conve-
nience. For each attribute, we also defassignedEntitiesy o (table 3.1) that identifies the set
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Table 3.1 Basic sets and functions of ABAC

U, SandO represent finite sets of existing users, subjects and abject
UA, SAandOA represent finite sets of user, subject and object attrilwnetions.

For eachatt in UA U SAU OA, Range(att) represents the attribute’s range,
a finite set of atomic values.

SubCreator: S— U. For each subject it gives the creator.

attType: UAUSAJOA—{set, atomic}.
Given an attribute name, this function will return its tyfseedither set or atomic.

Each attribute function maps elementdinSandO to atomic or set values.
Range(ua) if attType(ua)=atomic
2Range(d) if attType(ua)=set
Range(sq) if attType(sa) = atomic
2Range(sd if attType(sa)=set
Range(0a) if attType(oa)=atomic
2Range(0d) if attType(0a)=set

Yuac UA.ua U —
Vsac SA sa S— {

Yoac OA oa O— {

For convenience, we also use the following derived funetidor eachatt € UA:
assignedEntitiesy q1: Range (att) — 2Y where

assignedEntitiesy ai(attval) = {u € U | attval = att(u)} if attType(att) = atomic

assignedEntitiesy ai(attval) = {u € U | attval € att(u)} if attType(att) = set

of users that are assigned a particular value of that at&ril&imilar derived functions can also be

defined for subjects and objects.

3.2.2 Syntax of ABCL

The syntax of ABCL is defined by the grammar in table 3.2 in BascKkormal Form (BNF). The

grammar specifies declaration syntax for two type of retaietsAttribute_Set and

Cross Attribute Set. The definition and structure of these relation-sets arergin the following

section 3.2.3. The grammar also specifies syntax for cans&gpressions.

ABCL includes two nondeterministic functionsneelemenandallother, adapted from [12,

42]. The functiononeelemerfX) nondeterministically selects one elementfrom setX. In a

constraint expression it is written &&£(X). Multiple occurrences oDE(X) in a single ABCL
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Table 3.2 Syntax of Language
Declaration of the Attribute_Set and Cross Attribute Set:
<attribute_set_declaration::= <atribute_set type <set_identifier
<attribute_set_type ::= Attribute_Sety <attname- | Attribute_Sets < attname- | Attribute_Seto <attname-
<cross_attribute_set_type::= Cross_Attribute_Sety aattset>, <Rattset> |
Cross_Attribute_Sets < aattset-, <Rattse- | Cross_Attribute_Seto - aattset>, <Rattset-
<Aattset> ::= { <attname-, <attname-*}
<Rattset- ::= { <attname-, <attname-*}
<set_identifier ::= <letter> | <set_identifier-<letter> | <set_identifier <digit>
<digit> ::= 0[1]2|3|4|5/6|7|8|9
<letter> ::= alblc]....|x|]y|Z|A|B|C]|...|X]Y|Z
Constraint Expressions:
<statement ::= <statement <connective- <statement | <expression
<expressiop ::= <token> <atomiccompare <tokern> | <tokern> <atomiccompare <size>
| <toker> <atomiccompare |<set>| | <toker> <atomiccompare <set> | <toker>
<toker> ::= <tokern> <setoperatas <term> | <term> | |<term>|
<term>> ::= <function> (<tern>) | <attributefun> (<tern>) | oe (<relationsets-).<item>
| oE (<term>) | oE (<set>) | Ao (<term>) | Ao (<set>) | <attvab>
<connective- := A | =
<setoperatar =€ |U|N| ¢
<atomicoperatas ==+ | < | > | <|>|#|=
<set>- :=U| YO
<relationsets ::= <set_identifier

<attname> :=ua |ua | ...|ua, | Sa |s& | ... | sa, | 0ay | ... | 0a,

<attvab> ::=‘uayval’ | ‘uajvak’ | ... | ‘uayval,’ | ‘sayval;’ | ‘'sayvak’ | ... | ‘sa,vals’ |
‘oggval’ | ... | ‘oa,val’

<size>:=¢|1|...|N

<item> ::= limit| attval attfun(<attname-).limit| atfun(<attname-).attval

<attributefun> ::=ua |ua | ... |ua, |sa |sa& |...|sa, | o0& | ...| o0&,

<function> ::= subcCreator | assignedEntitiesy, < attname- | assignedEntitiess <attname-

assignedEntitiesp, <attname-

expression select the same elemeritom X. The functiorallother(X) returns a subset of elements
from X by removing one element specified by the matchiri(X). We usually writeallother as
AO. These two functions are related by context. For an\ssgDE(S)} UAO(S=S. An example of
OE in an ABCL expression is as follows.

Requirement: No user can get more than three benefits.
ABCL Expression: |benefifOE(U))| < 3

OE(U) means a nondeterministically chosen single user ftbamdbenefi{OE(U)) returns all

benefits that are assigned to that user. This expressioifiepélsat a single user cannot have more
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Table 3.3 Declared ABCL Conflict Sets
1. Sets that represent conflicts among values of a single attute
For eachatte UA andattType(att)=set there are zero or more conflict sets
Attribute_Set, o = {avset, avset, ..., avsel, where
avsef=(attval, limit) in which attvat 2Ra"9¢@Y and limit <|attval.

2. Sets that represent conflicts across values of multiple tibbutes
For eachAattseCC UA andRattseC UA there are zero or more conflict sets
Cross_Attribute_Sety aatseratiser={attfuny, ..., attfun,}, where
for eachatte AattsetU Rattset
attfun (att)=(attval, limit) in which
attvale 2Range@ if attType(att)=set or
attvak Range(att) if attType(att)=atomic
and limit <|attval.

than three benefits. Later, we will see haw is used in an ABCL expression.

3.2.3 Declared Conflict Sets of ABCL

Conflicts among attribute values can occur in several waiClArecognizes two types of conflict:
values that conflict with other values of the same attribtee(red to as single-attribute conflict)
and values having conflict with values of other attributesgs-attribute conflict). Note that single-
attribute conflict is applicable only for set-valued atiitiés (e.g. mutual-exclusive roles) while
cross-attribute conflict applies to both atomic and setie@lattributes. In order to specify these
two types of conflict, ABCL specifies two type of sets that sfyggotentially conflicting values
for single and cross-attribute conflicts respectively.

Items 1 and 2 in table 3.3 define these two sets for singldatitrand cross-attribute conflicts.
As shown in item 1, eaclttribute _Set contains a set of values of an attribute that may have
a particular type of conflict (mutual exclusion, precoratiti etc.). A separatAttribute Set for
each type of conflict could also be specified. Each elemem éftiibute Set is an ordered pair
(attval, limit) where attval contains the values that hawee form of conflict and limit specifies
the cardinality, that is the number of values in attval foriahhthe conflict applies. The semantic

of limit for a particularAttribute_Set can be either at-least, exactly or at-most depending on the
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constraint expression that uses thigribute_Set. For instance, the following are the declarations
and initializations of two differenAttribute_Set representing conflicting-relations between the
values ofbenefitattribute of the banking example in section 3.1. The detimwmayntax is shown
in table 3.2.
Attribute_Sety penerit UMEBenefit
UMEBenefit{avset, avsei} where

avset=({'bf ,’,'bf '}, 1) and

avset=({'bf ,’,'bf 3’,'bf ,’}, 2)
Attribute_Sety penefit PreconditionBenefit
PreconditionBenefit{avset } where

avset=({'bf 3’, ‘bf '}, 1)
Although these two sets structurally look identical, thrirposes are differenttMEBenefitspec-
ifies the values of thbenefitattribute that are mutually exclusive, hence, they caneadsigned
to a user simultaneously. As shown above, aviset/MEBenefiindicates that the values ‘Bfand
‘bf," has limit value 1, therefore, at-most one value from themloa assigned to a user. Similarly,
avset indicates that ‘bf, ‘bf 3" and ‘bf,” has limit value 2, therefordyenefitof a user can get at-
most two values from them. Note that, Atiribute_Set itself cannot specify the semantic meaning
of the limit, rather, generated ABCL expression that usesrtiation-set needs to specify it. The

following ABCL expression is generated for this purpose,

ABCL Expression: |benefifOE(U))NOE(UMEBenefiL.attset < OE(UMEBenefiL.limit

Here, the expression restricts that each user can get dtspecfied mutual exclusive values
of benefitwhich are specified in each elementWMEBenefit Similarly, in PreconditionBenefit

for avset the number of elements from attval {$f ‘bf ,’}, should be at-least the specified limit

which is 1. Now, the following ABCL expression specifies fbistpurpose,
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ABCL Expression: |benefifOE(U))NOE(PreconditionBenefjtattsef >

OE(PreconditionBenefjtlimit

As mentioned eatrlier, there could also be conflicts amongsteg across different attributes
of a user. Let us say in the banking example of section 3.1etiseanother user attribute called
felonyand its range is {'fl’, ‘fl »’, ‘fl 3’}. The bank seeks to restrict a user benefit'bf,’ if she
has ever committed felony ifl or ‘fl”. This is a mutual exclusive conflict relation among the
values ofbenefitandfelony These relations are represented as another type of refsgiocalled
Cross_Attribute_Set which is formally defined in table 3.3 item 2. Ea€lnoss Attribute Set is
declared for two arbitrary sets of user attributes whichdmtermined at declaration time. These
two sets of attributes are representeddastsetand Rattsetand combination of certain values of
the attributes irAattsetas a group has specific type of conflicts with certain valuesoh attribute
in Rattset In other words, values of the attributes Attsettogether restrict the values of each
attribute inRattset Each element of &ross Attribute Set is a function calledhttfun that returns
the values of the attributes défattsetand Rattsetas an ordered pair (attval, limit) where attval
represents the values and limit is the cardinaftiyoss_Attribute Set declaration and initialization
for the banking example are as follows (the syntax is shovtabie 3.2).

Cross_Attribute_Sety aatiserattset UMECFB

Here,Aattset {felony} and Rattset { benefi}

UMECFB={ attfun, } where

attfun, (felony=({'fl 1", fl »’},1) and attfun, (benefi}=({'bf ;'},0)

Using the set above, one can state that if at least one valoe{ffl ,’,'fl ,’} is assigned taofelony

of a user, ‘bf’ should not be assigned tienefitof that user. Similar té\ttribute_Set, the meaning

of limit is not specified by th&€ross Attribute Set but rather the constraint expression that uses
it. The following expresses this constraint.

ABCL Expression:

|OE(UMECFB)(felony).attsetn felony OE(U))| > OE(UMECFB)(felony).limit =
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|OE(UMECFB)(benefi}.attsetn benefifOE(U))| < OE(UMECFB)(benefi}.limit

3.3 ABCL Enforcement

ABCL constraints are enforced during each attribute assegt to a user. As shown in algorithm
3.1, we design a simple procedure for the set-valued atérigsisignment to users. The inputs of
this algorithm are a useu), a set-valued attributaft) and a subset of values (attval)®COPE,;;
that can be assigned &it of u. In line-4, the procedure temporarily replace the alyeassigned
values toatt of the usem. Then, for each already generated constraint expresshmtls §ingle
attribute and cross attributes), it calls a function callsluate in line-6, to check whether the
newly assignment satisfies them all. We assugnsExprSetcontains all ABCL constraints for
users. Each invocation @onsExprSetreturns atrue/false A true indicates that the requested
attribute values can be assigned. If any of the constrantsti satisfied, the user will retain its old
attribute assignment. Similar procedure can also be dpedléor the atomic-valued attribute.

In ABCL, constraints are generated only for the assignméwualnes to attributes. We do not
consider constraint enforcement for the delete requestdreddy assigned values of attributes.
However, such constraints can also be generated using ABGleaforced accordingly. Also, the
specified constraints may restrict an attribute assignnegptest for different reasons based on the
conflict-relations of the requested values of an attributé the values of same/other attributes.
In this dissertation, we do not develop a system that auioait notifies the reason for denying
a request. However, such a system can be built on top of opopeal enforcement mechanism
which can identify the reason based on the constraint egimeshat evaluates tofalse Then,
proper actions (assign/delete the values of attributes)peataken so that the requested attribute
value can be assigned. In the following, we list some of tlaswoas and the actions that can be

taken.

e If the constraint that restricts the assignment requestierated for pre-condition, then
assignment of the prerequisite values of attributes isiredquo resolve the issue. Note
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Algorithm 3.1 User Set-Valued Attribute Assignment

/*
For an atomic-valued attribute, line-2 should be replagethb following line
if ueU andatteUA and attvatRange(att) then

*
~

procedure AssignAttributetoU ser(u, att, attva)
if ueU andattcUA and attval_Range(att) then
old_value«+ att(u)
att(u) <+ attval
for all cnste ConsExprSet do
if Evaluate(cnst)=fals¢hen
att(u) «+ old_value
Returnfalse
end if
10:  end for
11: Returntrue
12: end procedure

that, if the constraint capture the conflict-relations agtive values of single attribute, then
prerequisite value is for same attribute. Therefore, thefealues of the attribute which is
previously requested needs to be modified properly to reghls. In cross-attribute conflict,

the prerequisite values should be assigned to other &tgbu

¢ In case of the constraints capturing mutual-exclusiveiaeig, it is required to delete/remove
already assigned mutual-exclusive values of the attrioufehe constraint captures single-
attribute conflict, some values from the requested valudseoattribute need to be removed
in order to resolve the conflict. In cross-attribute conflitie already assigned values of

other attributes should be deleted.

Similar to RCL-2000 [12], ABCL constraints are represeniedhe form of restricted first
order predicate logic (RFOPL) expressions for enforcemd&#OPL is a restricted version of
FOPL that contains only universal quantifiev§ here in each expressiaghcomes first followed
by the predicates. The following is an example of an ABCL ¢@ist and corresponding RFOPL
expression:

ABCL Expression: id(OE(U)) # id(OE(AO(V))

28



RFOPL Expression: YuleU, Yu2eU-{ul}: id(ul) # id(u2)
Here,OE(U) andOE(AO(U)) is converted t&vuleU andvu2cU-{ul} in RFOPL expression. The
general structure of a converted RFOPL expression from ABGIs follows:
1) The expression has a (possibly empty) sequence of univgusattifiers as a left prefix, and
these are the only quantifiers.
2) The quantifier part will be followed by a predicate separdgd colon (:) (i.e., universal quan-
tifier part : predicate).
3) The predicate has no free variables or constant symbolsafitibles are declared in the quan-
tifier part (e.g.vueU, YcbereMutualExIcusiveBenefit'r crole(u)).
4) Predicate follows all rules in the syntax of ABCL except thiert syntax in table 3.2. The syntax
for term in RFOPL is as follows in which an element is a varabl quantifier part:
<term> ::= <function> (element)| <attributefun> (element)
| element<item> | element (<set>-{element}) | <attvat>
Aloop is created for each quantifier to traverse respectaraents and the parser parses predicates

of the expression. The following section discusses the AB@lorcement complexity.

3.3.1 Constraints Hierarchy and Enforcement Complexity

We discuss the enforcement complexity of the ABCL constsdr each level in attribute conflict-
relationship hierarchy (figure 3.3).

Level 0 (Single User, Single Attribute): In this level, the systeeither contains cross attribute re-
lations nor constraints evaluating those relations. Tltesy needs a set of usekd)( Attribute Set

and functionality to evaluate properties of each user séplyr OE). Here, a constraint enforce-
ment complexity iISO(NxM xP) where N is the number of users, M is the number of elements in
respectivéAttribute_Set and P is number of predicates in the expression.

Level 1 (Single User, Multiple Attributes): Conflict-relations amg values across multiple at-
tributes are specified and applied to each user separatedgidé&s the functionalities of rela-

tionship level 0,Cross Attribute Sets are needed in this level. The enforcement complexity is
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Conflict-Relationship Level 1

Conflict-Relationship Level 3
(Multiple Users, Multiple Attributes)
Requirements:
1.Basic Sets 2.Conflict Attribute Sets
3.Cross Conflict Attribute Sets 4.0E Function
5.A0 Function 6.Derived Functions (optional)

DN

(Single User, Multiple Attributes)
Requirements:
1.Basic Sets 2.Conflict Attribute Sets
3.0E function 4.Cross Conflict Attribute Sets

Conflict-Relationship Level 2
(Multiple Users, Single Attribute)

Requirements:
1. Basic Sets 2. Conflict Attribute Sets
3. OE function 4. AO function

5.Derived Functions (optional)

Conflict-Relationship Level 0
‘¥ (Single User, Single Attribute)
Requirements:
1.Basic Sets 2.Conflict Attribute Sets
3.0E function

Figure 3.3 Relationship Hierarchy with Required ABCL Functionality

O(Nx(M+0O)xP) where N is the number of users, M the sizeAtfribute Set, O the size of
Cross_Attribute Set respectively and P is number of predicates.

Level 2 (Multiple Users, Single Attribute): Constraints are sfiec based on conflict-relations
among values of an attribute and applied to a set of usersativikly. The functionAO is re-
quired in a constraint expression besi@#sfor enforcing constraints across different users. The
complexity here iSO(N?xM xP). Note that, constraints in this level enable dynamic isjom

of attribute values across subjects of a single user. Ftange, a constraint might say that two
subjects of a user cannot get ‘president’ role simultanigous

Level 3(Multiple Users, Multiple Attributes): In this level, aype of constraints can be generated.
The complexity isO(N%x (M+0O)xP) and a constraint can specify both single attribute ansiscro

attribute conflicts and enforce within or across users.

3.4 ABCL Use Cases

We first show an ABCL instantiation for representing coriatsain RBAC systems. Then, we
present an extensive case study in which a large set of AB@tesgions is generated to capture

various access control requirements of a banking orgaaizat
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Table 3.4 Attributes of User, Subject and Object in RBAC

Attribute Name attType Range
UA role set {'rre,'ro’y o, 1y}
SA activerole set {'rre,'ro’y o, 1y}
OA  permittedrole set {'rre,'ro’y o, 1}

Table 3.5 Constraints Specification for RBAC SSOD and DSOD
1. Attribute_Sets Declaration:
Attribute_Sety 1o ConflictRoles
ConflictRoles{avset, avset, ...} where
avset = (attval, limit) where attvag2Ran9e(0le) gnd
(limit=1 (for RCL-2000) or Klimit <|attval (for NIST-RBAC))

Attribute_Sets activerole CONflictActiveRoles
ConflictActiveRoles{avset, avset, avset, ...} where
avset = (attval, limit) where attvag 2Range(activerols gnd
(limit=1 (for RCL-2000) or Klimit <|attval (for NIST-RBAC))

2. ABCL Expression for SSOD of RCL-2000 and NIST-RBAC

Requirement: No user should be assigned to two roles which are in conflitt @ach other.
Expression: |OE(ConflictRolegattvalN role(0E(U))| < oe(ConflictRoleglimit

3. ABCL Expression for DSOD of RCL-2000 and NIST-RBAC

Requirement 1: A Subject of a user cannot activate roles having conflict wébh other.
Expression]og(ConflictActiveRolgsattvalN activeroldOE(S))| < OE(ConflictActiveRoleslimit

Requirement 2: Subjects of a user cannot activate roles having conflict edith other.
Expression: SubCreator(OE(S))=SubCreator(OE(AO(S))) = |(activerol0OE(S)) N
OE(ConflictActiveRolgsattval)U (activeroldOE(AO(S))) N OE(ConflictActiveRol8sattval) <
OE(ConflictActiveRoledlimit

3.4.1 RBAC Constraints (RCL-2000 and NIST-RBAC SOD)

In RBAC, users create sessions in which they activate centdes to perform particular tasks.
The main constraints in RBAC concern static and dynamicrsg¢ipa of duty (termed SSOD and
DSOD respectively). SSOD is applied on role assignmenteosusnd DSOD is for role activation
within or across sessions of a user. An ABAC model could bdigored to enforce RBAC by

defining only one attribute calledle for users, subjects and objects as shown in table 3.4. Here, a
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subject is synonymous to a session in RBAC. Hence, SSOD Igdphuring a user’sole attribute
assignment and DSOD faictiveroleassignment to subjects by their owners.

Table 3.5 shows the ABCL expressions for SSOD and DSOD aingdrproposed in two well-
known RBAC constraints models: role based constraint laggRCL-2000) [12] and constraints
of NIST-RBAC [57]. RCL-2000 has a set called conflicted ral¥ in which each element &ZR
is a set of roles having conflict with each other. Here, SSQDEBOD are maintained by allowing
no more than one role assigned to users or activated in angesson respectively from each set
element ofCR RCL-2000 also provides a constraints specification laggdar generating various
constraints.

NIST-RBAC includes a cardinality metric with each set elethat allows variable number
of roles from each conflicted set instead of always allowinty @ne. In table 3.5, two instanti-
ations ofAttribute_Set, ConflictRolesand ConflictActiveRoleare declared in order to represent
conflicted values ofole and activeroleattributes. Each element of these sets is an ordered pair
(attset, limit) where attset is the conflicted values andtlisthe cardinality.

Items 2 and 3 of table 3.5 show ABCL constraint expressionS80D and DSOD respectively
that capture both RCL-2000 and NIST-RBAC requirements.il&irto conflict role-set, RCL-2000
also has a s€€U representing different set of conflicting users. ABCL canagalize the concept
of conflicting users by introducing a user attributeTypethat represents different types of user
conflict. Therefore, instead of identifying each conflictexsr and creating a conflict set likd#J,
the values oficTypedetermine the conflict group a user belongs to and restréctiade assignment
accordingly.

3.4.2 Security policy specifications for Banking Organizabns

We present ABCL constraints for several high-level segugtjuirements in a banking organiza-
tion. For simplicity, we only show constraints for user itite management in this context. In a
banking organization, let us consider a finite set of exgstigers (U) in which a user is a human

being and could be of different types, e.g. client, juniopégee.
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Table 3.6 User Attributes (UA)

Attribute  attType Range
id atomic {lid{’,"id 5, ..., ‘id '}

uType atomic {'client’, ‘junior’, ‘senior’, ‘leader’}
orgType set {'org,’, ‘orgs’, ..., ‘Orgs’}

role set {‘customer’, ‘cashier’, ‘manager’,

‘president’, ‘vice-president’}

benefit set {‘bfl’, ‘bfg,, ‘bfg,, ceey ‘bflo’}
felony set {fly7, 157, g, flg'}

loan set {'car’, ‘house’, ‘education’}
cCard set {‘card’, ‘cardy’, ..., ‘cardy’}

Table 3.6 shows different user attributes, their types amges in this system. Each user is
assigned an attribuid which is a unique identifier. AttributeTyperepresents the type of a user
andorgTyperepresents the organization a user belongs to. Thereadlke attribute representing
various job descriptions of a user such as ‘customer’, eashetc. The banks might provide
a number of benefits, e.g., bonus, cash back rate, etc, torsast represented by theenefit
attribute. Attributdelonyrepresents if the user has any felony recordlaad andcCardrepresent
granted loans and credit cards to a user respectively. Sepbat the banking authority wishes
to specify the following security policy requirements faen attribute management. The ABCL
formalism for these requirements are also given. We alsw $he conflict-relationship level of
each of these constraints.

Reqg# 1: A user can get at mosttienefits (Level 0)

Reqg# 2: A user cannot hold the ‘president’ and ‘vice-presideatessimultaneously. (Level 0)
Reg# 3: A user cannot get botbenefitsbf,’ and ‘bf,’. (Level 0)

Reqg# 4: A user can get at mostlbansandcCards (Level 1)

Reqg# 5: If a user hagelonyrecords ‘fl” and ‘fly’, she cannot get more than ohenefitfrom {bf1,
bf2, bf3}. (Level 1)

Reqg# 6:If a user is a ‘client’, she cannot get certagles, e.g. ‘cashier’, ‘manager’. (Level 1)

Reqg# 7:No more than 12 users can get a ‘claan. (Level 2)
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Reqg# 8:ids of two users cannot get the same value. (Level 2)
Reg# 9: If a user hagelony‘fl ;" and belongs to ‘org, no users from ‘org’ can getbenefit'bf,’.
(Level 3)

Formal ABCL Specifications

Table 3.7 ABCL Sets Declaration and Initialization:
1. Attribute_Set Declaration and Initialization:
Attribute_Sety penerit UMEBenefit
UMEBenefit{avset, avset}
avset=({'bf ", ‘bf '}, 1), avset=({'bf 5’, ‘bf 3, ‘bf ;’, ‘bf 5}, 2)

Attribute_Set, e UMEROIe
UMEROole={avset}
avset=({'president’, ‘vice-president’}, 1)

2. Cross_Attribute _Set Declaration and Initialization:
Cross_Attribute_Sety, (utyps, {roley UMECTR
UMECTR=Hattfun;}
attfun, (uTypg=({'client’},1)
attfun, (role)=({'cashier’,'manager’,'president’,‘vice-precideht0)

Cross_Attri bute_SetU, {felony}, { benefi} UMECFB
UMECFB={attfun,, attfun}
attfun, (felony=({'fl ,’,'fl 1'},2)
attfun (benefij=({'bf ,",'bf 5’,'bf 5’},1)
attfuny(felony)=({'fl ;’},1), attfun,(benefij=({'bf 5}, 0)

Cr oss_Attri bute_SetU, {felony, orgTypa, { benefi} UMECFOB
UMECFOB-={attfun,}
attfun (felony)=({'fl ,’},1), attfun,(orgTypg=({'org,}, 1),
attfun, (benefij=({'bf ;’}, 0)

Table 3.7 shows declaration and initialization of the AB@tssfor representing necessary re-
lations among attributes for specifying above given ségpolicies. UMEBenefittontains mutual
exclusive values of theenefitattribute andJMERolerepresents mutual exclusive roles. Similarly,
mutual exclusive conflicts afTypewith role, felonywith benefif andfelonyandorg Typewith ben-
efit attributes are represented by theoss Attribute_Sets UMECTR UMECFB, andUMECFOB
respectively. The following are the required ABCL expressi
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Reg# 1: |benefifOE(U))| < 5.

Reqg# 2: |OE(UMEROoI4.attsetn role(OE(U))| < OE(UMEROoI@.limit

Reg# 3: |OE(UMEBenefi}.attsetn benefifOE(U))| < OE(UMEBenefi}.limit
Reg# 4: |cCard(OE(U)) + loan(OE(U))| <5

Reg# 5:|OE(UMECFB)(felony).attsetn felony OE(U))| > OE(UMECFB)(felony).limit =

|OE(UMECFB)(benefi}.attsetn benefi{OE(U))| < OE(UMECFB)(benefij.limit

Reg# 6: | OE(UMECTR(uTyp@.attsetn uTypdOE(U))| > OE(UMECTR(uTypg.limit =

| OE(UMECTR)(role).attsetn benefifOE(U))| < OE(UMECTR(role).limit

Reqg# 7: |assignedEntitiesy, joan(‘car)| <12

Reg# 8:id(OE(U)) # id(OE(ao(0e(V))))

Reg# 9: |OE(UMECFOB(felony).attsetn felonyOE(U))| > OE(UMECFOB(felony).limit
A |OE(UMECFOB)(orgTyp@.attsetn orgTyp€OE(U))| >
OE(UMECFOB)(orgTypg.limit = |OE(UMECFOB)(benefi}.attset
(benefifOE(U)) U benefi{fOE(ao(V))))| < OE(UMECFOB)(benefi}.limit

3.5 Performance Evaluation

In this section, we present experiments aimed at evalutitengerformance of our ABCL enforce-
ment algorithm during user attribute assignment (disaligssection 3.3). The experiments were
conducted on a machine having the following configuratiad0&Hz with 2GB RAM running a
Windows 7 enterprize OS and JDK 1.7. As shown in section 3B8;|Aconstraints are represented
as RFOPL expressions for enforcement during attributegrasent to a user and each universal
guantifier of an expression generates a loop for travergspective elements and checks if the
constraint holds for those elements. Here, an element dmula member of the user séf)(or

a declared relation-set and the required time for a comsteanforcement during a user attribute
assignment depends on the size of these sets.

Simulation scenario: We define three user attributesttl, att2, andatt3 whereattl andatt2 are

atomic andatt3is set valued. We enforce the following two constraintsigian attribute assign-
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ment to a user (shown in RFOPL format).

1)Vule U,Vu2e U-{ul}, Velee MUattl: attl(ul)c eleattvalA attl(u2)< eleattval=- att2(ul)

=+ att2(u2)

2)V ue U,V elee MUatt3: | att3(u)n eleattval| < elelimit.

Here,MUattl andMUatt3 contains mutual exclusive (ME) values @itl andatt3. Expression 1
says ifattl of two users contains ME values then they can get the sdatRgalues and expression
2 says a user cannot get MiE3values. Inexperiment 1, we compare the required time of our en-
forcement algorithm when the number of users increase. Wetkka number from 50 to 500 users
with an increase of 50 at each step and check the requireddimae attribute assignment to a user.
We separately enforce these two constraints and checkntimegti Note that, the size of botU-
attl andMUatt3are fixed to 5 elements, hence, execution time varies forrtero quantifiers in
constraint 1 and the first quantifier of constraint 2. Figu®) shows the results where constraint
1 takes more time as it applies to multiple users (falls ireldvof the conflict-relationship hier-
archy) while constraint 2 applies to every user separatelis (n level 0). Enforcement time for
constraint 1 is 0.3s for 50 users with comparison to 1.278@@rusers. And, for constraint 2 it is
0.109s to 0.3937s. Therefore, this process is scalablelévga set of users. lexperiment 2, we
verify the timing when the number of constraints increaséenthe total number of users are fixed
to 500. Here, all constraints are similar to the constrawhich belongs to the hierarchical level
1, thus, applies across users. Figure 3.4(B) shows thereghjenforcement time when number of
constraints increases from 5 to 30 which is only a 1.84s as&e Inexperiment 3 we analyze
when the elements of a relation-set increases. Here, wecenéonstraint 1 with number of users
fixed to 500. Therefore, the required time varies only for3he quantifier which depends on the
size ofMUattl. Figure 3.4(C) shows the enforcement time where numbereshehts inMUatt1
increases from 5 to 30. This causes an increase of 0.91s wghidgligible, hence, it proves that

the ABCL enforcement algorithm is scalable.
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Chapter 4: FOUNDATION OF ATTRIBUTE-BASED CONSTRAINTS
SPECIFICATION IN CLOUD laaS

The materials in this chapter are published in following wes [20, 24]

1. Khalid Bijon, Ram Krishman, and Ravi Sandhu. Constraspescification in attribute based

access control. ASE Science Journal, 2(3), 2013.

2. Khalid Bijon, Ram Krishnan and Ravi Sandhu, A Formal Mddelsolation Management in
Cloud Infrastructure-as-a-Service. In Proceedings atriational Conference on Network

and System Security (NSS 2014), Xi'an, China, October 152074

We show that attributes can represent various propertiegrtofal resources in cloud laaS.
Given that attributes represent properties of virtual ueses, we provide ABCL specifications for
various high-level constraints that can mitigate variausity issues in cloud laaS. We also show
that an existing isolation management of the users and res®in cloud datacenter [18] can be

configured using an attribute based system.

4.1 Attributes Specification for Virtual Resources

Attributes, associated with an virtual resource, can grevarious properties of the virtual re-
source. For instance, attributes can represent a virtuehim&'s owner tenant, sensitivity-level,
cpu intensity-level of workloads, etc. In this section, weyide a design of attributes for virtual
resources that capture various properties in order to addssues like multi-tenancy, isolation,
scale, etc.. Figure 4.1 shows an example of attributes &érdift virtual resources where the
classes of virtual resources include virtual machine (Vitual machine image (IMG), virtual
network (NET) and virtual storage (STR). Note that, as dbedrin chapter 3, there is only one set
calledOA that specifies the objects in ABAC, whereas, cloud laaS Héelnt classes of virtual
resources which can be represented in different such setise figure, these virtual resources are
represented as square and attributes are ellipses or hexéoatomic and set-valued attributes
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respectively. Each attribute hasRengefrom which the values are assigned to that attribute for
a specific virtual resource. Many of these attributes mayeismt some trivial properties such as
id represents the identification of a virtual machine &wdtrepresents the physical host where
a virtual machine runs. Attributes can also represent sévweportant properties of the virtual
resources. For instanceensitivityand cpu_intensiveepresents a virtual machine’s sensitivity
level of the running workloads and cpu requirements respegt For simplicity, the value of
sensitivitycould be ‘high’, ‘medium’, and ‘low’. Also, VM can be dividedmong different hpc
groups which is represented by attribimecgroup Also, virtual resources, i.e. VM, STR, and
IMG, can belong to a particular department or group of a tenahich is represented agoup
attribute of these entities. AlsongSrcspecifies the source of the image of a virtual machine such
as public, private, etcStatusshows that whether a virtual machine is in running, stop @rating
mode. Similarly, in figure 4.1, attributes of IMG includesnerTntandallowedTntrepresenting
the tenant that owns the image and the tenants that can use#uge respectively. There are also
attributes calledepositoryandversionthat represents the repository where the image is located
and the version number of the image. Similarly, figure 4. \shattributes of STR and NET.

We identify that attributes of these resources have cectamflicting relations with each other
which is similar to what we describe in chapter 3. In the régte dissertation, we identify specific

conflicting relations and utilize them to solve various s#guelated issues in the cloud.

4.2 Constraints Specification using ABCL

In this section, we show that ABCL can specify different doaisits to solve various security

related issues in cloud laaS.
4.2.1 Security policy specification for laaS Public Cloud

In a public cloud laaS, virtual machines (VMs) are provided by a serpic®/ider to its clients
where the physical servers are shared by multiple cliemtshé following sections we also refer

to clients as tenants. In this system, VM of a tenant can bgpcomised by at least four different
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types of personnel: (1) malicious administrative usersnjaglof the cloud provider, (2) malicious
VMs of a competing client (tenant), (3) client’s own admiasgd (4) outsiders from the cloud sys-
tem. Threats relevant to 3 and 4 are conventional secustiesfor which well-known protection
mechanisms already exists, e.g. firewall, conventionasscontrol policies. Since, threats 1 and
2 are more specific to laaS public cloud environments, we aispecify ABCL constraints for
mitigating these threats.

In an laaS public cloud, a provider's admins maliciously amtentionally may abuse their
privileges to compromise consumer’s confidential data.u@lservice providers claim that they
are aware of this issue and they have mitigation mechan@fjs(ich as zero tolerance policy and
isolating physical access to servers. However, zero tobergolicy is useful only after an attack
has occurred. Also, several attacks including stealindeartext passwords, private keys, etc. by
a malicious admin do not require any physical access [10@ik&tz et al [31] proposed a priv-

ilege management process for cloud admins by proposing thifierent administrative roles, i.e.
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hardware-maintenance, remote-maintenance, and seteaity, for requiring separation of duties.
An admin with remote-maintenance role only has access apbnsibility to maintain the servers
that run client VMs . However, this mechanism cannot resstigectain administrative actions in-
cluding restricting same admin from accessing VMs from cetimg tenants in multi-tenant public
cloud. Competing tenants are organizations with confliantérests, e.g. business competitors,
conflicting departments of an organization. Thus, accesise®Ms of the competing tenants by
same admin might cause (un)intentional critical informafiows from one VM to another. Again,
a malicious VM of a competing tenant might also launch attaRlstenpart et al [98] showed a
side-channel attack is possible when VMs are co-locatetiensame server. Berger et al [18]
mentioned other attacks, e.g. denial-of-service, codd bé initiated by a malicious VM towards
other VMs sharing same cloud resources, e.g. hosts, netvwtekce, a cloud consumer should
demand several security policies from the laaS cloud pergide.g. isolate physical location of
their VMs from competing tenants VMs , restrict administraprivileges, etc. Below we enumer-
ate several such issues, including those addressed byWtB¢ategorize them as admin privilege
management and VM resources management in laaS cloud.

A. Security issues related to the VM resources management

1) A consumer tenant wants its high sensitive VMs not to be catled on the same physical server
where VMs of its competing tenants reside.

2) A tenant does not want its VMs to connect to a network (VLANMach VMs from competing
tenants are connected.

3) A group of tenants collaborate together, thus, they warnt ttwdlaboration-purposed VMs to
reside in same server for enhancing several issues, efgrmpance, security, etc.

4) Collaborating tenants wants their VMs to connect to the sa@twork so that they can securely
share information.

5) Some VMs of a tenant might require to exchange highly ciitieda for some reasons. Thus,
they need to reside on same physical sever to utilize interoaess communication.

6) A tenant wants highly sensitive VMs to reside in differentvees so that any kind of service
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Table 4.1 Attributes

attType Range Description
UA
tenant set ‘f, 't ..., tg Tenants an admin can access
host set ‘node’, ‘nodey’, ...., ‘nodey’ Servers an admin has access
adminGrp set ‘hardware_maintenance’, ‘security’, Different grewgd an
‘remote_maintenance’ administrative users
role set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’ Admin Roles
SA
acctnt set ‘', ‘o, ..., 18] Tenants a subject can access
accserver set ‘node’, ‘nodey’, ...., ‘nodey’ Servers a subject has access
activerole set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’ Admin roles
OA (VM)
otnt atomic  ‘t’, 't9), ..., t&’ Tenant that owns the VM
host atomic  ‘nodeg’, ‘nodey’, ...., ‘nodey’ Server where the VM resides
purporsetype atomic  ‘p’, ‘p2’, ‘Ps’, ‘P4, ‘Ps’ Job of a VM
sensitivity atomic  ‘high’, ‘low’ Sensitivity level of the VM
status atomic  ‘Active’, ‘Stop’, ‘Maintenance’, Current status tife VM
‘Transferring’
network atomic  ‘vlan’, ‘vlany’, ..., ‘vlanyy’ Network connection a VM can get
permittedRole set ‘pCreator’, ‘vmMonitor’, ‘vmAdmin’ Roles that can acgethe VM

interruption or security issues on that server may only eguastial disruptions.

7) A tenant allows its less sensitive VMs to reside on the samesg/here VMs of a competing
tenant reside. However, during maintenance, these VMs toeled migrated to a server that does
not contain any VMs from the competing tenants.

B. Security issues on admin-user privileges management

1) A tenant does not allow the same admin to access their sen¥ills if she has access to the
competing tenant VMs.

2) In general, an admin cannot maintain more than n tenants.

3) A tenant cannot be managed by more than one sessions (S)lmeah admin simultaneously.
4) An admin cannot access more than n VMs of a tenant simultahe@ig. in the same session)

for protecting possible aggregation of the critical infation.
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4.2.2 ABCL Specification for Public Cloud laaS

We presents ABCL constraints specification for the abovergsecurity requirements. There are
sets of administrative userd) and subjects) where each subject belongs to a particular admin-
istrative user. In this system, objects are virtual mach{ids) which are represented as a &} (
We will see in the following chapters that there will be otletasses of virtual resources such as
virtual networks, virtual storages. Table 4.1 shows usésjext, and object attributes, their types
and ranges and descriptions of their purpose. The dedaratid initialization of the required
ABCL sets are shown in table 4.2IMETnt UMEGrp, andUMERolerepresents the mutual ex-
clusive conflicts of the user attributésnant adminGrp androle respectively. Mutual exclusive
values of the subject attributectntare represented BMETnt OConsTnandOMETntcontain
values ofotnt having mutual exclusive and consistency conflicts respelgti ABCL constraints
for the policies are as follows:
A. VM resource management Constraints
Reg# 1: High sensitive VMs of a tenant cannot reside on same seratrctintains VMs from
competing tenants.

Expr: sensitivitfoe(O))=high A otnt(oe(O)) € oe(OMETn).attval\ otnt(oe(ao(0))) €
oe(OMETN).attval=- hos{oe(O)) # hos{oe(a0(0)))
Reqg# 2: VMs of cooperative tenants reside on same server.

Expr: otnt(oe(0)) € oe(OConsTnkattval A otnt(oe(ao(0))) € oe(OConsTnkattval=
hos{oe(0O))=hos(oe(a0(0)))
Reqg# 3: Similar purpose VMs reside in same server.
Expr: otnt(oe(O))=0tnt(oe(a0(O))) A purporsetypéoe(O)) =purporsetypéoe(ao(0)))
= hos{oe(0O))=hos(oe(a0(0)))
Reqg# 4: High sensitive VMs of tenants are located to different sexve

Expr: sensitivitfoe(O))="high’ A sensitivityoe(ao(0))) =‘high’ A otnt(oe(O))=0otnt(oe(ao(0)))=
hos{oe(0))#£hos(oe(ro(0)))
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Reqg# 5: Less sensitive VM of a tenant cannot reside in same servecoigeting tenant during
maintenance.

Expr: statugoe(O))="maintenance sensitivitfoe(O))="low’ A otnt(oe(O)) €
oe(OMETN).attval A otnt(oe(ao(O)) € oe(OMETN).attval=- hos{oe(O)) # hos{oe(a0(0)))
Reg# 6: VMs of tenant cannot connect to same network that is conddot®&Ms of competing
tenants.

Expr: otnt(oe(O)) € oe(OMETNn).attval A otnt(oe(ao(O))) € oe(OMETn).attval=-
networkoe(0)) # networkpe(ao(O)))

Note that, above given security requirements 1-5 are foragiag co-location of the VMs to
the physical servers and security requirements 6 is for ginganapping between two virtual
resources, i.e., VM and NET. We consider these two problesrecheduling problem and con-
figuration management problem respectively. Enforcingnsuomstraints in cloud laaS may cause
various cloud laaS specific issues including enforcememipdexities and resource optimization.
In this chapter, we do not analyze these issues, rather, lyeslow that ABCL is capable to spec-
ify various constraints. In chapter 5, we develop a constdiiven virtual resources management
by utilizing the appropriate subset of ABCL where we analymse issues. Also, in chapter 6, we
develop a constraint-aware virtual machine scheduler iichwye only use elements from ABCL
which are required to solve this problem.

B. Constraints for admin-user privileges management
Reg# 1: An admin can access VMs of a tenant, if he is not an admin of thepeting tenants.

Expr: |tenantoe(U)) N oe(UMETN{).attval < oe(UMETnNY).limit
Reg# 2: An administrative user cannot maintain more than 3 tenants.

Expr: |tenanfoe(U))| <3
Reg# 3: A subject cannot access VMs from two ME tenants.

Expr: |acctn{oe(S)) N oe(SMETn}.attval < oe(SMETn}.limit
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Table 4.2 ABCL Sets Declaration and Initialization:

1. Attribute_Set Declaration and Initialization:
Attribute_Sety tenant UMETNL
UMETnt{avset, avset, avset}
avset=({t,’,'t3’},1), avseb=({'t »’,'t4,’,'t5'},2), avseg=({'t 7’,'ts’},1)

UMEGrp={avset}
avsef=({'hardware_maintenance’,'remote_maintenance’},1)

Attribute_Setg ot OMETNt
OMETNt {avset, avset, avset}
avset=({'t’,'t3’},1), avseb=({'t /’,'t s’},1), avset=({'t »’,'t4’,'t 5'},2)

Attribute_Sety e UMEROIle
UMEROole={avset}
avset=({'vmMonitor’, ‘vmAdmin’, ‘billAdmin’},1)

Attribute_Setsacctnt SMETN
SMETnt{avset, avset}
avset=({'t,’,'ts’},1), avseb=({'t »’,'t 4,'t 5'},1)

Attribute_Setg o1 OConsTnt
OConsTrt{avset, avset},avset =({'t ’,'t4'},2), avseb=({'t 7,'t 9’},2)

2. Cross_Attribute Set Declaration and Initialization:

Cross_Attri bute_SetU, {adminGrg, { role} UMECGR
UMECGR:= {attfun,, attfun,, attfun}
attfun (adminGrp=({'hardware_maintenance’},1)
attfun, (role)=({"billAdmin’,’pCreator’,'vmAdmin’},0)
attfun,(adminGrp=({'security’}, 1),
attfuny(role)=({"billAdmin’, ‘vmMonitor’,'vmAdmin’},0))
attfuny(adminGrp=({'remote_maintenance’},1)
attfurnz(role)=( {'pCreator’,'vmMonitor’},0))
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Reg# 4: A tenant cannot be accessed by more than one subject of an.admi
EXpr: subcreator(0E(S))=subcreator(0E(A0(S))) = acctn{oe(S)) N acctn{oe(ao(S)))=p
Reg# 5: An admin cannot join both hardware and remote maintenance.
Expr: |oe(UMEGTrp).attvaln adminGrgoe(U))| < oe(UMEGTrp).limit
Reg# 6: An admin of hardware-maintenance group cannotgjes ‘billAdmin’ and ‘pCreator’.
Expr: |adminGroe(U)) N oe(UMECGR).attfun@dminGrp.attval >
oe(UMECGR.attfun@dminGrp.limit = |oe(UMECGR.attfunfole).attvaln role(oe(U))| <
oe(UMECGR).attfunfole).limit

4.3 Attribute Based Isolation Management

Recently, trusted virtual datacenter (TVDc) [18] proposedisolation management process in
cloud laaS. In TVDc virtual machines and their associatsgdueces, such as virtual bridge and
virtual local access network (VLAN), are grouped into tegstirtual domains (TVDs). Each TVD,
represented as a security clearance (also referred to@3,@iforces an isolation policy towards
its group members. More specifically, resources are ontyvatl to interact with each other if they
are assigned to same color. For instance, VMs with same calocommunicate and a VM can
run on a hypervisor only if this hypervisor has the same catothat VM. The main goal of this
process is to isolate customer workloads from each othedeA&sribed in [18], the purpose of this
isolation is to reduce the threat of co-locating workloadsf different customers by preventing
any kind of data flow among these workloads where the datatririghudes sensitive information
of the customers or any virus or malicious code. Again, thigpfe management process also
reduces the incidence of misconfiguration of the virtuabrgce management tasks. TVDc [18]
also develops a hierarchical administration model basedusted virtual domains.

We develop a formal model for TVDc which we call Formalized8c (also referred as
F-TVDc) where we show that the attribute based system caevsdged to represent different

properties of the virtual resources, such as color. Thesguiees with similar attributes will be
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arranged together to built a particular computing envirentn For instance, a VM can run on a
hypervisor, physical host or Host, if the Host has same aflthve VM. This formal model consists

authorization models for three types of administrativerugperations.
4.3.1 Background: Trusted Virtual Datacenter (TVDc)

Trusted virtual datacenter (TVDc) [18] manages isolatigndefining a trusted virtual domain
(TVD) for a set of VMs and their associated resources thasttioie a common administrative unit.
The boundary of a TVD is maintained by assigning the TVD idemtto the respective VMs and
resources. A TVD identifier represents a security clearéaise referred to as a color to emphasize
there is no ordering or structure). For instance, a colorremnesent the virtual resources of a
particular customer or virtual resources running specifiddwoads of a customer. Hence, basically,
a color represents a particular context for the assigned &idisresources. Figure 4.2, from [18],
shows the TVDc view of the virtual resources running two ptgislata centers and their resources,
such as servers, storage, and network components. The TMdcseparates the association of
physical resources for each color. For instance, in figu2ethe red color includes VMs 3, 7, 9,
and 11, and associated storages.

In order to manage this isolation process, three differdninistrative roles are proposed in
TVDc: IT datacenter administrator, TVDc administrator daenant administrator. Administrative
users (also generally referred as admin-users) havingtiicdater administrator role are the super-
users in this system. Their main task is to keep track of thighl and the virtual resources and
group these resources into TVDcs. They also define the $gdaibels or colors. IT datacenter
admin-users further can assign a TVDc group to both TVDc andnt admin-users, and assign a
set of colors to TVDc admin-users in order to delegate ismlahanagement of resources in that
specific TVDc group. The tasks of a TVDc admin-user includggasng colors to the resources
of a TVDc group, from her assigned set of colors. She als@ass color to an admin-user if
the admin-user is in the same TVDc group and assigned to tlaat@dministrator role. The job

function of a tenant admin-user is to perform basic cloudiattrative operations on the cloud
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resources, such as boot a VM and connect a VM to a virtual mktwidoth the resources and the
tenant admin-user are in same TVDc group and assigned with salor.
This color-driven isolation management process suppoutsdifferent types of isolation which

are described as follows.

1. Data Sharing: In this model, VMs can share data with each other only if theeyehcommon
colors. In order to constrain this, a VM is allowed to connteca VLAN only if both the
VM and the VLAN have common colors and, therefore, it is liegtd to communicate with

VMs having same color.

2. Hyperviosr (Host) Authorization: A Host is assigned to a set of colors and is only allowed
to run a VM having a color in that set. Therefore, a Host's tdjig to run VMs is isolated

to its assigned colors.

3. Colocation Management: Two colors can be conflicted with each other if context of op-
eration is mutually exclusive. Colors can be declared tod#licting and two VMs with
conflicted colors are prohibited from running in same Host.iRstance, VMs A and B with
color red and blue respectively which have been declarecd toonflicting cannot run on

same Host.

4. Management Constraints: For management isolation, tenant administrative rolesare
ated where each user having this role is restricted to parémministrative operation within

a single color.

4.3.2 Formal Isolation Management Model (F-TVDc)

In this section, we formalize the isolation managementgsedn cloud laaS which is informally
described in TVDc [18]. We call the resulting model as Foiged-TVDc (F-TVDc) for ease
of reference and continuity. In F-TVDc, different propestiof the cloud entities are represented

as assigned attributes to them. For instance, a virtual ma@hM) attribute color represents
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Figure 4.2 TVDc View of the laaS Cloud Resources [18]

assigned colors to that VM and an administrative user (adrser) attributedminRolaepresents

assigned role to that user. For this purpose we utilize tindaite based system [78], specifically
its attribute representation for the entities in a systemthls attribute based representation of
F-TVDc, the admin-users can manage the resources in dataerd®y assigning proper attributes
to them. For instance, a TVDc admin-user can assign a sefafscm a Host and, consequently,
the Host is authorized to run a VM if the assigned color of thé ¥ an element of the set of

colors assigned to the Host. F-TVDc also formally represeamt authorization model for these

admin-user privileges.
Basic Components

The sets that contain basic entities of F-TVDc are shownbietd.3. In F-TVDc,CLR contains
the existing colors/clearances in the system. We will st that the colors fron€LR will be
assigned to the cloud-resources’ and admin-users’ ragpeaaitributes, such as thedmincolor

attribute of an admin-user. The data-center is divided mmidtiple virtual data-centerd/Dc con-
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Table 4.3 Basic Sets for F-TVDc
CLR = Finite set of existing colors
VDc = Finite set of existing virtual data centers
AROLE = {itAdmin, tvdcAdmin, tntAdmin}
AU = Finite set of existing admin-users
VM = Finite set of existing virtual machines
VMM = Finite set of existing hypervisors
BR = Finite set of existing virtual bridges
VLAN = Finite set of existing virtual LANs

tains the names of these virtual data-centers. There ae #uministrative roles: IT administrator
(itAdmin), TVDc administratorvdcAdmin), and tenant administratan{Admin) which are con-
tained in seAROLE. The setAU contains all admin-users in the systefiMM andVM contains
the current existing hypervisors (Hosts) and the virtuatinmaes(VMs) in the system. Similarly,

existing virtual LANs and virtual bridges are contained @$LAN andBR respectively.

Attributes

Attributes characterize properties of an entity and are etemtlas functions. F-TVDc recognize
two types of attribute functions for each entity dependingtwe nature of the function’s values:
atomic-valued and set-valued. For instance, an adminaigéute functioradminRolecan only
take a single value that indicates the assigned role to et .WOn the other hand, the attribute
functionadmincolor representing the assigned colors to an admin-user, camiakiple values.
For convenience we understand attribute to mean attribatibn for ease of reference. Attributes

of an entity, let’s say VM attributes, can be formally defirsedfollows:

o ATTRyy is the finite set of VM attributes, where

attType: ATTR— {set, atomic}.

e Foreachatt € ATTRyy, SCOPE; is a finite set of atomic values which determines the range

of att as follows:
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Table 4.4 Attributes Specification

Entity Attributes  attType SCOPE
Admin-User adminRole  atomic AROLE
adminvdcenter  set VDc
admincolor set CLR
Virtual Machine vmvdcenter atomic VDc
vmecolor atomic CLR
host atomic VMM
status atomic  {Running, Stop}
bridge set BR
Hypervisor (Host) vmmvdcenter atomic VDc
vmmcolor set CLR
vm set VM
Virtual Bridge brvdcenter  atomic VDc
brcolor atomic CLR
vm set VM
vlan atomic BR
Virtual LAN vlanvdcenter atomic VDc
vlancolor set CLR
bridge set BR

SCOPE; if attTypefatt) = atomic
Rangedtt) =

P(SCOPEy) if attTypefatt) = set

whereP denotes the power set of a set.

¢ An attribute is a function that maps each ¥MM to a value in range, i.e.,

Vatt € ATTRym. att : VM — Rangéatt)

Similary, attributes of other entities can be defined. Tab{eshows the necessary attributes

for the entities in F-TVDc which are described as follows.
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Admin-User @User ) attributes:adminRoleattribute of an admin-useaUser ) specifies
the assigned administrative roleatser . Note that, armUser can get only one admin-
istrative role, henceadminRoleis an atomic attribute. Attributadminvdcenterepresents
the assigned virtual data-center ofaldser . If the aUser is an IT administrator then its
adminvdcentecontains all the members MDc. Otherwiseadminvdcenteof anaUser
contains only one element fro'Dc. Similarly,admincolorspecifies the assigned colors to
anaUser . IfanaUser is an IT administrator then hadmincolorcontains all the elements
of CLR. On the other hand, aaUser havingtvdcAdmin role can get subset of colors from
CLR and atntAdmin gets only one color. Section 4.3.3 represents the opegatimassign

values of thesaUser attributes.

Virtual machine (VM) attributes: The VM attributieost represents the hypervisor (Host)
where a VM is running. Attributeridgerepresents the connected BRs of a \Wvhvdcenter
represents the virtual data-center a VM belongs to\andolorspecifies the assigned color

to that VM.

Hypervisor (Host) attributes: Them attribute represents the running VMs in a Host. The
vmmvdcenteattribute represents its virtual data-centers amdolorthe assigned colors to
it.

Virtual Bridge (BR) attributes: Them attribute of BR specifies the connected VMs to a
BR. Similarly,vlan specifies the VLAN to which a bridge is connected. Similat® dther

entities,brcolor andbrvdcenterepresent the virtual data-center and color assigned to.a BR

Note these are atomic in this instance.

Virtual LAN (VLAN) attributes: Thebridge attribute of a VLAN specifies the connected
virtual bridges to it. Alsoylancolorandvlanvdcenterepresents the virtual data-center and

colors assigned to a VLAN.
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4.3.3 Administrative Models

In this section, we discuss administrative operationsterthree types of admin-users. Table 4.5
formally specifies the set of administrative operationstf@ IT admin-user. The first column
specifies the operation name and parameters. The secondrcsjecifies the conditions that
need to be satisfied to authorize the operation. Attribubessets that will be updated after an
authorized operation are listed in the third column, witasteymbol indicating the value after the

update. Administrative operations of Table 4.5 are disetid&low.

e CreateVDC: First column of table 4.5 shows that this function takes pacameters: users
u and a virtual data-center vdc. Then, in second columnethasameters need to satisfy the
given formula which checks if u belongs &J, adminRoleof u is itAdmin and vdc is not
present invDc. If the precondition is satisfied, in column 3, vdc is creavgdadding it to

setVDc.

e CreateClandRemoveCl Using these two operations, @&Admin can create a new color cl

and remove an existing color cl.

e Add_Clyypeadmin: This function takes three parameters: users ul and u2, aotbacl.
These parameters need to satisfy the given formula in coRimhich checks if ul has role
itAdmin, u2 has roleavdcAdmin and cl is a valid member iGLR. If so, color cl is assigned

to tvdcAdmin u2 by adding cl tavdcAdmincolomttribute of u2, as shown in column 3.

e Rem_Clrypeadmin - Using this operation, atAdmin removes a color ¢l from an admin-user

having roletvdcAdmin.

e Assign_VDCagmin: Using this operation aitAdmin user assigns a virtual data-center vdc

to attributeadminvdcenteof atvdcAdmin or tntAdmin user.
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Table 4.5 IT admin-user Operations

Operation Precondition Updates
CreateVDC(u, vdc) ucAUAvdcgVDCA VDc'=VDcU{vdc}
[*Creates a virtual data-center | adminRoléu)=itAdmin

vdc*/

CreateCl(u,cl) ucAUACI¢CLRA CLR’=CLRU{cl}
[*Creates a color cl*/ adminRoléu)=itAdmin

RemoveClu,cl) ucAUACIECLRA CLR’=CLR-{cl}
/*Removes a color cl*/ adminRoléu)=itAdmin

Add_ Clyypeadmin (U1,u2,cl) uleAUAadminRol¢ul)= admincolof(u2x—

/*Adds cl to tvdcAdmin u2*/ itAdminAu2e AUACleCLRA | admincolofu2){cl}
adminRoléu2)=tvdcAdminA
cl¢admincolofu?2)

Rem_ Chvpeadmin (U1,u2,cl) uleAUAadminRol¢ul)= admincolof(u2x—
/*Removes cl from itAdminAu2c AUA admincolofu2)-{cl}
tvdcAdmin u2*/ adminRoléu2)=tvdcAdminA

cleadmincoloKu?2)
Assign_VDCagmin (ul,u2,vdc) | uleAUAadminRol¢ul)= adminvdcentéfu2)x—
[*Assigns virtual datacenter vdc itAdminAu2€ AUA {vdc}

to tvdcAdmin or tntAdmin u2*/ | (adminRoléu2)=tvdcAdminv
adminRoléu2)=tntAdmin)A
vdceVDc

Assign_VDG,y (u,vm,vdc) u cAUAVMeVMAvdce vmvdcentefvm)<—
[*Assigns virtual datacenter VDcAadminRoléu)=itAdmin | vdc

vdc to a VM vm*/

Assign_VDGyywm (u,vmm,vdc) | u cAUAVMMeVMMAvdce vmmvdcentéfvmm):—
[*Assigns virtual datacenter VDcAadminRoléu)=itAdmin | vdc
vdc to a Host vmm?*/

Assign_VDGgr(u,br,vdc) u cAUAbreBRAvdce brvdcentef(br)«
[*Assigns virtual datacenter VDcAadminRoléu)=itAdmin | vdc
vdc to a BR br*/

Assign_VDGyan (u,vlan,vdc) | u eAUAvIaneVLANAvdce vlanvdcentévlan)y—
[*Assigns virtual datacenter VDcAadminRoléu)=itAdmin | vdc
vdc to a VLAN vlan*/
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e Assign_VDG,y: A virtual data-center vdc is assigned to thravdcenteattribute of a VM

called vm. This value specifies that vm belongs to virtuahe=gnter vdc.

e Assign_VDGyuv : Similarly, a virtual data-center vdc is assigned to vinemvdcenteat-

tribute of a Host called vmm.

e Assign_VDGgg: This operation assigns a virtual data-center named vdirudcenterat-

tribute of a BR calledr .

e Assign_VDG, an: A virtual data-center, vdc, is assigned to thanvdcentemttribute of a

VLAN called vlan.

Similarly, table 4.6 shows the operations for TVDc admiesss The TVDc admin-users are re-
sponsible to assign colors to thetAdmins and the resources in data-centers where the TVDc
admin-users are authorized to exercise their priviledgee.description of these operations are as

follows:

e Assign_Clagmin: A tvdcAdmin ul assigns a color cl totatAdmin u2. Authorization of this
operation needs to satisfy the precondition that ul andeithahe same virtual data-center.

Also, theadmincolorattribute of u2 must contain cl.
e Rem_Clagmin : Using this operation &vdcAdmin removes a color fronntAdmin.

e Add_Clywwm : This operation adds a color cl to a Host named vmm if vmmtaddAdmin

are in same virtual data-center. Note that, a Host can gontaltiple colors.

e Assign_Cly, Assign_Ckg, and Add_Cly an: Using first two operations operations a
tvdcAdmin u assigns a color cl to a VM vm and a bridge br respectively. o Alssing
Add_Cly an thetvdcAdmin adds a color to thelancolor attribute of a VLAN vlan. Note
that,vlancolor attribute can contain multiple colors since vlan can be ected to multiple
virtual bridges.
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Table 4.6 TVDc-ADMIN Operations

Operation Precondition Updates
Assign_ Clragmin (U1, uleAUAU2eAUAadminRol€ul)=| admincolof(u2)x—
u2,cl) tvdcAdminAadminRoléu2)= {cl}

[*Assigns a color cl
to atntAdmin u2*/

Rem_Chagmin (U1,
u2,cl)

/*Removes the color cl
from atntAdmin u2*/

Add_Clypmm (u,vmm,cl)
/*Adds a color cl
to a Host vmm?*/

Assign_Cly (u,vm,cl)
[*Assigns a color cl
to a VM vm?*/

Assign_Ckg(u,br,cl)
[*Assigns a color cl
to a BR br*/

Add_ClVLAN (U,V'an,Cl)
/*Adds a color cl to
a VLAN vlan*/

tntAdminA adminvdcentdul)=
adminvdcentgu2)/Acle
admincoloful)A
cl¢admincolofu?2)

uleAUAu2eAUAadminRoléul)=
tvdcAdminAadminRoléu2)=
tntAdminA adminvdcentdul)=
adminvdcentdu2)Acle
admincoloful)A
cleadmincolofu?2)

ucAUAVMMeVMMAcle
admincolofu)AadminRoléu)=
tvdcAdminAadminvdcentgu)=
vmmvdcentérmm)

ucAUAVMeVMAcle
admincolofu)AadminRoléu)=
tvdcAdminAadminvdcentgu)=
vmvdcentgvm)

ucAUAbreBRAcle
admincolofu)AadminRoléu)=
tvdcAdminAadminvdcentgu)=
brvdcente(br)

ucAUAvVIaneVLANAcle
admincolofu)AadminRol¢u)=
tvdcAdminAadminvdcentgu)=
vmmvdcentdgvlan)

admincolof(u2)x—
)

vmmecolof(vmmy—
vmmcolofvmm)J

{cl}

vmcolor(vm)«—

{cl}

brcolor' (br)«{cl}

vlancolor(vlank—
vlancolor(vlan)J

{cl}

Now, table 4.7 shows the administrative operations forrieadmin-users and preconditions to
authorize these operations. The operations of the tenarihaasers are to manage cloud resources

within their assigned TVD groups, i.e., colors. The operaiare described as follows:

e Boot: Using this operation a tenant admin-user u boots a VM vm irnatdmm. Table 4.7
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Table 4.7. Tenant-ADMIN Operations

Operation Precondition Updates

Boot(u,vm,vmm) vmcoloi(vm)eadmincolofu)A host(vm)«

[*Boots a VM admincolofu)N vmmcolofvmm)£ vmm

vm in a Host vmm?*/ ) Aadminvdcentgu)= v (vmm k—
vmvdcentgivm)Aadminvdcentdu)e vmivmm)uvm
vmmvdcentérmm)Avmcolo(vm)e
vmmecolofvmm)AvmeVMAvmme statug(vm)<«—

ConVmToBr (u,vm,br)
[*Connects a VM

vm to a BR

br*/

ConBrToVLAN (u,br,vlan)
/*Connects a BRbr
to a VLAN vlan*/

VMMA Evaluate_CLocConst(vm,vmimn)
ucAUAadminRoléu)=tntAdminA
statugvm)=Stop

ue AUAvmcolovm)cadmincolofu)A
brcolor(br)=vmcolovm)Abrcolor(br)e
admincolofu)AbreBRAVMeVMA
adminvdcentgu)=vmvdcentgivm) A
adminvdcentdu)=brvdcentefbr)A
adminRoléu)=tntAdmin

ucAUADbrcolor(br)eadmincolofu)A
brcolor(br)e viancolor(valn)A
vlancolor(vlanyhadmincolofu)+#

P AbreBRAvVIaneVLANA
adminvdcentgu)=vlanvdcentefvm)A
adminvdcentgu)=vlanvdcentefbr)
AadminRoléu)=tntAdmin

Running

bridg€(vm)«—
br

vii(br)«
vm(br)u

{vm}

bridg€(vlank—
bridge(vlan)u
{br}
vlar'(br)«
vlan

shows the necessary precondition in order to authorizeaipésation. The precondition
verifies if the u has same color of the vm which is basicallyraplementation of the man-
agement isolation constraint shown in section 4.3.1. Intexhdto that, the precondition
also checks if these three entities belong to the same éatarc It also verifies if the Host
vmm’svmmocolorattribute contains the color of the vm’s assigned colomircolorwhich is
an implementation of Host authorization isolation whicllso shown in section 4.3.1. The
authorization process of this operation also calls Evaluat. ocConst function to satisfy the
co-location management constraint, also given in secti8ri4for vm with other running
VMs in vmm. The algorithm 4.1 shows the evaluation procesg&waluate CLocConst.

Upon successful checking of these conditions vm is schddaléhe vmm. In chapter 6, we
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Algorithm 4.1 Colocation Constraints Verification
1: procedure Evaluate_CLocConst (reqVm,vmm)

2.  Flag=True

3: forall vm € VM do

4: if hos{vm)=vmmthen

5: for all conele=ConflictColordo

6: if vmcoloreqVm)£ vmcoloivm) then
7: if vmcoloi(vm)econele\vmcolo(reqVm)cconele\statugvm)=Runningthen
8: Flag=False

9: Return Flag

10: end if

11: end if

12: end for

13: end if

14: end for

15: Return Flag
16: end procedure

develop and analyze a novel constraint-driven virtualues® scheduling process.

e ConVmToBr: It connects a VM vm to a BR br. A VM can only connects to br ifhieve

same color and they belongs to the same data-center.

e ConBrToVLAN : Using this function a tenant admin-user connects a BR bibAsN vilan.

They can be connected if color of br is present in\ttancolor attribute of vlan.

Algorithm 4.1 shows the evaluation algorithm of the co-loma constraints. It takes two in-
puts: requested VM (reqvVm) and the Host (vmm). For each VM in the vmm, this algo-
rithm verifies if there is any conflict between the assignddrcm thevmmcolorattribute of VM
with the assigned color to thenmcolorof reqvVm. Attribute values can have different type of con-
flicts that can represent various relationships among thasle as mutual-exclusion, precondition,
etc. A generalized approach to represent the various tyietribbute conflict-relations are shown
chapter 3. Here, the conflicting values, i.e. colors, of ttiebaite vmmcolorare stored in a set
called ConflictColor where each element in the set contaisest @olors that are conflicting with

each-other. Formally this set is defined as follows,
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ConflictColor = {conelg, conelg, ..., conelg} where coneleC CLR
If algorithm 4.1 identifies no conflicts between reqvVm andratining VMs in vmm, it returns

True. Otherwise, it returns False.
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Chapter 5: THE CVRM MODEL

The materials in this chapter are published in following wes [21, 26]

1. Khalid Bijon, Ram Krishnan and Ravi Sandhu, Virtual ReseuOrchestration Constraints
in Cloud Infrastructure as a Service. In Proceedings of theA&M Conference on Data

and Application Security and Privacy (CODASPY), March 2@15, San Antonio, Texas.

2. Khalid Bijon, Ram Krishnan and Ravi Sandhu, Automated Sd@ints Specification for
Virtual Resource Orchestration in Cloud laaS. Under ReviellEEE Transactions on De-

pendable and Secure Computing (IEEE TDSC), 2015.

We discuss our developed attribute based CVRM (constdaingn virtual resource manage-
ment process). CVRM provides a language to specify comssrarhich is a customized version
of ABCL that is suitable for this purpose. We also provide afoecement guideline for these

constraints in the OpenStack cloud platform.

5.1 Motivation

Migrating line-of-business applications to laaS can bkyri®r cloud tenants if their virtual re-
sources are not properly configured. A misconfigured systetonly hinders expected perfor-
mance but also poses several security threats to a tenagge Threats include (i) malicious image
insertion and inadvertent leakage of sensitive infornmatimough snapshot, (ii) sensitive informa-
tion passing from a virtual machine to malicious virtualwetks, and (iii) flow of information
from a highly sensitive virtual network to a malicious ordesensitive one. Currently commercial
cloud laaS providers, including Amazon and Rackspacer affbest rudimentary capabilities for
such configuration management. For instance, AWS-IAM [2¢rsfa tenant to specify policies
that can restrict resource-level permissions for certagrsiwhere the permissions include snap-
shot a VM, create a virtual storage (STR) with specific cayaetc. On the other hand, Rackspace

provides a fixed mechanism for isolation management whenedalesources and administrative
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users of a tenant, also referred as admin-users, can besgltmtp different projects where admin-
users can only configure the resources in their assigneeqtsoj These fixed approaches lack
the generality to capture diverse enterprise-specificirequents for configuring virtual resources.
Moreover, in these user-driven configuration managemempsecompletely relying on the admin-
users increases the risk of possible misconfiguration sadeein-users may inadvertently create
incorrect configurations. It also elevates potential f@ider threats since there is no independent
mechanism to detect or prevent those misconfiguration.

Motivated by these considerations, we aim to develop CVRM tifers a tenant means to
specify various constraints for configuring the requirediagements of virtual resources. We
address the fact that security concerns due to misconfigaraill vary across line-of-business
applications of the tenants. For instance, a 3-tier busiagplication will be concerned about
protecting unauthorized disclosure of data, while haddagter configurations will seek to ensure
integrity and availability of the resources. CVRM is degdrio address tenant-specific constraints
where the constraints are enforced on user-operationstteat the configurations of virtual re-
sources. Constraints specified by a tenant can be enforcegerations performed by the tenant’s
admin-users during regular operations or by CSP’s adménsuis case of exceptions and trou-
bleshooting. We believe that, in addition to any accessrobntechanism implemented in this
system, CVRM provides resource management capabilitypteatents misconfiguration caused
by admin-users.

Figure 5.1 shows conceptual view of constraint driven drttesource management. Con-
straints can be specified for a specific mapping relationi(oply relation) between two virtual
resources. We describe these mapping relations and possgtonfiguration issues. We also pro-
vide examples for 3-tier applications and hadoop clustafigarations. Note that, 3-tier aims to
isolate computational requirements of an organizatiorbge different tiers—presentation (PS),
application (APP), and database (DB), for better securityscalability. Hadoop is a master-slave
architecture for faster analysis of big data where secig#tyes include integrity and availability of

the resources. Different kinds of virtual resource to \datesource mappings are briefly discussed
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Figure 5.1 Constraints on Virtual Resources Arrangement Configomati

below.

e IMG-VM Compatibility Relations: As shown in figure 5.1, a virtual machine image, also
referred as IMG, can be used by multiple VMs. ConverselynfeoVM multiple snapshots
can be imaged. This process provides quick replication d¥lanto large numbers of cloned
VMs, and also quick migration of a VM to another server. Hoareincorrect usage of an
IMG can critically affect the security and performance ia #ystem. For instance, in 3-tier,
VMs running the application of each tier require separat&f\ince VMs in different tiers
perform different operations. Thus, an IMG created for D#-is not to be used for VMs
of PS-tier, since PS-tier VMs are web-facing and the IMG mgyose critical information
about DB-tier. Similarly, in hadoop, each type of VMs suchhameNode and taskTracker
have different functionalities, whereby improper use oflsits can hamper performance

and availability.

e NET-VM Connectivity Relations: A group of VMs, connect to a virtual network NET,
so as to internally communicate. However, a wrong VM conee¢d a NET may hamper

communication in NET and availability of information. Farstance, in 3-tier application,
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APP-tier VMs can be connected to each other for faster conwations, however, acci-
dental assignment of VMs from other tiers can hamper the fiimilarly, the taskTracker
VMs performing reduce jobs should be connected with eacér@thd no other VMs should

connect to this network.

e RT-NET Connection Relations: Using a virtual router (RT), VMs of two selected NETs
can communicate. In 3-tier application, VMs of APP-tier &fsttier should communicate,
however, PS-tier should not directly communicate with Dd:-tAlso, connection to the ex-
ternal internet is only authorized for tier-1 VMs. Similgrin hadoop, a NET for nameNode

VMs should only connect to the NET of jobTracker VMs.

e STR-VM Attachment Relations: A persistent virtual storage (STR), is like a hard-disk
drive which can be attached and detached to multiple VMs,obet at a time, until it is
destroyed. Note that, a STR attached to a VM stores data thenvm. Later, if the STR
is detached and re-attached to another VM without deletedata, the new VM will get

access to the data of the previous VM.

5.2 Design of CVRM

As discussed in earlier chapters, intuitively, an atteboaptures a property of an entity in the
system, expressed as a name:value pair. For instancegrobeasan be a user attribute and values of
clearance could be ‘top-secret’, ‘secret’, etc. In the eghof cloud laaS, various useful properties
of the virtual resources, such as VMs and NETS, can be captayeassociating attributes to
them. For instance, attributes can represent a VM’s diftepgoperties including owner tenant,
operational purpose, workloads sophistication, and cctedenetworks. In CVRM, given that the
properties of the virtual resources are represented bydkteibutes, a constraint is enforced while
mapping (i.e., connecting) two virtual resources by conmggathe specific attributes of the virtual
resources.

In this section, we formally define CVRM that includes regration of the basic elements,
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relations among virtual resources and the constraintsfsgaion language. Then, we instantiate

CVRM for 3-tier architecture and hadoop cluster in cloudSaa

5.2.1 Formal Specification

The basic elements of CVRM include representation of exgsenants and virtual resources in a
cloud laaS system where each virtual resource belongs totiaipar tenant. A virtual resource
is also mapped to a particular class of virtual resource s3dfM, NET, IMG, RT, andSTR.

Formally, we have the following.

VR is the set of all existing virtual resources in CSP.

CLS is the set of all classes of virtual resources that are stpgdry the CSP.

rCls: VR — CLS, is a function that maps each virtual resource to its class.

TENANTS is the finite set of existing tenants in CSP.

tenant: VR — TENANTS, is a function that maps each virtual resource to the termeatt t

owns it.

VR is the set of virtual resources that are owned by the tetnant Formally,

VR={v € VR | tenanfv)=t nt }.

Here, VR, contains the virtual resources of a tenaint and these virtual resources are parti-
tioned into different sets based on their class. We defink seats of the virtual resources of each

tenant as follows,

e Ry is the set of virtual resources of clasthat are owned by the tenanmt . Formally,

VRmtlcz{V EVRnt ‘ rClS(V)=C}.

In a tenant, a particular class of virtual resources can bpgeific type of mapping relations to
virtual resources of another class. For instance, viresdurces of cladéM can have connection-
mapping and attachment-mapping relations with virtuabueses of clasdlET andSTR respec-
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tively. We can define the relations between elements of evaryclasses of virtual resources in a

tenant as follows,

o Rint s is the relation between virtual resources of clesandc; in a tenant nt . For-
mally,

Rint ;5 C VRtnt,ci ><\/Rtnt,cj-
However, CVRM restricts the following type of relations,

1. Relations between virtual resources of same class caersgecified (i.e Rint ¢, c, cannot

be specified).
2. For two classes,;#c; we can definéR; n c,.c; OF R nt ;¢ but not both.

CVRM provides two operations calleddd and R M respectively to add and remove tuples
to a relation, where each operation is a function that takdasguts the relation and two virtual
resources of appropriate classes. Each operation alsme¢esla specific constraint with respect to
these two virtual resources as discussed below. Formadiydhe defined as follows (the notation

for defining these operations is similar to the notation diesoa used in NIST RBAC [57]),

Add(Rt nt ,Ci,Cj ’Vrl lvr2) <
VI €VRnte, A VIEVRpi e, A consEva@;‘}f{f{Ci,%,vrl,vrg)

Rt nt 7Ci,Cj/ = Rt nt ,c;,c; U {<VI’ l,Vr2>} >

RM(Rint c,,c; VI.Vrz) <
VI €VRtc, A VIREVRpic, A CONSEVAlO . . Vi Vh)

tnt ,Ci,Cj5 7

Rt nt 7Ci,Cj/ = Rt nt,c;c; — {<Vr 1 ,Vr2>} >

Here, 5% anddsXM_ _ are constraints that are respectively specified for addbra-

tnt ,Ci,Cj tnt ,Ci,Cj

moving a tuple to the relatioR; cpc; A successful execution of an operation is allowed if the
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constraint is satisfied for the particular virtual resosreg and vk. Both Add andRM call the
constraint evaluation functioconsEvalwith vry, vr, as inputs along with the relevant constraint.
Evaluation of the constraint is a simple evaluation of adagformula to true or false.

Basically, a constraint compares different propertiegyassl to the virtual resourcesvand
vr, which are evaluated bgonsEvalto make a decision. In CVRM, there are attributes of each
class of virtual resource that characterize different projps of the resources and are modeled as
functions. For each attribute function, there is a set otdiobnstant values that represents the
possible values of that attribute. We assume values obatés to be atomit therefore, for a
particular element of that resource, the name of the at&ifunction maps to one value from the
set. For convenience attribute functions are simply reteto as attributes. Formally, we have the

following.

e ATTRY, is the set of attribute functions of a virtual resource clase tenant nt . Here, for
a functionattcATTR,, the domain of the function is the virtual resourd, ¢, and the
codomain is the values att written asSCOPE,;; which is a set of atomic values. Formally,

att: VRt c,— SCOPE,;; whereattcATTR,.

Now, for eachR; nt ¢, c;, at most two constraints can be specified for the operatibhsandR M
respectively. Each constraint is used to verify if assigraddes of specific attributes of two virtual
resources Vvrand vk, of classc; andc; respectively satisfy certain conditions. CVRM uses the

grammar in table 5.1 to specify constraints.

The constraints specification grammar syntax is given irkBadNormal Form (BNF). Basi-
cally, it is a restrictive version of the language ABCL givartable 3.2. Each constraint statement

contains single or multiple small expressions in the fornmgdlication, A—B, joined by logical

1As given in section 5.1, in 3-tier application, an examplswdh constraints is to restrict communication between
VMs of APP-tier and DB-tier. Here, if the attribute is callgdr and the possible values are presentation, application
and database, a VM can only get one of the three values. Hoytheee might be constraints that require set-valued
attributes where the virtual resources get multiple val@&RM is not currently designed to express such constraints
however, can be easily extended to set-valued attributes.
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Table 5.1 Constraint Specification Grammar
<Quantifier>:= V(vrl,vr2) € R cis> <cis> - <Stmt>
<Stmt>:= <Stmt> <connector <Stmt> | (<rule>)
<rule>:= <Tokern> — <Token>
<Token>:= (<Token> <connector <Toker>)|(<Term>)
<Term>:= <Attribute>(<resource-) <comperatar <Scope-
<Attribute>::= <letter> | <digit> | <Attribute>
<Scope-::= <letter> | <digit> <Scope-
<connector::= A | V
<comparatops::= = | #
<Cls>:=cy|Ca]...|Cy
<resoruce ::=vrl | vr2
<digit>::=0[1|2] ...|8|9
<letter>::=adb|...|y|z|A|B|...|Y|Z

connectors. The small expression is also referred to asreamtsrule or justrule. Both A and B

in arule A—B contain one or more predicates connected by logical cdarssavhere a predicate
contains an attribute function of a specific class of virtiesource and the function returns the
assigned value to the attribute of a specific instance ofdlaas and, then, the predicate compares
the value with a particular value of the attribute. Basigadlrule, A—B, verifies that if assigned
attribute values of a virtual resource vrl meet the conaiétigpecified in A then assigned attribute
values of vr2 should satisfy the condition in B in order toans/rl and vr2 into a relation.

Note that, the grammar is also weakly typed since in eachgatg Attribute> and<Scope-
are replaced by arbitrary names. To this end, we develop @isistatic type-checking system that
ensures valid constraint expression. For each predicateaainstraint, it checks if the value,
specified after theccomparator sign of the predicate, belongs to the scope of the attribareen

specified before thecomparator. This is formally defined as follows.

Predicate format:

attributeResource') <comparator attribute-value
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3-Tier Application System Configurations

A: Virtual Resources, Attributes and Constraints

ForsionViy
t
o

[—=~"]

o [y

Constraints

nstraint
5

i S

\ ol

= Constraint |

Constraint 1[Gonstraint 2 [ 4 I :
Constraint 3

C: Constraint Specification
Constraints for router-network connection mapping:
Const 1: If route attribute of a router is outerRoute

thenAch(‘:ly network with netType outerNet can connect to it.
O3 ernerrr =V (router,network) € Rs_. ., yar, ar.

((route (router)=outerR) — ( netType (network)=
outerNet) V ( netType (network)=psNet))

M B: Scopes of the Attributes
ATTR

3-tier

={tier ,versionVM , falvors }
SCOPE

tier

status = {runningaStOp,SUSpended}
A"l"TRl;ffer ={tier , versionIMG }
SCOPE

tier

ATTR ) = { netType }

SCOPE

ATTRER ={ route }
SCOPE

route
ATTRSX = {ioType , volumeSize }
SCOPE, 1, = {regular,fast,fastest}
SCOPE

SCOPE , ionmg = {psI1,psI2,appl1,dbl1}

netType

volumeSize

={regular,large,huge}

= {presentation,application,database}

= {outerNet,psNet,appNet,dbNet}

={outerR,psToappR,appTodbR}

Constraints for network-vm connectivity mapping:

Const 2: Only presentation layer vm can connect to a

psNet network. Similar, constraints can be generated
g o for other layer vms and networks.

= {presentation,application,database} add

SCOPE . onvm= {PsV1,psV2,appl,dbV1,dbV2}

SCOPE,, ., = {tiny,small,medium,large, xlarge}
SCOPE

05 ervmner =V (VMNEtWork) € Rs_cio. v, wer
((netType (network)=psNet)— ( tier (vm)=presentation))

Const 3: A network can be removed from a vm if the vm
status is stop.
RM

O3 tervmner =V (VM,network) ER iy, vue, war
(status (vm)=stop)
Constraints for image-vm assignment mapping:

Const 4: If tier of IMG is presentation and versionlmg is psi1,

then it can not be used by presentation VM with versionVM psV2.
§Add

stiervmivG = V (VMLIMAge)€ Ry ciex v, 1us»
(presentation =tier (image)) A (psl1 =versionlmg (image))

— (presentation = tier (vm)) A (psV2 = versionVM (vm))
Constraints for storage-vm attachment mapping:

Const 5: A presentation vm can not get fastest ioType storages.
Add _
O3 iervmstr = V (VM,StOrage) € Rs_cier, vy, s1x »

(tier (vm)=presentation)— (ioType (storage)#fastest)

Figure 5.2 Constraints Specification for 3-Tier Application System

Type-Checking Rule:

If attribute-values SCOPE ipute 1'hen

returntrue
FElse

returnerror

5.2.2 Instantiation

example of hadoop cluster setup.

In this section, we instantiate CVRM for an example of 3-basiness application setup and an

68




3-Tier Business Application

We focus on the tenant call&d t i er . The classes of virtual resources supported by the CSP are
VM, NET, RT, STR andIMG. 3-ti er supports relations frol@M-to-NET, NET-to-RT, VM-
to-IMG andVM-to-STR which are written a®s. i er vmNeT » R3-ti er NET,RTs R3-ti er ,vm,sTR @Nd
Rs-tier vm,mc respectively.

Attributes are defined for the instances of each class afaliresources that characterize dif-
ferent properties necessary to capture the requirements®- t i er application in cloud. Fig-
ure 5.2-A identifies the attributes of the virtual resouroésenant3-ti er. It also shows the
mapping relation among virtual resources (representedrbweheaded lines). Figure 5.2-B gives
the scopes of these attributes. For instance, in A, a VMaaltigiier represent the tier-operations
a VM performs and B shows the scopetddr which is presentation, application, database. For
each VM, tier assigns a value from the scope to the VM. An example attriassggnment for a
VM that performs as a database servetisr(VM)= database. Other two attributes of VM called
versionV M andstatus represent the version of a VM in specific tier and the actistgtus re-
spectively. Similarly, IMG also has attributes calléer andversionI M G that represent the tier
and version respectively for which an IMG is created. ot i er , we also create a NET attribute
callednetType that specifies the layer for which a NET is created for the comiation. For in-
stance, a NET witmetType value psNet should only carry presentation layer data.regb.2-A
and 5.2-B also defines attributes and their scopes for RT aRdr&spectively.

Generally, in CVRM, tenants can specify attributes for itv@itual resources to capture spe-
cific organizational requirements. Also, resources carm ltavtain general properties irrespective
of organizational diversities of the tenants. CVRM catéggs attributes in two types: one that
captures the general properties across all the tenangsr@gdfas inter-tenant attributes) and the
other that captures tenant-specific properties (refeored intra-tenant attributes).

For a 3-tier application, the tenant specifies VM attribwthetl tier, as shown in figure 5.2-A,

for their operational purpose. Herger is intra-tenant attribute since this attribute is not mean-
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ingful in other applications such as hadoop. HowevetumeSize attribute of STR represents
the size of the volume and this attribute is required by wirgtorage regardless of operational
objectives of different tenants, and is thereby an inteai attribute.

In this setup, proper administration of the attributes isassary where administration process
should include creation and deletion of the attributes d&ir tscopes as well as assigning cor-
rect attribute values to the virtual resources. Creatiah@gletion of inter-tenant attributes and
their scopes should be managed by the CSP’s admin-usefs, thia attribute value assignment to
virtual resources are performed by CSP’s or tenant’s admeers or by the laaS system as appro-
priate. Attribute administration is beyond the scope of tieisearch. However, there is literature
on attribute administration [79] that might apply in thisext.

After the attribute specification of the resources, thernéBat i er specifies at most two
constraints for the relations of every two classes. Someplaconstraints with high level de-
scriptions are shown in figure 5.2-C. For instance, constigf’; ., \w vz applies to theddd
operation where it checks if a vm is connecting to an appab@wirtual network by comparing
their attributes. Another constraint calléf\, ., ,/,, vz applies toR M operation of same rela-
tion where it checks if the a vm is in stop state to disconrtdadim a virtual network. Figure 5.2-C

also shows example constraints for other relations.

Hadoop Cluster Setup

The selTENANTS contains the tenattadoop. The classes of the virtual resources supported
by the CSP ar&M, NET, and RT and specified relations are betwébhto-NET and NET-to-RT.
The relations are representedRgdoop,vm NeT @NdRhadoop NET,RT-

In this simple hadoop setup, we only define one attribute &hevirtual resources (shown in
figure 5.3-A). Here, &M attributenodeType represent the type of operations a vm performs in
hadoop cluster and figure 5.3-B shows the scopenofleT'ype that is clientNode, nameNode,
jobTracker, mapTask, reduceTask. Similarly, two attesutetType androute are defined for
NET and RT respectively. Note that, other attributes caa défined for more complex hadoop
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Hadoop Cluster Configurations C: Constraint Specification

A: Virtual Resources, Attributes and Constraints

Constraints for router-network connection mapping:
? GetTyp® PPing
Constraint 1: If route attribute of a router is outerRoute then
- » e » Bl only network with netType outerNet and clientNet can
AN “ o B connect to it and if If route attribute is taskRoute then it cannot
E be connected with nameNet, outerNet and clientNet.
[ [Constraint 1] [Constraint 2] ]
Constraints ((route (router)=outerRoute) —

(( netType (network)=outerNet) V ( netType (network)=clientNet)))
A((route(router)=taskRoute) —

((( netType (network)#nameNet) A ( netType (network)=outerNet))
A( netType(network)=clientNet)))

B: Scopes of the Attributes
ATTR;::,[MPZ{ nodeType |
SCOPE,,serype =( clientNode ,nameNode, jobTracker , mapTask ,

duceTask | . . .
recucetast Constraints for network-vm connection mapping:
ATTR ot ={netTy .

adoap = | €1 Tpe | Constraint 2: In a nameNet network only nameNode and
SCOPE, ., ={ outerNet , clientNet, nameNet, jobNet JjobTracker vm can be connected.
mapNet, reduceNet |

(( netType (network)=nameNet) —

ATTR 1y, = route | (( nodeType (vm)=nameNode)V ( nodeType (vim)=jobTracker)))

hadoop —

SCOPE,, . ={ outerRoute ,nameRoute, jobRoute , taskRoute |

Figure 5.3 Constraints Specification for Hadoop Cluster

configuration management.

After attributes specification of the resources, we showdamstraints for adding elements in
each of the relations (shown in figure 5.3-C). Here, for insta constrain&ﬁ;’goop,NET,RT applies
to the Add operation where it restricts all the NETs except outerNdt@mntNet to connect a RT

which has value outerRoute iute attribute. This constraint only allows clientNet to contiec

outer internet.

5.3 CVRM Enforcement

We describe a CVRM enforcement in OpenStack cloud platfdBasically, this discussion and

implementation of the enforcement process are based onavenid release of OpenStack [8]. We

also analyze some security issues of CVRM.
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Figure 5.4 Components of CVRM Enforcement Process in a Service of Staak

5.3.1 Enforcement in OpenStack

Figure 5.4 shows a conceptual picture of CVRM enforcemeotgss in laaS. This process in-
cludes a constraint specifier and constraint enforcer commts. Constraint specifier specifies
necessary attributes and their scopes for the virtual ressun laaS. It also specifies the con-
straints for the operations that add/remove configuratedations between two virtual resources.
When users execute the operations, respective consteamenforced. As shown in the figure,
after getting each request from users, the constraint ai@lvetrieves the attributes of the virtual
resources and the respective constraints from cloud dsgabal evaluates the constraints to make

decision.

5.3.2 OpenStack Overview

OpenStack comprises various service components thatdadwnctionalities for managing differ-
ent virtual resources. For instance, it has compute secalted Nova that offers operations for the
management of VMs where the operations include createtejalart and stop virtual machines.

Nova also has operations for arranging other virtual ressito VMSs, e.g., connect VMs with
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NETs, attach STRs to VMs, etc. In OpenStack, each resouecensmber of a specific project. A
user is authorized to exercise service operations on Viegaurces of a project if she is a member
of the project and has the role callpobject-admin There is also a notion in OpenStack called do-
main where a domain consists multiple projects. A user whaaember of a domain and assigned
to the role calledlomain-admins responsible to create/delete projects in that domainedlsas
add/remove users to specific projects. We can consider sens of a domain and its projects
as the super and regular admin-users of a tenant respgcfilere is also a fixed domain called
admin whose members are the CSP’s admin-users. Members afithin domain are responsible
to manage the cloud such as creating database tables, aneldelete other domains, add/remove
users to them, design authorization policies for user acmapuest to service APIs. Generally, in
OpenStack, if a user requests a virtual resource configmr-aiperation, the authorization service
which is calledkeystone provides a token that contains user information includimg projects
where the user is a member and the assigned roles. The opeistllowed if the project of
respective virtual-resources are same as the requesting us

Figure 5.5 shows execution steps of an user-operatioluifie-attachin OpenStack that at-
taches a STR to a VM. When a user in a project tries to execeteperation, the OpenStack
client program retrieves the token for the user freeystone. Then, it forwards the token along
with respective VM and STR names to Nova since Nova managkesne-attach Nova verifies
validity of the token and if the user is assignedptoject-adminrole. Also, it collects the tenant
information of VM and STR from its database and it approvekefgiven user, VM and STR are

in same tenant.

5.3.3 Constraint Specifier

Our designed constraint specifier component can be includedch service in OpenStack. The
specifier extends respective service operations by addimgibnalities for the creation and man-
agement of the attributes and their scopes for respectigaliresources. In a tenant (domain),

managing such functionalities are only authorized for thersi havinglomain-admirrole in the

73



Tenant User

2. Request ’
1. Get user, volume-attach 7. Allow/
Token with VM id, Deny
Storage id and
Token 6. Verify
project of
the User,
3. Token ? VM and
KEYSTONE — - p NOVA/" Storage
4. Get project 5. Get project

of Storage

—
Table

Figure 5.5 Operationvolume-attachin Nova

Tenant User

1. Get usel,
Token

2. Request ¢ 6. Allow/
for attribute Deny
creation, with
token, attribute
name, VM $ 4. Verify if

3. Token 72"5 user has
Revoked? omain-
KEYSTONEg¢— —p NOVA admin role
5. Enter into table
tenant, VM, attribute

' —~E— = .
' VM Attribute Constraint "
. Table Table '
1 1
1 1

Nova Database

Figure 5.6. Constraint Specifier in Nova

domain. Note that, present OpenStack suppmotsain-admirroles only for operations ikey-
stone, however, it can be included to other OpenStack services asidNova as well. Similarly,

specifier also provides operations for constraints spatific. Each constraint is mapped to an
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Figure 5.7. Constraint Enforcement faolume-attach

operation-name to which it applies. Operations that speahstraints are also authorized only to
users havinglomain-admirrole. Attributes, their scopes and constraints are storethtabases
of respective service. Entries in a database table acrpastte(domains) are isolated by specific
domain ids so that admin-users of a domain cannot accessdutimains’ information. Constraint
specifier also provides operations to assign values to thbudes of the virtual resources sup-
ported by each service in OpenStack. Unlike previous ojersin OpenStack, this operation
should be authorized for th@oject-adminusers of respective projects. Detailed implementation
of these operations is discussed in 5.4.

Figure 5.6 shows a Nova operation of the constraint-spea@ienponent that specifies VM
attributes. Database of Nova contains tables for storitrgpates and constraints. When a user
tries to create an attribute, the token of the user is vertbezheck if the user hagdomain-admin
role in order to make a decision. The component also congimgar operations that specify

constraints.

5.3.4 Constraint Enforcer

Similar to constraint specifier, an enforcer componentatuihed in every service in OpenStack.

When a user executes a service operation that affects ereksttween two virtual resources, en-
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forcer verifies the respective constraint which is alregolgcefied by constraint specifier. This
process retrieves attributes of the virtual resources hedconstraint expression from service
database. It implements an evaluator to evaluate the eamsfor making a decision. Note that, in
OpensStack, these operations are authorized onlgrfgect- adminusers.

Figure 5.7 shows extended view of figure 5.5 for the executibmolume-attach Besides,
comparing the project information of the VM, STR and usez,éhforcer component now retrieves
the attributes for VM and STR and constraint famlume-attactand evaluates the constraints by

considering the VM and STR attributes.

5.3.5 Security Concerns

We present different security issues for enforcing CVRMriaqgpice.
Constraints Specification Process

e Constraints, Attribute and Scope: CVRM aims to restrict privileges of admin-users in
order to mitigate misconfiguration issues of a tenant. Theeeconstraints specification and
modification should be authorized only to selected admearsisf a tenant. In OpenStack,
there are three types of admin-users: CSP-admin, domaiiraand project-admin. In
our developed constraint enforcement in OpenStack we artlyosize domain-admins to
manage the constraints, attributes and their scopes wieespécified constraints are applied
to all three type of admin-users. A more formal isolation aggment scheme is given

in [24] that can also be applied here.

o Attribute Value Assignments: An admin-user who can create virtual-resources should also
assign values to their attributes. In CVRM, the project-adusers can assign values to the
attributes. However, one needs to make sure that the adseirs-nan only assign appropriate
values. For instance, a project-admin can create VMs angiressly her project-id to those
VMs (not ids of other projects). Here, we do not focus on suctess control system,

however, existing mechanisms such as [24] might be useful.
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e Generalized Enforcement Engine with Data Isolation:For scalability, one generalized en-
forcement engine should be designed for the evaluatiorseafdnstraints of all the tenants.
In our developed enforcement engine in OpenStack, conttrare stored in the database
separated according to the domain-id of a tenant and onbeotise admin-users can have

access to their constraints.
Issues on Constraint Structure

e Contradictory Constraint: The sub-expressions of a constraint can be of two types. ®ner
stricts the relation of virtual resources of two differetasses when values of their attributes
are mutual exclusive. Another one enables the relation whervalues of the attributes
are congruent. A constraint containing both type of subresgions for same combination
of values of the attributes generates contradictory daassior a relation. We call these

constraints as contradictory constraints and they need twvbided.

e Deadlock Constraints: In a constraint, a value, let's say, yadf an attributeatt, of the
virtual resources of specific classcan have mutual exclusion relation with all the values
of an attributextt, of the virtual resources of class. Then, the virtual resources of class
with assigned value valcannot be arranged with any resources ofThese constraints are

deadlock constraints and tenants need to handle them proper

e Redundant CVRM Expressions:In CVRM, a constraint expression is redundant if it spec-
ified multiple times. Redundant expression unnecessardyease the run-time complexity.
One such example of a redundant expression is multiple caxoces of same sub-expression

in a constraint expression.

5.4 Prototype Implementation in OpenStack

We describe the implemented prototype of CVRM enforcemestgss. We leverage the DevStack

cloud framework [5], a quick and stand-alone installatiorOpenStack, for the implementation
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and analysis. We choose DevStack as it provides all compsoéthe open source cloud platform
OpenStack. We installed DevStack in a physical server thatshcores and 3GB RAM. We
implemented the CVRM components for Nova. Our python-basgdementation of constraint
specifier, that includes API design to enable users to deatributes and constraints and the

constraint enforcer that includes a constraint parseratuete constraint expressions.
5.4.1 OpenStack Constraints API

In the following, we describe the developed OpenStack A8 sléclaring attributes, their scopes,
and constraints in constraint specifier component. We aieoify APIs specification for the at-
tributes assignment to virtual resources. Here, we showAfls for Nova (compute service),
however, similar APIs are specified for other services inrt3tack. These APIs are REST APIs
where each API comprises a base url to connect to the patient-point and one of the generic
HTTP methods (GET, POST, DELETE or PUT).

Table 5.2 shows the APIs (with HTTP method and URL) that agéstered to Nova APIs of
version 2.0 in OpenStack. Here, API 1-3 and 4-6 are for mangagitributes and their scopes
respectively. Then, API 7-9 are for specification of the ¢ansts for a relation of two specific
virtual resources. Finally, API 10 is to set and removelatite-value to the virtual resources. Note
that, API 10 is already built-in to OpenStack installatibmset and remove meta information of the
virtual resources where each field in meta iseg:valuepair. We use this for assigning attribute-
values toVM where thekeyis the name oM attribute andvalueis a value from the attribute
scope. We also develop the same APIs, as shown in table 82hanStack block-storage service
called Cinder that manages the STRs. Note that, these ARI®eancluded in an OpenStack
deployment by admin-users of the CSP.

In this specification, each POST and PUT request requirequest body whereas DELETE
and GET do not. A request body is represented as a JSON diggidormat. For instance, from
table 5.2, request body of tredt-create which creates the name of an attribute, has the format

{“attribute” : {“name” : “{attname}” }}.

78



Table 5.2 OpenStaciNovaAPI for CVRM Specifications

Name URL Type
1. att-create Jv2/{tenant_id} /attributes POST
Create an attribute

2. att-delete Jv2/{tenant_id} /attributes/{id} DELETE
Delete an attribute

3. att-list Jv2/{tenant_id} /attributes GET
List all attributes

4. att-value-set Jv2/{tenant_id} /scopes PUT
Add a value

5. att-value-del Jv2/{tenant_id}/scopes/{id} =~ DELETE
Delete a value

6. att-value-list Jv2/{tenant_id} /scopes GET
Get values of attribute

7. policy-add Jv2/{tenant_id} /policies POST
Add a constriant

8. policy-del Jv2/{tenant_id} /policies/{id} ~DELETE
Delete a constraint

9. policy-list Jv2/{tenant_id} /policies/{id} GET
Get a constraint

10. meta Jv2/{tenant_id}/servers/ POST

Assign or deassign  {resource_id}/metadata
attribute-value
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id Integer id Integer
name String(255) name String(255)
project _id String(255) value String(255)
(a) The attribute Table project_id  String(255)
(a) The scope Table
id Integer - Field ~ Type
relation_name String(25%5) vm_id Integer
expression String(255) vm_id String(255)
project _id String(255) meta String(255)
(c) The constraints Table (d) The ins?anbc::—metadata

Figure 5.8 Database Schema

Here,{attname} is the name of the attribute specified by the users duringutixectheatt-
createcommand. Attributes, their scopes and constraints aresgiarNova database (high level
database tables are shown in figure 5.6). We design a datstiaes®a, as shown in figure 5.8 for
Nova which contains 4 main tablesttribute, scope constraintsandinstance_metadatd he table
attributestores the declared attribute names sxwpestores their values. The constraint represents
the specified constraints for a particular relations betw®e specific virtual resources. Here,
instance_metadates a built-in table in Nova that stores the instance meta-datd we use this
table to store assigned values to the attributes of VMs. |18ito the API specifications, databases

are included in an OpenStack deployment by the CSP’s adsensu

As discussed in section 5.3, specification of attributesy §topes and the constraint-expressions
are authorized only to thesomain-adminswhile the attribute-value assignment to virtual resosirce
and their arrangement are authorizegtoject-admins APl 1-9, shown in table 5.2, are autho-
rized only for the users who agomain-admin®f a particular tenant. Presently, Nova does not
supportdomain-adminswhile, the authorization component of OpenStack callegstonesup-
ports. Therefore, Nova policy specification process needsetextended so that it can support
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thedomain-adminsin Nova, a file callegolicy.jsonspecifies authorization policies for the APIs.
Necessary policies for the APIs, shown in table 5.2, can beided inpolicy.json For instance,

the following policy can be included fattcreateAPI.

rule:attcreate— (domain_roledomain_admirk& domain_id%(target_domain_id)s))

In the above policy, it says that users havingdbenain_rolecan only call thattcreateAPIs for
creating an attribute within his domain. When a user triesréate an attribute namsf, retrieves
this policy frompolicy.jsonand verifies against the user’s information given in the auitation
token fromkeystone. Note that, these policies are specified by the CSP’s adsensuand can
only be modified and altered by them. The admin-users of iddal tenants are not authorized to

make any changes policy.json

5.4.2 Constraints Verification in OpenStack

Constraints verification process includes the well-formess validation of the constraint expres-
sion and evaluation of the expression to a boolean value.

An specified constraint expression is a character stringrgeed by the language shown in
section 5.2. The expression is a collection of predicatesyg/bach predicate contains an attribute
name and attribute value. For well-formedness validatioea constraint expression checks if the
the attributes name are valid and the specified value belantpe scope of the attribute. In this
implementation, we also capture the concept of intra aret teinant attributes which we already
discussed in section 5.2.2. Intra-tenant attributes aneptetely owned and managed by an in-
dividual tenant using the APIs shown in table 5.2, whilegiftenant attributes are managed by
laaS admin-users and all tenants can view and use thedmitdtrito specify the constraints. Ex-
amples of these attributes in Nova are the system attrilmfitéds such as flavors, image-names,
etc. During specification of a constraints, the specifiedbaties and the values are validated ac-

cordingly with respect to the intra-tenant and systemlaittes in OpenStack. Figure 5.9 shows
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Figure 5.9 Constraints Well-Formedness Validation in OpenStackA&tivity Diagram

the well-formedness validation process which for eachipete of a constraint expression takes
as input the specified attribute name and value and checke iame is a valid attribute name
and the value belongs to the scope of the attribute. Oncdatali, a constraint is then stored in
database table. Recall figure 5.2 where the example of stenagconnection mapping constraint

expression contains both intra- and inter-tenant atteiluttich is expressed as follows.
((tier(vm)=presentation}~> (ioTypgstorage)-fast))

Here,tier andioTypeare intra-tenant and system attributes respectively.éfbes, fortier, as
shown in figure 5.9, validation process checks indtteibute table for name andcopetable for

value. Whereas, fanTyperespective APIs are checked.

Finally, the specified constraints need to be enforced whes@ectiveproject-adminuser of
a project tries to relate two virtual resources (an examplehown in figure 5.7). This process
includes the constraint parser has 257 lines. The parsa&meetrue or false value based on a
constraint expression by considering assigned attribaiigeg for the two virtual resources. The
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Table 5.3 min_rule Specification Grammar
<Quantifier>:= V(vrl,vr2) € R cis> <cis> - <Stmt>
<Stmt>:= <Stmt> <connector<Stmt> | (<min_rule>)
<min_rule>:= <Token> — <Toker>
<Token>:= <Attribute>(<resource-)<comperataor <Scope-
<Attribute>::= <letter> | <digit> | <Attribute>
<Scope-::= <letter> | <digit> <Scope-
<connector::= A | V
<comperatops::= = | #
<Cls>:=ci|Cy|...|Cp
<resoruce- ::=vrl | vr2
<digit>::=0[1|2| ...|8|9
<letter>::=ab|...|y|z|AB|...|Y|Z

parser retrieves the respective attribute values of thaaliresources from the respective tables

that stored the metadata and verifies the values againsbtiséraint expressions.

5.5 Automated Constraint Construction

In this section, we consider approaches for mining CVRM tanss from already specified re-
lations among the instances of two classes of virtual ressurThis process can be considered as
the automatic generation of constraints according to ant&nspecific requirements.

In this process, a collection of restrictades, also refereed anin_rule, are generated where
amin_rule is an implication, a»b, in which both a and b are single predicates. Note that, the
actualrule in the form of A—B as defined in section 5.2.1 allows both A and B to be collestif
predicates connected byand/orv. Now for a giverRint c,.c; ozra . ., @NddZ,  , amin_rule

can be generated by the grammar in table 5.3.

Eachmin_rule is restricted to specify a comparison between only twolaites of virtual
resource class&sandc;. Now let us sayR: nt ¢, ¢, IS a given set of tuples that specifies the relation
between instances of the two classgsandc;. The min_rule mining problem is to construct
all possiblemin_rules. For givenRn¢ ¢, ,» ATTRf:, ATTR, att, € ATTRf:, att, € ATTR.,

SCOPE,;;, andSCOPE,,,, min_rules can be of four following formats, where each val has to

83



belong to the appropriate attribBEOPE,,.
e a—b where a(att, (vr1)=val,) A b=(att,(vr2)=val,).
e a—b where a(att(vr1)=val,) A b=(att,(vr2)-£val,).
o a-b wherea=(att,(vr1)£val,) A b=(att,(vr2)=val,).
o a-b wherea=(att,(vr1)£val,) A b=(att,(vr2)-val,).

For simplicity, we provide a mining algorithm for the forneat:b which is also referred as mu-
tual exclusivamin_rule. An example of the mutual exclusive constraints is stonageattachment
mapping constraint in figure 5.2 where the constraint specdi comparison between the value
‘presentation’ ofVM attributetier to the value ‘fast’ of STR attribut&Type. Similar algorithms
can be also generated for othmam_rule formats. We choose mutual exclusiven_rule format
because we develop mining algorithm on top of a constrainirgialgorithm for role based ac-
cess control [86] where they also mine mutual exclusivestde it is feasible to compare mutual

exclusivemin_rule to mutual exclusive roles.
5.5.1 Mining Overview

Figure 5.10 shows the steps of @oin_rule mining approach. As seenin the figure, a configuration-
log stores the assigned relations between instances oftaalresources two classesand ¢ ,
e.g.,VM-STR attachments, of particular tendanit . We can consider the configuration-log as
Rint c..c;- We also assume that the instances of these virtual resoareassigned with values to
their attributes. Now, our first step is to find the candidatelbaite relations from which appropri-
atemin_rules of one of the four formats can construct. We define a carelatsiibute relation as a
binary relation between the values$iCOPE,;;, andSCOPE,,,, of attributes atf ¢ ATTR, and

att, € ATTR,’, respectively which can be calculated by a frequent itervseing algorithm from

Rint cic;- In section 5.5.2, we describe our developed mining algorifor candidate attribute

relation which is based on well-known Apriori algorithm [LStep 2 is to extract certain attribute
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Figure 5.10 Overview of the Constraint Mining

relations from candidate attribute relations which haveasic meaning with correspond to the
cloud laaS system. We define meaningful attribute relatisresbinary relation between the values
in SCOPE,;;, andSCOPE,,, of attributes ajt € ATTRS;, and at} € ATTR, respectively which

is useful for the current sets of the respective virtual ueses in the system such that generated
constraints from that relation will have impact on futurenfiguration requests.Then, final step is

to construct thenin_rule from the set of meaningful attribute relations.

5.5.2 Candidate Attribute Relation Construction

The values ir5sCOPE,;,, andSCOPE,,, of attributes atf € ATTR;; and at} € ATTRf,{t respec-
tively is considered as candidate attribute relationsessied as a relation call€@ARscork, ., SCOPE,1, -
CARSsCcOPE .11, SCOPE,.1, is reflexive and symmetric, but not transitive. Hence, edement in

&

CARSCOPE, 1, .SCOPE1, is an unordered pair. For any two attributes, &tATTR, and at} €

ATTRtCrit, CARSCOPEattp,SCOPEattq is defined as follows.

CARSCOPEattp,SCOPEattq - { {X,y} ‘ X # Yy and xe SCOPEattp and ye SCOPEattq}

For instance, in order to construain_rule for STR-VM attachment constraint in figure5.2, a
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candidate attribute relation is CAEops,., scork. .. Where an element of it is {presentation,fast}.
In the following, we develop a mining approach to identifg #tlements in &ARscope,,,, scoPE,., -
Specifically, the approach identifies the mutual exclusalations that will construct mutual exclu-

sivemin_rules. However, similar approaches can be developed for othee tiype ofmin_rules.
Overview: Mining Constraints in RBAC

Mining association rules has become a fundamental prolsiefata mining, and it has been studied
extensively. Many algorithms such as FP-growth, Apriond &clat [11] have been developed to
solve this problem in databases containing transactioeseily, a constraint mining algorithm,
called anti-Apriori, is proposed for role-based accessrobfiRBAC) [86] which is developed
on top of the Apriori algorithm [11]. IRBAC, u androle contains set of users and roles in the
system. A functioruser_roles maps each user to a set of roles that are assigned to the wser. N
the mutual exclusive constraint fRBAC is defined as follows.

A mutual exclusiveRBAC constraint between roles role is an implication of the form
R1—+R2 where R roleand R2c roleand R1N R2=) anduser_roles(u) C R1— user_roles(u)
N R2 =() for each user & u. LetD be a set of user-role assignments, the constrairtR2 has
confidence c if c% of users imthat are assigned a role in R1 do not have any role from R2, and
it has support s if% users are assigned a role in R1. The constraint:R2 holds forD if it has

certain user-specified minimum support and confidence.
Mining Candidate Attribute Relation in CVRM

In this section, we discuss the mining approaches for mett@usive candidate attribute relations.
We first utilize the anti-Apriori algorithm [86] for the ming. Then, we customize the anti-Apriori

algorithm, which we call CVRM-Apriori, in order to get betteerformance.

A. Reduction to RBAC constraint mining: In this approach, we identify inputs of a mutual ex-

clusive candidate attribute relation mining algorithm aaduce them to the inputs of anti-Apriori.
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Then, we collect the outputs from anti-Apriori algorithndagzonstruct candidate attribute relation.

Inputs of a min_rule mining algorithm: In CVRM, each mutual exclusive attribute relation
is between one value of an attribute of virtual resources pérdicular class with another value
of an attribute of virtual resources of another class. FeeR nt c,c;» VRintc;» VRint,c,» and for
eachatt, € ATTRy, and for eachutt, € ATTRy}, the inputs aré/Ryy.c,, VRutc,, Rint cic;» attp,

attq, SCOPEattp andSCOPEattq.

Inputs of anti-Apriori: The inputs of the anti-Apriori algorithm ang role, the user-role
assignment matrix M (M is axar dimension boolean matrix where u and r is the size afdrole

and for each ye u and r, € role, M[u,][r;]=1 if r; € user_roles(u;) and O otherwise), matrix O

where O=M, minconf (minimum confidence) and minsup (minimum suppofhe inputs of the

min_rule mining algorithm are reduced to the anti-Apriori algoritlasfollows.

1. U =VRut ¢, XVRunt e, and R =SCOPE,;;, U SCOPE,;;,. Without loss of generality, we

assume the values BICOPE,;;, andSCOPE,,, are disjoint.

2. M is a|U| x |R| dimensional boolean matrix where, for eachlWand for each £ R,

M[u][r]=1 where (vrl,vr2)=u and ajfvrl)=r or att(vr2)=r. Also, O=M.
3. minconf and minsup are the values specified by the users.
Now, anti-Apriori generates constraints in following step

1. Scan M to find all combinations of;R. R in a set F where the support of R greater than

minsup.
2. Scan O to find all combinations of R R in a sef where the support is greater than minsup.

3. For each Re F and for eaclR; € F, generate mutual exclusive rules in the format pBiR;

if its confidence is greater than minconf and storesR,; in Rules.
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Creation of Mutual Exclusive Candiate Attribute Relation: Mutual Exclusive Candiate
Attribute Relation iSCARSCOPEattWSCOpEa“q where each element i@ARSCOpEattWSCOPEa“q is
{val,,val,} such that val € R; and va), € R; for each R—R; € Rules.

Although, this approach construetsn_rules, it lacks scalability for the following reasons.
(1) Size of the input parameter U is multiplicative with respive to the virtual resources of two
different class since it is created by the cross product o gair of virtual resources. It thereby
makes the size of matrix M and O very large, increasing thetime complexity.

(2) Algorithm anti-Apriori is designed to identify relatis among all possible subset of roles,
therefore, it needs multiple scans to database which isoastly. However, for mining the candi-
date attribute relation should require much simpler apgr@ace it only needs to identify relations

between every two values of two different attributes of threual resources.

B. Anti-Apriori for candidate attribute relation (CVRM-Ap riori):

We customize the anti-Apriori algorithm for mining mutuadciusive candidate attribute re-
lations. We specify that {valval,} can be a member OCARSCOPE(L“WSCOPEM% where va) €
SCOPE,, and va), € SCOPE,,, for eachatt, € ATTR;, and for eachutt, € ATTRy,, if it sat-

isfies certain user-specified minsup and minconf for an dyrepecifiedR; nt ¢, ¢, Of givenVRyy e,

andVRu¢,. The support and confidence is calculated as follows,

e We define a function callethside RS trf’{ CirC) that returns a set of elements nt ¢, ¢, that

has a value valof an attributestt, € ATTR;,. Formally,

inside Ry coc; (Val)={(vri,vr2) | (vrl,vr2) € Rint ¢, ¢; A atty(vrl)=val}.

e Another function callewutsideRf‘ﬁ‘{ cic; returns the set of elements Ry n; ¢, ¢, that does

Cj

not have a value valof an attributeutt, € ATTR,;,. Formally,

att,

outside Ry ni ¢, ¢, (val,)={(vrL,vr2) [ (vr1,vr2) € Rint c,c; A att,(vr2)#val,}.

o Now, a function calledupport{yf ¢, ¢, calculates support of a value yaif an attributestt,

€ ATTRY:,. Formally,

88



o at
|inside Ry rﬁ? .65 (valg)|
IRint c;c;l

att _
supporty ntp,ci,cj (val,) =

that calculates the ratio of the number of tuple®in c, ¢, that contain val of the attribute

att, € ATTR; with all tuples inR¢ nt ¢, c; -

|OUtSZdGRt nt ,c;,c; (valy)]
[Rint el

, is another function that calculates the

o Similarly, support;n . ¢, (val,) =
ratio of the number of tuples iR nt ¢, ¢, that do not contain valof the attributeatt, €

ATTR{, with all tuples iNR¢ nt ;. c;-

atty 7attq

e Finally, a function called:on fidence; n(c, ¢, calculates the confidence which is the ratio of
the number of elements iRy nt ¢, ¢, that have a value vabf an attribute:tt, € ATTR;:, but,
simultaneously, do not have a value yaf an attributextt, € ATTR,’, with the total number

of elements iRy ot ¢, c; that have a value vabf an attributentt, € ATTR{:,. Formally,

attp,attyq

con fidencegnt'c, ¢, (val:,val,) =
linside Ry o, o, (Valz) N outsideRin . ¢, (valy)|
‘ZNSZdGRI nt,c;,c; (valz)|

Now, for a giverR, ¢ ¢, c,, for eachatt, € ATTR}, and for eachuitt, € ATTRy,, user specified
min_supint o.c, andmin_confins.c., algorithm 5.1 constructs thain_rules. In algorithm 5.1,
procedure Identify_Frequency identifies each attributeevaal, € SCOPE,,,, and each attribute
value va), € SCOPE,;, whose supports satisfyiin_sup;nfc.c, and returns them in sets F and
F respectively. Now, the Gen_Candidate procedure takesdtseF and= and for each val ¢
F and for each vgle F adds {val,val,} to CARSCOPE,.11, . SCOPE,1, if it satisfies the value of
min_con ol erc.. This algorithm overcomes the scalability issues of angiiigvi algorithm since
it only identifies relations between two values instead af subset of values of attributes, and F

andF are specified separately from the scopes of two differéribates.

Now, for each {val, val,} CARscopE,.., scopE..,, WE Can construct min_rule (formatted

asatt,(vl)=val, — att,(v2)#val,) where val] € SCOPE,, and va) € SCOPE,,, .
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Algorithm 5.1 CVRM-Apriori

1: procedure Identify_Frequency§COPE,;;,, SCOPE,,, min_supgnt o,
2 F={, F={}

3: forall vale SCOPE,;, do

4: if supportiir e, (val) > min_sup( e ;gffgj then

5: Insert val into F

6 end if

7. endfor

8. forall valc SCOPE,,, do

9: if support{s cic;(val) > min_sup;y it f;fth then

10: Insert val intoF
11: end if
12: end for

13: end procedure
14: procedure Gen_Candidate(F, min_con fin s.c.
15: forall val, € F and va} € Fdo

. . tty,att . ttp,att
16: if confidenceint f;gJ (val,,val,) > min_con ftam”,gvc‘j then

17: CARscore,, scope.., = CARscopE,,, scope,.,, U {val., val}
18: endif
19:  end for

20: Return Flag
21:end procedure
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5.5.3 Meaningful Attribute Relations

Each invocation to algorithm 5.1 may add new attribute mtOCARSCOPEa“p,ScopEattq based
on the current configuration-logs, and, them_rules are constructed accordingly. However, in
the future, thosenin_rules may not be useful for various reasons in cloud laaS incidanying
configuration requirements of the tenants. We characténeecandidate attribute relations into
three different types based on some semantic meaning iexdarsitcloud laaS systems, and then

construcimin_rules only from those meaningful relations.

Definition 1. Strong Meaningful Relation: A relation {val,, val,} € CARscore,,, scoPE,., IS
a strong meaningful relation if there exists VE2VR ¢, and vrl€ VR, such that atj(vrl) =

Cj

val, and att(vr2) = val, where at} € ATTR;, and att, € ATTR..

Definition 2. Weak Meaningful Relation: A relation {val,,val,} € CARscorE,,,, sCOPE,q, IS
weak meaningful relation if there exist VR, and vi2=VRyyc; such that atj(vrl)=val, or

att,(vr2)=val, (but not both) where ajtc ATTR, and att, € ATTRY,.

Definition 3. Non-Meaningful Relation: A relation {val,,val,} € CARscorE,, scopE,,, IS a
non-meaningful relation if there exist VEVRc, and vri2=VRyy ¢, such that (at(vrl)val, A
val, ¢ SCOPE,;,) or (val,  SCOPE,;, A att,(vr2)#val,) where atf € ATTR;;, and att, €
ATTRY,.

Definition 1 identifies the relations from which generateid_rules are useful since the system
contains instances of both classes of virtual resourcdsnefipective attribute values assigned to
them and those instances of virtual resources might be s¢egiesoon in future to put into the
respectiveR; nt ¢, c,- However, definition 2 finds relatively weak ones since th&tey only has
instances from one class of virtual resources assignedhétrespective attribute-values. Absence
of the other class instances make this relation weak in theesthat generatedin_rule from this
relation will not apply to any mapping configurations. Howewvthere is a possibility that, in

the future, the system will have instances from other virtagource classes with the respective
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Algorithm 5.2 Meaningful Attribute Relation anthin_rule

1: procedure min_rule_ConstructionCARscorE, ., SCOPE,.;;, MARSCOPE, 1, .SCOPE1:, )

2: TempR=CARscopE,,, scopt..., Y MARscopE,,,, SCOPE..1,
MARSCOPEattP,SCOPEattq Flnd_MeanlngfulTempR)

3

4: TempR=Rem_Non_Meaningful(TempR)

5. CARSscOPE,, sCOPE,., = T'empR \ MARscopE,,, SCOPE..,
6: for all {Valm,Valy} c MARSCOPEattP,SCOPEattq

7 Create_Min_Ruleqin_rule;, val,, val,)

8: end for

9: end procedure

attribute values and, then, this relation will be usefulndfly, definition 3 identifies relations
between attribute values that will have no use in the futdfer certain reasons, system or the
tenant might delete these values from the respective aiitrdcopes and none of the current virtual
resource is assigned to these values. Therefame, rule generated from this relation will not

apply to any future configuration request.

By utilizing all these definitions, we develop algorithm $oZyeneratenin_rules that have appar-
ent application to the most current set of virtual resourdésre, a meaningful attribute relation
called MARSscoPE,.i, SCOPE.., is created with strong meaningful relations from
CARSscoPE, 1/, SCOPE,11, - Each time procedumin_rule Constructionis called, previousin_rules
are replaced by newin_rules. The procedure takes as input the candidate relations
CARSCOPE, 1, .SCOPEL1, which is generated by algorithm 5.1 and the previously eckat
MARSCOPE, 1, SCOPE1;, - IN figure 5.10, smart-feed is the previously created eldsien
MARSCOPE, 1, SCOPE,.11, which will be considered for new meaningful relations ci@at First, the
procedure combines the eIementsOARscopEattp,scopqu and MARSscoPE, ., SCOPE,,, tO NEW
relations called’empR . After that, it calls procedure Find_Meaningful that tak&snp R as input
and finds the set of meaningful relations using definitiond @eates a NeMARscopE,;, SCOPE,.,
with these new relations. Then, the algorithm removes a&lritbn-meaningful relations from

TempR (according to definition 3) by calling Rem_Non_Meaningibw, a new
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CARSCOPE, 1, .SCOPE1, is created by removing all the common eleméhtsnpR and
MARSscoPE, ., SCOPE,.,,- NOte that,CARSCOPEa“p,Scopqu now contains all the weak relations
according to the definition 2. The goal is to keep these wekltioas in back burner so that
they might get chance to promote themselves to strongoekin future. Finally, the procedure
constructamin_rules from MARSCOPEMWSCOPEWQ by calling procedure Create_Min_Rule. For
each {val, val,} € MARSCOPE,.1., SCOPE,., Create_Min_Rule constructgw@in_rule of the format
att,(vl)=val, — att,(v2)#val, where va}] ¢ SCOPE,;, and va] € SCOPE,, .

Note that, each time this algorithm is called all the preslgwyeneratednin_rules are deleted
and new set ofmin_rules are created which are useful for the present sets of reéspewttual

resources in the system.
5.5.4 Implementation and Analysis

The evaluation of algorithm 5.2 is trivial since its only figms some set operations. The per-
formance of algorithm 5.1 dominates the required time farall mining process. We compare
the performance of anit-Apriori and CVRM-Apriori algoritts. We implemented and evaluated
both the mining algorithms to construain_rules for the add operation fa&/M-NET connectivity
relations. We define three attributes vl and two attributes for NET. The value of each attribute
of the virtual resources is specified in their ‘meta’ infotroa. We randomly connect 10 NETSs to
VMs where eacN'M is assigned to at least 3 NETs. Then, we collect loggMfNET connection
from thenova database of DevStack and evaluate both algorithms. Oueklsriment verifies
scalability of the algorithms when number¥Ms increases. We gradually increadds from 50

to 500 with a fixed size of scope of each attribute to 10 fromcWwhive randomly assign a value for
each attribute o¥Ms and NETs. Then, for eadfM attribute and NET attribute pair we separately
execute both algorithms and record time. We repeated thiseps 10 times for each algorithm.
Figure 5.11 shows the average execution time of both algustwhere time of anti-Apriori is very
high while CVRM-apriori gives much better performance. KFatance, for 50/Ms the average

time of anti-Apriori is 1.3s where it is 14.2s for 58Ms. On the other hand, in CVRM-Apriori, it
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is 0.23s and 1.2s. The reason is that the size of U of antieAjgs multiplicative with increasing
number ofVMs where in CVRM-Apriori it is only additive.

In second experiment, we fixed théMs to 100, however, increase the scope of edbh
attribute from 10 to 20 and executed both algorithms. We alsxuted each of them 10 times
and recorded the time. Figure 5.12 shows the evaluatioritsesuote that, like experiment one,
anti-Apriori gives very poor performance with compare toRM-Aprior. For instance, from 10

to 20 values in scope the required time of anti-Apriori irages 1.3s where, in CVRM-Apriori, it
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remains almost constant. The reason behind this is thatAgmiori calculates mutual exclusive
relations for all the combination of the values of two atiitds which unnecessarily increases time
sincemin_rule only needs to capture separate relations between each ues\af attributes.

In general, CVRM-Apriori behaves similar to the 2-frequéptiori algorithm which requires
exactly 2 scans over the database, hence, the requiredmarcemplexity of CVRM-Apriori is as
good as FP-growth algorithm, which is an efficient Apriog@ithm with FP-tree data structure.
Also, the accuracy of CVRM-Apriori is exactly same of the geal Apriori algorithm since it does

not discard any items from database for calculating the@u@md confidence.

95



Chapter 6: CONSTRAINT-AWARE VIRTUAL RESOURCE
SCHEDULING

The materials in this chapter are published in following wes [25}

1. Khalid Bijon, Ram Krishnan and Ravi Sandhu, Mitigating IMIienancy Risks in laaS
Cloud Through Constraints-Driven Virtual Resource Schiady In Proceedings of ACM
Symposium on Access Control Models and Technologies (SATMaune 1-3, 2015, Vi-

enna, Austria.

In this chapter, we present our developed constraint awerel/resource scheduling process

where tenants can specify their constraints while schedulieir virtual resources in cloud.

6.1 Conflict-Free Virtual Resource Scheduling

Intuitively, an attribute captures a property of an entitythe system, expressed as a name:value
pair. In the context of cloud laaS, attributes can represewirtual machine’s owner tenant,
sensitivity-level, cpu intensity-level of workloads, et€&or simplicity, we restrict the scope of
this chapter as follows. We confine our attention to virtwaphysical resource mapping in the
context of virtual machines and physical compute servetenTwe briefly discuss the possible
extension of this approach to other virtual and physicalueses.We restrict the kind of constraint
to “must not co-locate” constraint where the specified cotsflare co-location conflicts that state
whether two VMs can be co-located in the same Host or not. ilnsiction, we formally define
the components of Hosts allocation for the VMs, which weraeHost-toYM allocation, in the
presence of various co-location conflicts. Note that, a VM imave multiple attributes each with
its own values. Attribute value of a VM can be assigned eithanually by a user or automati-
cally by the system. For instance, when an enterprise usatas a VM, an appropriate value is
assigned to theenantattribute of the VM automatically whereas, the user may rieezkplicitly

specify the value for aensitivityattribute based on sensitivity of data processed in that gk
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veloping administration models for such attributes agsignt is beyond the scope of this research.
We assume that VMs are assigned with proper attribute vakmsour purpose, the values of an
attribute can conflict with each other and the goal is to alllog/\VMs to co-locate in sameost

only if their assigned attribute values do not conflict.
6.1.1 Scheduling Components Specification

The scheduling components include two sets caH&ET andVM that contain the existing Hosts
and VMs respectively. There are attributes of VM that chinéwe different properties of a VM
and are modeled as functions. For each attribute functiwretis a set of finite constant values
that represents the possible values of that attribute. fHopurpose, we assume values of attributes
to be atomic Therefore, for a particular VM, the name of the attributediion maps to one value
from the set. For convenience, attribute functions are kimgferred to as attributes. Also, values
of an attribute can have conflicts with each other and thesBicts are specified in a conflict-set
of the attribute. Conflicts are specified on values of eaatbate independent of other attributes.

Formally these components are defined as follows.

e HOST is the finite set of Hosts (physical servers).
e VM is the finite set of VMs.

e Each Hostc HOST has a capacity, represented as a function cdil&fthat maps a Host
to a value greater than 1.0 to a maximum value of the Host dpathe capacity restricts
the number of VMs that a Host can contain based on the acctedutapacity of the VMs.
Value of the capacity of a Host remains constant unless@iplmodified, e.g., increasing

RAM size.

1An example of an atomic attribute, given in section ksassitivitywhere the values are high, medium and low. A
VM can only get one of the three values f@ansitivity However, there might be cases that require set-valuedwts
such as groupattribute of a VM which may take multiple values. For simjiliave only consider atomic attributes.
However, the model can be easily extended to set-valuetats.

2Multi-dimensional weights of a Host, e.g., RAM, CPU, et@ande reduced to one single normalized weight. For
instance, in OpenStack [6], Hosts are mapped to a singlehiveilgich is calculated by theeighted_surmethod that
takes weighted average of different metrics of a Host sudRvdd, host's workload, etc.
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e Similar to the capacity of Host, each VK VM has a capacity represented by a function
calledvW where,vW : VM — k where 0.0< k < 1.0. Also, capacity of a VM remains

constant unless explicitly modified.
o ATTRyy is the set of attribute functions of VM.

e For eachatt € ATTRyy, the domain of the function M and the codomain is the values of
att written asSCOPE,;; which is a set of atomic values. Formally,

att: VM — SCOPE,_, for eachatt € ATTRym.

The values inSCOPE,;; of anatt € ATTRyy that conflict with each other are specified as
a relation calledConSet,;;. ConSet,,;, is irreflexive and symmetric, but not transitive. Hence,
each element i€onSet,;; is an unordered pair. For eaalt € ATTRy, ConSet,; is defined as

follows.

e ConSet,; is the set of conflicts of the values of eaath € ATTRy. Formally,

ConSet,; C {{x,y} | x#y and x,ye SCOPE,;}

Note that, for eaclatt € ATTRyy, a ConSet,;, is similar to the conflict-sefttribute Set of
ABCL (defined in table 3.3) that captures conflicts among #ilaes of a single attribute.

Part | in figure 6.1 shows two attributetgnantand sensitivity and their respective scopes.
Some conflicts among values t@hantandsensitivityattributes are also shown representing con-
flicts among their values. For instance, {{tntnt,}, {tnt 5,tnt3}, {tnt 4, tn}} in ConSet,,,, speci-
fies that VMs of tnt and tnt, tnt, and tng, and tng and tng conflict with each other and, hence,
cannot be co-located. Also, part IV shows an example ofoattels assignment for VMs. For in-
stance, for the VM vmlienanfvml) = tnf andsensitivityvm21) = high. Also note that the value

0.6 denotes the capacity requirement of that VM. That\igivm1)=0.6.

6.1.2 Conflict-Free Host to VM Allocation

Given that theConSet,;; specifies conflicting values for an attributt € ATTRyy, the conflict-
free Host tovM allocation is concerned about allocation of a Host to a g@yMs that do not
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(B Gl s, StEmpe i) el S 1I: Conflict-Free Partitions of Scope of Each Attribute

ATTRvm = {sensitivity, tenant } Partitionsensitivity ={ {high}, {low} }
SCOPEsensitivity = {*_high I Step 1
sensievty = (D . D } (Conflict-Free | Partitiontenant = { {tnt1, tnt3, tnt6} , {tnt2, tnt4, tnt5} )
SCOPEtenant={ tnt1 , tnt2 , tnt3 , tnt4 , tnt5 , tnt6 Partitions N -
S " " " " - Calculation) Step 2 (Conflict-Free Segments Calculation)
ConSetsensitivity = { {high, low} } lI: Conflict-Free Segments of the Values of all Attributes
_ {({tnt1, tnt3, tnt6 }{high}),
ConSettenant = { {tnt1, tnt2}, {tnt4,tnt6} , {tnt2,tnt3} } ConflictFreeATTR = ({tnth, tnt3, tt6 }{low}),

({tnt2, tnt4, tnt5 },{high}),
({tnt2, tnt4, tnt5 }{low})}

*Step 3 (Partitions of Co-Resident Virtual Machines Calculation)

VM with IV: Partitions of Virtual Machines that can Co-Reside in same Host @Bh 5 6 tt4 tnt5
; migh  ttl i tnt3 tnt6 high 6 high (2 jow, tntl dow, tnt2 NIOR_ e @
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ConflictFreeATTR

‘ Step 4 (Scheduling of Co-Resident Virtual Machines into Physical Hosts)
V: Allocation of the Physical Hosts to each Partition of Virtual Machines that can be Co-Resident

Co-resident partitions ‘ high 1 pioh  tnt3 high, M6 qow, 6 gow, tnt1 high %2 high tnt5 high 4 dow,  Int2 dow }ntS
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together N Y hd A
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Figure 6.1 Conflict-FreeVM-Host Allocation

conflict with each other. There are 4 steps in this procestuasrated in figure 6.1. Step 1 is to
partitionthe values of each attribute (i.&COPE,;; of anatt € ATTRyy), into a family of subsets
where the elements in each subset do not conflict with eacr.otNe refer to suclpartition as

“Conflict-Free Partition of Attribute-Values.”

Definition 4. (Conflict-Free Partition of Attribute-Values) A conflict-free partition of attribute-
valuesof each ate ATTRyy, is specified aPARTITION,; that partitions the values iBCOPE,;;
where the values of each elemenP®RRTITION,;; do not conflict with each other, i.e., for each x

€ PARTITION,,; and for each ye ConSet,,, xNy| < 1.

We can state that, for an attribugtt, aPARTITION,;; partitionsSCOPE,;; where (L)PARTITION
does not contaifd, (2) elements iPARTITION,;; are pairwise disjoint, (3) the union of the ele-
ments iNPARTITION,;; is SCOPE,;, and (4) the values in a set-elementRXRTITION,;; do
not conflict with each other, i.e. no more than one value froat $et-element belongs to the same

element inConSet,;;.
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Part Il in figure 6.1 shows examples of conflict-free pamidPartition;,,q,. andPartition., siivity,
for ConSet;c,qn aNAdCoNSet ., siiviry diven in part I. For example, {tattnts, thtg} in Partition;;,qn
means these values do not conflict with each other. Note thate can be multiple candidate
PARTITION,; for a givenConSet,; of an attributeatt € ATTRyy. Section 6.2 shows that the
selection of an appropriafARTITION,; is important for host optimization.

Step 2 combines theonflict-free partitions of attribute-values all attributes. We define a
conflict-free segmenhat consists one element BARTITION,;; of each attributatt € ATTRyy.
We will see later that VMs, mapped to a conflict-free segmeémtot conflict with that of others,
hence, can co-locate. Note that a VM can get any value frorsdbpe of an attribute. Therefore,
conflict-free segments should be generated in such a wayasd ttan map all possible assigned
values to the attributes of the VMs. A cartesian product ePFARTITION,;, for all att € ATTRypm

generates all possible segments of conflict-free valudseodttributes.

Definition 5. (Conflict-Free Segments of the Values of Attrilntes) The conflict-free segments
of the values of attributes a set, calledConflictFreeATTR, of n-tuples where n §ATTRyy|
and each tuple is a result of the cartesian producP8RTITION,; of all att € ATTRyy, i.e.,

ConflictFfreeATTR = ][ PARTITION,;
atteATTRVM

Each elementon F'val € ConflictFreeATTR is an ordered pair which is written &X ;. , ...,
Xat,) Where {att;, ..., att,} = ATTRyy and X,;, € PARTITION,;,. We assume that elements of
eachconFval € ConflictFreeATTR can be accessed by the notatien F'val[att] for eachatt €
ATTRyp.

Part 11l in figure 6.1 shows an exampBonflictFreeATTR which is produced from the Carte-
sian product of conflict-free partitiorfartition;,,,, andPartition,e,s;ivity- A tuple ({tnt;, tnt,
tntg},{high}) is an element inConflictFreeATTR since {tnt, tnt;, tnts} and {high} are members
of Partition;.,q,; andPartitione,s.i.it, respectively.

Step 3 partitions the s&M such that VMs of each element of the partition can be co-tutat
This is achieved by partitioningM in a way such that each element of the partition can be mapped

to an element o€onflictFreeATTR.
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Definition 6. (Co-Resident Partition of VM) The Co-Resident Partition o¥M, specified as
CoResidentVMGrp, is a partition of VM where the assigned values to at ATTRyy of all
VMs in an element of the partition map to the same segmeDoinilictFreeATTR, i.e.,
for all X € CoResidentVMGrp and for all vm#vm; € X,

\V SetResidence(vnvmy, conFval, ATTRywm))
conFvakConflictFreeATTR
where, SetResidence(ymm;, conFval, ATTRyy) =

A\ (att(vm) € conFval[att] A att(vm;) € conFval[att])
atte ATTR\/M

CoResidentVMGrp partitionsVM if VMs in an element ofCoResidentVMGrp are assigned
to the values, for alatt € ATTRyy, that belong to the same elemenQuonflictFreeATTR.

Part IV in figure 6.1 shows an example ©@0ResidentVMGrp calculation of 10 VMs where
VMs are mapped to different elements ©bnflictFreeATTR based on their attributes. For in-
stance, vm1 is mapped to the segment ({tit, tnt;},{high}) since it is assigned with ‘tnf and
‘high’ for tenantand sensitivityattributes. Also, vm1 and vm3 belong to the same patrtition of
CoResidentVMGrp since they are both mapped to the segment {{tnt;, tnt;}, {high}).

Finally, step 4 allocates Hosts for the VMs of each partiiiroi€oResidentVMGrp. A Host
cannot contain VMs from multiple partitions QoResidentVMGrp. Also, combined capacity of
the allocated VMs must satisfy the capacty\() of the Host. Therefore, for each partition of VMs
in CoResidentVMGrp, multiple Hosts might be required depending on the combwmeigiht of

the VMs in that partition.

Definition 7. (Conflict-Free Host to VM Allocation) Given VM, HOST, ATTRyy, CoResi-
dentVMGrp, hW and vW, th€onflict-Free Host to VM Allocations a mapping function called
allocate that finds a set of HostdOST’ C HOST, to allocate all VMe VM where the VMs that
reside in a Host form a subset of an elementCaResidentVMGrp such that their combined
weight does not exceed the weight of Host, i.e., allockt®ST' — P(VM) where,

if choste HOST' and allocate(chost) = lvm, then,
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vmCVMA \/ IvmCxA( D> vW(vm))< hW(cs)

xeCoResidentVMGrp vmelvm
Part V in figure 6.1 shows an example of Conflict-Free Host to MMcation where the total

number of VMs is 10 and they are partitioned into 4 co-redidets. Note that, here, HostO and

Hostl are allocated to one co-resident partition of VMs aomihg {vmO, vm1, vm3} since their

combined weight is more than the weight of a single Host.

6.1.3 Conflict-Free Scheduling of Other Virtual Resourcesd Physical Resources

The above described virtual machine to physical machinediding process (sections 6.1.1 and
6.1.2) can be easily applied to virtual storage to physitabgie and virtual router to network host
scheduling with the following modifications.

In physical storage to virtual storage allocation, two Sét4 and HOST, defined in sec-
tion 6.1.1, are substituted by sef§ and PS that specifies virtual storage volumes and physi-
cal volumes in the system respectively. Similar to the capdenctions of VM and Host, two
functions can be defined for virtual and physical resoursasdan map their respective capacities
where the capacity can be a single metric calculated by weiigbum of different properties of a
storage system. Such properties include size, storagpeds etc. Now, similar to th&T TRy,

a set can represent the attributes of the virtual storagenes. AlsoConSet,;; and definition 1-4
can be modified accordingly for the physical storage to @irtiiorage allocations.

A similar approach can be followed to derive the network bosirtual router allocation. Here,
two sets calledNH andVR can specify network hosts and virtual routers in the sysespectively.
Now the capacity could be the limit of network bandwidth ofetwork host and the bandwidth
of a virtual router. One motivation of scheduling virtualter across different network hosts is
for load-balancing of the network traffic and ensuring adaiity. Here, similar to the virtual
machines, necessary attributes of the virtual routers eagelneratedConSet,;; and definition

1-4 can be modified for network host to virtual router allomas.
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6.2 Optimization Problem Definition and Solution Analysis

In this system, the specified conflicts restrict certain Vkésf co-locating in the same Host. As
a result, certain Hosts can no longer schedule VMs that conilih currently scheduled VMs in
those Hosts, despite having the required capacity. Tha¢ases the required number of Hosts
a compared to a system without conflicts. Hence, it is delgirabschedule VMs in a way that

minimizes the number of Hosts while satisfying the conflietding to an optimization problem.

Definition 8. (Host Optimization Problem) TheHost optimization problemseeks to minimize the
number of Hosts in the mapping, allocatélOST’ — P(VM), specified irConflict-Free Host to

VM Allocation (Definition 7).

This section investigates algorithms for definition 1 thgbu4 in order to solve the Host Opti-

mization Problem.
6.2.1 MIN_PARTITION: Minimum Conflict-Free Partitions of A ttribute-Values

More than ondPARTITION,;; can be generated for a giv€lonSet,;;. In figure 4, for the given
ConSet;.,...:, candidatePartition,.,.,.; sets could be {{tntl, tnt3}, {tnt2, tnt6}, {tnt4, tnt5}}
and {{tnt1,tnt3,tnt6},{tnt2, tnt4, tnt5}} with 3 and 2 eleents in the sets respectively. Here,
each element of 8ARTITION,,; contains conflict-free attribute-values aft. Number of ele-
ments iINPARTITION,,; affects the total number of conflict-free segments (deinith) where
the VMs mapped to same conflict-free segment can co-existaritipn, with minimum num-

in

ber of elements, reduces the number of conflict-free segndhtalso reduces the elements
CoResidentVMGrp that also minimizes the required number of Hosts. We calhsupartition
asMIN_PARTITION.

Finding aMIN_PARTITION is similar to the graph-coloring problem that partitions trer-
tices of a graph G(V,E) into minimum color classes so thatwo &djacent vertices, such as
{vl,v2} € E, fall in the same class. Graph-coloring problem is NP-Cleteggiven that graph col-

oring decisionproblem, called k-coloring, is NP-Complete, which states given a graph G(V,
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E) and a positive integer K |V|, can the vertices in V be colored by k different colors?

We show thaMIN_PARTITION is NP-Complete by showing that tihdIN_PARTITION de-
cisionproblem, which we refer to &§ PARTITION, is NP-Complete. Th&_PARTITION prob-
lem states that giveBCOPE,;; andConSet,; of anatt € ATTRyy, and a positive integer K

|SCOPE .1

, can the values iI8COPE,;; be partitioned into k sets?
Theorem 1. K_PARTITION is NP-Complete.

Proof. We prove thak_PARTITION is NP-Complete by polynomial-time reduction of k-coloring
to K_PARTITION.

An instanceof k-coloring is a graph G(V, E) and an integer k. We const&COPE;; + V
andConSet,;; « E and fee®sCOPE,;;, ConSet,;;, and k toK _PARTITION. The complexity of
this conversion isV| x |E|.

Now we show that ayes instancef k-coloring maps to aiyes instancef K_PARTITION
and vice versa.

—> Assume G is aryes instancef k-coloring and there exists a set of colors C of size k in
G. Thus, for all ue V, color(u) € C and for any u, v V, color(u)=color(v) only if {u, v} ¢

E. Also, for all ue SCOPE,;, u belongs to cfss CFS where#CFS is k, and for any u, &
SCOPE,, u, v belongs to the same ofsCFS, if {u, v} ¢ ConSet,;;. Thus, G is aryes instance
of K_PARTITION.

<— AssumeSCOPE,;;, ConSet,,, is anyesinstance oK_PARTITION and there exists a family
of CFS of size k. Thus, for all &€ SCOPE,;;, u belongs to a cf& CFS, and for any u, &
SCOPE,_4, u, v belongs to the same ofsCFS, if {u, v} ¢ ConSet,;. Thus, the vertices in same
cfs € CFS can be colored by the same color and there will be k nunfa=rlors to color all the
vertices in G. Thus, G is ayes instancef k-coloring.

Thus,K_PARTITION is NP-Complete. O

Therefore MIN_PARTITION is also NP-Complete. However, there are a numbeppirox-

imate graph-coloring algorithms that can be appliedMédN_PARTITION. The algorithms are
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Figure 6.2 Conflicts of different Systems and Corresponding Conflicighs

approximate in the sense that they may not provide the mimirsize of PARTITION,, i.e.,

MIN_PARTITION may not be optimal. This is useful, although not optimal caese the conflicts

are still satisfied. In the following, we discuss approxienaigorithms for graph-coloring and their

applications taVIN_PARTITION.

Restricted Conflict Graphs

Certain graphs such as perfect graphs have polynomial gralphing solutions. We identify that

certain restricted versions of attribute conflict specticmagenerates such graphs. We explore re-

stricted graphs having polynomial-time solutions and destrate their usage scenarios for private,

public, and community cloud deployment scenarios.

Public Cloud

A public cloud provides compute services to multiple tesaniVe present two scenarios where

tenants may need isolation depending on the kind of data i#i's process.

1. Sensitive Organizational Data: Suppose an e-commerce organization moves to a public

cloud. An expectation could be that the VM’s that run the galhwebsite may be co-located with

other tenants while those that process sensitive data suchstomer’s credit card information
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or PII should not be co-located. This is infeasible in cutrneablic clouds since a tenant can
only manually choose to avail services from clouds and odyedistribute the VM's across those
clouds based on data sensitivity.

Such scenarios can be easily automated using our conflictfispéion framework. In this
situation (figure 6.2-A), the cloud provider generates dribatte calleddataSensitivityand for
each tenant it includes two values, e.g., highamid lowTnt for tenanf, to represent the high and
low sensitivity of data that will be respectively procesbgdhe VMs. When a tenant creates a VM
it assigns an appropriate value to thataSensitivityattribute. Here, a VM with highTatwould
conflict with all the VMs of other tenants, however, it does conflict with VMs of own tenant.
Conflict-Set of this attribute is a split graph, hence, casdieed in polynomial-time [62].

2. Conflict-of-Interest: In a Chinese-Wall policy, an organization can have a condiict
interest with certain other organizations. For instandidyanking tenants of a CSP may have a
conflict-of-interest with each other. Similarly, all thd-oompany tenants may conflict. A CSP
can generate an attribute calleshantthat represents a particular tenant name in the system, e.g,
bank-of-america, and the valuestehantcan be categorized into mutually disjoint conflict-of-
interest classes. The conflict-set generates disjoinietiapf attribute values which can be solved

in polynomial-time [62]. Figure 6.2-B shows such conflid¢thaterest use cases.

6.2.2 Community Cloud

In a community cloud, the infrastructure is typically stthteetween enterprises with a common
interest.One example of a community cloud is a scientific mating cloud infrastructure that

is shared between, say, a set of universities. Figure 61Ri€Irates an example where compute
resources of participating universities must be isoldtdeitime-slot assigned to those universities
happen to overlap. If there is no overlap in the time-slotyensity 1, for example, can use the
same physical host that was allocated to university 2 (th@ig different time). Such a scenario

forms an interval graph for which can be solved in polynonrtiiale [62].
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6.2.3 Private Cloud

A private cloud has a single owner and thus does not shamsindicture with other tenants. The
cloud infrastructure is typically hosted and operated onde by the tenant or sometimes out-
sourced to a service provider, e.g., the private cloud apeday Amazon for the CIA [9].

1. Sensitivity in Military Cloud: Consider a large-scale cloud for the US Department of
Defense (DoD). A fundamental principle in DoD’s move to lad&ud from their current IT in-
frastructure could be that the different military orgamiaas including army, navy and air-force,
and their operations need to be isolated from each otherstenswith the current operational sta-
tus of each organization (currently, most of each orgaiumatinfrastructure is isolated from each
other). To this end, a VM attributailitaryOrg can be created whe@COPE,,;iitqry0rg=f{army,
navy, airForce, secretaryDoD, jointChief} and all valuésrolitaryOrg would conflict with each
other. The graph generated from this conflict-set is a corgjeaph as illustrated in figure 6.2-D
which can be solved in polynomial-time [62].

Figure 6.2-E illustrates another DoD example resulting aomplete graph where VM’s pro-
cessing data belonging to different networks (such as SHRRMNPRNet and JWICS) in the DoD
need to be isolated from each other.

2. Compliance in Healthcare Cloud:Compliance is another major concern in a private cloud.
Consider ahybrid entityin Health Insurance Portability and Accountability AEtIPAA) that pro-
vides both healthcare and non-healthcare related servidesexample of such entity is a uni-
versity that includes a medical center that provides hezdtie services to the general public and
also research labs in the university that conduct heakthated research internally. HIPAA rule
mandates that such a hybrid entity should maintain a segaation between those departments
while handling protected health information (PHI). In arde comply strictly with HIPAA, vir-
tual resources processing PHI need to be isolated. Suchnarszés illustrated in figure 6.2-D
where bloodTest and cancerUnit are departments that @dwdlthcare and hence utilize com-

pute services that process PHI. Those compute servicedmbedsolated from compute services
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of non-medical departments such as immunobiologyLab. $temario forms a bipartite graph,
thus, solved in polynomial-time [62].

We also develop an exact algorithm, shown in algorithm Ga%eld on backtracking. The com-
plexity of this algorithm is NP since it is an adaptation of teneral backtracking algorithm for
the graph-coloring [16]. However, for attributes whoseifzthe scope is small enough (esgn-
sitivity), the algorithm computes the partition relatively fastalgorithm 6.1, the Make_Partition
procedure is called with sco®COPE,;; of an attributeatt € ATTRyy, ConSet,;;, and a partition
PARTITIONY,, that can contait elements. Make_Partition is a recursive backtrackingrétyo
that tries all possible combinations bfpartitions and returns true if there is a valid conflict-free
k partition of a givenConSet,;;. Before adding an attribute value to a partition, Make_itaint
calls Check_Validity that verifies if the attribute valuelte added is indeed free of conflict with
respect toConSet,;;. In section 6.3, we analyze the performance of this algaritbr various

sizes of attribute scopes and conflict sets.

6.2.4 ConflictFreeATTR Generation

This is a trivial algorithm that calculates the valuegainflictFreeATTR specified in definition 5.
The algorithm takes as inpBARTITION,;, for all att € ATTRyy, and return€onflictFreeATTR
which is a Cartesian product ®#ARTITION,; for all att. It also stores the calculated ordered
tuples inConflictFreeATTR. The complexity iSD(n x m) wheren andm are the size oATTRyy
andPARTITION,.

6.2.5 Co-Resident VM Partitions Generation

This algorithm takeonflictFreeATTR and VM sets as input, creates a family of sets, called
CoResidentVMGrp (definition 6), where each set contains a subset of VMs thatcocareside.
The number of sets iBoResidentVMGrp is equal to the number of elementdonflictFreeATTR,
where the algorithm maps an elementGdnflictFreeATTR to an element irCoResidentVM-
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Algorithm 6.1 Conflict-Free Partition using Backtracking

1: procedure Check_Validity(attvalConSet,;;, CSet)
2: for all attval € CSetdo

3 if {attval, attval} € ConSet,;; then

4: Return False

5 end if

7 end for

8: Return True

9: end procedure

10: procedure Make_PartitionBCOPE,;;, ConSet,;;, PARTITIONE,,)
11: if attvale SCOPE,; then

12:  forall pare PARTITION%, do

13: if Check_Validity(attvalConSet,,;, par)then

14: par = paiJ attval

15: if Make_Partition6COPE,;-{par}, ConSet,;;,PARTITION, ) then
16: Return True

17: end if

18: par = par attval

19: end if

20: end for

21: endif

22: Return False
23: end procedure

109



Grp and the mapping is one-to-one and onto. The VMs that map tgdhee element iCon-
flictFreeATTR belong to the same partition. The complexity of this aldoritis O(VM  x
ConflictFreeATTR x ATTRyy).

This algorithm works for botloffline and online versions ofVM scheduling. In offline, the
total number of VMs is fixed and are given before the algoritiums. Inonline the scheduling
request for a VM arrives one at a time. For both versions, kperihm takes one VM and maps
it, based on assigned values to attributes, to an elem&uniflictFreeATTR and adds the VM to

a corresponding element @oResidentVMGrp.
6.2.6 Scheduling VMs to Hosts

This algorithm takesCoResidentVMGrp, and schedules the VMs that belong to each element
in CoResidentVMGrp, together in one or morkost s. ForVMs of each element i€oRes-
identVMGrp, this process might need one or mdrest s based on the combined capacity of
the VMs. If the total capacity exceeds the capacity of a sifgiet then it will need multi-

ple host s. This scheduling problem is similar to the bin-packing][pbblem which is NP-
Hard. However, there are a number of known heuristic appesthat can be applied here [87].
Note that the scheduling of VMs toost s in an optimal way based on capacity is orthogonal to

MIN_PARTITION sinceMIN_PARTITION is solved before this scheduling begins.

6.3 Implementation and Evaluation

We implement and evaluate our conflict-free VM to Host schiedudramework. Since our work
concerns scheduling, to conduct realistic experimeniatice need exclusive access to a large-
scale cloud infrastructure with 100s of physical hosts tamegfully study resource requirements
and its utilization. First, we setup an laaS cloud environtusing a set of 5 physical machines
(each of them is a Dell-R710 with 16 cores, 2.53 GHz and 98GB/RAVe now treat each of
the VMs that this cloud provides as a physical host. These "idsconfigured with 4 cores and

3 GB of RAM. We now create a DevStack-based cloud framewofkd5quick installation of
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Figure 6.3 Experimental Setup in OpenStack

OpenStack ideal for experimentation, using those VMs asiphihosts to create a virtual cloud
for the purpose of experimentation. Basically, we use theaHa release of OpenStack [8]. Now,
we create the second-level of VMs to get a virtual laaS clmdithe configuration of these VMs
are varied based on the experiment we perform.

We implemented our Host-to-VM scheduling on the testbedrilesd above. Figure 6.3 illus-
trates our experiment setup. In OpenStack, the componaitakes care of VM management and
scheduling is the Nova service. We created a cloud clusterétihost s where one of themis the
Nova controller node and another 60 are the Nova computesndde Controller node provides
main services, e.g. database, message queues, etc.,lvehilerhpute nodes only contain compo-
nents such as hypervisor and nova-compute that are redoirednning VMs. We deployed the
prototype in the nova controller node. Our python-basedempntation of conflict specification
allows tenant admins to specify attribute conflict valued tire ability to store conflict values in
nova database (MySQL) (part | in figure 6.1). Our python basedlict free segments calculation
process (steps 1 and 2 in figure 6.1) has 153 lines of codellyioar implementation of conflict-
free Host to VM scheduling (steps 3 and 4 in figure 6.1) has &3 lof code that maps a VM to
a conflict-free segment based on conflicting-values andjasdiattribute values of the VM which
are retrieved from the nova database. For the conflict-Egement, designated Hosts are identified
and weighed based on default Nova weighing factors and theés\@dheduled to the suitable Host.

Experiment 1 -Upper Bound of Algorithm 6.1This experiment analyzes the runtime of Al-
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gorithm 6.1. Since the complexity is in NP, here, we identlig maximum size of scope and
conflict set for which required runtime of the algorithm rensafeasible. First, we conduct the
experiment with a small size of scope of an attribute andeetsge conflict set. We vary scope
size from 10 to 40, and for each scope size, we vary the sizerdlict set from 20 to 40. For each
scope and a particular size of the conflict set, we randonalgtterelements in conflict set and exe-
cute the algorithm. Also, we repeat this process 50 timegavbenflicts are generated randomly.
Figure 6.4 shows the results where, for a small scope andictosék, runtime is very low, e.g.,
0.011s for a scope and conflict set size of 18 and 30 resplctiewever, for bigger scope and
conflict set sizes, it increases drastically, e.g, for scpe 30 and conflict set size 35 it becomes
approximately 4s. We also conduct the same experiment ffige lscope and conflict sets where
we vary the size from 40 to 100 and 60 to 100 respectively. feigus shows the results where
the runtime is very high as expected. For instance, for aeseop conflict set size of 50 and 70
respectively, the execution time is more than 7mins. Naé tnhigh runtime may be acceptable,
since conflict-free partitions are created before stattiregscheduling of VMs and hence it does

not impact the scheduler’s performance drastically. Thgeement gives an estimation of delay
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the CSP might face before scheduling the VMs if it wants tat@eonflict-free partitions for a
given scope and conflict set size.

Experiment 2 - Scheduling Latencyin the second experiment, we analyzed the timing over-
head of our conflict-free Host-to-VM scheduler once thatflictAfree partitions are calculated by
algorithm 1. In figure 6.6, we study how the amount of time ttteesluler takes to schedule a single
VM varies with increasing number of VMs that have alreadyrbseheduled. A value of 500 in the
x-axis, for example, indicates that 499 VMs have alreadyntssteduled and the corresponding
value in the y-axis (0.19s) indicates the time to scheduterew VM. The attribute values of the
pre-scheduled VMs were randomly assigned. The schedldes tafairly fixed amount of time to
schedule a single VM regardless of the number of conflia-free-scheduled VMs.

Experiment 3 - Required Number of HostsOur third experiment concerns the impact of
satisfying conflicts on the resource requirements. In ogecthe conflict set of a given attribute
can be varied in two significant ways to evaluate the numbehgstical hosts that are necessary.
In figure 6.7, we vary the number of elements in the conflicirdele fixing the maximum degree

of conflict to a constant value. The highest number of valhas ¢onflict with each other in the
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conflict set is referred to as the maximum degree of conflictHfat conflict set. In figure 6.7, we
fix the maximum degree to 2. In figure 6.8, we vary the maximugrek of conflicts with a fixed
attribute scope. Given the server memory capacity to be 3t@&ByM capacity is varied between
512 MB and 1024 MB. The experiment confirms our intuition ttrett the maximum degree of
conflict dominates the server requirement to schedule VMde that minor spikes and drops (for
example between 100 and 140 on the x-axis for scheduling M§)\re due to the randomness
of the workload we automatically generate and some vaitgll Devstack. However, overall,
our observation holds true.

Experiment 4 - Host Utilization. Finally, this experiment concerns the impact of conflietefr
scheduling on the overall utilization level of all the ploaiservers. Since we know from experi-
ment 2 that resource requirements are predominantly iregdgt maximum degree, in figure 6.9,
in the x-axis we vary maximum degree while scheduling a danember of VMs. The y-axis
specifies the aggregate percentage of utilization of alk#gers after scheduling the VMs in a
conflict-free manner. For example, given N number of sen@®% utilization means that 20

of N servers in total is not utilized. We can see, serveragtlon dramatically increases with the
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number of VMs that are scheduled. This is because since tkalegree dictates server require-
ments, for smaller number of VMs, a minimum of max degree nemalh servers remain heavily
under-utilized. Once the VMs scale toward real-world nurapthe utilization is above 80 even
with a very high degree of conflict.

Experiment 5 - Limitation of the OpenStack Scheduler.

In Nova, multiple groups can be created, called anti-affigibups, where VMs in same group
cannot co-locate and a user can manually put a VM to theseggrotihen, the Nova scheduler
called ‘filter-scheduler’ schedules the VMs while satisfyithe anti-affinity groups. Unlike our
scheduling, ‘filter-scheduler’ does not consider the hgdinaization problem. It selects a Host
with highest available capacity for a requested VM if alyeadheduled VMs to that Host are not
in same anti-affinity groups. Let’s say, for example, 3 Htstsh,, and h have enough capacity
to schedule 15 VMs (vinto vim;5). There are 3 anti-affinity groups;afaf, and at where vm,
vmy, vmy;, vmyo, VMy3, are in af, vimy, vms, vimg, vmy;, vimy4 are in af and vim, vimg, vimg, vim; s,
vmy5 in af;. If vm; to vmy; are sequentially requested, after scheduling tarvm, no Host will

be available. Scheduling of new VM now require migration loéady scheduled VMs that incurs
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additional cost. However, our scheduling process can sdbedl the 15 VMs since it optimizes

Hosts.

6.4 Incremental Conflicts

So far, our conflict-free scheduling approach has assunsctimflicts can be pre-specified and
remains unchanged. However, in practice, conflicts maygdaand may be specified incremen-
tally as new tenants join the cloud. We now explore this funelatally hard problem—if two VMs
that did not conflict at a certain time happen to be co-locatedserver, but later develop a conflict
due to an update of conflict specification, it is necessaryiggate one of those VMs from that

server, to remain conflict free.
6.4.1 Types of Conflict Change

In general, a conflict-set changes if a new conflict is addesh@xisting conflict is removed. Given

a ConSet,; and aPARTITION,; of anatt € ATTRyy, ConSet,;; can change to a new conflict
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Figure 6.9 Host Utilization Overhead

setConSet/,, ( a new partitionPARTITION/,, can be calculated accordingly) in three different
ways.

e A\;—this type of change involves operations that only removelament fromConSet,;; where
|PARTITION/ ;| < |PARTITION,4|. Evidently, it does not add new conflicts, hence, the sched-
uled VMs need not migrate.

e A,—this type of change involves operations that add an elenefonSet,;;. However,
PARTITION,; remains unchanged. If addition of a new conflict results ircihnange in conflict-
free partition, scheduled VMs need not be migrated.

e A;—this type of change adds an elemenCanSet,,; wherePARTITION,,, # PARTITION ;.

Evidently, certain VMs need to be migrated if they need toaenconflict-free.

Consider an attributatt € ATTRyy and SCOPE,;; = {al,a2,a3,a4,a5,a6}, where the ini-
tial conflict-setConSet,;; = {{al,a2},{al,a4}, {a2,a4}, {al,a5}, {a2,a6}, {a4,a6}} ad the cor-
responding partition set which is calculated using alpomitl is PARTITION,;={{al,a3,a6},
{a2,ab}, {a4}}.
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Consider a change of typeA; that removes {a2,a4} fron€onSet,,; where resultant conflict
set ConSet!,,={{ al,a2}, {al,a4}{al,a5},{a2,a6},{a4,a6}} andPARTITION!, ={{al,a3,a6},
{a2,a4,a5}}. Here, PARTITION.,, < #PARTITION,; and it does affect already scheduled VMs.

Consider a change of typeA, that adds {a2,a3} t&€onSet,;; where new conflict set
ConSet?,,={{al,a2}, {al,a4}, {a2,a4}, {a2,a3}, {al,a5}, {a2,a6}, &4,a6}} andPARTITION?Z =
{{al,a3,a6}, {a2,a5},{a4}} which is equal to the previousptition SetPARTITION ;.

Consider a change of typeA; that adds {al,a6} t€€onSet,;; whereConSet? .= {{al,a2},
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{al, a4}, {a2,a4}, {al,a5},{a2,a5},{a2,a6},{a4,a6}{ah6}} and PARTITIONZ,, =
{{al,a3},{a2},{a4},{a6}}. This clearly affects the prewusly scheduled VMs because, from
PARTITION,, VMs with attribute value a4 are co-located with VMs withratite values al or

a3. Now, those VMs with a4 need to migrate since they cannitcate with al or a3.
6.4.2 Cost Analysis

In this section, we analyze the cost of continuing to satikfy conflicts as they change, when
the change is of typé;. We calculate the cost based on the number of migrationsateatec-
essary when conflicts change. Based on experimentation ameirgsights on the strategies for
minimizing the cost while handling this type of change.

We define an incremental plan, or simplan, as a sequence of operations that adds a number
of conflicts to the current conflict-set resulting il\g-type change (i.e., requires migration). Our
strategy for minimizing cost is as follows. Consider an edet{al, a2, a3, a4} of a conflict-free
partition setPARTITION,;; of attributeatt. Since attribute valuesl througha3 are conflict-free,
the scheduler is free to co-locate VMs that have those até&ialues in a given server. We refer
to this agpromiscuougonflict-free scheduling because it maximizes the mixingMf in a given
server so long as they do not conflict. In contrastoaservativeapproach minimizes the co-
location of VMs even though their attribute values do notfton For instance, VMs with values
al or a2 may be co-located in one server, and those with validesr a4 may be co-located in
another. In this case, if value8 andal were to develop a conflict in the future, the migration cost
can be minimal (zero in this scenario). Promiscuous scleglodn have better resource utilization
but higher cost for managing conflict changes. Conservatiheduling can minimize cost when
conflict changes more frequently, at the expense of loweures utilization.

We conduct an experiment to evaluate the impact of confliahgke on the number of migra-
tions for different levels of conservative scheduling. Hteps of the experiment aréstep-1)

We consider a single VM attribute calledt where we vary the size @COPE,;; from 10 to 35

with an increment of 5(step-2) For eachSCOPE,;,, initially, we randomly populat€onSet,;;
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with 5 to 50 elements and calcul&®ARTITION,;;. We repeatedly perform this step for 50 times
for everystep 1. (step-3) For eachstep-2, we schedule X number of VMs where we vary X
from 500 to 5000. We also schedule them using a promiscugu®agh and four conservative
approaches where VMs of sarhest can not have more than 1, 2, 4, and 8 different values from
a conflict-free partition respectively. Also, each VM is damly assigned a value to igt. We
repeat each scheduling process for 30 times. We also ragdassign VM memory capacity to
512 and 1024 MB, antost capacity to 3GHz.(step-4) Finally, we measure migrations for 5
different plans where theplans gradually add random 5%, 10%, 15%, 20%, 25%, 30%, 35%,
40%, 45% and 50% of the total number of conflictsGonSet,,; respectively. For eachlan,
step-4 is repeated for 50 times and we count the migrations. Notdlleae numbers (the number
of times a particular step is repeated) provide sufficieniati@ans, and are primarily dictated by
amount of time it takes to perform these steps.

Figure 6.10 shows the result of our analysis. Parts (A), (B) €) are results of different
degrees of conservative scheduling. For example, in parti{Attribute values(al, a2, ..., a8}
are conflict free, we at most schedule VMs with one of two gadestonflict-free values in any
given server (e.g. VMs with al or a2 are co-located, and thotea3 and a4 are co-located in a
different server, etc.). Similarly, in part (B), we co-léea/Ms with either of al, a2, a3 or a4 in
one server and those with a5, a6, a7 or a8 in a different sd?aetr (D) is the result of promiscuous
scheduling.

We found that the percentage of the migrating VMs does noéssarily increase with the
increasing number of VMs, rather, it depends on the pergentd total number of conflicts that
are newly added. For instance, in figure 6.10(A), for varyiagnber of VMs from 500 to 5000,
mean value of the average percentage of VMs that need to migrd9% when number of newly
added conflicts is 35%. Also, the mode is 27%. We found thaatleeage difference between
the mean and mode values from all cases is no more than 0.5% pdrcentage of migrations
remain constant with respect to the size of the attributpsemd it does not depend on the initial

conflicts for which the VMs are scheduled. Finally, we fouhdlttit is always better to schedule
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VMs with conservative scheduling with minimum degree. Fstance, there is no migration using
scheduling process #1 wherdnast can only contain VMs with same attribute value. Also, we
notice that addition of a large % of conflicts at a time coss$s ltnan combined cost of multiple
additions of comparatively small % of conflicts. For instanm Figure 6.10(C), 50% conflicts

cost 79% migrations, where 10 different 5% conflicts costA3%=90% migrations.
6.4.3 Reachability Heuristics

Besides analyzing the cost ofpdan that leads to a particular conflict set, it is also important
to find thesteps of a plan where each step adds a particular conflict. For instancetifgieg
steps of glan helps to design operations for maintaining conflicts and tnghorization process,
although, we consider the designing of such front-end ajpera model as future work. Here,
we define this problem gdan reachability problem where for a given attribute, its sgaed an
initial conflict-set, what are thgteps with a particular cost that will reach targaan with specific
values in conflict-set? This problem can be viewed as findipgtha from an initial state to a goal
state in a weighted state-transition directed graph whaoh edge of the graph is the cost for
adding one conflict to the conflict-set. Here, a simple atbarican construct the state-transition
graph and uses a weighted shortest path algorithm to findamta(nlogn) time [35]. However,

it is infeasible due to a very large number of states wheneafsize of scopéV, the number of
conflicts is(]2V ) and possible states ard>). Instead, it is possible to use a search algorithm to
construct regions as needed. Proper heuristics can geetly search fosteps and some well-

known heuristics such as k-lookahead based heuristics mapjlied in this domain [35].

6.5 Security Issues and Limitations

In terms of applicability, an attribute of a VM can be appltedepresent properties of a single ten-
ant or multiple tenants. We refer such attributesntim-tenant andinter-tenant respectively. In
figure 6.1 tenantandsensitivityareinter-tenant andintra-tenant attributes respectively since val-

ues oftenantcan represent different tenant in the system, wisiémsitivitycan be very particular
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to a tenant. We analyze the following security concernspecsgying conflicts of thénter-tenant

attributes in a multi-tenant cloud.

e Privacy of a Tenant.As seen in section 6.1.1, a conflict is specified between agbaialues

of an attribute. However, for amter-tenant attribute, the values of the attribute can belong to
different tenants. For instance, in public cloud, valuethetenantattribute of figure 6.1 represent
each tenant in the system and each tenant should not knoesvaftenantattribute except their
own value for privacy of other tenant in this system. Specdyconflicts of such attributes can
be very tricky where a tenant should be able to specify thdlictmwith other tenants without,
basically, knowing them. The CSP could take the initiatvdévelop a privacy preserving conflict
specification process famter-tenant attribute where a simple approach could be the classificatio
of attribute-values based on some class, as shown in sé&gahfor conflict-of-interest classes,
and a tenant can only mention the class of their attributeegaivhere conflicts will be generated

automatically with other values of the same class.

¢ Disrupt Multi-tenancy:In public cloud, multiplexing is to share a physical host agthe VMs

of multiple tenants. However, if a tenant can specify cotdligith all other tenants in the system,
then its VMs cannot co-locate with any other tenant. Thispss disrupts the multi-tenancy in the
system and, basically, creates a private cloud for the teffdome CSP should restrict such specifi-

cations of conflicts.

We discuss following limitations on expressive-power of tienerated conflicts by our mecha-

nism.

e Homogeneous and Non-hierarchicaGenerated conflicts in a conflict-set are treated equally
and they do not have any hierarchical relationships. In édghd, three different conflicts are

specified inConSet,.,..i.ivity Of attributesensitivity Here, each conflict has the same semantics,
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which is a binary relation between two valuessehsitivity Also, generated conflicts of the values
of two different attributes are independent and bear eqanimg. In figure 6.1, the values of

ConSet,,,itivity aNdConSetenan: do NOt have any connection and have equal significance.

e Conflicts between the Virtual Resources onQur scheduling mechanism does not consider
any Host property, such as location or trust-level of a Himstthe scheduling decisions. Rather,
it only focuses on generating attribute and their conflictly éor the VMs and schedule them ac-
cordingly. Also, it does not consider any relationship kegw Hosts and VMs for the scheduling.
Such type of relations between Hosts and VMs are specifiediih A potential future extension

is to consider conflicts between Hosts and VMs for the schieglalecisions while optimizing the

number of Hosts.
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Chapter 7: CONCLUSION

The following sections summarize contributions of thissdigation and discuss some future re-

search directions that can be further studied.

7.1 Summary

In this research, first, we developed a constraints spetifictanguage for ABAC. We identified
different type of relations among attributes and developesanchical relationship structure. We
verified the expressiveness of the language by configuringusseparation-of-duty constraints
for role based access control and security policies for ingnérganizations.

We also developed constraints specification mechanismieua daaS. First, we formalized
a simple constraints specification mechanism for isolati@magement at both user level and re-
source level in the cloud. We also developed a formal adtnatige model for the management
of user privileges. We then presented CVRM, the very firsst@nts specification process that
enables tenants to specify several virtual resource mamagtepolicies needed for production en-
terprise applications to run in laaS clouds. CVRM can beifipdas part of a cloud deployment,
and would be installed in every cloud service provided byl#&S providers. We also identified
that virtual-resource management policies can be disedvand constructed from log file which
is similar to the well-known frequent-itemsets mining geh in database systems. We demon-
strated a constraint mining algorithm for CVRM where theoaildpm leverages standard Apriori
algorithm from the data mining literature. We also analymétbther the mined constraints pre-
serve semantic meaning with respective to the configuratignirements of the tenant.

Finally, we presented a generalized attribute-based @nt specification framewaork for vir-
tual resource to physical resource scheduling in laaS slolitie mechanism also optimizes the
number of physical resources while satisfying the conflitte developed and analyzed the im-

plementation of this mechanism in OpenStack cloud platform
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7.2 Future Work

There are several opportunities for extending the workepriesl in this dissertation.

In CVRM, there is always option to improve the mining. Fortarsce, in this dissertation, we
consider that the log file is noise free. An obvious future kwaould be to introduce noise in
this system and develop a more dynamic mining algorithmdaatmitigate the effect of noise on
mining results. Another future work, would be to develop aeonfiguration detection mechanism
on top of the mining of CVRM.

Another potential future work is to extend our constraiwiee scheduling mechanism to ad-
dress the limitations discussed in section 6.5. Also, aréutlirection is to develop a suitable
front-end application program interface for specificateord management of the conflicts. The
vision behind this is to expose resource management cépebib the tenants so they can retain
control when moving to cloud.

This dissertation builds foundations for an attribute basenstraint specification system. A
potential future work is to investigate the usefulness f slystem in other dynamic domains such

as managing privileges of the android apps in smartphones.
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