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Several state laws, along with app markets, such as Apple’s App Store and Google Play, re-

quire app developers to provide users with legal privacy notices (privacy policy) containing critical

requirements that inform users about what kinds of personal information is collected, how the data

is used, and with whom the data is shared. Because privacy policies consist of legal terms often

written by a legal team without rigorous insight into the app source code, and because the policy

and app code can change independently, privacy policies become misaligned with the actual data

practices. In addition to misinforming users, such inconsistencies between policies and data prac-

tices can have legal repercussions. The goal of this work is to capture and formalize the semantics

of natural language privacy policies into a knowledge base that can actuate (1) transparent soft-

ware implementation; and (2) shared understanding between policy authors, app developers, and

regulators. Constructing an empirically valid knowledge base (i.e., privacy policy ontology) is a

challenging task since it should be both scalable and consistent with multi-user interpretations.

This work focuses on formal representation of privacy policy semantics by applying grounded

theory, natural language patterns, and neural networks on terminology of privacy policies. Further,

the application of formal ontologies in privacy misalignment detection frameworks is discussed.
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Chapter 1: INTRODUCTION

Mobile and web applications (apps) offer users innovated ways to access and share data. According

to the PEW Research Center, 77% of U.S. adults own a smartphone and utilize mobile devices for

activities, such as looking for jobs, finding dates, or reading books [56]. To provide users with

these services, mobile apps collect various categories of personal information, such as contact

information, photos, and real-time location. This information collection exposes users to potential

privacy risks. To inform users with data practices, app developing companies publicly publish

privacy notices, also called privacy policies. These polices are one of the major ways developers

communicate data requirements to users and inform stakeholders about what kinds of personal

information is collected, how the data is used, and with whom the data is shared [1, 33]. Further,

various U.S. and E.U. laws 1 2 require app developing companies to post their privacy polices and

notify users with any changes in their data practices.

Privacy policies pose a technical challenge in requirements analysis and traceability. Being

comprehensive, these policies often fail to provide a detailed description of companies’ practices

and mainly focus on abstract information types. Apart from abstraction, stakeholders use different

words for the same domain concept, which reduces shared understanding of the subject and leads

to a misalignment among app developers’ intention, and policy authors, and regulators expectation

[11]. Abstraction and variability in concept representation commonly found in privacy policies are

that of hypernymy, which occurs when a more abstract information type is used instead of a more

specific information type (e.g., “device information” instead of “IP address”) [6]. Hypernymy

permits multiple interpretations of words and phrases, which leads to inconsistency in tracing the

requirements.

As an example, we compare two different versions of Adobe’s privacy policy. The following

is a snippet from Adobe’s privacy policy last updated in December 8, 2014.

1CAL. CIVIL CODE §1798.140(c)
2https://gdpr-info.eu/
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When you activate your Adobe product, we collect certain information about

your device, the Adobe product, and your product serial number (learn more:

http://www.adobe.com/products/activation/).

This statement mentions the collection of the abstract information type “information about your

device” that can be interpreted in various ways, yielding ambiguity in requirements analysis and

traceability. For example, since a mobile device is a kind of device, a requirements analyst can

infer that the statement also implies the collection of “mobile device information.” Further, some

devices have identifiers, such as a serial number, or IP address, thus Adobe can also collect device

identifiers because device identifiers are a meronym or part of a device. Finally, the analyst can

infer that the statement applies to mobile device identifier by reasoning over both the hypernymy

and meronymy relationships, together. These interpretations are recognized by a person, such as a

requirements analyst or a developer, and are matched with phenomena in the world based on their

experience and background knowledge.

We now illustrate the recent version of Adobe’s privacy policy (last updated May, 3 20183):

When you activate your Adobe app or when you install updates to the app, we

collect information about: your device (manufacturer, model, IP address);

the Adobe app (version, date of activation, successful and unsuccessful updates);

your product serial number (where this is required before you can start using your

product).

Within this recent update, we notice specific kinds of device information are listed in the pri-

vacy policy. Therefore, the requirements analyst can infer “device information” as an abstract

or general term that can be used to describe “manufacturer,” “model,” and “IP address” as spe-

cific kinds of “device information.” Thus, collection of information when activating or installing

updates also applies to these specific kinds. This snippet provides the stakeholders with more un-

derstanding of the Adobe’s data practices. Based on the specific terms, requirements analyst can

construct a knowledge base that clarifies specific kinds of each abstract information type, which

3https://www.adobe.com/privacy/policy.html
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can be used for requirements analysis and traceability in mobile apps.

To ensure data transparency and compliance, methods have been proposed to analyze privacy

policies and data practices. For example, Breaux et al. formalized data requirements in privacy

policies using Description Logic [10], which can then be used to automatically detect conflict-

ing requirements [15] and to trace data flows across policies of interacting services [15]. Trac-

ing privacy requirements across policies can enhance developers’ understanding of third-parties’

data practices and comply with legal requirements, such as General Data Protection Regulation

(GDPR), Articles 13.1 and 14.12. Furthermore, others have proposed techniques to trace data

requirements from privacy policies to app code using lookup tables, platform permissions, and

information flow analysis [53, 74]. These methods depend on a correct lexicon of information

types that is generally compiled manually. These information types include phrases, such as de-

vice ID, IP address, and location. Moreover, the phrases can overlap in meaning leading to false

requirements formalization, e.g., the phrase “WiFi signal strength” can be construed to be a type of

location information. Therefore, identifying data flows and trace links between natural language

privacy policies and app code cannot be achieved without addressing abstraction and variability

within privacy policy concept representation.

To overcome the abstraction and variability in concept representation, this thesis aims to cap-

ture and formalize the semantics of natural language privacy policies into a knowledge base, called

ontology. Ontology is an arrangement of terminology into a hierarchy using semantic relations,

such as ubclass/superclass, part/whole, and synonymy, among other categories. This formal rep-

resentation of concepts and their interpretations can help requirements analysts, policy authors,

app developers, and regulators to consistently check how data practice descriptions relate to one

another and to identify unintended interpretations. Further, application of this knowledge base can

actuate transparent software implementation for users.

There are two major challenges to this work. First, designing and evaluating solutions for

this problems requires datasets in the mobile app privacy policy domain. Second, the proposed

solutions should be generalizable and scalable considering both the growing number of apps in the

3



market and the evolving privacy-related regulations.

In the next section, we discuss in detail our proposed methods to construct privacy policy

ontology.

1.1 Proposed Methods for Constructing Privacy Policy Ontology

Abstraction and variability in concept representation sap companies’ ability to consistently com-

pare their privacy policies with (1) their actual data practices (2) and privacy notices of their third

parties in a multi-tier service composition framework. This thesis studies approaches to construct

information type ontologies on privacy policies. We believe ontologies as knowledge bases can

provide share understanding between multiple stakeholders, such as requirements analysts, policy

authors, app developers, regulators, and users. Further, ontologies enable requirements analysts

to model data practices and reason the sources of inconsistencies and non-compliance between

multiple software artifacts. In addition to misinforming users, such inconsistencies can have le-

gal repercussions for app developing companies. To this end, we discuss three main methods to

construct privacy policy ontologies.

As an initial attempt to construct a privacy-related information type ontology, we applied con-

tent analysis, which is a qualitative research method for annotating text to identify words and

phrases that embody the meaning of special codes [59], and grounded theory [21] to discover

seven heuristics for manually classifying information types into a formal ontology.

We evaluated these heuristics in a study of 50 mobile app privacy policies(see Section 5.4). We

extracted information types related to automatic data collection practices from these 50 policies,

yielding a platform information lexicon containing 356 information types discussed in Section 4.

In the next step, two analysts compared two information types in the lexicon and assigned a se-

mantic relationship based on the discovered heuristics. We compared the relationships assigned to

the pairs by each analysts, calculating the inter-rater reliability and reconciling the differences to

achieve high agreement for assignments. Finally, we formalized the relationships between pairs in

an ontology using Description Logic.

4



In another study, we extracted user-provided information from data collection practices in pri-

vacy policies of 20 apps in health, finance, and dating domains. We applied a similar approach to

construct three different ontologies for these domains.

Finally, we applied these ontologies in privacy violation detection framework to identify pri-

vacy violations (i.e., instances where privacy polices are inconsistent with app code data practices).

The results from these studies are summarized in Sections 5.6.1 and 5.6.2.

As a motivating example, consider a policy snippet of app A: “We collect information, in-

cluding device information and device ID.” For constructing an ontology, we first extract “device

information” and “device ID.” Using heuristics, we infer subclass relationship between these two

information types, which is added to the ontology. We can apply this ontology to check the policy

and code alignment in app B, which collects “device ID” and discloses collection of “device in-

formation” in its policy. Using the ontology, we can acknowledge the company’s disclosure of the

information collection. Yet, raise a warning on the use of a phrase that is too general, which can

potentially mislead the user or disregard policy regulation regulations.

This manual approach to construct ontologies requires at least two analysts to perform paired

comparison of all information types. The required effort for this task is quadraticm×n×(n−1)/2,

where n is the number of information types in the lexicon, and m is the amount of time required

to assign a relationship to a pair, estimated at 20 seconds []. In brief, while the approach validates

the concept, it requires improvements to address several limitations, including time consumption,

scalability, and human error.

To improve our ontology construction approach, we developed a semi-automated syntax-based

method that employs a shallow typology and regular expression rules to categorize individual

words in information types and parse them for inferring semantic relations, such as hypernymy. We

discovered these patterns and rules to represent and parse the information types through grounded

analysis of information types extracted from 50 privacy policies. In this approach analysts assign

semantic role types to the information type phrases, and then a set of regular expression rules are

automatically applied to yield a subset of all possible relations.

5



To improve the semantic relations inferred using these initial set of regular expression rules,

we established a ground truth using crowdsourcing by asking human subjects to perform the more

time-consuming task of comparing information types in the lexicon. We then compared the results

of the rules against these human interpretations, which led to identifying additional rules. Finally,

we evaluated the extended set of rules on 109 unique information types extracted from six privacy

policies, and human subject surveys to measure the correctness of the results produced by the rules

(see Section 6.3.3).

To formalize the discovered patterns and regular expression rules, we utilize rule-to-rule hy-

pothesis [4] that augments production rules in a context-free grammar (CFG) with semantic at-

tachments. To this end, we introduced a CFG to present and parse information types in a privacy

policy lexicon. Under a generative treatment of morphology, the CFG produces variants of a given

information type phrase, which are necessary to build an ontology and overcome the abstraction

problem in natural text. Finally, we developed a tool that augments CFG with semantic attachments

to infer relations. For example, this formalization can derive “IP address” as a morphological

variant from “device IP address,” and infer part-whole relationship between them. The semantic

attachments are formally presented using λ-calculus. Detailed description of this formalization is

discussed in Chapter 7.

We evaluate this method as follows using two information type lexicon containing 356 platform-

related information types [37, 60] and 1,853 general information types extracted from 30 poli-

cies [23]. We compare the inferred relations from applying CFG and semantic attachments on

these lexicon with human classification results obtained from preference studies, in which crowd

workers select the best semantic relation between two information types based on their background

knowledge and experience. Despite high performance measures recorded for these studies, our

method fails to infer semantic relations between some information types, such as “mobile device”

and “iPhone,” that don’t share any common words and require additional embedded tacit knowl-

edge for relation inference.

To address this limitation, we developed an empirical method to learn and construct a formal
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ontology from a set of information type pairs contained in a lexicon. This method applies a novel

neural network classifier to predict semantic relationships between information type pairs. We also

present a novel method to sample from an existing ontology to create training and testing sets that

account for dependencies among concepts and formal ontological relations. Finally, we present the

evaluation of our relationship classifier on a privacy policy ontology. The details for this proposed

method and evaluation is presented in Chapter 8.

In future, we envision augmenting the syntax-based method with the neural network classifier,

hence enhancing the relation inference between information type pairs relying on both syntax

features and tacit knowledge. Based on our current evaluation, both methods only infer fragments

of an ontology. Therefore, further empirical validation is required to identify the reachability of

concepts in the ontology fragments generated through the augmented approach. We foresee cases

where both methods fail to infer semantic relations and therefore, requirements analyst should

be involved to infer additional semantic relations between information types. Initial evaluation is

required to identify the amount of effort required for a requirements analyst to manually identify

these cases.

Our work has broader impact on data flow and requirements traceability domains. We plan to

integrate our work with data flow and requirements compliance detection tools that rely on precise

description of information types. For example, Breaux et al. identifies data flow traces across

privacy policies of a multi-tier service systems [12]. Further, Slavin et al. [60] and Wang et al. [69]

investigate privacy requirements traceability in Android apps. A new policy introduces between

11-36 new information types that are not encountered in the existing lexicon [6]. Considering an

average of 6,140 Android apps being released through Google Play Store everyday4, there is a

need for an automated approach that extends an existing ontology as a knowledge base on privacy

policies. We envision extending the existing ontologies used in data flow and privacy violation

detection tools and compare the results with the published conflicting requirements and violations

in previous research [60, 69].

4https://www.statista.com/statistics/276703/android-app-releases-worldwide/
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Further, we foresee defining the ontology construction problem as a paraphrasing task in natural

language processing domain [50], where the goal is to predict a paraphrase template for a given

information type presented using a noun compound.

In summary, this thesis aims at developing novel methods and tools to address abstraction

in natural language privacy requirements by comprehending the semantic knowledge and formal

representation of this knowledge as a reusable artifact.
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1.2 Thesis Statement

Abstraction and variability in concept representation undermines companies’ ability to success-

fully align their privacy policies with (1) their actual data practices (2) and privacy notices of their

third parties in a multi-tier service composition framework. In addition to misinforming users,

such inconsistencies between policies and data practices can have legal repercussions for app de-

veloping companies. Formal ontologies on privacy policies can mitigate the abstraction effects

and help policy authors, app developers, and regulators to consistently check how data practice

descriptions relate to one another and identify unintended interpretations. This thesis studies ap-

proaches to construct information type ontologies on privacy policies using (1) heuristics derived

from grounded analysis of privacy policies; (2) regular expression rules; and (2) neural network

classifier. The outcome of this thesis is privacy policy ontologies that can be used to identify trace

links between software artifacts to achieve transparent software products.

The background and related work are presented in Chapters 2 and 3, respectively. In Chapter 4,

the details about constructing information type lexicon from privacy policies are explained. In

Chapter 5, we discuss the details of manual ontology construction using information type lexicon.

Chapter 6 includes the details for the syntax-based method using regular expression rules for con-

structing a formal ontology. The details about formalizing the patterns and rules using rule-to-rule

hypothesis to infer semantic relations are presented in Chapter 7. In Chapter 8, we discuss the

neural network classifier to predict semantic relations for an information type pair. And finally,

Chapters 9 and 10 present the future work and conclusion of this thesis.
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Chapter 2: BACKGROUND

In this section, I introduce necessary background information that is required for understanding

this work.

2.1 Semantic Relations

This section provide definitions for some of the relations that hold among natural language phrases.

Hypernymy: a relationship between two noun phrases, wherein one phrase is superordinate to

the other term. The superordinate phrase is called the hypernym, and the subordinate phrase is

called the hyponym. In English, one can say the hyponym “is a kind of” hypernym. For example,

“device identifier” is a kind of “device information.”

Meronymy: a semantic relation between two known phrases, wherein one phrase is part of the

other term as a whole. The part is called meronym, and the whole containing the part is called

the holonym terms. In English, one can say the meronym “is a part of” holonym. For example,

“device MAC address” is a part of “device.”

Synonymy: a relationship between two noun phrases with a similar meaning. For example, “IP

address” is a synonym of ”Internet protocol address.”

Lexicon- a collection of phrases or concept names that may be used in an ontology.

Ontology- An arrangement of terms into a graph in which terms are connected via edges cor-

responding to semantic relations, such as hypernymy and synonymy, among others [41].

2.2 Description Logic Ontologies

Description Logic (DL) ontologies enable automated reasoning, including the ability to infer which

concepts subsume or are equivalent to other concepts in the ontology. We chose tFL0, a sublan-

guage of the Attribute Language (AL) in Description Logic (DL), which is PSPACE-complete for

concept satisfiability and concept subsumption. A DL knowledge base KB is comprised of two

components, the TBox and the ABox [3]. The TBox consists of terminology, i.e., the vocabulary
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(concepts and roles) of an application domain. The ABox contains assertions about named individ-

uals using this vocabulary. The platform ontology knowledge base KB only contains terminology,

which we call the TBox T .

The semantics of FL0 concepts begins with an interpretation I that consists of a non-empty set

∆I (the domain of the interpretation) and an interpretation function, which assigns to every atomic

concept C, a set CI ⊆ DeltaI . The TBox T also contains terminological axioms that relate

concepts to each other in the form of subsumption and equivalence, which we use to formalize

hypernymy and synonymy, respectively. A concept C is subsumed by a concept D, written T |=

C v D, if CI v DI for all interpretations I that satisfy the TBox T . The concept C is equivalent

to a concept D, written T |= C ≡ D, if CI = DI for all interpretations I that satisfy the TBox T .

Axioms of the first kind (C v D) are called inclusions, where axioms of the second kind (C ≡ D)

are called equalities [3]. Note that the equalities C ≡ D can be rewritten as two inclusion axioms

C v D and D v C [63]. For meronymy, we define a part-whole relation that maps parts to

wholes as follows: a part concept C that has a whole concept D, such that T |= C v (partOfD).

We express the DL ontology using the Web Ontology Language1 (OWL) version 2 DL and the

HermiT2 OWL reasoner.

2.3 Andorid API

Applications can interact with underlying Android system using a framework API provided by

the Android platform. The framework API contains set of packages, classes, and methods. The

Android 4.2 framework is comprised of about 110,000 methods, some of which are specifically

used to retrieve, insert, update, or delete sensor data through the Android OS [57]. The use of an

API increases the level of security by not allowing apps to have direct access to all sensor data by

default.

Before an app can access specific methods from the API, the required permissions must be

requested by the app through a manifest file. An app’s manifest file enumerates the app’s required

1https://www.w3.org/TR/owl-guide/
2http://www.hermit-reasoner.com/
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permissions and is described to users when installing an app as well as on the app’s download page

on the Google Play store. Thus, there is a direct relationship between the permissions granted to

an application by a user at installation time and eligible API method calls in the application source

code.

Morphological Variant: information type phrases are frequently variants of a common lexeme,

e.g., “device” is a morphological variant of “mobile device.”

In the definitions above, we assume that noun phrases expressed in text have a corresponding

concept and that the text describes one name for the concept. This relationship between the phrase

and concept is also arbitrary, as noted by Saussure in his theory of the signifier, which is the symbol

that represents a meaning, and the signified, which is the concept or meaning denoted by the sym-

bol [22]. Peirce defines a similar relationship between sign-vehicles and objects, respectively [36].

2.4 Context Free Grammar

A context-free grammar G is a quadruple G =< N, T,R, S >, where N is a final set of non-

terminal symbols; T is a finite set of terminal symbols; R is a finite set of productions; and S ∈ N

is the the designated start symbol of G. The productions in R are pairs of the form α → β, where

α ∈ N and β ∈ (N ∪ T ). An empty right-hand side in a production is represented with symbol ε.

2.5 Semantic Attachments

In rule-to-rule approach [41], the production rules r from CFG G are extended with semantic

attachments. To construct a semantic attachment, each production r ∈ R, r : α → β1...βn is

associated with a semantic rule α.sem: {f(β1.sem, ..., βn.sem)} to infer semantic ontological

relationships. The semantic attachment α.sem states that the semantic representation assigned to

production r contains a semantic function f that maps semantic attachments βi.sem to α.sem,

where each βi, 1 6 i 6 n is a constituent (terminal or non-terminal symbol) in production r.

The semantic attachments for each production rule is shown in brackets {. . . } to the right of the

production’s syntactic constituents.
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2.6 λ Calculus

λ calculus is a formal system in mathematical logic for expressing computation based on function

abstraction and application using variable binding and substitution. λ calculus consists of con-

structing lambda terms and performing reduction operations on them. The following three rules

give an inductive definition that can be applied to build all syntactically valid lambda terms:

• a variable, x, is itself a valid lambda term.

• if t is a lambda term, and x is a variable, then (λx.t) is a lambda term called lambda abstrac-

tion.

• if t and s are lambda terms, then (ts) is a lambda term called an application.

The beta reduction (β reduction rule states that an application of the form (λx.t)s reduces to

the term t[x = s].

2.6.1 Grounded Theory

A qualitative inquiry approach which involves applying specific types of codes to data through

a series of coding cycles leading to development of a theory grounded in the data [59]. We use

three main strategies [21] of this method throughout this work: (1) coding qualitative data; (2)

memo-writing; and (3) theoretical sampling.

2.6.2 Word Embedding

Word embeddings are distributed representations of words as a vector in some m-dimensional

space that helps learning algorithms achieve better performance by grouping similar words to-

gether [46], [5]. Each vector dimension represents some feature of the words’ semantics in a

corpus.

Currently, the two most popular word embedding models are Global Vectors (GloVe) [52]

and Skip-gram [45]. GloVe trains word embedding vectors by constructing a word-to-word co-
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occurrence matrix. After filling the matrix with how frequently words co-occur, matrix factoriza-

tion is used to determine the word embedding vector values for each word. For the Skip-gram

model, a window size is defined before training begins. For each word in the corpus, the sur-

rounding words (identified by the size of the window) are used as context for that word. This

context is then used as input to a neural net-work that will modify the word’s vector values. After

visiting each word in the corpus, words should be grouped together in the vector space of the vo-

cabulary based on their context. The closer together two words are in the vector space, the more

semantically similar they are assumed to be. In this work, we adopt Word2Vec 3 , an implementa-

tion of the Skip-gram model to construct domain-specific word embeddings, which is discussed in

Section 8.1.1.

2.6.3 Convolutional Neural Network

In general, convolutional neural networks (CNNs) are a kind of feed-forward network, specialized

in processing data with a grid-like topology [42]. For CNNs, there are usually three major steps in

a convolutional layer. The first step involves applying several convolutions to the input matrix to

produce a set of linear activations [29]. This is done using a sliding window, called a kernel or filter

that slides over the entire input matrix, thereby performing convolution for every set of elements.

The second step applies a non-linear function to each linear activation produced by the previous

step (e.g., tanh, relu, etc.). In the third step, different types of pooling functions (e.g., max pooling,

average pooling, etc.) are applied to sets of areas, called neighborhoods, which cover the entire

transformed input. Pooling is done to make the transformed input approximately invariant, which

emphasizes the importance of the existence of a feature in the input over the specific location of

that feature in the input [29]. The matrix result after these three steps is a representation of the

main features of the input.

3https://code.google.com/archive/p/word2vec/
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Chapter 3: RELATED WORK

3.1 Lexicons, Ontology, and Requirements Analysis

In requirements engineering, lexicons play an important role in reducing ambiguity and improv-

ing the quality of specifications [28]. Boyd et al. examined the design of constrained natural

languages and their reliance on limited vocabulary to reduce ambiguity [9]. They proposed an

automated technique to optimally constrain lexicons by introducing the concept of term replace-

ability. The value of their approach is that the lexicon becomes more easily evolvable over time.

While a lexicon often consists of terminology and definitions, an ontology represents the semantic

relationships between terms, including whether they are hypernyms or synonyms. Breitman and

do Prado Leite describe how ontology can be used to analyze web application requirements [16].

Breaux et al. [12] utilize ontology consisting of actors and information types to infer data flow

traces across privacy requirements of different vendors. In this work, ontology was needed to align

terminology across different domains and vendor applications.

3.2 Ontology in Requirements Traceability to Code

Zimmeck et al. proposed an approach to identify the misalignments between data practices ex-

pressed in privacy policies and mobile app code without considering abstraction in policy state-

ments [73]. Privacy policy annotations in this work yielded three bag-of-words for information

types labeled as device ID, location, and contact information. For example, “IP address” is con-

tained in the bag-of-words with label device ID. Therefore, the policy statement classifier in their

approach labels policy statements using one of the three categories: device ID, location, and con-

tact information. However, ignoring the actual information type in the statement can produce false

negatives in misalignment detection tools. As an example, consider an application that mentions

collecting “IP address” in the policy and calls an Android API method to retrieve “Android ID”

in the app code. Since the Zimmeck et al.’s approach classifies “IP address” and “Android ID” as

15



device IDs, this would be interpreted as an expected alignment, which in fact is a misalignment

and the policy and code are inconsistent.

Salvin et al. [60] identify inconsistent app code with privacy policies by utilizing a manually

constructed information type ontology. The ontology contains 365 unique information types from

an analysis of 50 privacy policies. However, the cost of setting up the ontology is non-trivial as it

requires manual assignment of semantic relations between information types and handcrafting the

ontology. Identifying misalignments between natural language data practice descriptions and app

code cannot be achieved without addressing ambiguity and abstraction of data type terminology.

To address this challenge, we propose a method to construct a formal ontology that captures the

semantic relationships between information types mentioned in these descriptions.

3.3 Lexical Ontologies

WordNet is a lexical database that contains English words grouped into nouns, verbs, adjectives,

adverbs, and function words [24, 47]. Within each category, the words are organized by their

semantic relations, including hypernymy, meronymy, and synonymy [24]. However, our analysis

shows that only 14% of information types from a privacy policy ontology are found in WordNet,

mainly because the lexicon is populated with multi-word, domain-specific phrases. Therefore,

finding a category of information type along with its subordinate terms can be a challenging task for

a requirement analyst. Our work aims to identify relationships between categories of information

types with respect to hypernymy, meronymy, and synonymy in the privacy domain which can be

reused in requirement analysis tasks.

3.4 Relationship Extraction and Classification Methods

Snow et al. [62] presented a machine learning approach using hypernym-hyponym pairs in Word-

Net to identify additional pairs in the parsed sentences of the Newswire corpus. This approach

relies on the explicit expression of hypernymy pairs in text. Marti Hearst proposed six lexico-

syntactic patterns to automatically identify hypernymy in text using noun phrases and regular ex-
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pressions [34]. Evans et al. [23] applied an extended set of 72 Hearst patterns to privacy policies

to extract hypernymy pairs. Pattern sets are limited because they must be manually extended to

address new policies. Chen et al. [19] presented an approach for gathering software terms and

their morphological forms. Terms are limited to those in the software development domain. Roy

et al. [58] presented an approach for inferring relationships between terms in math word problems.

In supervised paradigms, researchers have tried to classify the relationship between a pair of

nominals in sentences by extracting features such as part-of-speech tags, shortest dependency path,

and named entities [17, 31, 48, 70]. Performance among these methods depend on the quality of

designed features [71]. To address this problem, deep learning models have been introduced that

leverage a distributed representation of the words to reduce the number of handcrafted features.

For example, Zeng et al. [71] proposed a deep learning model that captures the semantics of a

sentence containing a pair of nominals by combining word and distance features using a convolu-

tion module. The features were used to classify the relationship between nominal pairs into four

categories. This model extracts features using convolutional neural networks and outperforms the

supervised models that use part-of-speech, stemming, and other lexical features with classifiers,

such as SVM and MaxEnt. Zhou et al. [72] proposed a model that utilizes word embeddings, Bidi-

rectional Long Short Term Memory (BLSTM), and attention-based neural networks for relation

classification. Attention-based neural networks use the results from BLSTM to generate a single

vector representing a sentence semantics. The softmax classifier is used to classify the relationships

using the sentence vectors, which outperforms the model presented by [71].

The feature-based and neural network models mentioned above are used to extract the rela-

tionships between the annotated nominals in a given sentence. These approaches are all sentence

dependent and fail to consider the semantic relations between phrases that are not in the same

sentence. Therefore, our proposed work aims to model the semantics of two information types

extracted from a pool of privacy policies and identifies the semantic relations between the them.
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Chapter 4: ACQUIRING PRIVACY POLICY LEXICON

There is no standard method to build an ontology [67], yet, a general approach includes identi-

fying the ontology purpose and scope; identifying key concepts leading to a lexicon; identifying

relations between lexicon concepts; and formalizing those relations. A lexicon consists of termi-

nology in a domain, whereas ontologies organize terminology by semantic relations [39]. Lexicons

can be constructed using content analysis of source text, which yields an annotated corpus. This

chapter describes our approach to build privacy policy lexicon. We use this approach to construct

different lexicons including platform information lexicon and user-provided information lexicon.

Section 4.1 describes the general approach to build a lexicon. Platform information lexicon and

user-provided information lexicon are represented in Sections 4.2 and 4.3 respectively.

4.1 Lexicon Construction Approach

The mobile privacy policy lexicon (artifact A in Figure 4.1) was constructed using a combination of

crowdsourcing, content analysis, and natural language processing (NLP). The lexicon construction

method (see Figure 4.1) consists of 4 steps: (1) collecting privacy policies; (2) itemizing paragraphs

in the collected privacy policies; (3) annotating the itemized paragraphs by crowd workers based on

a specific coding frame; (4) employing an entity extractor developed by Bhatia and Breaux [6] to

analyze the annotations and extract information types which results in an information type lexicon

(artifact A in Figure 4.1). Steps 1-3 are part of a crowdsourced content analysis task based on

Breaux and Schaub [13].

We use this approach to construct different lexicons using various privacy policies for apps in

different domains. We use two different coding frames for annotating the privacy policies that cap-

tures platform information and user-provided information. More information about these lexicons

is provided in the following sections.
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Figure 4.1: Overview of Lexicon Construction Method

4.2 Platform Information Lexicon

Using the approach discussed in Section 4.1, we constructed the platform information lexicon that

is used by Slavin et al. [60] to identify the inconsistencies between privacy policies and app code

based on the API method calls in the code.

In step 1 (see Figure 4.1), we selected the top 20 mobile apps across each of 69 sub-categories

in Google Play. From this set, we selected apps with privacy policies, removing duplicate poli-

cies when different apps shared the same policy. Next, we selected only policies that match the

following criteria: format (plain text), language (English), and explicit statements for privacy pol-

icy; yielding 501 policies, from which we randomly selected 50 policies. In step 2, the 50 policies

were segmented into 120 word paragraphs using the method described by Breaux and Schaub [13];

yielding 5,932 crowd worker annotator tasks with an average 98 words per task for input to step 3.

In step 3, the annotators select phrases corresponding to one of two category codes in a segmented

paragraph as described below for each annotator task, called a Human Intelligence Task (HIT). An

example HIT is shown in Figure 4.2.
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Figure 4.2: Example of Crowd Sourced Policy Annotation Task for Platform Information Types

• Platform Information: any information that the app or another party accesses through the

mobile platform which is not unique to the app.

• Other Information: any other information the app or another party collects, uses, shares or

retains.

These two category codes were chosen, because our initial focus is on information types that

are automatically collected by mobile apps and mobile platforms, such as ”IP address," and ”lo-

cation information." The other information code is used to ensure that annotators remain vigilant.

In step 4, we selected only platform information types when two or more annotators agreed on

the annotation to construct the lexicon. This number follows the empirical analysis of Breaux

and Schaub [13], which shows high precision and recall for two or more annotators on the same

HIT. Next, we applied an entity extractor [6] to the selected annotations to itemize the platform

information types into unique entities included in the privacy policy lexicon.

Six privacy experts, performed the annotations. The cumulative time to annotate all HITs

was 59.8 hours across all six annotators, yielding a total 720 annotations in which two or more

annotators agreed on the annotation. The entity extractor reduced these annotations down to 356

unique information type names, which comprise the initial lexicon.
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In chapter 5, we discuss how we utilized this lexicon to construct platform information ontol-

ogy.

4.3 User-provided Information Lexicon

Using the approach discussed in Section 4.1, we constructed three different user-provided informa-

tion lexicon for finance, health, and dating app domains that is used to identify the inconsistencies

between privacy policies and user-provided information types collected through user interface in-

put fields in apps.

To construct the lexicons, we first select five top apps in each of six sub-categories (personal

budget, banks, personal health, insurance-pharmacy, casual and serious dating) of finance, health,

and dating in Google Play, to yield 30 total apps for all three main categories. Next, we segment the

privacy policies into 120 word paragraphs using the method described by [14], which yields an-

notation tasks from each policy. Figure 4.3 shows an example annotation task, wherein annotators

are asked to annotate phrases based on the following coding frame: User-provided Information;

Automatically Collected Information; and Uncertain or Unclear.

The user-provided information annotations describe types that are explicitly stated in the poli-

cies. However, policies do not always mention how or from whom they collect the information.

For example, in Figure 4.3, it is unclear how “information” is collected. To build the privacy

policy lexicon, we consider both annotations coded as user-provided information, and uncertain

or unclear, in case the policy author described the user-provided collection in an unclear man-

ner. We included the code for automatically collected information to ensure that annotators pay

close attention about how information collection is described in the policy, since it is disjoint from

user-provided information.

We collect annotations by recruiting five crowd workers from Amazon Mechanical Turk (AMT)

to annotate each 120-word paragraph of the combined 30 privacy policies. Because this annotation

task differed from [14], we also collected annotations for the same tasks from six privacy experts

to evaluate the crowd worker lexicon. Among all annotations collected, we only add annotations
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Figure 4.3: Example of Crowd Sourced Policy Annotation Task for User-provided Information
Types

to the lexicon where two or more annotators agreed on the annotation. This decision follows the

study which shows high precision and recall for two or more annotators [14]. In the next step,

we applied an entity extractor [6] to the selected annotations to itemize the information types into

unique entities. Finally, the unique information types are added to the finance, health, or dating

lexicon depending on which sub-category they belong to.

Table 4.1 shows the total HITs to collect information type annotations, average word count per

HIT, total annotations collected from crowd workers and privacy experts, total unique information

types extracted, and combined annotation time for crowd workers and privacy experts.

Overall, the average time to extract an information type from a privacy policy in health, finance,

and dating is 10.6 minutes, 7.0 minutes, and 8.4 minutes, respectively. This time includes the

additional time from privacy expert annotations needed to evaluate the method.

The lexicon quality is measured by the consensus between privacy expert and crowd worker

annotations as measured by extracted, unique information types. In health, the privacy experts

and crowd workers agreed on 105/198 unique information types. In addition, the privacy experts
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Table 4.1: User-provided Information Lexicon analysis
Health Finance Dating Overall

Total HITs 141 52 141 334
Average Words per HIT 105 102 116 108
Total Annotations - Crowd Workers 739 309 868 1,916
Total Annotations - Privacy Experts 456 198 508 1,162
Total Unique Information Types 197 112 262 490
Annotation Time 34.7 13.1 36 84

missed 55 information types that the crowd workers annotated, and the crowd workers missed 34

information types that the privacy experts annotated. In finance, all annotators agreed on 69/112

information types, crowd workers annotated an additional 20 types, whereas privacy experts an-

notated an additional 23 types. In dating domain, all annotators agreed on 135/262 information

types, crowd workers annotated additional 76 information types and privacy experts annotated 51

additional unique information types. Overall, the crowd workers generally identified 18-29% more

information types, and privacy experts generally identified 17-20% more types. The consensus was

52-62% of types extracted.

In addition to comparing annotator performance, we compared the lexicon coverage across

each domain. The health and finance lexicons share 32/278 phrases, health and dating share 45/415

phrases, and finance and dating share 27/347 phrases. This is an overlap of only 8-12% across three

domains, which is due to the differences in policy focus and application features.

Section 5.3 describes our effort to construct three different ontologies using finance, health,

and dating user-provided information lexicons.
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Chapter 5: MANUAL ONTOLOGY CONSTRUCTION

We now describe our bootstrap method for constructing a formal ontology from an information

type lexicon. This includes our choice of formalism, the tools used to express the ontology, and

the construction method.

5.1 Manual Ontology Construction Methodology

The bootstrap begins with an initial ontology, wherein each lexicon phrase is subsumed by the >

concept and no other relationship exists between phrases from a given lexicon. Next, each analyst

follows these four steps: (1) they create two copies of the initial ontology KB1 and KB2, one

for each analyst; (2) each analyst define subsumption and equivalence axioms for concept pairs

using an ontology editor by making paired comparisons among the concepts in the ontology based

on the heuristics defined bellow; (3) the two analysts compare their axioms in KB1 and KB2 to

identify missing axioms and to compute the degree of agreement. Agreement is measured using

the chance-corrected inter-rater reliability statistic Fleiss’s Kappa; and (4) finally, two analysts

meet to investigate the disagreements and reconcile the axioms in KB1 and KB2. The analysts

re-calculate agreement after each reconciliation to measure the improvement due to reconciliation.

Identifying semantic relationships is a heuristic-based procedure, wherein each analyst develops

their own heuristics or rules for identifying relationships. The reconciliation step requires analysts

to explicate and justify their choices, as well as to learn to accept or reject heuristics proposed by

the other analyst. This method is subject to cognitive bias, including the proximity of concepts to

each other in the alphabetical list, and to the recency with which the analysts encountered concepts

for comparison [54].

The bootstrap method was piloted on five privacy policies and resulted in a set of seven heuris-

tics that form a grounded theory. The heuristics explain why two concepts share an axiom in the

ontology. For a pair of concepts C1, C2, the analysts assign an axiom with respect to a TBox T and

one heuristic as follows.
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• Hypernym (H): C1 v C2, when concept C2 is a general category of C1, e.g., “device” is

subsumed by “technology.”

• Meronym (M): C1 v C2, when concept C2 is a part of C1, e.g., “Internet protocol address”

is subsumed by “Internet protocol.”

• Modifier (D): C1_C2 v C2 and C1_C2 v C1_information, when C1 is modifying C2, e.g.,

“unique device identifier” is subsumed by “unique information” and “device identifier.”

• Plural (P): C1 ≡ C2, when C1 is a plural form of C2, e.g., “MAC addresses” is the plural

form of “MAC address.”

• Synonym (S): C1 ≡ C2, when C1 is a synonym of C2, e.g., “geo-location” is equivalent to

“geographic location.”

• Technology (T): C1 ≡ C1_information, when C1 is a technology, e.g., “device” is equiva-

lent to “device information.”

• Event (E):C1 ≡ C1_information, whenC1 is an event, e.g., “usage” is equivalent to “usage

information.”

The bootstrap method and the seven heuristics are used to construct platform information

ontology and user-provided information ontologies from platform information lexicon and user-

provided information lexicons.

5.2 Platform Information Ontology

To construct the platform information ontology, two analysts conducted a 4-step heuristic evalua-

tion of the seven heuristics using the lexicon produced by the 50 mobile app privacy policies (plat-

form information lexicon in Section 4.2)as follows: (1) two analysts separately apply the bootstrap

method on a copy of the lexicon; (2) for each ontology, an algorithm extracts each expressed and

inferred axiom between two concepts using the HermiT1 reasoner; (3) each relationship assigned to
1http://www.hermit-reasoner.com/
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Table 5.1: Example Table Comparing Concept Relationships in Platform Information Ontology
LHS Concept RHS Concept Heuristics Analyst1 Analyst2

web pages web sites S/M Equiv Sub
ads clicked usage information H Sub Sub
computer platform H Super Super

log information system activity M None Super
device type mobile device type D Super None

tablet tablet information T None Equiv

a concept pair appears in one column per analyst (in Table 5.1, see Analyst1, where ’Super’ means

the LHS (left-hand side)concept is a superclass of the RHS (right-hand side) concept, ’Sub’ means

subclass of, ’Equiv’ means equivalence, and ’None’ means no relationship); and (4) each analyst

then separately reviews their assigned axiom type, choose the heuristic to match the assignment,

and decides whether to retain or change their axiom type.

In Table 5.1, the left-hand side (LHS) concept is compared to the right-hand side (RHS) concept

by Analyst1 and Analyst2, whose axiom types appear in their respective column, e.g., Analyst1

assigned “Equiv” to “web pages” and “web sites” and the heuristic “S” to indicate these two con-

cepts are synonyms, whereas Analyst2 assigned “Sub” and heuristic “M” to indicate “web pages”

is a part of “web sites.”

Before and after step 3, we compute the Fleiss’ Kappa statistic, which is a chance-corrected,

inter-rater reliability statistic [25]. Increases in this statistic indicate improvement in agreement

above chance. The result of evaluation of this ontology is presented in Section 5.4.

5.3 User-provided Information Ontology

Following the manual ontology approach, two analysts conducted a 4-step heuristic evaluation

of the seven heuristics on each of the user-provided information lexicons in finance, health, and

dating domain (see Section 4.3)as follows: (1) two analysts separately apply the bootstrap method

on a copy of each lexicon; (2) for each ontology, an algorithm extracts each expressed and in-

ferred axiom between two concepts using the HermiT2 reasoner; (3) each relationship assigned to

2http://www.hermit-reasoner.com/
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Table 5.2: Example Table Comparing Concept Relationships in Finance Domain
LHS Concept RHS Concept Heuristics Analyst1 Analyst2

id identification information T/H Equiv Sub
account payment account D Super Super
account financial information H Sub Sub
account account balance M Super Super

a concept pair appears in one column per analyst (see Table 5.2, where ’Super’ means the LHS

(left-hand side) concept is a superclass of the RHS (right-hand side) concept, ’Sub’ means sub-

class of, ’Equiv’ means equivalence, and ’None’ means no relationship); and (4) each analyst then

separately reviews their assigned axiom type, choose the heuristic to match the assignment, and

decides whether to retain or change their axiom type.

Table 5.2 shows results of step 3 during constructing an ontology for finance domain. In

this table, the left-hand side (LHS) concept is compared to the right-hand side (RHS) concept

by Analyst1 and Analyst2, whose axiom types appear in their respective column, e.g., Analyst1

assigned “Equiv” to “id” and “identification information” and the heuristic “T” to indicate these

two concepts are equivalent, whereas Analyst2 assigned “Sub” and heuristic “H” to indicate “web

pages” is a part of “web sites.”

Before and after step 3, we compute the Fleiss’ Kappa statistic, which is a chance-corrected,

inter-rater reliability statistic [25]. Increases in this statistic indicate improvement in agreement

above chance. Section 5.5 provides evaluation results for the three user-provided information

ontologies.

5.4 Platform Information Ontology Evaluation and Results

The ontology was constructed using the bootstrap method and evaluated in two iterations (see

Table 5.3): Round 1 covered 25/50 policies to yield 235 concept names and 573 axioms from

the 4-step heuristic evaluation, and Round 2 began with the result of Round 1 and added the

concepts from the remaining 25 policies to yield a total 368 concept names and 849 axioms. The

resulting ontology produced 13 new concepts that were not found in the lexicon, because the
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analysts added tacit concepts to fit lexicon phrases into existing subsumption hierarchies. Table 5.3

presents the results of the number of “Super,” “Sub,” and “Equiv” axioms and “None” identified

after the bootstrap method.

Table 5.3: Number of Ontological Relations Identified by Each Analyst during Each Round
Iteration Analyst Super Sub Equiv None

Round 1
1 151 203 77 142
2 157 172 78 166

Round 2
1 304 343 142 60
2 313 352 151 33

Table 5.4 presents agreements, disagreements, the consensus (ratio of agreements over total

axioms compared), and Kappa for the bootstrap method without reconciliation, called Initial, and

after reconciliation, called Reconciled. The round 1 ontology began with 235 concepts and 573

relations from both analysts. The round 2 ontology extended the reconciled round 1 ontology with

132 new concepts.

Table 5.4: Number of Agreements, Disagreements, and Kappa for Concepts and Axioms per
Round

Round 1(concepts=235, axioms=573) Round 2(concepts=368, axioms=849)
Initial Reconciled Initial Reconciled

Agreed 252 543 743 808
Disagreed 321 30 106 12
Consensus 43.9% 94.8% 87.5% 98.4%

Kappa 0.233 0.979 0.813 0.977

Table 5.5 presents the number of heuristics by type that are assigned to relations by two ana-

lysts: (H)ypernym, (M)eronym, (A)ttribute, (P)lural, (S)ynonym, (T)echnology, and (E)vent. Mul-

tiple heuristics may apply to some phrases, such as comparing “device information” to “mobile

device IP address,” which can be compared using the H, A, and M heuristics depending on which

order the analyst applies the heuristics.
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Table 5.5: Number of Heuristics Applied by Type
Heuristic Round 1 Round 2
Analyst 1 2 1 2

Hypernym 349 354 248 357
Meronym 38 38 100 56
Modifier 29 36 108 39

Plural 13 13 12 13
Synonym 55 55 57 57

Technology 10 10 17 15
Event 0 0 4 3

5.5 User-provided Information Ontology Evaluation and Results

Separate ontologies were constructed for each domain (finance, health, and dating) where two

analysts individually identify semantic relationships between phrases in a lexicon in one domain,

followed by a reconciliation step to remove conflicts between annotators. To evaluate the quality of

the ontology, we used Fleiss’s Kappa to measure the degree of agreement above chance before and

after each reconciliation step [14]. The average time per analyst to identify semantic relationships

in health, finance and dating was 6 hours, 5 hours and 8 hours, respectively. The average time to

reconcile disagreements were 3.7 hours, 2 hours and 5 hours, respectively.

In health, the resulting KB1 and KB2 for the two analysts contain 951 and 920 axioms, re-

spectively. We obtained these results after two rounds of comparisons and reconciliations. The first

comparison produced 491 axioms in disagreement and reconciliation reduced the disagreements to

78 axioms. The Fleiss Kappa after the first and second reconciliations were 0.77 and 0.80, respec-

tively. In finance, the resulting KB1 and KB2 for the two analysts contain 590 and 582 axioms,

respectively. The first comparison produced 292 axioms in disagreement and reconciliation re-

duced the disagreements to 43 axioms. The Fleiss Kappa after the first and second reconciliations

were 0.83 and 0.92, respectively, showing a larger increase in agreement. In dating domain, the re-

sultingKB1 andKB2 for the two analysts contain 1,049 and 1,289 axioms, respectively. The first

comparison produced 569 axioms in disagreement and reconciliation reduced the disagreements to

146 axioms. The initial Fleiss Kappa before reconciliation was 0.17 which was increased to 0.79
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after the first round of reconciliation.

To evaluate the ontology construction method, two different analysts, who we call examiners,

independently applied the construction method to the finance lexicon. Before reconciliation, the

Fleiss Kappa was 0.14, which is extremely low chance-agreement. After reconciliation, Kappa

was increased to 0.83. The Kappa comparing the analyst- and examiner-constructed ontologies

was 0.54. On inspection, the disagreement is comprised of 148/474 axioms. Among the 148

axioms, 74 axioms can be inferred using a syntactic analyzer, which automates the process of

ontology construction by inferring semantics from lexicon phrases based on their syntax, alone

(e.g., plural-singular forms that are equivalent for our purposes). Resolving the 74 axioms with

a syntactic analyzer yields a Kappa of 0.75 between the analysts and examiners. Among the

unresolved differences, the examiners found hypernymy relationships missed by the analysts, such

as “deposited checks," which are a kind of “transaction.” We believe these differences are due to

(1) the various interpretations of phrases by analysts and examiners; (2) the fatigue of comparing

phrases; (3) and recency effects that both analysts and examiners experienced during ontology

construction [54].

5.6 Application of Manually Constructed Ontology

In this section, I represent two studies that utilized the manually constructed ontologies from Sec-

tions 5.2 and 5.3. The studies benefit from ontologies in identifying the inconsistencies between

privacy policy requirements and information collected through app code.

5.6.1 Application of Platform Information Ontology

Slavin et al. [60] utilize the ontology constructed using the manual approach from 50 privacy

policies to detect inconsistencies between privacy policies and Android API method calls in app

code.

They define two different kinds of inconsistencies between privacy policies and app code: (1)

potential strong inconsistency occurs when the policy does not describe an app’s data collection
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practice, and (2) potential weak inconsistency that occurs when the policy describes the data prac-

tice using abstract and vague terminology.

The ontology is used to formally reason about the meaning of terminology found in the API

documents and privacy policies. For an API lexicon Â and a privacy policy lexicon P̂ consisting

of unique terms (or concepts), the ontology is a Description Logic (DL) knowledge base KB that

consists of axioms C v D, which means concept C is subsumed by concept D, or C ≡ D,

which means concept C is equivalent to concept D, for some concepts C,D ∈ (A ∪ P ). Slavin et

al. [60] use an API lexicon to map a method name m from an API document to a concept A ∈ Â.

Therefore, they can infer (in a forward direction) all policy concepts {P |P ∈ P̂ ∧ KB |= P v

A ∨ KB |= P ≡ A}. In this respect, they extract method names from method calls in a mobile

app, then infer corresponding policy terms (among which at least one) that should appear in the

mobile app’s privacy policy. Similarly, they also reason in the backward direction to check which

policy terms mentioned in the app’s policy map to which method names corresponding to method

calls in the app.

For example, in Figure 5.1, “IP Address” is a decedent of “Network Information”, indicating

that IP Address is a type of network information. The hierarchical nature of an ontology allows for

transitive relationships that can be used for mapping API methods to phrases indirectly based on

relationships between the phrases themselves.

They apply their inconsistency detection technique with the manually constructed ontology on

477 pairs of apps and privacy policies. The results show 402 potential inconsistencies in total,

including 58 potential strong inconsistencies and 344 potential weak inconsistencies. The man-

ual inspection revealed that, among these detected inconsistencies, 341 were true inconsistencies,

including 74 potential strong inconsistencies and 267 potential weak inconsistencies. The detec-

tion of 267 true potential weak inconsistencies shows that the manually constructed information

type ontology is helpful on differentiating potential weak inconsistencies from potential strong

inconsistencies.
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Figure 5.1: Abbreviated Ontology Example with Mapped API Methods

5.6.2 Application of User-provided Information Ontology

In another research we tried to trace privacy policy statements about collection of personal infor-

mation to the information provided by users through app’s graphical user interfaces. This work

utilizes the user-provided information ontologies described in Section 5.3 to verify the compliance

of app code to privacy policy requirements through: (1) identifying the abstraction in privacy poli-

cies, e.g., the privacy policy refers to collection of “personal information, ” when the app collects

users’ “weight” or “age;” (2) identifying the information types that are collected through user input

fields, but never mentioned in the privacy policies descriptions.

This work adopt the definition of inconsistency, which consists of: potential weak inconsis-

tency, which occur when a policy refers to a vague or abstract information type that semantically

includes a more specific type that was omitted from the policy; and potential strong inconsistency,

which occur when the type is completely omitted from the policy. For example, if an app shares a

user’s medicine intakes, it would be considered a weak violation if the policy only states, “we col-

lect medical information. . . .” If the policy neglects to mention medical information as a collected
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type, then this omission is classified as a strong violation.

When detecting potential strong and weak inconsistencies, for an input field V whose collected

information is sent to network, we first check whether V can be mapped to a concept word C in the

ontology. If so, V is considered an input field collecting sensitive information. They further check

whetherC andC’s super classes or equivalent concepts in the ontology appear in the privacy policy.

If neither C nor C’s super classes or equivalent concepts appear, a potential strong inconsistency

is detected, and if any of C’s super classes or equivalent concepts appears but C does not appear,

a potential weak inconsistency is detected.

They evaluated their approach using 150 apps collected from the Google Play with privacy

policies in three categories: finance, health, and dating. The highest ranked 50 apps that have

privacy policies were selected for each category from Google Play using the category name as the

search word. From this set, 30 privacy policies were used to construct the user-provided infor-

mation ontology discussed in Section 5.3. The remaining 120 apps are utilized for the evaluation

of the method. The approach detects 21 potential strong inconsistencies and 18 potential weak

inconsistencies in 120 apps from three main domains.

5.7 Discussion and Conclusion

Our initial attempt to build an information type ontology requires comparing each information type

phrase with every other phrase in the privacy policy lexicon, and assigning a semantic relationship

to each pair. However, considering that a lexicon built from 50 policies contains more than 350

phrases, an analyst must make about 61,400 comparisons, which is over 200 hours of continuous

comparison. To address this problem, Section 6 discusses a semi-automated semantic analysis

method that uses lexical variation of information type phrases to infer ontological relations, such

as hypernyms. Instead of performing paired comparisons, the analyst spends less than one hour

typing the phrases, and then a set of semantic rules are automatically applied to yield a subset of

all possible relations.

In the manual ontology construction approach, meronymy relationship is defined using sub-
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sumption (v) in heuristic “M.” Using only subsumption for defining meronymy relations can imply

transitivity between multiple consecutive meronymy relationships. However, meronymy relations

are not necessary transitive considering different types of part-whole relationships based on Gretsl

and Prinnebow [27,55]. To overcome this problem, we extend the relations’ definitions in descrip-

tion logic by adding partOf relationship that maps parts to wholes as follows: a part concept C

that has a whole concept D, such that T |= C v (partOfD). The semi-automatic ontology con-

struction approach which is presented in Section 6 utilizes this definition for meronymy relations.
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Chapter 6: SYNTAX DRIVEN SEMANTIC ANALYSIS OF

INFORMATION TYPES

The manual ontology construction approach discussed in Chapter 5 requires paired comparison of

n× (n− 1)/2 for n phrases in a lexicon. To overcome this problem, in this chapter, we describe a

semi-automated method that uses lexical variation of information type phrases to infer ontological

relations, such as hypernyms. Instead of performing paired comparisons, the analyst spends less

time assigning role types to the phrases, and then a set of semantic rules are automatically applied

to yield a subset of all possible relations. These rules were first discovered in a grounded analy-

sis of 356 information types during manually constructing the ontology [38], which is discussed in

Section 5. To improve the semantic relations inferred using these initial set of rules, we established

a ground truth by asking human subjects to perform the more time-consuming task of comparing

phrases in the lexicon. We then compared the results of the semantic rules against these human

interpretations, which led to identifying additional semantic rules. Finally, we evaluated the im-

proved semantic rules using 109 unique information types extracted from six privacy policies, and

human subject surveys to measure the correctness of the results produced by the semantic rules.

6.1 Syntax Driven Ontology Construction Method

The ontology construction method shown in Figure 6.1 consists of 3 steps: (1) pre-processing the

phrases in the lexicon (artifact A in Figure 6.1); (2) assigning role types to each pre-processed

phrase that yields information type phrases with associated role sequences; (3) automatically

matching the type sequence of each phrase to a set of semantic rules to yield a set of ontology

fragments consisting of hypernym, meronym, and synonym relationships.

6.1.1 Pre-processing Information Types

To construct an ontology using this semi-automated method, we utilize the platform information

lexicon which includes platform information types from 50 privacy policies (see Section 4.2). In
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Figure 6.1: Overview of Syntax Driven Ontology Construction Method

step 1, the lexicon is reduced using following approach:

• Plural nouns were changed to singular nouns, e.g., “peripherals” is reduced to “peripheral.”

• Possessives were removed, e.g., “device’s information” is reduced to “device information.”

• Suffixes “-related,” “-based,” and “-specific” are removed, e.g., “device-related” is reduced

to “device.”

This approach reduced the lexicon to 335 information types.

6.1.2 Semantic Role Typing of Lexicon Information Types

Figure 6.2 shows an example phrase, “mobile device IP address” that is decomposed into the

atomic phrases: “mobile,” “device,” “IP,” “address,” based on a 1-level, shallow typology. The

typology links atomic words from a phrase to one of five roles: (M) modifiers, which describe

the quality of a thing, such as “mobile” and “personal;” (T) things, which is a concept that has

logical boundaries and which can be composed of other things; (E) events, which describe action

performances, such as “usage,” “viewing,” and “clicks;” (G) agents, which describe actors who

perform actions or possess things; (P) property, which describes the functional feature of an agent,

place or thing, such as “date,” “name,” “height;” and (α) which is an abstract type that indicates

“information,” “data,” “details,” and any other synonym of “information.” In an information type

ontology, the concept that corresponds to the α type is the most general, inclusive concept.
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Figure 6.2: Example Lexicon Phrase, Grouped and Typed

In step 2, the analyst reviews each information type phrase in the lexicon and assigns role types

to each word. The phrase typing is expressed as a continuous series of letters that correspond to the

role typology. Unlike quadratic number of paired comparisons required to identify relationships

among lexicon phrases, this typing step is linear in the size of the lexicon. Furthermore, word role

types can be reused across phrases that reuse words to further reduce the time needed to perform

this step.

Next, the semantic rules that are applied to the typed information types in the lexicon are

introduced.

6.1.3 Automated Lexeme Variant Inference

We now describe step 3, which takes as input the typed, atomic phrases produced in step 2 to

apply a set of semantic rules to infer variants and their ontological relationships, which we call

variant relationships. Rules consist of a type pattern and an inferred ontological relationship. The

type pattern is expressed using the typology codes described in Section 6.1.2. The rules below

were discovered by classifying the platform information lexicon phrases using the typology as a

second-cycle coding, which is a qualitative research method [59]. Subscripts indicate the order of

same-typed phrases in asymmetric ontological relations:

Hypernymy Rules

H1. M_α implies that MM_α v α, e.g., “unique information” is a kind of “information.”

H2. M1_M2_α implies that M1_M2_α v (M1_alpha tM2_alpha), e.g., “anonymous demo-
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graphic information” is a kind of “anonymous information” and “demographic information.”

H3. M_T1_T2 impliesM_T1_T2 v (M_αtT1_T2) and T1_T2 v partOfM_T1, e.g., “mobile

device hardware” is a kind of “mobile information,” “device hardware,” and “device hardware” is

a part of “mobile device.”

H4. M_T_α implies M_T_α v (M_αtT_α), e.g., “mobile device information” is a kind of

“mobile information” and “device information.”

H5. M_T_P impliesM_T_P vM_α andM_T_P v partOfM_T and T_P v partOfM_T ,

e.g., “mobile device name” is a kind of “mobile information” and a part of “mobile device” and

“device name” is a part of “mobile device.”

H6. M_G_α implies that M_G_α v (M_α tG_α), e.g., “aggregated user data” is a kind of

“aggregated data” and “user data.”

H7. T_α implies T_α v α, e.g., “device information” is a kind of “information.”

H8. T1_T2_α implies T1_T2_α v (T1_α t T2_α), e.g., “device log information” is a kind of

“device information” and “log information.”

H9. G_α implies that G_α v α, e.g., “user information” is a kind of “information.”

H10. G_T implies that G_T v (G_αtT ), e.g., “user content” is a kind of “user information”

and “content.”

H11. G_P implies that G_P v (G_α t P ), e.g., “user name” is a kind of “user information”

and “name.”

H12. E_α implies that E_α v α, e.g., “usage data” is a kind of “data.”

H13. T_E implies that T_E v (T t E t E_lemma), e.g., “page viewed” is a kind of

“page,”“viewed,” and “view.”

Meronymy Rules

M1. T1_T2 implies T1_T2 v partOfT1 and T1_T2 v T2, e.g., “Internet protocol address” is a

part of “Internet protocol” and is a kind of “address.”

M2. T1_M_T2 implies T1_M_T2 v partOfT1 and M_T2partOfT1, e.g., “device unique ID”

is part of “device,” and “unique ID” is a part of “device.”
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M3. T_P implies T_P v T and T_P v P , e.g., “device name” is a part of “device” and a

kind of “name.”

M4. E_T implies that E_T v partOfE and E_T v T , e.g., “advertising identifier” is a part

of “advertising” and a kind of “identifier.”

M5. E_P implies E_P v partOfE and E_P v P , e.g., “click count” is part of “click” and

a kind of “count.”

M6. T_E_α implies that T_E_α v partOfT and T_E_α v (T_α t E_α), e.g., “language

modeling data” is a part of “language” and a kind of “language data” and “modeling data.”

M7. M1_T1_M2_T2 implies M1_T1_M2_T2 v partOfM1_T1 and M1_T1_M2_T2 v M2_T2,

e.g., “mobile device unique identifier” is a part of “mobile device” and a kind of “unique identifier.”

M8. T1_E_T2 implies that T1_E_T2 v partOfT1_E and T1_E_T2 v (E_T2tT1_informationt

T2_information), e.g., “Internet browsing behavior” is a part of “Internet browsing” and a kind

of “browsing behavior” and “Internet information” and “behavior information.”

M9. T_E_P implies that T_E_P v partOfT_E and T_E_P v (E_P t T_α t P ), e.g.,

“website activity date” is a part of “website activity” and a kind of “activity date,” “website infor-

mation,” and “date information.”

Synonymy Rules

S1. T implies T ≡ T_α, e.g., “device” is a synonym of “device information.”

S2. P implies P ≡ P_α, e.g., “name” is a synonym of “name information.”

S3. E implies E ≡ (E_α t E_Lemma), e.g. “views” is a synonym of “views information”

and “view.”

S4. G implies G ≡ G_α, e.g., “user” is a synonym of “user information.”

The automated step 3 applies the rules to phrases and yields variant relationships for evaluation

in two steps: (a) the semantic rules are matched to the typed phrases to infer new candidate phrases

and relations; and (b) for each inferred phrase, we repeat step (a) with the inferred phrase. The

technique terminates when no rules match a given input phrase. For example, in Figure 6.2, we

perform step (a) by applying the rule H3 to infer that “mobile device IP address” is a kind of
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“device IP address” and “mobile information.” However, the phrase “device IP address” is not in

the lexicon, i.e., it is potentially an implied or tacit concept name. Thus, we re-apply the rules to

“device IP address.” Rule M3 matches this phrase’s typing to infer that “device IP address” is part

of “device IP” and a kind of “address.” Since “device IP” is not in the lexicon, we re-apply the

rules to this phrase. Rule M1 matches the role type sequence of this phrase that yields “device IP”

is a part of “device” and “device IP” is a kind of “IP.” Both “device” and “IP” are explicit concept

names in the lexicon. Therefore, we accept both inferences for further evaluation. The axioms

from applying and re-applying the rules to the explicit and tacit concepts names yield ontology

fragments. We evaluate these axioms using the individual preference relationships described in the

next section.

6.2 Experiment Setup

In psychology, preferences reflect an individual’s attitude toward one or more objects, including

a comparison among objects [61]. We designed a survey to evaluate and improve the ontological

relationship prospects produced by step 3. We used 50 privacy policies and 335 unique information

types in platform information lexicon as training set to improve the semantic rules. Because the

prospects produced by the semantic rules all share at least one common word, we asked 30 human

subjects to compare each (335− 334)/2 = 2, 365 phrase pairs from the lexicon that share at least

one word. The survey asks subjects to classify each pair by choosing a relationship from among

one of the following six options:

• s: Phrase A is subsumed by phrase B in pair (A, B)

• S: Phrase B is subsumed by phrase A in pair (A, B)

• P: Phrase A is part of Phrase B in pair (A, B)

• W: Phrase B is part of Phrase A in pair (A, B)

• E: Phrase A is equivalent to phrase B in pair (A, B)
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Figure 6.3: Example Survey Questions to Collect Relation Preferences

• U: Phrase A is unrelated to phrase B in pair (A, B)

Figure 6.3 presents a survey excerpt: the participant checks one option to indicate the relation-

ship, and they can check a box to swap the word order, e.g., in the first pair, the subject can check

the box to indicate that “web browser type” is part of “browser.” We recruited 30 participants to

compare each phrase using Amazon Mechanical Turk, in which five pairs were shown in one Hu-

man Intelligence Task (HIT). Qualified participants completed over 5,000 HITs, had an approval

rating of at least 97%, and were located in the United States.

The participant results are analyzed to construct a ground truth (GT) TBox in Description

Logic. In the results, participants can classify the same phrase pair using different ontological

relations. There are several reasons that explain multiple ontological relations for each pair: par-

ticipants may misunderstand the phrases, or they may have different experiences that allow them

to perceive different interpretations (e.g., “mac” can refer to both a MAC address for Ethernet-

based routing, and a kind of computer sold by Apple, a manufacturer). To avoid excluding valid
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interpretations, we built a multi-viewpoint TBox that accepts multiple, competing interpretations.

For the entire survey results, we define valid interpretations for a phrase pair to be those inter-

pretations where the observed number of responses per category exceeds the expected number of

responses in a Chi-square test, where p<0.05, which means there is at least a 95% chance that the

elicited response counts are different than the expected counts. The expected response counts for

an ontological relationship are based on how frequently participants chose that relationship across

all comparisons. We constructed a multi-viewpoint TBox GT as follows: for each surveyed pair,

we add an axiom to GT for the relation category, if the number of participant responses is greater

than or equal to the expected Chi-square frequency; except, if the number of unrelated responses

exceeds the expected Chi-square frequency, then we do not add any axioms. We published the

ground truth dataset that includes phrase pairs, the ontological relation frequencies assigned by

participants to each pair, and the Chi-square expected values for each relation per pair.

We measure the number of true positives (TP), false positives (FP), and false negatives (FN)

by comparing the variant relationships with the ground truth ontology to compute Precision =

TP/(TP+FP) and Recall = TP/(TP+FN). A variant relation is a TP, if it is logically entailed by

GT, otherwise, that relationship is a FP. For all phrase pairs with valid interpretations that do not

match an inferred variant relationship, we count these as FN. We use logical entailment to identify

true positives, because subsumption is transitive and whether a concept is a hypernym to another

concept may rely on the transitive closure of that concept’s class relationships. The results from

improving the semantic rules using the training dataset is presented in Section 6.3. The approach

for building the test set to evaluate the final rule set is also presented in Section 6.3.

6.3 Evaluation and Results

We now describe the results from applying the semantic rules to the 335 unique information types

as part of our training approach. The evaluation consists of an initial rule set based on analyzing

the lexicon, and extensions to the initial rule set based on the individual preferences for ontological

relations among variants.
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Table 6.1: Evaluations of Relations Using Initial and Extended Rule Sets on TBox RGT

Rule Set Precision Recall
Initial rules 0.988 0.286
Extended rules 0.996 0.560

6.3.1 Preference Relations with Initial Rule Set

We began with a set of 17 rules that summarized our intuition on 335-phrase lexicon for variant

relationship inference. After typing and decomposition, the technique yields 139 explicit con-

cept names from the original lexicon, 197 potential tacit concept names, and 1,369 total axioms.

Comparing the inferred relations with the individuals’ preferences in the training ground truth

TBox RGT, results in 0.988 precision and 0.286 recall. Overall, the method correctly identifies

359/1,252 hypernyms, meronyms, and synonyms in the TBox RGT. Next, we discuss our analy-

sis of false positives and the TBox RGT to identify new rules that help explain how individuals

perceive semantic relations.

6.3.2 Preference Relations with Extended Rule Set

The extended rule set consists of the initial rules and nine additional rules to improve the semi-

automated method, in addition to a new meronymy-inferred relationship to rule H3 as defined in

Section 6.1. The technique yields 194 explicit concept names, 289 potential tacit concept names,

and 2,495 total axioms. The ontology fragments computed by applying the extended rule set can

be found online in the OWL format1. Table 6.1 shows the precision (Prec.) and recall (Recall) for

the semi-automated method with the initial and extended rule sets. Overall, the extended rule set

correctly identifies 810/1,446 of hypernyms, meronyms, and synonyms in the TBox RGT. Also,

the recall is improved to 0.560 with the extended rule set.

We observed that 493/636 of false negatives (FNs) depend on semantics beyond the scope

of the 6-role typology. For example, the TBox RGT shows the participants agreed that “mobile

phone” is a kind of “mobile device,” possibly because they understood that “phone” is a kind of

1http://gaius.isri.cmu.edu/dataset/plat17/variants.owl
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“device.” We observed that 21/493 of semantically related FNs exclusively concern synonyms that

require additional domain knowledge, e.g., “postal code” is equivalent to “zip code,” or in the case

of acronyms, “Internet protocol address” is equivalent to “IP address.” Moreover, 8/493 of seman-

tically related FNs exclusively concern meronymy, e.g., “game activity time” is a part of “game

system.” Also, only 1/493 of semantically related FNs is exclusively mentioned for hypernymy:

“forwarding number” is a kind of “valid mobile number.” Finally, 463/493 of semantically related

FNs can have multiple valid interpretations (meronymy, hypernymy, and synonymy) in TBox RGT.

In addition, we discovered that 73/636 of FNs were due to individual preference-errors that

were inconsistent with the automated method, e.g., individual preferences identified “mobile de-

vice identifier” equivalent to “mobile device unique identifier,” which ignores the fact that an iden-

tifier is not necessarily unique. Finally, we identified 70/636 relations that can be identified by

introducing new semantic rules.

The TBox RGT also contains a special relationship identified by individuals between 40 pairs

that we call part-of-hypernymy. For example, individuals identified “device id” as a part of “mobile

device,” because they may have assumed that mobile device (as a hyponym of device) has an ID.

Therefore, we extended rules H3 and H5 to infer part-of-hypernymy in the extended rule set.

6.3.3 Method Evaluation

To evaluate our extended rule set, we randomly selected six additional privacy policies from the

pool of 501 policies discussed in Section 4.2. We used the similar approach and annotators from

Section 4.2 to extract the unique information types and construct the test lexicon. The resulting

109 information types were then reduced, typed, and analyzed by the extended rule set, resulting in

76 explicit concept names, 139 potential tacit concept names, and 831 total axioms. We acquired

the preference relations for the test lexicon by surveying 213 phrase pairs resulting in test ground

truth TBox TGT using the method discussed in Section 6.32. In further analysis, the relations in

TBox TGT were compared with the relations provided by the extended rule set. Table 6.2presents

2http://gaius.isri.cmu.edu/dataset/plat17/study-utsa-prefs-test-set.csv
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Table 6.2: Evaluations of Relations Using Extended Rule Set on TBox TGT

Rule Set Precision Recall
Extended rules based on preferences 1.00 0.593

the precision and recall for this analysis. The ontology fragments computed using the extended

rule set are online in OWL3

We observed that 44/54 of false negatives (FNs) in the test set depend on semantics beyond

the scope of the role typology. We published a list of these concept pairs, including the human

preferences4. Some examples include: “device open UDID” as a kind of “device identifier,” “in-

app page view” as a kind of “web page visited,” and “page viewed” as equivalent to “page visited.”

We also observed 7/54 of FNs that requires introducing six new rules.

6.4 Discussion and Future Work

We now discuss our results, including our interpretation of the extended rule set results.

When comparing the ontology fragments with the individual preferences, we observe that pref-

erences imply axioms that are not identified by the semi-automated method and are therefore listed

as FNs in both training and testing. The preferences are highly influenced by individual interpre-

tations of relations between two phrases. Analyzing these FNs, we identified four cases where

individuals report incorrect interpretations:

1. Modifiers’ roles in a phrase are ignored and an equivalent relationship is identified for a pair

of phrases, e.g., “unique ID” and “ID.”

2. Different modifiers are identified as equivalent, e.g., “approximate location information” and

“general location information.”

3. The superordinate and subordinate phrases relationship is ignored and an equivalent relation

is identified, e.g., “hardware” and “device,” “iPhone” and “device.”

3http://gaius.isri.cmu.edu/dataset/plat17/variants-test-set.owl
4http://gaius.isri.cmu.edu/dataset/plat17/supplements-test-set.csv
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4. Information as a whole that contains information is confused with information as a sub-

ordinate concept in a super-ordinate category, e.g., “mobile application version” is a part of,

and a kind of, “mobile device information.”

One explanation for the inconsistencies is that individuals conflate interpretations when com-

paring two phrases as a function of convenience. Without prompting individuals to search their

memory for distinctions among category members (e.g., iPhone is different from Android, and both

are kinds of device), they are inclined to ignore these distinctions when making sense of the com-

parison. In requirements engineering, this behavior corresponds to relaxing the interpretation of

constraints or seeking a narrower interpretation than what the natural language statement implies.

When relaxing constraints, stakeholders may overlook requirements: e.g., if “actual location” and

“physical location” are perceived as equivalent, then stakeholders may overlook requirements that

serve to more closely approximate the “actual” from noisy location data, or requirements to acquire

location from environmental cues to more closely approximate a “physical” location. Furthermore,

this behavior could yield incomplete requirements, if analysts overlook other, unstated category

members.

In future work, we envision a number of extensions. To increase coverage, we propose to

formalize the rules as a context-free grammar with semantic attachments using rule-to-rule hy-

pothesis [4]. To improve typing, we explore identify role types associated with part-of-speech

(POS) tagging and English suffixes. However, preliminary results on 335 pre-processed phrases

from the training lexicon shows only 22% of role type sequences can be identified using POS

and English suffixes. Therefore, instead relying on POS and suffix features [71], we envision using

deep learning methods to learn the features for identifying the semantic relations between phrases.
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Chapter 7: SEMANTIC INFERENCE USING RULE-TO-RULE

HYPOTHESIS

Information types are frequently variants of a common lexeme, e.g, “mobile device” is a morpho-

logical variant of “device” through formation of a new lexeme. In this section, we propose an

ontology construction method, which is a formalization of the rules discussed in Section 6.1.3. To

this end, we first decompose each information type phrase into smaller units, called morpholog-

ical variants. For example, “device IP address” is a morphological variant of “mobile device IP

address.” Next, we use syntax analysis and a context-free grammar (CFG) over typed constituents

to infer semantic relations between the information type and its variants. This proposed method

is based on rule-to-rule hypothesis [4], which is augmenting CFG production rules with semantic

attachments. For example, we can infer that “mobile device IP address” is a kind of “device IP

address” by applying semantic attachments on “mobile device IP address” and its morphological

variants.

We evaluate our ontology construction method as follows. First, we infer ontological relations

from 356 information types in the platform lexicon, which we call L1(see Section 4.2) using the

context-free grammar and semantic attachments and compare the results with human classification

results. The results are obtained using preference study, in which crowd workers select the best

semantic relation between two information types based on their background knowledge and expe-

rience. Our analysis shows that our approach can infer ontological relations with 99% precision

and 67% recall compared to human preferences.

To evaluate the coverage and generalization of the CFG and semantic attachments, we use

a new lexicon called L2 containing 1,853 general information types extracted from 30 policies

[23]. We sampled 1,138 information types and 2,283 information type pairs from this lexicon

and compared the inferred ontological relations from our approach with experimentally collected

human preferences. The analysis shows our approach can infer relations with 99% precision and

91% recall.
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Figure 7.1: Ontology Construction Method Overview using Rule-to-Rule Approach

This chapter is organized as follows. In Section 7.1 we introduce our method. In Section 7.2,

we present the evaluation and results, followed by concluding remarks in Section 7.3.

7.1 Ontology Construction Method using rule-to-rule approach

Figure 7.1 presents our method overview given a privacy policy lexicon. This figure is summarized

as follows: in step 1, information types in a lexicon are pre-processed and reduced; in step 2, an

analyst manually assigns semantic roles to the words in each reduced information type, a step that

is linear in effort in the size of the lexicon; in step 3, a context-free grammar (CFG) and its semantic

attachments are used to automatically infer morphological variants and ontological relations.

The production rules that comprise the CFG and that are introduced in this chapter are used

to formalize and analyze the syntax of a given information type. Moreover, under a generative

treatment of morphology [20], our CFG produces variants of a given phrase, which are necessary

to build an ontology and overcome the abstraction problem in natural text. To infer ontological

relationships, we implement the rule-to-rule hypothesis [4] by mapping each each production rule

in the CFG to its semantic counterpart, presented using λ-calculus. We now discuss each step in

our method.
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7.1.1 Lexicon Reduction

In step 1, the information types from the input lexicon are reduced as follows: (1) plural nouns

are changed to singular nouns, e.g., “peripherals" is reduced to “peripheral;” (2) possessives are

changed to non-possessive form, e.g., “device’s information” is reduced to “device information;”

and (3) suffixes “-related,” “-based,” and “-specific” are removed, e.g., “device-related” is reduced

to “device.”

7.1.2 Semantic Role Tags

Given the reduced lexicon as the input, step 2 consists of tagging each word in a phrase with one of

five semantic roles: (m) modifiers, which describe the quality of a head word, such as “mobile” and

“personal;” (t) thing, which is a concept that has logical boundaries and can be composed of other

things; (e) events, which describe action performances, such as “usage,” “viewing,” and “clicks;”

(a) agents, which describe actors who perform actions or possess things; (p) property, which de-

scribe the functional feature of an agent, place or thing such as “date,” “name,” “height;” and (x)

which is an abstract tag indicating any general category of information, including “information,”

“data,” and “details,” among others. In an information type ontology, the concept that corresponds

to the x tag that is the most general, inclusive concept [37].

One approach to tagging words could be to use part-of-speech (POS) tags, that are commonly

used for natural language phrases and sentences [41]. Event words, for example, often correspond

to noun-forms of verbs with special English suffixes (e.g., usage is the noun form of use with

the suffix -age), and things and actors will frequently be nouns. However, our earlier analysis

of lexicon L1 shows that only 22% of tag sequences can be identified using POS and English

suffixes [37]. Therefore, we rely on a manual tagging of words. As the only manual step in the

approach, an analyst only needs to classify a number of words that is linear in the size of lexicon,

which is a far smaller effort than the quadratic number of pairwise comparison required to manually

construct an ontology.

The information type tagging is expressed as a continuous series of letters that correspond to
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Figure 7.2: Example of Lexicon Phrase, Tokenized and Tagged

the semantic roles. Figure 7.2 shows an example information type, “mobile device identifier” that

is decomposed into the atomic words: “mobile,” “device,” and “identifier,” and presented with tag

sequence mtp. The intuition behind step 2 in the overall approach is based on the observation that

information types are frequently variants of a common lexeme.

7.1.3 Syntactic Analysis of Information Types Using Context-Free Grammar

A context-free grammar (CFG) is a quadruple G = 〈N, V,R, S〉, where N , V , and R are the sets

of non-terminals, terminals, productions, respectively and S ∈ N is the designated start symbol.

Table 7.1: Context-Free Grammar for Syntax Analysis

<S>→<Modified1> | <Modified2> | <Final> | x
<Modified1>→ m<Modified1> | m<Modified2> | m<Final> | mx
<Modified2>→ a<Final> | e<Final> | a<Info>
<Final>→ t<Part> | t<Info> | e<Info> | p
<Part>→<Modified1> | <Modified2> | <Final>
<Info>→ x|ε

In Figure 7.1, step 3 begins by processing the tagged information type phrases from the reduced

lexicon using the CFG shown in Table 7.1. The CFG represents the antecedent and subsequent tags

used to infer morphological variants from a given information type in the lexicon. This grammar

was discovered by applying grounded analysis to the tag sequences of all information types in

lexicon L1. Notably, the grammar distinguishes between four kinds of tag sub-sequences: (1) a

type that is modified by a modifier, called Modified1; (2) a type that is modified by an agent (e.g.,

“user” or “company”) or event (e.g., “click” or “crash”), called Modified2; (3) a Final type that
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Figure 7.3: Parse Tree for “mobile device identifier” with Tag Sequence “mtp”

describes the last sequence in a typed string, which can end in a part, an information suffix, or an

empty string; (4) for any parts of a whole (Part), these may be optionally described by modifiers,

other parts, or things; and (5) Info, including those things that are described by information (e.g.,

“device” and “device information”).

Figure 7.3 shows the parse tree for the phrase “mobile device identifier” with type sequence

mtp. The tokenized tagged words are presented as “mobile-m”, “device-t”, and “identifier-p”

and are read using a lexical analyzer. Next, we discuss how these productions are extended with

semantic attachments to infer ontological relationships.

7.1.4 Inferring Morphological Variants and Semantic Relations

Based on the compositionality principle, the meaning of a sentence can be constructed from the

meaning of its constituents [26, 40]. We adapt this principle to infer information type phrase

semantics from its constituent morphological variants by extending the CFG production rules with

semantic attachments.

Each production r ∈ R, r : α→ β1...βn is associated with a semantic rule:

α.sem : {f(β1.sem, ..., βn.sem)}
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The semantic attachment α.sem states that the representation assigned to production r contains

a semantic function f that maps semantic attachments βi.sem to α.sem where each βi, 1 ≤ i ≤ n

is a constituent (terminal or non-terminal symbol) in production r. The semantic attachments for

each production rule is shown in curly braces {. . . } to the right of the production’s syntactic con-

stituents. Table 7.2 presents the productions from the CFG shown in Table 7.1 and their semantic

attachments described using λ-calculus. The extended production rules formalize heuristics (see

section 5) identified in our prior qualitative study of manually constructed ontology [38]. Next, we

introduce λ-calculus before presenting an example in which semantic attachments are applied to

the tagged information type “mobile device identifier-mtp.”

In λ-calculus, functions are represented by symbolic notations called λ-expressions. Variables

and constants are atomic constituents of λ-expressions. Complex λ-expressions can be built from

variables and constants by using two expression forming operations, called application and ab-

straction [35].

Here we list all the functions used in the semantic attachments. WordOf(y) is a unary function

that maps a non-terminal to its tagged phrase sequence. For example, WordOf (Final) returns

“device identifier-tp” in the parse tree presented in Figure 7.3. In this example, Final refers to the

left-side non-terminal of Modifier1.

Concat(y, z) is a binary function and is used to concatenate two tagged phrase sequences, for

example Concat(mobile-m, information-x) produces “mobile information-mx” from the tagged

phrases “mobile-m” and “information-x.” SubV ariant(y) is a higher-order function that accepts

other functions like Concat as an argument. This function returns a list of variants that can be con-

structed using the input argument. For example, SubV ariant(mobile device identifier-mtp) returns

the following list of variants: [mobile device identifier-mtp, device identifier-mtp, identifier-p].

IsInfo(y) is a unary function on a tagged phrase sequence, which returns an empty list if

the input sequence matches “information-x” and Eqv(y, information-x), otherwise. For example,

IsInfo(data-x) returns Eqv(data-x, information-x), since “data-x” and “information-x” do not

match.
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Table 7.2: Semantic Attachments for the Context-Free Grammar
Production Semantic Attachments Line

p1 <S>→<Modified1> {Modified1.sem} 1
p2 <S>→<Modified2> {Modified2.sem} 1
p3 <S>→<Final> {Final.sem} 1
p4 <S>→ x {λz. IF(IsInfo z) [] (Eqv(z, information-x))} 1

p5 <Modified10>→m<Modified11>
{λy.λm.Modified11.sem(Concat(y, m)); 1
λm.KindOf(WordOf(Modified10), Concat(m, information-x)); 2
KindOf(WordOf(Modified10),
WordOf(Modified11))}

3

p6 <Modified1>→m<Modified2>
{λy.λm.Modified2.sem(Concat(y, m)); 1
λm.KindOf(WordOf(Modified1), Concat(m, information-x)); 2
KindOf(WordOf(Modified1),
WordOf(Modified2)}

3

p7 <Modified1>→m<Final>
{λy.λm.Final.sem(Concat(y, m)); 1
λm.KindOf(WordOf(Modified1), Concat(m, information-x)); 2
KindOf(WordOf(Modified1), WordOf(Final))} 3

p8 <Modified1>→ mx {λm.λz. KindOf(Concat(m, z), z)); 1
λz.IF(IsInfo z) [] (Eqv(z, information-x))} 2

p9 <Modified2>→a<Final>
{λy.λa. Final.sem(Concat(y, a)); 1
λa.KindOf(WordOf(Modified2), Concat(a, information-x)); 2
KindOf(WordOf(Modified2), WordOf(Final));
λa.Eqv(a, Concat(a, information-x))}

3

p10 <Modified2>→e<Final>

{λy.λe. Final.sem(Concat(y, e)); 1
λe.PartOf(WordOf(Modified2), e); 2
KindOf(WordOf(Modified2), WordOf(Final)); 3
λe.Eqv(e, Concat(e, information-x))} 4

p11 <Modified2>→a<Info>
{λy.λa. Info.sem(Concat(y, a)); 1
KindOf(WordOf(Modified2), WordOf(Info)); 2
λa.Eqv(a, Concat(a, information-x))} 3

p12 <Final>→t<Part>
{λy.λt. Part.Sem(Concat(y, t)); 1
KindOf(WordOf(Final), WordOf(Part)); 2
Map(λz.PartOf(Concat(z, WordOf(Part)),z))λy.λ t.
SubVariant(Concat(y, t))}

3

p13 <Final>→t<Info>
{λy.λt. Info.sem(Concat(y, t)); 1
KindOf(WordOf(Final), WordOf(Info)); 2
λt.Eqv(t,Concat(t, information-x))} 3

p14 <Final>→e<Info>
{λy.λe. Info.sem(Concat(y, e)); 1
KindOf(WordOf(Final), WordOf(Info)); 2
λe.Eqv(e,Concat(e, information-x))} 3

p15 <Final>→p {(Map(λp.λz.PartOf(p, z)))λy.SubVariant(y); 1
λy.λp.PartOf(Concat(y,p),y)} 2

p16 <Part>→<Modified1> {λy. Modified1.sem(y)} 1
p17 <Part>→<Modified2> {λy.Modified2.sem(y)} 1
p18 <Part>→<Final> {λy.Final.sem(y)} 1

p19 <Info>→x {λz. IF(IsInfo z) [] (Eqv(z, information-x)); 1
λz.λy. IF(IsInfo z) [] (Eqv(Concat(y, z), Concat(y,
information-x))) }

2

p20 <Info>→ ε {} 1
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KindOf(y, z), PartOf(y, z), and Eqv(y, z) are higher-order functions that map two tagged

phrases to a single-element list containing a candidate hypernymy, meronymy, and synonymy ax-

ioms, respectively.

Map(y, z) is a binary higher-order function which distributes the application of a function over

a list of tagged phrases. More precisely, it can be shown as:

Map(f, [E1, ..., En]) = [(f)E1, ..., (f)En]

We now describe step 3 (from Figure 7.1) using the tagged information type “mobile device

identifier-mtp”. In step 3, the tagged information type is first parsed using the grammar in Table 7.1

and its semantics are computed by visiting the nodes of the parse tree in Figure 7.3 and applying

the corresponding semantic attachments from Table 7.2 during a single-pass, top-down parse. Fol-

lowing this order, the semantics of production rule p7 is mapped to the following λ-expressions,

where l in p7.l refers to line l in Table 7.2:

p7.1 represents an abstraction with two lambda variables, where y refers to the inherited tagged

phrase from the right and top of the parse tree and m refers to the tagged phrase “mobile-m”

read through the lexical analyzer. In this case, variable y refers to an empty string, since no tagged

phrase precedes “mobile-m.” Therefore, the first λ-expression can be reduced to Final.sem(“mobile-

m”). In this λ-expression, “mobile-m” is inherited by non-terminal Final in the parse tree. Based

on the principle of compositionality, the semantics of a phrase depends on the order and grouping

of the words in a phrase [40]. An unambiguous grammar like the CFG cannot infer all possible

variants, such as “mobile device” and “device identifier,” by syntax analysis alone, because the

input phrase “mobile device identifier” would require both left- and right-associativity to be de-

composed into these two variants. We overcome this limitation by introducing an unambiguous

right-associative grammar and utilize λ-calculus to ensure that each non-terminal node inherits the

sequence of words from the node’s parents and siblings.

p7.2 represents an abstraction which reduces to a list containing a semantic relation: [KindOf(“mobile

device identifier-mtp”, “mobile information-mx”)] through reading variable m from the lexical an-

alyzer.
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p7.3 represents a λ-expression which is the application of KindOf on two operands, which reduces

to a single element list [KindOf(“mobile device identifier-mtp”, “device identifier”)].

In the next step, we analyze the semantics of production rule p12 that are presented using three

λ-expressions:

p12.1 represents a λ-expression to concatenate tagged phrases associated with the inherited vari-

able y and variable t which is read through the lexical analyzer, and passes the concatenation result

(“mobile device-mt”) to direct descendants of this node.

p12.2 represents the application of KindOf function on “device identifier-tp” and “identifier-p”,

generating a hypernymy relationship between these two tagged phrases as a single element list.

p12.3 is an application that maps a λ-expression to a list of variants. This list is constructed us-

ing a λ-abstraction that can be reduced to SubVariant(“mobile device-mt”), producing [mobile

device-tp, device-t]. Finally, Map applies PartOf function on all the elements of this list result-

ing in [PartOf(“mobile device identifier-mtp”, “mobile device-tp”), PartOf(“device identifier-tp”,

“device-t”)].

Without inheriting “mobile-m” from the ancestors, we would not be able to infer the meronymy

relationships between “mobile device identifier-mtp” and “mobile device-tp.” Moreover, variant

“mobile device-mt” is generated using syntax analysis of the tagged phrase sequence and seman-

tics attached to the syntax. In contrast, other tagged phrases like “device identifier-tp” are solely

generated through the syntax analysis of “mobile device identifier-mtp.” By augmenting syntax

analysis with semantic attachments, we capture the ambiguity of natural language as follows. If

we show the grouping using parenthesis, we can present the phrase associated with “mobile device

identifier-mtp” as (mobile (device identifier)) which means mobile is modifying device identifier,

e.g., an IP address as a kind of device identifier that changes based on location which makes it mo-

bile. Another possible grouping is ((mobile device) identifier) which is interpreted as an identifier

associated with a mobile device, e.g., a MAC address associated with a mobile phone, tablet or

laptop. Therefore, grouping of the words in “mobile device identifier-mtp” helps us consider all

the possible semantics associated with an ambiguous phrase.
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Moving to the next node (p18) in the parse tree, the semantic attachment p18.1 is used to pass

the inherited tagged phrase “mobile device-mt” to Final as the right-hand side, non-terminal.

The semantics of production rule p15 as the last node visited in the parse tree is mapped to the

following attachments:

p15.1 is the application of Map to a variant list constructed from a λ-abstraction. This abstraction

is reduced to SubVariant(“mobile device-mt”), which returns the following variant list as a result:

[“mobile device-mt”, “device-t”]. Finally, Map applies PartOf function on all the elements of

this list resulting in [PartOf(“identifier-p”, “mobile device-tp”), PartOf(“identifier-tp”, “device-

t”)].

p15.2 represents an abstraction that reduces to [PartOf(“mobile device identifier-mtp”, “mobile

device-mt”)].

All the above production rules processing the tagged information type “mobile device identifier-

mtp” yield a collection of candidate semantic relationships contained in multiple lists, in addition to

the inferred morphological variants of the input information type. As the final procedure in step 3,

we merge these lists and translate the relations into corresponding description logic axioms, which

are then added to the output ontology. One might argue that variants such as “mobile information-

mx” generated using this method are not valid phrases. However, the similar rules can be used

to generate valid variants, such as “anonymous information-mx” and “demographic information-

mx” from “anonymous demographic information.” Therefore, the variants and relationships are

considered candidates.

7.2 Evaluation and Results

We evaluate the ontology construction method by answering the following research questions:

RQ1: How much, and to what extent, does the context-free grammar with semantic attachments

cover the relationships between information type pairs in Lexicon L1?

RQ2: Which semantic relations are missed by the method in comparison with the ground truth

ontology?
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RQ3: Considering a generative treatment of morphology, to what extent does the grammar gener-

ate tag sequences that cannot be analyzed using the previously proposed approaches?

RQ4: What level of effort is required to maintain the method for each new lexicon addition?

RQ5: How reliable is the method with respect to a new lexicon addition?

Research questions RQ1, RQ2, and RQ3 evaluate the ontology construction method using lex-

icon L1, discussed in Section 7.2.1. Research questions RQ4 and RQ5 evaluate the generalization

and coverage of our method using lexicon L2, discussed in Section 7.2.2.

7.2.1 Evaluation using Lexicon L1

In this section, we evaluate the ontology construction method using lexicon L1 to answer the

research questions RQ1, RQ2, and RQ3. This lexicon contains 356 information types which were

used to develop the context-free grammar (CFG) in Section 7.1.3. We acquired the reduced and

tagged information types in L1 through this link 1. Given 335 reduced tagged information types,

the CFG and semantic attachments in step 4 (see Figure 7.1) yield 4,593 ontological relations that

share at least one common word. We plan to publish the inferred relations publicly both in text and

OWL format.

We require a ground truth (GT) ontology containing the relationships (hypernymy, meronymy,

or synonymy) between information types in lexicon L1 to evaluate the accuracy of the inferred

relations to answer RQ1. We acquired the results of a study published by Hosseini et al. [37] 2

and followed their approach to construct the GT. This study contains 2,253 information type pairs

which is the result of pairing all the information types that share at least one word in the reduced

version of lexicon L1 (based on step 1). This study contains the relationships assigned to each

information type pair by 30 human subjects per pair, which are called participant preferences. The

participants in this study were recruited from Amazon Mechanical Turk and had completed over

5,000 HITs, had an approval rating of at least 97%, and were located within the United States [37].

Due to the diversity of participant experiences, which allows participants to perceive different

1http://gaius.isri.cmu.edu/dataset/plat17/
2http://gaius.isri.cmu.edu/dataset/plat17/preferences.csv
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interpretations or senses of phrases, different participants can assign different semantic relations to

the same phrase pair, e.g., “mac” can refer to both a MAC address for Ethernet-based routing, and a

kind of computer sold by the computer manufacturer Apple. In another example, “email” can refer

to three different senses: a service or program for sending messages; a message to be sent via the

SMTP protocol; or to a person’s email address, which is the recipient address of an email message.

Therefore, participants may conclude “email address” is a part of “email”, or is equivalent to

“email” which are both valid interpretations. To avoid excluding valid interpretations, we [37]

chose to build a multi-viewpoint GT that accepts multiple, competing interpretations. To this end,

we define valid interpretations for a phrase pair to be those interpretations where the observed

number of responses per category exceeds the expected number of responses in a Chi-square test,

where p < 0.05 for the entire survey result set. This threshold means that there is at least a 95%

chance that the elicited response counts are different than the expected counts [37]. The expected

response counts for a semantic relationship are based on how frequently participants chose that

relationship across all participant comparisons. Finally, we constructed a multi-viewpoint GT as

follows: for each surveyed pair, we add an axiom to the GT for a relation category, if the number

of participant responses is greater than or equal to the expected Chi-square frequency; except, if

the number of unrelated responses exceeds the expected Chi-square frequency, then we do not add

any axioms.

We compared the inferred relationships with the relationships in the GT. A semantic rela-

tionship is a true positive (TP), if it is logically entailed by GT, otherwise, that relationship is a

false positive (FP). Overall, the ontology fragments inferred using our approach logically entail

980/2,253 of hypernyms, meronyms, and synonyms in the GT. We use logical entailment to iden-

tify TPs, because subsumption is transitive and whether a concept is a hypernym of another concept

may rely on the transitive closure of that concept’s class relationships in the GT.

For all information type pairs with valid interpretations that do not match an inferred semantic

relationship, we count these as false negatives (FN). We found 466/2,253 of the related pairs in the

GT that cannot be logically entailed in the ontology fragments inferred through our method.
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Table 7.3: Performance Measures for Lexicon L1

Method Prec. Rec.
26 Regular Expression
Patterns

0.99 0.56

CFG and Semantic At-
tachments

0.99 0.67

We computed Precision(Prec.) = TP/(TP+FP) and Recall(Rec.) = TP/(TP+FN) for the ontol-

ogy construction method using CFG and semantic attachments, presented in Table 7.3. We also

compare the results of our method with our previously proposed ontology construction method

using 26 regular expression patterns (see Section 6.1) [37]. Our model outperforms the 26 regular

expression patterns, by decreasing the number of FNs and improving the recall.

RQ2 concerns the type of relationships that cannot be inferred using the CFG and it’s semantic

attachments. To answer this question, we open coded the 466 FNs and identified four codes that

explain the reasons that our method could not infer the relationships:

(1) Tacit Knowledge: The relationship requires tacit knowledge to be inferred and may not

be inferred using syntax analysis of phrases, alone. For example, the hypernymy relationship

between “crash events” and “device event information” requires knowing that a crash is a software

or hardware failure on a device, which is tacit knowledge that is unavailable in our method. We

identified 404/466 of the FNs fall into this category.

(2) Parse Ambiguity: Our method analyzes phrases by grouping words from the right and left

using the CFG and inherited variants in semantic attachments, respectively. However, we have

observed 17/466 of FNs that disregard this grouping and therefore, cannot be inferred by our ap-

proach. For example, an equivalence relationship between “device unique identifier” and “unique

device identifier” would be inferred as two kinds of “device identifier,” but not as equivalent con-

cepts.

(3) Modifier Suppression: Participants may ignore modifier roles in a phrase and thus prefer an

equivalent relationship between a pair of phrases. For example, “actual location” and “approximate

location” are identified equivalent in the GT ontology. We also reported this phenomenon in our
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early work discussed in Chapter 6 [37]. We identified 34/466 phrase pairs and their relationships

that fall into this category.

(4) Unjustifiable: We identified 11/466 phrase pairs in the GT that we cannot justify despite

the participant preference for these relationships. For example, individuals identified “ general

demographic information” as a kind of “general geographic information.” In another example, “

mobile device type” is identified as a kind of “mobile device unique identifier” by the individuals.

During second-cycle coding of relationships in Tacit Knowledge category, we observed a po-

tential explanation for why individuals prefer a relationship that differs from our method results.

During step 2, we classified the terms in “application software” using the sequence “tt,” which

assumes each term is a thing, which is used in our approach to entail that “software” is part of

an “application.” However, we believe that participants recognize that “application software” is a

single thing. We also believe this explanation applies to 20 phrases and 69 semantic relations in

the GT. Other examples of this kind include “web page” in “web page visited” and “geographic

location.” We revised the tag sequences for these 20 phrases and inferred ontological relations

based on the revision. Applying our method on the set of revised tagged information types re-

sults in additional 74 FNs compared to the original tagged information types. For example, the

method cannot infer the relationships between the following pairs: (application software, software

information), (page view order, web page), and (geographic information, geographic location in-

formation) due to tag changes. Our ontology construction method solely relies on syntax analysis

and tag sequences of the information types. Therefore, semantic ambiguity in tokenization and

tagging can result in changes in the inferred relationships which can be considered as one of the

shortcomings of our method.

Considering a generative treatment of morphology [20], a grammar needs to account for active

word formation [2]. To answer RQ3, we evaluate the formation of noun phrases using the CFG

introduced in Section 7.1.3 by generating all possible tag sequences of varying lengths from 1-4

tokens. The generation process begins with a sequence consisting of the start symbol, followed by

each reachable production on the left-hand side, replacing the start symbol with the right-hand side
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of the production, and then we repeat this process of selecting non-terminals in the sequence and

replacing them with the right-hand side of the corresponding production, until all non-terminals

are resolved and replaced by terminals. This approach yields 129 unique tag sequences, which are

restricted to contain only two consequent modifiers (e.g., we won’t allow a sequence “mmmt” to

be produced). We analyzed the generated sequences using the 26 regular expressions discussed

in Chapter 6 [37]. The results indicate that only 47/129 of generated tag sequences match the

sequences created for phrases in the L1 lexicon. This means that the CFG is potentially more

expressive than our earlier ontology construction method using 26 regular expressions. Also, ad-

ditional evaluation is needed to determine if the generated sequences are valid or would simply be

unused.

7.2.2 Evaluation using Lexicon L2

The research questions RQ4 and RQ5 ask about the level of effort to maintain the method, and the

method’s reliability. We pre-processed 1,853 information types in lexicon L2 using the strategies

mentioned in Section 7.1.1, yielding 1,693 information types. In the four steps presented in Fig-

ure 7.1, only step 2 involves manual effort for semantic tagging. During this step, two analysts

individually assigned semantic role tags to information types in L2. We calculated the inter-rater

agreement for the assigned tags using Fleiss’ Kappa co-efficient, which is a chance-corrected mea-

sure of agreement between two or more raters on a nominal scale [25]. The comparison resulted in

518 disagreements with Kappa = 0.704. Next, the analysts reconciled their differences, and Kappa

increased to 0.917. We used the reconciled tagged results from one of the analysts as the input

for the next step. During this manual step, the required time is linear in the size of the lexicon

compared to the manual ontology construction method discussed in Chapter 5 [38], in which the

effort required to construct the ontology is (n×(n−1))/2 pairwise comparisons for n information

types.

Next, we constructed information type pairs which share at least one word, yielding 1,466,328

pairs. Due to the large number of pairs, we sampled the pairs by creating strata that represent
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Table 7.4: Performance Measures: Lexicon L2

TPs FPs FNs TNs Prec. Rec.
1,686 3 156 438 0.99 0.91

comparisons between tag sequences as follows:

Step 1: Each information type pair is mapped to their respective tag sequence pair, e.g., pair

(mobile device, device name) is mapped to (mt, tp), yielding 974 unique tag sequence pairs, which

we call the strata.

Step 2: Proportional stratified sampling is used to draw at least 2,000 samples from all strata with

layer sizes ranging from 1 to 490. The wide range in layer sizes implies unbalanced strata; e.g.,

strata that contain 1-3 pairs when divided by the total number of information type pairs yields zero.

Therefore, we guarantee that all information type pairs in a strata of size one are selected to ensure

each strata is covered. Next, for strata of size two and three, one random information type pair is

selected. For the remaining strata with sizes greater than three, sample sizes are proportional to the

strata size, which yields one or more pairs per stratum. For each stratum, the first sample is drawn

randomly. To draw the remaining samples, we compute a similarity distance between the already

selected pairs and remaining pairs in each stratum as follows. First, we create a bag-of-lemmas

by obtaining word lemmas in the already selected pairs. Next, in each stratum, the pairs with the

least common lemmas with the bag-of-lemmas are selected. We update the bag-of-lemmas after

each selection by adding the lemmas of the selected information type pairs. This strategy insures

that the information type pairs with the lower similarity measure is selected, resulting in a broader

variety of words in the sampled set. Moreover, we ensure that each tag sequence is represented by

at least one sampled item, and that sequences with a larger number of examples are proportionally

represented by a larger portion of the sample. Using the initial sample size of 2,000, we captured

2,283 samples from 1,466,328 phrase pairs. The original sample size differs from the final one due

to our strategy for ensuring at least one sampled pair for each strata. Our samples contain 1,138

unique information types from Lexicon L2.

To address RQ5 on method reliability, we require a ground truth for relations between the
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information types within the sampled pairs. For this reason, we published a survey following the

method described in Section 6.3 [37]. The survey asks subjects to choose a relation for pair (A,B)

from one of the following six options:

s: A is a kind of B, e.g., “mobile device” is a kind of “device.”

S: A is a general form of B, e.g., “device” is a general form of “mobile device.”

P: A is a part of B, e.g., “device identifier” is a part of “device.”

W: A is a whole of B, e.g., “device’ is a whole of “device identifier.”

E: A is equivalent to B, e.g.,“IP” is equivalent to “Internet protocol.”

U: A is unrelated to B, e.g., “device identifier” is unrelated to “location.”

For this survey, we recruited 30 qualified Amazon Mechanical Turk participants following

the criteria mentioned in Section 7.2.1. Using the survey results and the approach mentioned in

Section 7.2.1, a multi-viewpoint ground truth (GT) was constructed. We plan to publish the survey

results and the GT publicly. We measure the number of true positives (TP), false positives (FP),

and false negatives (FN) by comparing the semantic relations with the multi-view GT to compute

Precision (Prec.) and Recall (Rec.), which are presented in Table 7.4. Our method yields 21,745

total semantic relations from the sampled information types, which we plan to publish publicly

both in text and OWL format. Overall, the method correctly identifies 1,686/2,283 of semantic

relations in the GT ontology.

7.3 Conclusion and Future Work

In this chapter, we introduced a method to infer semantic relations between information types in

privacy policies and their morphological variants based on a context-free grammar and semantic

attachments. This method is constructed based on grounded analysis of information types in 50

privacy policies and tested on information types from 30 policies. Our method shows an improve-

ment in reducing the number of false negatives, the time, and effort required to infer semantic

relations, compared to our previously proposed methods by formally representing the information

types.
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In the next chapter, we discuss our neural network classification model to infer semantic rela-

tions that are independent of syntax and purely rely on tacit knowledge, such as hypernymy relation

between “phone” and “mobile device.”
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Chapter 8: LEARNING ONTOLOGIES FROM NATURAL LANGUAGE

POLICIES

Our prior work to construct a privacy ontology (See Chapter 5) [38] requires comparing informa-

tion types with every other type in a lexicon and assigning a semantic relationship to each pair

using seven heuristics. The required effort for this task is quadratic m × n × (n − 1)/2, where n

is the number of information types in the lexicon, and m is the amount of time required to assign

a relationship to a pair, estimated at 20 seconds [37]. In addition, a new policy introduces between

11-36 new types that are not encountered in the existing lexicon [6]. Considering app markets

contain hundreds of thousands of apps that change daily, we need to automate ontology construc-

tion. Thus, we propose to predict candidate relationships between information type pairs. Unlike

syntax-based method we proposed in Chapters 6 and 7, our approach relies on tacit knowledge

by learning the semantics of words and phrases using word embeddings and convolutional neural

network (CNN).

In this chapter, we describe an empirical method to learn and construct a formal ontology from a

naïve set of all pairs of information types contained in a lexicon. The contributions of this chapter

are three-fold: (1) a novel neural network architecture for learning to predict semantic relation-

ships among information type pairs; (2) a novel method to sample an existing ontology to create

a training and testing set that accounts for dependencies among concepts and formal ontological

relations; and (3) an empirical evaluation of the neural network on a real dataset. The remainder of

this chapter is organized as follows. In Section 8.1, we present the relation classification model to

learn an ontology; Section 8.2 describes the experiment designs; the evaluation and results appear

in Section 8.3; and finally, in Section 8.4 we present discussion, limitations of our work, and future

direction.
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8.1 Relation classification Model

Figure 8.1 shows the learning architecture for the relation classification model with a pair of infor-

mation types as input. Throughout the chapter, we present the information type pair as information-

typeLHS and information-typeRHS , e.g., (device information, device ID), where LHS (left-hand

side) and RHS (right-hand-side) indicate two predicates in an asymmetric ontological relationship.

The input information types in a privacy policy lexicon can be from a single statement in a policy,

different sections of a single policy, or completely different policies. Given an information type

pair, the Embedding layer first maps the words in an information type to their corresponding word

embedding vectors. Second, word embeddings are fed into the Phrase Modeling layer, creating

a phrase-level semantic vector for each information type phrase. Third, the Semantic Similarity

Calculation compares the direction and distance of the two phrase-level vectors and generates a

similarity vector. Finally, the similarity vector is input to Softmax, generating three probabilities

corresponding to hypernymy, synonymy, and unrelated. We select the most probable relation for

each information type pair.

We now describe these four steps in further detail.

8.1.1 Embedding Layer

Each word in an information type phrase is presented using a pre-trained 200-dimensional vector

called a word embedding [5]. To create domain-specific word embeddings, we followed the ap-

proach by Harkous et al. [32] and trained the Word2Vec model (see Section 2.6.2) using 77,556

English privacy policies collected from mobile applications on the Google Play Store . Common-

purpose word embeddings trained on the English Wikipedia dump [8, 44, 52] or Google News

dataset [46] exist, however, previous research has shown improvements on classification accuracy

by utilizing domain-specific word embeddings [66].

To obtain the privacy policy corpus to train the Word2Vec model, we crawled the metadata

archive for more than 1,402,894 Android apps provided by the PlayDrone project [68] from which

109,933 contained a valid link to a privacy policy. We used the BeautifulSoup library in Python to
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Figure 8.1: Ontology Learning Architecture
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extract the text from the HTML files by stripping HTML tags associated with: head, script, URL,

navigation, button, and option information. Next, we filtered non-English policy text files, yielding

77,556 privacy policies with the majority of text in English by using the DetectLang library in

Python. In the next step, for each privacy policy, we tokenized the sentences and removed all non-

English sentences. We also expanded the contractions (e.g., “won’t” is transformed to “will not”),

and removed punctuation, numbers, email addresses, URLs, and special characters. Finally, we

transformed the remaining characters to lower-case. The resulting pre-processed text was used to

train the Word2Vec [46] model.

The trained word embeddings for the words in our privacy policy corpus are stacked in a word

embedding matrix, which is used in the mapping process. The Embedding layer maps every word

in an input information type phrase from a privacy policy lexicon to its corresponding embedding

vector read from the embedding matrix. To this end, we first identify the maximum phrase length t

by analyzing the number of words in all information types in the privacy policy lexicon. Next, the

information type phrase is padded automatically if the number of words is less than t to reach the

maximum length. This approach ensures that all the input information types have the same length.

Next, using the word embedding matrix, each word in the padded information type is mapped to

its corresponding word embedding vector. If a word cannot be found in the embedding matrix,

our approach assigns a 200-dimension vector to the word with its elements randomly generated

using the uniform distribution. In the next section, we illustrate how the word embeddings for each

padded information type phrase are utilized to generate a phrase-level semantic vector.

8.1.2 Phrase Modeling Layer

In this section, we describe the Phrase Modeling layer (see Figure 8.2) that transforms word em-

beddings of an input information type to a low dimensional, fixed-sized vector using CNN with

three different filter widths [66]. Implementing CNN with multiple filter widths captures local

semantics of n-gram of various granularities [65]. In our case, convolutional filters with widths 1,

2, and 3 capture the semantics of uni-grams, bigrams, and trigram, respectively.
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Figure 8.2: Phrase Modeling Layer

We present an example for convolution filter of width w = 3 for the padded information

type P : device1information2pad3 . . . padt−1padt with length t, where t is the maximum phrase

length in the privacy policy lexicon as discussed in Section 8.1.1. The words/pads in the infor-

mation type P are represented as a list of vectors (x1, x2, . . . , xt−1, xt), where xi ∈ Rn corre-

sponds to the word embedding of word/pad i ∈ P and n represents the dimension of word embed-

dings n = 200 (see Section 8.1.1). Our approach automatically assigns a 200-dimension vector

with random uniform values for pads and also the words that cannot be found in the embedding

matrix. Using embedding vectors and filter width w = 3, the phrase is represented as follows:

{[x1;x2;x3], . . . , [xt−2;xt−1;xt]}, where “;” shows vertical vector concatenations. In general, the

result of this module is a matrix X ∈ Rn0×t, where n0 = w×n. To convolve all the features in X ,

we process X using the linear transformation in Equation (8.1).

Z = W1X (8.1)

where W1 ∈ Rn1×n0 is the linear transformation matrix and n1 is a hyper-parameter represent-

ing the number of filters, which we set as 128 in our approach. The result of linear transformation

is shown as Z ∈ Rn1×t, which is dependent on t, the maximum phrase length in the privacy policy

lexicon.

69



We further apply hyperbolic tangent (tanh) as a non-linear activation function, see Equation

(8.2) on the result of the linear transformation. To determine the useful features, we apply a maxi-

mum pooling on h. The result of this process is a feature vector of size n1 which is independent of

the phrase length.

h = tanh(Z) (8.2)

After applying the Phrase Modeling layer to the input information type with three different

convolution filter widths, we retrieve three high-level feature vectors of size n1 as shown in Fig-

ure 8.2. Finally, we concatenate these three feature vectors to create a single vector representing

the phrase-level semantics. We follow this approach to generate two phrase-level vectors for both

information-typeLHS and information-typeRHS . These two vectors are compared in the Semantic

Similarity Calculation layer, which we discuss next.

8.1.3 Semantic Similarity and Softmax

The Semantic Similarity Calculation layer compares the input phrase-level vectors from the Phrase

Modeling layer. We adopt the structure proposed by Tai et al., where the direction and distance of

the two input vectors are compared using the following equations [64]. Two vectors PLVLHS and

PLVRHS refer to Phrase-Level-VectorLHS and Phrase-Level-VectorRHS in Figure 8.1, which are

shortened for simplicity in the equations.

dir = PLVLHS � PLVRHS (8.3)

Dis = |PLVLHS − PLVRHS| (8.4)

sim = σ(Wdir + Udir + b) (8.5)
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Equation (8.3) compares the direction of two semantic vectors PLVLHS and PLV RHS for

each dimension using the point-wise multiplication operator. For calculating the distance between

PLV LHS and PLVRHS , we utilize the absolute vector subtraction presented in Equation (8.4).

To integrate the results of Equation (8.3) and Equation (8.4) on PLV LHS and PLV RHS, we

use a hidden sigmoid layer presented in Equation (8.5). The similarity vector as the output of the

function is then sent to a Softmax classifier as shown in Equation (8.6) to predict the probabilities

of hypernymy, synonymy, and unrelated. We select the prediction with the highest probability as

the relationship between information-typeLHS and information-typeRHS . Next, we discuss the loss

function used to train the relation classifier.

Prelation = softmax(Wpsim+ bp) (8.6)

8.1.4 Loss function

We use weighted cross-entropy loss to measure the performance of the relation classifier with re-

spect to the predicted probability Prelation, which has been normalized with Softmax, and the actual

label (hypernym, synonymy, unrelated). Cross-entropy loss increases as the predicted probability

Prelation diverges from the actual label. We use weights to account for imbalance in ontological

relations, i.e., the number of unrelated pairs is several orders of magnitude larger than all other

relations combined. The weights are calculated using the frequency of each relation’s presence

in the ontology as a simple ratio: unrealetd/total and ((hypernymy+synonymy))/total. The unre-

lated ratio is applied to the hypernymy and synonymy classes, as determined by the actual label,

to give more weight when determining the loss, and the hypernymy and synonymy ratio is applied

to the unrelated class to give less weight when determining the loss. The loss function is defined

in Equation (8.7).

loss = −wi
∑
i∈T

yiln(P i
relation) (8.7)

where T is the training pairs, and wi, yi, and P i
relation are the weight, actual label, and predicted
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probability, respectively, for the ith information type pair in the training set.

The training involves sending the derivative of the loss function through back-propagation to

update the network parameters using the stochastic gradient descent method. Each epoch iterates

over all the training data, which are divided into multiple batches. After processing each batch of

training data within an epoch, the parameters are updated based on the gradient of the loss function

and another hyper-parameter called the learning rate. This hyper-parameter determines how fast

or slow the network should move towards the optimal solution. The hyper-parameters, including

learning rate, are defined in Sections 8.2.4 and 8.2.5. The training process stops when the loss

value is sufficiently small or fails to decrease [30].

8.2 Experiment Designs

In this section, we first describe our motivation for evaluating the relation classification model,

before describing our experimental designs.

The ability to predict an ontology relationship is a multi-class classification problem, in which

given an ordered information type pair, we are interested in whether the first item in the pair is a

hyponym, synonym or in another type of relation, including unrelated. To this end, we consider

two views about how the classification model learns to predict these relationships: (1) each rela-

tionship is independent, and the network has learned direct relationships among concepts ignoring

the transitive closure of hypernymy; or (2) relationships can be dependent on one another, and the

network has learned a partial semantic representation that is some subset of the transitive closure

of hypernymy. For example, we assume that (Android ID, mobile device ID) are related through

hypernymy relationship. Similarly, hypernymy holds for (mobile device ID, device identifier). We

assume the classification model learns semantic relationships among these words based on how

they are used in policy sentences. Under view one, we train the classification model to only learn

these two relationships from the embeddings trained on the policies. Under view two, however,

we further train the model to learn relationships inferred through transitivity, which includes the

hypernymy relationship for (Android ID, device identifier). We hypothesize that this additional
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training generalizes to improve the classification of hypernymy, because more abstract hypernyms

can be used to group semantically similar, but not directly related concepts.

We conducted two experiments to evaluate the relation classification model described in Sec-

tion 8.1. In experiment 1, we evaluate the model’s ability to classify whether an information type

pair is a direct hypernymy, synonymy, or otherwise. Experiment 2 differs from experiment 1 by

considering entailed hypernymy relations, which include direct and indirect hyponyms in a single

class, and thus we evaluate the model’s ability to classify information type pairs into one of three

classes: hypernymy (direct and indirect), synonymy, or otherwise.

In this section, we first discuss the unique challenge of learning with ontologies. Second, we

introduce our ground-truth ontology. Third, we introduce a method to generate an early version

of the ontology which serves as the training ontology for our model. Finally, we discuss the

experiments.

8.2.1 Learning with Ontology

In traditional machine learning, each data point in a data frame is independent and thus data points

can be randomly divided into training and testing data. Models are fitted to training data, and

then classifications or predictions are evaluated on testing data. When predicting extensions to an

ontology, however, the relationships between ontology classes are not independent: the relation-

ships in hypernymy are transitive, and thus removing a relationship between a superordinate and

subordinate concept can lead to misclassification between the subordinate concept and its ancestor

concepts. To address this challenge, each ontology is treated as a versioned dataset, wherein later

versions contain new information types dependent (via relations) on types found in earlier versions.

To learn a later version, we train the relation classification model on an earlier ontology version.

The earlier version is constructed by randomly eliminating information types from the later ver-

sion, while repairing the earlier version so that all entailments of the early version are contained

in the entailment of any subsequent version (i.e., for each future version, the entailment is mono-

tonically increasing). Therefore, we train the relation classification model on an early version of
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Table 8.1: Examples of Information Types in Platform Information Lexicon L

Information Type Frequency
IP address 41
browser type 21
Location 11
Operating system type 5
Geo-location 4
Ads clicked 2
Media access control 2
Adverstising ID 1
Device brand 1

the ontology (training ontology), and we validate the model on the later version (testing ontology).

We now introduce the ontology used to evaluate our method followed by the steps to generate an

early version for training purposes.

8.2.2 Platform Ontology

As our ground-truth, we utilize the platform ontology (see Section 5.2) that is manually built from

the platform information lexicon (see Section 4.2), which we call L. This lexicon was extracted

from 50 privacy policies [60]. Lexicon L contains phrases that correspond to platform informa-

tion types, defined as “any information that the app or another party accesses through the mobile

platform that is not unique to the app.” Each information type in L has a frequency, or number of

times the type appeared in annotations of the 50 policies. Table 8.1 shows example types and their

frequencies in L.

As mentioned in Chapter 5, we manually constructed the platform ontology from L by applying

seven heuristics that were identified through grounded analysis of five privacy policies [38]. The

platform ontology contains 367 information types, which are used to comprise 1583 hypernymy

and 310 synonymy relationships between pairs of information types.

Formally, the platform ontology is a knowledge base KB expressed using FL0, a sublanguage

of the Attribute Language (AL) in Description Logic (DL). A DL knowledge base KB is comprised

of two components, the TBox and the ABox [3]. The TBox consists of terminology, i.e., the
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vocabulary (concepts and roles) of an application domain. The ABox contains assertions about

named individuals using this vocabulary. The platform ontology knowledge base KB only contains

terminology, which we call the TBox T .

The semantics of FL0 concepts begins with an interpretation I that consists of a non-empty set

δI (the domain of the interpretation) and an interpretation function, which assigns to every atomic

concept C, a set CI ⊆ ∆I . The TBox T also contains terminological axioms that relate concepts

to each other in the form of subsumption and equivalence, which we use to formalize hypernymy

and synonymy, respectively. A concept C is subsumed by a concept D, written T |= C v D, if

CI v DI for all interpretations I that satisfy the TBox T . The conceptC is equivalent to a concept

D, written T |= C ≡ D, if CI = DI for all interpretations I that satisfy the TBox T . Axioms of

the first kind (C v D) are called inclusions, where axioms of the second kind (C ≡ D) are called

equalities [3]. Note that the equalities C ≡ D can be rewritten as two inclusion axioms C v D

and D v C [63]. Using this formal representation, we now describe our method to construct an

early version of platform ontology.

8.2.3 Training Ontology

The procedure to create an early version of an ontology is analogous to sampling from a graph,

wherein concepts (nodes) are related via axioms (edges). Thus, we first briefly introduce traditional

graph sampling goals, after which we introduce our sampling goal and corresponding method.

Graph sampling is the problem of creating a small sample graph that has similar properties

as the target graph [43]. Scale-down sampling and back-in-time sampling describe two common

goals in graph sampling [43]. In scale-down sampling, the goal is to create a sample S on n′ nodes

from a static graph G containing n snodes, where n′ � n. Sample S has similar properties as

graph G, such as degree distribution, clustering coefficient distribution, and hop-plot. Back-in-

time sampling corresponds to traveling back in time and trying to mimic past versions of graph G

[43]. Let Gn′ denote the graph G at some point in time, when it had exactly n′ nodes. The goal is

to find a sample S on n′ nodes with similar properties as graphGn′ , i.e., when graphGwas the size

75



of S. Sampling methods for scale-down and back-in-time sampling are summarized in three main

groups: (1) methods based on randomly selecting nodes; (2) methods that select edges randomly;

and (3) exploration techniques that simulate random walks on a target graph.

In our approach, we are training a supervised machine learning algorithm to predict future

versions of an ontology, and thus our goal is to create a training ontology T ′ that can be used to

construct a training set for our learning task from a target ontology T with n concepts. We call this

sampling goal version sampling, which has the following two properties:

P1. The training ontology T ′ follows the scale-down sampling goal, where the number of

sampled concepts n′ � n.

P2. The training ontology T ′ is an early version of the target ontology T with n′ concepts,

similar to back-in-time sampling.

Our sampling goal differs from the traditional graph sam-pling goals for two reasons: (1)

scale-down sampling can yield disconnected graphs and node reachability is not the main concern,

whereas transitivity is essential to subsumption inference and ensuring that the entailment of future

ontology ver-sions is monotonically increasing; (2) back-in-time sampling aims to sample on an

early version of the graph, whereas our aim is to use the early version of the graph as the sample.

Version sampling is comprised of two algorithms: (1) a weighted random sampling algorithm

to identify candidate concepts to remove from the target ontology; and (2) the remove-and-repair

algorithm that repairs the modified target ontology after removing concepts from the target T to

yield the early version ontology T ′.

Weighted Random Sampling

Concepts in the platform ontology occurred across 50 privacy policies according to the frequencies

recorded in the lexicon L. When choosing concepts to remove from the target ontology to yield an

earlier version, one must consider the likelihood that the concept would be seen in a policy, before

it was added to the ontology during construction. For this reason, we introduce a probability

proportional to size sampling algorithm that is a weighted random sampling method [51]. This
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algorithm iteratively takes an information type from lexicon L with inclusion probability inversely

proportional to the information type frequency in L. The algorithm terminates after sampling n′′

information types from L.

Weighted Random Sampling Algorithm:

Input: Lexicon L with n information types and their frequencies

Output: Sampled lexicon L′ with n′′ sampled information types

1: While sample-size < n
′′

2: Randomly select an information type i ∈ L− L′

3: Let Fi be the frequency of information type i in L

4: If Fi ≤ 0 then

5: Select information type i and insert it to L′

6: Else

7: Decrement Fi by one

8: End-While

The weighted random sampling algorithm ensures the selection of information types with lower

frequency. Elimination of sampled information types from platform ontology results in an ontology

T ′ that is more likely to contain information types with higher frequency, hence higher probability

to appear in the privacy policies.

Early Version Repair Algorithm

After the n′′ information types have been selected using weighted random sampling, we apply the

remove-and-repair algorithm to the target ontology T to yield the early version ontology T ′, which

contains n′ = n− n′′ concepts. In this algorithm, let f(x) : L′ → concepts in T .

Remove-and-Repair Algorithm:

Input: Sampled lexicon L′, Platform ontology as TBox T

Output: Training ontology as TBox T ′ with n′ concepts.

1: Create a copy of TBox T , called TBox T ′
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2: For information type i ∈ L′

3: Take all inclusion axioms of form Cj v f(i) in T ′

4: Take all inclusion axioms of form f(i) v Pk in T ′

5: Create axioms Cj v Pk and add it to T ′

6: Take all equalities of form f(i) ≡ Em in T ′

7: Create axioms Em v Pk and add it to T ′

8: Omit concept f(i) and all inclusion and equality axioms containing f(i) in T ′

9: End-For

For both experiments, we apply the version sampling algorithm with n′′ = 100 on the platform

ontology TBox T which contains n = 367 concepts. The generated training ontology T ′ contains

n′ = 267 concepts, thus version sampling method satisfies property P1 : n′ � n. In addition, T ′ is

a consequence of T , denoted as for every axiom t ∈ T ′, it is true that T |= t for all interpretations

T that satisfy the TBox T [63].

We illustrate the version sampling algorithm using a hypothetical ontology in Figure 8.3 that is

created using Web Ontology Language (OWL) in Protégé1, an open-source ontology editor. Every

concept in OWL is a sub-class of the class owl:Thing, which is the top concept in DL. In Figure 8.3,

concepts C-2 and C-3 are equivalent and this equality is shown using two inclusions. Herein, let

L′ = {C-3, C-5}. Both L′ and the ontology in Figure 8.3 are the input to the version sampling

algorithm. First, we create a copy of the ontology called T ′.

For concept C-3, we list all the inclusion axioms of form Cj v C-3 representing the sub-classes

of C-3. This list only contains C-4, which we show in the form of a singleton set: {C-4}. Next, we

list all the inclusion axioms of the form C-3 v Pk, stating the super-classes of C-3. This list only

contains {C-1} as the super-class of C-3. We now create a new inclusion axiom C-4 v C-1 and

add it to the TBox T ′. Next, we list all the equalities for concept C-3, which only includes {C-2}.

In line 8 of the version sampling algorithm, we create a new inclusion axiom C-2 v C-1 and add it

to T ′. Finally, we omit concept C-3 and axioms C-3 v C-1 and C-3 ≡ C-2 from the new ontology.

1https://protege.stanford.edu/
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Figure 8.3: An Example Ontology

For the second iteration, we repeat lines 3-8 of the algorithm for concept C-5. Since C-5 has no

sub or equivalent classes in the target ontology, there is no need to repair the ontology by adding

additional inclusion axioms. Therefore, the algorithm omits C-5 from T ′ and terminates.

The training ontology generated through our method contains 1,026 hypernyms and 183 syn-

onyms. We now describe our two experiments. Training ontology and platform ontology (i.e., our

testing ontolo-gy) are static artifacts in both experiments.

8.2.4 Experiment 1

In experiment 1, we aim to classify whether a new information type pair describes a direct hy-

pernymy relationship, a synonymy, or otherwise. To this end, we define direct hypernymy for

concepts C, D if their relation satisfies the following three criteria: (1) C v D; (2) there exists no

concept E such that C v E and E v D; and (3) C 6≡ D. We define synonymy relationship for

conceptsC,D ifC ≡ D. If a pair is related in any way other than a direct hypernymy or synonymy

relationship, we classify this relationship unrelated. Using this definition, we identify direct hyper-

nyms, synonyms, and unrelated pairs in the training ontology as training-set1 for this experiment.

Similarly, we identify direct hypernyms, synonyms, and unrelated pairs in the testing ontology as

testing-set1 used to evaluate the model. Both datasets are available online .Table 8.2 presents the
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Table 8.2: Experiment 1: Number of Hypernym, Synonym, and Unrelated Pairs in Training and
Testing Sets

Direct Hypernymy Synonymy Unrelated
Training-set1 1,026 183 34,302
testing-set1 1,583 310 65,268

Table 8.3: Experiment 1: Training-set1 Information Type Pairs and Semantic Relations

Information-typeLHS Information-typeRHS Semantic Relation Label
Android ID Mobile device ID Direct Hypernymy
Mobile device ID Device identifier Direct Hypernymy
DID Device identifier Synonymy
URL URLs Synonymy
Android ID Device identifier Unrelated
Call duration Advertising ID Unrelated

number of pairs identified for each class in training-set1 and testing-set1. In addition, Table 8.3

presents examples of information type pairs along with their relationships in training-set1.

In this experiment, we aim to answer the following re-search questions.

RQ1: What is the precision, recall, and F-1 score for the predicted relations?

RQ2: How well the relation classification model can reduce the manual ontology construction

effort?

RQ3: What is the effect of missing transitive hypernymy on classification performance?

For experiment 1, we identify the best model configuration based on classification performance

(i.e., average F-1 score on three classes) on testing-set1. To this end, we use grid search over six

hyper-parameters of relation classification model, including number of epochs, dropout keep rate,

batch size, learning rate, convolution activation function, and prediction function. The parameters,

their different configuration options, and best performing selections are shown in Table 8.4.

8.2.5 Experiment 2

In experiment 2, we aim to classify whether a new information type pair is one of hypernymy,

synonymy, or unrelated. This experiment diverges from experiment 1 by listing both direct and
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Table 8.4: Experiment 1: Parameter Configuration Options and Selections

Model Hyper-parameter Hyper-parameter Options Best Hyper-parameter Selection
Number of Epochs 10, 15 10
Dropout Keep Rate 0.7, 0.8, 0.9 0.9
Batch Size 30, 128, 200 128
learning Rate 0.01, 0.001 0.001
Convolution Activation Function tanh, relu, sigmoid tanh
Prediction Function sigmoid, softmax sigmoid

Table 8.5: Experiment 2: Number of Hypernym, Synonym, and Unrelated Pairs in Training and
Testing Sets

Direct Hypernymy Synonymy Unrelated
Training-set2 3,827 183 31,501
testing-set2 7,070 310 59,781

transitive hypernymy relationships from a TBox entailment. Therefore, we define hypernymy

relationship between two concepts C, D, such that: (1) C v D; and (2) C 6≡ D. We define

synonymy relationship for concepts C, D if C ≡ D. If a pair is related in any way other than a

hypernymy or synonymy relationship, we classify this relationship unrelated. Using this definition,

we create training-set2 and testing-set2 using training and testing ontologies (see Table 8.5 for the

resulting counts). Additionally, Table 8.6 presents example pairs in training-set2. In contrast to

instances listed in Table 8.3, the pair Android ID, device identifier is labeled as hypernymy in

experiment 2.

Experiment 2 raises the following research question based on the role of transitive hypernymy

Table 8.6: Experiment 2: Training-set2 Information Type Pairs and Semantic Relations

Information-typeLHS Information-typeRHS Semantic Relation Label
Android ID Mobile device ID Hypernymy
Mobile device ID Device identifier Hypernymy
Android ID Device identifier Hypernymy
DID Device identifier Synonymy
URL URLs Synonymy
Call duration Advertising ID Unrelated
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Table 8.7: Experiment 2: Parameter Configuration Options and Selections

Model Hyper-parameter Hyper-parameter Options Best Hyper-parameter Selection
Number of Epochs 10, 15 10
Dropout Keep Rate 0.7, 0.8, 0.9 0.9
Batch Size 30, 128, 200 200
learning Rate 0.01, 0.001 0.001
Convolution Activation Function tanh, relu, sigmoid relu
Prediction Function sigmoid, softmax softmax

relations:

RQ4: How does entailment in hypernymy affect the performance of relation classification

model in terms of precision, recall, and F-1 score?

We also identify the best model configuration based on classification performance (i.e., av-

erage F-1 score on three classes) using grid search over six hyper-parameters for experiment 2.

The parameters, their different configuration options, and best performing selections are shown in

Table 8.7.

Next, we present results for experiments 1 and 2 and address the research questions.

8.3 Experimental Results

In this section, we report our results and answer the research questions described in Sections 8.2.4

and 8.2.5. Recall, we have two experiments: (1) to evaluate hypernymy prediction assuming

independent relations; and (2) to evaluate hypernymy prediction assuming dependent relations.

8.3.1 Experiment 1 Results

In experiment 1, we compare the labels of the testing-set1 with the predicted relations to answer

RQ1 and investigate the number of relations correctly predicted by our model. testing-set1 contains

1,583 information type pairs labeled as direct hypernymy, 310 information type pairs labeled as

synonymy, and 65,268 pairs as unrelated (see Section 8.2.4 for more details). We use precision,

recall, and F-1 score as measures to evaluate the performance of the relation classification model on
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Table 8.8: Confusion Matrix for Experiment 1
Actual Direct Hypernymy Actual Synonymy Actual Unrelated Total Predictions/Class

Predicted Direct Hypernymy 1,228 104 1,207 2,539
Predicted Synonymy 0 0 0 0
Predicted Unrelated 355 206 64,061 64,622
Total Labels/Class 1,583 310 65,268

Table 8.9: Performance Measures for Experiment 1

Direct Hypernymy Synonymy Unrelated
Precision 0.483 Undefined 0.991

Recall 0.775 0.000 0.981
F-1 Score 0.595 Undefined 0.985

the testing set. Since our dataset is skewed toward unrelated, we opt for F-1 score, which provides

a better balance between precision and recall. Table 8.8 presents the confusion matrix, where each

row presents the class predictions, and each column presents the actual class instances. For each

class, we define correct predictions (CPs), if the prediction is the same as class label, shown in the

shaded diagonal. Equations 8.8, 8.9, and 8.10 present performance measure calculations for each

relation class (i.e, hypernymy, synonymy, or unrelated), which appear in Table 8.9. The relation

classification model fails to predict synonymy relationships. This outcome is not unexpected, since

synonyms are rare and the data set is highly imbalanced.

Precisionrelation =
CPrelation

#Predictionsrelation
(8.8)

Recallrelation =
CPrelation

#Labelsrelation
(8.9)

F − 1relation = 2× Precisionrelation ×Recallrelation
Precisionrelation +Recallrelation

(8.10)

In the manual ontology construction approach [38], an analyst must compare each information

type pair to identify a semantic relationship between the types. The cost to compare two informa-

tion types is reported as 20 seconds on average [37]. Extending an ontology with new information
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Table 8.10: Examples of False Hypernymy Predictions

Information-typeLHS Information-typeRHS Pre Act Ent Hops
Device brand Device H U Yes 3

Mobile device IP address Mobile device H U Yes 2
MAC address Hardware information H U Yes 3

Players interactions interactions H U Yes 2
Mobile device unique identifier Device identifiers H U Yes 2

Unique hardware identifiers Hardware information H U Yes 2
Website activity date Usage times H U No -

Devices UDID Device unique identifier H U No -
Postal code Approximate geographical location H U No -

WiFi signal strength Mobile device H U No -
Websites visited Aggregated user data H U No -

MAC address Hardware settings H U No -

types requires the analyst to compare each new type with all existing types. To address RQ2, we

evaluate the extent that the relation classification model can reduce ontology construction effort.

The testing ontology contains 367 information types, resulting in (367×(367−1))
2

= 67, 161 informa-

tion type pairs that an analyst must evaluate during construction. A key challenge is reducing the

number of comparisons, particularly of information type pairs that are unrelated and that domi-

nate the space of comparisons. While the predicted unrelated class includes 30% false positives

(561/1,893), it correctly predicts 98% of the unrelated comparisons (64,061/65,268). This trade-

off in precision reflects a significant time savings of 355 hours of comparison to correctly identify

unrelated pairs.

In experiment 1, the training-set1 and testing-set1 include direct hypernymy relationships and

thus label indirect, or ancestor hypernymy relations as unrelated. This task aims to predict the

graph edges in an ontology, ignoring that subsumption is transitive and the transitive closure of a

concept’s class relationships. To answer RQ3, we analyzed the logical entailment of 1,207 falsely

predicted hypernymy relations that were labeled unrelated. We utilize OWL API HermiT reasoner2

for this analysis. The results show 44% (541) of falsely predicted hypernymies with unrelated

2http://www.hermit-reasoner.com/java.html
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Table 8.11: Confusion Matrix for Experiment 2

Actual Hypernymy Actual Synonymy Unrelated Total Predictions/Class
Predicted Hypernymy 6,098 103 918 7,119
Predicted Synonymy 0 0 0 0
Predicted Unrelated 972 207 58,863 60,042
Total Labels/Class 7,070 310 59,781

label are logically entailed through indirect hypernymy. Table 8.10 shows a sample analysis result,

where the model prediction (Pre) is hypernymy (H) and the actual labeled (Act) is unrelated (U). If

a pair is logically entailed, we show the number of hops/edges between the types in the ontology.

Notably, predicting indirect hypernyms could improve results.

8.3.2 Experiment 2 Results

In experiment 2, we include direct and indirect hypernymy in the actual labeled relations. The

model is trained on training-set2 containing 3,827 information type pairs labeled as hypernymy

(direct and transitive), 183 information type pairs labeled as synonymy, and 31,501 pairs as unre-

lated. We evaluate the performance of the relation classification model by comparing the actual

labels of testing-set2 with the predicted relations to address RQ4.

We use precision, recall, and F-1 score as measures to evaluate the performance on testing-

set2. The confusion matrix for this evaluation is presented in Table 8.11, where each row presents

the predictions class counts, and each column presents the actual labeled instances. In contrast

to Table 8.11, some portion of unrelated labeled instances are shifted toward hypernymy. Hence,

the model’s performance on hypernymy shows a significant improvement as shown in Table 8.12

. Further, we notice an increase of 173% within the misclassified hypernymies using this setup.

However, we accept this misclassification as a trade-off for a higher F-1 score.
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Table 8.12: Performance Measures for Experiment 2

Direct Hypernymy Synonymy Unrelated
Precision 0>856 Undefined 0.980

Recall 0.862 0.000 0.984
F-1 Score 0.858 Undefined 0.981

8.4 Discussion and Future Direction

We now discuss our results, limitations, and improvement required to address some of the chal-

lenges in this chapter.

Regulators and app markets require app developers to describe their data practices in privacy

policies. Apart from abstraction, stakeholders can use different words to describe the same data

concept. Using semantic relations, such as hypernymy and synonymy, one can formalize relation-

ships between concepts to create a shared understanding. The model proposed herein identifies

hypernymy relationships between information type pairs with 0.858 F-1 score. The model also

identifies unrelated information type pairs with 0.981 F-1 score, greatly reducing the search space

of candidate relationships.

We now list the challenges and limitations of our work. Based on the results in experiments

1 and 2, the model failed to predict synonymy relationships due to insufficient training examples.

Despite biasing weights for prediction, which enhances hypernymy predictions, synonymy predic-

tions remain unaffected. To reduce the effect of minority class, over-sampling methods, such as

random over-sampling and Synthetic Minority Over-Sampling Technique (SMOTE) [18], can be

used. Random over-sampling simply repeats training examples to reduce imbalance. In contrast,

SMOTE generates synthetic training examples based on distance functions.

In experiment 2, our model misclassifies 972 information type hypernymy pairs as unrelated.

One approach to reduce this misprediction could be to use our syntax-based method in Chapters 6

and 7 that infers semantic relations among types that share at least one word [37]. To this end, we

utilized the ontology constructed upon lexicon L (see Section 5) to investigate if the misclassified

hypernymies can be inferred. Based on the results, we can only infer 56/972 of hypernyms. Alter-
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natively, we may explore the use of knowledge about siblings and shared ancestors to identify pairs

misclassified as unrelated. Finally, the manually constructed ontology may include omissions,

since manual classification is subject to fatigue and recency effects, where the analysts recalls the

information types that they classified last [38, 49]. We propose to add additional forms of evalu-

ation using preference theory [61] to elicit the relationships among predicted classifications. The

results of a preference survey can illuminate the extent of relatedness among pairs and evaluate a

sample of potential misclassifications.

Finally, the model is trained on platform information types, which does not include domain-

specific information types, such as health-, finance-, dating-, and shopping-related app data, to

name a few.

Our work has broader impact on data flow and requirements traceability domains. We plan to

integrate our work with data flow and requirements compliance detection tools that rely on precise

description of information types. For example, Breaux et al. identifies data flow traces across

privacy policies of a multi-tier service systems [12]. Further, Slavin et al. and Wang et al. [60, 69]

investigate privacy requirements traceability in Android apps.
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Chapter 9: FUTURE WORK

In this section, we list two main future directions. The first shows the application of ontologies

in identifying data practices with regards to a specific information type. The second direction

highlights the application of ontologies in generating privacy snippets.

9.1 Summarizing Privacy Policies

Requirements analysts, regulators, and users might be interested in data practices of an app regard-

ing an information type, such as “network information” or “device information.” To automatically

detect the collection, usage, and sharing practices for any information type, a requirements analy-

sis tool can search for privacy statements where the exact match of the information type appears.

However, using the information type ontology, the tool can also look for privacy statements that

contain specific kinds of that information type. For example, the tool can look for statements con-

taining “network information” as an exact match of the information type, along with the statements

containing “IP address” and “MAC address” as specific kinds of “network information.” Using the

privacy policy ontology, stakeholders can grasp a more comprehensive view of data practices re-

grading an information type in apps.

9.2 Generating Controlled Privacy Snippets

Controlled natural languages are designed to improve communication among humans, especially

for stakeholders that might use different phrases for the similar domain concept. The restrictions

enforced on the language increase the shared understating. We aim to employ this idea to generate

privacy policy snippets describing data practices in brief which are easy to comprehend by users.

These snippets can also be used toward generating consent that can be presented to users during

usage.

To this end, first, we plan to utilize the privacy policy ontology to capture all data practices

regarding an information type as mentioned in Section 9.1. With privacy snippets or consent,
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the challenge is to be comprehensive (i.e., summarizing the data practices into a short text), but

addressing the right information types with respect to users’ perceived risk on information types

and actions. For example, within consent text, it is unreasonable to list all the information types that

are either specific kinds or parts of “network information.” Thus, we need to identify a balance

where the selected information types convey the users perceived risk for the data practice. For

example, users might be willing to share their “network information” with third parties, however,

they are less willing to share their “MAC address, ” although “MAC address” is a specific kind of

“network information.” More studies on perceived privacy risk have been conducted by Bhatia and

breaux [7]. The results of these studies can be used to identify a minimal set of information types

for generating transparent privacy snippets without altering or diminishing users’ perceived risks

toward the practice.
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Chapter 10: CONCLUSION

Almost every major privacy law requires companies to disclose their activities surrounding per-

sonal data in a transparent way. However, privacy policies as a major source to communicate

data practices often fail to provide detailed and transparent description of companies’ practices

regrading personal data. To be comprehensive, these policies mainly focus on abstract information

types, hence reducing shared understanding between different stakeholders, such as requirements

analysts, policy authors, app developers, regulators, and users. Specifically on users’ side, full and

transparent disclosure of data practices allows individuals to make better, informed decisions.

To address the abstraction and variability in concept and achieve a shared understanding of

companies’ data practices, this thesis proposes methods to capture and formalize the semantics of

natural language privacy policies into a knowledge base, called ontology. Arranging terminology

into a hierarchical organization (i.e., an ontology) captures relations, such as subclass/superclass,

part/whole, and synonymy, among categories. Constructing an empirically-valid ontology is a

challenging task since it should be both scalable and consistent with multi-user interpretations.

Within this thesis, we discuss different methods to construct privacy ontologies using (1) heuristics

derived from grounded analysis of privacy polices, (2) natural language patterns, and (3) neural

network classifier. In addition, we also evaluate each proposed method empirically and address the

limitations and future directions. Further, we propose a method to split an ontology into training

and testing sets for machine learning purposes.

In summary, the proposed work enhances identification of corrective actions that mitigate or

eliminate the impacts of privacy risk in software development process using natural language pro-

cessing and empirical data collection methods. We envision that the results and artifacts produced

through this research can be applied in data flow and privacy violation detection tools, enabling

companies to align their privacy policies with their actual data practices.
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