
SYSTEM CALL ANOMALY DETECTION IN MULTI-THREADED PROGRAMS

by

MARCUS PENDLETON, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Shouhuai Xu, Ph.D., Chair

Tongping Liu, Ph.D.
Hugh Maynard, Ph.D.

Meng Yu, Ph.D.
Nicole Beebe, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
December 2017

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10683366

10683366

2017

Copyright 2017 Marcus Pendleton
All rights reserved.

DEDICATION

I would like to dedicate this dissertation to my dear mother, Reverend Doctor Yvonne Marie Collie-

Pendleton, my eternal source of inspriation.

ACKNOWLEDGEMENTS

First of all, I would like to thank my beloved family and friends in the Bahamas, who all played

essential roles in my upbringing. Without their support, this pursuit would not have been possible.

I wish to express my deepest gratitude to my advisor, Dr. Shouhuai Xu, for the faith he showed

in me from the very beginning, and for pushing me beyond my perceived limits. Your enthusiasm

and work ethic are very refreshing, and are the reasons why I desired to have you as my advisor.

And to Dr. Tongping Liu, Dr. Hugh Maynard, Dr. Meng Yu and Dr. Nicole Beebe, it is an honor to

have you all on my dissertation committee. Thank you for the mentoring you provided throughout

my Ph.D studies.

I would like to express my deepest gratitude to my school and lab colleagues Rodrigo Escobar,

Richard Lebron-Garcia and Moustafa Saleh for their crucial help in helping me reach milestones

in this journey. Please know that you are my brothers for life, and I look forward to our continued

friendship and collaboration.

To my current and former labmates, it was a pleasure to make your acquaintances and work

with you on various projects. I also look forward to working with you in the future, as I am sure

we will cross paths again in our exciting field.

Last, but certainly not least, I would like to thank my dear mother, the Reverend Doctor Yvonne

Collie-Pendleton, for her heavy sacrifices which provided a good education. Her value and own

pursuit of education is contagious, and a gift that I hope to pass onto my children someday. Who

knew that a simple investment in a Texas Instruments TI-99/4a in 1984 would plant a seed in me

to pursue advanced studies in computer science?

This Dissertation was supported in part by ARO Grant #W911NF-13-1-0141 and NSF Grant

#1111925.

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance
with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-
toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters
Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements
explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-
sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a

iv

full introduction and literature review, and a final overall conclusion. Additional material (proce-
dural and design data as well as descriptions of equipment) must be provided in sufficient detail to
allow a clear and precise judgment to be made of the importance and originality of the research
reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include
as chapters authentic copies of papers already published, provided these meet type size, margin,
and legibility requirements. In such cases, connecting texts, which provide logical bridges between
different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the
student is required to make an explicit statement in the introductory material to that manuscript
describing the students contribution to the work and acknowledging the contribution of the other
author(s). The signatures of the Supervising Committee which precede all other material in the
Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

December 2017

v

SYSTEM CALL ANOMALY DETECTION IN MULTI-THREADED PROGRAMS

Marcus Pendleton, Ph.D.
The University of Texas at San Antonio, 2017

Supervising Professor: Shouhuai Xu, Ph.D.

System calls, or syscalls, are a popular data source for intrusion detection systems (IDSs)

because they have strong security semantics and their collection imposes low performance over-

head. However, existing solutions fall short in modeling, and thus protecting, real-world complex

programs. In particular, they fall short in dealing with highly multi-threaded programs, especially

those which contain diverse thread behaviors. Motivated by this problem, the present dissertation

takes a holistic approach and makes three contributions.

The first contribution is a syscall dataset collector which enables the production of custom

datasets for syscall host intrusion systems (HIDSs). With aging datasets, current syscall HIDS

solutions are pigeonholed into using their limited characteristics, thus, limiting their effective-

ness when applied to real-world programs and systems. We provide an extensible syscall dataset

collector which includes structural and contextual information regarding syscalls, yet allows for

researchers to easily add their own features. This dataset collector can aid researchers in widening

the solution space of syscall HIDS.

The second contribution is a methodology to identify thread behaviors in complex programs.

Due to the flat, interleaved structure of syscall patterns from simple programs in existing datasets,

the problem of effectively modeling, and thus, monitoring complex multi-threaded programs re-

mains largely unaddressed. Providing thread-wise sequences from complex, multi-threaded pro-

grams is a step in the right direction. However, threads are often anonymous and do not lend

themselves to easy identification. Therefore, we propose clustering thread behaviors, which are

represented by graphs, as a preprocessing step that can be used as a means for thread behavior

classification.

The third contribution is an anomaly detection technique leveraging the identified groups of

vi

program behaviors from the second contribution. As mentioned earlier, modeling and monitoring

complex multi-threaded programs in syscall HIDS is challenging because threads may exhibit

different behaviors, each emitting a distinct syscall pattern. Therefore, a “one size fits all” approach

in capturing the diverse behaviors confounds the monolithic models of previous approaches. We

present detection logic utilizing the clusters of behaviors to automatically determine thresholds

between normal and anomalous behaviors. The result is an accurate detection model.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xiii

List of Figures . xiv

Chapter 1: Introduction . 1

1.1 Problem Statement . 1

1.2 Dissertation Contribution . 2

1.2.1 A Dataset Collector for Next Generation System Call Host Intrusion De-

tection Systems . 2

1.2.2 Thread Behavior Clustering for Improved Syscall Pattern Modeling 3

1.2.3 Anomaly Detection Using System Call Behavior Graphs 4

1.3 Dissertation Organization . 5

Chapter 2: Background . 6

2.1 Intrusion Detection Flavors . 6

2.2 HIDS Data Sources . 6

2.3 Intrusion Detection Schemes . 7

Chapter 3: A Dataset Collector for Next Generation System Call Host Intrusion Detec-

tion Systems . 8

3.1 Introduction . 8

3.2 Related Work . 9

3.2.1 The KDD Datasets . 9

3.2.2 The UNM Dataset . 10

viii

3.2.3 The ADFA-LD Dataset . 10

3.3 Problem . 11

3.3.1 Sequence Structure . 11

3.3.2 Data Type . 13

3.3.3 Dataset Quantities . 14

3.3.4 Complexity of Targets . 14

3.4 Basic Ideas . 15

3.4.1 Languages of Syscall Sequences . 16

3.4.2 Dataset Objectives . 17

3.5 Collector Architecture . 19

3.5.1 Syscall Collector . 19

3.5.2 Containerized Execution Environment . 22

3.5.3 Dispatcher . 22

3.5.4 Benign and Attack Datasets . 22

3.6 Conclusion . 23

Chapter 4: Thread Behavior Clustering for Improved Syscall Pattern Modeling 24

4.1 Introduction . 24

4.2 Related Work . 26

4.2.1 Syscall Anomaly Detection . 26

4.2.2 Malware Clustering . 26

4.2.3 Program Characterization . 27

4.3 Problem . 28

4.3.1 Modeling Multi-threaded Programs . 28

4.3.2 Identifying Thread Behaviors in Execution 29

4.4 Methodology . 29

4.4.1 Objective . 30

4.4.2 Data Source . 31

ix

4.4.3 Data Representation . 32

4.4.4 Modeling . 32

4.5 Clustering . 33

4.5.1 Dis(similarity) . 33

4.5.2 Algorithms . 36

4.5.3 Number of Clusters . 39

4.5.4 Cluster Quality . 39

4.6 Implementation . 42

4.6.1 Syscall Collection . 42

4.6.2 Database Management . 42

4.6.3 Dissimilarity Matrix Construction . 43

4.6.4 Clustering Software . 43

4.7 Evaluation . 44

4.7.1 Dataset . 44

4.7.2 Clustering Algorithm Comparison . 45

4.7.3 Cluster Numbers and Ground Truth . 46

4.7.4 Clustering Quality . 48

4.8 Discussion . 49

4.8.1 Limitations and Future Work . 49

4.8.2 Applications . 50

4.9 Conclusion . 53

Chapter 5: Anomaly Detection Using System Call Behavior Graphs 54

5.1 Introduction . 54

5.2 Related Works . 55

5.2.1 Syscall Anomaly Detection . 55

5.2.2 Anomaly Detection via Clustering . 56

5.3 Problem . 57

x

5.3.1 Control-flow Hijacking of Threads . 57

5.3.2 Modeling Diverse Thread Behaviors . 60

5.4 Preliminaries . 61

5.4.1 Log-likelihood Distance . 61

5.4.2 Deviation Indices . 62

5.5 Methodology . 64

5.5.1 Data Representation . 64

5.5.2 Program Modeling . 65

5.5.3 Case Testing . 67

5.5.4 Validation . 70

5.6 Implementation . 71

5.6.1 Data Collection . 72

5.6.2 Model Building . 72

5.6.3 Decision engine . 72

5.7 Evaluation . 73

5.7.1 Dataset . 73

5.7.2 k Selection . 76

5.7.3 Classification Performance . 76

5.8 Limitations and Future Work . 77

5.9 Conclusion . 79

Chapter 6: Conclusions . 80

6.1 Contributions . 80

6.2 Future Work . 81

6.3 Final Remarks . 81

Appendix A: Remapping of Attack System Call Sequences from 32-bit to 64-bit Linux . 83

xi

Appendix B: Dissimilarity Routines . 85

B.1 Combined, Unweighted GED-based Dissimilarity 85

B.2 Split, Weighted GED-based Dissimilarity . 86

B.3 Split, Unweighted Jaccard index-based Dissimilarity 87

B.4 Split, Unweighted GED-based Dissimilarity . 88

Bibliography . 89

Vita

xii

LIST OF TABLES

Table 3.1 Comparison of Dataset/Collector Features. 19

Table 4.1 Identified Threads in Firefox and Occurrence in the Dataset 25

Table 4.2 Clustering Execution Times (minutes) . 45

Table 4.3 The ASW/ARI Scores of Candidate k Values 48

Table 5.1 Computation of Entropy VDIs (Categorical Values) 69

Table 5.2 Computation of Entropy VDIs (Continuous Values) 69

Table 5.3 Breakdown of Training and Testing Data 74

Table 5.4 Summary of Classification Performance (SCOD vs STIDE) 77

Table A.1 Remapping Table for Attack Sequences 83

Table A.2 Remapping Table for Attack Sequences (continued) 84

xiii

LIST OF FIGURES

Figure 1.1 Research Thrusts and Contributions of This Dissertation. 5

Figure 3.1 Identified Thread Functions in Mozilla Firefox. 10

Figure 3.2 A Flat Syscall Sequence and Associated Problems. 12

Figure 3.3 Non-determinism in Syscall Sequences. 13

Figure 3.4 Flat to Per-thread Sequences for Modeling. 15

Figure 3.5 CFG to FSM (Regular Language) Vonversion via Modified DFS 16

Figure 3.6 The Representation of Context as a Hash. 17

Figure 3.7 Various Syscall Languages of a Program 18

Figure 3.8 Architecture of Client-Based Target Collector. 20

Figure 4.1 An Interleaved Syscall Sequence and Associated Problems 29

Figure 4.2 Objective of Selecting the Appropriate Model for Training/Testing 31

Figure 4.3 A Syscall Behavior Graph (SBG) . 31

Figure 4.4 Abstract Model of Interleaved Syscall Sequences and Associated Errors . . 33

Figure 4.5 Abstract Model of Per-thread Sequences 34

Figure 4.6 Data Collector Architecture . 43

Figure 4.7 k-medoids vs HCA for Partitioning (SSE) 46

Figure 4.8 ASW and Corresponding ARI to Ground Truth 47

Figure 4.9 Cluster Quality . 48

Figure 4.10 Non-aliased vs Aliased SBGs . 51

Figure 5.1 Memory Space Regions and Thread Hijacking Vulnerabilities 58

Figure 5.2 Overall Process for Model Building and Case Testing 65

Figure 5.3 A Syscall Behavior Graph . 65

Figure 5.4 Clusters with Boundary Samples as Thresholds (m=median) 69

Figure 5.5 Program Sequence Reconstruction for Testing with STIDE 74

xiv

Figure 5.6 Syscall Profiles . 75

Figure 5.7 Candidate k Selection for Modeling . 76

xv

Chapter 1: INTRODUCTION

In an era where the asymmetries between attackers and defenders are becoming more pronounced

with the daily revelations of compromises of high-profile organizations, cybersecurity profession-

als are challenging current philosophies in defending their systems. It is well understood that the

defender’s job is many times more difficult than that of the attacker’s, where the former needs

to mitigate all exploitable targets (known and unknown) and the latter only needs to succeed in

attacking one. The systems for which defenders are responsible are highly complex with many in-

terdependences, and the field of cybersecurity metrics has yet to mature enough to yield adequate

approaches to report or quantify vulnerabilities or defense posture in some actionable way. At-

tacks are now perceived as an inevitability, even for the most well defended entity. This demands

a paradigm shift in cyber defense strategy.

There is a resurgence in emphasis on IDSs. Although a cyber defense setup typically involves

the utilization of multiple technologies working in concert, more accurate and responsive IDSs can

help detect attacks sooner, with less damage to an organization as a result. These qualities are

especially important as attacks are stealthier, and in some cases, only leave traces in already highly

volatile resources (e.g., a program’s stack segment). The positive aspect of this problem is that the

data sources which researchers can utilize for intrusion detection are virtually boundless. However,

each data source has performance and accuracy trade-offs, so they must be selected with caution.

Syscalls have shown promise in being a good compromise between performance and accuracy in

anomaly detection, which is a technique for detecting intrusions.

1.1 Problem Statement

The use of syscalls in intrusion detection has been studied for nearly two decades. Previous work

in this field includes contribution and analysis of datasets for evaluating these systems, modeling

program behavior using syscall traces, and inference algorithms by which anomalies and intrusions

can be detected. However, these areas have not evolved at the same rate. In particular, two popular

1

datasets for syscall HIDS studies, The University of New Mexico and Knowledge Discovery and

Data Mining ’98/’99 datasets, have been used to evaluate prior approaches [3, 4, 6]. Despite more

complex algorithms applied to anomalous syscall sequence detection, their evaluation against these

aging, more simplistic datasets more produce results not reflective of their performance monitoring

modern software. This is demonstrated in [27], where previous approaches applied to their mod-

estly more challenging dataset, composed of some multi-threaded programs, lead to suboptimal

results. The focus on aging datasets has stunted the advancement of syscall HIDS in protecting

modern systems composed of complex, multi-threaded programs. As a result, we identify three key

directions of focus to help researchers leverage the full potential of syscalls in detecting anomalies

and intrusion:

1. Improving and Enriching Syscall Data Sources

2. Developing More Tailored Models of Program Behavior

3. Utilizing Algorithm Commensurate of The Refined Models in 2.

1.2 Dissertation Contribution

The goal of this research is to improve the state-of-the-art in syscall HIDS in modeling, and thus

monitoring, complex, multi-threaded programs. A multi-faceted approach is taken to address

shortcomings in three areas of syscall HIDS development: 1) the data source, 2) modeling, and

3) anomaly detection logic. This dissertation focuses on improving three main areas. These three

thrusts are illustrated in Figure 1.1 along with the corresponding contributions presented within

this dissertation.

1.2.1 A Dataset Collector for Next Generation System Call Host Intrusion Detection Sys-

tems

Over the years, system calls (syscalls) have become an increasingly popular data source for host

intrusion detection systems (HIDS). This is partly due to their strong security semantic implica-

2

tions. As syscalls conform to a program’s control-flow graph, a deviation in a syscall sequence

may imply a deviation in a program’s control-flow graph. This is useful for detecting the control-

flow hijacking class of attacks. Additionally, malware must utilize syscalls in order to provide any

utility to the attacker, with the exception of some denial-of-service attacks. Because all syscalls are

observable from the kernel, this makes evasion difficult for attackers under syscall HIDS. Given

their suitability for HIDS, many approaches based on syscalls have been proposed. However, the

syscall datasets available are not always the most suitable for these and emerging techniques in

analytics, as they may need additional structural or contextual information about syscalls in their

decision engine. Furthermore, this flatness of previous datasets often pigeonholes solutions into

those which are limited by that data view. It is also burdensome on the researcher to generate his

own custom dataset. In this work, we propose an extensible syscall dataset generator which in-

cludes structural and limited contextual information regarding syscalls, yet allows for researchers

to easily add their own features to more quickly develop and evaluate their systems. Our dataset

generator can aid researchers in widening the solution space for syscall HIDS.

1.2.2 Thread Behavior Clustering for Improved Syscall Pattern Modeling

System calls (syscalls) have been demonstrated to be a promising data source in host intrusion

detection systems for characterizing the nature of programs as normal or anomalous. Many ap-

proaches to syscall anomaly detection systems have been proposed. However, their effectiveness

has been usually validated against simple, and primarily, single-threaded programs. These tech-

niques do not necessarily translate into modeling multi-threaded programs, where each thread can

generate a different pattern of syscalls. Therefore, when tested against complex, multi-threaded

programs, most of these approaches produce abysmal results. This is because these techniques

model the interleaved syscall sequences of these patterns. This interleaved view confounds the

models of those techniques. Simply filtering sequences by thread is an insufficient solution, as

threads are often anonymous and do not lend themselves to easy identification for subsequent

modeling. However, grouping, or clustering, threads by some behavior similarity metric can en-

3

able legacy techniques to achieve the successes reported in their respective studies. Submodels

corresponding to those clusters can comprise a more tailored and representative model of program

behavior with respect to syscall execution. In this work, we propose the clustering of thread syscall

behaviors, represented by graphs, as a preprocessing step that can be used as a means of thread

behavior classification via clustering. Consequently, prior techniques can more accurately model

the syscall patterns of multi-threaded programs as they are tasked with modeling more cohesive

subsets of the training data. This work has implications in real-time and offline anomaly detection.

1.2.3 Anomaly Detection Using System Call Behavior Graphs

Anomaly detection using system call (syscall) traces in proprietary, multi-threaded programs has

proven to be an extremely challenging problem. This is because such programs may have many

concurrent elements, each possibly with distinct behavior. Additionally, these elements, or threads,

have little to no identifying information visible to the detection system (henceforth, referred to as

anonymous). Consequently, these threads may emit different syscall patterns. Existing approaches

primarily process the flat, interleaved view of these patterns in a first-in-first-out manner, confound-

ing their behavior signatures, and thus, detection models. Even with a thread-sensitive approach, it

is necessary to differentiate among the different behaviors of these anonymous threads to build an

accurate, normal profile encapsulating the composite behavior of a program. We accomplish this

differentiation by per-thread filtering of interleaved syscall sequences into syscall behavior graphs,

which are then clustered to group thread activity by similarity. However, we fall short in applying

this to anomaly detection, as that approach is primarily intended as a preprocessing step to exist-

ing data-driven syscall anomaly detection algorithms. In this work, we propose a technique for

detecting anomalies using the clusters themselves and their respective boundary members to auto-

matically determine thresholds between normal and anomalous behavior. The result is an accurate

and tailored detection model for multi-threaded programs with fast training and testing times.

4

Enriching Data Source

D1. Dataset Collector

Refining Modeling Approaches

2. Thread Behavior Clustering

Introducing

New Detection Logic

3. Thread Anomaly

Detection

Next Generation

Syscall HIDS

Figure 1.1: Research Thrusts and Contributions of This Dissertation.

1.3 Dissertation Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we cover fundamental

concepts and discuss related works. In Chapter 3, we introduce a syscall dataset collector which

produces rich, per-thread sequences for syscall HIDS research and development. In Chapter 4,

we propose a method for identifying thread behaviors via syscall sequences to aid in producing

more refined models of highly multi-threaded programs for syscall anomaly detection. In Chapter

5, we explore utilizing thread behavior groups, identified by the previously mentioned technique,

directly for anomaly detection. In Chapter 6, we discuss the implications of our research and future

directions.

5

Chapter 2: BACKGROUND

In this chapter, general information about IDSs is given. Chapters 3, 4 and 5 are self-contained

and provide additional background information specific to those contributions. The same is true

for related works.

2.1 Intrusion Detection Flavors

IDSs play an important role in the suite of cyber defense tools aimed at detecting attacks or compro-

mises. Such attacks are detected using signatures or marked deviations from profiles representing

normal system behavior. Generally, IDSs come in two flavors: network intrusion detection sys-

tems (NIDS), which discover attacks using network traffic, and host intrusion detection systems

(HIDS), which discover attacks using a plethora of data sources available within a host. NIDS have

the difficult task of trying to discover attacks using a noisy data source with dynamic transmission

patterns and packets generated by many programs from many different hosts. Further complicat-

ing the task is the fact that network traffic is becoming increasingly encrypted, nullifying signature

based techniques in detecting attacks. In contrast to such tools that monitor systems collectively,

HIDS offer the ability to observe and analyze more nuanced changes in system behavior exhibited

by more advanced attacks and monitor programs individually, each with a distinct set of signa-

tures and profiles. Additionally, HIDS can mitigate the difficulty in monitoring encrypted traffic

as it is decrypted either by the OS network stack or the application, depending on the technology

used (e.g., IPSec vs TLS). In the advent of control-flow hijacking attacks employing code-reuse

techniques, HIDS offer the best opportunity in detecting such elusive tactics.

2.2 HIDS Data Sources

As mentioned earlier, HIDS can utilize a variety of data sources to detect attacks. Much of this

information is contained within audit logs, which captures a variety of program and system events

within a host. Biskup et al [17] identify three types of audit data that can be logged by Solaris OS

6

(and any modern OS for that matter): host-based data derived from different hosts and stored in a

Host-Audit log, network-based data based on network collection sensors and stored in a Net-Audit

log, and out-of-band data collected from applications and stored in both Application-Audit and

Accounting log files.

Of particular interest are syscall sequences which have proven to be a valuable data source for

a variety of reasons. As applications must interact with their environments, it can characterize the

interaction between user-space and kernel-space, underscoring some intent of a program. Addi-

tionally, we report that the collection of all syscalls in kernel-space from every thread in a system

incurs about a 3% overhead, albeit without any analysis. These qualities make syscalls a very

attractive data source for intrusion. As such, we will focus on this data source in our research.

2.3 Intrusion Detection Schemes

Various schemes, or approaches, can be taken to detect intrusions in a system. These include

specification-based detection, misuse detection, or anomaly detection. The approach selected pri-

marily depends on the type of positively identified data given to the defender for model building:

known-bad, known-good, or "normal" profile data. The definitions of these approaches can be

expressed in terms of these classifications of data used to build the detection model [114]:

• Specification-based detection: This scheme is used when patterns of good, or benign, ac-

tivity are known. Activity that matches these patterns is classified as benign; otherwise, it is

malicious.

• Misuse detection: This scheme is used when patterns of bad, or malicious, activity are

known. Activity that matches these patterns is classified as malicious; otherwise, it is an

benign.

• Anomaly detection: This scheme is used when patterns of normal activity are known. Sim-

ilar to specification-based detection, activity that matches these patterns is classified as be-

nign; otherwise, it is malicious.

7

Chapter 3: A DATASET COLLECTOR FOR NEXT GENERATION

SYSTEM CALL HOST INTRUSION DETECTION SYSTEMS

In this chapter, we shift attention to an aspect of syscall HIDS research that has been largely

overlooked: the datasets. For nearly two decades, the same datasets from the late 90s to the early

2000s have been used to validate syscall HIDS. Furthermore, these datasets are static, precluding

the researcher from enriching the data source to accommodate new anomaly detection algorithms.

In this chapter, we propose a dataset collector with which researchers can generate datasets with

custom thread and contextual information to help develop syscall HIDS for the complex, highly

multi-threaded systems of concern to defenders today. The content of this chapter is an extended

version of [79].

3.1 Introduction

Important to research and development of system call (syscall) HIDS are syscall datasets with

which a proposed system can be validated and compared with others. Prior availability of syscall

datasets expedites development of syscall HIDS, as time can be focused on the decision engine

(DE) rather than the development of yet another syscall dataset. However, current datasets for

syscall HIDS contain only flat sequences or lack contextual information, the problems of which

will be elaborated in Section 3.3. This pigeonholes solutions into those which deal only with

such sequences, limiting the success that can be achieved with syscall HIDS. Additionally, these

datasets are derived from very simple programs, many of which are single-threaded [27]. There-

fore, results against these datasets can be misleading, as the syscall sequences contained within are

not representative of the many complex programs that are highly vulnerable to attacks and of high

interest to defenders (e.g., web browsers and web servers).

In this work, we introduce a dataset collector that 1) provides structural and contextual infor-

mation from an arbitrary target program, 2) is extensible to include additional execution-feature

a researcher deems important for anomaly detection, and 3) is public domain to encourage future

8

development. The overarching goal is to widen the solution space of syscall HIDS and expedite

their development. The rest of this chapter is organized as follows. Section 3.2 briefly describes

the related work, Section 3.3 underpins the fundamental limitations of previous datasets, Section

3.4 describes the basic ideas the derived objectives for our collector, Section 3.5 discusses imple-

mentation details, and Section 3.6 concludes.

3.2 Related Work

Three main datasets exist with which researchers have been testing their syscall HIDS: The Knowl-

edge Discovery and Data Mining ’98 and ’99 datasets (KDD), The University of New Mexico

dataset (UNM), and the more recent Australian Defence Force Academy Linux Dataset (ADFA-

LD) [3,4,6,27]. In the following subsections, a characterization of each dataset is given, highlight-

ing their pros and cons.

3.2.1 The KDD Datasets

The KDD ’98 and ’99 datasets were used for The International Knowledge Discovery and Data

Mining Tools Competition, held in conjunction with The International Conference on Knowledge

Discovery and Data Mining. They are composed of Solaris BSM audit logs, which contain a

plethora of system-wide events in addition to syscalls for analysis. These datasets represent the

first systematic, valuable and innovative resources for the early development of syscall HIDS.

Forrest et al introduced her seminal work in syscall anomaly detection in [38] with evaluations

against these datasets. Her contributions continues to influence the use of syscalls as a means of

anomaly detection today.

Despite being among the first datasets with which syscall HIDS were developed, they have

been heavily criticized for their use in evaluating more recent syscall HIDS. [69] [70] [36] and [69]

highlight that the 90s era systems under which the data was collected hardly reflect the systems

in use today and critique the methodology used to generate the datasets. Finally, little emphasis

is placed on the structure of syscall sequences and absolutely no CPU-context information about

9

•StreamTrans

•ImageIO

•ProcessThread

•ImgDecoder

•ProcessHangMonitor

•GMPThread
•JS Watchdog

•Encodin~able

•ProxyR~olution

•Hang Monitor

•HTML5 Parser

•Socket Thread

•ImageBridgeChild

•Timer

•DOM Worker

•JS Helper
•CubeOp~tion

•URL Classifier•mozStorage

•Cache Deleter
•SoftwareVsyncThread

•VideoCapture

•Cache I/O

•localStorage DB

•DNS Resolver •Link Monitor

•IndexedDB

•Storage I/O

•InotifyEventThread

•Speechd init

•Cache2 I/O

•DOMCacheThread

•Startup Cache

•Compositor

•IPDL Background
•Gecko IOThread

•(anon)

•Web Content

•MediaManager •mtransport

•MediaPD~oder

•Chrome_ChildThread

•SubtleCrypto

•MediaPl~back

•MediaStreamGrph

•VideoChild

•MediaTimer

•CamerasIPC

firefox plugin-container

ls grep
•(anon) •(anon)

Figure 3.1: Identified Thread Functions in Mozilla Firefox.

the syscalls are contained within the logs. The problems associated with these deficiencies will be

elaborated in Section 3.3.

3.2.2 The UNM Dataset

The UNM dataset was popularized by the groundbreaking work of Forrest et al [38] [100]. It

contains syscall sequences generated in SunOS from the programs lpr, xlock, named, login,

ps, inetd, sendmail, and s-tide, which is a syscall HIDS itself. The sequences are from

both synthetic and live sources.

The variety of programs from both synthetic and live sources made this a good dataset for early

work in syscall HIDS. However, the programs are simple in comparison to highly complex and

dynamic programs (e.g., with dynamically loadable modules) such as web servers and browsers.

Good results against this dataset could be misleading, as they may fail dramatically against more

complex and realistic datasets [27]. Additionally, more elaborate DEs need more sequences to

converge, and the relatively few sequences split among the various programs in the UNM datasets

may be largely insufficient for more capable machine learning algorithms. Finally, the syscall

sequences are also flat.

3.2.3 The ADFA-LD Dataset

The ADFA-LD dataset was designed to succeed the previous two datasets, with an emphasis on

machine-wide collection of syscalls. Data was collected using the auditd program under Linux.

10

Aside from the data generation on a more modern system, it contains a rich set of attacks ranging

from password cracking to web shells.

Unfortunately, ADFA-LD suffers from the flatness as previous datasets. With sequences such

as 6, 6, 63, 6, 42, ... ,no structure or context can be obtained from the syscalls. The implications of

this will be explained in the next section.

3.3 Problem

A quick glance at previous datasets reveals a few problems. These can be characterized by the

structure, type and quantity of the syscall sequences and the complexity of the target programs

they profile. The following sections elaborate on these problems and highlight their implications

on intrusion detection.

3.3.1 Sequence Structure

The most limiting characteristic of previous datasets is the structure of their syscall sequences.

All sequences in these datasets are flat: linear sequences with little to no thread information. In

the case of multi-threaded programs, which arguably comprise the bulk of programs defenders

want to monitor, this poses a problem. In particular, the syscalls generated from the parent and

various children threads of a program are interleaved in a linear sequence without distinction.

Figure 3.2a depicts a flat sequence of syscalls. As syscall sequence recognition is essentially a

language modeling problem [98], this degrades the learned model as "bad transitions" (circled in

Figure 3.2b) increase the set of acceptable languages considered normal. This can be exploited by

attackers as this gives him more maneuverability in the set of malicious sequences he can generate

that may evade a DE in a mimicry attack [99], illustrated in Figure 3.7. Shaded areas represent

area for maneuverability in a mimicry attack.

11

(a) A Flat Syscall Sequence

(b) Bad transitions (circles) and dependence (arcs)

Figure 3.2: A Flat Syscall Sequence and Associated Problems.

Non-Determinism

In the event that two or more threads execute syscalls simultaneously (e.g., in a multi-core system),

their order in a flat sequence is uncertain. Furthermore, as thread execution is non-deterministic

with respect to identical program inputs, and depends on system load and scheduling algorithms,

so are the resulting flat syscall sequences. Figure 3.3 depicts this phenomenon, where a program

P is executed multiple times with the same input. This demands that HIDS algorithms that use

flat inputs accommodate this phenomenon, with adjacent syscall events possibly resulting from

different threads in a non-deterministic fashion. These "bad transitions" represent deviations in

a control-flow graph (CFG), thus allowing derived syscall HIDS models to permit them. This is

one source of inaccuracy in existing syscall HIDS. In Figure 3.2b, this phenomenon is captured by

circled adjacent syscalls, where each syscall in a pair is generated by a different thread. Popular

subsequence database (DB) and hidden Markov model (HMM) methods directly learn these bad

transitions.

Dependence

Related to the problem of interleaved syscalls is the challenge of learning dependence. In this

context, a dependence refers to the true, per-thread order of syscalls. However, in flat sequences,

this true order is interjected with syscalls from all threads (parent and children). The arcs in Figure

3.2b depict true dependence to highlight the correct transitions a model must learn, and interjected

12

Figure 3.3: Non-determinism in Syscall Sequences.

threads disrupt this order. A HIDS algorithm must learn to discover these dependences in a flat

sequence to more accurately model the set of acceptable syscall sequences a program may generate.

Subsequence DBs and HMMs (for the most part), cannot capture these dependences. In spe-

cial cases of HMMs, higher-order models predicting states from the previous n states can be

modeled, but incurs an exponential growth in states with respect to n. Currently, the best class

of models for learning dependence using flat sequences is recurrent neural networks, with Long

Short-Term Memory (LSTM) networks performing the best among them [48]. However, due to

non-determinism, these networks require many presentations of equivalent sequences to discover

dependences.

3.3.2 Data Type

Another restricting characteristic of previous datasets is that the syscall sequences are purely num-

bers indicating which kernel service is desired by the user space program. In other words, the

context of syscalls is omitted. Research such as [62] shows that syscall arguments can also be

used for intrusion detection. A dataset that includes such context information (e.g., register values

and limited memory operands) in addition to pure syscall numbers may lead to the development of

more accurate syscall HIDS.

13

3.3.3 Dataset Quantities

Previous datasets give a limited number of training sequences to build DEs. This is a strong

a assumption on the adequate number and length of sequences needed for new techniques. As

machine-learning approaches grow in complexity, so does the quantity of training data they require.

This is especially true in the case of LSTM neural networks [48]. Typically a large number of

machine-learning parameters is necessary to model a language, especially a potentially complex

syscall language of a program. Figure 3.5 shows how a CFG can be converted into a syscall finite-

state machine (FSM) using modified Depth-First Search (DFS) [44, 98, 101]. Consequently, the

complexity of the FSM, and it corresponding regular language, is dependent on the CFG. The

number of parameters determines the amount of training data to derive a sufficient model. As a

result, more training data than what is currently offered by current datasets may be insufficient for

new approaches.

3.3.4 Complexity of Targets

The aforementioned problems become exacerbated as the complexity of a program increases. In

this work, complexity refers to the number of distinct syscalls and thread functionalities in a pro-

gram. Thread functionalities correspond to distinct subgraphs in a whole-program CFG (super

CFG) which individual threads traverse. Previous datasets, with the exception of ADFA-LD, pro-

file simple, less complex programs such as lpr. Syscall HIDS which report success with such

programs are misleading as they fail with complex, real-world programs of interest to defend-

ers due partly to the previously discussed problems [26–28]. ADFA-LD falls short in that, al-

though it contains sequences generated by complex programs, its sequences are flat and contain

no thread and context information. Finally, none of the previous datasets address the fact that

complex programs, or attacks, may spawn processes which generate sequences outside of the tar-

get. It is necessary to incorporate the sequences of spawned processes to aid in verifying ’helper’

programs or detecting malicious activity such as unauthorized shell execution. Mozilla Firefox

is an example of an ideal target for syscall HIDS validation as it is highly complex with helper

14

Figure 3.4: Flat to Per-thread Sequences for Modeling.

programs, plugins (dynamically loadable code) and numerous distinct syscalls [5]. Figure 3.1 il-

lustrates the high degree of thread functionality in Mozilla Firefox, with each set corresponding

to a ’helper’ program, and members in each set referring to child thread functionalities. These

thread functionalities were identified using the comm attribute in the Linux data structure struct

task, which developers of Mozilla Firefox presumably set for debugging purposes, as this field

is usually the name of the executable. During the course of normal execution, the main binary of

Mozilla Firefox (firefox) may spawn plugin-container, ls and grep. firefox and

plugin-container can execute up to 40 and 29 identifiable thread functionalities (excluding

anonymous threads), respectively, each of which generates and interjects syscalls into a flat syscall

sequence non-deterministically. The overlap of firefox and plugin-container in this fig-

ure refers to functionality that may be common to both, perhaps provided by shared libraries.

3.4 Basic Ideas

As mentioned earlier, the syscall HIDS can be reduced to a language modeling problem. There-

fore, a dataset collector focused on providing structured (filtered) per-thread sequences of syscalls

to avoid the problems of flat, interleaved, noisy sequences will help syscall HIDS learn languages

more representative of their respective programs. As such, this improved view on syscall se-

15

(a) Annotated CFG (b) Derived syscall
FSM

Figure 3.5: CFG to FSM (Regular Language) Vonversion via Modified DFS. Numbered basic
blocks contain syscalls.

quences is the basis of this work. The transformation of a flat sequence to a structured sequence

is illustrated in Figure 3.4. In the following subsections, we elaborate on the implications of flat

and structured syscall sequences on language modeling, and outline derived objectives for a better

dataset collector to aid in improved syscall HIDS design and development.

3.4.1 Languages of Syscall Sequences

The problem of syscall HIDS can be viewed as a language modeling problem [99]. That is, given

a dataset S of program sequences, or the control-flow specification M extracted from source or bi-

nary (Figure 3.5), the derived language accepts a set of sequences representative of normal program

behavior. Given a dataset S (or model M), a language L(S) (L(M)) is the collection of sequences

that a DE will recognize as acceptable. With the aforementioned problems of using flat sequences

in model building, the language L can accept considerably more sequences not representative of

normal program behavior. Refer to Figure 3.7 for an illustration of this. L(True) represents the

ideal language that a DE should detect; syscall sequences only representative of those a multi-

16

threaded program can generate conforming to its CFG. L(Flat) represents the language, based

on the same program, in which syscalls from multiple threads are interleaved. In this example,

the model accepts more sequences than it should, providing an attacker more freedom to construct

malicious sequences deemed as acceptable by a DE. L(PerThread) represents a language closer

the L(True) which we expect to achieve by using per-thread sequences for model building and

analysis, as will be elaborated below. L(PerThread) will also have shortcomings attributed to the

selected HIDS algorithm, such as HMM’s probabilistic nature, thus leaving room for future im-

provement by utilizing other features such as syscall arguments, limited memory operands, syscall

calling context, etc. This language is denoted in the figure by L(PerThread + Context). Figure

3.6 shows how syscall calling context is represented in our collector. The path to a syscall is re-

duced into a hash symbol which is appended to the syscall number to disambiguate the multiple

roles of the same syscall in a program [20].

(a) Multiple Uses of write Syscall (b) Reduction of Syscall Calling Context to Hash

Figure 3.6: The Representation of Context as a Hash.

3.4.2 Dataset Objectives

Given the problems of previous datasets, we set out to design a collector to lift the restrictions they

impose on conceiving, developing and validating methods leveraging new techniques in analytics.

The main objectives of the collector are listed below:

• Thread-Sensitivity: to allow the isolation of syscall patterns per thread, resulting in more

17

tailored models

• Context-Sensitivity: to disambiguate the multiple roles a syscall may serve in a program

(e.g., write for file or socket)

• Unlimited Sequences: to remove assumptions on the number of sequences needed to train,

validate and test a system.

• Complex Targets: to allow for more realistic evaluation of a HIDS

• Extensibility: to allow researchers to provision additional execution features to their HIDS.

• Public Domain: to encourage future expansion and development of the dataset and collection

system

(git@github.com:marcusp46/syscall-dataset-generator.git)

Figure 3.7: Various Syscall Languages of a Program: Flat, PerThread, PerThread+Context,
and True.

Table 3.1 shows a comparison between qualities of previous datasets versus those of datasets

output from our collector. In Section 3.5, implementation details for the generic components and

the configuration for profiling Mozilla Firefox are discussed.

18

Table 3.1: Comparison of Dataset/Collector Features.

UNM KDD ADFA-LD Ours
Synthetic Source yes no no yes

Live Source yes no no yes
Thread Info no no no yes
Context Info no no no yes
Timing Info no no no yes

Spawn Following no no no yes
Extensible no no no yes

of Programs 9 980 - -

3.5 Collector Architecture

In this section, we document the implementation details for the collector. It is important to note

that the design is generic and intended to be adaptable to any target. As such, researchers can

profile a number of programs to test their approaches. Mozilla Firefox was chosen as the target

in this work mainly because of its very high complexity and named threads, which can be used

to validate anonymous thread identification techniques. Techniques which are able to discrimi-

nate between normal and anomalous sequences generated from such a program may prove to be

more viable for real-world deployment. Additionally, Mozilla Firefox is more representative of

programs which defenders want to monitor, as browsers are frequently targeted as infection vec-

tors for malware. Therefore, synthetic and attack sequences from real exploits can be generated.

Figure 3.8 depicts an architectural overview of the Mozilla Firefox syscall collector, comprised of

the syscall collector, a containerized target execution environment, and dispatcher.

3.5.1 Syscall Collector

The syscall collector is the most important component of the syscall dataset collector. It is respon-

sible for collecting per-thread syscall sequences along with contextual information for each syscall

executed. Additionally, it must be extensible per the objectives established earlier in Section 3.4.

Intel’s Pin was used as the collection mechanism by which these qualities are achieved [7]. Pin is

a dynamic instrumentation tool which rewrites application code on-the-fly to include user-defined

19

Figure 3.8: Architecture of Client-Based Target Collector.

profiling and analysis routines and provides a rich API for accessing rich execution information.

Pin is also available for Linux and Windows platforms, meaning that the collector can be used to

develop syscall HIDS for both systems. For demonstration purposes, Ubuntu Linux is the host

platform for profiling Mozilla Firefox [10].

Spawn (execv) Following As mentioned earlier, not only is tracing the syscalls executed within

a particular target important, but also those of programs spawned by that target. This allows for

a more comprehensive analysis of a target’s activity, as the target may use the services of other

programs. This capability of processes can just as easily be exploited to invoke programs of interest

to attackers. In the case of Mozilla Firefox, additional instances of firefox, as well as instances

of plugin-container, grep and ls may be spawned during the course of normal execution

(Figure 3.1). As such, the syscall collector follows spawns by tracking the execv class of syscalls,

which are responsible for programs executing other programs. For each spawned program, syscalls

are tracked in the same manner as those from the parent process. Details of the syscall collector’s

output are explained in Section 3.5.1.

20

Output The output of the syscall collector can include any user-defined execution feature appro-

priate for a particular DE. However, the default output of our system provides baseline output to

yield the desired qualities of syscall sequences previously discussed as well as flat sequences for

DE comparison purposes and a reduced fileset size. Listing 3.1 describes fileset generated from an

execution trial of a target. execve refers to the base filename of the main and spawned executable

files, iteration refers to the invocation instance of those executable files (zero-based), and ID

refers to the internal identification of threads according to order of creation within a process (zero-

based).

1. flat _<execv_name>_<iteration>.out

• flat program-view sequence to serve as input into legacy approaches and correlation to context and scheduling info for per-thread

sequence reconstruction

2. context_<execv_name>_<iteration>.out

• flat context info (register arguments) of each syscall corresponding to positions in 1

3. schedule_<execv_name>_<iteration>.out

• identifier of thread contexts corresponding to positions in 1

4. timing_<execv_name>_<iteration>.out

• inter-arrival time of syscalls corresponding to positions in 1

5. thread_names_<execv_name>_<iteration>.out

• line-by-line listing of thread names indexed by ID string)

6. temporal_<ID>_graph_<execv_name>_<iteration>.out

• per-thread temporal graph data structure of syscall execution

7. thread_<ID>_<execv_name>_<iteration>.out

• per-thread sequences of syscall sequences

8. summary.out

• statistics of syscall execution during trial

Listing 3.1: Output Files of The Collector and Their Descriptions

It is important to note that the flat sequence is meant not only for input into traditional syscall

HIDS approaches, but reduce the number of per-thread files output after an execution trial. For

21

example, per-thread inter-arrival times can be reconstructed using the flat*, scheduling*

and timing* files.

3.5.2 Containerized Execution Environment

The containerized execution environment leverages features of Docker, which offers some of the

isolation benefits of virtual machines (VM) in terms of segregating processes, filesystems and

network interfaces [8]. In contrast to VMs, containers share the same kernel as the host but have a

significantly lower resource footprint (CPU, memory) and much shorter provisioning time. Similar

to VMs, containers are provisioned from images, which are typically mutable and changes are kept

local to an instance, discarded upon container termination. This allows for the target program to

run in a fresh environment in many instances simultaneously on a host, increasing the throughput of

execution trials for dataset generation. Additionally, containers can be programmatically managed

for full automation.

3.5.3 Dispatcher

The dispatcher coordinates all activities of the collector. For profiling Mozilla Firefox, it first

receives input for URLs to visit. The source of URLs is discussed in Section 3.5.4. For each URL,

the dispatcher provisions a container to run Mozilla Firefox under the syscall collector, storing the

output files locally on the container. At termination, the files are copied from the container to the

host under a unique identifier for the visit event.

3.5.4 Benign and Attack Datasets

For syscall HIDS development, benign and attack syscall sequences are necessary to train, validate

and evaluate the derived models. One approach is to use controlled environments with automated

interactions with the target program to generate synthetic data. The benefit of this approach is that

known-benign and known-malicious interactions can be crafted. The limitation in this approach is

that it is burdensome to create interactions rich enough to discover as much thread functionality as

22

possible to reduce false-positives when tested in real-world environments. In the context of Mozilla

Firefox, it incumbent on the developer to create test websites with diverse content to explore as

much of the code regions as possible. The other approach is to direct the target to interact in

live environments. Although it is easier for the developer to discover more thread functionality,

ensuring whether a source is benign or malicious is a challenge. The collector can be used for

both, however, we followed the lead in [106], where Xu et al used the top 1K popular websites for

benign sources. Attack sequences were generated in a controlled environment.

3.6 Conclusion

Syscalls have yet to realize their full potential in anomaly detection. Research has focused on

datasets which lack much of the information about syscall events that can be utilized to improve

detection accuracy. Also, the development of new datasets can be very time consuming.

This chapter presents a dataset collector that gives researchers and syscall HIDS an improved

view of syscall sequences. It will guide researchers in discovering novel ways to utilize syscall

sequences for HIDS and expedite their development. Our solution’s rich dataset generation, exten-

sibility and availability to the public under license should lead to more exchange of ideas.

23

Chapter 4: THREAD BEHAVIOR CLUSTERING FOR IMPROVED

SYSCALL PATTERN MODELING

In this chapter, we address a shortcoming in the modeling approach of previous techniques in

syscall HIDS. Prior work focuses on building single, monolith models of program behavior, de-

spite the wide range of behaviors it may exhibit through different thread functions. We propose

a technique that will assist prior syscall anomaly detection models by clustering similar threads

according to their syscall execution summaries, enabling the construction of simpler submodels

based on corresponding clusters. As at the time of writing, the abridged version of this chapter is

under review for the 8th ACM Conference on Data and Application Security and Privacy.

4.1 Introduction

Modeling program behavior accurately is essential in program characterization, especially in the

realm of security. Inaccurate models induce an inherent error in the decision engine (DE) of

behavior-based intrusion detection systems (IDS), which decide if activity is normal or anomalous.

As programs are becoming more complex with an increasing number of concurrent activities, host

IDSs (HIDS), which often rely on execution traces such as syscall sequences, are becoming less ef-

fective. In [27], Creech and Hu report abysmal performances of legacy syscall HIDS against their

multi-threaded dataset. This is because they were developed and tested against single-threaded, or

very simple multi-threaded, applications, such as lpr and sendmail. Programs of primary inter-

est to defenders, such as web browsers (due to their high degree of exploitation), are far more com-

plex programs than those against which legacy approaches were validated. For example, Mozilla

Firefox has 50+ different concurrent activities, each possibly with multiple or common behaviors

with other activities [5]. Each of those behaviors can generate its own distinct pattern of syscall

sequences, which previous approaches model in an interleaved view. This view poses two main

challenges for previous techniques: 1) learning dependences, and 2) overcoming non-determinism

in interleaved syscall sequences [79].

24

Table 4.1: Identified threads in Firefox and their occurrences in the dataset (~’s intentional). Fire-
fox is composed of the executables firefox and plugin-container.

Cache Deleter (340) DOMCacheThread (3) Indexed~ Mnt (338) Storage I/O (710) speechd init (3)

Cache I/O (346) DataStorage (1020) InotifyEventThread (3) URL Classifier (346)

Cache2 I/O (346) Gecko_IOThread (347) SSL Cert (2193) VideoCapture (3)

Compositor (346) IPDL Background (346) SoftwareVsyncThread (346) localStorage DB (338)

DNS Resolver (1578) IndexedDB (702) StartupCache (1) mozStorage (2027)

DOM Worker (1050) Hang Monitor (592) JS Helper (11821) Proxy R~olution (349)

Encodin~able (439) ImageBridgeChild (591) JS Watchdog (588) Socket Thread (597)

GMPThread (355) ImageIO (591) ProcessHangMonitor (590) StreamTrans (3556)

HTML5 Parser (584) ImgDecoder (8845) ProcessThread (5) Timer (598)

Cameras IPC (2) Link Monitor (341 MediaPl~back (57) SubtleCrypto (13) mtransport (4)

Chrome ChildThread (319) MediaManager (5) MediaStreamGrph (1) VideoChild (251)

CubeOp~tion (13) MediaPD~oder (24) MediaTimer (15) Web Content (251)

fi
re

fo
x

p
lu

g
in

-c
o

n
ta

in
er

sh
ared

 fu
n

ctio
n

ality

(lib
rarie

s)

Simply filtering syscall sequences by thread is inadequate because they are generally anony-

mous; kernel data structures representing threads often contain little to no information regarding

their source or role, and more importantly, their behavior. Aside from invasive library call hooks,

there is no scalable or reliable way to determine this information. Without threads tagged with such

information, how can they be grouped by similar behavior? Motivated by techniques in malware

classification, we explore the use of clustering as a means to identify similar groups of threads

by their syscall activity summarized in compact graph structures. This can serve as a preprocess-

ing step in building anomaly detection models, and potentially, as a means to cluster malware by

their interaction with kernel services. In this work, we introduce thread behavior clustering as

a technique to aid in building more cohesive, data-driven submodels that are collectively more

representative of program behavior.

The rest of this chapter is organized as follows. Section 4.2 briefly describes the related work,

Section 4.3 underpins the problems in modeling multi-threaded programs and the challenges asso-

ciated with a thread-sensitive approach, Section 4.4 presents an overview of our technique, Section

4.5 details clustering analysis applied to this problem, Section 4.7 reports results from evaluation,

Section 4.8 discusses use-case scenarios, limitations, and future work, and Section 4.9 concludes.

25

4.2 Related Work

This work is influenced by 1) the leveraging of syscalls as a data source in anomaly detection,

2) the clustering of code features in the identification of malware families, and 3) the utilization

of clusters to characterize program behavior for optimization. In this section, we highlight key

concepts drawn from studies in these areas. Where applicable, we contrast this work with those

studies, underscoring differences in objectives or how our work addresses their shortcomings.

4.2.1 Syscall Anomaly Detection

Syscalls have been demonstrated to be a valuable data source in anomaly and intrusion detec-

tion. This is because their collection imposes low overhead and they have strong security se-

mantic implications; other than denial-of-service attacks (e.g., inducing an infinite loop), malware

must utilize syscalls to provide any utility to the attacker, and normal patterns must conform to

a program’s control-flow graph (CFG) [32]. Forrest et al. first explored the use of syscalls for

anomaly detection, utilizing hidden Markov models (HMM) and the s-tide algorithm to model

normal behavior, or self, as a means of identifying anomalous behavior, or non-self [38,100]. This

self /non-self formulation of syscall anomaly detection is a fundamental concept in understanding

the problem; interleaved syscall patterns confound a DEs model of self. Her work inspired other

notable methods over years, broadly categorized into data-driven [41,100] and specification-based

approaches [86, 98]. However, these methods, of the data-driven flavor particularly, are validated

against simple programs and have major shortcomings in modeling complex, multi-threaded pro-

grams of interest to defenders (e.g., web browsers and servers) [27, 79]. Our work aims to enable

these methods in modeling such applications by providing a preprocessing step which produces

cohesive groups for them to model individually.

4.2.2 Malware Clustering

As of Q3 2017, nearly 700M samples of malware have been identified by McAfee and VirusTotal

[9]. Due to the sheer number of malware samples, it is infeasible for security analysts to reverse

26

engineer all. Many of these samples are slight modifications, or variants, of others, resulting in a

phylogenetic tree. Identifying related groups and analyzing only core samples in each alleviates

analysts from having to dissect all samples, as the variants may be semantically equivalent, or

slightly different, from their relatives. To accomplish this, researchers have resorted to machine

learning to help identify groups of closely related samples, as well as the most representative

sample in each group. A natural category of machine learning algorithms for this grouping is

clustering, which can also be used to find phylogenetical relationships between the samples [14,

16,57,63]. Although the entities grouped in our work (threads) are different from malware samples,

the problem of finding strongly related groups can be approached in a similar manner with the same

benefit of reducing work; as clustering subdivides the work for malware analysts, so it can for

model building in syscall HIDS. Ideas from [57] and [76] proved instrumental in grouping thread

behaviors. Namely, we also leverage a graph structure to represent samples, utilize a similarity

metric based on graph edit distance (GED), and cluster samples to identify cohesive groups of

similar thread behavior. However, we opt for the behavior graph in [76], which is also based on

syscalls, as statically generated call graph used in [57] does not capture dynamic behavior. An

important distinction between these works and ours is reformulation of the GED-based similarity

metric for feasibility.

4.2.3 Program Characterization

As mentioned earlier, accurate program modeling is essential in behavior-based intrusion detection.

In the context of security, this helps distinguish between self, which consists of activities defined

by a model, and non-self, which are other activities [38]. Modeling a program’s syscall behaviors

in our work more closely resembles [34], where clustering is also used to model and characterize

a program. Important distinctions between their work and ours is the objective and data represen-

tation they use in clustering. The goal in [34] is to characterize a program for optimization, not

security. With respect to the data representations, [34] uses a combination of instruction, data flow

and timing features from functions to define dis(similarity) between them. In this work, a behavior

27

graph is used to determine likeness between threads to form thread groups for creating submodels.

4.3 Problem

Legacy approaches in syscall HIDS fall short in securing complex, highly multi-threaded pro-

grams. This stems from the fact that interleaved syscall sequences are utilized in modeling pro-

grams. Additionally, per-thread filtering alone is insufficient in solving the problem. After a thread

syscall sequence is extracted, how do we associate it with other, similar threads for submodel

construction? These problems are elaborated in the sections below.

4.3.1 Modeling Multi-threaded Programs

A limiting characteristic of legacy syscall HIDS is their usage of interleaved syscall sequences. An

interleaved syscall sequence is such that syscalls executed by different threads are woven into a

single sequence, breaking the true, per-thread order of syscalls. There are two phenomena associ-

ated with these sequences: non-determinism and dependence. Refer to Figure 4.1 for a depiction of

these problems. As syscall HIDS is essentially a language modeling problem [98], these phenom-

ena increase the set of acceptable sequences a syscall HIDS will accept as normal by learning bad

transitions. This induces error in the DE by increasing false negatives (FN), permitting sequences

that should otherwise be rejected. Figure 4.4 depicts the increased set of patterns accepted as

normal with interleaved syscall sequences. Behaviorx represents a set of normal, closely related

thread behaviors. Flat, which encompasses the normal thread behavior sets, depicts the negative

impact of modeling interleaved syscall sequences. The shaded area indicates FNs and more room

for an attacker to maneuver in syscall mimicry attacks [99]. All behavior sets collectively comprise

the set Snormal, representing the model of a program. Overcoming these problems often requires

computationally expensive data-driven modeling algorithms such as HMMs and neural networks,

along with an extensive training set.

28

S1S1 S2S2 S3S3 S4S4 S5S5 S16S16 S17S17 S18S18 S19S19

Figure 4.1: An Interleaved Syscall Sequence and Associated Problems. Each color represents a
thread. Circles denote bad transitions learned, and arcs denote correct dependences.

4.3.2 Identifying Thread Behaviors in Execution

An alternative for overcoming the non-determinism and dependences DEs must learn is filtering

syscall sequences by thread. This will result in the true, per-thread order of syscalls executed.

However, these per-thread sequences, whose behaviors may vary greatly, must be modeled to char-

acterize normal behavior of a program. Rather than building a single, monolithic model responsible

for encapsulating all of these different behaviors, multiple submodels corresponding to cohesive

groups of similar threads can be built. For example, instead of a single HMM trained on in-

terleaved syscall sequences of a program, a separate HMM is trained for each group of similar

sequences. Identifying these groups is a challenge, as threads, other than the main thread, are

often anonymous or simply inherit the name of the executable. In this work, both are referred to

as anonymous. Listing 4.1 shows the OS interface for clone in Linux, which is responsible for

spawning threads and lacks information identifying thread behavior for a kernel-based collector to

pass to a HIDS [10]. The target address for threads can be determined indirectly from the argument

newsp, but addresses alone do not indicate behavior; threads may traverse only parts of its CFG

(rooted at is function entry point) depending on program state. We refer to this as a thread’s modal-

ity. Furthermore, addresses are unreliable as the target addresses of threads may change between

program executions in moving target defense strategies such as address space layout randomization

(ASLR) [88].

4.4 Methodology

In this section, we give a high-level overview our approach. First, we discuss the objective of this

technique. We then discuss the value of syscalls as a data source, give the rationale behind utilizing

29

#1 SYSCALL_DEFINE5(clone,

#2 unsigned long, clone_flags,

#3 unsigned long, newsp,

#4 int __user *,parent_tidptr,

#5 int __user *, child_tidptr,

#6 unsigned long, tls)

Listing 4.1: Syscall signature of clone in Linux. Responsible for spawning threads, none of the
parameters indicate thread behavior.

a graph representation, and briefly discuss the algorithms explored in clustering these graphs.

4.4.1 Objective

This work proposes a solution to better model complex, multi-threaded programs for syscall HIDS.

Web browsers and servers are examples of such programs. Therefore, Mozilla Firefox 52.0.2 will

serve as a target in evaluating this approach due to its rich debugging information identifying its

many concurrent activities. Table 4.1 enumerates the 50 identified thread activities that can oc-

cur during the execution of Firefox; this table does not account for the anonymous activities and

modality of threads. Each of these threads can generate its own syscall sequence pattern. However,

it is suspected that some common behaviors are found across different activities. A "one size fits

all" approach in modeling such highly multi-threaded programs renders many legacy approaches

ineffective in modeling, and thus, characterizing and detecting deviations or anomalies in these

programs. Instead, our approach enables distinct behaviors in these activities to be modeled indi-

vidually, directing threads to appropriate models for training and testing. Conceptually, this work

implements a demuxer, a digital circuit component responsible for selecting an output for a given

input based on selection logic. Figure 4.2 depicts a demuxer, with an input thread thread_x

routed to the correct submodel submodel_n for training or testing, depending on the phase. Re-

fer to Section 4.8.2 for details in use cases. The goal is to produce a more tailored model composed

of submodels capturing the diverse behavior in programs such as Mozilla Firefox. This will enable

classical sequence modeling algorithms, such as HMMs, to achieve better results with complex,

multi-threaded programs.

30

submodel_1

submodel_2

...

submodel_n

thread_x demux

select

Figure 4.2: Objective of Selecting the Appropriate Model for Training/Testing. Conceptually, this
work implements the select logic of a demuxer.

111111

009009

01C01C

1/0.51/0.5

0CA0CA

1/0.51/0.5 19/0.919/0.9

2/0.12/0.1

09D09D
1/11/1

2/0.1542/0.154

1/0.0771/0.077

10/0.76910/0.769

1/11/1

Figure 4.3: A Syscall Behavior Graph (SBG). Edge weights are in the form <raw>/<normalized>
(Out-degree normalization).

4.4.2 Data Source

Syscalls are procedures invoked from user-space to obtain services from the kernel. Generally

speaking, syscalls are necessary for a program to interact with its environment. As malicious

programs need to interact with their environments to provide any utility to the attacker, and because

syscalls are made less frequently than normal function calls, they provide a reasonable level of

resolution of execution trace features at which to profile program behavior with low overhead.

Additionally, all syscalls made by a program are visible to the kernel. This makes for a fast kernel-

based collector that is evasion-resistant and less invasive for deployment, as they can be (un)loaded

dynamically via drivers.

31

4.4.3 Data Representation

A graph representation is used in this study to reduce syscall sequences of variable length into

compact structures for easy comparison. This transformation is similar to [95] and [76], which

derives a behavior sequence graph G = (V,E,W) from a behavior sequence bs = (b1, b2, ..., bn)

composed of discrete behaviors bi in a finite set B, where V = B, E is the set of adjacent occur-

rences of behaviors, and W are corresponding edge weights. In this work, the behavior set B is

the fixed number of syscalls in a OS (approximately 330 in Linux). More formally, this structure

is a unigram graph as described in [42]. Henceforth, this will be referred to as a syscall behavior

graph (SBG), and we consider both unweighted and weighted versions for comparison purposes.

The usage of weights help further discriminate between threads with similar structure, but different

usage scenarios. This attribute also imposes an additional restriction with which an attacker needs

to comply in order to defeat the detection model. Namely, he needs to mimic both the structure

and attributes of a syscall trace graph. Figure 4.3 depicts an SBG.

4.4.4 Modeling

Given the SBGs representing individual threads, the objective is to group them by likeness, or sim-

ilarity. Clustering is a natural class of machine learning algorithms that can be used to achieve this.

k-medoids and hierarchical agglomerative clustering (hierarchical clustering analysis or HCA) are

explored in this study, the details of which are outlined in Section 4.5. Figure 4.5 shows how mod-

eling program syscall patterns can be improved treating each cluster, or thread behavior group, as

a basis for submodels, opposed to a monolithic model of the interleaved syscall sequences. The

result is the output of sets for building submodels that are better fitted to the distinct patterns ex-

hibited by the different behaviors in a multi-threaded program. Collectively, these submodels lead

to a more granular model of program behavior. Assuming quality clusters are formed, the only

errors would be those due to the limitation of the algorithm and training set used to model the

sublanguage. This is in contrast to modeling interleaved syscall sequences, where this error would

be in addition to that induced by non-determinism and dependence discussed earlier (Figure 4.4).

32

Flat

Behavior2

Error due to modeling

flat seqences (FNs)

Snormal

Benign sequences

conforming to CFG

Behavior3Behavior1

Figure 4.4: Abstract Model of Interleaved Syscall Sequences and Associated Errors. The shaded
area indicates increased FNs and attacker maneuverability in mimicry attacks.

4.5 Clustering

As mentioned earlier, k-medoids and HCA are explored to group threads by similar behavior

as a preprocessing step for subsequent modeling. These algorithms require a formulation of

(dis)similarity between SBGs as well as some training parameters. These concepts, in the con-

text of SBG clustering, are elaborated in the following subsections. Additionally, the metrics we

use to evaluate the cluster solutions are discussed.

4.5.1 Dis(similarity)

A requirement for most clustering algorithms is a definition of dis(similarity). Note that similarity

σ and dissimilarity δ are simply complements of each other, or σ = 1−δ. Formulations used in this

study are defined in terms of δ. Inspired by [57], which uses call graphs for malware clustering,

we begin a definition based on graph edit distance (GED). The GED λ(G,H) between graphs

G = (VG, EG) and H = (VH , EH) is defined as the sum of vertex, edge and relabeling costs. They

are defined as [61] [57]:

VertexCost The number of inserted/deleted vertices:

33

Behavior2

Behavior3Behavior1

Snormal = Behavior1 ∪ Behavior2 ∪ Behavior3

Isolation

from per-

thread

filtering

Figure 4.5: Abstract Model of Per-thread Sequences. Filtering sequences by thread reduces attack
surface.

|{v : v ∈ [V ′G ∪ V ′H] ∧ φ (v) = ε ∨ φ (ε) = v}|

EdgeCost The number of unpreserved edges:

|EG|+ |EH | − 2× |{(i, j) : [(i, j) ∈ EG ∧ (φ (i) , φ (j)) ∈ EH]}|

RelabelCost The number of mismatched functions. In other words, the number of external func-

tions in G and H which are mapped against different external functions or local functions.

φ is vertex bijection function mapping vertices between graphs G and H . ε is the mapped

vertex for deletions/insertions when the corresponding vertex of v or φ(v) does not exist in H or

G, respectively. It also is used to make the vertex sets between the two graphs of the same order,

with a different ε appearing for each missing vertex (multiset). As a result, V ′G = VG ∪ ε and

V ′H = VH ∪ ε. Dissimilarity is then defined as:

δ(G,H) =
λ(G,H)

|VG|+ |EG|+ |VH |+ |EH |
(4.1)

The relabeling cost does not apply to SBGs, as there is not an analogous case to the external/local

function mismatching in call graphs. Also, as Equation 4.1 is used to compare two statically

generated calls graphs, this formulation of dissimilarity does not encapsulate the dynamic nature of

SBGs with edge weights. Therefore, we need to reformulate Equation 4.1 to address these issues.

We begin with a justification and definition of SBG dissimilarity which omits the relabeling cost

34

in GED, and end with a definition which incorporates the weights in SBGs.

Unweighted Graphs

Equation 4.1 does not take into account edge weights. Dynamic in nature, SBGs can include

edge weights which represent the number of times an adjacent pair of syscalls occurred during the

execution of a program. This will help differentiate between SBGs with similar vertex and edge

sets, but different use cases. However, we still consider a reformulation of Equation 4.1 that does

not consider weights for comparison purposes, but omits relabeling cost as it does not apply in the

context of SBGs.

In this work, the concept of mismatched functions does not apply as they do in clustering

malware call graphs. Functions complicate call graph matching as a function may have several

semantically equivalent variants, and be of different visibilities (external and local). Also, the

number of possible functions is unbounded, exacerbating vertex aligning in graph matching. In

contrast, syscalls do not have variants and are easily identified by their predefined numerical as-

signments. Furthermore, there are a fixed number of syscalls in an OS, limiting the number of

vertices for matching. These constraints greatly simplify the formulation as we can eliminate the

relabeling cost, reducing this from an NP-complete problem to one solvable inO(|V |+ |E|), as the

intersection computations of the vertex and edge sets of graphsG andH are the primary operations

in computing the distance. Dissimilarity is then defined as:

δ(G,H) =
V ertexCost+ EdgeCost

|VG|+ |EG|+ |VH |+ |EH |
(4.2)

Weighted Graphs

Unlike call graphs, which are often constructed statically, SBGs capture execution information. In

particular, SBG edge weights represent the number of times an adjacent pair of syscalls occurred

during execution. This extra information may help distinguish between threads with similar vertex

and edge sets, but with different dynamic behaviors. A simple adaption of Equation B.1 replaces

35

EdgeCost with EdgeWeightCost to incorporate weights:

EdgeWeightCost The sum of weights of uncommon edges in G and H (W (EG∆EH)), plus the

sum of absolute differences of corresponding edges in bothG andH (|w(i, j)−w(φi, φj)| for all (i, j) ∈

E(G) ∧ φ(i), φ(j) ∈ E(H)).

With a minor reformulation of the basic formula, we replace EdgeCost with EdgeWeightCost

to derive

δ(G,H) =
V ertexCost+ EdgeWeightCost

|VG|+W (EG) + |VH |+W (EH)
(4.3)

However, edges with extreme values can dominate the equation. This can result in a dissimilarity

score with more emphasis on edges over vertices. Therefore, we consider the edit distance for the

vertices and edges separately, weighting them equally with a factor of 0.5. This results in

δ(G,H) = (0.5)
V ertexCost

|VG|+ |VH |
+ (0.5)

EdgeWeightCost

W (EG) +W (EH)
(4.4)

Prior to applying Equation B.4 in determining the dissimilarity between two threads, the situation

in which two threads of the same behavior, but different trace lengths must be taken into account.

Consider two instances of Mozilla Firefox’s HTML5 Parser thread, which handles documents

of two different sizes. The SBG structures for these two instances should be similar, but the edge

weights may differ drastically as one document may have considerably more HTML5 elements

than the other. Therefore, we must normalize the thread weights to adjust for this. We use out-

degree normalization in our experiments. Out-degree normalization divides the outbound edge

weights of a vertex by the sum of all outbound edge weights from the same vertex. In the SBG

example depicted in Figure 4.3, these normalized edge weights are to the right of their raw values.

4.5.2 Algorithms

As mentioned earlier, k-medoids and HCA are the clustering algorithms explored in this study for

grouping SBGs. k-medoids was used in [57] to cluster call graphs with the aim of identifying

malware families. Inspired by the methodology in that study, we use k-medoids as a starting point.

36

However, k-medoids is not without its problems: namely non-deterministic runtime and output.

Therefore, we also explore the partitioning characteristics of HCA as an alternative. The merits

and shortcomings of these algorithms are discussed in more detail in the following sections.

k-medoids Clustering

k-medoids is a member of classical partitioning algorithms including the likes of k-means and

k-medians. As their names imply, the number of clusters, k, needs to be specified a priori. Ad-

ditionally, the number of iterations should be specified to constrain the execution time of this

algorithm. The limitations of requiring such inputs from a human as a limitation is discussed Sec-

tion 4.8.1. These algorithms iteratively adjust the centers, or centroids, of clusters as members are

(re)assigned to achieve minimal error with respect to their corresponding centroids. As such, these

algorithms are an example of an expectation-maximization, where the steps are to 1) calculate the

centroid of each cluster, 2) for each item, determine the closest centroid, and 3) reassign each item

to its nearest cluster [30]. This is continued until no further reassignments occur, or the maximum

number of specified iterations is reached. The time complexity of k-medoids is O (nki), where n

is the number of samples, k is the number of desired clusters, and i is the maximum number of

iterations. Its output is nondeterministic and largely depends on the initial random assignment of

members to clusters.

k-medoids is selected over others in its class because of how the centroid is selected with

respect to graphs. As there are varying concepts of a mean and median of a graph, k-means and

k-median were deemed inappropriate for this application. In k-medoids, the sample that minimizes

the sum of distances to other samples in its cluster is selected as the centroid [30]. In the context

of SBGs, it is the sample which is most representative of the threads assigned to a cluster.

There are a couple issues with k-medoids which may make it unsuitable in this application. As

syscall HIDS often use already computationally expensive data-driven modeling algorithms such

as HMMs and recurrent neural networks, this preprocessing method needs to be fast and produce

reliable results. Many iterations of k-medoids need to be invoked to permit the algorithm to explore

37

solutions in other optima. [57] uses 50 iterations. This is exacerbated by the fact that plots of wide

range of k are necessary for determining an appropriate number of clusters for a dataset. Therefore,

we explore HCA as an alternative for clustering SBGs.

Hierarchical Clustering Analysis

HCA is an approach typically used to discover a tree of relationships between items in a dataset.

Inherently different from the aforementioned partitioning algorithms, HCA, also known as ag-

glomerative clustering, is a bottom-up algorithm. It begins trivially with n singleton clusters, one

for each sample, and ends with one cluster with a hierarchical structure. At each of n − 1 steps,

a link is formed, joining the two nearest items among singletons or subclusters. This results in a

dendrogram. HCA can be used in partitioning applications by prematurely stopping the linking

process until k groups are formed. There are various criteria, or types of linkages, that are used in

determining the nearest clusters. In single-linkage, the nearest pairwise distance between items of

two clusters is used in determining the distance between those clusters. In complete-linkage, the

furthest items are used. In average-linkages, the mean distance over all pairwise distances between

items in two clusters is used. The runtime of HCA is O (n2) [73].

Despite the longer runtime per invocation, HCA has some desirable characteristics. In deter-

mining the appropriate number of clusters for modeling, a plot of some error criterion over a range

of k = [l, h] is drawn, where 1 ≤ l < h ≤ n. The aim is to discover a clear "elbow," or steepest

drop in cumulative error. For k-medoids, this means h − l + 1 invocations of the algorithm, each

iterating a maximum of i times. In HCA, all h− l+1 partitions can be produced in one invocation,

outputting a partition once per step starting at h clusters, and ending at l clusters, as HCA is a

bottom-up approach. Additionally, HCA is deterministic: given the same k, linkage and dataset,

a clustering solution can be reproduced. To determine the best linkage for clustering SBGs, we

explore all and compare their partitioning characteristics against k-medoids.

38

4.5.3 Number of Clusters

A general downside to using clustering algorithms is that they are semi-autonomous. In most

cases, an analyst must determine an appropriate number of clusters k, to partition a dataset to

avoid poor performance (under- and overfitting). Sometimes, a clear elbow in error plots over a

range of candidate values of k can be used to determine this. However oftentimes, this elbow is

indistinguishable. In anticipation of this case, we compute the average silhouette width (ASW) of

the dataset, given a clustering solution [85]. The silhouette of a single point i is defined as:

s (i) =
b (i)− a (i)

max{a (i) , b (i)}
, (4.5)

where a (i) is the mean intra-cluster distance of i to other members in its cluster, and b (i) is the

lowest of mean inter-cluster distances. The ASW is the average of this metric over all points in

the dataset, and its range is [−1, 1]. Plotted over a range of k clustering solutions, distinct peaks

indicate good candidate values of k [97]. Higher values are better, with values greater than 0.5

indicating good clustering solutions [54].

4.5.4 Cluster Quality

In order to validate the approach proposed in this chapter, we compare the partitions produced

from clustering against a ground truth. Fortunately, the previously discussed version of Mozilla

Firefox has threads identified by the comm attribute in the Linux data structure struct task. It

is uncommon for this attribute to be manually set in most programs, as they normally anonymous.

The ability to rename threads was presumably exploited by the developers of Mozilla Firefox for

debugging purposes [5]. The sheer number and wide range of different functionalities identified

in Mozilla Firefox make it a suitable target for evaluating the clusters produced from our approach

for cohesion. We use these named, or labeled, threads and their frequency in our dataset for form a

ground truth partitioning against which our approach can be evaluated using adjusted Rand index

(ARI). We also use these labels to evaluate intra-cluster quality using Shannon entropy.

39

Sum of Squared Errors

The sum of squared errors (SSE) is a metric that measures the overall discrepancy of data and

their respective model estimates. In the context of clustering, the data are the cluster samples, and

the estimates are their respective cluster centers, or centroids. This is often used to measure the

overall quality of a clustering solution, and when plotted over a range of candidate values of k, to

determine an appropriate number of clusters k for a dataset. In clustering, the SSE is defined as:

SSE =
k∑

i=1

∑
x∈Ci

d(x, µC)2,

where k is the number of clusters, x is a member in cluster Ci, and d(x, µC) is the distance from a

sample x to its cluster centroid µC . In the case of k-medoids, the centroid µC is the sample which

minimizes the total error of the cluster, and d is the dissimilarity formula δ.

Adjusted Rand Index

Comparing the solutions produced from this approach against the ground truth in Table 4.1 is

essentially a partition comparison problem. In other words, we desire a metric that scores the

similarity between a partitions of a dataset U = [U1, ..., Uk] and a ground truth V = [V1, ..., Vk′].

The Rand index, and its more accurate version, the adjusted Rand index (ARI), serve this purpose.

The Rand index is defined as [83]:

RandIndex =
a+ b

a+ b+ c+ d
,

where

• a is the number of item pairs in the dataset that are found together in the same subset (cluster)

in partition U and the same subset in V ,

• b is the number of item pairs in the dataset that are found in different subsets (clusters) in

partition U and in different subsets in V ,

40

• c is the number of item pairs in the dataset that are found in the same subset in partition U

and different subsets in V , and

• d is the number of item pairs in the dataset that are found in different subsets in U and in the

same subset in V .

The adjusted Rand index (ARI), which is a corrected-for-chance version of the Rand index and

preferred metric for comparing partitions, is defined as [52]:

ARI =
RandIndex− ExpectedIndex

1− ExpectedIndex
, (4.6)

whereExpectedIndex is the expected valueE(R/
(
N
2

)
) of the Rand index over the partition space.

Due to the contingency table involved in the computation and lengthy formulation of this metric,

we refer the reader to [52] for the expanded form of the ARI. The range of this metric is [−1, 1],

with higher values indicating better agreements between partitions.

Intra-cluster Entropy

As threads across different concurrent activities may have common behaviors, it is possible for

clusters to contain more than one of the labels enumerated in Table 4.1. Although it is ideal to

match the partition in Table 4.1, deviations from it do not necessarily indicate incorrect behavior

assignment to clusters. However, we still want to evaluate the purity of clusters examine how

closely they correspond to the labels in the dataset. Entropy is an ideal metric for this, measuring

the variance of categoric values in a set. The entropy of cluster Ck is defined as [65]:

H(Ck) = −
∑

l∈Labels

pl log pl,

where pl is the probability of a label l in Ck. For entropy calculations, 0 log 0 = 0 by definition

and the unit is in bits (log base 2). Smaller values are better, as they indicate purer clusters.

41

4.6 Implementation

In the realization of our approach, the dataset collector from Chapter 3 is leveraged along with

publicly available database and clustering libraries. This suite was developed and tested on an

Intel Xeon X7550 (32-core) server with 128GB of ram with access to a storage area network. The

technical details of each component are provided in the following subsections.

4.6.1 Syscall Collection

For conveniently collecting per-thread sequences and their corresponding SBGs, the collector from

Chapter 3 was utilized for this study. At its core is a plugin for the dynamic instrumentation

platform Intel Pin, which isolates and outputs thread syscall sequences and their corresponding

SBGs [7]. Figure 4.6 depicts the role of the Intel Pin tool in a dataset collector centered around

Mozilla Firefox. This architecture leverages containers to easily deconflict concurrent instances of

the Pin tool and Mozilla Firefox combo, as well as provide a programmatic and fresh execution

environment for each trial. Each instance is directed to a unique URL in the top 1K most popular

websites, according to ALEXA. This source of URLs is used to reduce the possibility of malicious

content tainting the training data [106, 107]. The aim is to direct Mozilla Firefox to a variety of

locations with diverse content to increase code coverage, and thus, better model the program. It is

important to note that the Pin tool follows spawned processes and their threads. Referring to Table

4.1, Mozilla Firefox has a companion program, plugin-container, which is spawned from

firefox and may also be a target for attacks. Therefore, it is important to model its behavior as

well.

4.6.2 Database Management

The syscall trace sequences and their corresponding SBGs are stored in a Sysmas Lightning

Memory-mapped Database (LMDB) for easy and fast retrieval during the dissimilarity matrix

building and cluster evaluation processes. LMDB is an in-memory, embedded DB that fits in

the same address space as the DB client. These qualities make it popular backend for machine

42

Figure 4.6: Data Collector Architecture

learning applications due to their need for rapid access to data.

4.6.3 Dissimilarity Matrix Construction

The dissimilarity matrix is accomplished using in-house software designed to meet the input re-

quirements of third party clustering software. The dissimilarity matrix is a diagonal, ragged C

array, which saves space as the dissimilarity between pairs of SBGs is symmetrical (i.e, irrespec-

tive of their order). As the number of entries in the matrix is quadratic with respect to the number

of samples, the number of entries to compute can be quite large (in the order of billions). There-

fore, the algorithm is parallelized to speedup the process (64 threads). The dissimilarity matrix

component can compute the various graph distances explored in this study.

4.6.4 Clustering Software

Two publicly available clustering packages are used to perform k-medoids and HCA clustering on

our dataset: the C++ backend of the R fastcluster package and The C Clustering Library,

respectively [30, 73]. These were modified for integration with our in-house components and for

interoperability between utility functions provided by these libraries. These were also modified for

parallel execution; in producing h− l + 1 different clustering solutions in search of candidate k’s,

43

this range is partitioned over 64 threads to speedup the execution time.

4.7 Evaluation

To validate our approach, we compare the clustering solutions produced from our methodology

against a ground truth. We begin this section with a description of the dataset comprising a ground

truth. Subsequently, the metrics discussed in Section 4.5 are used to justify our selection of cluster-

ing algorithm, determine an appropriate of the number of clusters in the dataset, compare partitions

of that dataset against the ground truth, and asses the purity of individual clusters. An interpretation

follows each of these aspects.

4.7.1 Dataset

The dataset used for evaluation is composed of 50,000 threads spawned during the visiting of the

top 1K popular sites, according to ALEXA. Such highly visited websites have been used as a

source of benign URLs for training malicious website detectors in [106, 107]. The assumption

is that these websites are highly maintained and less likely to be compromised than less popular

ones. Therefore, traces and features resulting from these websites can serve in building models

of normal behavior for anomaly detection. In this application, the aim is to visit a variety of

websites with diverse content to discover as many thread behaviors possible in Firefox. Of the

50,000 threads collected, 44,129 are labeled with the names listed in Table 4.1, and the remaining

5,871 are anonymous, which is the common case in multi-threaded programs. The anonymous

threads are filtered out to avoid confounding the clustering solutions produced for comparison

against the ground truth. The number next to each name represents the count of threads in the

dataset tagged as such, which serves as the ground truth partition used for comparison. The aim

is for clustering solutions produced by our approach to strongly agree with this breakdown in the

partition comparison sense as much as possible. However, disagreements (i.e. names in Table

4.1 split into multiple clusters or clusters with multiple labels) do not necessarily indicate bad

cluster assignments; it is expected that some of the activities listed exhibit multiple behaviors or

44

Table 4.2: Clustering Execution Times (minutes)

Algorithms \Norm Basic Out Avg

k-medoids 2235.17 2831.38 2533.28
hclust(a) 21.16 20.32 20.74
hclust(s) 20.63 21.50 21.07
hclust(c) 20.15 20.41 20.28

share common behaviors with other activities, respectively. However, this table should be highly

indicative of the various behaviors in Firefox.

4.7.2 Clustering Algorithm Comparison

k-medoids is a natural choice for this problem domain for its partitioning characteristics, as demon-

strated in [57]. However, the execution times are a concern for building DEs; k-medoids can result

in execution times excessively long compared to the subsequent data-driven modeling algorithms

chosen to build submodels from the clusters (up to days for common settings). In this section,

HCA as an alternative to k-medoids is explored. The following subsections compare the execution

times and SSE of k-medoids versus HCA, respectively.

Execution Time

A major drawback to k-medoids is the necessity of selecting a sufficient number of iterations, each

with a random initialization, to avoid getting stuck in any local optimum. 50 iterations was chosen

to control the execution time and produce sufficiently smooth plots for better error analysis. The

average execution time for plotting k = 1 to k = 200 for the unweighted and weighted SBGs was

2533.28 minutes for k-medoids and 20.70 minutes over all variants of HCA. Plotting over such a

range is necessary in determining a sufficient k for clustering a dataset. It is clear that in terms

of execution time, HCA is a much more attractive choice due to the fraction of time it completes

versus k-medoids.

45

Error Analysis

As mentioned earlier, k-medoids and HCA are primarily used for partitioning and discovering

hierarchical relationships, respectively. However, HCA can also be used for partitioning. Given

the deterministic execution time of HCA, we explore HCA as an alternative to k-medoids for

partitioning a SBG dataset. We also look at the SSE trends for these clustering algorithms to

look for clear elbows indicating candidate values of k, and to determine the viability of HCA for

the problem of clustering SBGs. In the SSE plot for unweighted SBGs, shown in Figure 4.7a,

all three variants of HCA outperform k-medoids. In the SSE plot for weighted SBGs, Figure

4.7b, we observe that HCA has very similar error trends in comparison with the marginally better

k-medoids. The large discrepancy in k-medoids error trends between unweighted and weighted

SBGs indicates the value of using edge weights. As HCA with complete linkage exhibited the

closest partitioning characteristic to k-medoids for weighted SBGs, we focus on this variant of

HCA for the remainder of the evaluation.

Labels = 50

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

S
S

E

of Clusters (k)

k-medoid vs hcluster Comparison

(w/o edge weights)

HCA(a)

HCA(s)

HCA(c)

k-medoids

(a)

Labels = 50

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

S
S

E

of Clusters (k)

k-medoid vs hcluster Comparison

(w/ edge weights)

HCA(a)

HCA(s)

HCA(c)

k-medoids

(b)

Figure 4.7: k-medoids vs HCA for Partitioning (SSE). (a) and (b) refer to unweighted and
weighted plots, respectively.

4.7.3 Cluster Numbers and Ground Truth

As anticipated, the SSE plots in Figures 4.7a and 4.7b do not exhibit clear elbows from which

to determine candidate values of k, the number of clusters to partition the data. Therefore, we

46

resort to the ASW plots in Figures 4.8a and 4.8b for unweighted and weighted SBGs, respectively.

Distinct peaks indicate good values of k [97]. We validate these candidate values of k with the

corresponding ARI score against the ground truth data provided by the labeled threads in Firefox,

the names and partition counts of each presented in Table 4.1.

In both unweighted and weighted ASW plots, shown in Figures 4.8a and 4.8b respectively,

a primary, dominant peak followed by a secondary, lower peak is exhibited. All of these ASW

peaks are greater than 0.5, indicating that a good structure was found with our methodology [54].

This validates the clustering of SBGs. The corresponding values of k and ARI of these peaks are

summarized in Table 4.3.

In both plots, the secondary ASW peaks correspond to higher ARI scores, but with a wider

∆k = 17 between peaks and their corresponding ARI scores (∆0.035) in the unweighted plot.

This is undesirable, as it corresponds to a larger margin of error to the better k and ARI. The

weighted graph achieves a significantly higher ARI score (+0.210) at the primary peak, with a

partitioning closer to ground truth at ARI score 0.776. Furthermore, there is a smaller ∆k = 8,

with a small deviation from the overall best ARI score from these plots (-0.011). In the case when

there are two ASW peaks, it is conservative to select the second to produce a more granular model.

k=17
k=34

k=17 k=34

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

A
SW

-A
R

I

of Clusters (k)

ASW and ARI
(w/o edge weights)

HCA(c)-SIL

HCA(c)-ARI

(a)

k=34

k=42

k=34

k=42

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

A
SW

-A
R

I

of Clusters (k)

ASW and ARI
(w/ edge weights)

HCA(c)-SIL

HCA(c)-ARI

(b)

Figure 4.8: ASW and Corresponding ARI to Ground Truth. (a) and (b) refer to unweighted and
weighted plots, respectively.

47

Table 4.3: Primary and secondary k values (k1 and k2) and corresponding ASW/ARI scores for
unweighted and weighted SBGs

Clusters \ASW & ARI ASW ARI

k1 = 17 (basic) 0.566 0.614
k2 = 34 (basic) 0.544 0.649
k1 = 34 (weight) 0.649 0.776
k2 = 42 (weight) 0.584 0.788

1.007 0.739

0

0.5

1

1.5

2

2.5

3

3.5

4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43

En
tr

o
p

y
(b

it
s)

Cluster ID

Cluster Entropy
(w/ edge weights)

k=34

k=42

k=34 avg

k=42 avg

max

Figure 4.9: Cluster Quality. Quality is sorted from worst(ID=0) to best(ID=34,42), and average
weighted entropy plots are the dashed horizontal lines respective to clustering solution (color).

4.7.4 Clustering Quality

Although we have looked at metrics which give an overall score of the solutions produced by our

approach (ARI and average weighted entropy), we now analyze individual clusters for candidate

values of k with respect to weighted SBGs using HCA with complete linkage. Specifically, we

want to analyze the purity of each cluster in those solutions, as subsequent modeling algorithms

will model these subsets. Intra-cluster entropy H(Ck) is used for this analysis. Figure 4.9 shows

the entropy of each cluster, sorted from the worst at ID=0, to the best at ID=k. This sorting is used

to more easily compare the respective intra-cluster entropy produced at different k. Additionally,

the average weighted entropy is depicted to show the overall purity at each respect k. The high

entropy near ID=0 is indicative of very common behaviors across different activities, which is

expected as routines such as I/O functions are likely shared among them. Near ID=13 and onward,

the clusters are nearly pure, containing only one of the activities. Overall, the entropy is low at the

48

different solutions product at k = 34 and k = 42.

4.8 Discussion

Despite the promising results we achieved clustering thread behavior by SBGs, there is certainly

room for improvement. For starters, eliminating or minimizing input from the defender and enrich-

ing the SBG with annotations will improve usability and cluster quality, respectively. We expand

on these limitations in the following section. Subsequently, we discuss the sub-domains in cyber-

security to which this technique can be applied.

4.8.1 Limitations and Future Work

We obtained good results with this initial attempt at clustering thread behavior using syscall pat-

tern summaries to enable previous data-driven approaches in modeling complex, multi-threaded

programs. However, we believe it may be further improved by incorporating other features for us-

ability and increased accuracy. Early directions for enhancing these areas involve fully automating

this approach, as it is currently semi-autonomous, and using SBGs annotated with more syscall

information (e.g., arguments, context), as the multiple roles of a syscall in a CFG are not disam-

biguated. These limitations, along with potential solutions in overcoming them, are discussed in

the following sections.

Semi-Autonomy

The clustering algorithms explored in this work are semi-autonomous; the number of clusters must

be specified by the defender. This determination is made via error analysis (e.g, SSE and ASW

plots). Ideally, a reasonable number of clusters k can be automatically determined, permitting the

use of this technique in an autonomous scenario. We will explore the use of such algorithms such

as x-means clustering in future work to fully automate the SBG clustering process [77].

49

Aliasing, Problem and Solution

Although syscalls are considered a good trade-off between collection speed and semantic value,

the resolution of which can sometimes be too coarse to pinpoint precise attack intent. This is

exemplified in the aliasing problem of SBGs; syscalls with multiple appearances in a CFG are col-

lapsed into a single vertex. This makes semantic analysis even more challenging as distinct roles

of a syscall with multiple uses, such as read and write in Listing 4.2, are not identified. To

alleviate the problem of aliasing, we will explore disambiguating syscall roles using contextual in-

formation (e.g., calling context, arguments, etc.) [32,37,46,62]. However, we will focus on limited

contextual information as early experiments showed an application slowdown of at least 20x when

collecting full calling context. Limited contextual information will help unfold the SBG presented

in this chapter with acceptable collection speed. Varying degrees of contextual information will be

explored to find a good trade-off between collection speed and clustering accuracy. Listing 4.2 is

a code snippet demonstrating the multiple uses of a syscall (read and write), and Figure 4.10

shows the corresponding non-aliased (unfolded) and aliased (folded) SBGs.

4.8.2 Applications

The clustering of SBGs has several applications. In the security context, SBG clustering can

be leveraged in offline analysis and the development of more accurate real-time detection mod-

els. Generally, SBG clustering can aid in the identification of distinct tasks in a highly complex,

multi-threaded program. In the following section, an elaboration of each application scenarios is

presented.

Real-time Detection Models

The main application for clustering SBGs is a preprocessing step to sequence modeling of syscall

patterns in an applications. In a highly complex, multi-threaded application such as Mozilla Fire-

fox, many different threads types generate distinct syscall patterns during execution. Modeling the

interleaved syscall sequence leads to the problems discussed in Section 4.3. Alternatively, sepa-

50

#1 main(){

... ...

#10 while(read(file_src,buf))

#11 {

#12 if(*mode == 0) //5 times

#13 write(file_dest,buf);

#14 else //9 times

#15 write(sock_dest,buf);

#16 read(sock_src,mode);

#17

... ...

Listing 4.2: A code snippet demonstrating multiple roles of a syscall. The multiple write and read
syscalls are each aliased into single syscall vertices in SBGs, skewing behavior dynamics.

(a) (b)

Figure 4.10: Non-aliased vs Aliased SBGs. The non-aliased (unfolded) and aliased (folded) SBGs
in (a) and (b), respectively. Black vertices are read syscalls, and white vertices are write
syscalls.

51

rating threads by graph patterns, then subsequently modeling each cluster with legacy approaches

will lead to better results in anomaly detection. A test thread will need to be initially checked

against all models creation, eventually fitting into at least on model during execution. Otherwise,

the thread is considered anomalous and an alert is raised.

Offline Detection/Analysis

Rather than subsequently building models of the resulting partitions produced from thread cluster-

ing, the clusters themselves can serve as models to detect anomalous behavior. Cluster boundaries

can be used to determine the nature of threads, benign or suspicious. Extremal values in each clus-

ter can automatically demarcate between these behaviors. Dissimilarity, as defined in this study,

may be too insensitive to use, as anomalous threads may involve only slight deviations from the

normal profile. However, an entropy based method such variable deviation index (VDI), and its

aggregate, global deviation index (GDI) used in TwoStep clustering can capture slight variations

in a graph [23,93]. First, the SBG can be embedded into a vector. Then, a variable deviation index

(an information-theoretic measure) for each vector component of members in a cluster can be ag-

gregated into a global deviation index (GDI). If the GDI of cluster with the extremal value remove

and test value replace is greater than the GDI with the extremal value, then the SBG is anomalous.

Malware Signatures

Clustering malware according to their SBG signatures may offer several benefits over call graphs.

A fundamental challenge with call graphs, is the identification of function boundaries in malware

[51]. Malware does not have to conform to standard calling conventions, nor does malware have

to use proper functions at all (e.g., return-oriented programming) [87]. Additionally, malware

functions may be obfuscated, with a different, yet semantically equivalent sequences of opcodes

for functions generated per propagation. This complicates the graph matching function φ, and thus

the graph similarity measure, making is a NP-hard problem. On the other hand, the number and

semantics of syscalls on an OS are fixed. Thus, the graph matching problem is greatly simplified

52

as relabeling is unnecessary to compare two graphs; vertices with similar numbers between two

graphs are simply aligned. Also, syscalls cannot be mangled. One may argue that it unwise for

malware authors to obfuscate semantics through non-effective syscalls (NOP equivalents) as all

syscalls are visible to the kernel, and potentially, a syscall HIDS. What remains is a sufficient

corpus of malware syscall signatures to conduct this study.

4.9 Conclusion

Legacy data-driven syscall HIDS fail to adequately model, and thus protect, complex, multi-

treaded applications. The challenge lies in overcoming the problems posed by interleaved syscall

sequences. This usually drives researchers to apply more complex, and often more computation-

ally costly, algorithms at the problem. We aim to shift focus to the data source, simplifying the

sequences that these algorithms must model.

This chapter presents a preprocessing step that can aid in enabling legacy syscall HIDS in

achieving the successes reported in their respective studies by simplifying their tasks. Additionally,

this technique can inspire new approaches in syscall anomaly detection and be used to cluster and

classify malware, which also must use syscalls to provide utility to an attacker.

53

Chapter 5: ANOMALY DETECTION USING SYSTEM CALL

BEHAVIOR GRAPHS

In this chapter, we introduce an anomaly detection technique that can utilize the behavior clusters

produced from the methodology in Chapter 4. As the focus of this dissertation is the protection

of multi-threaded programs which exhibit multiple thread behaviors, a a multibehavioral decision

engine. We propose the application of an information-theoretic metric which can identify anoma-

lous thread test cases when compared against thread behavior groups comprising the model of a

program.

5.1 Introduction

Intrusion detection plays a critical role in the defense of computer systems and networks. Its role

is becoming increasingly important as researchers are placing less emphasis on intrusion preven-

tion in cyber defense strategy, as compromises are considered inevitable. Instead, the goal is to

increase detection accuracy and reduce detection time to improve responses and mitigate damages

to systems [102]. However, syscall anomaly detection, an ever increasingly popular approach in

host intrusion detection systems (HIDS) with much potential, faces many challenges in achieving

these goals. The growing complexity of software with its many concurrent activities and dynamic

components confounds the models of legacy techniques, resulting in abysmal detection accura-

cies, or demands very complicated machine learning algorithms, incurring excessive training and

testing times. [27] highlights the ineffectiveness of current approaches in syscall anomaly detec-

tion when evaluated against moderately more challenging programs, and [79] elaborates why these

techniques fail. In short, the interleaved thread sequences of program traces confound detection

models which are designed and evaluated against single-, or very simple multi-threaded, programs.

In order to improve the status quo of syscall anomaly detection, threads need special treat-

ment. Ideally, a detection model composed of submodels, each capturing a distinct thread behav-

ior, would collectively be more representative of overall program behavior. In language modeling

54

theory, the program model would be an alternation, or union, of all the regular languages corre-

sponding to its submodels [50]. However, threads are often anonymous, simply associated with

the executable of the primary process. Distinct thread behaviors need to be identified to build these

submodels, and thus, improve the overall modeling of program behavior. Chapter 4 accomplishes

this by filtering syscall sequences per thread into syscall behavior graphs (SBG), then clustering

them to identify the number and groupings of distinct behaviors in a program. That work is pro-

moted as a preprocessing step to language modeling techniques such as hidden Markov models,

but we propose using the clusters boundaries directly to detect anomalies.

In this work, we introduce an approach for syscall anomaly detection in highly multi-threaded,

complex programs using the clusters of SBGs directly without subsequent language modeling,

resulting in an accurate and fast syscall anomaly detection system. The rest of this chapter is orga-

nized as follows. Section 5.2 briefly describes the related work, Section 5.3 details the problem this

work addresses, Section 5.4 presents the necessary mathematical framework, Section 5.5 presents

the fundamental ideas of our approach, Section 5.6 highlights important implementation details,

Section 5.7 reports our results, Section 5.8 discusses limitations and future work, and Section 5.9

concludes.

5.2 Related Works

This work leverages syscalls for anomaly detection, utilizing the clusters produced from the method-

ology in Chapter 4 for identifying anomalies using methods in cluster outlier detection. In this

section, we highlight key inspirations from studies in these areas.

5.2.1 Syscall Anomaly Detection

Anomaly detection is framed as the following problem: given a profile of normal behavior or

characteristics, classify deviations from this profile as anomalous. This is similar to how immune

systems in biological organisms detect pathogens, prompting defensive responses. Forrest et al [38]

pioneered this concept with the syscall, which is a special instruction used to mediate a user-space

55

program’s interaction with the kernel. In their work, she articulates an analogy between biological

immune systems, which learn a sense of self or normal operating conditions within the body, and

syscall anomaly detection systems, which learn patterns of self by syscall sequences generated

from UNIX processes. Deviations from the self profile of the body indicate a potential problem

in a biological organism, as do deviations from the self profile of syscall sequences of a process.

This work inspired a wave of contributions in syscall anomaly detection, with works such as [100]

and [41] taking a data-driven approach inspired by the ideas of Forrest et al.

Learning self in processes using data-driven approaches is complicated by multi-threaded,

complex programs, which may have many distinct activities running concurrently. Existing ap-

proaches have yet to specifically accommodate multi-threaded programs and the different behav-

iors those threads may exhibit. These approaches typically view the syscall sequences of these

concurrent elements in a flat, interleaved view. In Chapter 3, we describe the complications this im-

poses on analytical approaches, namely the non-determinism and incorrect dependences in multi-

threaded syscall sequences. Chapter 4 addresses this, clustering per-thread syscall sequences to

aid in build better models, thus a more representative characterization of self. However, that work

is promoted as a preprocessor to previous syscall anomaly detection techniques. In this work, we

utilize the clusters, which represent distinct behaviors in a program, directly to distinguish between

normal and anomalous activity.

5.2.2 Anomaly Detection via Clustering

Our approach aims to detect anomalies via the clusters produced by the techniques introduced

in Chapter 4. That approach is inspired by the clustering of program features in [57] and [34],

which cluster malware and program traces, respectively. However, the work presented within

clusters threads by syscall patterns, which collectively provide a tailored model of a multi-threaded

program as it can capture distinct behaviors in the program.

Following model building, this work performs anomaly detection using the clusters themselves.

Generally speaking, this is a classic classification via clustering problem in machine learning. More

56

specifically, this is outlier detection via clustering, as we score the "fitness" of a test case with its

nearest cluster using information-theoretic metrics, rather than simply classifying the case by that

cluster. [103] and [93] provide a framework and detection logic for this purpose, which we utilize

in this work.

5.3 Problem

Previous syscall HIDS place little to no emphasis on intrusion detection at thread granularity. Gen-

erally, a single, monolithic model is responsible for capturing all normal activities in a program.

This over-generalization results in sub-optimal performance when evaluated against programs and

systems in use today. In the following sections, we discuss why thread-granularity is appropriate

for future generations of syscall HIDS due to the highly complex, multi-threaded, mulltibehavioral,

and sometimes extensible nature, of vulnerable programs today.

5.3.1 Control-flow Hijacking of Threads

Control-flow hijacking attacks are those which induce redirection of normal program execution,

which adheres to its original control-flow graph (CFG), to the malicious program logic of an at-

tacker via memory corruption. Memory corruption occurs by exploiting errors or lack of safe-

guards in programs to control the placement of memory contents which can contain instructions,

or in more recent attacks, code pointers, with the latter bypassing hardware enforcement mecha-

nisms which prevent the execution of writable memory [96]. For control-flow hijacking attacks,

this can lead to control of the program counter (PC), or more familiarly, the instruction pointer

(IP) on Intel x86 processors [25]. Successful control of the PC can allow the attacker to execute

arbitrary logic, or just enough logic to disable hardware enforcement mechanisms to allow a subse-

quent code injection attack. The areas affected by memory corruption may initially only influence

a subset of a program’s threads. However, only one thread needs to be compromised for the entire

program to be compromised, or:

57

Stacks1

Heap2

Code4

Low End

High End 1. Threads have independent
stacks, which can be
overwritten with code or code
pointers. Such corruption will
initially only affect the thread
owning the stack.
2. The heap can contain code
emitted and executed by just-
in-time compilers (JIT).
Malicious data in JITed code can
include machine instructions,
which corresponding runtime
environment threads can be
triggered into executing.
3. Pointers to exception
routines can reside in global
memory. Exceptions in threads
can be triggered to jump to
malicious code.
4. Threads traverse a portion of
the code segment in the
address space. Although largely
mitigated, code injection will
affect thread which traverse
affected areas. This is exploited
as a source of instructions in
code-reuse attacks.

Data3

overlap

Main Thread

StackStack

Main Thread

Stack

Thread 1

StackStackStack

Thread 2 (JIT)

Stack

Figure 5.1: Memory Space Regions and Thread Hijacking Vulnerabilities

C(T2) ∨ C(T2) ∨ C(T3) ∨ . . . ∨ C(TN) = M(P), (5.1)

where Ti is a thread comprising a program P , and C and M are the predicates is compromised and

is malicious, respectively. Therefore, it is more appropriate to tailor detection models to threads,

which represent units of execution. It is important to note that a program’s threads share memory,

so a deviant thread has access to the memory resources of other threads. For clarification on

the thread-wise effects of various memory corruption techniques in a shared address space, the

memory regions in an address space are described below along with their corresponding impacts

their corruption has on thread execution. In the following paragraphs, we detail the implications of

each region’s corruption on thread execution, associate types of attacks applicable and give some

concrete examples of techniques that can be used to exploit these regions.

58

Stacks Stacks are per-thread memory resources where local variables and return addresses are

stored to maintain a thread’s calling context. They are allocated upon thread creation (typically

several megabytes per stack per thread) and are placed near the end of the address space range

to allow for a large contiguous block of heap memory. Buffer overflow attacks often target these

areas, exploiting local buffers to spill instructions or pointers into adjacent memory, ultimately

overwriting return addresses to jump to the injected code or existing instructions in the code seg-

ment (code-reuse). As return addresses are specific to a thread’s calling context, only the thread

whose stack contents have been compromised will be redirected to the new malicious logic. Code

injection attacks have largely been mitigated by write⊕ execute hardware enforcement, in which

memory pages can be marked as writable or executable, but not both.

Heap The heap is a shared memory region which is used to allocate memory for larger objects

with program-defined lifetime, in contrast to objects on the stack which are created and destroyed

automatically upon function calls and returns, respectively. As with stacks, code injection attacks

targeting this area have largely been mitigated. However, corruptible code pointers can exist in

the heap (such as those stored in C++ vtables), and just-in-time compilers disable hardware en-

forcement to dynamically generate code that is subsequently executed (e.g., interpreted languages

such as JavaScript), which can be tricked into emitting machine code disguised as data in language

variables in JITed runtime environments [18]. The affected threads in these cases will be those

utilizing the shared C++ objects, in the case of vtable corruption, or threads associated with a set

of generated code caches generated by a JIT compiler.

Data The data segment is a static segment of memory which contains objects with process life-

time. This segment often contains values which are to be shared across multiple threads in a

program. Although this area is exclusive to data, largely eliminating the write ⊕ execute threat,

code pointers can exist here as well. Code pointers in this region are often those pointing to user-

defined exception routines (often set up and launched with setjmp/longjmp) to execute in the

event a special situation occurs. The affected threads would be those which generate an exception.

59

Code The code segment contains code from the main executable and its libraries. Similar to the

data segment, attacks here are largely mitigated because of its executable property; code injection

attacks, which write machine code to memory, trigger a hardware exception due towrite⊕execute

protection. However, traditionally, this was also a target of concern for code injection attacks,

which affected threads that executed code in the overwritten range. Areas that were overwritten

and encountered by executing threads would be affected by attacks to this region. Now, this region

is exploited for code-reuse attacks, in which attackers craft shellcode composed of pointers to short

sequences of instructions, typically terminated by a ret instruction, resulting in the pointer for the

next snippet of instructions to be executed. Such attacks which rely on the snippets terminated by

ret’s are called return-oriented programming (ROP) attacks, and the snippets are described as

gadgets [87]. This segment is primarily used a source of gadgets for shellcode comprised of code

pointers.

Given how control-flow hijacking attacks may only affect a subset of a program’s threads, it is

more appropriate to refine detection logic in terms of threads.

5.3.2 Modeling Diverse Thread Behaviors

As reiterated throughout this dissertation, it is not enough to perform thread-wise filtering of a

program’s syscall trace to improve the status quo of syscall HIDS. The per-thread syscall patterns

of a program can vary greatly, complicating the modeling of normal behavior. For example, we

attempted to model both the interleaved and per-thread syscall sequences of Mozilla Firefox using a

single long short-term memory (LSTM) recurrent neural network, as used in [55]. Despite various

adjustments to hyperparameters to improve performance, the network would not converge over

several days of training to provide any meaningful results for anomaly detection. In addition to

the dependence and non-determinism problems discussed in Chapter 3, a single LSTM network

responsible for capturing 50+ different patterns was infeasible; the network would be responsible

for learning 50+ different sublanguages. An LSTM network for each subset of closely related

thread behaviors may have proven more successful, but the excessive training times for 1, let alone

60

50+ different LSTM networks, was deemed inappropriate for the syscall HIDS application.

Rather than over-generalizing the behavior of a program and its various thread behaviors in a

single, monolithic model, we utilize the SBGs from Chapter 4 to identify closely related thread

behaviors which collectively serve as a program model in this work. Although intended as a

basis for subsequent modeling using legacy syscall approaches, the clusters themselves serve as

discriminators between normal and anomalous activity. With fast clustering execution times, and

the ability to pre-compute components of information-theoretic metrics from cluster members,

this results in a feasible decision engine which defenders can use alone or supplementary to other

techniques.

5.4 Preliminaries

In this chapter, the model used for detecting anomalous thread behavior is composed of clusters

of SBGs produced by clustering analysis. The clusters and their respective boundary members are

used to discriminate between normal and anomalous activity. This reduces training time, as lan-

guage modeling algorithms often converge slowly, depending on language complexity and amount

of training data. In achieving what is essentially outlier detection via cluster analysis, concepts

and formulas from [35, 93] are utilized. These include an information-theoretic distance measure

between a cluster and test case as well as various indices used to describe the test case’s deviation

from the group. These are elaborated below in the following subsections.

5.4.1 Log-likelihood Distance

The concept of distance, or dissimilarity, is central to clustering, as it provides a metric for com-

paring objects. Therefore, it is natural to use distance to score the fitness of a case to its nearest

cluster. In this respect, the log-likelihood distance between a cluster and test case is used. This is

based on a unified metric ξv of the entropy and variance of the categorical and continuous variables,

61

respectively, and is defined as:

ξv = −Nv

(KA∑
k=1

Hvk +
KB∑
k=1

Lvk

)
, (5.2)

where Nv is the number of members in a cluster v, KA and KB are the numbers of categorical and

continuous variables in the feature vector, respectively, and Hvk = −
∑
Nvk/Nv lnNvk/Nv and

Lvk = ln
(
∆k + σ2

vk

)
/2 are the log-likelihood distance contributions of a categorical or continuous

variable k, respectively. σ2
vk is the standard deviation of a continuous variable, and ∆k is an

adjustment factor to avoid a logarithm of 0 in the computation of the log-likelihood contribution of

a continuous variable. It is the variance of a continuous variable over the entire training set divided

by an arbitrary positive constant (6 in this study). It is important to highlight that the natural

logarithm is used to compute both entropy and the variance metrics, resulting in nats instead of

bits as the fundamental unit. With this unified metric, the log-likelihood distance between a cluster

J and case s is defined as:

d(J, s) = ξj + ξs − ξj∪s. (5.3)

5.4.2 Deviation Indices

Log-likelihood distance introduces three metrics for quantifying a sample’s deviation from other

members in its cluster [93]. These metrics are the variable deviation index (VDI), group devia-

tion index (GDI) and anomaly index. The definitions and relationships to anomaly detection are

explained in the following sub-sections.

Variable Deviation Index

The variable deviation index (VDI) is a metric for quantifying how much each of the categorical

and continuous variables contributes to a case’s overall deviation from a cluster. VDI is formulated

62

as follows:

dk(J, s) =


−NJHJk −NsHsk +NJ∪sHJ∪sk , if k is categorical

−NJLJk −NsLsk +NJ∪sLJ∪sk , if k is continuous

(5.4)

The VDI follows a form similar to that of the log-likelihood distance in Equation 5.3, where a

metric of the combined group J ∪ s is computed, then deducted from the sum of the individual

metrics of J and s. In addition to serving as a basis for the other indices, the VDI provides insight

into why a case is considered anomalous. The VDIs of an anomalous case can be sorted and

analyzed from highest to lowest to highlight the most to less deviant components in the feature

vector, respectively.

Global Deviation Index

The global deviation index (GDI) is the overall deviation of a case from its nearest cluster, and is

the summation of a sample’s VDIs. It is equivalent to the log-likelihood distance (Equation 5.3)

and is formulated as follows:

d(J, s) =
KA+KB∑

k=1

dk(J, s). (5.5)

Essentially, this is a reformulation of the log-likelihood distance in a more convenient form for

computation. Determining whether a case is normal or anomalous solely using GDI is challenging,

leading to a more explicit metric, the anomaly index, defined next.

Anomaly Index

The anomaly index is the ratio of a case’s GDI to the average GDI of the members assigned to

its nearest cluster. The anomaly index provides a more interpretative metric for evaluating a test

case’s cohesion with original members of its nearest cluster. The higher the anomaly index, the

more anomalous the case is. Given the anomaly indices of a cluster’s members and a test case, they

are sorted and a threshold is applied to identify outlier candidates with higher anomaly indices; if

63

the test case is grouped with the highest cluster members, it is considered anomalous. Thresholds

are necessary as clustering is imperfect; there may be extreme values of normal, or benign, samples

assigned to a cluster. Thresholds can be either a number of original cluster samples or percentage.

We use the latter in this study to keep thresholds proportionate to cluster sizes.

5.5 Methodology

In this section, a high-level overview of our approach is presented. The process transforms thread-

wise syscall sequences into SBGs and uses them to either form clusters during modeling, or test

their deviation from those clusters during testing. This process is depicted in Figure 5.2 and each

phase is elaborated in the following subsections.

5.5.1 Data Representation

Per-thread syscall sequences generated during program execution comprise the data source used in

this work. These sequences are captured using the collector described in Chapter 3. As a program

may have many different threads, each with a distinct syscall pattern associated with a unique

behavior, it makes sense to group them by similarity for subsequent modeling or characterization.

Therefore, we continue the work in Chapter 4, which groups threads by behavior for this purpose.

In short, it transforms a thread syscall sequence into an SBG, which effectively is a summarization

of a syscall sequence (step 2 in Figure 5.2). Formally, the SBG described in Chapter 4 is a behavior

or unigram graph, similar to the n-gram graph described in [43, 76, 95]. Figure 5.3 depicts a SBG,

with each vertex representing a syscall, and each edge representing an adjacent syscall execution,

labeled with their raw frequencies. The log-likelihood distance (Equation 5.2) is naturally suited

for SBGs, as the weights of edges are continuous values (normalized out-degree frequencies), and

the vertices are categorical values (binary).

64

1. Collect 2. Transform 3. Model (Train/Select) 4. Test

<S1,S2,S3,S4,...>

Collect a stream s Convert s to SBG a. Use s to form (train) C Determine if s is most

from a thread (unigram graph) b. Or select C for test deviant sample of Cs

Is s less (dash)

or more (dot)

deviant than

members in C?

Syscall stream s

Figure 5.2: Overall Process for Model Building and Case Testing

Figure 5.3: A Syscall Behavior Graph.

5.5.2 Program Modeling

Clusters produced from clustering analysis serve as the basis for the decision engine. Chapter 4

describes an approach for clustering SBGs, using the resulting clusters as input into language mod-

eling algorithms or as a model directly. This work explores the latter, using the clusters themselves

to discriminate between normal and anomalous threads. In this section, the model building and

selection processes are discussed for the training and a portion of the phase, respectively. This step

is depicted in step 2 in Figure 5.2, which either builds or check the model against a case, depending

on the mode (training or testing).

65

Training

The technique in Chapter 4 for grouping similar thread behaviors by SBGs is leveraged to pro-

duce the detection model in this work. This process involves converting thread-wise sequences

generated by a program into behavior graphs with edges weights corresponding to frequencies

(normalized) of adjacent syscall executions. Prior to clustering, the weights are normalized by

dividing the weights of a vertex’s out-edges by the total of all out-edges for that vertex. This re-

sults in all weights falling in the range [0, 1] and two threads with the same behavior, but different

syscall sequence lengths, being more similar (less dissimilar) to each other. The dissimilarity be-

tween each pair of SBGs in a dataset, as defined in Chapter 4, is computed for the dissimilarity

matrix for clustering. Dissimilarity between a pair of SBGs G and H is defined as follows:

δ(G,H) = (0.5)
V ertexCost

|V (G)|+ |V (H)|
+ (0.5)

EdgeWeightCost

W (G) +W (H)
, (5.6)

where V is the number of vertices of a graph, W is the sum of all weights in a graph, E is the

number of edges, V ertexCost is the number of added/deleted edges to transform the vertex set

of G to H , and EdgeWeightCost is sum of weights of unpreserved edges and differences of pre-

served edges between G and H . The weighting factor of 0.5 places equal emphasis on the vertices

and edges in a graph. Finally, hierarchical cluster analysis (HCA) with complete linkage is applied

to the dissimilarity matrix of a range of cluster numbers to determine an appropriate number of

clusters via the average silhouette width (ASW) or some other clustering quality criterion. This

step is depicted in step 2 in Figure 5.2.

Selection

After clusters are generated from a dataset, they can be used to score the "fitness" of a test case

against a cluster. Selecting and testing only against the nearest cluster results in fewer computations

than doing so for all clusters, searching to see if any results in an acceptable anomaly score. As

HCA with complete linkage is is used in the modeling stage, it is used for the model selection

66

phase as well. This involves comparing the most dissimilar elements from each cluster to the test

case s, choosing the least among these. This step is depicted in step 3b in Figure 5.2.step 3b in

Figure 5.2

5.5.3 Case Testing

Following step 3b in modeling, an anomaly score is computed for a test case to determine if it falls

within the upper limit established by the boundary member(s) of its nearest cluster. As mentioned,

the log-likelihood distance, or GDI, is used to determine how well a cluster is suited to the given

test case. This is determined by determining which side of the threshold a test case’s GDI falls:

within (normal) or outside (anomalous). These are both accomplished in step 4 in Figure 5.2, and

are elaborated below.

Computation of Indices

The SBG needs to be represented in a vector form suitable for the log-likelihood distance (GDI)

computations necessary for deriving anomaly index scores. The SBG can be embedded into a

feature vector < s1, s2, ..., sV S, e1, e2, ..., eES >, where sm is a binary variable indicating whether

or not a vertex representing one of V S syscalls encountered in the training set is present, and en

is a continuous variable indicating the normalized frequency of an edge representing one of ES

adjacent syscall pairs encountered in the training set. The mapping between syscall and edge to

positions sm and en, respectively, depends on their order of discovery, with s1 and e1 being the

first for syscalls and adjacent syscall pairs, respectively. This saves memory, as the encountered

set of syscalls and adjacent syscall pairs is sparse, particularly for the edges; the number of adja-

cent syscall pairs is the square of all possible syscalls in a system. The described feature vector is

composed of both categorical and continuous values. The log-likelihood distance can accommo-

date a mixture of categorical and continuous variables, computing different information-theoretic

metrics for both each type. For the syscalls (vertices), the column-wise entropy is calculated per

syscall vector component. Refer to Table 5.1 a visual depiction of this computation. Each column

67

entropy H(si) represents a VDI quantifying its respective contribution to the overall GDI. The

row sum of these VDIs is the contribution of the syscall components (categorical distance) to the

GDI. Similarly for adjacent syscall pairs (edges), the column-wise information is computed for

edge weights. Each column entropy L(ei) is the VDI of a components contribution to the GDI.

Refer to Table 5.2 for a visual depiction of this computation. The row sum of these VDIs is the

contribution of adjacent syscall frequencies to the overall GDI (continuous distance). Note that the

VDI of a component is trivially zero or ln(∆k) if a syscall or adjacent syscall pair is not present

for all members of a cluster, respectively, having little to no effect on the GDI.

Detection Logic

Anomaly detection using log-likelihood distance, as accomplished in [23] and [93], involves man-

ually setting a threshold (number of samples or percentage) to identify outlier candidates according

to their anomaly index scores. During the model training phase, the GDI for each training sample

is computed with respect to its assigned cluster. Subsequently, the GDI of a test case is computed

with respect to its nearest cluster by complete linkage. The GDIs of the cluster’s members and the

test case are sorted. The test case is considered anomalous if any of the following are true:

1. the case falls outside of the predefined threshold (highest anomaly index by number or per-

centage), or

2. the case contains a syscall (vertex) not present in the entire training set, or

3. the case contains an adjacent syscall pair (edge) not present in the entire training set, or

4. the case’s nearest cluster is a singleton.

Case 1 effectively trims a cluster of extreme values to reduce false negatives. This is likely due

to imperfections in the clustering algorithms and/or dissimilarity metric defined. Both Case 2 and

3 follow the intuition that an execution should not contain a syscall or adjacent syscall pair that

never occurred during training; additionally, unseen syscalls and adjacent pairs are never assigned

a position in the feature vector and thus cannot be handled by our approach (this would demand

68

m

m

m

Figure 5.4: Clusters with Boundary Samples as Thresholds (m=median). This depicts threshold
of zero. In this word, we use 5% and 10%.

Table 5.1: Computation of Entropy VDIs (Categorical Values). bi,j is a binary value (present or
not) for the vector position si of SBG member j in cluster v of Nv order

Graphsv\V ertexSetv s1 s2 . . . sV S

G1 b1,1 b2,1 bV S,1

G2 b1,2 b2,2 bV S,2
...

...
...

...
...

GNv b1,Nv b2,Nv bV S,Nv

H(X) H(s1) H(s2) . . . H(sx)
∑V S

i=1H(si)

retroactively assigning missing values to discovered items). For Case 4, singletons are treated as

anomalies by default in [93]. This signifies a poorly formed cluster with few samples; in this case,

log-likelihood distance would be insignificant. Note that in this study, we use percentages (5% and

10%) as thresholds to keep cutoffs proportionate to cluster size.

Table 5.2: Computation of Variance VDIs (Continuous Values). ci,j is a continuous value between
[0,1] for the vector position ei of SBG member j in cluster v of Nv order

Graphsv\EdgeSetv e1 e2 . . . e|ES|
G1 c1,1 c1,2 c1,y
G2 c2,1 c2,2 c2,y
...

...
...

...
...

GNv c1,Nv c2,Nv cES,Nv

L(X) L(e1) L(e2) . . . L(e|ES|)
∑ES

i=1E(ei)

69

5.5.4 Validation

As with previous syscall HIDS, the problem of detecting intrusions is essentially a binary classi-

fication problem; given a test case, determine whether it is normal (benign) or anomalous (mali-

cious). As such, metrics often associated in measuring the accuracy of binary classifiers are used.

Also, to demonstrate the value of a thread-sensitive approach, we compare the performance of our

classifier against sequence time-delay embedding (STIDE), a publicly available and commonly

used classifier [49, 84]. These aspects of the evaluation are detailed below.

Metrics

The raw values, involved in computing more interpretive metrics, are 1) true positive (TP), 2) false

positive (FP), 3) true negative (TN) and 4) false negative (FN). These are defined below in the

context of syscall HIDS:

• True Positive (TP): a case that is correctly identified as anomalous (malicious)

• False Positive (FP): a case that is incorrectly identified as anomalous (malicious)

• True Negative (TN): a case that is correctly identified as normal (benign)

• False Negative (FN): a case that is incorrectly identified as normal (malicious)

More interpretive metrics for comparing classifiers are the true positive rate (TPR), false positive

rate (FPR) and overall detection rate (DR). These are computed in terms of the aforementioned

raw metrics. The TPR is defined as:

TPR =
TP

TP + FN
=

TP

|MaliciousSamples|
. (5.7)

This metric reflects how well a classifier performs at detecting an event. In this case, event refers to

an attack. Simply, it is the number of raised alerts (TP) over all attacks that occurred (TP +FN =

70

|MaliciousSamples|). Similarly, FPR is defined as:

FPR =
TN

TN + FP
=

TN

|BenignSamples|
. (5.8)

This metric reflects well a classifier performs at dismissing benign events, as excessive FPs cause

undue burden on defenders. The overall detection accuracy, which is the correct identification of

all events (TPs and TNs) over all events (TPs, TNs, FPs and FNs) is expressed as:

ACC =
TP + TN

TP + FP + TN + FN
=

TP + TN

|MaliciousSamples|+ |BenignSamples|
. (5.9)

This metric integrates all of the raw metrics for a single value capturing general classification

performance.

STIDE Comparison

To demonstrate the value of our thread- and behavior-sensitive anomaly detector, we compare

its performance against a legacy decision engine commonly used for benchmarking: the publicly

available STIDE anomaly syscall detection system developed by Forrest et al [49,84]. STIDE was

among the legacy decision engines tested in [27] against a moderately more challenging dataset,

producing suboptimal results. Central to this HIDS is a database which stores fixed length se-

quences of the training data (normally 6), which is comprised of normal syscall sequences from a

target program. Given a time series for testing, it reports on the consistency of the test case with

respect the database.

5.6 Implementation

In this section, we highlight the important specifics in the system used to implement the method-

ology. All phases of development were accomplished on a 32-core Xeon, 128GB RAM CentOS 6

platform.

71

5.6.1 Data Collection

The approach in this chapter is suited for anomaly detection in highly multi-threaded, complex

programs. As such, we leverage the dataset collector in [79] to gather rich, per-thread syscall

sequences generated by the many different thread activities present in Mozilla Firefox 52.0.2: at

least 50 different activities identifiable via debugging information. This Pin/Firefox combo is then

containerized (for isolated, concurrent instances) and directed to visit the top 1K popular websites

on ALEXA in an effort to explore diverse content from a variety of websites, resulting in more

code coverage in the Firefox binaries firefox and plugin-container, and thus, a more

complete set of syscall sequences describing program behavior [106, 107]. These sequences are

subsequently transformed in the SBGs previously described in Section 5.5.1, and stored into a

Lightning Memory-mapped Database for quick retrieval during the model building phase.

5.6.2 Model Building

As mentioned earlier, the solutions produced from clustering analysis serve as discriminators be-

tween normal and anomalous activities. The tool developed in Chapter 4 is utilized to build these

clusters. It is composed of multi-threaded variations of fastcluster [73] and The C Clustering li-

brary [30] to provide a defender with quick analysis of the quality of clustering solutions. These

solutions can be generated in approximately 30 minutes with 16 parallel threads, rendering this

approach feasible for real-world deployment.

5.6.3 Decision engine

The anomaly detection framework is detailed in IBM’s Statistical Package for Social Sciences

[93]. As we only needed particular elements of this framework, as it is part of a larger TwoStep

Clustering algorithm, we implemented the detection logic in-house in C/C++ with Boost [92] for

its convenient graph library, for the SBG, and serialization library, for object storage and retrieval

from the DB.

72

5.7 Evaluation

To validate our approach, we evaluated the detection model produced from our methodology

against a dataset composed of benign and malicious threads, with the latter being synthetically

constructed. The rationale for synthetic malicious data is elaborated in Section 5.7.1. We begin

this section with a more detailed description of the dataset used to conduct the evaluation followed

by the metrics used to aid in selecting parameters for the detection model (i.e., k, the number of

clusters). Finally, we report the detection accuracy along with its associated metrics.

5.7.1 Dataset

The dataset used for evaluation is composed of 115,713 threads generated during the crawling

of the most popular sites, according to ALEXA. The rationale for using ALEXA’s top ranked

websites as a source is two-fold: 1) ALEXA has been previously used as a source of benign

URLs for training honeyclients in [106, 107], and 2) these URLs will be used in constructing

benign and manually perturbed (synthetic) malicious data for testing. The assumption for the

first rationale is that these websites are highly maintained and less likely to be exploited than less

popular websites. Therefore, traces and features resulting from visiting these websites can serve

in building models of normal behavior for anomaly detection. In this application, the aim is to

visit a variety of websites with diverse features to discover as many thread behaviors possible (i.e.,

increase code coverage). Of the 115,713 threads collected, 50K will be used for training and the

other 65,713 will be used for testing (split between benign and synthetic malicious samples). Table

5.3 summarizes the breakdown of the dataset. Note that multiple programs are spawned for visiting

URLs. (firefox,plugin-container,ls, and grep).

Malicious Testing Data Instead of using malicious URL lists to collect our malicious dataset,

we synthetically inject benign syscall sequences with attack syscall sequences provided by ADFA

Linux Dataset (ADFA-LD) [27]. This was deemed necessary to produce positively malicious sam-

ples, as malicious URL lists are often unreliable in providing such data. URLs in such lists are often

73

Sequence

Interleaver Anomalous

 Sequence

Benign Threads

Attack Thread
Inject

Attack Sequence

Context

Switching Info

Figure 5.5: Program Sequence Reconstruction for Testing with STIDE

Table 5.3: Breakdown of Training and Testing Data

URLs # Programs # Threads Threads/URL
Train 428 1312 50K 38.1
Testbenign 643* 1011 34298 33.9
Testmalicious 1011 31415 31.1
Total(Avg) 1071 3334 65713 34.4

disabled administratively or the attacks may not target the specific vendor, version and platform

(OS and architecture) of the browser. Many conditions must be met for a successful compromise

of a target browser. Therefore, we use the syscall sequences from control-flow hijacking attacks

from [27] to adulterate threads from benign portion of the dataset to construct the malicious sam-

ples. Only a single, random thread is compromised per URL visit. Additionally, the splice point

is chosen at random between the benign and attack sequences while retaining the original benign

sequence length for program sequence reconstruction for testing with a legacy technique. Once a

thread is compromised, it remains so, resulting in attack sequences taking over until termination

of the thread of program. This process is depicted in Figure 5.5. The profile of syscalls in the

attack sample versus those of the training and testing samples is shown in Figure 5.6. Note that

as the ADFA-LD dataset was collected under 32-bit Linux, remapping of syscall identifiers was

necessary for 64-bit Linux. The emphasis is to capture the intent of the attack via its interaction

with the kernel, so semantics are preserved during this remapping process (details can be found in

Appendix A).

74

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

0 50 100 150 200 250 300

Fr
eq

u
e

n
cy

Syscall Identifier

Syscall Profiles

Train

Test

Attack

Figure 5.6: Syscall Profiles. The syscall profiles for training, testing and attack data (frequency of
each syscall over each respective subset).

75

k=49

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

A
SW

of Clusters (k)

ASW
(w/ edge weights)

HCA(c)-SIL

Figure 5.7: Candidate k Selection for Modeling

5.7.2 k Selection

As clustering analysis is the model building technique for our detector, we need to determine an

appropriate number of clusters k to partition the dataset. In contrast to Chapter 4, where we filter

out anonymous threads to allow for evaluation of cluster purity, we include all threads in this

study as the clustering of SBGs has been validated. The average silhoutte width (ASW) plot of

this combined dataset is shown in Figure 5.7. It is clear that a range of values appear to be good

candidate values for k ∈ [37, 49]. In Chapter 4, analysis of the labeled portion of the dataset showed

that higher values were better (in terms of adjust Rand index). Therefore, we select k = 49. This is

consistent with the fact that the addition of anonymous threads increases the number of discovered

behaviors in the larger dataset (previously, 46 in the labeled portion).

5.7.3 Classification Performance

Table 5.4 shows the raw and computed values of our classifier, henceforth referred to as SBG

cluster outlier detection (SCOD), versus STIDE against the constructed dataset. As mentioned

earlier, two reasonable thresholds were tested for each of the classifiers; 5% and 10% for SCOD,

and window sizes 6 and 9 for STIDE. It is important to note that the raw values for SCOD are per

thread sequence and those for STIDE are per program sequence, as shown in the dataset breakdown

in Table 5.3. Therefore, the computed values offer more interpretive and normalized values to

76

Table 5.4: Summary of Classification Performance (SCOD vs STIDE). Two thresholds were tried
for each classifier; 5% and 10% boundaries for SCOD, and 6 and 9 window sizes for STIDE.

Malicious Benign
Classifier\Score TP FN TN FP TPR FPR ACC
SCOD-5% 26311 5104 32940 1358 0.84 0.04 0.90
SCOD-10% 26702 4713 32588 1710 0.85 0.05 0.90
STIDE-6 351 660 71 940 0.35 0.07 0.42
STIDE-9 162 849 111 900 0.16 0.11 0.27

compare classification performance of the classifiers. In identifying malicious samples, SCOD’s

worst detection rate at 5% threshold is more than double STIDE’s best at window size 6: 0.85

and 0.35, respectively. As expected with per-thread detection models, the FNs are reduced due

to a better model fit of the activity in Firefox resulting in a better TPR. With respect to FPR,

SCOD’s worst FPR is less than half that of STIDE’s: 0.04 and 0.11, respectively. High FPR is

highly undesirable as it causes undue workload for the defender; each FP needs to be investigated

because it is initially unknown that it is a false alarm. Increasing, or tightening, the threshold

generally increases FPs and increases TPs as the profile for malicious activity becomes stricter; the

higher the threshold, the more normal samples fall on the malicious side of the detector. We see

this in both classifiers, but with a higher increase in FPR in STIDE at the common thresholds of 6

and 9 versus a minor increases in SCOD at 5% and 10%: 0.01 verses 0.04, respectively. These TPR

and FPR values give insight into the overall detection accuracy of the two classifiers, with SCOD

average around 0.90 and 0.35. This shows that per-thread modeling is a promising approach in

developing classifiers.

5.8 Limitations and Future Work

The work presented has several positive characteristics. Namely, it has fast training and testing

times, and effectively models multi-threaded programs. However, there are some current draw-

backs in the dataset used to evaluate our approach and the "static" nature data structure fundamen-

tal to modeling limit its use-case scenarios. We discuss these issues and present ideas for resolving

them in future work.

77

Synthetic Attack Dataset

The malicious samples in the dataset used to evaluate the accuracy of this approach are synthetic. A

portion of the benign data was perturbed to reflect hijacked threads. This design decision was made

to profile a highly multi-threaded program, a web browser, which is a common target for attacks

(e.g., drive-by-download, heap spraying, etc.) and because malicious URL lists are not a reliable

source for attack data for research. Compromised URLs are often addressed administratively be-

fore attack data can be collected. In future research, we hope to find other highly multi-thread

programs with many verifiable attacks, or a reliable testbed for a browser which includes attacks.

Manual Thresholds

Instead of anomaly thresholds being set automatically, they are manually set to control the FNs that

would be induced by the negative impact of cluster outliers resulting from our modeling technique.

Using a boundary determined by the most deviant member can create a wide gap for exploitation

if this member is an outlier. Ideally, thresholds naturally defined by only the non-outlier clus-

ter members would eliminate this tuning parameter, which requires manual configuration. Such

natural, non-outlier thresholds would require dissimilarity formulations and clustering techniques

resilient against outliers. Future work will explore further improving both of these areas to elimi-

nate the manual intervention of a defender to tune the classifier.

Offline Analysis

In particular, this approach can only readily be used for offline analysis to analyze transaction

or session-based activities. For example, the target program in this study, Mozilla Firefox, has

session-based actions. The session begins with directing the browser to a URL, and ends with a

page loaded event. Since all threads are to be monitored (including initialization and destruction

threads) this work executes and terminates a fresh instance of Firefox for each URL, syscall collec-

tion begins at the invocation of firefox and termination of the resulting processing, capturing

the HTTP session in-between. Not all programs of interest follow this paradigm. Therefore, we

78

need to extend this approach to be more general. One proposal is to represent an online sequence

of syscalls via a dynamic graph. Unlike the SBG used in this chapter, which requires a termi-

nated syscall sequence, a dynamic version could accommodate continuous sequence, the graph

differential is used for model building and anomaly detection.

5.9 Conclusion

Previous data-driven approaches in syscall HIDS fall short in modeling, and thus, protecting even

moderately more complex software than those reflected in datasets used over the past two decades.

This is due to monolithic models responsible for capturing diverse behaviors and/or interleaved

sequences capture at the program level. A thread-sensitive approach is more appropriate for the

complex, multi-threaded programs of interest to defenders today. Therefore, a syscall HIDS aware

of such diverse behaviors is necessary to protect programs and systems in use today.

This chapter presents an anomaly detection technique which can utilize refined models com-

prised of the SBG clusters produced from the methodology presented in Chapter 4. Results show a

thread-sensitive approach evaluated against a highly complex program can achieve the accuracies

of legacy approaches against simpler programs.

79

Chapter 6: CONCLUSIONS

This dissertation addresses the problem of syscall HIDS for complex multi-threaded programs. A

three-pronged approach for improving shortcomings in the data source, modeling, and detection

logic is undertaken to advance the state-of-the-art in syscall anomaly detection. These contri-

butions ultimately result in an accurate classifier suited to detect anomalies in today’s complex

software. Despite these contributions, there is much room for improvement in each of these areas.

Additionally, more capabilities are envisioned for this work in broader use-case scenarios.

6.1 Contributions

The overarching goal of this dissertation is to reinvigorate syscall HIDS research by not only

introducing yet another anomaly detection method, but by reevaluating the nature of the problem

and advancing other factors in the development of this technology. We elaborate fundamental

shortcomings in characteristics of previous datasets and the modeling techniques which utilize

them for design and evaluation. Therefore, we make contributions to improving the data source

and modeling techniques, proposing a decision engine. These contributions are summarized as

follows:

• A dataset collector: We provide a rich and extensible syscall dataset collector to enable

researchers to easily compile syscall datasets with the features necessary to accommodate

future approaches.

• A methodology for thread behavior clustering: We propose a methodology for clustering

thread behaviors by syscall pattern summaries to allow for building multiple submodels spe-

cific to behaviors, as opposed to a single model responsible for capturing all behaviors.

• A thread-sensitive anomaly detector: We present an outlier detection for anomaly detection

by utilizing the models produced from our thread behavior clustering methodology.

80

6.2 Future Work

Aside from the incremental improvements to the contributions discussed in the respective sections

of this dissertation, the ultimate goal is to extend beyond single hosts to an enterprise scale. Efforts

will start at protecting all threads on a host, and ultimately all hosts in an enterprise. Our vision

entails an appliance which enables the offloading of syscall analysis from hosts to this dedicated

system for anomaly detection. This will result in a cost-effective IDS that is simple to deploy, as it

is centralized.

Equally important is to quantify the capabilities of syscall HIDS, including the improved de-

tection capability when compared with existing techniques of the same kind. This requires to

systematically defining security metrics to measure the capabilities from a building-block per-

spective [24, 78]. Moreover, the security effectiveness of syscall HIDS should be evaluated in

the broader context of enterprise and cyberspace security. There are substantial effort at first-

principle modeling, reasoning, and quantification of cyber security from a holistic perspective

[29, 47, 66, 68, 109, 111–113, 115–119, 125, 126], which often take the capabilities of HIDS and

other defense mechanisms as input parameters. It also remains to be investigated to understand

and characterize the impact of HIDS and other defense mechanisms on the predictability of cyber

attacks in the emerging field of cybersecurity data analytics [80, 110, 122–124], including adver-

sarial HIDS [108].

6.3 Final Remarks

The role of intrusion detection in the holistic framework of cybersecurity is increasing as defenders

are accepting the reality that it is only a matter of when, not if, systems will be compromised. In-

stead of focusing resources on prevention, research is turning to faster and more accurate detection

to help mitigate damages to organizations. Despite the potential of syscalls as a indicator of benign

and malicious program behavior, its power has been stunted as previous syscall anomaly detection

algorithms are evaluated against aging, or very limited datasets. Thus, the results reported from

81

those studies may not be representative when these approaches are utilized to defend real-world

complex programs. Therefore, we set out to develop tools and techniques to address this problem.

Particularly, we pay specific attention to the largely unaddressed problem of monitoring complex

multi-threaded programs. In conclusion, more capability can be extracted from syscalls in detect-

ing intrusions by improving all aspects of syscall HIDS: data collection, program modeling and

the DE.

82

Appendix A: REMAPPING OF ATTACK SYSTEM CALL SEQUENCES

FROM 32-BIT TO 64-BIT LINUX

In order to utilize the attack sequences from [27] with our syscall dataset collected under 64-bit

Linux, it is necessary to remap the syscall identifiers from 32-bit Linux to their 64-bit counterparts.

The attack sequences in [27] only use a subset of all available syscalls, so only those are translated

to simplify the task. This remapping was done with the aid of [1], [2], and the Linux source [10].

Table A.1: Remapping Table for Attack Sequences

32-
bit
Iden-
tifier

64-
bit
Iden-
tifier

32-bit Entry Name 64-bit Entry Name

3 0 sys_read sys_read
4 1 sys_write sys_write
5 2 sys_open sys_open
6 3 sys_close sys_close
7 61 sys_waitpid sys_wait4
10 87 sys_unlink sys_unlink
11 59 sys_execve sys_execve
12 80 sys_chdir sys_chdir
13 201 sys_time sys_time
19 8 sys_lseek sys_lseek
33 21 sys_access sys_access
43 22 sys_times sys_times
45 12 sys_brk sys_brk
54 16 sys_ioctl sys_ioctl
57 109 sys_setpgid sys_setpgid
60 95 sys_umask sys_umask
78 96 sys_gettimeofday sys_gettimeofday
91 11 sys_munmap sys_munmap
102 41 sys_socketcall sys_socket
104 38 sys_setitimer sys_setitimer
119 15 sys_sigreturn sys_sigreturn
120 56 sys_clone stub_clone
122 63 sys_newuname sys_newuname
125 10 sys_mprotect sys_mprotect

83

Table A.2: Remapping Table for Attack Sequences (continued)

32-
bit
Iden-
tifier

64-
bit
Iden-
tifier

32-bit Entry Name 64-bit Entry Name

140 8 sys_llseek sys_lseek
141 78 sys_getdents sys_getdents
142 23 sys_select sys_select
146 20 sys_writev sys_writev
156 144 sys_sched_setscheduler sys_sched_setscheduler
162 35 sys_nanosleep sys_nanosleep
163 25 sys_mremap sys_mremap
168 7 sys_poll sys_poll
174 13 sys_rt_sigaction sys_rt_sigaction
175 14 sys_rt_sigprocmask sys_rt_sigprocmask
183 79 sys_getcwd sys_getcwd
191 97 sys_getrlimit sys_getrlimit
192 9 sys_mmap_pgoff sys_mmap
195 4 sys_stat64 sys_newstat
196 6 sys_lstat64 sys_newlstat
197 5 sys_fstat64 sys_newfstat
205 115 sys_getgroups sys_getgroups
220 217 sys_getdents64 sys_getdents64
221 72 sys_fcntl64 sys_fcntl
240 202 sys_futex sys_futex
243 205 sys_set_thread_area set_thread_area
258 218 sys_set_tid_address sys_set_tid_address
265 228 sys_clock_gettime sys_clock_gettime
268 137 sys_statfs64 sys_statfs
292 254 sys_inotify_add_watch sys_inotify_add_watch
295 257 sys_openat sys_openat
300 262 sys_fstatat64 sys_newfstatat
301 263 sys_unlinkat sys_unlinkat
309 271 sys_ppoll sys_ppoll
311 273 sys_set_robust_list sys_set_robust_list
331 293 sys_pipe2 sys_pipe2
340 303 sys_prlimit64 sys_prlimit64

84

Appendix B: DISSIMILARITY ROUTINES

Various formulations of dissimilarity were tested to improve clustering performance of labeled

thread in Chapter 4. Below is a listing of the tried metrics along with a short rationale for their

formulation and corresponding code snippets.

B.1 Combined, Unweighted GED-based Dissimilarity

Inspired by [61] and [57], this is the initial formulation attempted for comparing SBGs in this

work. As relabeling cost is 1) considered too expensive to compute, and 2) may indicate high

similarity between graphs with disjoint syscalls but with similar structure, it is omitted. The results

of this formulation were mediocre, at best. Some problems with this are the dominance of weights

in graphs with a high edge-to-vertex ratio, and the omission of edge weights, which can be used

to further distinguish between graphs with similar structure. The formulation and corresponding

code snippet for combined, unweighted GED-based Dissimilarity are as follows:

δ(G,H) =
V ertexCost+ EdgeCost

|VG|+ |EG|+ |VH |+ |EH |

double similarity_nlbasicmap(uint_set &gn, uint_set &hn, uint_edge_set &ge, uint_edge_set &he)

{

double node_cost = 0.0, edge_cost = 0.0, node_total = 0.0, edge_total = 0.0;

double edge_wcost_del, edge_wcost_ins;

double gn_size = gn.size(), hn_size = hn.size();

double ge_size = ge.size(), he_size = he.size();

double sim;

node_cost += set_deletions(gn,hn);

node_cost += set_insertions(gn,hn);

edge_cost += set_deletions(ge,he,&edge_wcost_del);

edge_cost += set_insertions(ge,he,&edge_wcost_ins);

85

edge_total += ge_size + he_size;

node_total = gn_size + hn_size;

sim = (edge_cost + node_cost)/(node_total + edge_total) ;

return sim;

}

B.2 Split, Weighted GED-based Dissimilarity

To mitigate the problems of the formulation above, we 1) give vertices and edges equal contribution

to a dissimilarity score with a weighting factor of 0.5, and 2) use normalized frequency of adjacent

syscall execution to further discriminate between graphs with similar vertex and edge sets, but

different use case scenarios. This achieved the best performance in clustering, with an average

silhouette coefficient in the "good" range. The formulation and code snippet are as follows:

δ(G,H) = (0.5)
V ertexCost

|VG|+ |VH |
+ (0.5)

EdgeWeightCost

W (EG) +W (EH)

double similarity_nlsplitmap(uint_set &gn, uint_set &hn, uint_edge_set &ge, uint_edge_set &he){

double node_cost = 0.0, edge_cost = 0.0, node_total = 0.0, edge_total = 0.0;

double edge_wcost, edge_wcost_del, edge_wcost_ins, edge_wcost_se, edge_wtotal = 0.0;

double gn_size = gn.size(), hn_size = hn.size();

double ge_size = set_weight_total(ge), he_size = set_weight_total(he);

double sim;

node_cost += set_deletions(gn,hn);

node_cost += set_insertions(gn,hn);

edge_cost += set_deletions_fast(ge,he,&edge_wcost_del);

edge_cost += set_insertions_fast(ge,he,&edge_wcost_ins);

edge_cost += set_shared_edges_fast(ge,he,&edge_wcost_se);

edge_wcost = edge_wcost_del + edge_wcost_ins + edge_wcost_se;

edge_wtotal += set_edge_wtotal(ge);

edge_wtotal += set_edge_wtotal(he);

86

edge_total += ge_size + he_size;

node_total = gn_size + hn_size;

sim = 0.5 * ((node_cost)/(node_total) + (edge_wcost)/(edge_wtotal));

return sim;

}

B.3 Split, Unweighted Jaccard index-based Dissimilarity

A dissimilarity formulation that was tested, yet produced not notable results, was a Jaccard index-

based dissimilarity. The intuition was that since a graph G is simply a tuple of sets (V,E), a

dissimilarity measure specific to sets would be more appropriate, as we consider the contribution

of vertices and edges separately before aggregating them into a single score with equal contri-

bution. However, this produced no notable results for reporting. This may be explored more

comprehensively in the future to underpin its shortcomings. The formulation and code snippet are

as follows:

δ(G,H) = (0.5)
|VG ∪ VH | − |VG ∩ VH |

|VG ∪ VH |
+ (0.5)

|EG ∪ EH | − |EG ∩ EH |
|EG ∪ EH |

double similarity_nlsplitjaccardmap(uint_set &gn, uint_set &hn, uint_edge_set &ge, uint_edge_set &he)

{

double edge_denom, node_denom, ghe_inter_size, ghn_inter_size;

double gn_size = gn.size(), hn_size = hn.size();

double ge_size = ge.size(), he_size = he.size();

double sim;

uint_set ghn_inter;

uint_edge_set ghe_inter;

edge_denom = ge_size + he_size - ghe_inter_size;

node_denom = gn_size + hn_size - ghn_inter_size;

sim = 0.5 * ((1-(ghn_inter_size)/(node_denom)) + (1-(ghe_inter_size)/(edge_denom)));

87

return sim;

}

B.4 Split, Unweighted GED-based Dissimilarity

Another metric that was tested with insignificant results was a weighted version of the combined,

unweighted GED-based dissimilarity. This was tested prior to considering weights to determine

if weighting the contribution of vertices and edges was more beneficial than including weights.

Although better than the combined, unweighted GED-based dissimilarity, it was the consideration

of weights that resulted in the bigged increased in clustering performance.

δ(G,H) = (0.5)
V ertexCost

|VG|+ |VH |
+ (0.5)

EdgeCost

W (EG) +W (EH)

double similarity_nlsplitbasicmap(uint_set &gn, uint_set &hn, uint_edge_set &ge, uint_edge_set &he)

{

double node_cost = 0.0, edge_cost = 0.0, node_total = 0.0, edge_total = 0.0;

double edge_wcost_del, edge_wcost_ins;

double gn_size = gn.size(), hn_size = hn.size();

double ge_size = ge.size(), he_size = he.size();

double sim;

node_cost += set_deletions(gn,hn);

node_cost += set_insertions(gn,hn);

edge_cost += set_deletions_fast(ge,he,&edge_wcost_del);

edge_cost += set_insertions_fast(ge,he,&edge_wcost_ins);

edge_total += ge_size + he_size;

node_total = gn_size + hn_size;

sim = 0.5 * ((node_cost)/(node_total) + (edge_cost)/(edge_total));

return sim;

}

88

BIBLIOGRAPHY

[1] Linux syscall reference. https://syscalls.kernelgrok.com.

[2] Searchable linux syscall table for x86 and x86_64. https://filippo.io/

linux-syscall-table.

[3] Kdd98 intrusion detection dataset. Online, 1998.

[4] Kdd99 intrusion detection dataset. Online, 1998.

[5] Mozilla firefox. https://www.mozilla.org/firefox/, 2002–2017.

[6] University of new mexico intrusion detection dataset, 2004.

[7] Intel pin. https://software.intel.com/sites/landingpage/pintool/,

2005–2017.

[8] Docker. https://www.docker.com/, 2013–2017.

[9] Mcafee labs threats report. McAfee Inc., Santa Clara, CA. Available: http://www. mcafee.

com/us/resources/reports/rp-quarterlythreat-q1-2014. pdf, 2014.

[10] Ubuntu linux. https://www.ubuntu.com/, 2014–2017.

[11] Active cyber defense-http://www.darpa.mil/program/active-cyber-defense, 2017.

[12] Moving target defense-https://coar.risc.anl.gov/research/moving-target-defense, 2017.

[13] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and

description: a survey. Data Mining and Knowledge Discovery, 29(3):626–688, 2015.

[14] Michael Bailey, Jon Oberheide, Jon Andersen, Zhuoqing Morley Mao, Farnam Jahanian,

and Jose Nazario. Automated classification and analysis of internet malware. In RAID,

volume 4637, pages 178–197. Springer, 2007.

89

https://syscalls.kernelgrok.com
https://filippo.io/linux-syscall-table
https://filippo.io/linux-syscall-table
https://www.mozilla.org/firefox/
https://software.intel.com/sites/landingpage/pintool/
https://www.docker.com/
https://www.ubuntu.com/

[15] Jeffrey D Banfield and Adrian E Raftery. Model-based gaussian and non-gaussian cluster-

ing. Biometrics, pages 803–821, 1993.

[16] Ulrich Bayer, Paolo Milani Comparetti, Clemens Hlauschek, Christopher Kruegel, and En-

gin Kirda. Scalable, behavior-based malware clustering. In NDSS, volume 9, pages 8–11,

2009.

[17] Joachim Biskup and Ulrich Flegel. Transaction-based pseudonyms in audit data for privacy

respecting intrusion detection. In Recent Advances in Intrusion Detection, pages 28–48.

Springer, 2000.

[18] Dion Blazakis. Interpreter exploitation: Pointer inference and jit spraying. BlackHat DC,

2010.

[19] Carson Brown, Alex Cowperthwaite, Abdulrahman Hijazi, and Anil Somayaji. Analysis

of the 1999 darpa/lincoln laboratory ids evaluation data with netadhict. In Computational

Intelligence for Security and Defense Applications, 2009. CISDA 2009. IEEE Symposium

on, pages 1–7. IEEE, 2009.

[20] Milind Chabbi, Xu Liu, and John Mellor-Crummey. Call paths for pin tools. In Proceed-

ings of Annual IEEE/ACM International Symposium on Code Generation and Optimization,

page 76. ACM, 2014.

[21] Milind Chabbi, Xu Liu, and John Mellor-Crummey. Call paths for pin tools. In Proceed-

ings of Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’14, pages 76:76–76:86, New York, NY, USA, 2014. ACM.

[22] Yu-Zhong Chen, Zi-Gang Huang, Shouhuai Xu, and Ying-Cheng Lai. Spatiotemporal pat-

terns and predictability of cyberattacks. PLoS One, 10(5):e0124472, 05 2015.

[23] Tom Chiu, DongPing Fang, John Chen, Yao Wang, and Christopher Jeris. A robust and

scalable clustering algorithm for mixed type attributes in large database environment. In

90

Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery

and data mining, pages 263–268. ACM, 2001.

[24] Jin-Hee Cho, Packtrick Hurley, and Shouhuai Xu. Metrics and measurement of trustworthy

systems. In IEEE Military Communication Conference (MILCOM 2016), 2016.

[25] Jedidiah R Crandall and Frederic T Chong. Minos: Control data attack prevention orthog-

onal to memory model. In Microarchitecture, 2004. MICRO-37 2004. 37th International

Symposium on, pages 221–232. IEEE, 2004.

[26] Gideon Creech. Developing a high-accuracy cross platform Host-Based Intrusion Detection

System capable of reliably detecting zero-day attacks. PhD thesis, PhD thesis, University of

New South Wales, 2014.

[27] Gideon Creech and Jiankun Hu. Generation of a new ids test dataset: Time to retire the kdd

collection. In 2013 IEEE Wireless Communications and Networking Conference (WCNC),

pages 4487–4492. IEEE, 2013.

[28] Gideon Creech and Jiankun Hu. A semantic approach to host-based intrusion detection

systems using contiguousand discontiguous system call patterns. IEEE Transactions on

Computers, 63(4):807–819, 2014.

[29] Gaofeng Da, Maochao Xu, and Shouhuai Xu. A new approach to modeling and analyzing

security of networked systems. In Proceedings of the 2014 Symposium and Bootcamp on

the Science of Security (HotSoS’14), pages 6:1–6:12, 2014.

[30] Michiel de Hoon Sieya Imoto Satoru Miyano. The C Clustering Library. The University of

Tokyo, Institute of Medical Science, Human Genome Center.

[31] Michiel de Hoon Sieya Imoto Satoru Miyano. The C Clustering Library. The University of

Tokyo, Institute of Medical Science, Human Genome Center.

91

[32] Dawn Song Debin Gao, Michael K. Reiter. Gray-box extraction of execution graphs for

anomaly detection. CCS, 2004.

[33] Dawn Song Debin Gao, Michael K. Reiter. Gray-box extraction of execution graphs for

anomaly detection. CCS, 2004.

[34] John Demme and Simha Sethumadhavan. Approximate graph clustering for program char-

acterization. ACM Transactions on Architecture and Code Optimization (TACO), 8(4):21,

2012.

[35] Michel Marie Deza and Elena Deza. Encyclopedia of distances. In Encyclopedia of Dis-

tances, pages 1–583. Springer, 2009.

[36] Vegard Engen, Jonathan Vincent, and Keith Phalp. Exploring discrepancies in findings

obtained with the kdd cup’99 data set. Intelligent Data Analysis, 15(2):251–276, 2011.

[37] Henry Hanping Feng, Oleg M Kolesnikov, Prahlad Fogla, Wenke Lee, and Weibo Gong.

Anomaly detection using call stack information. In Security and Privacy, 2003. Proceed-

ings. 2003 Symposium on, pages 62–75. IEEE, 2003.

[38] Stephanie Forrest. A sense of self for unix processes. Security and Privacy, 1996.

[39] Debin Gao. Gray-Box Anomaly Detection using System Call Monitoring. PhD thesis,

Carnegie Mellon University, 2007.

[40] Debin Gao. Gray-Box Anomaly Detection using System Call Monitoring. PhD thesis,

Carnegie Mellon University, 2007.

[41] Anup K Ghosh and Aaron Schwartzbard. A study in using neural networks for anomaly and

misuse detection. In USENIX security symposium, volume 99, page 12, 1999.

[42] George Giannakopoulos, Vangelis Karkaletsis, George Vouros, and Panagiotis Stamatopou-

los. Summarization system evaluation revisited: N-gram graphs. ACM Trans. Speech Lang.

Process., 5(3):5:1–5:39, October 2008.

92

[43] George Giannakopoulos, Vangelis Karkaletsis, George Vouros, and Panagiotis Stamatopou-

los. Summarization system evaluation revisited: N-gram graphs. ACM Transactions on

Speech and Language Processing (TSLP), 5(3):5, 2008.

[44] Jonathon T Giffin, Somesh Jha, and Barton P Miller. Detecting manipulated remote call

streams. In USENIX Security Symposium, pages 61–79, 2002.

[45] Seweryn Habdank-Wojewodzki and Janus Rybarski. The kohonen neural network library.

Overload, 74:22–31, August 2006.

[46] Jin Han, Qiang Yan, Robert H Deng, and Debin Gao. On detection of erratic arguments. In

International Conference on Security and Privacy in Communication Systems, pages 172–

189. Springer, 2011.

[47] Yujuan Han, Wnelian Lu, and Shouhuai Xu. Characterizing the power of moving target

defense via cyber epidemic dynamics. In Proc. 2014 Symposium and Bootcamp on the

Science of Security (HotSoS’14), pages 10:1–10:12, 2014.

[48] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,

9(8):1735–1780, November 1997.

[49] Stephanie Forrest Hofmeyr, Steven A. and Anil Somayaji. Intrusion detection using se-

quences of system calls. Journal of computer security, 6.3:151–180, 1998.

[50] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Pearson/Addison Wesley, 2007.

[51] Xin Hu, Tzi-cker Chiueh, and Kang G Shin. Large-scale malware indexing using function-

call graphs. In Proceedings of the 16th ACM conference on Computer and communications

security, pages 611–620. ACM, 2009.

[52] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classification,

2(1):193–218, 1985.

93

[53] Dae-Ki Kang, Doug Fuller, and Vasant Honavar. Learning classifiers for misuse and

anomaly detection using a bag of system calls representation. In Information Assurance

Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, pages 118–125.

IEEE, 2005.

[54] Leonard Kaufman and Peter J Rousseeuw. Partitioning around medoids (program pam).

Finding groups in data: an introduction to cluster analysis, pages 68–125, 1990.

[55] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. Lstm-based

system-call language modeling and robust ensemble method for designing host-based intru-

sion detection systems. CoRR, abs/1611.01726, 2016.

[56] Gyuwan Kim, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon. Lstm-based

system-call language modeling and robust ensemble method for designing host-based intru-

sion detection systems. arXiv preprint arXiv:1611.01726, 2016.

[57] Joris Kinable and Orestis Kostakis. Malware classification-based on call graph clustering.

CoRR, abs/1008.4365, 2010.

[58] Joris Kinable and Orestis Kostakis. Malware classification based on call graph clustering.

Journal in computer virology, 7(4):233–245, 2011.

[59] Albert Hung-Ren Ko, Robert Sabourin, and Alceu de Souza Britto. A new hmm training and

testing scheme. In Pattern Recognition, 2008. ICPR 2008. 19th International Conference

on, pages 1–4. IEEE, 2008.

[60] Orestis Kostakis. Classy: Fast clustering streams of call-graphs. Data Mining and Knowl-

edge Discovery, 28(5-6):1554–1585, 2014.

[61] Orestis Kostakis, Joris Kinable, Hamed Mahmoudi, and Kimmo Mustonen. Improved call

graph comparison using simulated annealing. In Proceedings of the 2011 ACM Symposium

on Applied Computing, pages 1516–1523. ACM, 2011.

94

[62] Christopher Kruegel, Darren Mutz, Fredrik Valeur, and Giovanni Vigna. On the detection

of anomalous system call arguments. In European Symposium on Research in Computer

Security, pages 326–343. Springer, 2003.

[63] T Lee and JJ Mody. Behavioral classification. In 15th European Institute for Computer

Antivirus Research (EICAR 2006) Annual Conference, 2006.

[64] Danai Koutra Leman Akoglu, Hanghang Tong. Graph based anomaly detection and descrip-

tion: A survey.

[65] Tao Li, Sheng Ma, and Mitsunori Ogihara. Entropy-based criterion in categorical clustering.

In Proceedings of the twenty-first international conference on Machine learning, page 68.

ACM, 2004.

[66] Xiaohu Li, Paul Parker, and Shouhuai Xu. A stochastic model for quantitative security

analyses of networked systems. IEEE Transactions on Dependable and Secure Computing,

8(1):28–43, 2011.

[67] Guowei Liu, Weibin Zhu, and Yong Yu. A unified probabilistic framework for cluster-

ing correlated heterogeneous web objects. Web Technologies Research and Development-

APWeb 2005, pages 76–87, 2005.

[68] Wenlian Lu, Shouhuai Xu, and Xinlei Yi. Optimizing active cyber defense dynamics. In

Proceedings of the 4th International Conference on Decision and Game Theory for Security

(GameSec’13), pages 206–225, 2013.

[69] Matthew V Mahoney and Philip K Chan. An analysis of the 1999 darpa/lincoln labora-

tory evaluation data for network anomaly detection. In International Workshop on Recent

Advances in Intrusion Detection, pages 220–237. Springer, 2003.

[70] John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999 darpa

intrusion detection system evaluations as performed by lincoln laboratory. ACM Transac-

tions on Information and System Security (TISSEC), 3(4):262–294, 2000.

95

[71] Syed Bilal Mehdi, Ajay Kumar Tanwani, and Muddassar Farooq. Imad: in-execution mal-

ware analysis and detection. In Proceedings of the 11th Annual conference on Genetic and

evolutionary computation, pages 1553–1560. ACM, 2009.

[72] Marina Meilă and David Heckerman. An experimental comparison of several clustering

and initialization methods. In Proceedings of the Fourteenth Conference on Uncertainty

in Artificial Intelligence, UAI’98, pages 386–395, San Francisco, CA, USA, 1998. Morgan

Kaufmann Publishers Inc.

[73] Daniel Müllner. fastcluster: Fast hierarchical, agglomerative clustering routines for R and

Python. Journal of Statistical Software, 53(9):1–18, 2013.

[74] Darren Mutz, Fredrik Valeur, Giovanni Vigna, and Christopher Kruegel. Anomalous system

call detection. ACM Transactions on Information and System Security (TISSEC), 9(1):61–

93, 2006.

[75] Mizuki Oka, Hirotake Abe, Yoshihiro Oyama, and Kazuhiko KATO. Intrusion detection

system based on binary code and execution stack analysis. 2003(0):114–114, 2003.

[76] Younghee Park, Douglas Reeves, Vikram Mulukutla, and Balaji Sundaravel. Fast malware

classification by automated behavioral graph matching. In Proceedings of the Sixth Annual

Workshop on Cyber Security and Information Intelligence Research, CSIIRW ’10, pages

45:1–45:4, New York, NY, USA, 2010. ACM.

[77] Dau Pelleg and Andrew Moore. X-means: Extending k-means with efficient estimation

of the number of clusters. In In Proceedings of the 17th International Conf. on Machine

Learning, pages 727–734. Morgan Kaufmann, 2000.

[78] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. A survey on

systems security metrics. ACM Comput. Surv., 49(4):62:1–62:35, December 2016.

96

[79] Marcus Pendleton and Shouhuai Xu. A dataset generator for next generation system call

host intrusion detection systems. In Milcom 2017 Track 3 - Cyber Security and Trusted

Computing (Milcom 2017 Track 3), Baltimore, USA, October 2017.

[80] Chen Peng, Maochao Xu, Shouhuai Xu, and Taizhong Hu. Modeling and predicting extreme

cyber attack rates via marked point processes. Journal of Applied Statistics, 0(0):1–30, 2016.

[81] K Poulose Jacob and Mariam Varghese Surekha. Anomaly detection using system call

sequence sets. 2007.

[82] Mohan Rajagopalan, Matti Hiltunen, Trevor Jim, and Richard Schlichting. Authenticated

system calls. In Dependable Systems and Networks, 2005. DSN 2005. Proceedings. Inter-

national Conference on, pages 358–367. IEEE, 2005.

[83] William M Rand. Objective criteria for the evaluation of clustering methods. Journal of the

American Statistical association, 66(336):846–850, 1971.

[84] Julie Rehmeyer. User Documentation for the STIDE Software Package, April 1998.

[85] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster

analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

[86] R Sekar, Mugdha Bendre, Dinakar Dhurjati, and Pradeep Bollineni. A fast automaton-based

method for detecting anomalous program behaviors. In Security and Privacy, 2001. S&P

2001. Proceedings. 2001 IEEE Symposium on, pages 144–155. IEEE, 2001.

[87] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without

function calls (on the x86). In Proceedings of the 14th ACM conference on Computer and

communications security, pages 552–561. ACM, 2007.

[88] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan

Boneh. On the effectiveness of address-space randomization. In Proceedings of the 11th

ACM conference on Computer and communications security, pages 298–307. ACM, 2004.

97

[89] Monirul Sharif, Kapil Singh, Jonathon Giffin, and Wenke Lee. Understanding precision in

host based intrusion detection. In International Workshop on Recent Advances in Intrusion

Detection, pages 21–41. Springer, 2007.

[90] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher Kruegel, and Giovanni

Vigna. Firmalice - automatic detection of authentication bypass vulnerabilities in binary

firmware. 2015.

[91] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Andrew

Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni

Vigna. Sok: (state of) the art of war: Offensive techniques in binary analysis. 2016.

[92] Jeremy Siek, Lie-Quan Lee, and Andrew Lumsdaine. Boost random number library.

http://www.boost.org/libs/graph/, June 2000.

[93] Inc SPSS. The spss twostep cluster component. a scalable component enabling more effi-

cient customer segmentation. Technical report, Tech. Rep, 2001.

[94] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Cor-

betta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller: Augmenting

fuzzing through selective symbolic execution. 2016.

[95] Chenfei Sun, Qingzhong Li, Lizhen Cui, Zhongmin Yan, Hui Li, and Wei Wei. An effec-

tive hybrid fraud detection method. In International Conference on Knowledge Science,

Engineering and Management, pages 563–574. Springer, 2015.

[96] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. Sok: Eternal war in memory. In

Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages 48–62,

Washington, DC, USA, 2013. IEEE Computer Society.

[97] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Data mining cluster analysis: basic

concepts and algorithms. Introduction to data mining, 2013.

98

[98] David Wagner and Drew Dean. Intrusion detection via static analysis. In Security and

Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, pages 156–168. IEEE,

2001.

[99] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection systems.

In Proceedings of the 9th ACM Conference on Computer and Communications Security,

pages 255–264. ACM, 2002.

[100] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting intrusions using

system calls: Alternative data models. In Security and Privacy, 1999. Proceedings of the

1999 IEEE Symposium on, pages 133–145. IEEE, 1999.

[101] Kyubum Wee and Byungeun Moon. Automatic generation of finite state automata for detect-

ing intrusions using system call sequences. In Computer Network Security, pages 206–216.

Springer, 2003.

[102] Leslie Wiser. Intrusion detection and homeland security: Ask the expert.

www2.cio.com/ask/expert/2002/questions/question1522.html?

CATEGORY=15&NAME=Internet, 2002.

[103] Shu Wu and Shengrui Wang. Parameter-free anomaly detection for categorical data. In

International Workshop on Machine Learning and Data Mining in Pattern Recognition,

pages 112–126. Springer, 2011.

[104] Kui Xu. Anomaly Detection through System and Program Behavior Modeling. PhD thesis,

Virginia Polytechnic Institute and State University.

[105] Kui Xu. Anomaly Detection through System and Program Behavior Modeling. PhD thesis,

Virginia Polytechnic Institute, 2014.

[106] Li Xu, Zhenxin Zhan, Shouhuai Xu, and Keying Ye. Cross-layer detection of malicious

websites. In Proceedings of the Third ACM Conference on Data and Application Security

and Privacy, CODASPY ’13, pages 141–152, New York, NY, USA, 2013. ACM.

99

www2.cio.com/ask/expert/2002/questions/question1522.html?CATEGORY=15&NAME=Internet
www2.cio.com/ask/expert/2002/questions/question1522.html?CATEGORY=15&NAME=Internet

[107] Li Xu, Zhenxin Zhan, Shouhuai Xu, and Keying Ye. An evasion and counter-evasion study

in malicious websites detection. In Communications and Network Security (CNS), 2014

IEEE Conference on, pages 265–273. IEEE, 2014.

[108] Li Xu, Zhenxin Zhan, Shouhuai Xu, and Keying Ye. An evasion and counter-evasion study

in malicious websites detection. In IEEE Conference on Communications and Network

Security (CNS’14), pages 265–273, 2014.

[109] Maochao Xu, Gaofeng Da, and Shouhuai Xu. Cyber epidemic models with dependences.

Internet Mathematics, 11(1):62–92, 2015.

[110] Maochao Xu, Lei Hua, and Shouhuai Xu. A vine copula model for predicting the effective-

ness of cyber defense early-warning. Technometrics, 0(ja):0–0, 2017.

[111] Maochao Xu and Shouhuai Xu. An extended stochastic model for quantitative security

analysis of networked systems. Internet Mathematics, 8(3):288–320, 2012.

[112] Shouhuai Xu. Cybersecurity dynamics. In Proc. Symposium and Bootcamp on the Science

of Security (HotSoS’14), pages 14:1–14:2, 2014.

[113] Shouhuai Xu. Emergent behavior in cybersecurity. In Proceedings of the 2014 Symposium

and Bootcamp on the Science of Security (HotSoS’14), pages 13:1–13:2, 2014.

[114] Shouhuai Xu. Reactive defense: Attack detection. University Lecture, 2016.

[115] Shouhuai Xu, Xiaohu Li, Timothy Paul Parker, and Xueping Wang. Exploiting trust-based

social networks for distributed protection of sensitive data. IEEE Transactions on Informa-

tion Forensics and Security, 6(1):39–52, 2011.

[116] Shouhuai Xu, Wenlian Lu, and Hualun Li. A stochastic model of active cyber defense

dynamics. Internet Mathematics, 11(1):23–61, 2015.

100

[117] Shouhuai Xu, Wenlian Lu, and Li Xu. Push- and pull-based epidemic spreading in arbitrary

networks: Thresholds and deeper insights. ACM Transactions on Autonomous and Adaptive

Systems (ACM TAAS), 7(3):32:1–32:26, 2012.

[118] Shouhuai Xu, Wenlian Lu, Li Xu, and Zhenxin Zhan. Adaptive epidemic dynamics in

networks: Thresholds and control. ACM Transactions on Autonomous and Adaptive Systems

(ACM TAAS), 8(4):19, 2014.

[119] Shouhuai Xu, Wenlian Lu, and Zhenxin Zhan. A stochastic model of multivirus dynamics.

IEEE Trans. Dependable Sec. Comput., 9(1):30–45, 2012.

[120] Esra N Yolacan, Jennifer G Dy, and David R Kaeli. System call anomaly detection using

multi-hmms. In Software Security and Reliability-Companion (SERE-C), 2014 IEEE Eighth

International Conference on, pages 25–30. IEEE, 2014.

[121] Aya Zaki, Mahmoud Attia, Doaa Hegazy, and Safaa Amin. Comprehensive survey on dy-

namic graph models. International Journal of Advanced Computer Science and Applica-

tions, 7(2):573–582, 2016.

[122] Zhenxin Zhan, Maochao Xu, and Shouhuai Xu. Characterizing honeypot-captured cyber

attacks: Statistical framework and case study. IEEE Transactions on Information Forensics

and Security, 8(11):1775–1789, 2013.

[123] Zhenxin Zhan, Maochao Xu, and Shouhuai Xu. A characterization of cybersecurity posture

from network telescope data. In Proc. of the 6th International Conference on Trustworthy

Systems (InTrust’14), pages 105–126, 2014.

[124] Zhenxin Zhan, Maochao Xu, and Shouhuai Xu. Predicting cyber attack rates with extreme

values. IEEE Transactions on Information Forensics and Security, 10(8):1666–1677, 2015.

[125] Ren Zheng, Wenlian Lu, and Shouhuai Xu. Active cyber defense dynamics exhibiting rich

phenomena. In Proc. 2015 Symposium and Bootcamp on the Science of Security (Hot-

SoS’15), pages 2:1–2:12, 2015.

101

[126] Ren Zheng, Wenlian Lu, and Shouhuai Xu. Preventive and reactive cyber defense dynamics

are globally stable. In To appear in IEEE Transactions on Network Science and Engineering,

2017.

102

VITA

Mr. Marcus Pendleton is a former combat systems and cyberspace operations officer (CSO/-

COO) for the United States Air Force. He is currently bound for a senior researcher position at

the Air Force Research Laboratory in Rome, New York. There, he will continue to leverage his

experiences in operations from the military, high-performance computing as an administrator at

Ames Laboratory (Iowa State University), and cybersecurity as a research assistant for the Insti-

tute of Cyber Security (The University of Texas at San Antonio) to help develop state-of-the-art

cyber solutions to protect our critical infrastructures.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Problem Statement
	Dissertation Contribution
	A Dataset Collector for Next Generation System Call Host Intrusion Detection Systems
	Thread Behavior Clustering for Improved Syscall Pattern Modeling
	Anomaly Detection Using System Call Behavior Graphs

	Dissertation Organization

	Chapter 2: Background
	Intrusion Detection Flavors
	HIDS Data Sources
	Intrusion Detection Schemes

	Chapter 3: A Dataset Collector for Next Generation System Call Host Intrusion Detection Systems
	Introduction
	Related Work
	The KDD Datasets
	The UNM Dataset
	The ADFA-LD Dataset

	Problem
	Sequence Structure
	Data Type
	Dataset Quantities
	Complexity of Targets

	Basic Ideas
	Languages of Syscall Sequences
	Dataset Objectives

	Collector Architecture
	Syscall Collector
	Containerized Execution Environment
	Dispatcher
	Benign and Attack Datasets

	Conclusion

	Chapter 4: Thread Behavior Clustering for Improved Syscall Pattern Modeling
	Introduction
	Related Work
	Syscall Anomaly Detection
	Malware Clustering
	Program Characterization

	Problem
	Modeling Multi-threaded Programs
	Identifying Thread Behaviors in Execution

	Methodology
	Objective
	Data Source
	Data Representation
	Modeling

	Clustering
	Dis(similarity)
	Algorithms
	Number of Clusters
	Cluster Quality

	Implementation
	Syscall Collection
	Database Management
	Dissimilarity Matrix Construction
	Clustering Software

	Evaluation
	Dataset
	Clustering Algorithm Comparison
	Cluster Numbers and Ground Truth
	Clustering Quality

	Discussion
	Limitations and Future Work
	Applications

	Conclusion

	Chapter 5: Anomaly Detection Using System Call Behavior Graphs
	Introduction
	Related Works
	Syscall Anomaly Detection
	Anomaly Detection via Clustering

	Problem
	Control-flow Hijacking of Threads
	Modeling Diverse Thread Behaviors

	Preliminaries
	Log-likelihood Distance
	Deviation Indices

	Methodology
	Data Representation
	Program Modeling
	Case Testing
	Validation

	Implementation
	Data Collection
	Model Building
	Decision engine

	Evaluation
	Dataset
	k Selection
	Classification Performance

	Limitations and Future Work
	Conclusion

	Chapter 6: Conclusions
	Contributions
	Future Work
	Final Remarks

	Appendix A: Remapping of Attack System Call Sequences from 32-bit to 64-bit Linux
	Appendix B: Dissimilarity Routines
	Combined, Unweighted GED-based Dissimilarity
	Split, Weighted GED-based Dissimilarity
	Split, Unweighted Jaccard index-based Dissimilarity
	Split, Unweighted GED-based Dissimilarity

	Bibliography
	Vita

