
Secure Information and Resource Sharing in Cloud IaaS

APPROVED BY SUPERVISING COMMITTEE:

Prof. Ravi Sandhu, Ph.D.

Prof. Ram Krishnan, Ph.D.

Prof. Palden Lama, Ph.D.

Prof Jianwei Niu, Ph.D.

Prof. Gregory B. White, Ph.D.

Accepted:
Dean, Graduate School

Copyright 2016 Yun Zhang
All rights reserved.

DEDICATION

I would like to dedicate this dissertation to my family who support me with great love, especially

to my beloved Matt Meyers who supports me with patience, companion and humor. I also dedicate

this dissertation to all my friends who supported me with their kindness and encouraged me during

hard times of this endeavor.

Secure Information and Resource Sharing in Cloud IaaS

by

YUN ZHANG, Ph.D.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
December 2016

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10249621

10249621

2016

ACKNOWLEDGEMENTS

I would like to give my most sincere appreciation to my advisor Dr. Ravi Sandhu for his great

guidance and support during my doctoral studies and the process of achieving this dissertation. His

wisdoms and professionals have enlightened and guided me all the way through my doctoral stud-

ies to accomplishing this achievement today. His great guidance helped me overcome difficuties

during the research and studies. He has taught me not only to be a good researcher in acdemia,

but also to be a good person in life. Working with him is one of the most precious and invaluable

experience in my life.

I would also like to thank Dr. Ram Krishnan, who co-advised me at the beginning stage of

my research. He guided and helped me with my first paper. He showed me an interesting and

chanllenging research world. I also want to express gratitude to all the other professors in the

committee: Dr. Palden Lama, Dr. Jianwei Niu and Dr. Gregory B. White, for their valuable

comments and suggestions.

I would like to especially acknowledge the support from Mr. Farhan Patwa, who is the associate

director in the Institute for Cyber Security (ICS) of UTSA. I would like to thank Mr. Farhan

Patwa for his guidance and expertise regarding practical enforcement techniques in dominant cloud

platforms. He has helped me with all the implementations reguarding to models in my papers

and dissertation, which is a crucial part of my research. He also enlightened me from practical

perspective, which helps me accomplish the models more realistically.

I want to thank all my fellow Ph.D students (some of them already achieved their Ph.D de-

grees) in ICS. They provided me great help during the process of study new knowledge, tools and

programming.

I also want to thank Raildo Mascena, who is an OpenStack Active Technical Contributor. He

helped me with his expertise in understanding Hierarchical Multitenancy in OpenStack.

This work is partially supported by the LMI Research Institute’s Academic Partnership Pro-

gram. This work is also partially supported by NSF CNS-1111925 and CNS-1423481.

iv

“Doctoral Dissertation was produced in accordance with guidelines which permit the inclu-
sion as part of the Doctoral Dissertation the text of an original paper, or papers, submitted for
publication. The Doctoral Dissertation must still conform to all other requirements explained in
the “Guide for the Preparation of a Master’s Thesis/Recital Document 6 or Doctoral Dissertation
at The University of Texas at San Antonio.” It must include a comprehensive abstract, a full in-
troduction and literature review, and a final overall conclusion. Additional material (procedural
and design data as well as descriptions of equipment) must be provided in sufficient detail to allow
a clear and precise judgment to be made of the importance and originality of the research reported.

It is acceptable for this Doctoral Dissertation to include as chapters authentic copies of pa-
pers already published, provided these meet type size, margin, and legibility requirements. In such
cases, connecting texts, which provide logical bridges between different manuscripts, are manda-
tory. Where the student is not the sole author of a manuscript, the student is required to make an
explicit statement in the introductory material to that manuscript describing the student’s contri-
bution to the work and acknowledging the contribution of the other author(s). The approvals of
the Supervising Committee which precede all other material in the Doctoral Dissertation attest to
the accuracy of this statement.”

December 2016

v

Secure Information and Resource Sharing in Cloud IaaS

Yun Zhang, Ph.D.
The University of Texas at San Antonio, 2016

Supervising Professor: Prof. Ravi Sandhu, Ph.D.

Cloud infrastructure as a service (IaaS) refers to virtualized IT resources such as compute, stor-

age and networking, offered as a service by a cloud service provider on demand to its customers (or

tenants). IaaS is the fastest maturing cloud service model today where tenants are typically strictly

isolated from each other. Cloud IaaS provides enterprises and organizations a secure and efficient

environment to deploy their systems. While organizations and companies benefit from moving to

cloud platform, it is likely that similar cyber attacks will happen to organizations that share the

same cloud platform and similar infrastructure. One way to mitigate this risk is to securely share

cyber security information and resources among these organizations. Contemporary public cloud

platforms such as OpenStack, AWS and Microsoft Azure are lacking a widely accepted access

control model for such secure information and resource sharing.

A community in a cloud IaaS refers to a group of organizations with similar organizational

structures or business models sharing common business interests, utilizing cloud IaaS to real-

ize their infrastructure deployments. Threat analysis and incident response infrastructure and re-

sources can be rapidly shared in a cloud community, whereby the participating organizations save

time and cost in handling cyber incidents. A community can establish a mechanism to prevent,

detect and respond to cyber attacks, share cyber security information among these organizations,

and help member organizations in the community response to and recover from cyber incidents

expeditiously.

In this dissertation, we present an access control model to enable organizations to securely

share cyber information and resources during cyber collaborations in a community-based isolated

environment in cloud IaaS platforms. The model facilitates a tenant to share its IT resources

with other tenants in a controlled and secure manner. It enables secure and effective management

vi

of information sharing from a community based perspective for both routine and cyber incident

response needs. We then define access control models for each of the three dominant cloud IaaS

platforms, viz., OpenStack, Amazon AWS and Microsoft Azure, to abstractly represent the access

control features of three complex systems. We further develop access control models for sharing

between organizations in a community-based isolated environment on these IaaS cloud platforms.

Then we formally specify administrative models and discuss enforcement and implementation

techniques for each cloud IaaS platform. Finally, we compare these models for these three systems

from perspective of enforcing the secure sharing model in different cloud IaaS platforms.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Motivation . 3

1.2 Problem Definition and Solutions . 5

1.2.1 Problems . 5

1.2.2 Solutions . 6

1.3 Scope and Assumption . 8

1.4 Thesis Statement . 9

1.5 Summary of contribution . 9

1.6 Organization of the Dissertation . 11

Chapter 2: Related Work . 13

Chapter 3: Secure Isolated Domain (SID) Model . 17

3.1 Components . 17

3.2 Administrative Model . 23

3.3 Operational Model . 27

Chapter 4: SID-model in OpenStack Cloud IaaS . 29

4.1 OSAC Model . 29

4.1.1 Components . 32

viii

4.2 Discussion of Models Possibilities . 33

4.3 OSAC Model with SID Extension (OSAC-SID) 40

4.3.1 Components . 40

4.3.2 Administrative Model . 42

4.3.3 Operational Model . 48

4.4 Enforcement . 49

4.4.1 Functionalities . 50

4.4.2 Credentials and Policy . 55

4.4.3 Demonstrations . 56

Chapter 5: SID-model in AWS Cloud IaaS . 62

5.1 AWS Access Control (AWS-AC) Model . 64

5.2 AWS-AC Model with SID Extension (AWS-AC-SID) 68

5.2.1 Components . 68

5.2.2 Administrative Model . 70

5.2.3 Operational Model . 76

5.3 Enforcement . 76

5.3.1 Functionalities . 77

5.3.2 Demonstrations . 86

Chapter 6: SID-model in Azure Cloud IaaS . 92

6.1 Azure Access Control Model . 92

6.2 Azure-AC Model with SID extension (Azure-AC-SID) 97

6.2.1 Administrative Model . 100

6.2.2 Operational Model . 104

6.3 Enforcement . 106

6.3.1 Functionalities . 108

6.3.2 Demonstrations . 114

ix

Chapter 7: Conclusion and Future Work . 119

7.1 Models Comparison . 119

7.2 Summary and Future Work . 123

Bibliography . 125

Vita

x

LIST OF TABLES

Table 3.1 SID Administrative Model . 24

Table 3.2 SID Administrative Model (continued) . 25

Table 3.3 SID Operational Model . 28

Table 4.1 Administrative Model . 43

Table 4.2 SID Administrative Model (continued) . 44

Table 4.3 OSAC-SID Operational Model . 48

Table 5.1 AWS-AC-SID Administrative Model . 73

Table 5.2 AWS-AC-SID Administrative Model (continued) 74

Table 5.3 AWS-AC-SID Operational Model . 75

Table 6.1 Azure-AC-SID Administrative Model . 102

Table 6.2 Azure-AC-SID Administrative Model (continued) 103

Table 6.3 Azure-AC-SID Operational Model . 105

xi

LIST OF FIGURES

Figure 1.1 Cloud Service Models . 2

Figure 1.2 Cloud Deployment Models . 2

Figure 1.3 Sharing Information in Cloud . 4

Figure 1.4 Community Cyber Incident Response Governance [21] 7

Figure 1.5 Outline of Contributions . 10

Figure 3.1 Secure Isolated Domain Model (SID-model) 18

Figure 3.2 SID Composition . 21

Figure 4.1 Architecture of OpenStack [5] . 30

Figure 4.2 OpenStack Access Control (OSAC) Model [15] 31

Figure 4.3 From Administrative Perspective of Modeling 34

Figure 4.4 From Operational Perspective of Modeling . 34

Figure 4.5 From Control Perspective of Modeling . 35

Figure 4.6 Architecture of Model 1 . 37

Figure 4.7 Architecture of Model 2 . 38

Figure 4.8 OpenStack Access Control Model with SID Extension (OSAC-SID) 41

Figure 4.9 Administration Relation . 46

Figure 4.10 Resources Ownership . 47

Figure 4.11 OpenStack Keystone Module Protocol . 51

Figure 4.12 Process of a Sid Creation . 52

Figure 4.13 Flow of a Sid or Sip Creation . 53

Figure 4.14 Pre-Check of Role Assignment . 54

Figure 4.15 Sid Table . 55

Figure 4.16 A Sample JSON File for Generating a Token 55

Figure 4.17 A Sample V3 Policy for Creating or Deleting a Sid 56

xii

Figure 4.18 Create a Sid . 58

Figure 4.19 HTTP Request - Create a Sid . 59

Figure 4.20 Create a Sip . 59

Figure 4.21 HTTP Request - Create a Sip . 60

Figure 4.22 HTTP Request - Add a User to a Sip . 60

Figure 4.23 A User Access to a Sip . 61

Figure 5.1 AWS Access Control within a Single Account [19] 65

Figure 5.2 AWS Access Control accross Accounts [Users in Account A Access Services and

Resources in Account B] [19] . 66

Figure 5.3 AWS Access Control Model with SID Extension (AWS-AC-SID) 69

Figure 5.4 Setup SID-service . 78

Figure 5.5 Policy of SID-manager User . 78

Figure 5.6 Core Project Admin User Policy . 79

Figure 5.7 Core Project Member User Policy . 79

Figure 5.8 Open Project Member User Policy . 80

Figure 5.9 SIDs Table . 81

Figure 5.10 SIPs Table . 81

Figure 5.11 Process of Creating a Sid . 82

Figure 5.12 Process of Creating a Sip . 83

Figure 5.13 AssumeRole . 84

Figure 5.14 Trust Relationship in a Role . 85

Figure 5.15 Process of Deleting a Sip . 85

Figure 5.16 Process of Deleting a Sid . 86

Figure 5.17 IAM Dashboard in an Operational AWS Account 87

Figure 5.18 IAM Roles in an Operational AWS Account 87

Figure 5.19 IAM Policies in an Operational AWS Account 87

Figure 5.20 IAM Dashboard in a Taken Operational AWS Account 88

xiii

Figure 5.21 IAM Roles in a Taken Operational AWS Account 88

Figure 5.22 IAM Policies in a Taken Operational AWS Account 89

Figure 5.23 IAM Roles with Policies Attached in a Taken Operational AWS Account 90

Figure 5.24 Trust Relationship for Role SIPadminCPS . 90

Figure 5.25 Trust Relationship for Role SIPmemberCPS 91

Figure 6.1 Azure Access Control (Azure-AC) Model . 93

Figure 6.2 Azure Access Control Model with SID Extension (Azure-AC-SID) 99

Figure 6.3 Azure Account Resource Division . 107

Figure 6.4 A Sid for a Community . 108

Figure 6.5 SID-manager User . 109

Figure 6.6 Create a Sid . 110

Figure 6.7 SID-request Process . 113

Figure 6.8 Sending SIP-requests . 114

Figure 6.9 A Sid is Created . 115

Figure 6.10 Projects after A Sid is Created . 115

Figure 6.11 A Sid Associated Organizations . 116

Figure 6.12 A Sip is Created . 117

Figure 6.13 Assign a User to a Sid Active Directory . 117

Figure 6.14 Add a User to a Sip . 118

Figure 6.15 A User Login to a Sip . 118

Figure 7.1 Resource Containers . 120

xiv

Chapter 1: INTRODUCTION

Cloud computing is revolutionizing the way businesses obtain IT resources. Infrastructure as a

service (IaaS) is a cloud service model [10] where a cloud service provider (CSP) offers com-

pute, storage and networking resources as a service to its tenants, on demand. By tenant, we

refer to an organization that is a customer of a CSP. The need to share information between or-

ganizations (commercial and governmental) continues to be an important requirement for various

reasons including incident response, improved productivity, collaboration, etc. Securely and effec-

tively sharing cyber information across multiple organizations and cooperating on cyber security

incidents has been a significant research topic in recent years. Our premise is that as organizations

move to cloud, the traditional information sharing activities would also need to move to cloud.

Cloud computing has three service models: infrastructure as a service (IaaS), platform as a

service (PaaS) and software as a service (SaaS), as shown in Figure 1.1. PaaS offer a development

environment to application developers. SaaS offers application and software to end-users. We

focus on IaaS cloud for two reasons: (1) IaaS is one of the most adopted cloud service models

today (as compared to PaaS and SaaS, respectively), and (2) IaaS is also the foundation of cloud

with characteristics such as elasticity, self-service, etc. By gaining insights on issues related to

sharing at this lower level of abstraction, we can subsequently also develop analogous models for

higher levels of abstractions of cloud such as PaaS and SaaS. Note that in the context of IaaS, the

unit of sharing comprises virtual resources such as objects in a storage volume, virtual machines

(VMs), etc.

The deployment models of clouds can be categorized into public, private, community and

hybrid clouds [10], as shown in Figure 1.2. A public cloud provides services for open use by

the general public. A private cloud provides services for exclusive use by a single organization.

A community cloud provides services for exclusive use by a specific community, which contains

organizations with shared concern, such as mission, security requirements, business models, etc.

In some cases, a big corporate group with multiple subsidiaries may own one community cloud for

1

Figure 1.1: Cloud Service Models

Figure 1.2: Cloud Deployment Models

business needs. A hybrid cloud is a composition of multiple distinct clouds, which may be public,

private or community clouds. In this dissertation, we investigate models information sharing in a

community in a cloud constructed using OpenStack cloud platform, or as communities in Amazon

Web Service (AWS) cloud or Microsoft Azure public clouds.

IaaS providers emphasize strict separation between tenants for obvious reasons. Thus their

virtual resources are typically strongly isolated. For instance, in OpenStack, a tenant user does

not have the capability to access resources outside her domain. By domain, we refer to the ad-

ministrative boundary of that tenant. In release of Kilo of OpenStack, each tenant is represented

internally as a domain. Similarly, in Amazon AWS and Microsoft Azure, tenants refer to accounts

- an administrative boundary of cloud resources. Users from one account (tenant) by default have

no rights to access resources outside that account.

2

The emergence of cloud as a shared infrastructure, significantly improves the efficiency and

flexibility of business systems, as well as incident response processes. A critical concern for par-

ticipating organizations is the level of control that they can maintain over the resources that are

shared. In particular, participating organizations will need to ensure that the resources are shared

only with users from select other organizations, and can retain the ability to enable and disable

the sharing. Thus in order to share resources between tenants, we need to develop access control

models that offer precise control to each tenant on what they are willing to share. As we will

see, realizing this scenario varies considerably on the different cloud IaaS platform studied in this

dissertation.

1.1 Motivation

Cyber security information sharing allows organizations to share threat analysis and incident re-

sponse information with collaborative communities formed to handle both existing and potential

cyber threats, as shown in Figure 1.3. With growing sophisticated cyber attacks every year, defend-

ing a single organization on its own becomes increasingly difficult. All organizations, regardless of

size, could be the target of a cyber attack putting critical digital assets at risk. A cyber breach can

result in substantial economic loss. Establishing a general cyber incident response mechanism for

organizations enhances cross-organization coordination, speeds up incident analysis and decision

making process, helps identify and understand the attack and facilitates quick response actions. An

effective response can minimize the damage caused by cyber incidents on valuable digital assets.

Cloud technology puts multiple organizations in a single cloud system infrastructure, giving addi-

tional opportunities for cyber adversaries to attack organizations with similar systems in a single

cloud. On the other hand, by virtue of sharing same cloud infrastructures it is more likely that

organizations will have similar concerns regarding security and privacy. Having suitable cyber se-

curity risk management mechanisms in public-cloud communities could be significantly valuable

to every organization in that cloud.

While cloud technology significantly improves efficiency and flexibility of business systems,

3

Figure 1.3: Sharing Information in Cloud

it also facilitates cyber collaborations. To our knowledge, current dominant cloud platforms are

lacking broadly accepted cyber incident response mechanisms. The traditional approach for cyber

security collaboration is mainly through subscription services where organizations can get threat

analysis, cyber attack reports and alerts, and so on. Individual organizations submit their security

data to a centralized security service center for this purpose. These traditional approaches focus

on simply security information exchange and sharing. In our work we seek to develop approaches

allowing participating organizations to actively collaborate and interact through the life cycle of

a cyber incident which impacts multiple organizations in a well-defined cloud community. We

consider two aspects in the context of information and resource sharing which to a certain degree

will depend on each other: models and technology. This aligns well with the requirements of

cyber incident sharing since organizations can share virtualized snapshots of their IT resources in

a community cloud dedicated for, say, electric grid.

Cyber attacks are becoming increasingly sophisticated and difficult to defend by a single or-

ganization on its own. Cyber attacks have resulted in significant economic losses. Determined

adversaries and organized cyber criminals are aiming at organizations of all sizes putting their

valuable digital information at risk. Establishing cyber incident response mechanisms in an or-

4

ganization improves the decision making process and internal and external coordination, which

potentially minimize the damage of cyber incidents. By explicitly designating users and roles who

are in charge of security issues associated with organization systems, quick decisions can be made

if a cyber attack happens. By explicitly establishing a standard cyber security process, organiza-

tions can easily identify the problems, schedule the defense process and prevent themselves from

further loss caused by improper handling of cyber incidents.

Currently, the way organizations collaborate on cyber security is more like a subscription ser-

vice they get from a collaboration center. Take FS-ISAC [4] for example. The member orga-

nizations submit their security information and get security services like reports and alerts from

the collaboration center. This type of cyber collaboration has several limitations. Organizations

manually submit security information. Organizations are not actively participating in analyzing

and processing the cyber information they submit. Sharing information is mainly by subscription,

rather than interactive sharing in a group. Also, to our knowledge, current dominant cloud plat-

forms are lacking broadly accepted cyber incident response mechanisms. With cloud technology

development, we believe with organizations transferring to cloud environment, the way they share

cyber information will change as well.

1.2 Problem Definition and Solutions

1.2.1 Problems

Threat analysis and incident response information needs to be shared with collaborative groups

formed to handle both potential and existing cyber incidents. A key requirement of effective cyber

incident sharing and response is that a community needs a capability to share beyond simple data

such as log files and documents. In particular, organizations need to replicate a smaller-scale

version of their affected IT infrastructure including infected servers with network architectures,

routers and firewall configurations, etc., for effective analysis, response and sharing with other

organizations.

5

1.2.2 Solutions

Consider a community cyber incident response scenario where organizations that provide critical

infrastructure to a community (such as a city, county or a state) share information related to a cyber

incident in a controlled manner [7]. Sharing information amongst such organizations can greatly

improve the resilience of increasingly cyber-dependent communities in case of co-ordinated cyber

attacks [8]. One domain of a community that can benefit from cyber incident sharing is that of the

electric power grid (see Wang et al [17] for a theoretical example of cascading a small scale attack

to the entire U.S. power grid).

A community in a cloud shares the infrastructure across multiple organizations from a specific

community with common concerns in terms of security, privacy and compliance. We propose a

cloud access control model to allow organizations in a cloud community to rapidly and mean-

ingfully share cyber security information and resources. The goal is that organizations in such a

well-defined community can rapidly share cyber security information and resources. The commu-

nity runs a standing Cyber Security Committee, which enables its member organizations executives

and technology leaders to provide oversight of privacy and security while enabling effective infor-

mation sharing. This cross-organizational committee is in constant communication to coordinate

such sharing while meeting privacy and security needs. It also runs a Cyber Security Forum, which

provides a general place for users from the allied organizations to share security information. The

security committee enables organization security leaders to be aware of the overall security and

privacy situation, and is limited to select individuals form each member organization. The security

forum provides an open forum for security education and awareness for the community, which is

limited to individuals from the member organizations who can voluntarily join and leave.

Organizations will collect and analyze their security data as usual, while sharing cyber se-

curity information with other members through community cyber security committee, in order

to make informed decisions about the community security governance. In most cases, organiza-

tions maintain their group of security specialists, who manage security policies, conduct security

audits and investigate security related events. A community also maintains a group of external

6

Incident Response Group

Cyber Security
Committee

Organization
Security

Specialists
External
Experts

Conditional
Membership

Shared
Information

Figure 1.4: Community Cyber Incident Response Governance [21]

security experts, who help organizations with security issues. During the occurrence of cyber

security incident, the Cyber Security Committee members start an incident response group with

cross-organization security team including organizations’ internal security specialists and external

security experts, as illustrated in Figure 1.4. Security information about this incident is shared

within the incident response group.

When a cyber incident occurs, affected organizations within the community can quickly form

a cyber incident response team along with internal and external security specialists. Security in-

formation and resources for the incident are shared in the incident response team. A cyber security

service is provided in the cloud, which enables organizations having cross-organization collabora-

tions to communicate and coordinate with other organizations during life cycle of a cyber incident.

Organizations share their security data with other members in the community.

We discuss models in two aspects: administrative models and operational models. Adminis-

trative models are concerned about managing what resources are to be shared with which users,

setting-up and tearing-down platforms for sharing, etc. Examples include a tenant administrator

creating a shared secure isolated domain, adding/removing the tenant’s users and resources to that

domain, inviting other tenants to join the domain, etc. Operational models are concerned about

controlling what activities users can perform on the shared platform. Examples include, creating

new resources in the domain, modifying objects in storage volumes, importing new resources, etc.

To be concrete, we develop these models based on the facilities exposed by currently dominant

7

IaaS cloud platforms, including OpenStack [5], a widely adopted open-source cloud IaaS project,

Amazon AWS [1] and Microsoft Azure [3], two prominent commercial IaaS providers. These

cloud softwares allows creating an IaaS cloud out of conventional hardware. IaaS cloud is a cloud

services platform, offering compute power, database storage, networking resources, content deliv-

ery and other functionality throughout a datacenter, all managed through a dashboard giving ad-

ministrators control while empowering their users to provision resources through a web interface.

OpenStack is a robust platform for building public, private or hybrid clouds that is developed and

maintained by a vibrant community with participation from more than 200 world-leading organiza-

tions with a release cycle of 6 months. Amazon AWS provides a highly reliable, scalable, low-cost

infrastructure platform in the cloud that powers hundreds of thousands of businesses in 190 coun-

tries around the world, with data center locations in the U.S., Europe, Brazil, Singapore, Japan, and

Australia, customers across all industries [1]. Millions of customers are currently leveraging AWS

cloud products and solutions to build sophisticated applications with increased flexibility, scalabil-

ity and reliability. Microsoft Azure is a growing collection of integrated cloud services - analytics,

computing, database, mobile, networking, storage, and web - for moving faster, achieving more,

and saving money [3].

1.3 Scope and Assumption

This research is conducted based on the following assumptions.

• 1. In models we develop in this dissertation, we confine our attention to information and

resource sharing among tenants within a single public or community cloud. These issues

in the context of multiple/hybrid clouds are important and interesting research problems but

out of scope for this dissertation.

• 2. Our scope is to build the access control model in dominant IaaS cloud platforms. Models

for information and resources sharing in PaaS and SaaS cloud platforms are beyond our

scope. We believe building models in IaaS level will provide solid foundation for setting up

8

models in higher levels in cloud.

• 3. We assume that multiple communities can exist in a single public cloud. Each community

consists of a subset of organizations in the cloud. One community has multiple organizations.

For simplicity, we also assume one organization has only one cloud account and a user

belongs to one and only one organization in the cloud.

• 4. We confine our attention of cloud services to compute service and object storage service.

Focussing on cloud storage service allows us to investigate information sharing requirements

between tenants, while compute service allows us to investigate resources sharing require-

ments between tenants. However, our models equally apply to other services in cloud system

such as network service, block storage service, identity service, etc.

These assumptions will be applied to models in each cloud platforms (viz., OpenStack, AWS

and Azure) that we are going to discuss in this dissertation.

1.4 Thesis Statement

We can summarize the problems in this dissertation as follows.

• There is lack of access control models for information and resource sharing within collabo-

rative groups in IaaS cloud platforms.

The central thesis of this dissertation is as follows.

• Secure sharing information and resources in IaaS cloud can be achieved by a common ac-

cess control model that is enforceable in the currently dominant cloud IaaS platforms (viz.,

OpenStack, AWS and Azure).

1.5 Summary of contribution

The contribution of this dissertation is that we defined a generic model for secure sharing infor-

mation and resources in cloud system. We call it Secure Isolated Domain model (SID-model).

9

Figure 1.5: Outline of Contributions

We further explore applying this model to dominant cloud IaaS platforms, including open source

cloud OpenStack, and two commercial clouds, viz., Amazon AWS and Microsoft Azure. Finally,

we compare the application of the SID-model over all three cloud platforms. Figures 1.5 shows

the outline of contributions.

• Model. We first introduce a generic Secure Isolated Domain model (SID-model) for sharing

information and resources in cloud system. We provide a formal characterization of the ac-

cess control model. We further formalize the concept into access control models, including

administrative model and operational model. Then we apply this model to all three domi-

nant cloud platforms (OpenStack, AWS and Azure). We introduce the basic cloud access

control models for each of these dominant IaaS cloud platforms. We abstract the cloud ac-

cess control models for AWS and Azure. For each of those platforms, we specify novel ways

to construct SID-model to allow inter-tenant secure information and resource sharing. We

extend the cloud access control model to include the capability of secure sharing information

and resources.

10

• Enforcement. We discuss the enforcement details for models on each of the dominant cloud

platforms. We build each of the model base on the features of each cloud platform itself.

For instance, we modified the source code of OpenStack to include the feature of the model,

while we add a service to include the feature of the model in AWS and Microsoft Azure. We

add functionalities to demonstrate the model in each of those cloud platforms.

• Comparison. These cloud IaaS platforms are very different from each other in its manner and

realizes IaaS. For instance, OpenStack uses global roles to control permission to access cloud

resources in current version. AWS has local roles to access cloud resources and the roles can

be customized. Microsoft Azure has more complex way to manage roles, including roles

in Active Directory, roles managing subscriptions and roles for accessing cloud resources.

We compare the application of the model in those cloud platforms. we discovered the basic

resources container in those different cloud platforms and confirm the different needs with

settings into the requirements of our model.

1.6 Organization of the Dissertation

In this dissertation, we will introduce the basic cloud access control models for the dominant

IaaS cloud platforms, including the open source cloud platform OpenStack, and two commercial

cloud platforms - Amazon AWS and Microsoft Azure. We provide a formal characterization of

the access control models of these three cloud platforms. For each of the platforms, we specify

novel ways to construct inter-tenant secure information and resource sharing. The dissertation

outline is as follows. In chapter 2, we will introduce related work on the idea of information and

resources sharing. In chapter 3, we give an access control model for secure sharing information

and resources in a public cloud. We formalize the model, giving both administrative model and

operational model. In chapters 4, 5 and 6, we will introduce the model for OpenStack, Amazon

AWS and Microsoft Azure respectively. For each of those platforms, we first give a formal access

control model specification of the cloud platform, and then we extend the access control model

to include the capability of handling information and resources sharing across tenants. We also

11

give a formal specification of the respective administrative models of information and resources

sharing. In chapter 6, we compare models on those three platforms, emphasizing the differences

in implementation perspective. Finally, we conclude the dissertation in the last chapter.

12

Chapter 2: RELATED WORK

Information and resource sharing has been an essential research topic for decades in security re-

search community. In traditional distributed systems, various access control and authorization

solutions for sharing information have been proposed. Some of the solutions are similar to our

solution.

In paper [14], the authors introduced the Secure Virtual Enclaves (SVE) which allows multi-

ple organizations to share their resources in distributed systems, while retaining their autonomy

over local resources. An enclave is a collection of computers and networks managed by the same

organization and subject to the same security policy [14]. SVE realizes the collaboration by dy-

namically updating security policies on local computers and networks. Very similar to our model,

SVE realized collaborations among a group of organizations. Different from our model, SVE al-

lows the collaborative organizations to have direct access to local resources. Instead, our model

allows sharing only by copy of local resources. Another key difference is that SVE defines secu-

rity policies on local resources, while in our model, we are not changing or adding new security

policies to local resources, but only to users. Our approach utilizes the character of cloud to share

resources by copying resources to a shared cloud account.

In paper [11], the author proposed an approach for community authorization service to sup-

port collaboration in distributed systems. The author introduces a scalable mechanism to repre-

sent, maintain and enforce security polices during collaborations. Same as paper [14], while the

approach allows resource owners to delegate some authority to communities, it still maintain ul-

timate control over their resources. The authors introduced a community authorization service

(CAS) server to manage the policies that govern access to a community’s resources. It mainly

solves the fundamental problem of scalable representation and enforcement of access policy within

distributed virtual communities. In contrast, our model uses the existing cloud authorization mech-

anism to authorize users and cloud objects. Expressing policies in terms of direct trust relationship

between producers and consumers leads to problems of scalability, flexibility, expressibility and

13

lack of policy hierarchy [11]. We avoid these problems by applying cloud authorization mech-

anism directly. Moreover, since organizations in the same cloud shares same authentication and

authorization center, it is simple and easy for organizations to exchange information and resources

with each other. The CSP as a common trusted party, plays an important function in this regard.

In paper [6], the authors proposed a family of coalition-based access control (CBAC) models,

to allow member organizations effectively share specific data and functionality in a coalition, while

avoiding inappropriate access to their resources. The models capture the entities involved resource

sharing in coalition and identify the interrelationships among these entities, as well as present

coalition-focused access policies and enforcement mechanisms. Same as previous two papers, this

paper is also for distributed system.

More recently a concept of sharing information and resources in a group of users, called Group-

Centric Secure Information Sharing (g-SIS) [9] has been developed. The g-SIS model changes the

emphasis of the access control unit from individual users and objects to a group of users and

objects, which is suitable for collaboration scenarios. Instead of defining policies for each piece

of information and resources, g-SIS allow to apply policies on a group of organizations with their

users and objects. Instead of giving direct access to organizations’ resources, g-SIS model bring

resources into the group by copy. Policies are based on each group of organizations.

All in all, the difference between our model with traditional approaches are as follows. First,

we proposed our model in a IaaS cloud environment rather than distributed systems, where cloud

system facilitate the collaboration in terms of unified user and role set and infrastructure for all

the tenants. Second, we don’t give the collaboration group direct access over the original data and

resources in the organization. Instead, we transfer copies to the collaboration group. Third, we

don’t use a separate Community Authorization Service (CAS) [11] to manage the access control

policies for the collaboration group. Instead, we utilize the setting of roles, users and policies of

the cloud to facilitate the access control over the collaboration group.

In the context of cloud, in [15], the authors proposed trust relationships established between

tenants to facilitate sharing. This makes collaborations easy to implement by simply adding trust

14

relationships among tenants in cloud. This provides users from one tenant direct access over the

resources of another tenant, which in our case we try to avoid by sharing copies.

In paper [16], the author introduced a design and implementation of cloud-based assured infor-

mation sharing system in SaaS. Recently, Microsoft unveiled a new intelligence-sharing platform:

Interflow, which is a PaaS based system for sharing attack information among organizations. There

is a lack of IaaS cloud-based information and resource sharing both in the literature and in industry.

Our approach is built in IaaS cloud, and aims to provide a formal model and enforcement guide for

implementation in real IaaS cloud environments.

Part of the concept we used to build our models comes from Group-Centric Secure Information

Sharing (g-SIS) [9], which introduces group-based information and resources sharing - a model to

control access among a group of users and objects. G-SIS model is well suited to the collaborative

community scenario. In particular, g-SIS enables sharing using copies of original information,

versus traditional information and resource sharing approaches which give access to original in-

formation and resources [6, 11, 14] to enable sharing. Sharing by copy gives additional security

protection over the original information and resources, since access to the copies can be provided

in a tightly controlled environment.

We also applied the concept from community cyber security [13], in which the authors present

a model for Secure Information Sharing (SIS) in the specific domain of community cyber security.

Compared to traditional discretionary access control, mandatory access control and role-based

access control, this model gives a new perspective to deal with the scenario of cyber incidents. It

can dynamically configure a system to facilitate SIS scenarios during a cyber incident life cycle.

The model introduces concept of core group, open group, incident group and domain experts. Core

group is for the community constantly exchange cyber informations and monitor the security level

of the community, to determine if something “out of the ordinary” occurs in the community [13].

Open group is an open forum for users in the community to be involved with general cyber security

issues. Incident group is for specific incident happened in the community. During the life cycle of

the cyber incident, users in the community and domain experts from outside could be added to the

15

incident group responding to the incident. Domain experts provide professional expertise to solve

problems during the life cycle of a cyber incident. We incorporate these concepts into our model

and specify the formalizations.

We have presented several access control models for secure information and resources sharing

in a collaborative community of organizations in cloud IaaS. We developed the OpenStack Access

Control model with SID extension (OSAC-SID) [18], which is a basic model for organizations

sharing information in a OpenStack cloud platform. We also designed the advanced Hierarchical

OpenStack Access Control model with SID extension (OSAC-HMT-SID) [21], which provides

organizations additional cyber security control with routine cyber information collection and pro-

cessing, a community security committee and a public security forum in the community. Then we

explored the model in current dominant comercial cloud IaaS platfroms AWS and Azure, resulted

in two papers [19] and [20]. Our approach aims to provide formal models and enforcement guides

for implementation in real environment.

16

Chapter 3: SECURE ISOLATED DOMAIN (SID) MODEL

In this chapter, we present a Secure Isolated Domain (SID) model, which is an abstraction and

consolidation of all the models we have published before in papers [18], [19], [20] and [21], with

some modifications. We call it SID-model. SID-model provides an access control solution for

securely sharing information and resources in cloud platforms. Figure 3.1 shows the SID-model

structure. In this and other figures in this dissertation, the arrows denote binary relations with the

single arrowhead indicating the one side and double arrowheads the many side. We use circle to

represent entities which can be created multiple times in OpenStack, while rectangle represents

entities which can only be created once. SID-model is a common model that will be applied to all

three cloud IaaS platforms mentioned earlier, viz., OpenStack, AWS and Microsoft Azure.

In SID-model, we are using the same cloud model concept from previous work [15], including

concepts of cloud services, object types, operations, permissions, etc. Also, we present SID-model

from two perspective: administrative model and operational model. We cover the basic operations

in both models. We confine our operational model to include only two typical cloud services

as representatives: computing service and object storage service. The operational model can be

extended to other cloud services as well.

In the operational model, we focus on showing how and what operations a normal user can

issue in the model. There are lots of services a cloud platform can provide.

3.1 Components

SID-model has thirteen components: Organization Accounts (OA), Users (U), Experts Accounts

(EA), Expert Users (EU), Roles (R), Services (S), Object Types (OT), Operations (OPR), Se-

cure Isolated Domains (SID), Secure Isolated Projects (SIP), Core Projects (CP), Open Projects

(OP) and Resources (RS) . We also introduce other entities, including policies, credentials, storage

containers (SC), storage container objects (CO) and virtual machines (VM), which are implicitly

included in the model.

17

Permission
Assignment

(PA)

Services
(S)

Permissions
(PRMS)

Operations
(OPR)

Object
Types
(OT)

OT
Ownership

(OTO)

User
Assignment

(UA)

Resources
(RS)

ot_
resource

(OR)

Secure
Isolated
Domains

(SID)

Open
Projects

(OP)

Secure
Isolated
Projects

(SIP)

Core
Projects

(CP)

Resource
Co-Ownership

(RSO)

Users
(U)

Expert
Users
(EU)

project_role
(PR)

Resource
Co-Ownership

(RSO)

SIP
Ownership

(SIPO)

Roles
(R)

Org
Accounts

(OA)

SID-
Association

(assoc)

User
Ownership

(UO)

project_role
(PR)

project_role
(PR)

One-to-one relation:
One-to-multiple relation:
Multiple-to-multiple relation:

Experts
Accounts

(EA)

ExpertUser
Ownership

(EUO)

CP
Ownership

(CPO)

OP
Ownership

(OPO)

Figure 3.1: Secure Isolated Domain Model (SID-model)

Organization Accounts: To have its own public cloud resources, an organization needs to

open a cloud account. A cloud account allows an organization to own specific (virtual) cloud

resources that can be accessed through cloud services.

Users and Groups: Users represent individuals who can be authenticated by a cloud system

and authorized to access cloud resources through a cloud account. A group is simply a set of users.

Users and Groups belong to a cloud account. The existence of groups is for the convenience of

managing multiple users as a single unit. Each policy associated to a group will apply to all group

members. For simplicity, in SID-model we use term users to represent both users and groups

components, since group is just a set of users. Later in the chapter, when we mention groups, we

mean to represent a group of organizations.

18

Experts Accounts: Experts accounts are cloud accounts that exist outside the community of

the group of organizations in the same cloud, giving experts access to cloud resources.

Expert Users: To get outside professionals involved, expert users [12] are introduced to SID-

model. Expert users don’t belong to the community of organizations. They are from other profes-

sional security organizations in the same public cloud. These experts bring different cyber security

skills. For instance, they may come from an IT consultant company which focusses on specific cy-

ber attacks. They may be cyber security law enforcement officers specializing in cyber crime. The

involvement of expert users is to help organizations handle cyber collaborations more effectively.

A sid maintains an expert users list which is available for collaborations inside the sid.

Roles: Users are assigned to a role to get permissions to access to cloud resources. Roles allow

users to have permissions to access cloud resources, for instance virtual machines (VMs), storage,

networking and etc. Roles could be different collections of meta permissions like read and write

toward a specific type of resource.

Services [15]: Services refer to cloud services provided to cloud customers. Cloud Service

Provider (CSP) leases cloud resources to its customers in terms of services, such as compute,

storage, networking, authentications and authorizations, database, etc.

Object Types and Operations [15]: An Object Type represents a specific type of cloud re-

sources objects. From the CSP’s viewpoint, objects are essentially services. We define object types

as particular service types the cloud provides. For instance, with compute service, the object type

is a virtual machine; with the storage service, the object type is a storage container, etc. General

operations are create, read, update and delete (CRUD) interacting with object types. For instance,

permission of deleting a virtual machine is a combination of delete operation and virtual machines

(VM) object type.

Permission Assignment and Policies [15]: In current popular cloud systems, users’ permis-

sions over cloud services and resources are defined in policy files. Usually policy files are con-

trolled by a policy engine. In some dominant cloud systems, policies can be attached to a user, a

user group, a role or a specific cloud resource. By defining a policy, a user or a group of users gains

19

permissions to corresponding cloud resources. The policy defines the actions which the user will

perform and cloud resources on which the actions will apply. Multiple permissions can be defined

in one policy file. Multiple policy files can be attached to one entity. Dominant cloud systems

achieve permission assignment in a manner via the policies attached to various relevant entities.

Virtual Machines: Virtual Machines is an object type for cloud compute service. Users can

launch virtual machines in a cloud account which give them great power of computing.

Storage Containers and Storage Container Objects: Storage Containers and Storage Con-

tainer Objects are object types for cloud storage service. We define a storage container as a com-

mon object storage resources boundary for a cloud platform, to allow storing storage container

objects like files in the cloud.

Resources: Resources refer to cloud assets which can be owned by users. Cloud assets are

cloud resources such as virtual machines, databases, storages, etc. Since the only way for users to

access resources is through a project (either a sip, core project or open project), which is a cloud

resources container, we also define that a project has ownership over its resources.

Credentials: Cloud system credentials are used for both authentication and authorization. Ac-

count owners can create users with their own security credentials to allow these users to access a

cloud system services and resources. Account owners can also grant external federated users from

other accounts with temporary security credentials to allow them to access the account’s a cloud

system services and resources.

Secure Isolated Domains: Secure Isolated Domain [18] is a special exclusive isolated domain,

holding security information and resources for cross-organizational security collaborations. A sid

provides an administrative boundary for cyber security information and resource collection and

analysis, and a secure isolated environment for cyber security collaborations in a community of

organizations. A sid holds two permanent projects: a core project and an open project. A sid

also holds all Secure Isolated Projects (sips) designed for cyber incident response and security

collaboration within this community of organizations. Figure 3.2 shows a sid with its composition.

One sid serves for one community of organizations.

20

A Sid

Core
Project

Open
Project

Secure
Isolated
Project
Sip-1

Secure
Isolated
Project
Sip-n

Org-1 Org-m

A Community

Expert-1 Expert-k

Experts

Figure 3.2: SID Composition

Projects: A project is a cloud resources container. It has strict boundaries isolating cloud

resources from each other. A user accesses cloud resources though a project. In SID-model,

projects include secure isolated projects, core projects and open projects.

Secure Isolated Projects: Secure Isolated Project [18] is a special project with constraints

over its user membership. It is used to collect, store and analyze cyber security information for

specific security reasons. A sip provides a controlled environment for a group of organizations

within the community to collaborate and coordinate on cyber incidents and other security issues.

Core Projects: Core project is a shared project holding cyber security committee [12] for the

community of organizations. Each organization in the community has at least one representative

security user in the committee.

Open Projects: Open project is an open shared project where users from the community of

organizations share common cyber security information and resources [12]. It is a common forum

for all community users to share general security information. Information published in open

project is simply public to every user who is in the project.

With the concepts described above, we formalize SID-model as follows.

21

Definition 1 SID-model has the following components.

- OA, U, EA, EU, R, S, OT, OPR, SID, SIP, CP, OP and RS are finite sets of existing organization

accounts, users, experts accounts, expert users, roles, services, object types, operations, secure

isolated domains, secure isolated projects, core projects, open projects and resources respectively

in a cloud system.

- Virtual Machines (VM) is object type for cloud compute service.

- Storage Containers (SC) and Storage Container Objects (CO) are object types for cloud object

storage services.

- User Ownership (UO) : is a function UO : U → OA, mapping a user to its owning account.

Equivalently viewed as a many-to-one relation UO ⊆ U × OA.

- Secure Isolated Project Ownership (SIPO) : is a function SIPO : SIP→ SID, mapping a single

secure isolated project to its owning sid. Equivalently viewed as a many-to-one relation SIPO ⊆

SIP × SID.

- Core Project Ownership (CPO) : is a function CPO : CP→ SID, mapping a single core project

to its owning sid. Equivalently viewed as a one-to-one relation CPO ⊆ CP × SID.

- Open Project Ownership (OPO) : is a function OPO : OP→ SID, mapping a single open project

to its owning sid. Equivalently viewed as a one-to-one relation OPO ⊆ OP × SID.

- Resource Co-Ownership (RSO) : is a function RSO : RS → ((SIP ∪ CP ∪ OP), (U ∪ EU)),

mapping resources to its owning project and user. Equivalently viewed as a many-to-one relation

RSO ⊆ RS × ((SIP ∪ CP ∪ OP) × (U ∪ EU)).

- Object Type Owner (OTO) : is a function OTO : OT→ S, mapping an object type to its owning

service. Equivalently viewed as a many-to-one relation OTO ⊆ OT × S.

- SID association (assoc) : is a function assoc : SID → 2OA, mapping a SID to all its member

organization accounts.

- Permission Assignment (PA) : is a function PA : PERMS → R, mapping permissions to roles.

Equivalently viewed as a many-to-many relation PA ⊆ PERMS × R.

- User Assignment (UA) : is a function UA : U→ PRP, mapping users to project-role pairs. Equiv-

22

alently viewed as a many-to-many relation UA ⊆ U × PRP.

- ot_resource (OR) : is a function OR : OT→ RS, mapping object types to resources. Equivalently

viewed as a one-to-many relation OR ⊆ OT × RS.

- project_role (PR) : PR = (SIP ∪ CP ∪ OP) × R, is a set of project-role combinations.

- Permissions (PERMS) : PERMS = OT × OPR, is a set of permissions.

3.2 Administrative Model

To make role assignment simple and clear, we constrain roles in two types: administrative roles

and member roles, which separately denotes the permission of being able to manage users and

permissions only for accessing cloud resources. We use one admin role SIDadmin to represent all

admin permissions a user can get from the cloud. We use one member role SIDmember to represent

all normal roles a user can get in a resource container. Admin users have the capability to add and

remove other users from their home organizations to core project and sips. Member users can be

added/removed from/to a project inside a sid. Member users are the those who actually have access

to the real cloud services and resources, like creating or deleting a virtual machine.

One sid is associated with one community in a cloud. The number of organizations associated

with the sid is fixed. Let uSet denotes the fixed group of security admin users, each of which

represent one and only one organization in the community. Each organization in the community

has equal limited administrative power in the sid, which is carried through uSet. Each sid maintains

uSet as a core group [12] of sid admin users. Only users from uSet later can dynamically create

sips in the sid.

A sid is initially set up with a core project and an open project. The core project and open

project are created when the sid is created. Each organization can join different sid with different

communities of organizations. Each of these sids are isolated from each other. Inside the sid,

organizations can request multiple sips for convenience of different cyber collaborations. The

number of sips depends on how many collaborations are initialized by the group of organizations.

Organizations can automatically request to create and delete sips, as well as add or remove users

23

Table 3.1: SID Administrative Model
Operation Authorization Requirement Update

SidCreate(adminu, uSet, sid)
/* An admin user
representing uSet creates a
sid */

adminu ∈ uSet ∧ adminu ∈ U
∧ sid /∈ SID

SID′ = SID ∪ {sid};
assoc(sid) =

⋃
adminu∈uSet

UO(adminu);
CP′ = CP ∪ {cp};
CPO(cp) = sid;
OP′ = OP ∪ {op};
OPO(op) = sid;
UA′ = (uSet, SIDadmin) ∪ UA;
PR′ = PR ∪ {(cp, SIDadmin), (op,
SIDadmin)}.

SidDelete(adminu, uSet, sid)
/* An admin user
representing uSet deletes the
sid*/

adminu ∈ uSet ∧ adminu ∈ U
∧ (adminu, SIDadmin) ∈ UA
∧ assoc(sid) =

⋃
adminu∈uSet

UO(adminu) ∧ sid ∈ SID

SID′ = SID - {sid};
assoc(sid) = NULL;
CP′ = CP - {cp};
CPO(cp) = NULL;
OP′ = OP - {op};
OPO(op) = NULL;
UA′ = UA - (uSet, SIDadmin);
PR′ = PR - {(cp, SIDadmin), (op,
SIDadmin)};
if ∃ u ∈ (U ∪ EU).((u, SIDmember)
∈ UA), then UA′ = UA - (u,
SIDmember);
if ∃ sip ∈ SIP.(SIPO(sip) = sid), then
SIP′ = SIP - sip ∧ PR′ = PR - {(sip,
SIDadmin), (sip, SIDmember)}.

SipCreate(adminu, sip, sid)
/* An admin user
representing uSet creates a
sip */

adminu ∈ U ∧ (adminu,
SIDadmin) ∈ UA ∧
UO(adminu) ∈ assoc(sid) ∧
sip /∈ SIP

SIP′ = SIP ∪ {sip};
SIPO(sip) = sid;
PR′ = PR ∪ {(sip, SIDadmin)}.

SipDelete(adminu, sip, sid)
/* An admin user
representing uSet deletes a
sip*/

adminu ∈ U ∧ (adminu,
SIDadmin) ∈ UA ∧
UO(adminu) ∈ assoc(sid) ∧
SIPO(sip) = sid

SIP′ = SIP - {sip};
SIPO(sip) = NULL;
PR′ = PR - {(sip, SIDadmin)}.

from or to sips. Admin users from uSet also can add or remove users from/to core project. With

the creation of a sid, admin users from uSet automatically get limited administrative permission in

a core project in a sid, which is represented by role SIDadmin. A normal user from the community

automatically get permissions to open project with role SIDmember.

The administrative aspects of SID-model are discussed informally below. A formal specifica-

tion is given in Table 3.2.

24

Table 3.2: SID Administrative Model (continued)
Operation Authorization Requirement Update

UserAdd(adminu, u, p, sid)
/* Admin users add a user
from his home domain to a cp,
op or sip */

adminu ∈ U ∧ (adminu, SIDadmin) ∈ UA ∧ (p,
SIDadmin) ∈ PR ∧ u ∈ U ∧ UO(u) = UO(adminu)
∧ p ∈ (CP ∪ OP ∪ SIP) ∧ (CPO(p) = sid ∨
OPO(p) = sid ∨ SIP(p) = sid)

UA′ = UA ∪
{(u,
SIDmember)}.

UserRemove(adminu, u, p,
sid)
/* Admin users remove a user
from a cp, op or sip */

adminu ∈ U ∧ (adminu, SIDadmin) ∈ UA ∧ (p,
SIDadmin) ∈ PR ∧ u ∈ U ∧ UO(u) = UO(adminu)
∧ p ∈ (CP ∪ OP ∪ SIP) ∧ (CPO(p) = sid ∨
OPO(p) = sid ∨ SIP(p) = sid) ∧ (u, SIDmember) ∈
UA ∧ (p, SIDmember) ∈ PR

UA′ = UA -
{(u,
SIDmember)}.

EUserAdd(adminu, eu, p, sid)
/* Admin users add an expert
user to a cp or sip */

adminu ∈ U ∧ (adminu, SIDadmin) ∈ UA ∧ (p,
SIDadmin) ∈ PR ∧ eu ∈ EU ∧ p ∈ (CP ∪ SIP) ∧
(CPO(p) = sid ∨ SIPO(p) = sid)

UA′ = UA ∪
{(eu,
SIDmember)}.

EUserRemove(adminu, eu, p,
sid)
/* Admin users remove an
expert user from a cp or sip */

adminu ∈ U ∧ (adminu, SIDadmin) ∈ UA ∧ (p,
SIDadmin) ∈ PR ∧ eu ∈ EU ∧ p ∈ (CP ∪ SIP) ∧
(CPO(p) = sid ∨ SIPO(p) = sid) ∧ (eu,
SIDmember) ∈ UA ∧ (p, SIDmember) ∈ PR

UA′ = UA -
{(eu,
SIDmember)}.

Create a sid: For each community of a group of organizations, there is one sid serving for

cyber security purpose. For such communities of organizations who are going to have cyber col-

laborations, one sid is assigned to be associated with one community. The number of organizations

associated with a sid is fixed. Let uSet denotes the fixed group of security admin users, each of

which represent one and only one organization in the community. Each sid is associated with a

certain number of organizations accounts. With different combinations (communities) of organi-

zations in the cloud, the total number of possible sids in the cloud is 2|A|.

Each organization in the community has equal limited administrative power in the sid, which

is carried through uSet. SID-model maintains each uSet as a core group [12] of a corresponding

sid admin users. Only users from uSet later can dynamically create sips in the sid.

Inside the sid, organizations can request multiple sips for convenience of different cyber col-

laboration purpose. The number of sips depends on how many collaborations are initialized by the

group of organizations. A sid is initially set up with a core project and an open project, while orga-

nizations can then automatically request to create and delete sips, as well as add or remove users

from/to sips. Admin users from uSet also can add or remove users from/to core project and open

project. With the initialization of a sid, admin users from uSet automatically get limited adminis-

25

trative permission in core project and open project in a sid, which is represented by role SIDadmin.

A normal user from the community can be added to open project with role SIDmember.

Delete a sid: After all collaborations are finished, organizations can choose to delete a existing

sid. The delete command is issued by a security admin user from (uSet) who represents the group

of organizations. All existing sips, cp and op, with information data and resources are securely

deleted with sid delete. All users assigned to any sips, cp and op is removed from it.

Create a sip: An organization security admin user representing a set of security admin users

uSet create a sip for an cyber incident response among the community of organizations. Each

organization in the sip has equally limited administrative power, which is represented by role

SIDadmin, which gives the sip admin users the permission to add and remove other users from

their home domain to the sip. Multiple sips for different purpose can be created in one sid.

Delete a sip: After the collaboration is finished, a sip needs to be securely deleted. The delete

command is issued by the same security admin user from (uSet) who issued the sip creation. All

information data and resources are securely deleted from the sip. All users assigned to the sip are

removed from it.

Add or remove a user to or from a core project or sips: Core project and sips admin users

are the set of security administrative users (uSet) from the community of organizations. These

limited administrative users can add/remove users of their organizations to/from the core project

and sips. All the users added to the core project or sips are existing users from an organization’s

account. The limited administrative users don’t have the permission to create new users or delete

an existing user. They can only add existing users to the core project or sips. When users are

removed from the core project or a sip, they will lose the access to corresponding information and

resources in the core project or the sip, regardless of the ownership of the piece of information

in the past. Admin users in core project or a sip can see all users added from the community of

organizations, as well as information and resources they bring in, which means there are no hidden

users, information and resources in a core project or a sip.

Add or remove a user to or from an open project: Every user in the collaborative com-

26

munity of organizations is allowed to join the open project. Users in open project have equal but

limited permissions. They can share cyber data, but have no control over other users. We use role

SIDmember to represent this limited permission. Organization security admin users add/remove

normal users from their organizations to/from the open project. Users will not be able to access

and share any data once they leave the open project.

Add or remove an expert user to or from a core project or sips: Expert users are needed

when external cyber expertise need to be involved. For instance, a cyber incident needs experts

from security consultant companies, government cyber experts, cyber polices, etc. Sid services

maintain a relation with external experts. Expert users can be added/remove to/from a core projects

and sips as a member. Users from uSet can request to add/remove expert users to/from the core

project or a sip. There are situations when an existing expert user in the core project or a sip needs

to be removed. For instance, at the end of a cyber collaboration, an unneeded expert user will be

securely deleted. After the expert user is deleted, the user will lose all access to any information

and resources in the core project or a sip.

3.3 Operational Model

In the operational model, we focus on showing how and what operations a normal user can issue

in the model. There are lots of services a cloud platform can provide. We choose two typical cloud

services as representatives: computing service and object storage service. Correspondingly, com-

puting service has an object type of virtual machines (VM), and storage service has an object type

of storage containers (SC) and storage container objects (CO). We will show two core operations

including create and delete. Create method allows users to create a new instance of virtual machine

or a storage container in a core project, open project or a sip. Delete method allows users to delete

an existing instance of a virtual machine or storage container in a project. In Table 3.3, we give the

details of operational model.

After a user is assigned to a core project, open project or a secure isolated project in a sid, the

user can issue following operations:

27

Table 3.3: SID Operational Model
Operation Authorization Requirement Update

CreateVM(vm, p, u)
/* A user creates a vm */

vm /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U
∧ ∃ (perms, r) ∈ PA.(perms = (vm, create)
∧ (p, r) ∈ PR ∧ (u, (p, r)) ∈ UA)

RS’ = RS ∪ {vm};
RSO’ = RSO ∪ {(vm,
(p, u))};
OR(vm) = VM.

DeleteVM(vm, p, u)
/* A user deletes a vm */

vm ∈ RS ∧ RSO(vm) = {(p, u)} ∧ p ∈ (CP
∪ OP ∪ SIP) ∧ u ∈ U ∧ ∃ (perms, r) ∈
PA.(perms = (vm, delete) ∧ (p, r) ∈ PR ∧
(u, (p, r)) ∈ UA

RS’ = RS - {vm};
RSO’ = RSO - {(vm,
(p, u))};
vm = NULL.

CreateSContainer(sc, p, u)
/* A user creates a storage
container */

sc /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U ∧
∃ (perms, r) ∈ PA.(perms = (sc, create) ∧
(p, r) ∈ PR ∧ (u, (p, r)) ∈ UA)

RS’ = RS ∪ {sc};
RSO’ = RSO ∪ {(sc, (p,
u))};
OR(sc) = SC.

DeleteSContainer(sc, p, u)
/* A user deletes a storage
container */

sc ∈ RS ∧ RSO(sc) = {(p, u)} ∧ p ∈ (CP ∪
OP ∪ SIP) ∧ u ∈ U ∧ ∃ (perms, r) ∈ PA.(
perms = (sc, delete) ∧ (p, r) ∈ PR ∧ (u, (p,
r)) ∈ UA

RS’ = RS - {sc};
RSO’ = RSO - {(sc, (p,
u))};
sc = NULL.

CreateObject(co, sc, p, u)
/* A user creates a storage
container object */

co /∈ RS ∧ sc ∈ RS ∧ p ∈ (CP ∪ OP ∪
SIP) ∧ u ∈ U ∧ RSO(sc) = (p, u) ∧ ∃
(perms, r) ∈ PA.(perms = (co, create) ∧ (p,
r) ∈ PR ∧ (u, (p, r)) ∈ UA)

RS’ = RS ∪ {co};
RSO’ = RSO ∪ {(co,
(p, u))};
OR(co) = CO.

DeleteObject(co, sc, p, u)
/* A user delete a storage
container object */

co ∈ RS ∧ RSO(co) = {(p, u)} ∧ sc ∈ RS ∧
p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U ∧ RSO(sc)
= (p, u) ∧ ∃ (perms, r) ∈ PA.(perms = (co,
create) ∧ (p, r) ∈ PR ∧ (u, (p, r)) ∈ UA)

RS’ = RS - {co};
RSO’ = RSO - {(co, (p,
u))};
co = NULL.

Create or delete a vm: A user can create/delete a virtual machines in a core project, open

project or sip, to which the user is assigned.

Create or delete a container: A user can create/delete a storage container in a core project,

open project or sip, to which the user is assigned. A storage container holds container objects.

Create or delete a storage container object: A user can create/delete a container object in a

storage container in a core project, open project or sip, to which the user is assigned.

28

Chapter 4: SID-MODEL IN OPENSTACK CLOUD IAAS

Part of content from this chapter has been published in paper [18].

OpenStack is a cloud platform which provides a large scale of resources like compute, stor-

age, networking and so on. As the biggest open source cloud infrastructure platform, OpenStack

provides a set of core services to facilitate scalability and elasticity of cloud architecture. Those

core services include compute service (Nova), identity service (Keystone), block storage service

(Cinder), object storage service (Swift), image service (Glance), networking service (Neutron) and

Dashboard service (Horizon), as shown in Figure 4.1.

Nova provides the support of management of virtual machines at big scale, multi-tiered appli-

cation and high performance computing level. It allows users to create their own virtual machines

and run the instances. Image service provides users with images (OS, software, configurations,

etc.), which are used to create virtual machines. Swift supports storing and retrieving data in the

cloud. It allows users to store their data as Swift objects. Cinder provides block storage which

is attached to a virtual machine as a storage volume. Neutron provides users with networking

services such as security groups, IP address management, DNS, and etc. For instance, different

virtual machines can be connected using virtual routers. Keystone provides users with security ser-

vices, such as authentication and authorization. Horizon is the web-based dashboard where users

can access all the services through a graphic user interface. OpenStack also provides shared file

systems which supports management of shared file system in a multi-tenant cloud environment. In

addition, OpenStack provides command line based clients to interface with each of those services.

4.1 OSAC Model

The OSAC model presented in this chapter has been previously described in paper [15]. The core

OpenStack Access Control (OSAC) model based on the OpenStack Identity API v3, is shown in

Figure 4.2. The OSAC model consists of eight entities: users, groups, projects, domains, roles, ser-

vices, operations, and tokens. Users represent people who are authenticated to access OpenStack

29

Network
(Nuetron)

Dashboard
(Horizon)

Compute
(Nova)

ObjectStorage
(Swift)

Image
(Glance)

BlockStorage
(Swift)

Identity
(Keystone)

store object

UI

UI UI

network
connectivity

Volume

UI UI

UI

Auth

Auth
Auth Auth

Auth

Auth

store object

store image

Figure 4.1: Architecture of OpenStack [5]

cloud resources while a group is a set of users. Projects define a boundary of cloud resources—a

resource container in which users can get access to the services the cloud provides, such as virtual

machines, storages, networks, and so on. Domain is a higher level concept that equates to a tenant

of the CSP. The projects in a domain represent the administrative boundary of its users and groups.

Projects allow tenants to segment their resources and to manage their users’ scope of access to

those resources. Roles are global, which are used to specify access levels of users to services in

specific projects in a given domain. Note that users are assigned to projects with a specific set

of roles. Object type and operations pairs define actions which can be performed by end users

on cloud services and resources. Users authenticate themselves to Keystone and obtain a token

which they then use to access different services. The token contains various information including

the domain the user belongs to, and the roles of the users in specific projects in that domain. We

elaborate the model and these concepts further below.

Users/Groups: Users are individuals who have access to OpenStack cloud. A group is a set of

users who are grouped together for convenience of management.

30

Users
(U)

Domains
(D)

Roles
(R)

User
Assignment

(UA)

Permission
Assignment

(PA)

Project
Ownership

(PO)

Project-Role Pair
(PRP)

Projects
(P)

Tokens
(T)

User
Ownership

(UO)

Services
(S)

user_token

token_project

Groups
(G)

Group
Ownership

(GO)

User
Group
(UG)

Group
Assignment

(GA)

token_roles

PRMS

Operations
(OPR)

Object
Types
(OT)

ot_service

Figure 4.2: OpenStack Access Control (OSAC) Model [15]

Domains and Projects: In OpenStack, a project can only belong to one domain. A user can

only belong to one home domain but they can be assigned to multiple projects, which can be

distributed in different domains. That is, the ownership of users and projects can be defined by

assigning them to a domain. Note that users in a domain are powerless unless they are assigned to

a project with a particular role. Typically, domains are created by a CSP for its tenants. A domain

admin is an admin user of that domain (tenant).

Roles: Role defines the accesses of cloud services and resources the user can have. By assign-

ing a role to a user, one can specify different access rights for the user. For instance, by assigning

a role of Member to user, the user receives all operational rights over the resources in a project;

by assigning a role of admin to a user, the user receives admin rights over a project. The accesses

defined by roles are enforced by a policy engine in the cloud based on policy files where the roles

are defined.

Tokens: There are two types of tokens in OpenStack. One is an unscoped token, which is used

31

for initial authentication to a specific domain. Using the unscoped token, the user can obtain scoped

tokens that are project-specific from Keystone. If a user has membership in two domains, the user

can obtain two different unscoped tokens and thereby further obtain multiple scoped tokens for

projects that belong to those domains. OpenStack clients facilitate this process.

Object Types and Operations. The concept of object types allow specifying different oper-

ations for different services. For instance, consider the Nova service. The object type for Nova

is VM and operations on VM include start, stop, etc. In contrast, for Swift, the object type is

Container and the operations include create, upload object, download object, etc.

The feature of Hierarchical Multitenancy (HMT) [5] was added to OpenStack since Juno re-

lease. It changes OpenStack from the flat domain-projects structure to a hierarchical domain-

parent project-child project tree structure. Prior to Juno release, OpenStack allows tenants to have

domains with flat projects in them. Hierarchical Multitenancy allows tenants to have hierarchical

project trees in a domain. However, in this dissertation, HMT feature is not a main concern of the

model. For more details of HMT, please refer to paper [21].

The formalization of the OSAC model is as follows. We fully refer this formalization from

paper [15], to help understand the following OpenStack SID model, since it was build upon OSAC

model.

4.1.1 Components

Definition 1. OSAC model has the following components.

- U, G, P, D, R, S, OT and OPR are finite sets of existing users, groups, projects, domains, roles,

services, object types and operations respectively in an OpenStack cloud system.

- User Ownership (UO) : is a function UO : U→ D, mapping a user to its owning domain. Equiv-

alently viewed as a many-to-one relation UO ⊆ U × D.

- Group Ownership (GO) : is a function GO : U → D, mapping a group to its owning domain.

Equivalently viewed as a many-to-one relation GO ⊆ G × D.

- Object Type Owner (OTO) : is a function OTO : OT→ S, mapping an object type to its owning

32

service. Equivalently viewed as a many-to-one relation OTO ⊆ OT × S.

- User Group (UG) : is a function UG : U→ G, mapping users to groups where the user and group

are owned by the same domain. Equivalently viewed as a many-to-many relation UG ⊆ U × G.

- Permission Assignment (PA) : is a function PA : PERMS → R, mapping permissions to roles.

Equivalently viewed as a many-to-many relation PA ⊆ PERMS × R.

- User Assignment (UA) : is a function UA : U→ PRP, mapping users to project-role pairs. Equiv-

alently viewed as a many-to-many relation UA ⊆ U × PRP.

- Group Assignment (GA) : is a function GA : G → PRP, mapping groups to project-role pairs.

Equivalently viewed as a many-to-many relation GA ⊆ G × PRP.

- PRP = P × R, the set of project-role pairs.

- PERMS = OT × O, the set of permissions.

- user_tokens: is a function user_tokens : U→ 2T, mapping a user to a set of tokens; correspond-

ingly, token_user is a function token_user : T→ U, mapping of a token to its owning user.

- token_project: is a function token_project : T→ P , mapping a token to its target project.

- token_roles: is a function token_roles : T → 2R, mapping a token to its set of roles. Formally,

token_roles(t) = {r ∈ R|(token_user(t),(token_project(t),r)) ∈ UA} ∪ (
⋃

g∈user_groups(token_user(t))

{r ∈ R|(g, (token_project(t), r)) ∈ GA}).

- avail_token_perms: is a function avail_token_perms : T → 2PERMS, mapping the permissions

available to a user through a token. Formally, avail_token_perms(t) =
⋃

r∈token_roles(t){perm ∈

PERMS|(perms,r) ∈ PA}.

- ot_service: is a function ot_service : OT→ S , mapping an object typle to its owning service.

4.2 Discussion of Models Possibilities

Informed by OSAC model, we discuss various alternatives in designing information and resource

sharing models in OpenStack IaaS cloud platform. Recall that a domain represents a tenant of

the CSP and domains can contain multiple projects, where each project is a resource boundary as

specified by the roles assigned to the user in that project. Also recall that domain admin is a super

33

admin: {u1}.
members:
{u2, u3, …

uN}.

admin: {uX,…, uY}.
members: {u1, u2,

u3, … uN} - {uX, …,

uY}.

admin: {u1, u2,

…, uN}
members: {}.

Assume u1, u2, …, uN represent participants from 1 to N in a
information and resource sharing group.

…………

More participants have full power over the sharing group.

Figure 4.3: From Administrative Perspective of Modeling

project
A2

project
B2

project
A1

project
B1

domain A domain B

Figure 4.4: From Operational Perspective of Modeling

user who takes charge of operations inside a domain, including creating new projects, creating

and adding users to a project, and so on. With the assumption that each domain represents an

organization in a cloud platform, each project inside the domain can represent either a department

or a temporary program in that organization. Domain admin roles are assigned to people who have

the super power over the organization, such as the capability to manage the departments and initiate

a new event in the organization. In the following, we conceptually refer to the sharing platform

as “group”. We use the term group informally. Specifically, by group we do not mean the OSAC

group component unless explicitly stated otherwise. Later, we discuss how exactly we model this

group in OpenStack cloud platform.

We can model information and resources sharing from three perspectives: administrative, op-

erational and control. From administrative perspective of modeling, we assume we have n par-

ticipants in the information and resource sharing group, we can have n different levels of admin-

istrative controls, from one participant being in charge of the group to all the participants being

34

info

sharing

participant A

sharing info inside sharing info outside

participant B participant C

participant A

participant B participant C

info
sharing

p2
p3

p2

p1

p4

p3 p4

p1

Figure 4.5: From Control Perspective of Modeling

in charge of the group, as shown in Figure 4.3. In the model where one participant has the ab-

solute control over the collaborating group, this participant has full access to all the information

and resources in the shared group, as well as having full power in determining shared group mem-

bers, and which user can have what level of access over what information and resources inside the

shared group. In the other extreme case of information and resources sharing administrative con-

trol, all the participants have full power over the group, including access to shared information and

resources, and management of users in the group. Clearly, there are different degrees of control

alternatives over this range as illustrated in Figure 4.3.

From the operational perspective of modeling in OpenStack, we have different levels of col-

laboration among projects and domains: project-to-project collaboration within the same domain,

project-to-project collaboration across different domains, project-to-domain collaboration and domain-

to-domain collaboration, as show in Figure 4.4. Project-to-project collaboration involves sharing

between several projects either in the same domain or across different domains. Only users who

are assigned to roles in these projects can join the collaboration group. Project-to-domain collabo-

ration occurs when a department needs to collaborate with in its home or an external organization.

This is useful since not all collaboration scenarios need the whole organization to be involved.

Project-to-Domain perspective minimizes a tenant’s exposure to other tenants. In scenarios, where

two organizations need large-scale collaboration or merge their resources, domain-to-domain col-

laboration perspective is a useful construct.

35

From a control perspective of modeling, there are two ways to share information and resources

among participants. One approach is to host the group sharing inside one of the existing partici-

pants’ administrative scope. The other approach is to host the sharing group within a third party’s

administrative scope, where no single participant maintains a superior control over the group. For

the first approach, any participant can set up an information and resources sharing project in its

domain and invite others to the sharing group. For the second approach, participants who are will-

ing to share sensitive information can get together to set up a working project outside of any of

the member participant domains. The relationship of shared space with the member participants is

showed in Figure 4.5.

Based on these perspectives and the levels of administrative controls discussed above, we now

provide an overview of three model alternatives using OpenStack constructs. Specifically, we use

the terms project and domain as specified earlier by OSAC model.

Model 1

In model 1, one of the collaborating participants hosts a shared project where all the other

collaborating participants are invited to this shared project. We call the participant who initiates the

collaboration as the shared project holder, and the rest of participants the shared project members.

The shared project is hosted inside the holder’s domain and is isolated from the rest of the projects

in the domain in order to secure the sensitive information shared by collaboration members. In this

model, the shared project holder has the full power over the shared information and resource, as

well as the member participants users. The sharing occurs either at a domain-to-domain level or a

project-to-domain level. Figure 4.6 illustrates this approach.

When collaboration begins, the holder creates an empty shared project for information and

resource sharing in its own domain. The holder invites other organizations to join the shared

project as members by adding their users to the shared project. The holder decides which users

can be added to the shared project and what access rights can be assigned to those users. A user

who is added to the shared project is assigned with a role, which gives the user proper access right

inside the shared project. Data can be brought into the shared project by member users from their

36

Figure 4.6: Architecture of Model 1

original projects in their home domains. Due to the ownership of the shared project, the holder can

decide what data is allowed to bring in and how the information is shared.

During information and resource sharing, member users inside the shared project exchange

their data, work on the shared data and finally generate new data, which may be copied back to

members’ original domains. Members can create, update and delete data based on their roles in the

shared project. After the collaboration, the holder is responsible for disbanding the shared project.

All the data which is attached to the shared project are deleted, all the processes and sessions which

are executing in the shared project are killed.

Model 2

In model 2, all the collaborating participants together hosts a shared project located in an exter-

nal domain. This domain does not belong to any of the members of the collaborating participants.

In order to facilitate information and resource sharing among these organizations, we have the con-

cepts of Secure Isolated Domain and Secure Isolated Project added to OpenStack platform. A sid is

a special domain specifically designed for information and resource sharing, while a sip is a secure

project set up for each information and/or resource sharing team. In this model, each participant of

the collaboration have equal power over the shared information and resource. The sharing happens

at domain-to-domain level. Thus the participants are domains of the tenants. Figure 4.7 illustrates

this approach.

In this model, we enable a sid for every possible combination of organizations (tenants/domains)

37

Figure 4.7: Architecture of Model 2

in the cloud. Within each such sid, there can be multiple sips. For instance, different collabora-

tions may occur between different users in a group of organization, which leads to different sips

in the same sid. Note that a sid between a set of organizations will only need to be created if a

collaboration activity is ever necessary between those organizations.

When the collaboration starts, a group of organizations together create a sid and a sip in the sid.

The creation process is complete only after all the members of the group agree to join to the sip.

Each organization has the same access control right and priority inside the sid. Inside the sid, each

participating organization has an admin user who decides which other users from her home domain

can be added to a sip in the sid and with what access. A user who is added to a sip is assigned with

a role at joining time. Users inside the sip can bring data into the sip from their original projects in

their home domains. Users decide what data will be brought in and how the information is shared.

Users inside the sip exchange their data, work on the shared data and finally generate new data,

which are allowed to be copied back to their respective original domains. Users can create, update

and delete data as per their roles. After the collaboration, the set of admin users are responsible for

disbanding the sip. All the data which are attached to the sip are deleted, and all the processes and

sessions which are running in the sip are killed.

Model 3

Model 3 is a slight variation of model 2. Similar to model 2, we still utilize sid and sip concepts

to design the model. A set of organization admin users are responsible for creating, updating and

deleting the sip, and this set of users become the admin users of the sip. After the sid is created,

38

sid admin users determine which users inside of their home domain can be added to a sip in the

sid or removed from the sip. The difference is that, instead of multiple sids, we design a single

sid with multiple sips for each collaboration activity between organizations. The idea is that we

want to hide the domain level administration of the sips which simplifies the implementation of

this model.

Model 3 specially applies to a community cloud environment, where the whole cloud is a

single community with multiple organizations as members. This has been previously described in

paper [21], which demonstrates the model in a community cloud. In this model, we give a default

sid to hold all possible sips that users can create. The default sid function is transparent to users.

Every time a user issues a collaboration activity create request, a sip is created in the default sid.

The system hosts the default sid permanently.

Summary

Model 1 is convenient for information and resource sharing in cases of low-assurance require-

ments on confidentiality of the shared data. It is easy to deploy model 1 in current OpenStack cloud

platform. However, since it gives one of the collaborating organizations overwhelming power on

the share project, it can create trust issues between the holder domain and member domains. More-

over, by bring in users outside of its home domain, the holder might be under the risk of exposing

itself to other tenants.

Model 2 and model 3 provide all organizations that are involved in information and resources

sharing an external secure space to cooperate and work together on the shared data. They avoid the

disadvantages of model 1, and provide the organizations equal access control right over the shared

space. Such a capability can be valuable in certain scenarios such as information sharing for cyber

incident where the data is very sensitive and each participating organization would wish to have

equal control on the shared space. Besides, hosting the shared project outside the organization

alleviates mutual suspicions that arise in model 1. In this chapter, our model follows the idea of

model 2. We give detailed design of the model for information and resources sharing in OpenStack

cloud IaaS. We call it the OpenStack Access Control model with SID extension (OSAC-SID).

39

4.3 OSAC Model with SID Extension (OSAC-SID)

OpenStack SID model extends OSAC model to include Secure Isolated Domain (SID) functional-

ity. We call it OSAC-SID model. We build OSAC-SID model on top of OSAC model. We will

present the OSAC-SID model in a way which covers only the additional components compared to

OSAC model.

In our discussion, we assume that in an OpenStack cloud, each organization has one and only

one domain. In previous chapter, we assumed that a user belongs to one organization in the com-

munity. It is consistent with the user home-domain concept in OpenStack. The concept of home-

domain requires that a user can only belong to one domain in OpenStack. OpenStack allows a user

to be assigned to projects across domains and access those projects separately using appropriate

tokens. Given two storage options in OpenStack, here we constrain the storage to object storage

only, which is provided by the Swift service. For simplicity we ignore the group mechanism in

OpenStack, since it is essentially a convenience to group together a set of users in a domain and

can be easily incorporated in a more complete description.

OpenStack has basic resource containers projects and administrative boundary domains, which

are respectivley corresponding to projects and secure isolated domains in SID-model. Thus, we use

OpenStack projects to realize core project, open project and secure isolated projects in SID-model,

and OpenStack domains to realize secure isolated domains in SID-model.

In chapter 3, we have introduced the important concepts and components in SID-model. In the

formalization of OSAC-SID model in this chapter, we mainly introduce how SID-model fit into

OpenStack platform.

4.3.1 Components

Figure 4.8 shows OSAC-SID model. The additional entity components included in OSAC-SID

model are: Secure Isolated Domain (SID), Expert Users (EU), Core Project (CP), Secure Isolated

Project (SIP), and Open Project (OP). We require two roles, so {admin, member} ⊆ R.

Secure Isolated Domains provides a secure isolated environment for cyber security collabo-

40

Domains
(D)

Users
(U)

Secure
Isolated
Projects

(SIP)

Roles
(R)

Projects
(P)

Roles
(R)

Object
Type
(OT)

Operations
(OPR)

Services
(S)

Secure
Isolated
Domains

(SID)

Project-Role
Pair
(PRP)

Open Project
Ownership

(OPO)

Open
Projects

(OP)

Roles
(R)

Core
Projects

(CP)

Roles
(R)

Core Project
Ownership

(CPO)Expert
Users
(EU)

User
Assignment

(UA)

SID
association

(assoc)

User
Assignment

(UA)

User
Assignment

(UA)

User
Ownership

(UO)

Project
Ownership

(PO)

SIP
Ownership

(SIPO)User
Assignment

(UA)

Resources
(RS)

ot_resource
(OR)

Resource
Co-Ownership

(RSO)

Project-Role
Pair
(PRP)

Resource
Co-Ownership

(RSO)

Permission
Assignment

(PA)

Permission
Assignment

(PA)

Permission
Assignment

(PA)

Permission
Assignment

(PA)

PRMSot_service

Project-Role
Pair
(PRP)

Project-Role
Pair
(PRP)

Figure 4.8: OpenStack Access Control Model with SID Extension (OSAC-SID)

rations among organizations. In context of OpenStack, a secure isolated domain is an OpenStack

domain with constrains fitting SID requirements. It does not belong to any of the organizations in

the community or public cloud. OpenStack project component is used for Core Projects, Open

Projects and Secure Isolated Projects entities, by adding constrains to fit into SID requirements.

Expert Users brings the model outside-community professionals and expertise. Expert users don’t

belong to the community. Resources refers to cloud assets which can be owned by users. Cloud

assets are cloud resources such as virtual machines, databases, storages, etc. A user and a project

which the user is assigned to have the co-ownership over cloud resources inside the project.

In the following, we formalize of concepts introduced above, as well as relations among them.

41

Definition 2. OSAC-SID model has the following components in addition to OSAC.

- SID, SIP, CP, OP and EU are finite sets of Security Isolated Domain, Secure Isolated Projects,

Core Projects, Open Projects and Expert Users. Each sid is a special domain. Each sid owns

its own Expert Users, Core Project, Open Project, and Secure Isolated Projects, correspondingly

represented by Expert User Ownership (EOU), Core Project Ownership (CPO), Open Project Own-

ership (OPO) and Secure Isolated Project Ownership (SIPO). Core Project and Open Project are

two permanent projects in a sid.

- Virtual Machines (VM) is object type for compute service in OpenStack cloud platform.

- Storage Container (SC) and Storage Container Object (CO) are two object types for storage

service in OpenStack cloud platform.

- Core Project Ownership (CPO) : is a function CPO : CP→ SID, that maps a single core project

to its owning sid. Equivalently viewed as a one-to-one relation CPO ⊆ CP × SID.

- Open Project Ownership (OPO) : is a function OPO : OP→ SID, that maps a single open project

to its owning sid. Equivalently viewed as a one-to-one relation OPO ⊆ OP × SID.

- Secure Isolated Project Ownership (SIPO) : is a function SIPO : SIP → SID, mapping Secure

Isolated Projects to its owning sid. Equivalently viewed as a many-to-one relation SPO ⊆ SIP ×

SID.

- SID association (assoc): is a function assoc : SID → 2D, mapping a SID to all its member

domains/organizations.

- Resource Co-Ownership (RO) : is a function RO : RS→ ((SIP ∪ CP ∪ OP), (U ∪ EU)), mapping

resources to its owning project and user. Equivalently viewed as a many-to-one relation RSO ⊆

RS × ((SIP ∪ CP ∪ OP) × (U ∪ EU)).

4.3.2 Administrative Model

The administrative aspects of OSAC-SID are discussed informally below. A formal specification

is given in Table 4.2 and Table ??.

Create a sid: The creation of sid is based on agreement among the community of organiza-

42

Table 4.1: Administrative Model
Operation Authorization Requirement Update

SidCreate(adminu, uSet, sid)
/* An admin user
representing uSet creates a
sid */

adminu ∈ uSet ∧ adminu ∈ U
∧ sid /∈ SID

SID′ = SID ∪ {sid};
assoc(sid) =

⋃
adminu∈uSet

UO(adminu);
CP′ = CP ∪ {cp};
CPO(cp) = sid;
OP′ = OP ∪ {op};
OPO(op) = sid;
UA′ = UA ∪ (uSet, cp, admin) ∪
(uSet, op, admin);
PRP′ = PRP ∪ {(cp, admin), (op,
admin)};
D′ = D ∪ {sid};
P′ = P ∪ {cp, op}.

SidDelete(adminu, uSet, sid)
/* An admin user
representing uSet deletes the
sid*/

adminu ∈ uSet ∧ adminu ∈ U
∧ (adminu, admin) ∈ UA ∧
assoc(sid) =

⋃
adminu∈uSet

UO(adminu) ∧ sid ∈ SID

SID′ = SID - {sid};
assoc(sid) = NULL;
CP′ = CP - {cp};
CPO(cp) = NULL;
OP′ = OP - {op};
OPO(op) = NULL;
UA′ = UA - (uSet, cp, admin) -
(uSet, op, admin);
PRP′ = PRP - {(cp, admin), (op,
admin)};
D′ = D - {sid};
P′ = P - {cp, op};
if ∃ u ∈ (U ∪ EU).((u, member) ∈
UA), then UA′ = UA - (u,
member);
if ∃ sip ∈ SIP.(SIPO(sip) = sid),
then SIP′ = SIP - sip ∧ PRP′ =
PRP - {(sip, admin), (sip,
member)}.

SipCreate(adminu, sip, sid)
/* An admin user
representing uSet creates a
sip */

adminu ∈ uSet ∧ adminu ∈ U
∧ (adminu, admin) ∈ UA ∧
UO(adminu) ∈ assoc(sid) ∧ sip
/∈ SIP

SIP′ = SIP ∪ {sip};
SIPO(sip) = sid;
PRP′ = PRP ∪ {(sip, admin)};
UA′ = UA ∪ (adminu, sip, admin);
P′ = P ∪ {sip}.

SipDelete(adminu, sip, sid)
/* An admin user
representing uSet deletes a
sip*/

adminu ∈ uSet ∧ adminu ∈ U
∧ (adminu, admin) ∈ UA ∧
UO(adminu) ∈ assoc(sid) ∧
SIPO(sip) = sid

SIP′ = SIP - {sip};
SIPO(sip) = NULL;
PRP′ = PRP - {(sip, admin)};
UA′ = UA - (adminu, sip, admin);
P′ = P - {sip}.

43

Table 4.2: SID Administrative Model (continued)
Operation Authorization Requirement Update

UserAdd(adminu, u, p, sid)
/* Admin users add a user
from his home domain to a
cp, op or sip */

adminu ∈ U ∧ (adminu, p, admin) ∈ UA ∧ (p,
admin) ∈ PRP∧ u ∈ U ∧ UO(u) = UO(adminu)
∧ p ∈ (CP ∪ OP ∪ SIP) ∧ (CPO(p) = sid ∨
OPO(p) = sid ∨ SIP(p) = sid)

PRP′ = PRP ∪ {(p,
member)};
UA′ = UA ∪ {(u, p,
member)}.

UserRemove(adminu, u, p,
sid)
/* Admin users remove a user
from a cp, op or sip */

adminu ∈ U ∧ (adminu, p, admin) ∈ UA ∧ (p,
admin) ∈ PRP∧ u ∈ U ∧ UO(u) = UO(adminu)
∧ p ∈ (CP ∪ OP ∪ SIP) ∧ (CPO(p) = sid ∨
OPO(p) = sid ∨ SIP(p) = sid) ∧ (u, p, member)
∈ UA ∧ (p, member) ∈ PRP

PRP′ = PRP - {(p,
member)};
UA′ = UA - {(u, p,
member)}.

EUserAdd(adminu, eu, p,
sid)
/* Admin users add an expert
user to a cp or sip */

adminu ∈ U ∧ (adminu, p, admin) ∈ UA ∧ (p,
admin) ∈ PRP∧ eu ∈ EU ∧ p ∈ (CP ∪ SIP) ∧
(CPO(p) = sid ∨ SIPO(p) = sid)

PRP′ = PRP ∪ {(p,
member)};
UA′ = UA ∪ {(eu,
p, member)}.

EUserRemove(adminu, eu,
p, sid)
/* Admin users remove an
expert user from a cp or sip
*/

adminu ∈ U ∧ (adminu, p, admin) ∈ UA ∧ (p,
admin) ∈ PRP∧ eu ∈ EU ∧ p ∈ (CP ∪ SIP) ∧
(CPO(p) = sid ∨ SIPO(p) = sid) ∧ (eu, p,
member) ∈ UA ∧ (p, member) ∈ PRP

PRP′ = PRP - {(p,
member)};
UA′ = UA - {(eu, p,
member)}.

tions. One security admin from an organization representing the group of organizations request

the creation of a sid with parameters including all the security admin users, each representing one

organization in the community. uSet denotes a fixed group of security admin users from all or-

ganizations of the community, with one admin user representing each organization. When a sid

is created, the security admin user who issues sid creation command along with all other secu-

rity admin users from uSet will become the limited administrative users of the sid, in which each

organization in the community has equal limited administrative power which is carried through

uSet. Only users from uSet later can dynamically create sips in the sid. Like the normal domain in

OpenStack, a sid has domain admin assigned with it, which are users from uSet.

Since in OpenStack, secure isolated domains are realized by OpenStack domains, uSet will be

assigned with domain admin roles on the special domain sid. Each project in the sid are realized

by OpenStack projects, uSet will be assigned with project admin roles to the core project and

open project. With project admin role, core project admin users can add and remove other users

from their home domain to the core project. The open project is open for all the users from the

44

community of organizations. Admin users can add normal users to open project with OpenStack

member role as a member user.

Delete a sid: One admin user from uSet representing the group of organizations initilizes the

sid delete request. When the sid domain is deleted, the core project, open project and all the sips

inside the sid (if any) will be securely deleted. All the assigned resources and users will be securely

revoked from the sid. All the role assignment to the sid domain and projects inside the sid will be

removed.

Create a sip: A sip is created for cyber collaborations among a set of organizations in a

community. Any security admin user in uSet which represents the set of the community of organi-

zations can create a sip. Each organization security admin (uSet) get equal limited administrative

power in the sip, by being assigned with project admin role, which in OpenStack is admin role.

The role gives the sip admin users the permission to add and remove other users from their home

account to the sip.

Delete a sip: A sip can be securely deleted by any security admin user from uSet. Role

assignments created for users to join the sip are deleted. All information and resources are securely

deleted in the sip.

Add/remove a user to/from a core project: Core project admin users are the set of secu-

rity admin users (uSet) from the community of organizations. These limited admin users can

add/remove users of their organizations to/from core project with assigning normal users member

role. All the users added to the core project are existing users from an organization’s domain.

When users are removed from the core project, they will lose the access to corresponding informa-

tion and resources in the core project, regardless of the ownership of the piece of information in

the past.

Add/remove a user to/from a sip: Users from uSet have limited administrative power in the

sip, since they are assigned with admin role to the sip. They can add/remove users of their home

domains to/from the corresponding sip as appropriate for the collaboration with assigning normal

users member role.

45

Cloud admin

Domain admin

Project admin Core Project admin

Sid admin
(A group of

domain admins)

Sip admin

Figure 4.9: Administration Relation

Add/remove a user to an open project: All user in the collaborative community of organiza-

tions are allowed to join the open project. Users in open project have equal but limited permissions.

They can share cyber data, but have no control over other users. OpenStack role member repre-

sents this limited permission. Sid admin users add/remove normal users from their organizations

to/from open project. Users will not be able to access and share any data once they leave the open

project.

Add/remove an expert user to/from a cp/sip: Expert users can be added/remove to/from

core projects and sips as a member. Admin users from uSet can request to add/remove expert users

to/from the core project or a sip.

Additional administration details

Here we give additional explanation of OSAC-SID model from administration perspective, as

shown in Figure 4.9. Cloud admin is the super admin user of the cloud who can create domains,

users and assign users as admins for domains. Some administrative operations in sid are done by

cloud admin, such as creating/deleting/updating a sid domain, though the request is initiated by an

organization domain admin user.

A domain admin is the super admin user for an organization. A domain admin can cre-

ate/delete/update a project and user/group in the domain. Projects can also have admin users

assigned to them. The difference is that project admin user cannot create/delete/update users and

groups, but they can assign users/groups to the project.

A core project is designed for core group [12], which is a cyber security committee for the

46

A Community
in Cloud

Domains

Projects Core Project

Sids

SipsOpen Project

Figure 4.10: Resources Ownership

whole community. Domain admin decides which of the organization’s users will be in the cyber

security committee. Domain admins are automatically assigned as admin users in core project

when a sid domain is created. As core project admin users, they can further add users from their

home domains to a core project, create sips and add users to sips.

The administration over a sip is similar to the one in paper [18]. The same set of core project

admin users create/delete/manage a sip. Each user in this set has equal admin power over the sip.

They can assign users from their organizations to the sip. They can bring in cyber information

from their home domains.

Resource ownership

From the perspective of resource ownership, we give a view of the model, as shown in Figure

4.10. Organizations own their resources manifested as domains in the community cloud. An

organization has multiple normal projects, some of which could be for security purposes. Inside

a domain, resources are divided by projects which for example, represent different departments

inside an organization.

A sid securely isolates cloud resources from organization domains for cyber security purpose.

All sids are owned by the cloud. A core project belongs to a sid and provides a stable and controlled

place for organizations to exchange and share routine cyber security information. An open project

belongs to a sid and provides an isolated place for normal users to share security data. A sid holds

all sips which are designed for specific cyber security purposes.

47

Table 4.3: OSAC-SID Operational Model
Operation Authorization Requirement Update

CreateVM(vm, p, u)
/* A user creates a vm */

vm /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U
∧ ∃ (perms, r) ∈ PA.(perms = (vm,
create) ∧ (p, r) ∈ PRP ∧ (u, p, r) ∈ UA)

RS’ = RS ∪ {vm};
RSO’ = RSO ∪ {(vm, (p,
u))};
OR(vm) = VM.

DeleteVM(vm, p, u)
/* A user deletes a vm */

vm ∈ RS ∧ RSO(vm) = {(p, u)} ∧ p ∈
(CP ∪ OP ∪ SIP) ∧ u ∈ U ∧ ∃ (perms, r)
∈ PA.(perms = (vm, delete) ∧ (p, r) ∈
PRP ∧ (u, p, r) ∈ UA

RS’ = RS - {vm};
RSO’ = RSO - {(vm, (p,
u))};
vm = NULL.

CreateSContainer(sc, p,
u)
/* A user creates a storage
container */

sc /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U
∧ ∃ (perms, r) ∈ PA.(perms = (sc, create)
∧ (p, r) ∈ PRP ∧ (u, p, r) ∈ UA)

RS’ = RS ∪ {sc};
RSO’ = RSO ∪ {(sc, (p,
u))};
OR(sc) = SC.

DeleteSContainer(sc, p,
u)
/* A user deletes a storage
container */

sc ∈ RS ∧ RSO(sc) = {(p, u)} ∧ p ∈ (CP
∪ OP ∪ SIP) ∧ u ∈ U ∧ ∃ (perms, r) ∈
PA.(perms = (sc, delete) ∧ (p, r) ∈ PRP ∧
(u, p, r) ∈ UA

RS’ = RS - {sc};
RSO’ = RSO - {(sc, (p,
u))};
sc = NULL.

CreateObject(co, sc, p, u)
/* A user creates a storage
container object */

co /∈ RS ∧ sc ∈ RS ∧ p ∈ (CP ∪ OP ∪
SIP) ∧ u ∈ U ∧ RSO(sc) = (p, u) ∧ ∃
(perms, r) ∈ PA.(perms = (co, create) ∧
(p, r) ∈ PRP ∧ (u, p, r) ∈ UA)

RS’ = RS ∪ {co};
RSO’ = RSO ∪ {(co, (p,
u))};
OR(co) = CO.

DeleteObject(co, sc, p, u)
/* A user delete a storage
container object */

co ∈ RS ∧ RSO(co) = {(p, u)} ∧ sc ∈ RS
∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U ∧
RSO(sc) = (p, u) ∧ ∃ (perms, r) ∈ PA.(
perms = (co, create) ∧ (p, r) ∈ PRP ∧ (u,
p, r) ∈ UA)

RS’ = RS - {co};
RSO’ = RSO - {(co, (p,
u))};
co = NULL.

4.3.3 Operational Model

In the operational model, we mainly show how and what operations a normal user can issue in the

model. For simplicity, we only demonstrate the core operations on virtual machines and storage

containers, including creation and delete. Create method allows users to create a new instance

of virtual machine or a storage container in a core project, open project or a sip. Delete method

allows users to delete an existing instance of a virtual machine or storage container in a project.

For objects, we can upload objects and download objects from a storage container. In Table 4.3,

we give the details of operational model.

After a user is assigned to the core project, open project or a sip, the user can issue following

operations:

48

CreateVM/DeleteVM: A user can create/delete a virtual machines in the core project, open

project or a sip, to which the user is assigned with member role.

Createcontainer/Deletecontainer: A user can create/delete a storage container in the core

project, open project or a sip, to which the user is assigned with member role. A storage container

holds Swift container objects.

CreateObject/DeleteObject: A user can create/delete a Swift object in a storage container in

the core project, open project or a sip, to which the user is assigned with member role.

4.4 Enforcement

We discuss the enforcement of OSAC-SID model on OpenStack Kilo release. In OpenStack, there

are three levels of administrative roles: cloud_admin, domain_admin, and project_admin,

which have administrative power respectively over the whole cloud, a domain and a project. In

OpenStack, domains forms the administrative level of resources boundary. Inside a domain, re-

sources can be further divided by projects, while project is the basic resources container in the

cloud. Admin users can create users and assign global roles to a user with a project. Users permis-

sions over services and resources are defined in policy files stored in different services.

We enforced the SID-service as part of OpenStack public cloud platform services, which is

quite different with model enforcement in AWS and Azure in the following chapters, where SID-

service is provided by a third party outside of the community. In order to deploy the model in

OpenStack platform, we modified Keystone server to include functionalities which has specific

features that facilitate information and resources sharing using SID-model. Recall that Keystone

facilitates authentication and authorization in OpenStack.

SID-service consists of a collection of functionalities added to OpenStack cloud platform,

which realize the SID-model. Users can initialize a sid command just like issuing any other

OpenStack command. A core project and an open project are created along with sid creation.

In OpenStack, only cloud admin is allowed to create a domain. A sid is a special domain, thus,

to create a sid needs cloud admin permissions. Cloud admin create a sid with a core project and

49

an open project in it. Cloud admin assigns organization security admin users as admin users for

the sid, as well as the core project. For open project, sid admin users have the permissions to as-

sign users from their organizations to it as a member role. All such cloud admin functions can be

automated by providing scripts that do these activities on the cloud admin’s behalf after verifying

appropriate authorization.

4.4.1 Functionalities

Keystone server consists of several modules, such as auth, identity, assignment, resources, catalog

and etc. Each of those modules follows a basic protocol to handle request from clients, as shown

in Figure 4.11. Request from clients are in http format. With a request coming from a client, the

router maps the http request to functions in controller. In another word, the router decides which

controller method should match with the client request. Then the controller talks to the core and

find the corresponding methods in core to handle the request. The core processes the request and

talks to the drive. The drive writes to tables in database. The result is returned to the client in a

sequence of drive-core-controller-router-client.

Resource Module

Domains and projects related functions are included in resource module. One can create, delete,

update and list domains and projects through resource module. A sid is a special domain and a sip

is a special project. We add sid and sip functions in resource module. Sid and sip functions follows

the basic protocol of Keystone server module. Take sid creation for example. A user sends a sid

creation http request to Keystone server, the router maps the http request to a function in controller,

the controller further call methods in core, the core finally talks to the drive and the drive writes

the data into database tables and returns the result, as show in Figure 4.12.

In resource controller, we add two classes of functions, one for sid and the other for sip. These

functions include creation, update, list and delete. Here, we give more details about creation

functions. Figure 4.12 shows the flow of a sid and the sip creation functions in resource controller.

50

Router

Controller

Core

Drive

Client
Send a http request.

Map the request to controller.

Find the core functions for the request.

Find drive for the request.Return the result.

Return the result.

Return the result.

Return the result.

Keystone Server
Module

Write data to
database.

Database
Return the result.

Figure 4.11: OpenStack Keystone Module Protocol

Again, a sid is a real domain, thus, a domain is created as a sid in a sid creation function. A core

project and an open project are two projects created in sid domain. All the member organizations

security users are assigned to as sid domain admin users on the new sid, as well as project admin

users on the core project. Open project assignment is left for later. Sid admin users can assign a

normal user to core project, open project and a sip at any time. The last step is to add a sid record

into sid table in database, where saves all the sids association information. The sid information

table allows distinguishing a normal domain from a sid domain. Sip creation is much like a project

creation in controller module, since it is constrained by sid domain boundary already. On the

other side, in normal project creation function, we add a sid checking process, which determines

whether the creating project belongs to a sid or a normal domain. A sip project cannot be created

by a normal project creation function.

51

Router

Controller

Core

Drive

User

Send a sid
creation request.

Map the request to controller
 function create_sid().

Call the core function create_sid().

Talk to drive to create a sid.Return a sid.

Return a sid.

Return a sid.

Return a sid.

Resource Module

Write data to
database sid table.

Database
Return a sid.

Figure 4.12: Process of a Sid Creation

Assignment Module

Assignment module is part of the Keystone server which in charge of user role assignments. To

add sid and sip functionality to Keystone, we also need to modify the assignment module. Same as

resource module, assignment follows the general Keystone module protocol. We add sid and sip

role assignments in the assignment module. Same as in resource module, the request is handled by

router, controller, core and drive. Same as assigning a role a domain or a project, a user with proper

permission can assign a role to a sid or a project in the sid, including core project, open project and

sips. For the model, we constrain only the cloud user has the privilege to assign a domain admin

role to a sid and a sid admin user has the privilege to assign a role to a normal user. The flow

of a role assignment process is similar to the process of a sid creation as described in proceeding

paragraph.

During information and resource sharing activity, if a new user requests to join a sip, the user

need to be verified as to whether the user comes from domains which are associated with the sid

where the sip is located. Users that do not belong to the set of associated domains will be rejected

52

Create a domain
 as a sid

Sid admin role
assignment

Add sid info to sid
table in database

Sid creation function

Assign orgs
security admins

to the sid

A sid info includes a sid domain id,
core project id, open project id
and a set of organizations ids

Sip creation function

Create a project
as core project

Create a project
as open project

Create a sid

Assign orgs
security admins
to core project

Cp admin role
assignment

Create a project
in a given sid

Create a sip

Assign orgs
security admins

to the sip

Sip admin role
assignment

Figure 4.13: Flow of a Sid or Sip Creation

by the server. The crucial part of sid role assignment is to distinguish this from assigning a role

to a normal domain and to a sid, and from a normal project to a sip. Since a sid is a real domain

and a sip is a real project, assignments to a domain and a project would be applied to a sid and

a sip too, which we do not want to happen. Thus, before an assignment is issued, we need to be

able to determine whether it is a normal domain or a sid, a normal project or a sip. We add a

pre-check process before a role assignment and a sid/sip role assignment in the module, as shown

in Figure 4.14. In the controller of the module, there are two functions for assigning roles, one for

normal domains and projects, the other for sids and sips. Both functions point to the same core

method which issue role assignment in Keystone server. We add the role-assignment pre-check

in assignment controller. The pre-check process guarantee that: 1) a domain admin cannot assign

roles through sid/sip role assignment function, since a sid is a real domain and a sip is a real project;

53

Check if user has
the same home domain

 as admin user

Check if it is
cloud admin issue

sid assignment

Sid role
assignment

Check if the role
assignment is for sid/sip

Normal role
assignment

Project role
assignment

Domain role
assignment

Exit with
exception

Check if the role
assignment is for sid/sip

YesNo

Normal role assignment function Sid/sip role assignment function

Sid/sip role
assignment

Exit with
exception

Yes No

Exit with
exception

Sip role
assignment

Exit with
exception

SidDomain Project Sip

Yes YesNo No

Figure 4.14: Pre-Check of Role Assignment

2) a sid admin cannot assign roles through normal role assignment function, for the same reason;

3) only cloud admin is allowed to assign sid admin to a sid; and 4) sid admins can only assign users

coming from their own home domain, but they cannot assign arbitrary users to projects in the sid

while domain admins can assign any outside users to projects in their home domain.

Database

OpenStack uses MySQL database as storage of all meta data. Keystone has one database to store

all meta data. To store meta data for sid/sip functionality, we need to add one table “sid" to hold

meta data for all sid initiations, which includes sid domain id, all associated organizations names

and domain ids, core project id and open project id. Every time a sid creation request is issued,

the “sid” table stores the above information as a record in the table. The record will be removed

when the sid is deleted. The “sid” table will be queried during all user and sip verification and sid

member verification processes. Figure 4.15 shows table “sid” construct in keystone database.

54

Figure 4.15: Sid Table

Figure 4.16: A Sample JSON File for Generating a Token

4.4.2 Credentials and Policy

Authentication and Authorization with Tokens

In order to access to resources in OpenStack cloud, a user need to have a token. A token can

be unscoped or scoped to a domain or a project. In SID-model, all sid admin users’s tokens are

scoped to the sid level which is domain level, while all users who have access to core project, open

project and sips are scoped to project level token. Domain scoped tokens allow permissions to

create/delete/update projects and users in the domain. Project scoped tokens give users permission

55

Figure 4.17: A Sample V3 Policy for Creating or Deleting a Sid

to access cloud resources though certain projects. Figure 4.16 shows an example of Json file which

can be used to get a token. This file shows that a domain scoped token can be generated, in which

user CPSadmin has a home domain CPS and a password admin, and is scoped to domain CPS.

This file is used to get a domain admin role for user CPSadmin.

Similar to user-project-role assignment, a user is assigned to a sip with a sip-role pair. After

a user is assigned to a sip, the user has access to the resources in the sip. That is, the user can

get a sip-scoped token from Keystone and use the token to access the sip. After sid/sip attributes

are added to token, Keystone can issue a token which can scoped to a sip in a sid. Users can use

this scoped token to access a sip. Cloud services authorize users according to the user credential

information stored in a scoped token.

Policy

New methods of SID-service have to be added to policy files in OpenStack Keystone server. In

policy file, each method has corresponding rules defined. We need to add all new methods we

define in SID-service to policy files in order to make those methods work under proper access

control rules. By default, policy version v2 is used. In order to use domain admin role, we use

policy v3 instead of v2. More fine-grained access control is defined in policy v3. Figure 4.17

shows a piece of v3 policy, which shows that only cloud admin user is allowed to get, list, create,

update and delete a domain.

4.4.3 Demonstrations

In this part, we focus on user’s perspective on the model enforcement. From organizations’s per-

spective, their security admin users can start a new group collaboration among a set of organiza-

56

tions in the community, by initiating a sid creation request to OpenStack Keystone server. After the

sid setting up, proper roles are assigned to associated member organizations security admin users,

who will be representing organizations being in charge of during all collaborations happening in

the sid. Those admin users manages the sid together. They have equal permission over core project

and any new created sip projects. From organization users’ perspective, they are able to join the

sid for cyber collaborations once the security admin users give them permissions. They are able to

share information and resources in a project in the sid domain with proper roles.

Create a Sid

As an organization security admin user, one can initiate a sid request and create a sid for the group

of organizations in the community. From an organization security admin user’s perspective, there

is a sequence of actions that happens behind the scenes when the sid creation request is issued.

The security admin user issues a sid creation request command, which communicates to Keystone

server that an organization security admin user wishes to create a sid for a group of organizations

in the community. Keystone server accepts the request, creates a domain as a sid domain, a project

as core project and another project as open project. Then Keystone server assigns proper roles to

the sid domain and core project and create a sid info record. Now a sid is officially created and

Keystone server return the sid to the user who issued the request. Figure 4.18 shows the whole

process.

After the process of creating a sid is complete, all the organizations security admin users get

sid domain admin roles. They can get scoped tokens over the sid domain when they visit the sid

domain. With the domain scoped token, admin users can create projects, which will be sips in this

situation, and bring normal users to the created projects. Mean time, they also get core project

admin roles. They can get project scoped token to access core project. With the project scoped

token, admin users can bring normal users to the core project.

When an organization security admin user initiates a sid request and creates a sid for the group

of organizations in the community, the admin user sends the request with information including

57

Org Sec
Admin

Keystone
Server

Resource
Backend

Assignment
Backend

Request to create a sid

Create a project as core project

Return a project

Create a project as open project

Return a project

Assign all org sed admins to core project

Return the assignment

Create a sid

Return a sid

Return a sid

Create a domain as a sid

Return a domain

Assign all org sec admins to the sid

Return the assignment

Figure 4.18: Create a Sid

the sid name, sid member organizations names and ids, and sid member organizations security

admin users names and ids. Also, the request needs to be sent to Keystone server with proper

tokens. Figure 4.19 shows an example of http request during this procedure. A proper token

$ADMIN_TOKEN is used for authentication and authorization. Parameter data contains the new

created sid name “name”, member organizations information “sid_members”, as well as organiza-

tions security admin users information “sid_member_admins”.

58

Figure 4.19: HTTP Request - Create a Sid

Org Sec
Admin

Keystone
Server

Resource
Backend

Assignment
Backend

Request to create a sip

Return a sip

Create a project as a sip

Return a project

Assign all org sec admins to the sip

Return the assignment

Figure 4.20: Create a Sip

Create a Sip

As we already said that sid domain admin users (organizations security admin users) can create

project in the sid domain, which are actually the sips in the model. Figure 4.20 shows the behind

scenes actions of creating a sip in a sid domain. Worth to mention here is that, sid domain admin

users uses sid domain scoped token to create a sip project. Again, with the creation of a sip, all

organizations security admin users get the project admin role over the sip project, which allows

them to bring their own users to the sip. With sip project admin roles, organizations security admin

users bring their users by assigning them with an operational role like Member, which gives users

operational permission in the sip project, such as create, update and delete a virtual machine, a

storage container, and etc.

When an organization security admin user initiates a sip request and create a sip for a cyber

collaboration in the sid, the admin user sends the request with information includes the sip name

59

Figure 4.21: HTTP Request - Create a Sip

Figure 4.22: HTTP Request - Add a User to a Sip

and sid domain id. The request is sent to Keystone server with sid domain scoped token. Figure

4.21 shows an example of http request during this procedure. A proper sid domain scoped token

$TOKEN is used for authentication and authorization. Parameter data contains the new created sip

name “name” and the sid domain id “sid_id”.

Add a User to a Sip

Organization security admin users can add normal users from their home domain to any project

(core project, open project and sips) in the sid domain. Figure 4.22 shows an example of http

request during this procedure. A proper token $TOKEN (either a sid domain scoped token a sip

project scoped token) is used for authentication and authorization. Parameter data contains the sip

project id “sip_id”, the normal user’s id “user_id” and the role’s id “role_id”. This allows user

“user_id” access sip project “sip_id” by permissions defined in role “role_id”.

Access to a Sip

Normal users are assigned by their organizations security admin users to a sip project in a sid.

This process is transparent to normal users. After the assignment is done, normal users get an

operational role over the sip project, which allows them to access cloud resources in the sip project.

From a normal user perspective, we have a sequence of actions requesting to access a sip project.

Normal users get a project scoped token by requesting Keystone server to access to the sip project.

60

User Keystone Swift Nova

Request to access to a sip

Return a token for the sip

Access Swift service
 with the sip token

Return result

Access Nova service
 with the sip token

Return result

Figure 4.23: A User Access to a Sip

Then they can use the token to access resources in the sip project, for example virtual machine

resources from Nova service, storage resources from Swift service, and so on. By accessing to

the sip project, users can share information and resources with others inside the sip project. In

Figure 4.23, we give the sequence of actions that happens when a normal user request to access a

sip project. For simplicity, we limited cloud services to include only computing resources service

Nova and storage resources service Swift. For other cloud services, the actions follow the same

sequence.

61

Chapter 5: SID-MODEL IN AWS CLOUD IAAS

Part of content from this chapter has been published in paper [19].

Amazon Web Services (AWS) started to offer cloud infrastructure services to enterprises and

businesses in the form of web services in 2006. As the lowest level of cloud computing service,

infrastructure as a service provides enterprises the opportunity to replace expensive computing

infrastructure with low variable cost virtual computing resources in the cloud. With cloud comput-

ing, enterprises can easily boot up thousands of servers instantly without deploying real computer

servers. It is a great convenience for enterprises and businesses with large quantity of infrastructure

to manage and maintain.

With development of over 10 years experience, Amazon Web Services now offers a highly

scalable, reliable and low-cost cloud infrastructure platform to the public, with a global infrastruc-

ture of 11 regions, 28 availability zones and 52 edge locations, powering thousands of businesses

in more than 190 countries around the world. Keeping expanding global infrastructure, AWS com-

mits to help its customers achieve their business goals and meet their global requirements of cloud

infrastructure. Each location of AWS is composed of regions and availability zones. Each region

is completely independent and isolated from other regions. Availability zones are isolated from

each other, while in the same region they are connected through low-latency links.

With respect to security, AWS provides its customers with guidance and expertise through

online documents resources and customer services. Customers have access to hundreds of security-

specific tools and features across network security, access control, configuration management and

data encryption, which help them to meet their security objectives. AWS builds secure data center

architectures and networks to satisfy the security requirements of organizations and enterprises,

which allows customers to meet their security needs with much lower operational overhead.

AWS consists of many cloud services which customers can use to deploy and realize their busi-

ness needs. To access the cloud services, customers can use either the AWS Management Console

or the Command Line Interface, where the former provides a simple and intuitive user interface,

62

and the latter gives a quick view to resources and can be unified with other tools together to auto-

mate management of multiple AWS services though automated scripts. Amazon Elastic Compute

Cloud (Amazon EC2) is a cloud service that provides web-scale computing capacity to customers.

Amazon EC2 gives customers complete control of the cloud computing resources and allow them

to obtain and configure computing capacity easily on demand. Customers can quickly boot new

servers instances and scale computing capacity up and down according to their requirements. By

using cloud computing, customers only pay for the capacity that they actually use. Amazon Simple

Storage Service (Amazon S3) offers a secure and highly scalable object storage for cloud users to

manage their data. Policies can be used to manage the data throughout its lifecycle, which pro-

vides automatically migration to most storage data without changes to customers’ applications.

Amazon Relational Database Services (Amazon RDS) offers scalable relational database services

in the cloud, which release customers from setting up and operating databases, instead allowing

them to focus on application and administration level. It’s fast, efficient and allows customers to

launch a database in minutes. Amazon Virtual Private Cloud (Amazon VPC) allows customers to

define their own virtual network, which is logically isolated from other section of the AWS cloud.

Customers have complete control over the virtual networking. They can customize the network

configuration as appropriate for their deployment. AWS Identity and Access Management (IAM)

enables customers to securely control access to cloud services and resources. By using IAM, cus-

tomers can define permissions to allow and deny their users’ access to AWS services and resources.

AWS also offers other services, such as developer tools, management tools, application services,

mobile services, and etc.

The material presented in this chapter has been partially published previously in [19]. In this

chapter, we first define an access control model based on our understanding of the AWS framework

and our need to abstract the main components for subsequent modeling. Then we develop the

model of securely sharing information and resources in context of AWS cloud IaaS platform. The

latter model realize the abstract model of chapter 2 in AWS. We formalize the administrative model

in the next section. Then we give implementation details in the following section.

63

We assume that each organization has one and only one AWS account. Each user belongs

to one and only one organization in AWS public cloud. For simplicity, we constrain operational

model to include only two cloud services: Amazon Elastic Compute Cloud (Amazon EC2) and

Amazon Simple Storage Service (Amazon S3).

5.1 AWS Access Control (AWS-AC) Model

We present the Amazon Web Service Access Control (AWS-AC) model in this section. As a

public cloud service provider, AWS provides web services to its customers through AWS accounts.

Customers who own an account have access to cloud resources. They can create users and grant

them access to cloud resources in the account. Each user belongs to a unique account. Users

can also access resources in other accounts with federated permissions. We discuss AWS Access

Control in two perspectives: within a single account and across accounts.

AWS offers a form of policy-based access control, wherein permissions are defined over cloud

resources in a policy file and policies are attached to entities such as users, groups, roles and

resources. Figure 5.1 depicts this model within a single account. In this and other figures, the

dotted lines denote virtual relations between entities while the solid lines denote explicit relations.

Cross-account access will be discussed later in context of Figure 5.2.

AWS-AC has seven components: Accounts (A), Users (U), Groups (G), Roles (R), Services

(S), Object Types (OT), and Operations (OPR). We also introduce other entities such as policies

and credentials, which are implicitly included in the model.

Accounts: In AWS, Accounts are basic resource containers, which allows customers to own

specific amount of (virtual) cloud resources. Accounts are the units of usages of cloud resources

and billing. Customers get public cloud services through an AWS account.

Users and Groups: Users represent individuals who can be authenticated by AWS and autho-

rized to access cloud resources through an account. A group is simply a set of users. Users and

groups belong to an account. The existence of groups is for the convenience of managing multi-

ple users as a single unit. Each policy attached to a group will apply to all group members. For

64

Users
(U)

Accounts
(A)

“Roles”
(R)

Virtual
Permission
Assignment

(VPA)

User
Ownership

(UO)

Services
(S)

Groups
(G)

Group
Ownership

(GO) user_
group
(UG)

PRMS

Operations
(OPR)

Object
Types
(OT)

Virtual
Permission
Assignment

(VPA)

Virtual
Permission
Assignment

(VPA)

Roles
Ownership

(RO)

OT
Ownership

(OTO)

virtual
user_role

(VUR)

Figure 5.1: AWS Access Control within a Single Account [19]

simplicity, we use the term users to represent both users and groups in the rest of the chapter.

Virtual Permission Assignment: In AWS, users’ permissions over services and resources

are defined in policy files. Policy files can be attached to a user, a group, a role or a specific cloud

resource. By attaching a policy to a user, a group or a role, users gain permissions to corresponding

cloud resources. The policy defines the actions the user will perform and cloud resources on which

the actions will function. Multiple permissions can be defined in one policy file. Multiple policy

files can be attached to one entity. AWS achieves permission assignment in a virtual manner via

the policies attached to various relevant entities.

Roles: Unlike roles in RBAC, roles in AWS are used for both permission assignment and

trust relationship definition of cross-account access. Permissions are given to a role by attaching

policy files that define the role’s permissions over cloud srevices and resource. A role defines

the trust relation between principals which can be either another AWS account and its users or

the owner account and internal users. Users use roles though the AssumeRole action to access to

corresponding cloud resources. To emphasize the difference between the usual concept of roles in

65

Users
(U)Account A “Roles”

(R)

User
Ownership

(UO)

Services
(S)

PRMS

Operations
(OPR)

Object
Types
(OT)

Roles
Ownership

(RO)

Account B

OT
Ownership

(OTO)Virtual
Permission
Assignment

(VPA)
virtual

user_role

Figure 5.2: AWS Access Control accross Accounts [Users in Account A Access Services and Resources
in Account B] [19]

RBAC and the term roles in AWS, we use quotation marks around Roles in our figures.

Services: Services refer to cloud services AWS provides to its customers. Cloud Service

Provider (CSP) leases cloud resources to its customers in terms of services. AWS provides cus-

tomers with services such as compute, storage, networking, administration, and database.

Object Types and Operations: An Object Type represents a specific type of object. From the

CSP’s viewpoint, objects are more like services. We define object types as particular service types

the cloud provides. For instance, with compute service EC2, the object type is a virtual machine;

with storage service S3, the object type is a bucket; etc.

Credentials: AWS credentials are used for both authentication and authorization. Account

owners can create IAM users with their own security credentials to allow these users to access

AWS services and resources. Account owners can also grant external federated users from other

accounts with temporary security credentials to allow them to access the account’s AWS services

and resources.

66

Cross-account access: Users in one AWS account can access services and resources in another

AWS account through the action AssumeRole with temporary security credentials, as shown in

Figure 5.2. Users from account A access services and resources in account B through roles created

in account B, by being attached with policies of the action AssumeRole and a target resource.

With the concepts described above, we formalize AWS-AC model as follows.

Definition 1. AWS-AC model has the following components.

- A, U, G, R, S, OT and OPR are finite sets of existing accounts, users, groups, roles, services,

object types and operations respectively in the AWS public cloud system.

- User Ownership (UO) : is a function UO : U → A, mapping each user to its owning account.

Equivalently viewed as a many-to-one relation UO ⊆ U × A.

- Group Ownership (GO) : is a function GO : G→ A, mapping each group to its owning account.

Equivalently viewed as a many-to-one relation GO ⊆ G × A.

- Roles Ownership (RO) : is a function RO : R → A, mapping each role to its owning account.

Equivalently viewed as a many-to-one relation GO ⊆ R × A.

- Object Type Owner (OTO) : is a function OTO : OT→ S, mapping each object type to its owning

service. Equivalently viewed as a many-to-one relation OTO ⊆ OT × S.

- Virtual Permission Assignment (VPA) : is a function VPA : PERMS→ R, mapping permissions

to roles. Equivalently viewed as a many-to-many relation VPA ⊆ PERMS × R, resulting from

policies attached to user, groups and roles entities.

- user_group (UG) : is a function UG : U→ G, mapping users to groups where the user and group

are owned by the same account. Equivalently viewed as a many-to-many relation UG ⊆ U × G.

- virtual user_role (VUR) : is a function VUR : U → R, mapping users to roles. Equivalently

viewed as a many-to-manuy virtual relation VUR ⊆ U × R, resulting from policies attached to

user entity. AssumeRole is an action allowing users to activate a role authorized in VUR.

- PERMS = OT × OPR, is the set of permissions.

67

5.2 AWS-AC Model with SID Extension (AWS-AC-SID)

In this section, we present an access control model for AWS with the Secure Isolated Domain

extension (AWS-AC-SID). We build the AWS-AC-SID model on top of the AWS-AC model to

include Secure Isolated Domain (SID) functionality [18].

In SID-model, the basic resource container is projects such as core projects, open projects

and secure isolated projects. Secure isolated domains is the administrative boundary of resource

containers. In AWS, the basic resource container is AWS accounts. which is also the only level of

resource containers. To apply SID-model to AWS platform, we use AWS accounts to carry on the

basic resource containers projects in SID-model. Each project inside a sid will be a AWS account

in AWS-AC-SID model.

We present the AWS-AC-SID model so as to cover only the additional components added to

the AWS-AC model. Figure 5.3 shows the AWS-AC-SID model, where we ignore groups for

simplicity. In the rest of the chapter, group is used to denote a group of organizations, rather than

the groups component of AWS-AC model.

5.2.1 Components

Definition 2. AWS-AC-SID model has the following components in addition to AWS-AC model:

Secure Isolated Domain (SID), Secure Isolated Project (SIP), Expert Users (EU), Core Project

(CP), Open Project (OP) and Resources (RS). We have introduced these concepts and described

these components when we introduced SID-model in chapter 3. We will give a simple review of

these components.

Secure Isolated Domain is a special domain, holding security information and resources for

cross-organizational security collaborations. Sid provides a secure isolated environment for cyber

security collaborations in a community of organizations. Each sid holds a core project, an open

project and multiple secure isolated projects. Secure Isolated Project provides a controlled envi-

ronment for a group of organizations within the community to collaborate and coordinate on cyber

incidents. Core Project is a shared project holding cyber security committee for the community

68

Virtual
Permission
Assignment

(VPA)

Services
(S)

Permissions
(PRMS)

Operations
(OPR)

Object
Types
(OT)

OT
Ownership

(OTO)
User

Assignment
(UA)

Resources
(RS)

ot_
resource

(OR)

Secure
Isolated
Domains

(SID)

Open
Projects

(OP)

Secure
Isolated
Projects

(SIP)

Core
Projects

(CP)

Resource
Co-Ownership

(RSO)

Users
(U)

Expert
Users
(EU)

Resource
Co-Ownership

(RSO)

SIP
Ownership

(SIPO)

Roles
(R)

Organization
Accounts

(A)

SID-
Association

(assoc)

User
Ownership

(UO)

Role
Ownership

(RO)
CP

Ownership
(CPO)

OP
Ownership

(OPO)

Role
Ownership

(RO)

Role
Ownership

(RO)

Figure 5.3: AWS Access Control Model with SID Extension (AWS-AC-SID)

of organizations. Open Project is an open shared project where users from the community of

organizations share common cyber security information and resources. Expert Users brings pro-

fessionals cyber security skills to the community. Resources refers to cloud assets such as virtual

machines, databases, storages, etc.

In the following, we give formalization of concepts introduced above, as well as the relations

among them.

- SID, SIP, CP, OP, EU, RS and BO are finite sets of existing secure isolated domain, secure

isolated projects, core projects, open projects, expert users, resources, and storage bucket objects

respectively in a AWS cloud system.

- Virtual Machines (VM) is object type for compute service in AWS cloud platform.

- Storage Buckets (SB) and Storage Bucket Objects (BO) are two object types for storage service

in AWS cloud platform.

- Secure Isolated Project Ownership (SIPO) : is a function SIPO : SIP→ SID, mapping a single

69

secure isolated project to its owning sid. Equivalently viewed as a many-to-one relation SIPO ⊆

SIP × SID.

- Core Project Ownership (CPO) : is a function CPO : CP→ SID, mapping a single core project

to its owning sid. Equivalently viewed as a one-to-one relation CPO ⊆ CP × SID.

- Open Project Ownership (OPO) : is a function OPO : OP→ SID, mapping a single open project

to its owning sid. Equivalently viewed as a one-to-one relation OPO ⊆ OP × SID.

- Role Ownership (RO) : is a function RO : R→(SIP ∪ CP ∪ OP) , mapping a role to its owning

project (core/open/secure isolated project).

- Resource Co-Ownership (RSO) : is a function RSO : RS → ((SIP ∪ CP ∪ OP), (U ∪ EU)),

mapping resources to its owning project and user. Equivalently viewed as a many-to-one relation

RSO ⊆ RS × ((SIP ∪ CP ∪ OP) × (U ∪ EU)).

- Bucket Object Owner(BOO): BO → SB, a function mapping a storage object to its owning

bucket. Equivalently viewed as a many-to-one relation BOO ⊆ BO × SB.

- SID association (assoc): is a function assoc : SID → 2A, mapping a SID to all its member

organization accounts.

- ot_resource (OR) : is a function OR : OT→ RS, mapping object types to resources. Equivalently

viewed as a one-to-many relation OR ⊆ OT × RS.

5.2.2 Administrative Model

The general concept of a sid is a secure isolated container for a community of organizations to share

their security data. In context of public cloud, there are two approaches to build sid functionality.

One is to integrate sid function as part of the cloud functionality. The other is to build it as a service

provided by a third party in the cloud to its customers. The first approach is applicable only if the

cloud provider is willing to do so. The second approach requires to build additional services on

the cloud platform. For proprietary products such as AWS, sid functionality can be provided as a

service by a third party who is a customer of AWS.

An AWS account is a secure isolated place in the cloud system (within the limits of isolation

70

assurance enforced by Amazon). An account is the smallest unit of secure isolated space. Bigger

spaces for isolated sharing can be built by using multiple accounts in AWS.

A SID-manager is an automated agent that manages sids and their constituent components

through their life cycle. It is built using AWS standard functionality. SID-manager processes SID-

requests from communities of organizations and constructs a separate sid for each community.

Within each sid it facilitates the creation and deletion of sips for the set of organizations within

the community of organizations of that sid. Each time a cyber collaboration request is sent to

SID-manager, it picks up an available sip account and assign it to a community of organizations

in a sid. After the collaboration is done, the sip will be cleaned up and be available for the next

collaboration.

As a security service provided for customers in AWS public cloud, SID-service might belong

to a cyber security company who has the trust of the organizations in AWS. In general there may

be multiple sid providers. Each sid has a core project and an open project as a security service

provided to all organizations in the sid community. Secure isolated domain, core project and

open project are created when the SID-request is sent by a community of organizations. Each

organization can join several sids with different communities of organizations. Each of these sids

are isolated from each other.

We constrain the roles in two types: administrative role and member role, which separately

denotes the permission of being able to manage users and permissions only for resources respec-

tively. We use roles SIDadmin to respectively represent limited administrative power in the core

project, open project or a sip, which gives the core project, open project or sip admin users permis-

sion to add and remove other users from their home account to the core project, open project or

a sip. We use roles SIDmember to represent operative permissions which can be given to normal

users to access to the core project, open project or a sip. Since roles in AWS are local, these roles

are sets of roles, SIPadmin represents the set of admin roles in core projects, open projects and all

sips; while SIDmember represents the set of member roles in these projects.

71

The administrative aspects of AWS-AC-SID model are discussed informally below. A formal

specification is given in Table 5.1 and Table 5.2.

Create a sid: Remind again that the creation of sid is based on agreement among the com-

munity of organizations. After all the organizations in the community have agreed, one security

admin from an organization representing the group of organizations request the creation of a sid

with parameters including all the security admin users, each representing one organization in the

community. Remind again that uSet denotes a fixed group of security admin users from all orga-

nizations of the community, with one admin user for each organization. When a sid is created, the

security admin user who issues sid creation command along with all other security admin users

from uSet will become the limited administrative users of the sid, in which each organization in

the community has equal limited administrative power.

Since in AWS, each project in a sid are realized by AWS accounts, uSet will be assigned

with admin roles (belonging to SIDadmin) to AWS accounts which carry the core project and open

project. One admin role for core project and the other for open project. With these two roles, admin

users (from uSet) can add and remove other users from their home account to the core project and

open project. Two member roles (belonging to SIDmember) will also be created respectively in

core project and open project for normal users to join into these two projects. The open project is

open for all the users from the community of organizations.

Delete a sid: One admin user from uSet representing the group of organizations initilizes

the sid delete request. When the sid is deleted, the core project, open project and all the sips

inside the sid (if any) need to be securely deleted. All the assigned resources and users will be

securely revoked from the sid. The created admin roles (from SIDadmin) and member roles (from

SIDmember) will be deleted from core project and open project or any secure isolated projects. All

projects inside the sid will be removed from the sid and the sid will be deleted.

Create a sip: A sip is created whenever there is a need for cyber collaborations among a set of

the community organizations. Any organization security admin user from uSet can represent the

set of the community of organizations to create a sip. All these admin users are assigned to the sip

72

Table 5.1: AWS-AC-SID Administrative Model
Operation Authorization Requirement Update

SidCreate(adminu, uSet,
sid)
/* An admin user
representing uSet creates
a sid */

adminu ∈ uSet ∧ adminu ∈ U
∧ sid /∈ SID

SID′ = SID ∪ {sid};
assoc(sid) =

⋃
adminu∈uSet UO(adminu);

CP′ = CP ∪ {cp}; CPO(cp) = sid;
RO(cpra) = cp; RO(cprm) = cp;
OP′ = OP ∪ {op}; OPO(op) = sid;
RO(opra) = op; RO(oprm) = op;
R′ = R ∪ {cpra, cprm, opra, oprm};
SIDadmin′ = SIDadmin ∪ {cpra, opra};
SIDmember′ = SIDmember ∪ {cprm,
oprm};
UA′ = UA ∪ {(uSet, cpra), (uSet, opra)}.

SidDelete(adminu, uSet,
sid)
/* An admin user
representing uSet deletes
the sid*/

adminu ∈ uSet ∧ adminu ∈ U
∧ ∃ r ∈ SIDadmin.((adminu,
r) ∈ UA) ∧ assoc(sid) =⋃

adminu∈uSet UO(adminu)
∧ sid ∈ SID

SID′ = SID - {sid};
assoc(sid) = NULL;
CP′ = CP - {cp}; CPO(cp) = NULL;
RO(cpra) = NULL; RO(cprm) = NULL;
OP′ = OP - {op}; OPO(op) = NULL;
RO(opra) = NULL; RO(oprm) = NULL;
R′ = R - {cpra, cprm, opra, oprm};
SIDadmin′ = SIDadmin - {cpra, opra};
SIDmember′ = SIDmember - {cprm,
oprm};
UA′ = UA - {(uSet, cpra), (uSet, opra)};
∀u ∈ U.(UA′ = UA - {(u, cprm), (u,
oprm)});
if ∃(u, sip, r) ∈ ((U ∪ EU), (SIP),
(SIDadmin ∨ SIDmember)).({(u, r)} ∈
UA ∧ RO(r) ∈ = sip), then UA′ = UA -
{(u, r)} ∧ SIP′ = SIP - {sip} ∧ R′ = R -
{r}.

SipCreate(adminu, sip,
sid)
/* An admin user
representing uSet creates
a sip */

adminu ∈ uSet ∧ adminu ∈
U ∧ UO(adminu) ∈
assoc(sid) ∧ sip /∈ SIP

SIP′ = SIP ∪ {sip}; SIPO(sip) = sid;
RO(sipra) = sip; RO(siprm) = sip;
R′ = R ∪ {sipra, siprm};
SIDadmin′ = SIDadmin ∪ {sipra};
SIDmember′ = SIDmember ∪ {siprm};
UA′ = UA ∪ {(uSet, sipra)}.

SipDelete(adminu, sip,
sid)
/* An admin user
representing uSet deletes
a sip*/

adminu ∈ uSet ∧ adminu ∈
U ∧ UO(adminu) ∈
assoc(sid) ∧ SIPO(sip) = sid
∧ sip ∈ SIP

SIP′ = SIP - {sip}; SIPO(sip) = NULL;
RO(sipra) = NULL; RO(siprm) = NULL;
R′ = R - {sipra, siprm};
SIDadmin′ = SIDadmin - {sipra};
SIDmember′ = SIDmember - {siprm};
UA′ = UA - {(uSet, sipra)}.

73

Table 5.2: AWS-AC-SID Administrative Model (continued)
Operation Authorization Requirement Update

UserAdd(adminu, u, p, sid)
/* Admin users add a user from
his home domain to a cp, op or
sip */

adminu ∈ U ∧ (adminu, sidra) ∈ UA
∧ RO(sidra) = p ∧ u ∈ U ∧ UO(u) =
UO(adminu) ∧ p ∈ (CP ∪ OP ∪ SIP)
∧ (CPO(p) = sid ∨ OPO(p) = sid ∨
SIP(p) = sid)

R′ = R ∪ {sidrm};
RO(sidrm) = p;
UA′ = UA ∪ {(u, sidrm)}.

UserRemove(adminu, u, p, sid)
/* Admin users remove a user
from a cp, op or sip */

adminu ∈ U ∧ (adminu, sidra) ∈ UA
∧ RO(sidra) = p ∧ u ∈ U ∧ UO(u) =
UO(adminu) ∧ p ∈ (CP ∪ OP ∪ SIP)
∧ (CPO(p) = sid ∨ OPO(p) = sid ∨
SIP(p) = sid) ∧ (u, sidrm) ∈ UA ∧
RO(sidrm) = p

R′ = R - {sidrm};
RO(sidrm) = NULL;
UA′ = UA - {(u, sidrm)}.

EUserAdd(adminu, eu, p, sid)
/* Admin users add an expert
user to a cp or sip */

adminu ∈ U ∧ (adminu, sidra) ∈ UA ∧
RO(sidra) = p ∧ eu ∈ EU ∧ p ∈ (CP ∪
SIP) ∧ (CPO(p) = sid ∨ SIP(p) = sid)

R′ = R ∪ {sidrm};
RO(sidrm) = p;
UA′ = UA ∪ {(eu,
sidrm)}.

EUserRemove(adminu, eu, p,
sid)
/* Admin users remove an
expert user from a cp or sip */

adminu ∈ U ∧ (adminu, sidra) ∈ UA ∧
RO(sidra) = p ∧ eu ∈ EU ∧ p ∈ (CP ∪
SIP) ∧ (CPO(p) = sid ∨ SIP(p) = sid)
∧ (eu, sidrm) ∈ UA ∧ RO(sidrm) = p

R′ = R - {sidrm};
RO(sidrm) = NULL;
UA′ = UA - {(eu, sidrm)}.

with limited admintrative permissions, which defined by role set SIDadmin. These roles give sip

admin users permissions to add and remove other users from their home account to the sip.

Delete a sip: After the collaboration is finished, a sip can be securely deleted. The delete

command is issued by the any security admin user (uSet). All information and resources are

securely deleted in the sip. Roles created for users to join the sip are deleted, which result in users

unassignment from the sip.

Add/remove a user to/from a core project: Remind that core project admin users are the

set of security administrative users (uSet) from the community of organizations. These limited

administrative users can add/remove existing users of their organizations to/from core project by

add/remove normal users to/from a member role in the core project.

Add/remove a user to/from a sip: Remind that users from uSet who are assigned with an

admin role (belonging to SIDadmin) has the limited administrative power in the sip. They can

add/remove users of their home accounts to/from the corresponding sip due to the need of collab-

oration add/remove normal users to/from a member role in the sip.

74

Table 5.3: AWS-AC-SID Operational Model
Operation Authorization Requirement Update

CreateVM(vm, p, u)
/* A user creates a vm */

vm /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U
∧ ∃ (perms, prm) ∈ VPA.(perms = (vm,
create) ∧ RO(prm) = p ∧ (u, prm) ∈ UA ∧
(prm ∈ SIDmember))

RS’ = RS ∪ {vm};
RSO’ = RSO ∪ {(vm, (p,
u))};
OR(vm) = VM.

DeleteVM(vm, p, u)
/* A user deletes a vm */

vm ∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U
∧ ∃ (perms, prm) ∈ VPA.(perms = (vm,
delete) ∧ RO(prm) = p ∧ (u, prm) ∈ UA ∧
(prm ∈ SIDmember)) ∧ RSO(vm) = {(p, u)}

RS’ = RS - {vm};
RSO’ = RSO - {(vm, (p,
u))};
vm = NULL.

CreateSBucket(sb, p, u)
/* A user creates a storage
bucket */

sb /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U ∧
∃ (perms, prm) ∈ VPA.(perms = (sb,
create) ∧ RO(prm) = p ∧ (u, prm) ∈ UA ∧
(prm ∈ SIDmember))

RS’ = RS ∪ {sb};
RSO’ = RSO ∪ {(sb, (p,
u))};
OR(sb) = SB.

DeleteSBucket(sb, p, u)
/* A user deletes a storage
bucket */

sb ∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U ∧
∃ (perms, prm) ∈ VPA.(perms = (sb,
delete) ∧ RO(prm) = p ∧ (u, prm) ∈ UA ∧
(prm ∈ SIDmember)) ∧ RSO(sb) = {(p, u)}

RS’ = RS - {sb};
RSO’ = RSO - {(sb, (p,
u))};
sb = NULL.

CreateObject(co, sb, p, u)
/* A user creates a storage
container object */

co /∈ RS ∧ sb ∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP)
∧ u ∈ U ∧ ∃ (perms, prm) ∈ VPA.(perms =
(co, create) ∧ RO(prm) = p ∧ (u, prm) ∈ UA
∧ (prm ∈ SIDmember)) ∧ RSO(sb) = (p, u)

RS’ = RS ∪ {co};
RSO’ = RSO ∪ {(co, (p,
u))};
OR(co) = CO.

DeleteObject(co, sb, p, u)
/* A user delete a storage
container object */

co ∈ RS ∧ RSO(co) = {(p, u)} ∧ sb ∈ RS ∧
p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U ∧ ∃ (perms,
prm) ∈ VPA.(perms = (co, delete) ∧
RO(prm) = p ∧ (u, prm) ∈ UA ∧ (prm ∈
SIDmember)) ∧ RSO(sb) = (p, u)

RS’ = RS - {co};
RSO’ = RSO - {(co, (p,
u))};
co = NULL.

Add/remove a user to an open project: Every user in the collaborative community of or-

ganizations is allowed to join open projects. Users in open projects have equal but limited per-

missions, which is carried on by a member role (belonging to SIDmember) in the open project.

They can share cyber data, but have no control over other users. Organization security admin users

add/remove normal users from their organizations to/from open projects.

Add/remove an expert user to/from a sip or core project: Expert users are introduced for

their expertise and professionals. Expert users can be added/remove to/from core projects and sips

as a member through a member role in the project. Users from uSet can request to add/remove

expert users to/from the core project or a sip.

75

5.2.3 Operational Model

In the operational model, we mainly show how and what operations a normal user can issue in the

model. For simplicity, we only demonstrate the core operations on virtual machines and storage

buckets, including creation and delete. Create method allows users to create a new instance of

virtual machine or a storage bucket in a core project, open project or a sip. Delete method allows

users to delete an existing instance of a virtual machine or storage bucket in a project. For objects,

we can upload objects and download objects from a storage bucket. In Table 5.3, we give the

details of operational model.

After a user is assigned to the core project, open project or a sip, the user can issue following

operations:

CreateVM/DeleteVM: A user can create/delete a virtual machines in the core project, open

project or a sip, to which the user is assigned through the specific member role inside the project.

CreateBucket/DeleteBucket: A user can create/delete a storage bucket in the core project,

open project or a sip, to which the user is assigned through the specific member role inside the

project.

CreateObject/DeleteObject: A user can create/delete a bucket object in a storage bucket in

the core project, open project or a sip, to which the user is assigned through the specific member

role inside the project.

5.3 Enforcement

We implemented AWS-AC-SID model on the current AWS release. Accounts form the basic

resource boundary in AWS. Inside one account, there is no clear further sub-division of resources.

Owning an AWS account give a customer root user privilege over the account. Root user has

complete access power over all the services and resources in the account. Root user can create

users of all level of access permissions in the account. Root user can create administrative user for

the account, who can have the full access permissions except owning the account. Administrative

users can further create roles and other users. Users permissions over services and resources are

76

defined in policy files which are attached to users (among other entities).

One way to enforce SID-model in AWS public cloud is to design it as a service, which is

provided by a third trusted party in AWS public cloud. We implemented our own SID-server to

provide SID-service to organizations in AWS public cloud.

One thing need to mention is that since AWS roles are local, we use multiple roles to realize

the concept of role SIDadmin and SIDmember. We use roles CPadmin, OPadmin and SIPadmin

to respectively represent limited administrative power in the core project, open project or a sip,

which gives the core project, open project or sip admin users permission to add and remove other

users from their home account to the core project, open project or a sip. We use roles CPmember,

OPmember and SIPmember to represent operative permissions which can be given to normal users

to access to the core project, open project or a sip. Since roles in AWS are local, these roles are

sets of roles, CPadmin, OPadmin and SIPadmin, are separately representing the set of admin roles

in core projects, open projects and all sips; while CPmember, OPmember and SIPmember are

separately representing the set of member roles in core projects, open projects and all sips.

5.3.1 Functionalities

SID-server:

As a SID-server, all we need is to be able to handle requests from organizations and maintain sid

related information in the server backend. We use a REST API module running on apache service

as our SID-server. Organizations send REST API requests to SID-server and get response from the

server.

SID-server consists of a running backend, a SID-manager AWS account and a number of SID-

operational accounts. The running backend accept and process SID-requests sent from community

organizations. SID-manager account manages the SID-operational accounts in response to the

requests. SID-operational accounts are for sips, whenever a sip creation request is sent to SID-

server, an available SID-operational account will be used and marked as a sip account associated

with a sid of a group of organizations. For each sid, with the creation of the sid, a core project

77

SID-
manager

User
SID-manager

Account
“Roles”

(R) [Special
Permission

Assignment]

User
Ownership

(UO)

Services
(S)

PRMS

Operations
(OPR)

Object
Types
(OT)

Roles
Ownership

(RO)

SID-
operational
Accounts

OT
Ownership

(OTO)

AssumeRole

Virtual
Permission
Assignment

(VPA)

Figure 5.4: Setup SID-service

Figure 5.5: Policy of SID-manager User

and an open project are created. Those two accounts are also selected from the pool of available

SID-operational accounts.

SID Special Manager User:

For each SID-operational account, we have a special manager user for the account with specific

policy attached to it which allows the manager user to create roles for upcoming SID-requests.

Figure 5.4 illustrates this process. The special manager user access to SID-operational accounts

though AssumeRole function. We pre-setup administrative policy for the special SID-manager user

in each SID-operational accounts, as show in figure 5.5, which give the manager user permissions

78

Figure 5.6: Core Project Admin User Policy

Figure 5.7: Core Project Member User Policy

to full access of IAM permissions. During sip request processing, the special SID-manager user

will automatically respond to requests from organizations.

Since each SID-operational accounts will be possessed by different community of organiza-

tions during different times, the special manager user is in charge of creating new roles for a

collaborative community and erase everything after the collaboration and prepare the operational

accounts available for next sip request.

79

Figure 5.8: Open Project Member User Policy

Roles:

The core project has two types of roles created in the account: CPadmin and CPmember. Role

CPadmin has a policy specifying the permission which allows the admin user have limited admin-

istrative power toward core project account, which is limited to add/remove member users from its

own organization. Figure 5.6 gives an example of the policy of a cp admin user. Role CPmember

specifies permissions for member users from organizations to have operational rights in the core

project, such as access to S3, EC2, database, and etc. For our implementation situation, we sim-

ply give member role S3 and EC2 permissions, as shown in Figure 5.7. In your implementation,

you can always give more permissions according to your case and scenario. The open project has

the role OPmember created with the sid creation, which has the policies allows all users from the

community to access the open project account, as shown in Figure 5.8.

A sip has similar roles setting as core project. A sip has two types of roles created in the ac-

count: SIPPadmin and SIPmember. Role SIPadmin has a policy specifying the permission which

allows the security admin user have limited administrative power toward sip account, which is

limited to add/remove member users from its own organization. Role SIPmember specifies per-

missions for member users from organizations to have operational rights in the sip.

80

Figure 5.9: SIDs Table

Figure 5.10: SIPs Table

Database:

SID-manager maintains the association information for each sid with its member organizations,

core project, open project and sip accounts in the community. With security administrative users

(uSet) from organizations, each organization in the community has one and only one security

administrative user in uSet. In the association SID-manager mains a list of organizations accounts

name and number.

We have two tables in database to maintain the association information for all sids and sips.

One is SIDs table to have basic information for each sid, include sid id, sid name, sid members,

core project id, open project id. The other is SIPs table, having information for all core projects,

open projects and sips. Figure 5.9 and figure 5.10 shows examples of these two tables. Status in

SIPs table shows the availability of a SID-operational AWS account, whether it is possessed by a

core project, open project or sip, or not. Status 1 means it is currently possessed while 0 means it

is available to be chose.

SID-requests Handling:

A representative organization from a community of organizations can send SID-request to SID-

server. An administrative user from uSet sends a SID-request to SID-server. SID-manager creates

a sid by adding the sid association information to database table and create a core project and open

81

SecAdmin SID-service SID-server Backend

create a sid

 SID-manager AWS Account

create a new sid record
in database table

create core project,
create open project

return sid id
return sid id

return account numbers
and role names

return account number
and role names

Figure 5.11: Process of Creating a Sid

project as part of initialization of the sid, and creates all the roles that needed for each organization

to access to the sid. The whole process is completed automatically, as shown in Figure 5.11. After

the request, the community of organization should have their sid with a core project and open

project. The set of security administrative users uSet should have limited admin access to core

project and all users from the community should have member access to open project. Admin

users from uSet should be able to send sip creation request to SID-server.

SID-manager chooses available AWS opeational accounts as core project and open project ac-

counts. SID-manager create roles CPadmin, CPmember and OPmember roles for each organiza-

tion in the community. Then SID-manager returns core project and open project account number

with all new created roles for each organization in the community. Security admin users from

uSet and normal users from organizations then can access to core project through these roles. We

call users who got CPadmin role CP admin users. Knowing the role names, sip account num-

bers, security administrative users can login to the core project and bring normal users from their

organization account to the core project and open project.

82

SecAdmin SID-service SID-server Backend

create a sip

 SID-manager AWS Account

create a new sip record
in database table SIPs

create a sip

return sip id
(account number)return sip id

(account number)

return account numbers
and role names

return account number
and role names

Figure 5.12: Process of Creating a Sip

SIP-requests Handling:

When a representative security administrative users from uSet send a sip request to SID-server,

SID-manager creates a sip by assigning a non-possessed SID-operational account to the sid, and

associates the group of organizations to the sip. Figure 5.12 shows this process. The new sip

has two roles created in the account: SIPadmin and SIPmember. Role SIPadmin has a policy

specifying permissions which allow security users have limited administrative power to bring and

remove member users to and from the sip from its own organization. Role SIPmember specifies

policies for normal users from organizations to join the sip and have operational permissions.

SID-manager returns a sip account number with roles SIPadmin and SIPmember for each orga-

nization from the community. Security admin users from uSet and normal users from organizations

then can access to the sip through these two types of roles. We call users who got SIPadmin role

SIP admin users, and users who got SIPmember role member users. Knowing the role names, sip

account numbers, security administrative users can access to the sip and assign normal users from

their organization account to the sip. Normal users access to the sip in a similar way.

For cyber security collaborations among a community of organizations, they can request multi-

ple sips for collaborations with in a sid from the SID security service. The number of sips depends

on how many collaborations are going on among these organizations in the community.

83

Figure 5.13: AssumeRole

AssumeRole:

Organizations can simply put a policy for their users to be able to use AssumeRole action, which

gives users ability to access accounts outsides of their home accounts, as well as accounts in a sid.

Figure 5.13 shows a sample of a policy attached to a user which allows the user to have access

to any other account through AssumeRole action. By attached with this policy, users have the

potential ability to access accounts in a sid. We say potential ability, because on the other side, the

account in the sid also have to have a trust relationship specify who is trust worth to have the access

to it. With AssumeRole policy and trust relationship together, a user can have access to resources

in another AWS account.

Trust Relationship:

As we just said above, a user can have access to resource in another AWS account only when

he has a policy to assume a role in another AWS account, mean time, that account has a trust

relationship declaimed to trust this user. Thus, after sid creation and sip creation requests, roles

like CPadmin/SIPadmin and CPmember/OPmember/SIPmember are created. In these roles, a trust

relationship defines who from which AWS account can access current account with the role. Figure

5.14 shows a sample of trust relationship, which gives user SipAdmin from account with account

number 123412341234 access to current account.

84

Figure 5.14: Trust Relationship in a Role

SecAdmin SID-service SID-server Backend

delete a sip

 SID-manager AWS Account

send the sip account number

delete a sip

delete corresponding record
in database table SIPs

return 0

clean the account
return 0

Figure 5.15: Process of Deleting a Sip

Add and Remove Users:

Since trust relationship controls the access of users to a sip account, by updating trust relationship

for a role, we can add a user to a sip or remove the user from the sip. Organizations security admin

users send add and remove users request to SID-server to perform the actions.

Delete a Sip:

After a collaboration is completed, organizations can request to delete a sip. All the roles which are

created for the specific group of organizations will be deleted. All the information and resources

85

SecAdmin SID-service SID-server Backend

delete a sid

 SID-manager AWS Account

send the sid account number

delete a sid

delete corresponding record
in database table SIDs and SIPs

return 0

clean all associated accounts
return 0

Figure 5.16: Process of Deleting a Sid

that is created during the collaboration will be cleaned up. Any users that are still assigned to the

sip will be removed. Figure 5.15 shows the process of deleting a sip. Deleting a sip doesn’t mean

to delete the sip AWS account, it means to delete all information and resources created during the

collaboration in the sip account, making the sip account clean and available for next sip use.

Delete a Sid:

When a sid is deleted, all the projects associated to it will be deleted too, including core project,

open project and any sips. With deleting the project, any roles and policies that are created during

the sid or sip creation will be removed, as shown in Figure 5.16.

5.3.2 Demonstrations

In this section, demonstrations of screenshots are given to show how SID-server is implemented

and presents in AWS cloud platform.

Before a sip is created, any of available AWS operational accounts can be used for creating a

sip. We have pre-settings in all operational accounts, with a SIDmanager role setting up in each

of them, through which the SID-manager manages the operational account. I have some screen

86

Figure 5.17: IAM Dashboard in an Operational AWS Account

Figure 5.18: IAM Roles in an Operational AWS Account

Figure 5.19: IAM Policies in an Operational AWS Account

shots to show how the IAM panel looks like in an operational AWS account, without a sip, a core

project or an open project being created. Figure 5.17 shows how it looks like in IAM panel of

an operational AWS account. We can see that there is one role and one customer managed policy

already existing in the account, which are SIDmanager role and SIDmanager policy. Figure 5.18

and Figure 5.19 further show how it looks like in IAM Roles and Policies panel of an operational

87

Figure 5.20: IAM Dashboard in a Taken Operational AWS Account

Figure 5.21: IAM Roles in a Taken Operational AWS Account

AWS account separately. In Figure 5.18, we can see there is a existing role SIDmanager and in

Figure 5.19, we see an existing policy SIDmanager, which is for role SIDmanager.

After a sip is created, the taken AWS operational accounts will have corresponding roles and

polices created for SID functionalities. Here we assume two organizations are going to collaborate

and created a sid for the collaboration. Figure 5.20 shows how IAM panel presents after a sip is

created. We can see that, now it has 5 roles and 5 customer managed policies.

Figure 5.21 further shows how it looks like in IAM Roles panel of a taken operational AWS

account. We see there are two roles for each organization, one for admin user and one for member

88

Figure 5.22: IAM Policies in a Taken Operational AWS Account

users. For example, security admin user from organization CPS will use role SIPadminCPS to

access the sip, while security admin user from organization SAWS will use role SIPadminSAWS

to access the sip. Similar, normal users from CPS will use role SIPmemberCPS to access the sip,

while normal users from organization SAWS will use role SIPmemberSAWS to access the sip.

Figure 5.22 shows how it looks like in IAM Policies panel of a taken operational AWS account.

Policies for each roles in the sip are specified only for that role. For example, policy SIPadminCPS

is attached to role SIPadminCPS, which means organization CPS security admin user has a role of

SIPadminCPS with policy SIPadminCPS set. Figure 5.23 shows role SIPadminCPS with attached

policy SIPadminCPS.

Also, in order for users from organizations to access to the sip, each role has a trust rela-

tionship setting up for the corresponding user from a certain organizations. For example, in role

SIPadminCPS, the trust relationship set the trust entity for the sip is organization CPS (in this case,

CPS has a AWS account number 934324332443), as shown in Figure 5.24.

For member roles in a sip, the way for organizations to add more normal users to a sip is to

add trust relationships in the corresponding member role. For example, organization CPS has a

member role in a sip as of SIPmemberCPS, Figure 5.25 shows users with trust relationships. In

89

Figure 5.23: IAM Roles with Policies Attached in a Taken Operational AWS Account

Figure 5.24: Trust Relationship for Role SIPadminCPS

the figure, each user from organization CPS (AWS account number 934324332443) has a piece of

trust relationship policy specified in role SIPmemberCPS. Organization security admin users add

and remove their normal users to and from a sip by adding and remove a piece of relationship

policy attached to the role SIPmemberCPS.

90

Figure 5.25: Trust Relationship for Role SIPmemberCPS

When a sip is deleted, all the roles and policies will be deleted, left the AWS account the same

as any other available AWS accounts for next use of a sip creation.

91

Chapter 6: SID-MODEL IN AZURE CLOUD IAAS

Part of content from this chapter has been published in paper [20].

Microsoft Azure is one of the dominant cloud IaaS platforms for enterprises. Similar to AWS

and OpenStack, as an IaaS provider, Azure’s core features include compute, storage, database and

networking. Azure divides the basic features into four categories: build infrastructure, develop

modern applications, gain insights from data, and manage identity and access. You can easily get

a virtual machine for development, as well as storage, database and networking.

In Azure, any user has the capability to create an Azure account. The user who creates an

Azure account will be the owner and super administrative user of that account. Meanwhile, he/she

can access to resources in other accounts with proper roles. Unlike AWS, local users created in an

Azure Active Directory can create their own Azure account which is completely isolated from the

parent account.

Azure has two main components to manage users’ access to resources in the cloud: Azure

Active Directory (AAD) and Subscriptions (Sub). In order for a user to use resources in Azure, the

user has be assigned to a subscription. Azure Active Directory helps to manage users, including

both local Azure AD users and other valid Microsoft users.

6.1 Azure Access Control Model

Azure offers a form of role-based access control, wherein permissions are defined over cloud re-

sources within a role in resource groups. Roles can then be assigned to users. Roles are predefined

in Azure. In this part, we introduce Microsoft Azure cloud platform and present Azure Access

Control model. Figure 6.1 depicts the Azure Access Control model. In this and other figures, the

arrows denote binary relations with the single arrowhead indicating one side and double arrow-

heads many sides.

Azure Access Control (Azure-AC) model has fourteen components: Accounts (A), Azure Ac-

tive Directory (AAD), Subscriptions (Sub), Azure Active Directory Roles (AADR), Azure Active

92

Accounts
(A)

AADRoles
(AADR)

Permission
Assignment

(PA)
AAD User
Ownership
(AADUO)

Services
(S)

Groups
(G)

Group
Ownership

(GO)

user_
group
(UG)

PRMS

Operations
(OPR)

Object
Types
(OT)

AADRoles
Ownership
(AADRO)

OT
Ownership

(OTO)Azure Active
Directories

(AAD)
Subscriptions

(Sub)

Subscription
Assignment

(SA)

AAD
Ownership

(AADO)

Subscription
Ownership

(SubO)

SubAdmin User
Assignment

(SAUA)NonAAD
Users

(NAADU)

AAD User
Assignment
(AADAUA)

AAD
Users

(AADU)
SubRoles

(SubR)

RG
Ownership

(RGO)

User
Assignment

(UA)

SUBRole
Ownership
(SubRA)

Account
Ownership

(AO)

Resources
(RS)

Resource
Co-Ownership

(RO)

Resource
Co-Ownership

(RO)

ot_
resource

(OR)

RG-R pair
(RGRP)Resource

Groups
(RG)

Roles
(R)

Group
Assignment

(GA)

Sub_Role
(SR)

Figure 6.1: Azure Access Control (Azure-AC) Model

Directory Users (AADU), Non Azure Active Directory Users (NAADU), Groups (G), Resource

Groups (RG), Roles (R), Subscription Roles (SubR), Resources (R), Services (S), Object Types

(OT), and Operations (OPR). We also introduce other entities policies, which are implicitly in-

cluded in the model.

Accounts: To have its own public cloud resources, an organization need to open an Azure

account. An Azure account allows an organization to own specific (virtual) cloud resources that

can be accessed through Azure cloud services.

Azure Active Directory: Azure Active Directory (Azure AD) is Microsoft’s multi-tenant

cloud based directory and identity management service. It provides a full suite of identity manage-

ment capabilities including multi-factor authentication, device registration, self-service password

management, privileged account management, role based access control, security monitoring and

so on. Azure AD also provides single sign-on (SSO) access to cloud SaaS Applications. It can

also integrate with other identity management solutions used in industry.

93

Subscriptions: Users have access to cloud resources via subscriptions. Subscriptions are the

units of usage and billing for cloud resources. In order to have access to cloud resources, users

must be assigned to at least one subscription.

Azure Active Directory Roles: Azure AD roles allow one to manage the directory and identity-

related features. Azure AD has a set of administrative roles, including billing administrator, global

administrator, password administrator, service administrator and user administrator. Each of these

administrative roles are designed for a different specific administrative purpose. It also has a nor-

mal user role, which has no administrative power.

Subscription Roles: Subscription roles are a separate role set from Azure Active Direc-

tory Roles. Subscription Roles are administrative roles which give users permissions to man-

age cloud resources via a subscription. Subscription roles include service administrator and co-

administrators, both of which can give users access to cloud services. The services administrator

and co-administrators can be either Microsoft accounts or Azure AD users. A service administrator

cannot be a local Azure AD user from the same Azure AD assigned to that subscription.

Azure Active Directory Users and Non-Azure Active Directory Users: Users represent

individuals who can be authenticated by Azure and authorized to access cloud resources through an

Azure account. Users from both Microsoft accounts and partner organization accounts are allowed

to access to cloud resources in Azure. Azure Active Directory users are users created in Azure

AD. They can be administrative users of the directory or normal users. Non-Azure AD users refer

to users not from the local Azure AD, but from partner organizations and other Microsoft users.

Groups: A group is simply a set of users and it can include both Azure AD users and Non-

Azure AD users. Groups belong to an Azure AD account. The existence of groups is to conve-

niently mange multiple users as a single unit. Each policy attached to a group will apply to all

group members. For simplicity, we will ignore discussion group concept in the following part of

the paper, since a set of users can represents a group.

Resource Groups: Resource groups is a logical resource container which allows customers to

add various cloud resources like database, virtual machine etc. Resource groups provides a way to

94

monitor and control users’ access to collections of cloud resources.

Roles: Users are assigned to a resource group with roles to get permissions to access to cloud

resources. Roles allow users to have permissions to access cloud resources, for instance virtual

machines (VMs), storage, networking and etc. Roles could be different collections of meta per-

missions like read and write toward a specific piece of resource. Roles are only able to be assigned

to users inside a resource group.

Resources: Resources refer to cloud assets which can be owned by users. Cloud assets are

cloud resources such as virtual machines, databases, storages, etc. Since the only way for users to

access resources is through subscriptions, we require that the subscription has ownership over the

resources too.

Services: Services refer to cloud services Azure provides to its customers. Cloud Service

Provider (CSP) leases cloud resources to its customers in terms of services. Azure provides cus-

tomers with services such as compute, storage, networking, administration, and database.

Object Types and Operations: An object type represents a specific type of object. From the

CSP’s viewpoint, objects are more like services. We define object types as particular service types

the cloud provides. For instance, with the Compute service, the object type is a virtual machine;

with the storage service, the object type is a storage container; etc.

Policy: In Azure, users’ permissions over services and resources are defined in policy files.

Policy files can be attached to a user, a group, a role or a specific cloud resource. By attaching

a policy to a user, a group or a role, users gain permissions to corresponding cloud resources.

The policy defines the actions the user will perform and cloud resources on which the actions

will function. Multiple permissions can be defined in one policy file. Multiple policy files can be

attached to one entity. Azure achieves permission assignment in a virtual manner via the policies

attached to various relevant entities.

With the concepts described above, we formalize Azure-AC model as follows.

Definition 1. Azure-AC model has the following components.

- A, AAD, Sub, RG, R, AADR, SubR, AADU, NAADU, G, RS, S, OT and OPR are finite sets of

95

existing accounts, Azure active directories, subscriptions, resource groups, roles, Azure AD roles,

Subscription roles, Azure AD users, Non-Azure AD users, groups, resources, services, object types

and operations respectively in the Azure cloud system.

- Account Ownership (AO) : is a function AO : A→ U, mapping an account to its owning user.

- AAD Ownership (AADO) : is a function AADO : AAD → A, mapping an Azure AD to its

owning account. Equivalently viewed as a many-to-one relation AADO ⊆ AAD × A.

- Subscription Ownership (SubO) : is a function SubO : Sub→ A, mapping a subscription to its

owning account. Equivalently viewed as a many-to-one relation SubO ⊆ Sub × A.

- Resource Group Ownership (RGO) : is a function RGO : U→ Sub, mapping a resource group to

its owning subscription. Equivalently viewed as a many-to-one relation GRO ⊆ RG × Sub.

- AAD User Ownership (AADUO) : is a function AADUO : AADU→ AAD, mapping a user to

its owning Azure AD. Equivalently viewed as a many-to-one relation AADUO⊆ AADU × AAD.

- Group Ownership (GO) : is a function GO : G → AAD, mapping a group to its owning Azure

AD. Equivalently viewed as a many-to-one relation GO ⊆ G × AAD.

- Azure AD Roles Ownership (AADRO) : is a function AADRO : AADR → AAD, mapping a

Azure AD role to its owning Azure AD. Equivalently viewed as a many-to-one relation AADRO

⊆ U × A.

- Resource Co-Ownership (RSO) : is a function RSO : RS→ Sub ∪ RS→ (AADU ∪ NAAUD),

mapping a piece of resource to its owning subscription and user. Equivalently viewed as a many-

to-one relation RSO ⊆ RS × Sub ∪ RS × (AADU ∪ NAAUD).

- Object Type Owner (OTO) : is a function OTO : OT→ S, mapping an object type to its owning

service. Equivalently viewed as a many-to-one relation OTO ⊆ OT × S.

- Resource Group Role pair (RGRP) : is a function RGRP : RG→ R, mapping a resource group to

a role. Equivalently viewed as a many-to-many relation RGRP ⊆ GR × R.

- Subscription Assignment (SA) : is a function SA : Sub → AAD, mapping subscriptions to its

associated Azure active directory. Equivalently viewed as a many-to-one relation SubA ⊆ Sub ×

AAD.

96

- Subscription Roles Assignment (SubRA) : is a function SubRA : SubR → Sub, mapping sub-

scription roles to subscriptions. Equivalently viewed as a many-to-many relation SubRA ⊆ Sub ×

SubR.

- AAD User Assignment (AADUA) : is a function AADUA : (AADU ∪ NonAADU)→ AADR,

mapping users to Azure activedirectory. Equivalently viewed as a many-to-many relation AADUA

⊆ (AADU ∪ NonAADU) × AADR.

- SubAdmin User Assignment (SAUA) : is a function SAUA : (AADU ∪ NonAADU) → SubR,

mapping users to subscription roles. Equivalently viewed as a many-to-many relation SAUA ⊆

(AADU ∪ NonAADU) × SubR.

- User Assignment (UA) : is a function UA : U → RGRP, mapping users to resource group-role

pairs. Equivalently viewed as a many-to-many relation UA ⊆ U × RGRP.

- Group Assignment (GA) : is a function GA : G→ RGRP, mapping groups to resource group-role

pairs. Equivalently viewed as a many-to-many relation UA ⊆ G × RGRP.

- Permission Assignment (PA) : is a function PA : PERMS → R, mapping permissions to roles.

Equivalently viewed as a many-to-many relation PA ⊆ PERMS × R.

- user_group (UG) : is a function UG : U→ G, mapping users to groups where the user and group

are owned by the same account. Equivalently viewed as a many-to-many relation UG ⊆ U × G.

- ot_resource (OR) : is a function OR : OT→ RS, mapping object types to resources. Equivalently

viewed as a one-to-many relation OR ⊆ OT × RS.

- PRMS = OT × OPR, is the set of permissions.

6.2 Azure-AC Model with SID extension (Azure-AC-SID)

In this section, we present an access control model for Azure with the Secure Isolated Domain ex-

tension (Azure-AC-SID). We extend the Azure-AC-SID model from Azure-AC model to include

SID-service functionality [18]. We present the Azure-AC-SID model so as to cover only the ad-

ditional components added to the Azure-AC model. Figure 6.2 shows the Azure-AC-SID model,

where we ignore groups for simplicity. In the rest of the paper, group is used to represent a group

97

of organizations, rather than the groups component of Azure-AC model. In our discussion, we

assume that a user belongs to only one organization in cloud. For simplicity, we also assume one

organization has only one Azure account.

Azure Active Directory and subscriptions give a great convenience to design the Azure-AC-

SID model. Each sid is associated with one Azure AD and one subscription to manage all the

users and cloud resources. Resources groups then are created in the subscription as a core project,

an open project and sips. We constrain cloud services to only include Azure compute service and

Azure object storage service. The corresponding object types are Virtual Machines (VM), Storage

Containers (SC) and Storage Container Objects (CO).

Microsoft Azure has resource groups as basic resource containers, which are isolated with

each other. Above resource groups, there are subscriptions which act as administrative boundary

of multiple basic resource containers. An Azure cloud account can have multiple subscriptions

to manage its resources. We use resource groups to realize projects while subscriptions to realize

secure isolated domains.

In the following part, we present Azure-AC-SID model. The additional components included

in Azure-AC-SID model are: Secure Isolated Domain (SID), Secure Isolated Project (SIP), Expert

Users (EU), Users(U), Core Project (CP), and Open Project (OP). These are described below.

We have introduce all these concepts in previous chapters. In Azure, Secure Isolated Domains

is carried by a subscription, holding security information and resources for cross-organizational

security collaborations. Secure Isolated Project are resources groups inside the sid subscription,

which collect, store and analyze cyber security information for specific cyber incidents. Core

Project and Open Project are two other resources groups inside the sid subscription. Expert

Users are external non-organizational professionals. They don’t belong to the group of organi-

zations. Users include both Azure AD users and Non-Azure AD users, which refer to either

Microsoft users or partner organization users. We use one entity Users to represent all users that

are allowed to access cloud resources, since from the stand point of SID-model functionality, as

long as the user is associated to the organization’s Azure AD, it does not care where the users

98

Permission
Assignment

(PA)

Services
(S)

PRMS

Operations
(OPR)

Object
Types
(OT)

OT
Ownership

(OTO)

User
Assignment

(UA)

Resources
(RS)

ot_
resource

(OR)
Secure
Isolated
Domains

(SID)

Open
Projects

(OP)

Secure
Isolated
Projects

(SIP)

Core
Projects

(CP)

Resource
Co-Ownership

(RO)

Users
(U)

Expert
Users
(EU)

RG
Ownership

(RGO)

Resource
Co-Ownership

(RO)
SIP

Ownership
(SIPO)

Resource
Groups

(RG)

Roles
(R)

Organization
Accounts

(OA)

SID-
Association

(assoc)

cp_rg

op_rg

RG-R pair
(RGRP)

User
Ownership

(UO)

Azure Active
Directories

(AAD)

Subscriptions
(Sub)

Subscription
Assignment

(SA)

sip_rg

sid_sub

AADRoles
(AADR)

AADRoles
Ownership
(AADRO)

AAD User
Assignment

(AADUA)

sid_aad

OP
Ownership

(OPO)

CP
Ownership

(CPO)

SubRoles
(SubR)

SubRoles
Ownership
(SubRO)

Sub User
Assignment

(SubUA)

Sub-Role
(Sub-R)

Figure 6.2: Azure Access Control Model with SID Extension (Azure-AC-SID)

come from. Organization Accounts represent organizations in the community. They could be

either Azure AD accounts or organizations enterprise accounts which are identified by Azure AD.

Organization accounts allows organizations to own specific amount of (virtual) cloud resources.

In the following, we give formalization of concepts introduced above, as well as the relation

among them.

Definition 2. Azure-AC-SID model has the following components in addition to Azure-AC

model.

- SID, SIP, CP, OP, EU and U are finite sets of Secure Isolated Domains, Secure Isolated Projects,

Core Projects, Open Projects, Expert Users and Users.

- Virtual Machines (VM), Storage Containers (SC) and Storage Container Objects (CO) are object

types respectively for compute service and object storage service in Azure cloud platform.

99

- Core Project Ownership (CPO) : is a function CPO : CP→ SID, mapping a single core project

to its owning sid. Equivalently viewed as a one-to-one relation CPO ⊆ CP × SID.

- Open Project Ownership (OPO) : is a function OPO : OP→ SID, mapping a single open project

to its owning sid. Equivalently viewed as a one-to-one relation OPO ⊆ OP × SID.

- Secure Isolated Project Ownership (SIPO) : is a function SIPO : SIP→ SID, mapping a single

secure isolated project to its owning sid. Equivalently viewed as a many-to-one relation SIPO ⊆

SIP × SID.

- SID association (assoc): is a function assoc : SID → 2A, mapping a SID to all its member

organization accounts.

- User Ownership (UO) : is a function UO : U→ OA, mapping a user to its owning organization

account. Equivalently viewed as a many-to-one relation UO ⊆ U × OA.

- Subscription Assignment (SubA) : is a function SubA : Sub→ AAD, mapping a single subscrip-

tion to a single Azure active directory.

- sid_sub ⊆ SID × Sub, is a one-to-one relation mapping a single sid to a single subscription.

- sid_aad ⊆ SID × AAD, is a one-to-one relation mapping a single sid to a single Azure active

directory.

- cp_rg ⊆ CP × RG, is a one-to-one relation mapping a single core project to a single resource

group.

- op_rg ⊆ OP × RG, is a one-to-one relation mapping a single open project to a single resource

group.

- sip_rg ⊆ SIP × RG, is a one-to-one relation mapping a single sip to a single resource group.

- p_rg ⊆ P × RG, is a one-to-one relation mapping a single project (core project, open project or a

sip in a sid) to a single resource group.

6.2.1 Administrative Model

To make role assignment simple and clear, we constrain roles in two types: administrative roles

and member roles, which separately denotes the permission of being able to manage users and

100

permissions only for accessing cloud resources. We use one admin role SIDadmin to represent

all admin permissions a user can get from Azure AD and subscriptions. We use one member role

SIDmember to represent all normal roles a user can get in a resource group. Admin users have the

capability to add and remove other users from their home organizations to a sid subscription, which

in terms of resource groups viz., core project resource group or a sip resource group. Member users

can be added/removed from/to a project resource group inside a sid subscription. Member users

are those who have access to the cloud services and resources, for example, creating or deleting a

virtual machine.

The administrative aspects of AzureAC-SID model are discussed informally below. A formal

specification is given in Table 6.1 and Table 6.2.

Create a sid: Remind again that the creation of sid is based on agreement among the com-

munity of organizations. After all the organizations in the community have agreed, one security

admin from an organization representing the group of organizations request the creation of a sid

with parameters including all the security admin users, each representing one organization in the

community. uSet denotes a fixed group of security admin users from all organizations of the com-

munity, with one admin user for each organization. When a sid is created, the security admin user

who issues sid creation command along with all other security admin users from uSet will become

the limited administrative users of the sid, in which each organization in the community has equal

limited administrative power.

In Azure, in order for a user to access resource to a subscription, the user need to be assigned to

both the subscription and associated Azure active diretory. Since each projects in a sid is realized

by Azure subscription in a Azure management account, admin users from uSet will be assigned

with co-admin to a sid subscription and admin roles in Azure active diretory which is associated

to that sid subscription. After the core project and open project resource groups are created, admin

users from will be assigned to the resource groups with Owner roles. All of these role assignment

together give an admin user from uSet an administrative permission over the sid.

101

Table 6.1: Azure-AC-SID Administrative Model
Operation Authorization Requirement Update

SidCreate(adminu, uSet,
sid)
/* An admin user
representing uSet creates
a sid */

adminu ∈ uSet ∧ adminu ∈ U
∧ sid /∈ SID

SID′ = SID ∪ {sid};
assoc(sid) =

⋃
adminu∈uSet UO(adminu);

CP′ = CP ∪ {cp};
CPO(cp) = sid;
OP′ = OP ∪ {op};
OPO(op) = sid;
Sub′ = Sub ∪ {sid_sub(sid)};
AAD′ = AAD ∪ {aad};
SA(sid_sub(sid)) = aad;
RG′ = RG ∪ {cp_rg(cp)} ∪ {op_rg(op)};
RGO(cp_rg(cp)) = sid_sub(sid);
RGO(op_rg(op)) = sid_sub(sid);
AADUA′ = AADUA ∪ {(uSet, admin)};
SubUA′ = SubUA ∪ {(uSet, co-admin)};
UA′ = UA ∪ {(uSet, cp_rg(cp), Owner),
(uSet, op_rg(op), Owner)}.

SidDelete(adminu, uSet,
sid)
/* An admin user
representing uSet deletes
the sid*/

adminu ∈ uSet ∧ adminu ∈ U
∧ assoc(sid) =

⋃
adminu∈uSet

UO(adminu) ∧ sid ∈ SID

SID′ = SID - {sid};
assoc(sid) = NULL;
CP′ = CP - {cp};
CPO(cp) = NULL;
OP′ = OP - {op};
OPO(op) = NULL;
Sub′ = Sub - {sid_sub(sid)};
AAD′ = AAD - {aad};
SA(sid_sub(sid)) = NULL;
RG′ = RG - {cp_rg(cp)} - {op_rg(op)};
RGO(cp_rg(cp)) = NULL;
RGO(op_rg(op)) = NULL;
AADUA′ = AADUA - {(uSet, admin)};
SubUA′ = SubUA - {(uSet, co-admin)};
UA′ = UA - {(uSet, cp_rg(cp), Owner),
(uSet, op_rg(op), Owner)};
∀u ∈ U.(UA′ = UA - {(u, cp_rg(cp),
Contributer), (u, op_rg(op),
Contributer)});
if ∃(u, sip_rg(sip), r) ∈ ((U ∪ EU), RG,
(Owner ∨ Contributer)).({(u,
sip_rg(sip), r)} ∈ UA ∧
RGO(sip_rg(sip)) ∈ = sid_sub(sid)),
then UA′ = UA - {(u, sip_rg(sip), r)} ∧
SIP′ = SIP - {sip}.

102

Table 6.2: Azure-AC-SID Administrative Model (continued)
Operation Authorization Requirement Update

SipCreate(adminu, sip,
sid)
/* An admin user
representing uSet creates a
sip */

adminu ∈ uSet ∧ adminu ∈ U ∧
UO(adminu) ∈ assoc(sid) ∧ sip /∈ SIP ∧
(adminu, admin) ∈ AADUA ∧ (adminu,
co-admin) ∈ SubUA

SIP′ = SIP ∪ {sip};
SIPO(sip) = sid;
RG′ = RG ∪ {sip_rg(sip)};
RGO(sip_rg(sip)) =
sid_sub(sid);
UA′ = UA ∪ {(uSet,
sip_rg(sip), Owner)}.

SipDelete(adminu, sip, sid)
/* An admin user
representing uSet deletes a
sip*/

adminu ∈ uSet ∧ adminu ∈ U ∧
UO(adminu) ∈ assoc(sid) ∧ SIPO(sip) =
sid ∧ sip ∈ SIP ∧ (adminu, admin) ∈
AADUA ∧ (adminu, co-admin) ∈ SubUA

SIP′ = SIP - {sip};
SIPO(sip) = NULL;
RG′ = RG - {sip_rg(sip)};
RGO(sip_rg(sip)) =
NULL;
UA′ = UA - {(uSet,
sip_rg(sip), Owner)}.

UserAdd(adminu, u, p, sid)
/* Admin users add a user
from his home domain to a
cp, op or sip */

adminu ∈ U ∧ (adminu, admin) ∈
AADUA ∧ (adminu, co-admin) ∈ SubUA
∧ (adminu, p_rg(p), Owner) ∈ UA ∧ u ∈ U
∧ UO(u) = UO(adminu) ∧ p ∈ (CP ∪ OP ∪
SIP) ∧ (CPO(p) = sid ∨ OPO(p) = sid ∨
SIP(p) = sid)

AADUA′ = AADUA ∪
{(u, user)};
UA′ = UA ∪ {(u, p_rg(p),
Contributer)}.

UserRemove(adminu, u, p,
sid)
/* Admin users remove a
user from a cp, op or sip */

adminu ∈ U ∧ (adminu, admin) ∈
AADUA ∧ (adminu, co-admin) ∈ SubUA
∧ (adminu, p_rg(p), Owner) ∈ UA ∧ u ∈ U
∧ UO(u) = UO(adminu) ∧ p ∈ (CP ∪ OP ∪
SIP) ∧ (CPO(p) = sid ∨ OPO(p) = sid ∨
SIP(p) = sid) ∧ (u, p_rg(p), Contributer) ∈
UA

AADUA′ = AADUA -
{(u, user)};
UA′ = UA - ({(u, cp_rg(p),
Contributer)} ∨ {(u,
op_rg(p), Contributer)} ∨
{(u, sip_rg(p),
Contributer)}).

EUserAdd(adminu, eu, p,
sid)
/* Admin users add an
expert user to a cp or sip */

adminu ∈ U ∧ (adminu, admin) ∈
AADUA ∧ (adminu, co-admin) ∈ SubUA
∧ (admin, p_rg(p), Owner) ∈ UA ∧ eu ∈
EU ∧ p ∈ (CP ∪ SIP) ∧ (CPO(p) = sid ∨
SIP(p) = sid)

AADUA′ = AADUA ∪
{(eu, user)};
UA′ = UA ∪ {(eu, p_rg(p),
Contributer)}.

EUserRemove(adminu, eu,
p, sid)
/* Admin users remove an
expert user from a cp or sip
*/

adminu ∈ U ∧ (adminu, admin) ∈ AADUA
∧ (adminu, co-admin) ∈ SubUA ∧ (uSet,
sip_rg(sip), Owner) ∈ UA ∧ eu ∈ EU ∧ p
∈ (CP ∪ SIP) ∧ (CPO(p) = sid ∨ SIP(p) =
sid) ∧ (eu, p_rg(p), Contributer) ∈ UA

AADUA′ = AADUA -
{(eu, user)};
UA′ = UA - {(eu, p_rg(p),
Contributer)}.

Delete a sid: Remind that one admin user from uSet representing the group of organizations

initilizes the sid delete request. To delete the sid, the admin user need to delete all the projects

resource groups inside the sid subscriptions and unassign all the users in these resource groups.

Create a sip: A security admin user representing uSet creates a sip resource group in the sid

103

subscription for an cyber collaboration among the community of organizations, assign role Owner

to all admin users in uSet.

Delete a sip: Any security admin user from (uSet) can delete a sip resource group in a sid

subscription. All information data and resources will be securely deleted from the sip resource

group. All users assigned to the sip resource group will be removed from it.

Add/remove a user to/from a core project or sips: Remind that core project and sips admin

users are the set of security administrative users (uSet) from the community of organizations. These

limited administrative users can add/remove users of their organizations to/from the core project

and sips. Every time a normal user is brought to a project resource group inside a sid subscription,

the normal user need to be added to the associated Azure active directory. Then the user can be

assigned to a project resource group with role Contribution.

Add/remove a user to an open project: Every user in the collaborative community of orga-

nizations is allowed to join the open project. Users in open project have equal but limited permis-

sions. Similar as adding users to core project, users need to both Azure active directory roles and

roles in resource group to have permissions to open project. Removing is the opposite as adding

action, the user will be unassigned with both roles from active directory and resource group.

Add/remove an expert user to/from a core project or sips: Expert Users are needed when

external cyber expertise need to be involved. Adding and removing an expert user in Azure is the

same way as adding and removing a normal user in Azure.

6.2.2 Operational Model

In the operational model, we mainly show how and what operations a normal user can issue in

the model. Again, for simplicity, we only demonstrate the core operations on virtual machines

and storage containers, including creation and delete. Create method allows users to create a new

instance of virtual machine or a storage container in a core project, open project or a sip. Delete

method allows users to delete an existing instance of a virtual machine or storage container in a

project. In table 6.3, we give the details of operational model.

104

Table 6.3: Azure-AC-SID Operational Model
Operation Authorization Requirement Update

CreateVM(vm, p, u)
/* A user creates a vm */

vm /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U
∧ ∃ (perms, r) ∈ PA.(perms = (vm, create)
∧ (p_rg(p), r) ∈ RGRP ∧ (u, (p_rg(p), r))
∈ UA)

RS’ = RS ∪ {vm};
RSO’ = RSO ∪ {(vm, (p,
u))};
OR(vm) = VM.

DeleteVM(vm, p, u)
/* A user deletes a vm */

vm ∈ RS ∧ RSO(vm) = {(p, u)} ∧ p ∈
(CP ∪ OP ∪ SIP) ∧ u ∈ U ∧ ∃ (perms, r)
∈ PA.(perms = (vm, delete) ∧ (p_rg(p), r)
∈ PR ∧ (u, (p_rg(p), r)) ∈ UA

RS’ = RS - {vm};
RSO’ = RSO - {(vm, (p,
u))};
vm = NULL.

CreateSContainer(sc, p,
u)
/* A user creates a storage
container */

sc /∈ RS ∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U
∧ ∃ (perms, r) ∈ PA.(perms = (sc, create)
∧ (p_rg(p), r) ∈ PR ∧ (u, (p_rg(p), r)) ∈
UA)

RS’ = RS ∪ {sc};
RSO’ = RSO ∪ {(sc, (p,
u))};
OR(sc) = SC.

DeleteSContainer(sc, p,
u)
/* A user deletes a storage
container */

sc ∈ RS ∧ RSO(sc) = {(p, u)} ∧ p ∈ (CP
∪ OP ∪ SIP) ∧ u ∈ U ∧ ∃ (perms, r) ∈
PA.(perms = (sc, delete) ∧ (p_rg(p), r) ∈
PR ∧ (u, (p_rg(p), r)) ∈ UA

RS’ = RS - {sc};
RSO’ = RSO - {(sc, (p,
u))};
sc = NULL.

CreateObject(co, sc, p, u)
/* A user creates a storage
container object */

co /∈ RS ∧ sc ∈ RS ∧ p ∈ (CP ∪ OP ∪
SIP) ∧ u ∈ U ∧ RSO(sc) = (p, u) ∧ ∃
(perms, r) ∈ PA.(perms = (co, create) ∧
(p_rg(p), r) ∈ PR ∧ (u, (p_rg(p), r)) ∈ UA)

RS’ = RS ∪ {co};
RSO’ = RSO ∪ {(co, (p,
u))};
OR(co) = CO.

DeleteObject(co, sc, p, u)
/* A user delete a storage
container object */

co ∈ RS ∧ RSO(co) = {(p, u)} ∧ sc ∈ RS
∧ p ∈ (CP ∪ OP ∪ SIP) ∧ u ∈ U ∧
RSO(sc) = (p, u) ∧ ∃ (perms, r) ∈ PA.(
perms = (co, create) ∧ (p_rg(p), r) ∈ PR ∧
(u, (p_rg(p), r)) ∈ UA)

RS’ = RS - {co};
RSO’ = RSO - {(co, (p,
u))};
co = NULL.

After a user is assigned to a core project, open project or sip, the user can issue following open

projecterations:

CreateVM/DeleteVM: A user can create/delete a virtual machines in a core project, open

project or sip resource group, to which the user is assigned.

CreateContainer/DeleteContainer: A user can create/delete a storage container in a core

project, open project or sip resource group, to which the user is assigned. A storage container

holds container objects.

CreateObject/DeleteObject: A user can create/delete a container object in a storage container

in a core project, open project or sip resource group, to which the user is assigned.

105

6.3 Enforcement

Microsoft Azure has been undated to new releases from time to time. We discuss the enforcement

of Azure-AC-SID model on the current Azure release. Azure accounts form the basic resource

boundary in the cloud. To sign in to the Azure cloud, a user has to have either a Microsoft account

or an Azure AD account which stores the organization accounts information. In this chapter, we

uniformly call both of these types of accounts Azure accounts.

For a user to use resources in the Azure cloud, the user has to be assigned to a subscription.

A user can be assigned to multiple subscriptions. Each subscription has a trust relationship with

one and only one Azure AD, which gives the Azure AD power to authenticate users, services and

devices for that subscription. Users have one Azure AD as their home directory to authenticate

them, meanwhile they can be guest users in other Azure ADs. One Azure AD can be associated

with multiple subscriptions. Subscriptions can change their associations with Azure AD any time

they want. When a subscription de-associates with an Azure AD, users will lose their access to

resources through the subscription but still exist in that Azure AD.

Inside an Azure account, subscriptions are sub-divisions of cloud resources while they are

separated with each other. Resource groups are further sub-divisions of cloud resources under

a subscription. Figure 6.3 simply shows the perspective of resources divisions within an Azure

account. Azure account owners can create different subscriptions for different management and

billing purpose. Azure account owners also assign a service administrator for a subscription, who

has full permissions to assign any cloud services and resources to users though the subscription.

Each subscription only has one service administrator. Service administrators can further assign

co-administrators to the subscription to help assigning cloud services and resources to users.

Azure AD has its own set of administrative roles, including global administrator, billing ad-

ministrator, password administrator, service administrator and user administrator. For simplicity,

we are going to use global administrator role only in our model. Azure AD global administrator

can create, edit and delete users and manage user licenses. An admin user has to have both Azure

AD global administrator role and subscription administrator to be able to grant a user the access to

106

Azure
Account

Subscription 1 Subscription 2 Subscription N

Resource
Group 1-1

Resource
Group 1-2

Resource
Group 2-1

Resource
Group N-1

Resource
Group N-X

VM1

VM2

VM1 VM1

VM2

VM3

Figure 6.3: Azure Account Resource Division

cloud resources in an Azure account.

As a public commercial cloud, Microsoft Azure provides featured APIs for users to use its

functions. Since we can’t modify Azure itself, one way to approach SID-service function in Azure

is to build it as a service provided by a third party in the cloud to customers. It requires to build

additional services on the cloud platform. In the enforcement, we use a python web server to

communicate with Azure API to provide SID-service, which is the same web server we used in

AWS-AC-SID model enforcement. SID-service consists of two parts, one is the web server, the

other is a SID-manager Azure account with subscriptions for all the potential sids created in the

cloud. SID-service acts as an automated agent that manages all the sids and their constituent

components through their life cycle. SID-service web server is the interface which respond to

organizations’ requests. SID-server processes all sids requests from communities of organizations

and maintains a separate sid for each community. Within each sid, it facilitates the creation and

deletion of sips. SID-manager account manages all subscriptions in response to the requests.

Considering that Azure already has its dedicated roles for managing subscriptions and Azure

107

Figure 6.4: A Sid for a Community

Active Directory, we are going to use those existing administrative roles from Azure AD roles and

subscription Roles to manage sips, core project and open project in a sid. Azure provides us five

Azure AD admin roles and two subscription admin roles. As the SID-service, the SID-manager

needs administrative roles to include Azure AD global admin role and subscription service admin

role. Azure also provides a great set of operative roles in resource groups, which allows users to

have permission to access cloud resources.

SID-manager maintains a list of security administrative users (uSet) from each community of

organizations. Each organization in the community has one and only one security administrative

user in uSet, which represents the organization in the sid, as shown in figure 6.4. SID-manager also

maintains the associations for each sid with its member organizations in the community.

6.3.1 Functionalities

SID-server:

SID-server is the same web sesrver as used in AWS-AC-SID model enforcement. SID-server

processes requests from organizations and maintains sid related information in the server backend.

108

Azure
Manger
Account

 SID-
 manager

Azure Active
Directory

(Sid-1)

Subscription
(Sid-1)

Resource
Group
(Cp)

Resource
Group
(Op)

Resource
Group
(Sip-1)

Trust

Resource
Group
(Sip-n)

Azure Active
Directory

(Sid-k)

Subscription
(Sid-k)

Resource
Group
(Cp)

Resource
Group
(Op)

Resource
Group
(Sip-1)

Trust

Resource
Group
(Sip-m)

SID-manager AAD role:
Global administrator

SID-manager AAD role:
Global administrator

SID-manager Sub role:
Service administrator

SID-manager Sub role:
Service administrator

Figure 6.5: SID-manager User

The server uses a rest api module running on apache service in Linux. Organizations send rest api

requests to SID-server and get response from the server.

SID-server consists of a running backend and a SID-manager Azure account. The running

backend accepts and processes SID-requests of community organizations. SID-manager account

manages subscriptions in response to SID-requests. Subscriptions inside SID-manager account are

for sids, whenever a sid creation request is sent to SID-server, a new subscription will be created

as a sid and associated with a group of organizations. With the creation of a sid, a core project

and an open project are created. Resource groups are used for core project, open project and sips.

Whenever a sip creation request is sent to SID-server, a new resource group will be created as a sip

inside the sid.

109

Azure
Manger
Account

 SID-
 manager

Azure Active
Directory

(Sid-1)

Subscription
(Sid-1)

Resource
Group
(Cp)

Resource
Group
(Op)

Resource
Group
(Sip-1)

Trust

Resource
Group
(Sip-n)

uSet AAD role:
User administrator

Normal user AAD role:
User

uSet role:
Owner

Normal user role:
Contributer

uSet

user role:
Contributer

uSet role:
Owner

Normal user role:
Contributer

uSet role:
Owner

Normal user role:
Contributer

Figure 6.6: Create a Sid

SID-manager User:

For SID-manager Azure account, the owner of the account is the special manager user which

have the permissions to process upcoming SID-requests. SID-manager creates active directories,

subscriptions and resource groups for sids creation requirements, as shown in Figure 6.5. During

SID-requests and SIP-request processing, the special SID-manager user will automatically respond

to requests from organizations. The special SID-manager user is in charge of assigning proper

roles for users from the collaborative community and delete the active directory and subscription

associated with the sid.

110

Setting up a sid for organizations:

A Sid is set up for a community of organizations in the cloud. A core project and an open project

are created with the creation of a sid. Sips then are created due to different collaboration pur-

poses. Figure 6.6 shows a sid creation, with role assignments during the creation process. The

security admin users group uSet are added to the sid subscription as administrators. These roles

are inherited down to each resource group in the subscription, which gives admin users in uSet the

administrative power over core project, open project and all sips. Each admin user from uSet is

assigned with Azure active directory role User Admin and Owner role for the subscription. This

allows admin users from uSet assign users from their own organizations to the sid active directory

and resource groups in the subscription. Normal users are assigned with role User in sid active

directory and role Contributer in resource group.

Roles:

In the model, we constrains roles into two roles: SIDadmin and SIDmember. Specifically in en-

forcement, role SIDadmin is realized by Azure active directory role User Admin and role Owner

in subscriptions. Role SIDmember is realized by Azure active directory role User and role Con-

tributer in subscriptions.

Azure activedirectory role User Admin allows a user managing other users in the active direc-

tory. Role Owner in subscriptions allows a user to manage resources in a resource group, as well

as assign other users to the subscription or a resource group in the subscription. It requires both

AAD role User Admin and Owner role for a security admin user to manage both users and cloud

resources. Azure active directory role User has permissions which allows normal users be able to

access a subscription associated with the active directory. Role Contributer in subscriptions gives

users only permissions to access to resources, but managing other users. It requires both AAD role

User Contributer role for a normal user to have operational permissions in a subscription. These

two sets of roles are used in core project and all sips.

111

Database:

Same as in AWS-AC-SID model enforcement, SID-server maintains the association information

for each sid with its member organizations in the community. With security administrative users

(uSet) from organizations, each organization in the community has one and only one security

administrative user in uSet. SID-server mains a list of organizations accounts name and accounts

ids. We have one table in database to maintain the association information for all sids. Different

with AWS-AC-SID model enforcement, we dont need a table to keep association information for

sips. SIDs table holds basic information for each sid, include sid id, sid name and sid members.

SID Request Handling

A representative organization from a community of organizations can send sid request to SID-

server. An administrative user from uSet sends a sid request to SID-server. SID-manager creates a

sid subscription and adds the sid association information to database table and then create a core

project resource group and open project resource group as part of initialization of the sid, and

assigns all the roles that needed for each organization to access to the sid. The whole process is

completed automatically, as shown in Figure 6.7. After the request, the community of organization

should have their sid with a core project and open project. The set of security administrative users

uSet should have limited admin access to core project and all users from the community should

have member access to open project. Admin users from uSet should be able to send sip creation

request to SID-server. SID-manager returns a sid subscription with core project resource group

and open project resource group, as well as all the role assignment.

When a sid is deleted, all the project resource groups inside it will be deleted, including core

project, open project and all sips. Notice that in Azure, in order to delete a subscription, any

resource group inside the subscription are required to be deleted first. With deleting the project,

any roles that are assigned to the sid subscription and project resource groups will be unassigned.

112

SecAdmin SID-service SID-server Backend

create a sid

 SID-manager Azure Account

create a new sid record
in database SIDs table

create a sid active directory,
create a sid subscription,

create core project resource group,
create open project resource group.

return sid id

return sid id

return subscription id

return subscription id

Figure 6.7: SID-request Process

SIP-requests handling

When a representative security administrative user from uSet sends a sip request to SID-server,

SID-manager creates a sip by creating a resource group in the corresponding subscription in the

SID-manager account, and grant the group of users from uSet with role Owner to be admin users

of the sip resource group. Role Owner with active directory role User Admin together gives admin

users the permission to add other users from their home organizations to the sid active directory

and sip resource group. From perspective for a security admin user, we have Figure 6.8 showing

the process of a sip request.

After a collaboration is completed, organizations can request to delete the sip. The sip resource

group will be deleted with all the information and resources that is created during the collaboration

will be cleaned up. All users who are granted access to the sip will be removed from the sip

resource group.

113

SecAdmin SID-server SID-manager
Azure account

create a sip
create a resource group for the sip

return a resource group
return a sip

add a user
assign the user to the sip resource group

return assignment

remove a user
remove the user from the sip resource group

return
return

delete a sip
delete the sip resource group

return
return

Figure 6.8: Sending SIP-requests

6.3.2 Demonstrations

In this part, demonstrations are given to show how the model enforcement presents in Microsoft

Azure cloud platform. One issue we counter is that Azure doesn’t offer a complete set of API calls

for python sdk package. Thus, we couldn’t realize the whole automation of Azure-AC-SID model.

However, we can still manually set up sids for groups of organizations. In the following part, we

are showing the result we got from manually setting up sids for communities.

Create a Sid:

After a sid creation request is sent to SID-server by organizations, a sid instance is created in SID-

manager Azure account. Figure 6.9 shows a sid named Sid1 is created in SID-manager account,

with Azure active directory SID1 and subscription Sid1 associated with the active directory. A sid

is always created with two routine projects: core project and open project. We can find these two

projects in resource group tab, as show in Figure 6.10. They are resource groups.

114

Figure 6.9: A Sid is Created

Figure 6.10: Projects after A Sid is Created

In access control pannel of a sid subscription, we can check out the group organizations who

are associated with the sid, each of which is an Azure account. Figure 6.11 shows how to check

the group of organizations. “Subscription admins” as show in the figure, is the Azure account

owner. “Subscription admins” is the inherited owner of the sid subscription, which inherits the

permissions from the acccount owner. The rest three acts like three organizations. They are Azure

account owners as well. Their ownership over the sid subscription comes from the assignment

process during the sid creation request.

115

Figure 6.11: A Sid Associated Organizations

Create a Sip:

After a sip creation request is sent to SID-server by organizations, a sip resource group is created in

the sid subscription in the SID-manager Azure account. As an member organization of the sid, the

organization admin user is able to see the sid subscription under the organization’s Azure account

after the sid creation request is finished. The organization admin user is able to login to the sid

directory as well. After a sip is created successfully, it will show up in resource groups in the sid

subscription. Figure 6.12 shows an organization admin user logins to the sid directory and is able

to manage the sid with all the created projects resource groups in it, viz., CoreProject, OpenProject

and the new created sip Sip1.

Add a User to a Sip:

A normal user needs to added to the sid active directory in order to access to resources in the sid

subscription, as shown in Figure 6.13. The normal user “zhyhotmail_u1” is added to the sid active

116

Figure 6.12: A Sip is Created

Figure 6.13: Assign a User to a Sid Active Directory

diretory as a recoganized user from other directory. After the normal user becoming a user of

the sid active directory, then the user is allowed to add to resource groups in the sid subscription.

Figure 6.14 shows user “zhyhotmail_u1” is added to Sip1 resource group with role Contributor,

which gives the normal user permission to access resources except managing users.

Login to a Sip:

After the normal user is added to a sip resource group, the user can login to the sip. Figure 6.15

shows user “zhyhotmail_u1” login to Sip1 resource group in sid subscription Sid1.

Eventually, at one point, the created sip resource groups or even the whole sid subscription will

117

Figure 6.14: Add a User to a Sip

Figure 6.15: A User Login to a Sip

be deleted due to security reasons. All the resources created in resource groups will be deleted and

users assigned to the active directory will be unassigned.

118

Chapter 7: CONCLUSION AND FUTURE WORK

In previous chapters, we have introduced SID-model into three dominant cloud systems: Open-

Stack, Amazon AWS and Microsoft Azure. We give access control models for each of these cloud

systems according to our understanding of the systems and the needs for our model. We then

construct SID-model in these cloud systems. In this chapter, we first compare SID-model in these

three cloud platforms. We then conclude the work that has been done and state the future work.

7.1 Models Comparison

Resource Containers:

When we created the concept of secure isolated domain, we refer to a secure isolated space in a

system, where information and resources can be securely shared. It is further divided into projects,

which are sub-divisions of the isolated space. In cloud system, a sid can be either a real resource

container or an administrative boundary of a couple of resource containers.

The three dominant cloud IaaS systems give different solutions to realize resource containers.

Amazon AWS offers one-level resource containers, which are realized by AWS accounts. By own-

ing an AWS account, an isolated tenant of the cloud is offered. Accounts are the only resources

isolation divisions in AWS cloud. Current version of OpenStack offers two-level resource contain-

ers realized by projects and domains. Projects are the real cloud resource container, while domain is

an administrative boundary of cloud resource container, which consists of multiple projects. With

feature hierarchical multitenancy, OpenStack will be able to offer multiple-level resource contain-

ers. Microsoft Azure offers three-level resource containers. The basic cloud resource container

is resource group. Accounts and subscriptions are two upper levels of administrative boundaries

of resource container. An Azure account consists of multiple subscriptions, while a subscription

consists of multiple resource groups.

The SID-model has two-level resource containers, the basic resource container projects and the

administrative boundary level sids. To achieve SID-model in these three cloud systems, proper

119

Project-1
……

Project-m

Domain-1

Account-1
……

Account-l

ResourceGroup-1
……

ResourceGroup-n

Subscription-1

SID-manager
Account

Domain-jSid-1

Project-level

Sid-level

SID-server

AWS OpenStack Azure

SID-server

Sid-i Subscription-k

SID-server

Figure 7.1: Resource Containers

adjustments are required. For AWS cloud platform, we use AWS accounts as the basic resource

container projects in SID-model. We then add an administrative boundary level sids on top of it.

The structure of current version of OpenStack suits SID-model very well. Thus, domains are used

for sids and projects are used for projects in sids. For Microsoft Azure, we use subscription as

administrative boundary level sids and resource groups as basic resource containers projects inside

sids. Figure 7.1 shows the relation of different levels of resource containers in these three cloud

systems toward SID-model’s level of resource containers.

SID-service:

Amazon AWS and Microsoft Azure are commercial cloud platforms. To enforce the SID-model

into these two systems and realize the automation, an extra service is required. SID-service serves

as a third party service processing SID-requests from organizations. This allows the two commer-

cial cloud systems to be able to provide SID-service without adding functionalities in the systems

themselves. The same method can be used in OpenStack platform. However, since OpenStack is

120

an open source system, SID-service can be directly added as modules in OpenStack system. This

gives OpenStack platform capability to securely share information and resources among a group

of organizations (tenants in context of cloud system).

The common thing of applying SID-model to these three cloud systems is that, there must

be some database to store sids association information. Each sid has some association informa-

tion which record the sid member organizations information. During lifetime of the sid, the sid

association information is used for authorization purpose, for example, verifying users home orga-

nization. In OpenStack, we add a table in Keystone database to record sids association information.

The same table is added to SID-service web server backends in AWS-AC-SID model enforcement,

as well as Azure-AC-SID model. In AWS-AC-SID model enforcement, we also add one more

table to record all projects (viz,. sips, core projects, open projects) information, because AWS has

only one level resource containers and it is unable to manage the structure of two levels of resource

containers.

Compared to AWS, OpenStack and Azure are quite different. Both of them have at least two

level resource containers and each level is well isolated. With these two platforms, no table needs

for record projects information, since the cloud platforms themselves provides the capability to

manage projects resource container level. For instance, in OpenStack, after a sid is created, to

create a sip in the sid is under the control of Keystone authorizations. It is same as creating a

project in a domain. With the inherited roles features in OpenStack, the group of sid admins will

automatically get admin roles in any new created project in the sid. Even without this feature, sid

admin can still manually assign themselves project admin role. Azure has the similar mechanism

to control roles. Users who are assigned as owner of a subscription will inherit the owner roles

in all new created resource groups in the subscription. This allows the group of sid admin users

automatically get owner roles in new created sips.

121

Roles:

SID-model has two types of roles: administrative role and operational role. Administrative role

gives permissions of managing users and accessing to cloud resources. Operational role gives

permissions of accessing to cloud resources. Thus, to enforce SID-model to these three systems,

proper role assignments are necessary.

Roles are used in different ways in these three cloud platforms. In OpenStack platform, role

Admin and role Member match roles in SID-model. Role Admin is used as administrative role and

role Member as operational role in OSAC-SID model. In AWS platform, roles not only define the

permissions of accessing cloud resources, but also the trust relationship between accounts. Besides

the existing role set, one can create customized roles on his own needs. Customized roles are used

in AWS-AC-SID model, viz., a set of administrative roles and a set of operational roles. Similar to

AWS, Azure has its own existing set of roles, but also support customized roles. More differently,

Azure has separate role sets for subscriptions and active directories. To get permissions of the ad-

ministrative role in SID-model, all three types of roles are required, viz., active directory role, sub-

scription role and roles in subscriptions and resource groups.To get permissions of the operational

role in SID-model, both active directory role and roles in subscriptions and resource groups are

required. In Azure platform, the existing roles are good enough for forming the administrative and

operational roles in SID-model. Role User Admin in Azure active directory, role co-administrator

for managing a subscription and role Owner in subscriptions together form administrative role in

Azure-AC-SID model. Role User in Azure active directory and role Contributor in subscriptions

together form operational role in Azure-AC-SID model.

Although all these three cloud systems give admin users permission to manage other users

inside a cloud account, the SIDmember role assignment becomes very interesting in different cloud

system. For OpenStack and Azure platforms, admin users can directly assign normal users to their

territory resource containers (domain and projects in OpenStack, and subscription and resource

groups in Azure). Still Azure has more complex way to control permissions. A normal user need

both active directory role and roles inside a subscription to gain the access. For AWS-AC-SID

122

model, it requires across account role assignment. The inside-a-account role assignment cannot

give a user access to another account, which is a project in a sid. Thus it becomes a cross-account

role assignment issue. Not only a policy has to be attached to a user, a trust relationship between

accounts is required too before cross-account role assignments.

7.2 Summary and Future Work

In this dissertation, we identified fundamental elements of information and resource sharing in

cloud IaaS. We suggested one sharing model to consider and build up various models on different

cloud IaaS systems to facilitate secure information and resource sharing among multiple partici-

pants during collaborations. We formalized the model. We gave both administrative model and

operational model, which gives a clear specification of how the model works from administrative

and operational perspectives.

We further explore models for information and resource sharing in cyber security in dominant

cloud systems, viz., open source cloud platform OpenStack, commercial cloud platform Amazon

AWS and Microsoft Azure, and show the flexibility of those cloud access control models. For

each of these cloud system in the dissertation, we first suggested an access control model and

give the formalization of the model. We designed these models mainly based on the concept and

architecture of these cloud platforms. We gave formal description of these models. We further gave

formalizations of the sharing models in both administrative and operational perspective, which

gives a clear specification of how the users and resources are managed and controlled in the model.

We also discussed the enforcement issues of the SID-model in the OpenStack, Amazon AWS

and Microsoft Azure cloud platforms, specifying the components that need to be updated to support

information and resource sharing. We specified the detail of data structures and functionalities

realizations for the enforcement of our models.

Currently, we have finished the automation of main functionalities of SID-model in both Ama-

zon AWS and OpenStack platform. We manually set up SID-service in Microsoft Azure platform

due to uncompleted APIs. In OpenStack platform, these include adding SID and SIP functional-

123

ities to keystone server, and adding the specified tables to store sids association information. In

AWS platform, we build a SID-server to serve SID-requests. We put SID and SIP functionalities

in SID-server. The server maintains tables in backend database to store sids and sips related infor-

mation. In Microsoft Azure, we manually set up SID-service and assign proper roles to users to

realized SID-model.

For the future work, more perspective of thinking can be done in both modeling of information

and resource sharing and enforcement of SID-model. From modeling perspective, the formation

of a sid association is not emphasized in SID-model. The control of users’ permission inside a sip

is simple too. To enrich these two aspects would bring many flexibility to the model. For instance,

more control on the group of organizations in the community could be added. Also, to investigate

fine-grained access control within a sip gives great value to the sharing model. From perspective of

enforcement of SID-model, exploring different ways of enforcement can be very interesting. It can

add useful functionalities to open source cloud system OpenStack. It can provide a decent service

for AWS and Azure customers. Especially, when more fine-grained access control are added to

project level in a sid, the SID-service will not only serve for cyber security reason, but also for any

business information and resource sharing purpose.

Finally, to investigate collaboration issues that arise when tenants belong to different cloud

service providers is always an interesting topic. The sharing model introduced in this dissertation

works in a single cloud system. However, same model can be extended to hybrid cloud system or

multiple cloud systems too.

124

BIBLIOGRAPHY

[1] http://aws.amazon.com/.

[2] http://ken.people.info.

[3] https://azure.microsoft.com/.

[4] https://www.fsisac.com/.

[5] https://www.openstack.org/.

[6] Eve Cohen, Roshan K Thomas, William Winsborough, and Deborah Shands. Models for
coalition-based access control (CBAC). In Proc. 7th ACM SACMAT, 2002.

[7] K. Harrison and G. White. Information sharing requirements and framework needed for
community cyber incident detection and response. In Homeland Security (HST), 2012 IEEE
Conference on Technologies for, pages 463–469, Nov 2012.

[8] Keith Harrison and Gregory B. White. Anonymous and distributed community cyberincident
detection. IEEE Security and Privacy, 11(5):20–27, 2013.

[9] Ram Krishnan, Ravi Sandhu, Jianwei Niu, and William Winsborough. Towards a framework
for group-centric secure collaboration. In 5th IEEE CollaborateCom, pages 1–10, 2009.

[10] Peter Mell and Timothy Grance. The NIST definition of cloud computing. NIST Sp. Pub.
800-145, Sept. 2011.

[11] Laura Pearlman, Von Welch, Ian Foster, Carl Kesselman, and Steven Tuecke. A commu-
nity authorization service for group collaboration. In 3rd IEEE International Workshop on
Policies for Distributed Systems and Networks, 2002.

[12] Ravi Sandhu, Khalid Zaman Bijon, Xin Jin, and Ram Krishnan. RT-based administrative
models for community cyber security information sharing. In 7th IEEE CollaborateCom,
2011.

[13] Ravi Sandhu, Ram Krishnan, and Gregory B White. Towards secure information sharing
models for community cyber security. In Collaborative Computing: Networking, Applica-
tions and Worksharing (CollaborateCom), 2010 6th International Conference on, pages 1–6.
IEEE, 2010.

[14] Deborah Shands, Richard Yee, Jay Jacobs, and E John Sebes. Secure virtual enclaves: Sup-
porting coalition use of distributed application technologies. In IEEE DARPA Information
Survivability Conference and Exposition, volume 1, pages 335–350, 2000.

[15] Bo Tang and Ravi Sandhu. Extending OpenStack access control with domain trust. In Pro-
ceedings 8th International Conference on Network and System Security (NSS 2014), October
15-17 2014.

125

[16] Bhavani Thuraisingham, Vaibhav Khadilkar, Jyothsna Rachapalli, Tyrone Cadenhead, Mu-
rat Kantarcioglu, Kevin Hamlen, Latifur Khan, and Farhan Husain. Cloud-centric assured
information sharing. In Intelligence and Security Informatics, pages 1–26. Springer, 2012.

[17] Jian-Wei Wang and Li-Li Rong. Cascade-based attack vulnerability on the US power grid.
Safety Science, 47(10):1332–1336, 2009.

[18] Yun Zhang, Ram Krishnan, and Ravi Sandhu. Secure information and resource sharing in
cloud infrastructure as a service. In Proceedings of ACM Workshop on Information Sharing
and Collaborative Security (WISCS), pages 81–90, 2014.

[19] Yun Zhang, Farhan Patwa, and Ravi Sandhu. Community-based secure information and re-
source sharing in AWS public cloud. In 1st IEEE International Conference on Collaboration
and Internet Computing (CIC), 2015.

[20] Yun Zhang, Farhan Patwa, and Ravi Sandhu. Community-based secure information and
resource sharing in Azure public cloud. In 4th CCS International Workshop on Security in
Cloud Computing (SCC), 2015.

[21] Yun Zhang, Farhan Patwa, Ravi Sandhu, and Bo Tang. Hierarchical secure information and
resource sharing in OpenStack community cloud. In IEEE Conference on Information Reuse
and Integration (IRI), 2015.

126

VITA

Yun Zhang grew up in Gansu, China. She earned a Bachelor’s degree in Software Engineering
from Beijing Institute of Technology (BIT). She earned a Master’s and Doctoral degree in Com-
puter Science from The University of Texas at San Antonio. Her future plan is to pursue a career
of cloud computing in industry.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Motivation
	Problem Definition and Solutions
	Problems
	Solutions

	Scope and Assumption
	Thesis Statement
	Summary of contribution
	Organization of the Dissertation

	Chapter 2: Related Work
	Chapter 3: Secure Isolated Domain (SID) Model
	Components
	Administrative Model
	Operational Model

	Chapter 4: SID-model in OpenStack Cloud IaaS
	OSAC Model
	Components

	Discussion of Models Possibilities
	OSAC Model with SID Extension (OSAC-SID)
	Components
	Administrative Model
	Operational Model

	Enforcement
	Functionalities
	Credentials and Policy
	Demonstrations

	Chapter 5: SID-model in AWS Cloud IaaS
	AWS Access Control (AWS-AC) Model
	AWS-AC Model with SID Extension (AWS-AC-SID)
	Components
	Administrative Model
	Operational Model

	Enforcement
	Functionalities
	Demonstrations

	Chapter 6: SID-model in Azure Cloud IaaS
	Azure Access Control Model
	Azure-AC Model with SID extension (Azure-AC-SID)
	Administrative Model
	Operational Model

	Enforcement
	Functionalities
	Demonstrations

	Chapter 7: Conclusion and Future Work
	Models Comparison
	Summary and Future Work

	Bibliography
	Vita
	Blank Page

