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Sophisticated cyber attacks often start with a reconnaissance phase, which may expose useful

information about the attacks that will be waged later. It is therefore important to systematically

understand and characterize cyber attack reconnaissance behaviors. However, little research on this

matter has been reported in the literature. The present dissertation aims to fill the void by proposing

and investigating the first systematic framework for characterizing cyber attack reconnaissance

behaviors. The framework consists of three levels of abstractions: macroscopic, mesoscopic, and

microscopic. Correspondingly, the dissertation makes the following three contributions.

First, in order to characterize cyber attack reconnaissance behaviors at the macroscopic level,

we propose a novel abstraction, dubbed dynamic attacker-victim relation graphs, to represent cyber

attack reconnaissance behaviors. This abstraction leads to a time series of graphs and allows us to

characterize the evolution of the attacker-victim relation over time. We present a case study with a

focus on identifying the number of time resolutions that need to be considered in order to obtain a

comprehensive characterization of these dynamic attacker-victim relation graphs.

Second, in order to characterize cyber attack reconnaissance behaviors at the mesoscopic level,

we propose clustering cyber attackers based on their reconnaissance behaviors over time. We

propose a novel abstraction, dubbed multi-resolution clustering, to characterize the evolution of

attackers’ reconnaissance behaviors in adjacent time windows as well as the evolution of persistent

attackers’ reconnaissance behaviors over multiple adjacent time windows.

Third, in order to characterize cyber attack reconnaissance behaviors at the microscopic level,

we propose the novel notion of attacker reconnaissance trajectory hierarchy tree for representing

temporal and spatial behaviors of cyber attack reconnaissance.
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CHAPTER 1: INTRODUCTION

The scale and complexity of cyber threats are becoming increasingly overwhelming. As a conse-

quence, many entities in various sectors have become victims of cyber attacks. For example, data

breaches have caused an average loss of $3.8 millions per incident and an average loss of $148.0

per breached data record [15]. The prevalence of cyber attack incidents indicates that cyber de-

fense lags largely behind cyber attacks. These incidents can be largely attributed to the following

asymmetry: Cyber attackers can successfully break into a system by exploiting a single vulner-

ability. In contrast, the defender must adequately protect the entire vulnerability surface cutting

across hosts and networks as well as hardware and software. The urgency and importance of the

problem has motivated the development and deployment of many cyber defense tools and sensors

for monitoring the situation and collect data, which can be used to various purposes. As cyber

attacks get more sophisticated, researchers have built various models to describe and understand

sophisticated attacks.

On one hand, there have been a number of efforts at qualitatively modeling cyber attacks. As

highlighted in Figure 1.1a, researchers at Lockheed Martin introduced the notion of cyber attack

kill chain [46, 60, 66, 141], which describes sophisticated attacks, such as Advanced Persistent

Threats (APTs), in seven steps: reconnaissance, weaponization, delivery, exploitation, installation,

command and control, and act on objective. Mireles et al. [81] introduced the notion of attack

narratives by leveraging the cyber kill chain. Kim et. al. [65] extended the the cyber kill chain

for multimedia environments and Hahn et. al. [56] extended the anatomy to include the cyber-

physical layer. As highlighted in Figure 1.1b, Rutherford and White [111] proposed a variant that

includes intelligence gathering, objective execution, and exfiltration of information. As highlighted

in Figure 1.1c, researchers at Fire Eye introduced a related model for describing APTs [16], which

consist of eight stages: initial recon, initial compromise, establish foothold, escalate privilege,

internal recon, move laterally, maintain presence, and complete mission. As highlighted in Figure

1.1d, researchers at Command Five Pty Ltd introduced a similar model.
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Figure 1.1: Models for describing cyber attacks: (a) Lookheed Martin cyber kill chain; (b) the
Rutherford and White variant of the cyber kill chain model; (c) Fire Eye model; and (d) the Com-
mand Five Pty Ltd attack model

.
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On the other hand, there have been efforts at quantitatively modeling cyber attacks from a holis-

tic perspective. In particular, Xu [134, 136] has pioneered a systematic framework for modeling

and reasoning cyber security from a holistic or whole-system perspective, dubbed Cybersecurity

Dynamics. One pillar underlying the Cybersecurity Dynamics framework is dubbed first-principle

models, which aims to model and characterize the evolution of the global cyber security state of a

network in question. The evolution is caused by cyber attack-defense interactions. Several families

of first-principle Cybersecurity Dynamics models have been investigated, including preventive and

reactive defense dynamics [30, 31, 52, 72, 73, 78, 80, 129, 133, 138, 140, 147], proactive defense dy-

namics [58], adaptive defense dynamics [43, 139], and active defense dynamics [137, 146]. These

theoretical studies led to many deep insights into the laws that govern the evolution of the global

cyber security state.

The present dissertation focuses on the first step of sophisticated cyber attacks, namely cyber

reconnaissance, which is the process of gathering information on the victims, such as the hosted

services, open port, software versions, and operating system [26]. Additionally, this dissertation

focuses on understanding and characterizing cyber attacks reconnaissance behaviors.

1.1 Dissertation Research Motivation and Problem Statement

Despite the clear importance of understanding cyber reconnaissance behaviors, there are no sys-

tematic studies on this topic. For example, we are not aware of any previous PhD dissertation that

focuses on this topic. The main goal of this dissertation is to investigate cyber reconnaissance be-

haviors, such that the findings can be used in effective cyber defense practice, such as the following

aspects:

• Enabling quantitative understanding of cyber threat situation. The defender can use cyber

reconnaissance behaviors to cluster the extremely large cyber attackers into a smaller number

of attackers families, enabling more effective analysis of cyber threat situation in real time.

It may not be feasible to cope with the large number of cyber attackers individually.

• Enabling proactive cyber defense. It is important to understand how to structure cyber re-

3



connaissance data into time series (e.g., at what time resolution) such that the time series

exhibit the desirable statistical properties (e.g., Long-Range Dependence or LRD) that can

be leveraged to forecast cyber reconnaissance behaviors [143, 145]. Being able to forecast

incoming cyber threats is one of the fundamental capabilities for enabling effective cyber

defense.

• Enabling deceptive defense. Once the defender understood the families of cyber attackers

in the wild, the defender can selectively and intentionally let some attackers of interest get

through so as to monitor their behaviors in the next stages of their sophisticated attack pro-

cess. This defense approach allows the defender to discover new attack strategies and tactics.

This capability is critical to reduce the gap between the attacker and the defender.

While achieving the ultimate goals mentioned above, the present dissertation is also focused

on answering the following research problems:

• What are the relevant levels of abstractions that we should use to deepen our understanding

of cyber reconnaissance behaviors?

• What are the representations of cyber reconnaissance data that can enable us to achieve the

ultimate goals mentioned above?

1.2 Dissertation Contributions

The conceptual contribution of the dissertation is to formulate a systematic and quantitative way

of understanding cyber reconnaissance behaviors. As highlighted in Figures 1.2, we propose using

three levels of abstractions to structure cyber reconnaissance data, including a macroscopic level,

a mesoscopic level, and a microscopic level. This treatment is inspired by the aforementioned

Cybersecurity Dynamics framework [134, 136].

The technical contribution of the dissertation is to investigate a systematic framework or method-

ology for exploring each of the three levels of abstractions mentioned above, leading to the follow-

ing three contributions:
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Macroscopic

Mesoscopic

Microscopic

Figure 1.2: The three levels of abstractions we propose for quantitatively modeling cyber recon-
naissance behaviors.

• At the macroscopic level, we propose a novel, graph-theoretic abstraction, dubbed the evo-

lution of attacker-victim relation graphs. Specifically, we use time series of attack-victim

relation graphs to describe the reconnaissance behaviors of cyber attackers. Our contribu-

tion describes the similarity between two bipartite graphs at adjacent time windows of a

certain time resolution (e.g., per second vs. per minute). We explore the various kinds of

methods that can be adopted to characterize the evolution of such similarities. Furthermore,

we provide a case study that focuses on an important problem: how many time resolutions

have to be considered in order to obtain a comprehensive understanding of the evolution of

the attack-victim bipartite graphs? This problem is important because under different time

resolutions, the time series may exhibit different temporal characteristics, all of which may

be important.

• At the mesoscopic level, we propose clustering cyber attackers according to their reconnais-

sance behaviors via graph-based two-stage community detection. We conduct a case study

on the evolution of high-activity attackers, the evolution of persistent attackers, and the evo-

lution of the attackers families.
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• At the microscopic level, we introduce the novel notion of attacker reconnaissance trajec-

tories hierarchy trees to represent cyber attackers’ reconnaissance behaviors. This notion

allows us to cluster cyber attackers according to their microscopic-level tactics. We de-

velop a top-down approach to find the hierarchy of attacker reconnaissance-trajectories and

implement a graph-theoretic clustering to find the families of attackers given the similarity

between the attackers trajectories hierarchy trees.

It is worth mentioning that the present dissertation falls into the intersection of the fields known

as Cybersecurity Data Analytics and Cybersecurity Metrics, which are the two other pillars (other

than First-Pinciple modeling) of the Cybersecrurity Dynamics framework [134, 136]. Cybersecu-

rity Data Analytics aims to take full advantage of a given cyber security dataset by statistically

using statistical, machine learning, and artificial intelligence methods [32, 33, 47, 48, 53, 70, 71,

75–77, 92, 94, 95, 113, 114, 126–128, 131, 142–145]. Cybersecurity Metrics aims to systematically

define and measure the important security, resilience, and agility metrics [29–31, 34, 35,45, 82, 84,

85, 91, 104].

1.3 Dissertation Organization

Chapter 2 presents a macroscopic-level characterization of cyber attack reconnaissance behaviors.

Chapter 3 presents a mesoscopic-level characterization of cyber attack reconnaissance behaviors.

Chapter 4 presents a microscopic-level characterization of cyber attack reconnaissance behaviors.

Chapter 5 concludes the dissertation.
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CHAPTER 2: CHARACTERIZING THE EVOLUTION OF CYBER

ATTACKER-VICTIM RELATION GRAPHS

This chapter was published at the IEEE Military Communications Conference in 2018 (MILCOM

2018) with co-authors: Kristin M Schweitzer, Raymond M Bateman, and Shouhuai Xu.

Chapter Abstract

Understanding and characterizing the reconnaissance behaviors of cyber attackers is an important

problem that has yet to be tackled. As a first step towards approaching this problem, in this chapter

we propose a novel, graph-theoretic abstraction, dubbed the evolution of attacker-victim relation

graphs, for characterizing cyber attackers’ reconnaissance behaviors. The framework is focused

on describing the similarity between two graphs at adjacent time windows of a certain resolution

(e.g., per second vs. per minute). We also conduct a case study focusing on the number of time

resolutions that need to be considered in order to obtain a comprehensive understanding of the

evolution of attack-victim relation graphs.

2.1 Introduction

Understanding, characterizing, and even predicting the reconnaissance behaviors of cyber attackers

is an important problem that has yet to be tackled. This problem is important because it can help

defenders detect and recognize different reconnaissance behaviors, and therefore help defenders

respond to anticipated attacks effectively (e.g., using deception to force an attacker to expose its

intent rather than simply dropping the attacker’s traffic). Despite its clear importance, this problem

has not been investigated in the literature.

In this paper, we make a first step towards tackling this problem, by proposing a novel, graph-

theoretic abstraction, dubbed the evolution of attacker-victim relation graphs. In this framework,

we used a time series of attack-victim relation graphs to describe the reconnaissance behaviors

of cyber attackers. Given such a time series, the framework is centered at describing the simi-
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larity between two bipartite graphs at adjacent time windows of a certain time resolution (e.g.,

per second vs. per minute). We explored the various kinds of methods that can be adopted to

characterize the evolution of such similarities. We also conducted a case study using a real-world

dataset of honeypot-captured time series of cyber attacker-victim relation graphs, which are nat-

urally modeled by bipartite graphs. The case study focuses on an important problem: how many

time resolutions have to be considered in order to obtain a comprehensive understanding of the

evolution of the attack-victim bipartite graphs? This problem is important because under different

time resolutions, the time series may exhibit different temporal characteristics, all of which may

be of interest.

Our contributions. We make the following contributions. First, we initiate the study of under-

standing and characterizing cyber attackers’ reconnaissance behaviors via the time series of attack-

victim relation graphs. This graph-theoretic abstraction allows us to formulate various questions

that can be answered by leveraging a range of existing tools. Second, in order to characterize the

evolution of the attacker-victim relation graphs, we propose using features to represent these graphs

and using similarities between such graphs corresponding to different time windows. Moreover,

we define the notions of effective features (i.e., features that may or may not be useful in char-

acterizing the evolution of attacker-victim bipartite graphs) and robust features (i.e., features that

are effective across time resolutions). Third, we use a dataset that was collected at a honeypot

to conduct a case study to investigate the time resolutions that need to be considered in order to

characterize the evolution of the attacker-victim bipartite graphs as comprehensive as possible.

Experimental results show that only a couple of time resolutions need to be considered.

Paper outline. Section 2.2 presents the framework. Section 2.3 describes the case study and

results. Section 2.4 reviews prior studies. Section 2.5 concludes the paper.

2.2 The Framework

Figure 2.1 highlights the framework, which consists of five components: data collection and pre-

processing, graph-theoretic representations, lower-dimension representations (with or without us-
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Figure 2.1: The framework
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ing embedding), similarity-based time series representations, and temporal analysis.

2.2.1 Data Collection and Preprocessing

In general, network data are often collected in the raw Packet Capture Data (PCAP) format, which

may be turned into IP packets or flows. A flow contains one or multiple packets and it is a common

practice to treat each flow as an attack (see, e.g., [96, 143, 145]). A flow is a tuple of five fields:

source IP address, destination IP address, source port, destination port, and protocol. Each flow

has a start time and an end time. For flow-based analysis, we need to specify two extra parameters:

the idle time and lifetime of a flow. The idle time is used to terminate a flow when the communi-

cation between the source and destination has become idle (i.e., no packets exchanges) for longer

than the idle time parameter. On the other hand, a flow is terminated and a new flow is created

when the communication between the source and the destination exceeds the lifetime parameter.

The time resolution parameter, denoted by ∆, is selected. The life-cycle of a dataset is divided

into intervals I0, I1, . . ., where Ii = [ti, ti + ∆), such that a flow with a start time s belongs to time

interval Ii if and only if ti ≤ s < ti + ∆. Packet-based preprocessing is similar except that there is

no need to assemble packet(s) into flows.

2.2.2 Graph-Theoretic Representations

After dividing the data life-cycle into time windows of length ∆, we obtain a time series of attacker-

victim relation graphs as follows. For each time interval Ii, we transform the flows in interval Ii to

a directed and weighted graph, denoted by Gi = (Ai, Vi, Ei,Wi), where Ai is the set of attackers

(i.e., attacker IP addresses), Vi is the set of victims (i.e., victim IP addresses), Ei is the set of edges

indicating the existence of IP packet(s) or flow(s) from an attacker to a victim, and Wi : Ei → I+

is the weight function (i.e., the number of probes from a particular attacker to a particular victim

in interval Ii). In many, but not all cases, the attacker-victim relation graphs are bipartite graphs.
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2.2.3 Graph Transformations

In order to analyze the time series of graphs, we often need to transform to lower-dimension rep-

resentations. For this purpose, there are two general approaches.

• Embedding: This approach is to embed Gi into another space. For example, we can embed

attacker nodes into a smaller graph, where an edge in the embedded graph reflects how

similar a pair of attackers are. Alternatively, we can embed victim nodes into a smaller

graph, where an edge reflects the similarity between a pair of victims in terms of the common

attackers against them [25, 67]. Yet another alternative is to embed the time series into

a tensor of adjacency matrices of the Gi’s. Let us denote the embedded graph of Gi by

Embed(Gi).

• Non-embedding: This approach represents a graph by using any of the following data struc-

tures: the graph adjacency matrix, the graph adjacency list, or the graph edge list. Moreover,

a feature vector may be defined to represent the graphs.

2.2.4 Similarity-based Time Series Representations

Regardless of the specific graph-transformation method, we can define some kinds of similarities

to describe the relation between the embedded graphs Embed(Gi) and Embed(Gi+1), or between

the non-embedded graphs Gi and Gi+1 or their feature representations. This comparison leads to a

new time series of similarities, which is the target for actual analysis in the next step.

2.2.5 Temporal analysis

Given the time series of similarities between two consecutive embedded graphs Embed(Gi) and

Embed(Gi+1) or non-embedded graphs Gi and Gi+1, we can analyze the temporal characteristics

to understand the evolution of the time series of the attacker-victim relation graphs. Some exam-

ples of temporal analysis are: trend analysis, long-range dependence (LRD), anomaly detection,

forecasting, burstiness analysis, classification, and clustering.
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2.3 Case Study and Results

2.3.1 Case Study

Data Collection and Preprocessing

We analyzed a dataset collected at a honeypot, by transforming it to flows.

Dataset. Figure 2.2 illustrates the kind of data captured by honeypots, where each dot represents an

IP address. Specifically, victims are the honeypot IP addresses that can be attacked by IP addresses

outside of the honeypot (i.e., attackers). At a particular moment of observation, some attackers are

active (i.e., if they are attacking some victims) and some victims are active (i.e. if they are being

under attack) while others no. Since the honeypot offers no legitimate Internet services, the traffic

is considered malicious (see, e.g., [96, 143, 145]).

Attackers (IP addresses): red color means an attacker is active at the moment

Victims (honeypot IP addresses): blue color means a victim is attacked at the moment

Figure 2.2: A snapshot of attacks at a moment in time, the active attacker in red, the active victims
in blue.

The network traffic was collected by a honeypot of 1024 IP addresses from 2/2/2014 to 5/9/2014.

The honeypot is a low-interaction honeypot based on the Honeyd [100] and Nepenthes [24] pro-

grams. The dataset contained 6,403 raw packet captures (PCAP) files for a total of 597GB of

data.

Converting network traffic into network flows. Since the honeypot outbound traffic is limited

to five minutes (for institutional regulation), we pre-processed the PCAP data into IPFIX network

flows using an idle time of 60 seconds and lifetime of 300 seconds. For this conversion, we

used the Yet Another Flowmeter (YAF) and the super_mediator tools of the Computer Emergency

Response Taskforce (CERT) [62]. The dataset led to 92,477,692 TCP flows (or attacks).
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Table 2.1: Simple statistics and standard deviation of flow duration, # of packets per flow, and #
of bytes per flow.

min 25% 50% µ 75% max σ
flow duration 0.001 0.001 0.003 7.5 0.6 300 23.3

# of packets 1.0 1.0 1.0 2.0 2.0 550 2.5
# of bytes 40 48 52 125.3 113.0 47125 266.6

Table 2.1 presents the simple statistics and standard deviation (σ) of the flow duration in sec-

onds (i.e., the interval between the time at which a flow starts and the time at which a flow ends),

the number of packets per flow, and the number of bytes per flow (i.e., the length of the content in

a flow). We observed that many flows contain only a single packet, suggesting scanning activities

or initial reconnaissance efforts.

Graph-Theoretical Representation

Figure 2.2 suggests that the dataset can be represented by the evolution of bipartite graphs. To

generate a time series of bipartite graphs, we need to select the time window unit denoted by ∆

as shown in the framework. In order to see the impact of time resolution, we consider a range of

∆’s, namely ∆ ∈ {0.5, 1, 2, 9, 12, 30, 60, 90, 120, 180, 360, 720} (unit: minute). Then, the dataset

is divided into intervals I0, I1, . . ., where Ii = [ti, ti + ∆). For each time interval Ii, we transform

the flows in interval Ii to a directed and weighted bipartite graph, namely Gi = (Ai, Vi, Ei,Wi) as

shown in the framework, where Ai is the set of attackers (i.e., attacker IP addresses), Vi is the set

of victims (i.e., honeypot IP addresses), Ei is the set of edges indicating the existence of one or

more flows from an attacker to a victim, and Wi : Ei → I+ is the weights on the edges in Ei (i.e.,

the number of flows from a attacker to a victim in interval Ii).

Figure 2.3 plots G59, G60, and G61 with ∆ = 12 minutes. We observe that an attacker in G59

launched 495 attacks against 495 different victims with destination port # 22, indicating that the

attacker is trying to find a SSH server for possibly launching password brute-forcing attacks.
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Figure 2.3: Bipartite graphs G59, G60, and G61 with ∆ = 12.

Graph Transformations

In this chapter, we focus on transforming attacker-victim bipartite graphs to their feature vector

representations, meaning that Gi is represented by a feature vector Fi. Given that some features

may or may not be effective for the purpose of characterizing the evolution of the attacker-victim

relation graphs, we define the following concepts:

Definition 1. (effective feature) Corresponding to a given time resolution ∆, a feature is effective

if (i) its standard deviation over time is significantly greater than zero, meaning that its values

substantially change over time and therefore the feature offers a discrimination power; and (ii) it

does not linearly depend on other features (i.e., not redundant).

Definition 2. (robust feature) A feature is robust if it is effective with respect to any time resolution

∆.

Table 2.2 describes the 28 features we define, dubbed f1, . . . , f28. In addition to some self-

explaining features, we also consider the weak connected component (WCC) feature, which is

defined as the maximal connected subgraph cj = (αj, νj, εj) such that cj ⊆ Gi, αj ⊆ Ai, νj ⊆ Vi,

εj ⊆ Ei, where for any two cj and ch the following holds true: αj
⋃
αh = ∅, νj

⋃
νh = ∅ and

εj
⋃
εh = ∅. We denote the set of WCC in Gi by Ci = {c1, c2, . . . , cm}, where the WCC size is
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defined as zk = |ck| for 1 ≤ k ≤ m and let Zi = {z1, z2, . . . zm} be the set of WCC sizes.

Table 2.2: Features for the feature vector embedding Embed(Gi) = Fi representing bipartite graph
Gi

f1 Number of attackers, namely |Ai|
f2 Number of victims, namely |Vi|
f3 Number of edges, namely |Ei|
f4 Number of WCC, namely |Ci|
f5−10 Statistical summary of Zi, or stats(Zi)
f11−16 Statistical summary of Wi, or stats(Wi)
f17−22 Statistical summary of Dout, or stats(Dout)
f23−28 Statistical summary of Din, or stats(Din)

We consider the feature of weighted out-degree for attackers. This feature reflects the number

of probes launched by the attacker within time ∆. For attackers inAi, the set of attackers’ weighted

out-degrees are denoted by Dout = {
∑

v∈Vi Wi(a, v)|a ∈ Ai}. Similarly, we consider the feature

of weighted in-degree of victims in Vi, representing the number of probes against a victim, denoted

by Din = {
∑

a∈Ai
Wi(a, v)|v ∈ Vi}.

Since some features are not effective for characterizing the evolution of bipartite graphs, we

should remove them. For this purpose, we use the Classification and Training (caret) Package in

R [69], which has the following steps:

1. Identify and remove 0-variance features.

2. Find and remove linearly dependent features.

3. Apply a Box and Cox transformation to fix the skewness of the remaining features.

4. Normalize the remaining feature vector and perform a Principal Component Analysis (PCA)

to reduce the size of the remaining feature vector.

Figure 2.4 plots the refined feature representation of the aforementioned G59, G60, and G61.

Figure 2.4a shows that G59 and G60 are very different, while Figure 2.4b shows that G60 and G61

are very similar. This is consistent with a visual examination of Figure 2.3.
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Figure 2.4: Refined feature vectors of G59, G60 and G61.

Similarity-based representations of pairs of bipartite graphs

In order to analyze the evolution of the similarity between an adjacent pair of bipartite graphs, we

define:

Definition 3. (similarity) The similarity between a pair of bipartite graphs,Gi andGi+1, is defined

as:

S(Gi, Gi+1) =
1

1 + δ(Fi, Fi+1)
, (2.1)

where δ(Fi, Fi+1) is the Euclidean distance between the feature vectors, which are also assured to

have the same dimensions after the PCA treatment. Note that S(Gi, Gi+1) ∈ [0, 1].

Temporal Analysis

We conduct two kinds of temporal analysis for the similarity time series {S(Gi, Gi+1)}i=0,1,....

The first analysis is to decompose its trend, seasonality and residual. This can be done using the

stl function from the netlib package in R. The second analysis is to analyze whether there is a

long-range dependence (LRD). A time series {Xt : t ≥ 0} is said to possess LRD [115] if the rate
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of the auto-correlation function decays slowly. Formally, if

r(h) = Cor(Xt, Xt+h) ∼ h−βL(h), h→∞ (2.2)

for 0 < β < 1, where h is the lag and L(·) is a slowly varying function such that limx→∞
L(ix)
L(x)

= 1

for all i > 0. The degree of LRD can be quantified by the Hurst parameter [105], which can be

estimated using the fArma package in R [124],

2.3.2 Results

Bipartite Graph Feature Analysis

Table 2.3 lists the features that are kept by the PCA, namely those marked with a X, with respect

to different time resolution ∆’s (i.e., the columns). We observe that the minimum edge weight

(f11), the 25% percentile edge weight (f12), the 75% percentile edge weights (f15), the minimum

out-degree (f17), the first quantile out-degree (f18), and the third quantile out-degree (f21) are

ineffective features. This is because these features almost always have 0-variance regardless of

the ∆, which can be attributed to the following fact: (i) for 75% of the bipartite graphs, 75%

of the edges correspond to less than four attacks; and (ii) 25% of the attackers launch a single

attacks. These observations support that the attacker-victim interactions in the dataset correspond

to reconnaissance efforts or scan activities. In contrast, the number of attackers (f1), the number

of edges (f3), the average size of connected components (f14), the median out-degree (f19), the

average out-degree (f20), the maximum out-degree (f22), the median in-degree (f25), the average

in-degree (f26), and the maximum in-degree (f28) are robust features. This is because, according

to Definition 2, these features always have a non-zero variance and are not linearly dependent on

any of the other features, regardless of the ∆.

For ∆ ∈ {30, 60, 90, 120, 180, 360, 720}, the time window is large enough such that (almost)

every victim is attacked at least once in a time window, explaining why the number of victims (f2)

is removed (i.e., it does not provide any discrimination power). This also causes the removal of
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Table 2.3: Features that are kept (marked by X) vs. removed with respect to different ∆’s. Note
that the outcome is the same for ∆ = 120, 180, 360, 720.

∆ 0.5 1 2 9 12 30 60 90 120, 180, 360, 720
f1 X X X X X X X X X
f2 X X X X X
f3 X X X X X X X X X
f4 X X X X X
f5 X X X X
f6 X X X
f7 X X X X
f8 X X X X X X X X
f9 X X X X X
f10 X X X X X X X X

f11, f12
f13 X X X X X X
f14 X X X X X X X X X
f15
f16 X X X X X X X

f17, f18
f19, f20 X X X X X X X X X

f21
f22 X X X X X X X X X

f23, f24 X X X X X
f25, f26 X X X X X X X X X

f27 X X X X X X
f28 X X X X X X X X X
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the number of WCC (f4) because it is the same for those ∆’s. For ∆ ∈ {0.5, 1, 2, 9, 12}, the time

window is small enough such that the minimum size of WCC (f5) is always 1, the 25% percentile

of the WCC size is always 1 (f6), and the minimum in-degree (f23) is alway 1, explaining why

these features are removed.

Summarizing the preceding discussion, we conclude with:

Insight 4. Under different time resolution (i.e., time windows), different sets of features should be

used to characterize the evolution of the attack-victim bipartite graphs.

Evolution Trends Analysis

Figure 2.5 shows the trend of similarity scores with respect to different ∆’s. We observe that (i)

the trends for ∆ ∈ {0.5, 1, 2, 9, 12} are very similar, (ii) the trends for ∆ ∈ {0.5, 1, 2, 9, 12} are

quite different from the trends for ∆ ∈ {30, 60, 90, 120, 180, 360, 720} , and (iii) the trends for

∆ ∈ {30, 60, 90, 120, 180, 360, 720} are very similar.

Figure 2.6 presents the correlation matrix between the trends with different ∆’s, and confirms

that the trends within each group of ∆’s are highly correlated with each other, but different groups

are little correlated with each other.

Summarizing the preceding discussion, we draw:

Insight 5. In order to fully characterize the evolution of the attack-victim bipartite graphs, the

defender only needs to consider a couple of time resolutions: a small time window (e.g., ∆ = 12

minutes) and a large time window (∆ = 90 minutes), where the specific window size may depend

on the size of the honeypot.

LRD Analysis

Table 2.4 presents three Hurt parameters: the average variant method (RS), the difference aggregate

variance method (AGV), and the Peng’s method (Peng), which are obtained by using estimator

fArma with respect to different ∆’s. We observe that the time series exhibit LRD, except that the

Hurst parameter based on the RS method is 0.4, but the Hurst parameters estimated by the other
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Figure 2.6: Correlation matrix of daily frequency trends.
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two methods are all greater than 0.5, indicating LRD. We further use the Smoothly Varying Trend

Table 2.4: The Hurst parameters with different ∆’s.

∆ 0.5 1 2 9 12 30
RS 0.70 0.71 0.70 0.61 0.56 0.64

AGV 0.71 0.74 0.77 0.77 0.77 0.91
Peng 0.62 0.61 0.60 0.56 0.56 0.53

∆ 60 90 120 180 360 720
RS 0.40 0.67 0.66 0.71 0.94 0.68

AGV 0.80 0.82 0.97 0.84 0.75 0.69
Peng 0.60 0.60 0.59 0.61 0.65 0.55

Table 2.5: Test results for spurious LRD with different ∆’s.

∆ Ĥ Z1 H0 Z2 Ha

0.5 0.743 6.540 true 6.344 true
1 0.707 5.297 true 4.680 true
2 0.682 4.625 true 4.178 true
9 0.820 0.467 false 0.380 false

12 0.793 0.743 false 0.448 false
30 0.542 1.423 false 1.086 false
60 0.599 1.693 true 1.693 true
90 0.606 1.327 false 1.326 false

120 0.602 0.555 false 0.555 false
180 0.566 1.325 false 1.325 false
360 0.714 0.486 false 0.486 false
720 0.548 1.239 false 1.124 false

test [101] to test whether the times series exhibit spurious LRD or not. Table 2.5 summarizes the

results, where Z1 > 1.517 and Z2 > 1.426 means the null hypothesis H0 is true (i.e., the time

series exhibits spurious LRD). In summary, we draw:

Insight 6. The time window size affects whether the time series exhibits LRD. Because LRD implies

that a time series can be accurately predicted [33, 93, 96, 143, 145], the defender needs to be

conscious in selecting ∆.
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2.4 Related Work

The present study falls into the field of cybersecurity data analytics, which is an indispensable

pillar in the broader framework of Cybersecurity Dynamics [33,91,93,96,130,134,135,143,145].

In contrast to previous studies on cybersecurity data analytics that focus on univariate [33,93,132,

143–145] or multivariate time series [96,130], the framework focuses on analyzing the evolution of

the attacker-victim relation graphs, which are bipartite graphs in the real-world dataset. Honeypot-

captured datasets have analyzed from other perspectives, such as: visualizing the ports that are

observed in honeypot datasets [61]; characterizing attack probing activities [74]; clustering attacks

[19–21,39]; modeling attack inter-arrival times [18,63]; predicting/forecasting attack rates [33,93,

96, 143, 145]; detecting cyber attacks (e.g., malware, botnets) [22, 44, 51, 68, 79, 97–99].

Two other kinds of datasets have been analyzed in the literature as well, although none of these

studies analyzed the evolution of the attacker-victim (bipartite) graphs. On one hand, there have

been studies on analyzing blackhole-captured cyber attacks (e.g., [88,125,130,144]), but not on the

evolution of the attack-victim relation graphs. On the other hand, datasets collected at enterprise

networks (i.e., neither honeypots nor telescopes) have been analyzed in [23, 59].

2.5 Conclusion

We presented a framework for characterizing the evolution of attacker-victim relation graphs, as

a first step towards understanding and characterizing cyber attackers’ reconnaissance behaviors.

The framework is centered at describing the similarity between two bipartite graphs at adjacent

time windows. We also conducted a case study with emphasis on identifying the number of time

resolutions to characterize the evolution of the evolution of attacker-victim relation graphs.

The framework represents our first step towards a thorough understanding of cyber attack re-

connaissance behaviors.

Acknowledgement. This work was supported in part by ARL grant #W911NF-17-2-0127.
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CHAPTER 3: CHARACTERIZING CYBER ATTACK

RECONNAISSANCE BEHAVIORS

Chapter Abstract

Cyber attack reconnaissance is the initial step preluding cyber attacks. Understanding and char-

acterizing cyber attack reconnaissance behaviors has a potential in helping and guiding defenders

in preparing and orchestrating their defense. In this chapter we investigate cyber attack reconnais-

sance behaviors through a clustering analysis. We propose clustering cyber attackers based on their

reconnaissance behaviors over time. This prompts us to come up with a novel abstraction, dubbed

multi-resolution clustering, to characterize the evolution of attackers’ reconnaissance behaviors in

adjacent time windows. This further allow us to characterize the evolution of persistent attackers’

reconnaissance behaviors over multiple adjacent time windows. Moreover, we present a case study

on identifying suitable parameter combinations for these characterization studies.

3.1 Introduction

Understanding and clustering cyber attackers based on their reconnaissance behaviors is an es-

sential problem. This problem is significant because it can help defenders detect and recognize

different families of reconnaissance behaviors, and therefore guide defenders in preparing effec-

tive defense (e.g., the defenders may only need to spend more resources on coping with a smaller

number of representative attackers). Despite it importance, this problem is little understood or

investigated.

In this chapter, we make a first step towards solving the aforementioned problem. Specifically,

we make the following contributions. First, we initiate the study of clustering cyber attackers using

their reconnaissance behaviors, which are modeled as time series of reconnaissance activities. Sec-

ond, we propose using a two-resolution methodology to characterize cyber attack reconnaissance

behaviors. Third, we apply the methodology to a real-world dataset to draw useful insights. We

find that a defender needs to consider multiple parameter combinations for the purposes of fore-
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casting cyber attack reconnaissance rates and for quantifying the number of attacker families. The

actual number of parameter combinations may be specific to the dataset in question, but identify-

ing a general guiding principle (e.g., what kinds of data would demand what number of parameter

combinations) is left for future research.

The rest of the paper is organized as follows. Section 3.2 presents the framework. Section 3.3

reports a case study on applying the framework to a data set collected by a low-interaction honey-

pot. Section 3.4 discusses related prior studies. Section 3.5 concludes the present paper.

3.2 Framework

At a high level, we propose characterizing cyber attack reconnaissance behaviors from the follow-

ing three perspectives.

• Attacker similarity within a time window with respect to the coarse-grained time resolution.

• Attacker similarity across q > 1 time windows with respect to the coarse-grained time reso-

lution.

• Attacker cluster similarity across q > 1 time windows with respect to the coarse-grained

time resolution.

As highlighted in Figure 3.1, the framework has four components: (i) data collection and

reprocessing, (ii) attackers filtering, time series construction and local window attacker clustering,

(iii) construction of the attacker behaviors time series, (iv) evolution temporal analysis, and (v)

final attacker clustering.

3.2.1 Data collection and preprocessing

Cyber attack reconnaissance behaviors can be reflected by the corresponding network traffic, which

can be captured as raw Packet Capture (PCAP) data from a relevant network instrument, such as

honeypot and telescope. PCAP data can be reassembled into IP packets or flows. A flow is a five

field tuple: source IP address, destination IP address, source port, destination port, and protocol
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Data collection and preprocessing

Attackers filtering

Time series construction

Local window attacker clustering

Construction of the attacker behaviors 
time series

Evolution temporal analysis

Final attacker clustering

Figure 3.1: The framework for characterizing cyber attack reconnaissance behaviors.
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[36]. There are standard routines for reassembling PCAP data into IP packets or flows [54]. For

reassembling flows, two parameters are needed: idle time, which specifies when a flow should be

terminated after observing no communication activities between a source and a destination; and

lifetime, which specifies when a flow should be terminated and a new flow may be started. In this

paper, we propose using on flow-based representation to characterize cyber attack reconnaissance

behaviors.

3.2.2 Building representations of reconnaissance behaviors

The notion of two-resolution method

Denote by [0, T ) the life span of a cyber attack reconnaissance behavior dataset. Let Ω be the uni-

verse of attacker identities (i.e., IP addresses). We propose modeling cyber attack reconnaissance

behaviors via the following two-resolution method.

• The first resolution is a coarse-grained time resolution δ (e.g., day or hour), which divides

[0, T ) into δ-length time windows, denoted by Wk = [Tk, Tk+1), where Tk+1 − Tk = δ for

k = 1, . . . , K, T1 = 0 andK = T/δ (assuming δ|T ; otherwise, the last time window may be

omitted). Denote by Ωk ⊆ Ω the set of attackers that are observed (i.e., the attacker waged at

least one reconnaissance activity) during the k-th time window Wk. Each attacker u ∈ Ω in

time window Wk incurs Xu,k reconnaissance activities, leading to a time series of Xu,k over

k = 1, . . . , K.

• The second resolution is a fine-grained time resolution ρ (e.g., second or minute), which

divides a coarse-grained time window Tk into nk = δ/ρ smaller time windows (assuming

ρ|δ). Correspondingly, denote by Xu,k,t the number of reconnaissance activities by attacker

u ∈ Ω in the t-th smaller time window of the k-th coarse-grained time window Tk, where

t = 1, . . . , nk. Note that Xu,k =
∑nk

t=1Xu,k,t.

Figure 3.2 illustrates the ideas discussed above, where each dot represents a reconnaissance activity

of an attacker u, v or w. Figure 3.2a illustrates the pre-processed data when no time resolution is
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considered. Figure 3.2b illustrates the coarse-grained representation of the pre-processed data,

where each time window has a time length δ. For example, we have Xu,1 = 9 because attacker

u waged 9 reconnaissance activities during the first coarse-grained time window W1 = [0, δ); we

have Ω1 = {u, v, w} because these three attackers are observed in the coarse-grained time window

W1 = [0, δ); and we have Ω2 = {v, w} because only attackers v and w are observed during the

coarse-grained time window W2 = [δ, 2δ). Figure 3.2c illustrates how the coarse-grained time

windows are further divided into smaller time windows, each of which has a time length ρ. For

example, we have Xu,1,1 = 1 and Xu,1,2 = 2 because attacker u waged 1 and 2 reconnaissance

activities during the first fine-grained time window [0, ρ) and the second fine-grained time window

[ρ, 2ρ), respectively.

!
"

u
v
w
u
v
w

u
v
w

(a)

(b)

(c)

Figure 3.2: Illustration of the two-resolution model for describing cyber attack reconnaissance
activities of three attackers, denoted by u, v, w ∈ Ω.

High-activity vs. low-activity attackers

The basic reconnaissance behavior of attacker u ∈ Ω with respect to a coarse-grained time win-

dow Wk can be described by the following time series of the number of reconnaissance activities

incurred by attacker u during time window Wk:

Time Series 1 (single-window reconnaissance rate). The time series of the number of reconnais-

sance activities incurred by attacker u ∈ Ω with respect to a coarse-grained time window Wk is

defined as Xu,k = {Xu,k,1, . . . , Xu,k,nk
}.
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Since some attackers may incur very few reconnaissance activities, we propose focusing on the

high-activity attackers, which are identified according to a threshold parameter α with respect to a

fine-grained time window of length ρ (and therefore a coarse-grained time window Wk as shown

below).

Definition 7 (high-activity vs. low-activity attackers with respect to a coarse-grained time window

Wk). An attacker u ∈ Ω is an high-activity attacker in a coarse-grained time window Wk if it

wages Xu,k =
∑nk

t=1Xu,k,t > α× nk reconnaissance activities. We propose focusing on the set of

high-activity attackers in time windowWk, denoted by ΩH
k , where ΩH

k = {u ∈ Ωk |Xu,k > α · nk }.

Denote the set of low-activity attackers by ΩL
k = Ωk \ ΩH

k .

Definition 7 leads to the following time series of interest:

Time Series 2 (high-activity attackers over the time horizon). The time series of the set of high-

activity attackers over the time horizon is defined as A = {|ΩH
1 |, . . . , |ΩH

K |}.

Time series A is interesting because (i) it serves as a starting point for characterizing the per-

sistent reconnaissance behavior of high-activity attackers and (ii) it can be leveraged to understand

the impact of parameter combinations (δ, ρ, α) on the resulting characteristics. Note that the notion

of high-activity attackers is defined with respect to a single time series, and that an attacker being

highly active in one coarse-grained time window is not necessarily highly active in another time

window. This motivates us to identify and characterize the attackers that exhibit persistent high-

activity over a number of consecutive coarse-grained time windows, which leads to the following

definition:

Persistent high-activity attacker over multiple time windows

Definition 8 (persistent high-activity attackers in q consecutive coarse-grained time windows). An

attacker u ∈ Ωk is said to be a persistent high-activity attacker if u is a high-activity attacker

during the q-consecutive time windows Wk−q+1, . . . ,Wk, where q ≤ k ≤ K. Note that u ∈⋂k
j=k−q+1 ΩH

j .
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Definition 8 leads to the following time series of interest:

Time Series 3 (fraction of persistent high-activity attackers over the time horizon). The persistent

high-activity attackers can be described by their fraction among the high-activity attackers over

time, denoted by Pq = {Pq,q, . . . , Pq,K}, where

Pq,k =
|
⋂k
j=k−q+1 ΩH

j |
|ΩH

k |
(3.1)

for q ≤ k ≤ K.

Time series Pq is interesting because it allows us to (i) characterize the evolution of persistent

high-activity attackers and (ii) investigate the impact of parameter q on the resulting characteristics

of such attackers. While time series Pq allows us to characterize persistent attackers from a tempo-

ral perspective, it focuses on the reconnaissance behaviors of individual attackers. This motivates

us to further consider their spatial behaviors in terms of their similarity, which can be measured in

many different ways (as shown by some examples below) but always leads to the notion of attacker

similarity graph as defined below.

Pair-wise vs. group-wise attackers similarity over a single coarse-grained time window

Definition 9 (attacker similarity graph). Consider a coarse-grained time window Wk, correspond-

ing to which we can define an undirected but weighted graph Gk = (ΩH
k , Ek, Nk), where the node

or vertex set ΩH
k is the set of high-activity attackers in coarse-grained time window Wk as defined

above, Ek = ΩH
k × ΩH

k is the edge set, and Nk : Ek → [0, 1] is a weight of edge (u, v) such that

Nk(u, v) denotes the similarity between attackers u and v according to an appropriate definition

(such as the one described bellow).

There are many ways to define Nk(u, v). In what follows we give a concrete example, in which

we leverage existing time series clustering methods such that the more clustering methods assign

two attackers to a same cluster, the higher the similarity between the two attackers. The reason
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for leveraging multiple clustering methods to define attacker similarity is that we want to make the

attacker similarity metric robust.

Definition 10 (example definition of pair-wise attackers similarity based on a set of clustering

methods). Let M denote a set of clustering methods. For a coarse-grained time window Wk where

1 ≤ k ≤ K, suppose a clustering methodm ∈M leads to rk,m clusters according to the time series

of high-activity attackers observed during time window Wk, namely Xu,k = {Xu,k,1, . . . , Xu,k,nk
}

for u ∈ ΩH
k . Let ck,m(u) ∈ {1, . . . , rk,m} denote the cluster identity to which attacker u belongs

according to clustering method m. This leads to the following definition of attacker similarity:

Nk(u, v) =
1

|M|
∑
m∈M

1 {ck,m(u), ck,m(v)} (3.2)

where

1 {x, y} =


1 if x = y,

0 otherwise.
(3.3)

There are many clustering methods m ∈ M that can be used for our purposes, such as those

reviewed in [17].

For example, there are a family of closeness-based time series clustering methods, including:

Dynamic Time Warping Distance [83, 112, 120], Global Alignment Kernels [41], and Soft-DTW

Distance [42, 116].

Given a pair-wise attacker similarity graph Gk, we propose using an appropriate graph clus-

tering method to derive the group-wise membership of attacker u. An example method for this

purpose is a community detection algorithm, such as those discussed in [27, 37, 103, 108, 109],

while noting that different methods may exhibit different characteristics (e.g., the multi-level com-

munity detection algorithm [27] offers a fast execution time in the worst-case scenario, which is

important when Gk is large).

Suppose that there areRk clusters that are derived from an appropriate graph clustering method
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(e.g., a community detection method mentioned above). Let

Ck(u) ∈


{1, . . . , Rk} if u ∈ ΩH

k

{0} otherwise
(3.4)

denotes the cluster identity of the attacker u corresponding to the coarse-grained time window Wk.

We denote the set of clusters of high-activity attackers with respect to coarse-grained time window

Wk as: Ck = {Ck(u)|u ∈ ΩH}. In order to understand the evolution of cyber attack reconnais-

sance behaviors over time, we propose using the similarity between the Ck’s over consecutive time

windows.

Definition 11 (Attackers’ group-wise similarity over q-consecutive window of time). Given a num-

ber q of consecutive time windows, we define attackers’ cluster similarity over q-consecutive time

windows, denoted by Sq,k where q ≤ k ≤ K, as

Sq,k =
1

q

k−1∑
j=k−q

ζ(Cj,Ck) (3.5)

where Ck represent the attackers’ cluster labels in time window k and ζ(Cj,Ck) is an appropriate

definition of similarity between the cluster assignments in time window j and the cluster assign-

ments in time window k (see example below).

Example 12. In order to help understand Definition 11, let us consider the following toy example

with two time windows, W1 and W2, where ΩH
1 = {u1, u2, u3, u4}, ΩH

2 = {u3, u4, u5, u6}, and

ΩH = {u1, u2, u3, u4, u5, u6}. Suppose the attackers in ΩH
1 are clustered into two groups, meaning

R1 = 2, and the attackers in ΩH
2 are clustered into three groups, meaning R2 = 3. For W1, we

have C1(u) ∈ {1, 2} for any u ∈ ΩH
1 can have following assignments and C1(u) ∈ {0} for any

u ∈ ΩH \ ΩH
1 ; suppose the clustering assignments for all of the attackers in ΩH with respect to

time window W1 is C1 = {1, 1, 2, 2, 0, 0}, meaning that u1 and u2 belong to the same cluster, u3

and u4 belong to the same cluster, and u5 and u6 belong to the cluster of no activities. For W2,
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we have C2(u) ∈ {1, 2, 3} for any u ∈ ΩH
2 and C1(u) ∈ {0} for any u ∈ ΩH \ ΩH

2 ; suppose

the clustering assignment for all of the attackers u ∈ ΩH with respect to time window W2 is

C2 = {0, 0, 3, 2, 2, 1}.

There are many ways for defining ζ(Cj,Ck), such as: the Normalize Mutual Information score

(NMI) [117], the Adjusted Rand Score score [122], the Fowlkes-Mallows Index (FMI) [49], the

Homogeneity score [107], the Completeness score [107], and the V-Measure (vM) score [107].

For example, the vM score is the harmonic mean of the homogeneity and the completeness and

is equivalent to the NMI when the harmonic mean is replaced with the arithmetic mean. More

specifically, let us substitute vM(Cj, Ck) for ζ(Cj,Ck) when we consider the vM score between

two cluster assignments Cj and Ck. Then, we have [107]:

vM(Cj,Ck) = 2

(
ĥ(Cj,Ck)× ĉ(Cj,Ck)

ĥ(Cj,Ck) + ĉ(Cj,Ck)

)
, (3.6)

where the homogeneity score ĥ(Cj,Ck) measures intuitively to what extent the clusters in Ck be-

long to one or another cluster in Cj and the completeness score ĉ(Cj,Ck) measures the members

of a class in Ck are assigned to the same cluster in the cluster assignment Cj . Note that both the

homogeneity measure and the completeness measure are asymmetric, meaning that ĥ(Cj,Ck) 6=

ĥ(Ck,Cj) and ĉ(Cj,Ck) 6= ĉ(Ck,Cj). However, the V-Measure score (vM) is a symmetric mea-

sure where vM(Cj,Ck) = vM(Ck,Cj).

Example 13 (vM measure of homogeneity and completeness between two cluster assignments).

Consider two cluster assignments C1 = {0, 0, 1, 1, 1, 1} and C2 = {0, 0, 1, 1, 2, 2}. On one hand,

we have ĥ(C1,C2) = 1 because when comparing C2 against C1, we see each cluster in C2 also

belongs to a single cluster in C1; on the other hand, we have ĥ(C2,C1) = 0.58 because one cluster

in C1 is split into two clusters in C2. In terms of the completeness measure, we have ĉ(C2,C1) = 1

because the members of the clusters in C1 are assigned to a same cluster in C2 meaning that the

cluster {1, 1} ∈ C2 are also the cluster together in C1 and the cluster {2, 2} ∈ C2 are also the

cluster together in C1. However ĉ(C1,C2) = 0.58 because the members of the clusters {1, 1} and
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{2, 2} in C2 have the same cluster assignment in C1, meaning the cluster where different in C2 but

the same in same class in C1. Putting the pieces together, we have vM score

vM(C1,C2) = 2

(
ĥ(C1,C1)× ĉ(C1,C2)

ĥ(C1,C2) + ĉ(C1,C2)

)

= 2

(
1× 0.58

1 + 0.58

)
= 0.73

and

vM(C2,C1) = 2

(
0.58× 1

0.58 + 1

)
= 0.73

Building on top of Definition 11, we can define a time series of group-wise attacker similarity

over the time horizon (Time Series 4) and the notion of group-wise attacker similarity over the

time horizon.

Time Series 4 (group-wise attacker similarity over the time horizon). The attackers’ group simi-

larity can be described by the time series Cq = {Sq,q, Sq,q+1, . . . , Sq,K} for 1 < q < K.

Time series Cq is interesting because it allow us (i) to characterize the evolution of the attackers

clusters similarity and (ii) to investigate how the choice of parameter q influence the resulting

characteristics.

Definition 14 (pair-wise attacker similarity over the time horizon). Given the single-window pair-

wise attacker similarity graphs Gk for all k ∈ [1, K], we propose creating a new graph to reflect

the pair-wise attacker similarity over the time horizon, namely

G = (ΩH , E ,N ),

where the vertex set ΩH =
⋃K
k=1 ΩH

k and the edge set E =
⋃K
k=1Ek with an edge (u, v) annotated

with a weight N (u, v) = 1
K

∑K
k=1Nk(u, v) (i.e., the average pair-wise attacker similarity, where

the average is taken over the time windows).

34



Pair-wise attacker similarity over the time horizon

Definition 14 allows us to cluster attackers according to their average reconnaissance behaviors

over the time horizon.

Definition 15 (attacker clusters according to their average reconnaissance behaviors over the time

horizon). Given G = (ΩH , E ,N ), the high-activity attackers can be clustered into R families (e.g.,

via an appropriate community detection algorithm). Let Q(u) ∈ {1, . . . , R} denote the cluster

assignment of attacker u ∈ ΩH . Then, the i-th family of attackers can be defined as

Qi = {u|Q(u) = i ∧ u ∈ ΩH}

for 1 ≤ i ≤ R, meaning that the attackers in a same family exhibits a similar reconnaissance

behavior on average over the time horizon.

On the relationship between the definitions

Figure 3.3 highlights the relationships between the concepts defined above. A solid arrow pointing

from A to B means that concept B refines concept A from a specific perspective. For example, the

concept persistent high-activity attackers, which is defined over q coarse-grained time windows,

refines the concept of high-activity attackers, which is defined over a single coarse-grained time

window, from the perspective of the period of time during which an attacker is highly active. A

dashed arrow pointing from C to D means that concept C uses concept D as a building-block. For

example, the concept of pair-wise attacker similarity over the time horizon is used as a building-

block in defining the concept of attacker clusters over the time horizon because the latter group

together multiple attackers that exhibit a large pair-wise similarity.

3.2.3 Research Questions

Building on top of the preceding descriptive model, we investigate the following research questions

(RQs):
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Figure 3.3: The relationship between the concepts in coarse-grained time resolution vs. fine-
grained time resolution.
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RQ1: How does the choice of parameter q influences the properties of the applicable times series,

namely: Pq and Cq? This matter is important because the defender only needs to consider

the q’s that make Pq and Cq exhibit different characteristics.

RQ2: For a fixed q, how does the parameter combination (δ, ρ, α) influence the properties of the

applicable time series Pq and Cq from the Long Range Dependence (LRD) perspective?

This matter is important because it is known that LRD can lead to a high prediction accuracy

[33, 93, 96, 143, 145].

RQ3: When do the time series A, Pq and Cq exhibit LRD and a similar trend? By grouping

the parameter settings according which the time series A, Pq and Cq a similar trend, the

defender can reduce the number of parameter settings that should be considered in order to

have a comprehensive understanding of cyber attack reconnaissance behaviors.

RQ4: How many families of attacker reconnaissance behaviors during the entire life-span? This

matter is clearly important because it substantially reduces the number of attackers the de-

fender would have to cope with.

3.3 Case Study and Results

In this section we present a case study and report the results.

3.3.1 Data collection and pre-processing

Our case study is based on a dataset collected at a low-interaction honeypot consisting of 1,024

Internet Protocol (IP) addresses, during the period of time between 2/6/2014 and 5/8/2014 (i.e.,

96 days in total). Although the dataset is several years old, it is sufficient for our purpose of

demonstrating the usefulness of our framework. The honeypot ran the low-interaction honeypot

programs known as Honeyd [100] and Nepenthes [24]. Since a honeypot offers no legitimate

services, the incoming traffic can bee deemed as malicious, which is a widely-adopted practice

(see, e.g., [22, 44, 51, 68, 79, 96–99, 143, 145]). We convert the honeypot-collected raw PCAP
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Table 3.1: Description of papers notations and symbols

Notation Description
[0, T ) The dataset life-spam.
K Number of non overlapping windows.

Wk = [Tk, Tk+1) The k-th window for k = 1, . . . , K. Where Tk is the start time of the
window and Tk+1 is the end time of the window.

δ = Tk+1 − Tk The window length and coarse-grained resolution.
Ω All the attacker in the data set.
Ωk Domain of all attacker that launch at least one attack at window Wk.
ρ The fine-grained resolution

Xu,k,t The attacker u inΩk number reconnaissance activities at time t for
the fine-grained resolution where t = 1, . . . , nk and nk = δ

ρ
.

Xu,k =
∑nk

t=1Xu,k,t The total reconnaissance activities at the coarse-grained resolution.
α Threshold to split the attacker domain Ωk into high-activity and low-

activity attackers.
ΩH
k Domain of high-active attackers at window Wk.

ΩL
k Domain of low-active attackers at window Wk.

A The time series of high-activity attacker over the time horizon
Pq,k The fraction of persistent high-activity attacker at window Wk.
Pq The time series for the fraction of persistent high-activity attacker

over the time horizon.
Gk = (ΩH

k , Ek, Nk) Attacker similarity graph at the local window Wk.
Nk(u, v) Weight for the edges in the attacker similarity graph Gk.

M Set of clustering methods.
ck,m(u) The attacker u clustering identity given the clustering method mßM

at the local window Wk.
Ck(u) The attacker u cluster identity at the coarse-grained time windowWk.
Ck The set of cluster of high-activity attacker with respect to a coarse-

grained time window Wk.
Sq,k Attacker cluster similarity over q consecutive time windows.
ζ(·, ·) Similarity between the set of clustering identities.
Cq The time series for the group-wise attacker similarity over the time

horizon.
G = (ΩH , E ,N ) Pair-wise attacker similarity graph over the time horizon.

Q(u) The attacker u ∈ ΩH cluster identity over the time horizon.
Qi The i-th family of attacker over the time horizon.

G = (V,E,N) The graph of similar parameter settings.
N(·, ·) Similarity of parameter settings.
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dataset into the IPFIX network flows by using the tools known as Yet Another Flowmeter (YAF)

and super_mediator of the Computer Emergency Response Taskforce (CERT) [62]. As in many

previous studies, we set the flow idle time to be 60 seconds and set the flow lifetime to be 300

seconds (see, for example, [96, 143, 145]).

Table 3.2: Basic statistics of reconnaissance activities, where µ is the average and σ the standard
deviation.

Basic Statistics
min µ median max σ

Flows with
non-zero
duration time

flow duration 0.001 16.8 0.69 300 1185.6

# of packets 2 3.7 3 550 12.5

# of bytes 56 248 167 41,220 157,195

Flows with
zero duration
time

# of packets 1 1 1 65 0.2

# of bytes 28 51 40 2,600 1,552.3

The dataset contains 42,734,422 TCP flows, each of which is treated as a reconnaissance ac-

tivity. Among these flows, 74% of them have zero duration time, meaning that they correspond to

single packet reconnaissance activities. Among the 26% of the flows with non-zero duration time

(indicating multiple-packet reconnaissance activities), 50% of them have a duration time that is less

than 0.7 seconds, indicating that most reconnaissance behaviors are essentially scanning/probing.

Table 3.2 summarizes the basic statistics of the flows in two groups (i.e., non-zero vs. zero duration

time), where “# of packets (bytes)” means the number of packets (bytes) of an individual flow.

3.3.2 Experiments settings

In our experiments, we consider the following parameter combinations of (δ, ρ, α), while noting

that an appropriate q will be searched. First, for the coarse-grained time resolution δ, we consider

five resolutions: one week, three days, one day, twelve hours, and one hour. For the fine-grained

time resolution ρ, we test ten resolutions: two hours, one hour, thirty minutes, fifteen minutes,

ten minutes, five minutes, one minute, thirty seconds, fifteen seconds, and ten seconds. Neverthe-

less, when the coarse-grained time resolution δ is low (e.g. twelve hours or one hour), it is not
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meaningful to consider a low fine-grained time resolution (e.g., two hours or one hour) because a

fine-grained time series within a coarse-grained time window does not have enough data points that

are adequate for a statistical analysis. Therefore, in total we consider 20 parameter combinations

of (δ, ρ), which are listed in the first two columns of Table 3.3. Second, for the threshold parame-

ter α (according to which we differentiate high-activity attackers from low-activity attackers), we

consider three values: 0.25, 0.5 and 0.75.

In our experiments, we consider a bagging clustering approach. For the clustering methods

in the bagging approach we combine three distance measures with nine clustering algorithms re-

sulting in the |M| = 27 pair-wise time series clustering methods. The three distance metrics are:

the Dynamic Time Warping Distance [83, 112, 120], the Global Alignment Kernels [41], and the

Soft-DTW Distance [42] (i.e., the R library dtwclust [116]). Over a distance matrix, we apply the

following clustering algorithms: k-Means, PAM, AGNES single linkage, AGNES average linkage

and ANGNES complete linkage from the R library cluster and the community detection algo-

rithms Fast greedy community (FGC) detection introduced by [37], Multi level community (MLC)

detection introduce by [27], Label propagation community (LPC) detection [103], and Information

map community (IMC) detection introduced by [108, 109] from the igraph library [40]. For the

cluster similarity measure in Equation 3.5, we used the V-Measure Score to compute ζ(Cj,Ck).

We choose the V-Measure score because: (i) it is equivalence to the arithmetic normalize mutual

information score (ii) the metrics is symmetric compared with the homogeneity and complete-

ness scores [107], (iii) is equivalent the harmonic mean of the homogeneity and the completeness

scores [107].

3.3.3 Results

Now we report our experimental results with respect to the four RQs mentioned above.
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(b) Pq , δ = 12 hours
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(d) Pq , δ = 3 days
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(f) Cq , δ = 1 hour
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k
0

20
40

60
80

q

0
20

40
60

80

S q
, k

0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009

0.0
e+

00

2.0
e-0

4

4.0
e-0

4

6.0
e-0

4

8.0
e-0

4

(h) Cq , δ = 1 day
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Figure 3.4: (a)-(e) The average evolution of time series Pq, (f)-(j) the average evolution of time
series Cq or 1 < q ≤ k, 1 < k ≤ K, between parameters settings with similar δ and different ρ
and α.

Experimental Results with respect to RQ1

Figure 3.4 plots the average evolution of time series Pq and Cq for 1 ≤ q < k and 1 < k < K

with different combinations of parameters (δ, ρ, α), where the average is for a fix values of δ over

the parameters ρ and α. For example, for Figure 3.4a and Figure 3.4f present the average Pq and

average Cq respectively for δ = 1 hour by averaging values of ρ ∈ {1 min., 30 sec., 15 sec., 10

sec.} and α ∈ {0.25, 0.5, 0.75}.

As we expect that both the persistence and the similarity diminish as q increases. We also

observe that the attacking behaviors are mostly similar for q = 1. Therefore, we proceed with

q = 1 and assess the time series P1 and C1. We also observe that P1 and C1 often exhibit quite

different characteristics because they reflect different aspects of high-activity attackers.

Insight 16. Both persistency and similarity diminish as q increases, and reconnaissance behaviors

are mostly similar within q = 1 coarse-grained time window. This suggests us to consider q = 1

only.
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Experimental Results with respect to RQ2

For this analysis we propose estimating the Hurst-Kolmogorov parameter H to test which param-

eters combination leads to time series with H ≥ 0.5, indicating the presence of LRD [121]. For

a time series with a Hurst parameter H ≥ 0.5, we propose applying the Smoothly Varying Trend

test [102] to verify if the LRD is spurious or not. Since not all of the parameter combinations lead

to LRD, we propose using the following rankings:

• Corresponding to a q, a parameter setting is suitable if the time series A, Pq and Cq exhibit

the LRD property.

• Corresponding to a q, a parameter setting is robust if the time series A, Pq and Cq exhibit

the LRD property for any three values of α ∈ {0.25, 0.5, 0.75}.

Note that a robust parameter setting implies the parameter setting is also suitable.

Table 3.3 lists the parameter settings and time series that exhibit LRD, spurious-LRD, or

doesn’t exhibit LRD. We observe that when δ is too small (e.g., smaller that 12 hours) or too

large (e.g., larger than 3 days), the time series do not exhibit LRD or exhibit spurious LRD, which

hints that cyber attack reconnaissance behaviors are not rich within a small time window but are

diminishing within a large time window. The parameter settings of (i) δ = 1 day and ρ = 5 min;

(ii) δ = 1 day and ρ = 30 min; and (iii) δ = 12 hours and ρ = 1 min are robust parameters because

all of the time series exhibit LRD regardless of the value of α. For each of the time series, the Xs

in columns A, P1, and C1 represent the parameter settings that better characterize the evolution

of the number of high-activity attackers, the evolution of attacker persistence, and the evolution of

the attacker cluster similarity, respectively.

Insight 17. The defender needs to identify the right combinations of parameter values in order to

make the time series exhibit LRD and forecast cyber attack reconnaissance activities.
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Table 3.3: LRD Analysis and Trend Correlation results: The × mark indicate that a time series
exhibits spurious LRD, the Xindicates that a time series exhibits true LRD, and we leave it blank
for the parameter settings that do not exhibit LRD (H ≤ 0.5). The “Cluster Id” column indicates
the trend correlation cluster id for the suitable parameter settings.

δ ρ
A P1 C1 Cluster Id

0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

week 2 hours X
week 1 hour X X X X X X X 0
week 30 min X X X
week 15 min X X X X X X
3 days 1 hour X X X X X X X 0
3 days 30 min X X X X X X
3 days 15 min X X
3 days 10 min X X X X
1 day 30 min X X X X X X X X X 0 0 0
1 day 15 min X X X X X X
1 day 10 min X X X X X X X
1 day 5 min X X X X X X X X X 1 1 0

12 hours 10 min X X X X × X X X X 0 0
12 hours 5 min × × × X × X X X ×
12 hours 1 min X X X X X X X X X 0 0 1
12 hours 30 sec X X X × X X X X X 1 1
1 hour 1 min × × × × × × × × ×
1 hour 30 sec × × × × × × X × ×
1 hour 15 sec × × × × × X X × X
1 hour 10 sec × × × × × × × × X
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Experimental Results with respect to RQ3

Table 3.3 shows that certain parameter settings are more suitable than others. Within the suitable

parameter settings, we assess whether or not some of the parameter settings lead to similar attacker

reconnaissance behavior patterns. In this analysis, we extract the trend of the evolution: A, Pq,

and Cq using a frequency of two weeks, then we compare the the correlation between the trends

between different parameter settings, and compute a correlation matrix for each time series. Dif-

ferent window lengths δ produce time series with different number of observations or length. In

order to assess the correlation between the time series with different parameter settings, we need to

converge the different length time series into time series of same length or same number of obser-

vations. To achieve the goal, we take the average of the observations in the time series to match the

number of observations of the time series with least number of observations. Assume that the time

series with the least number of observations have a weekly observation, to converge the daily time

series to match the time series with weekly observations, we take the average of the seven daily

time series within the same time window. The other times-series with observations every 3-day,

12-hour, 1-hour, etc. are converged similarly.

After converting the time series with different parameters into a same frequency, we are able

to obtain a correlation matrix for each time series. Based on the pairwise correlation, which can

be viewed as a similarity measure between those time series, we apply the agglomerative cluster

using ward linkage [57, 123] to group parameter settings into different clusters. We choose the

number of cluster that optimize the silhouette score [57, 110].

In addition, to the suitable and robust parameter settings rankings the results of the parameter

clustering suggest a third ranking for the parameter settings that are robust and produce time series

with similar trends. Corresponding to the number of consecutive windows q, we say a parameter

setting is ideal if the time series A, Pq and Cq are robust and the evolution trends are similar for

α ∈ {0.25, 0.5, 0.75}.

Figure 3.5a-3.5c present the correlation matrix clustering results for the time series A, P1, and

C1 respectively. We set q = 1 based on our previous conclusion that a shorter parameter q leads
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Figure 3.5: (a) correlation matrix for the A trends, (b) correlation matrix for the P1 trends, (c)
correlation matrix for the C1 trends. The row label shows the parameter settings where W is short
for week, D is short for day, H is short for hour, M is short for minute and S is short for second.

to a more persistent attacking behaviors. In general, the suitable parameter settings are grouped

into two clusters based on the correlation between the time series constructed based on them.

However, these two clusters may be different for different time series. Hence, to further understand

the similarity of different parameter settings, we combine the clustering results of the correlation

matrices for A, P1 and C1 to create a complete weighted and undirected graph G = (V,E,N).

Where the vertex set V correspond to the suitable parameter settings, and the edge set E = V×V.

To assess the weigh of the edges we define the edge weigh function N : E → [0, 1] where for

parameter settings (p, p′) ∈ V:

N(p, p′) =
1

3

∑
R∈{A,P1,C1}

1R(p, p′) (3.7)

and

1R(p, p′) =


1

if parameter settings p and p′ are clustered

together when using correlation matrix R

0 otherwise

(3.8)

and find the communities in the graph G. Figure 3.6 show the two group of parameter settings

given by the communities in the similarity graph and the “Cluster Id” column in Table 3.3 show

the two groups of parameter settings.
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Figure 3.6: suitable parameter settings affinity graph. Communities are differentiate by the color.
The width of the edge is proportional to the number of time series for which the pair of parameters
have correlated trend. Notation: W is short for week, D is short for day, H is short for hour, M is
short for minute and S is short for second.

The parameters settings δ =1 day and ρ =30 min is an ideal parameters settings because is

robust and the trend of the time series A, P1 and C1 fall under the same group.

Insight 18. Depending the parameter setting a data set might exhibit different evolution’s, leading

into multiple cases. Defenders need to be conscious on how many parameter settings are required

to have a holistic description of the evolution’s.

Experimental Results with respect to RQ4

Given the similarity graphs corresponding to each coarse-grained time window, we compute graph

G as described in the framework. In order to find communities in G, we adopt the MLC algorithm

because the number of edges in G is O(|V|2) and the MLC algorithm has a better complexity than

the other algorithms, namely O(n log2(n)), where n = |ΩH
k | [86].

As discussed above, the parameter settings can be grouped into two clusters, namely Cluster

Id 0 and Cluster Id 1. On average both clusters of similar parameter settings cluster the attackers

in 4 families of reconnaissance behaviors. We identify the final clustering of attackers in each

parameter setting. Figure 3.7 shows that clustering results with respect to the parameter settings

in the same group are similar, with an average vM score of 0.5. However, when comparing the
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clustering results with the parameter settings that belong to different groups, the average vM is

below 0.15. This indicates that similar parameter settings indeed lead to similar clustering results.
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Figure 3.7: V-Measure score comparison between the final clusters in the experiments witting the
same cluster id h, and the V-Measure score of the clustering form experiments in group h with
the clustering of the experiments not in group h, label as ∼h. We can observer the comparison
between the experiment witting the same group have an higher vM score while the comparison
with experiment outside the group have a lower vM score.

Figure 3.8 presents the box-plots of characteristics of the attacker families in each cluster of pa-

rameter settings. To understand the topology of the families in each parameter settings cluster we

measure the sparsity and density using the Gini-Index (GI) generalization for graphs sparsity [55]

and the Coleman graph density score (D) estimation [38]. Both GI and D are between zero and

one, where the graph sparsity is higher when the GI value is closer to 1 and the D value is closer

to 0. In Figure 3.8a and Figure 3.8b, the values of GI and D show that cluster one generates more

sparse communities than cluster zero does. The aforementioned result present two complementary

results depending the context the families of attacker that are more sparse can be more suitable or

vise-versa. Therefore both clusters are necessarily to provide a holistic description of the attacker

reconnaissance families. Because each cluster offers a different characterization of the attacker

reconnaissance families, both clusters of suitable parameter settings are needed to offer a more

comprehensive analysis. In Figure 3.8c, we observe that both clusters has from two to five fam-

ilies, while noting that the number of communities is much higher than the number of families.
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Figure 3.8d indicates that there many attackers that are isolated, meaning that that those attacker

have their own reconnaissance behaviors.

Insight 19. The defender may have to consider multiple parameter combinations for quantifying

the number of cyber attack reconnaissance behaviors, perhaps because the reconnaissance behav-

iors do not contain enough information to uniquely cluster cyber attack reconnaissance behaviors.
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Figure 3.8: (a) Gini-Index sparsity score, (b) Density score, (c) the number of families and (d)
number of communities for the ensemble graph G.

3.4 Related Work

From a conceptual point of view, the present study falls into the field of cybersecurity data an-

alytics, which has been investigated in many contexts, such as: univariate time series forecast-

ing [33, 93, 132, 143–145], multivariate time series forecasting [96, 130], and graph time series of

attacker-victim relations [54]. The present study investigates a new aspect of multivariate time

series, namely the temporal and spatial behaviors of cyber attack reconnaissance behaviors.

From a datasets point of view, low-interaction honeypot data has been analyzed from the

following aspects: the visualization of the five flow field protocol, source and destination IP-

Addresses and ports [61]; the characterization of attack inter-arrival times [18, 63]; the prediction
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or forecasting of attack rates [33, 93, 96, 143, 145]; the detection of cyber attacks such as malware

and botnets [22,44,51,68,74,79,97–99]; the clustering attacks [19–21,39]. When compared with

these previous studies, we focus on a different aspect, namely cyber attack reconnaissance behav-

iors with one ultimate goal of understanding the dynamic evolution of attackers in the wild purely

based on their reconnaissance behaviors. This aspect could be integrated with the others investi-

gated in the literature to enrich our understanding to cyber attacks. Two other kinds of datasets

have been analyzed in the literature as well, although none of these studies analyzed the evolution

of cyber attack reconnaissance behaviors. There have been analyses on datasets that are collected

at enterprise networks (i.e., neither honeypots nor telescopes) [23,59]. Thonnard et. al. [119] clus-

ter attacks with the goal of discovering attribution of the attack source. There have been studies

on analyzing blackhole-captured cyber attacks (e.g., [88, 125, 130, 144]), but not on the evolution

of cyber attack reconnaissance behaviors. On the other hand, Katipally et. al. uses a multi-stage

attack detection system to cluster attacker based on their behaviors [64], while leveraging attack

payloads, which are not available for cyber attack reconnaissance studies.

3.5 Conclusion

We proposed a methodology for characterizing the evolution of cyber attack reconnaissance behav-

iors. We observe that for both forecasting cyber attack reconnaissance rates and for quantifying the

number of attacker families, the defender needs to consider multiple parameter combinations. The

actual number of parameter combinations may be specific to the dataset in question, but identify-

ing a general guiding principle (e.g., what kinds of data would demand what number of parameter

combinations) is left for future research.
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CHAPTER 4: CHARACTERIZING CYBER ATTACKS

RECONNAISSANCE TRAJECTORIES

Chapter Abstract

In this chapter, we characterize cyber attack reconnaissance behaviors through the lens of indi-

vidual attackers’ reconnaissance trajectory, which is a novel concept introduced in the present

paper. In order to characterize reconnaissance trajectories, we propose a technique called recon-

naissance trajectory hierarchy trees, which may be of independent value. Experimental results

based on some real-world datasets show that on average 3.7K attackers can be grouped into 29

families according to their cyber reconnaissance trajectories. Furthermore, these 29 families can

be further divided into four classes: single country and single target service, single country and

multiple target services, multiple countries and single target service, and multiple countries and

multiple target services. We also identify 44 attackers that exhibit the same attack reconnaissance

trajectory hierarchy tree during a five-year time span.

4.1 Introduction

It is an important, yet difficult, task to understand and characterize cyber attacker behaviors from

the limited information exposed in the stage of cyber attack reconnaissance. The previous chapter

uses temporal information to characterize and cluster attacker-victim behaviors exhibited at the

reconnaissance stage. However, in this chapter we move a step further to understand to what

extent cyber attackers’ temporal-spatial behaviors exhibited at their reconnaissance stage can be

used to characterize them, despite the fact that no information about their intent, attack vectors

(or payload), or attack tactics is given. Leveraging both temporal and spatial information of cyber

reconnaissance behaviors allows us to better understand the families of attack behaviors, leading

to richer characterization of cyber threat situational awareness. To the best of our knowledge, the

problem of clustering attacker reconnaissance temporal-spatial behaviors is little understood.

We make the following three contributions. First, we initiate the study of characterizing
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and clustering the temporal-spatial behaviors of cyber attack reconnaissance. Second, we pro-

pose a framework for characterizing and clustering the temporal-spatial behaviors. The frame-

work introduces a novel abstraction for the attackers reconnaissance behaviors dubbed: attacker

reconnaissance-trajectories. It also provide a visual representation for the cluster of attacker

reconnaissance-trajectories dubbed: attacker reconnaissance-trajectories hierarchy trees. In ad-

dition, our framework proposes to use the most influence attacker in the families as the families

representatives. Third, in order to show the usefulness of the framework, we report a case study of

characterizing and clustering the temporal-spatial behaviors based on two low interaction honeypot

datasets from the years 2016 and 2019. Some of our findings are highlighted as follows:

• On average 3.7K attackers are divided in twenty-nine families of attacks reconnaissance.

• Attacks reconnaissance families representatives can be organize in four classes: single coun-

try and single target service,single country and multiple target service, multiple country and

multiple targeted services, and multiple countries and single target service,

• Forty-four attacker exhibit the same attacks reconnaissance trajectory hierarchy tree after five

years, suggesting their reconnaissance strategies didn’t evolve during that period of time.

Our contributions are summarize in four steps: (i) for each attacker find their reconnaissance-

trajectories, (ii) summarize the attacker reconnaissance patterns into reconnaissance-trajectories

hierarchy tree, (iii) used the hierarchy tress to compare how similar are a pair attackers and im-

plement a graph base clustering to find the families of attacker given the similarity between the

attackers reconnaissance-trajectory hierarchy trees and (iv) for each family of attacker behavior

find the most influence attackers in the family as use them as the family representatives.

4.2 Framework

Figures 4.1 highlight the framework which consist in four components: data collection and pre-

processing for each heavy hitter attacker, building heavy hitter attacker reconnaissance trajectories,

build hierarchy tree to represent the reconnaissance trajectories, and discover the attacker families.
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Find heavy hitting attackers

Data collection and preprocessing

IP packets Network flows

Network traffic raw data

Build hierarchy tree to represent reconnaissance 
trajectory

Discover attacker reconnaissance families

Find family representatives

Figure 4.1: Framework for characterizing cyber attack reconnaissance trajectories.

52



4.2.1 Data collection and pre-processing

Is common to capture network traffic as raw Packet Capture Data (PCAP), which can be further

converted into IP packets or flows. A flow is commonly defined as a tuple of five fields: source IP

address, destination IP address, source port, destination port, and protocol [36]. Each flow has a

start time and end time. There is a standard routines to ensemble PCAP into network flows or IP

Packets [54]. For reassembling flows, two parameters are needed the idle time and lifetime. The

idle time specifies when a flow should be terminated after observing no communication activities

between a source and a destination. The lifetime specifies when a flow should be terminated and a

new flow may be started. In this chapter, we propose using on flow-based representation to cluster

the cyber attack reconnaissance trajectories.

4.2.2 Heavy-hitter attackers

Let L = [0, t) denote the lifespan of a data set. Define Ω be the ID domain of all observed attackers

during the time interval L. In theory the cardinality |Ω| can be as large as 232, while in our study

we observe |Ω| ≈ 4.4 millions. We propose to model the attacker reconnaissance tactics as the

sequence of ordered flows dubbed, the trajectory.

Definition 20 (Flow). A flow is defined as the tuple f = 〈s, as, at, ps, pt, ρ, τ, e〉 where f [s] denote

the start time of the flow, f [as] the source IP-Address, f [at] the target IP-Address, f [ps] the source

port, f(pt) the target port, f [ρ] the protocol, f [τ ] the TCP flags, and f [e] the end time of the flow.

Definition 21 (an attackers’ reconnaissances attempts). Let v be an arbitrary attacker in Ω. All

the attacker v reconnaissance attempts are denoted as a sequence of flows Fv = {f1, f2, . . . , fn}

where fi[as] = v, fi[s] ∈ L for all fi ∈ Fv. In addition, for all fi[s] < fj[s] for any fi, fj ∈ Fv and

i < j.

Let |Fv|, the cardinality of the attacker v reconnaissance tour, denote the number of flows from

v during the time interval L. Because some attacker might have a very short reconnaissance, we

only focus in the heavy hitter attackers which are defined as follows.
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Definition 22 (Heavy-hitter attacker). For a given number of flows α, an attacker v ∈ Ω is a heavy

hitter attacker if |Fv| > α.

We denote the set of heavy hitter attackers ΩH , where

ΩH = {v|v ∈ Ω ∧ |Fv| > α}

4.2.3 Building hierarchy trees for representing reconnaissance trajectories

For a heavy hitter attacker v ∈ ΩH with reconnaissance tour Fv, we construct the attacker recon-

naissance trajectories as follows.

Definition 23 (Attacker reconnaissance trajectories). For an attacker v, a reconnaissance tra-

jectory Tj ⊆ Fv is defined as a set of Kj consecutive flows Tj = {fi, . . . , fi+Kj
} such that

∀fi ∈ Tj \ fi+Kj
,

fi[s]− fi+1[s] ≤ µFv ,

where µFv is the average idle time between any consecutive flows in Fv. An adjacent trajectory

Tj+1 after Tj with Kj+1 flows is Tj+1 = {fi+Kj+1
, . . . , fi+Kj+Kj+1

} such that

fi[s]− fi+1[s] > µFv .

Finally, the set of reconnaissance trajectories for attacker v is denoted by Tv = {T1, . . . , Tm}

where Ti ∩ Tj = ∅ for any Ti, Tj ∈ Tv.

Attacker reconnaissance trajectory hierarchy tree nodes description

For each heavy hitter attacker v ∈ ΩH , we abstracted the reconnaissance trajectories hierarchy

through a tree with five hierarchy node levels: the root (Level-0), the child nodes for the tar-

get ports (Level-1), the child nodes for the protocol (Level-2), the child nodes for the tcp flags

(Level-3) and the leaves (Level-4). Each node contains a subset of the attacker reconnaissance

trajectories. Nodes are annotated with a node type (e.g. root, target ports, protocol, tcp flags and
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leaf nodes), a label, a set of attacker reconnaissance trajectories and a parent node. These nodes

are denoted by T RN
v , T TP

v , T P
v , T T

v , and T L
v , respectively are defined as follows.

Definition 24 (Root node). The root node of the tree contains all the reconnaissance trajectories

in Tv and is denoted by T RN
v .

Definition 25 (Target ports nodes). The target ports nodes split the reconnaissance trajectories

according to the target ports such that the flows of the reconnaissance trajectories in each child

node of the target ports nodes belongs to the same set of target ports. For an attacker v with

reconnaissance trajectories set of Tv, the target ports node splits trajectories of v into NTP child

nodes: T TP
v (1), . . . , T TP

v (NTP). For each child node T TP
v (k), for k = 1, . . . , NTP − 1, define

FTP
v (k) ≡

⋃
Tj∈T TP

v (k)

Tj, and STP
v (k) ≡

⋃
fi∈FTP

v (k)

fi(pt)

to be the set that contains all flows in the reconnaissance trajectories and the set of appeared target

ports in T TP
v (k). Then, each node T TP

v (k) can be labeled by STP
v (k). For k = NTP, let

STP
v (NTP) =

{
Tj|Tj ∈

(
T RN
v \

NTP−1⋃
k=1

T TP
v (k)

)}

and label it as MIXTP
v .

Definition 26 (Protocol nodes). The protocol ports nodes, children of the target ports nodes, split

the reconnaissance trajectories according to the protocol ports such that the flows of the reconnais-

sance trajectories in each child node of the target ports nodes belongs to the same set of protocol

ports and target ports. The protocol ports node further split trajectories of an attacker v in each

target ports node T TP
v (k) into NP child nodes: T TP,P

v (k, 1), . . . , T TP,P
v (k,NP). For each child node

T TP,P
v (k, l), for l = 1, . . . , NP − 1, define

FP
v(k, l) ≡

⋃
Tj∈T TP,P

v (k,l)

Tj, and SP
v(k, l) ≡

⋃
fi∈FP

v(k,l)

fi(ρ)
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to be the set that contains all flows in the reconnaissance trajectories and the set of appeared

protocols in T TP,P
v (k, l). Then, each node T TP,P

v (k, l) can be labeled by SP
v(k, l). For l = NTP, let

STP
v (k,NP) =

{
Tj|Tj ∈

(
T TP
v (k) \

NP−1⋃
l=1

T TP,P
v (k, l)

)}

and label the node T TP,P
v (k,NP) as MIXP

v .

Definition 27 (The tcp flag nodes). The tcp flag nodes, children of the protocol ports nodes,

split the reconnaissance trajectories according to the tcp flags such that the flows of the recon-

naissance trajectories in each child node of the target ports nodes belongs to the same set of tcp

flags, protocol ports, and target ports. The tcp flag nodes further split trajectories of an attacker

v in each protocol ports node T TP,P
v (k, l) into NT child nodes: T TP,P,T

v (k, l, 1), . . . , T TP,P,T
v (k, l, NT).

For each child node T TP,P,T
v (k, l, s), for s = 1, . . . , NT − 1, define

FT
v(k, l, s) ≡

⋃
Tj∈T TP,P,T

v (k,l,s)

Tj, and ST
v(k, l, s) ≡

⋃
fi∈FP

v(k,l,s)

fi(ρ)

to be the set that contains all flows in the reconnaissance trajectories and the set of appeared tcp

flags in T TP,P,T
v (k, l, s). Then, each node T TP,P,T

v (k, l, s) can be labeled by ST
v(k, l, s). For s = NT,

let

ST
v(k, l, NT) =

{
Tj|Tj ∈

(
T TP,P
v (k, l) \

NT−1⋃
s=1

T TP,P,T
v (k, l, s)

)}

and label the node T TP,P,T
v (k, l, NT) as MIXT

v.

Following the aforementioned splitting rules, the reconnaissance trajectories are grouped to-

gether according to their target ports, protocols, and tcp flags. To understand the spatial patterns

of the attacks in the network space (or IP address space), we further cluster the reconnaissance tra-

jectories in each tcp node based on their target IP address (victim), target port, and flow starting

time.

Definition 28 (Reconnaissance trajectory similarity graph). For each tcp flag node T TP,P,T
v (k, l, s),

we define a weighted and complete graph Gv(k, l, s) = {Ω(k, l, s), E,N} where Ω(k, l, s) is the
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vertex set containing all the reconnaissance trajectories in T TP,P,T
v (k, l, s), E = Ti × Tj is the edge

set, and N : E → [0, 1] is weight such that N(i, j) denote the similarity between the reconnais-

sance trajectories Ti and Tj according to an appropriate definition.

Due to the fact that there are many ways to define N(i, j), we use an ensemble clustering

approach to combine multiple existent clustering methods. Let M denote a set of clustering meth-

ods, where |M| ≥ 1. Suppose m ∈ M discover rm clusters of reconnaissance trajectories in

T TP,P,T
v (k, l, s). Let cm(Ti) ∈ {1, . . . , rm} denote the clustering assignment for the trajectory Ti.

For a pair of trajectories (Ti, Tj), we define their similarity as the fraction of the same clusters to

which they belong, namely:

N(i, j) =
1

M
∑
m∈M

1{cm(Ti), cm(Tj)} (4.1)

where

1{x, y} =


1 if x = y;

0 otherwise.
(4.2)

In order to get the final clustering of the reconnaissance trajectories in T TP,P,T
v (k, l, s), we apply

a community detection algorithm [27, 37, 103, 108, 109] based on the weighted graph Gv(k, l, s).

Assume that there are R(k, l, s) number of clusters retrieved by the community detection algo-

rithm, and let C(Ti) ∈ {1, . . . , R(k, l, s)} denote the cluster identity of the reconnaissance trajec-

tory Ti.

Definition 29 (Leaf nodes). The leaf nodes contain the reconnaissance trajectories based on the

clustering results of reconnaissance trajectories in the tcp nodes using their target IP address

(victim) and flow starting time such that for each leaf node T TP,P,T,L
v (k, l, s, q)

C(Tj) = q, for all Tj ∈ T TP,P,T,L
v (k, l, s, q),
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Figure 4.2: Example diagram for the attacker hierarchy tree. The bottom level represents the clus-
tering of the reconnaissance trajectories. Each leaf represent a cluster. The leaf label represents the
number of trajectories in the cluster e.g. the node with label “S,A” have three leaves representing
three clusters with 4, 2 and 4 trajectories respectively.

and is labeled by q where q ∈ {1, . . . , R(k, l, s)}.

In Figure 4.2 we show a diagram of the reconnaissance trajectories hierarchy tree.

Attacker reconnaissance trajectory hierarchy tree description

Using the attacker reconnaissance trajectory hierarchy tree nodes descriptions we create a directed

graph where the different hierarchy tree nodes compose the vertex set and the edge set are the

connections between the parent and children nodes.

Definition 30 (Attacker reconnaissance trajectory hierarchy tree). Define the directed graphHv =

{V,E} with the vertex set containing all the nodes in the hierarchy tree:

V = {T RT
v , T TP

v (k), T TP,P
v (k, l), T TP,P,T

v (k, l, s), T TP,P,T,L
v (k, l, s, q)}
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for 1 ≤ k ≤ NTP, 1 ≤ l ≤ NP, 1 ≤ s ≤ NT, and 1 ≤ q ≤ R(k, l, s); and the edge set E containing

edges connecting the parent and child nodes in V.

4.2.4 Attacker families and families representatives

Attacker families

We propose to use a graph based clustering approach to discover the attacker families. We define

a undirected and weighted graph G = {ΩH , E ,N} using the k-nearest neighbor approach [106].

Let ΩH be the set of heavy hitter attacker or vertices and E ⊂ ΩH × ΩH the set of edges where

(v, u) ∈ ΩH if Hu is in the k-most similar reconnaissance trajectory hierarchy tree to Hv and the

weight of the edges are annotated with the normalized ([0,1] range) similarity between the attacker

hierarchy trees:

N (u, v) =
1

1 + δ(Hv,Hu)
(4.3)

where δ(Hv,Hu) defines the distance between the reconnaissance trajectory hierarchy trees Hv

and Hu according to a proper definition, for our case study we select the APTED [89, 90] tree

distance because its fast execution time.

Definition 31 (Attacker trajectory reconnaissance family). Let Q be the number of communities in

G detected by a community detection algorithm (e.g. [37]), define C(v) ∈ {1, . . . , Q} the commu-

nity assignment of the attacker v ∈ ΩH . Then the i-th attacker reconnaissance family is:

Ci = {v|C(v) = i ∧ v ∈ ΩH}.

Attacker families representatives

For each attacker trajectory reconnaissance family Ci, for 1 ≤ i ≤ Q, we select four family repre-

sentatives based on degree, betweenness score [50], closeness score [50] and pagerank score [87].

The betweenness score [50] for vertex v ∈ Ci measures the number of shortest path from any pair

of nodes (different than v) that passes through node v. The closeness score [50] for vertex v ∈ Ci
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measures the average length of the shortest path from v to any other vertex v′ ∈ Ci. While the

page-rank score [87] of v ∈ Ci intuitively measure the importance or relevance of v.

For each attacker trajectory reconnaissance family Ci, the four family representatives are selected

by the attackers’ reconnaissance trajectory hierarchy trees that maximize each of the four measures

respectively. For our case study we used the implementations of the python iGraph library [40].

Intuitively the aforementioned four metrics define the influence of the attacker to trajectory re-

connaissance family. Because the attacker influence is associated to the similarity between the

hierarchy tree of the attacker and its neighbors, attackers with the optimal influence score are

likely to better describe the rest of the attacker in the family.

4.2.5 Research Questions

Building on top of the preceding descriptive model, we investigate the following research questions

(RQs):

RQ1: How many families of attacker reconnaissance trajectories in a given dataset? What are

their geographical characteristics?

RQ2: What are the characteristics of each family?

RQ3: Are there any attackers with the same reconnaissance behaviors in year 2014 and 2019?

4.3 Case study and Results

4.3.1 Data collection and pre-processing

Our case study is based on two datasets collected at a low-interaction honeypot, which has 1,024 IP

addresses. First dataset (D1) collected data between 2/6/2014 to 5/8/2014 and the second dataset

(D2) collect data from 12/31/2018 to 4/30/2019. Although D1 is several years old, it is sufficient

for demonstrating the usefulness of our framework. The honeypot runs the Honeyd [100] and

Nepenthes [24] programs. Since a honeypot offers no legitimate services, the traffic coming to a

honeypot is deemed as malicious (see, e.g., [22, 44, 51, 68, 79, 96–99, 143, 145]). We convert the
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raw PCAP dataset into IPFIX network flows by using the tools known as Yet Another Flowmeter

(YAF) and super_mediator of the Computer Emergency Response Taskforce (CERT) [62]. As in

many previous studies, the idle time is set to 60 seconds and the flow lifetime is set to 300 seconds

(see, for example, [96, 143, 145]).

Dataset D1

The dataset led to 92,477,692 flows each of which is treated as a reconnaissance activity. Among

them 74% of the flows have zero duration time (meaning that on average they correspond to single

packet reconnaissance activities). Among the 26% of the flows with non-zero duration time (in-

dicating multiple-packet reconnaissance activities), 50% of them have a duration time that is less

than 0.7 seconds, indicating that most reconnaissance behaviors are essentially scanning/probing

activities. Table 4.1 summarizes the basic statistics of the flows in two groups (i.e., non-zero vs.

zero duration time), where “# of packets (bytes)” means the number of packets (bytes) of an indi-

vidual flow.

Table 4.1: Basic statistics of reconnaissance activities of dataset D1, where µ is the average and σ
the standard deviation.

Basic Statistics
min µ median max σ

Flows with
non-zero
duration time

flow duration 0.001 16.8 0.69 300 1185.6

# of packets 2 3.7 3 550 12.5

# of bytes 56 248 167 41,220 157,195

Flows with
zero duration
time

# of packets 1 1 1 65 0.2

# of bytes 28 51 40 2,600 1,552.3

Dataset D2

The dataset led to 455,465,974 flows each of which is treated as a reconnaissance activity. Among

them 74% of the flows have zero duration time (meaning that on average they correspond to single

packet reconnaissance activities). Among the 26% of the flows with non-zero duration time (in-
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dicating multiple-packet reconnaissance activities), 50% of them have a duration time that is less

than 0.7 seconds, indicating that most reconnaissance behaviors are essentially scanning/probing

activities. Table 4.2 summarizes the basic statistics of the flows in two groups (i.e., non-zero vs.

zero duration time), where “# of packets (bytes)” means the number of packets (bytes) of an indi-

vidual flow.

Table 4.2: Basic statistics of reconnaissance activities of dataset D2, where µ is the average and σ
the standard deviation.

Basic Statistics
min µ median max σ

Flows with
non-zero
duration time

flow duration 0.001 146.5 256.9 300 15616.9

# of packets 2 5.8 6 7895 22.9

# of bytes 56 621.7 342 5,746,064 188,049.1

Flows with
zero duration
time

# of packets 1 1 1 14 0.02

# of bytes 28 69 57 20,028 4,442.3

4.3.2 Find heavy-hitter attackers

To find the heavy hitter attacker we considered α = 100 for the dataset D1 and we denoted the set

of heavy hitter attackers in D1 as ΩH
D1 where |ΩH

D1| = 3, 089. We used α = 5, 000 for dataset D2

and denote the set of heavy hitter attacker in D2 as ΩH
D2, where |ΩH

D2| = 4, 437.

4.3.3 Building Attacker reconnaissance trajectories hierarchy tree and Attacker Families

We used Definition 23 to build the attacker reconnaissance trajectories and Definition 30 to build

the reconnaissance trajectories hierarchy trees for each attacker v ∈ ΩH . To generate the hierar-

chy tree leaves we represent the trajectories as a three-dimensional trajectory using the flow start

time, target port and destination IP address. Then we define the closeness between a pair trajecto-

ries using the trajectory distance metrics: Symmetric Hausdorff distance [118], the Dynamic Time

Warping (DTW) [83, 112, 120], and the Soft-DTW [42]. We combine the distance metrics with

the clustering algorithms: k-Means, Agglomerative Clustering algorithm (AGNES) single linkage,
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AGNES average linkage, AGNES complete linkage and the Affinity Propagation clustering algo-

rithm. To choose the clustering algorithm parameters, we select the parameter that optimize the

silhouette score. A total of fifteen clustering methods (|M| = 15) where used for Equation 4.1.

To find the communities of the similarity graph we used the multi level communities detection

algorithm [27].

4.3.4 Find Attacker Families

To compute the similarity between a pair of attackers we used Equation 4.3 where we let δ(Hv,Hu)

be the APTED tree edit distance implementation [89, 90]. The APTED tree edit distance required

tree penalty cost: (i) penalty of adding (or removing) a node, (ii) penalty of adding (or removing)

an edge, and (iii) the penalty of renaming (or re-labeling) a node. For the penalty of adding node

or edges we used the default cost of one. However we customized the rename penalty as follow:

Example 32 (Node rename penalty cost). For node av in hierarchy treeHv and node au in hierar-
chy treeHu denote the cost of renaming av and au as rc(av, au) define as:

rc(av , au) =



φ(av , au) if av ≡ T RN
v ∧ au ≡ T RN

u

ψ(av , au) if av ≡ T TP
v (k) ∧ au ≡ T TP

u (k)

ψ(av , au) if av ≡ T TP,P
v (k) ∧ au ≡ T TP,P

u (k)

ψ(av , au) if av ≡ T TP,P,T
v (k) ∧ au ≡ T TP,P,T

u (k)

η(av , au) if av ≡ T TP,P,T,L
v (k) ∧ au ≡ T TP,P,T,L

u (k)

1 otherwise

(4.4)

where

ψ(x, y) =
|x ∪ y| − |x ∩ y|
|x ∪ y|

and η(x, y) =
|x− y|

max({x, y})

and the cost of renaming the root nodes is:

φ(x, y) =
gdist(x, y) + idist(x, y)

2

where gdist is the normalized geographical distance and idist is IP-space normalized dis-

tance of the attacker IP addresses.
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Table 4.3: Dataset D1 statistical summary of the families number of members (#MEMB) and
number of unique attacker countries (#UCTS). Where µ represents the average and σ the standard
deviation.

µ σ min 25% 50% 75% max
#MEMB 99.65 73.27 16 37 106 126 358
#UCTS 27.52 17.48 1 11 31 42 53

To choose the k parameter for the k-nearest neighbor graph G we used the theorem by Brito et

al. [28] and used k = 2 ln(|ΩH |).

For each family of attacker trajectory reconnaissance we computed its four representatives. For

some families the topology of the hierarchy tree are same among some of the family representa-

tives. Therefore, in the results we choose to illustrate only the unique hierarchy tree topology

among the four family representatives.

4.3.5 Dataset D1 Results

Experimental Results with respect to RQ1

We found that the 3,089 attackers can be divide in 31 families. Table 4.3 shows the basic statistics

of the number of attackers in each family and the number of unique attacker countries in each

family. The attacker reconnaissance families in average has 73 members from 17 different coun-

tries. The largest family has 358 members and the family geographically more diversified contains

members from 53 different countries.

Experimental Results with respect to RQ2

On average, families are represented with 100 attackers from 28 countries. However, we found five

families in where all the attacker are from the same country. The countries of this five families are

Brazil, Colombia, India, Turkey, and United States. Brazil with 17 attackers and two unique hierar-

chy tree family representatives shown in Figure 4.3a and Figure 4.3b. Colombia with 16 attackers

and one unique hierarchy tree family representative show in Figure 4.3c. India with 19 attackers

and one unique hierarchy tree family representative shown in Figure 4.3d. Turkey with 17 attackers
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Table 4.4: Dataset D2 statistical summary of the families number of members (#MEMB) and
number of unique attacker countries (#UCTS). Where µ represent the average and σ the standard
deviation.

µ σ min 25% 50% 75% max
#MEMB 164.33 120.19 18.0 79.5 140.0 197.5 479.0
#UCTS 28.19 20.45 1 14.0 25.0 43.5 68.0

and one unique hierarchy tree family representative shown in Figure 4.3e and United States with 22

attackers and three unique hierarchy tree family representatives shown in Figure 4.3f, Figure 4.3g

and Figure 4.3h. Among the family representatives the common reconnaissance target were on: the

file share service SMB (target port 445), the remote login service SSH (target port 22), HyperText

Transfer service HTTP (target port 80), and remote desktop service RDP (target port 3389). Fur-

thermore, we also observed families with attackers from multiple countries that also target a single

service including SMB, SSH, HTTP, RDP, also the remote administration service (radmin) in port

4899 and the virtual network computing (VNC) service in port 5900. Two families target multiple

target port combinations: attackers in the first family are from China, Germany and Russia target-

ing 65 port combinations including common reconnaissance strategies such as probing ports 80

and 8080, 23 and 2323, 22 and 2222. The second family attackers geo-location source is shown in

Figure 4.5 where the family representatives did reconnaissance in 14 ports combinations shown in

Figure 4.4 associated with memory leaks vulnerabilities on Cisco, SMTP worms, multiple trojans

including: Antigen, Barok, BSE, Gip, Laocoon, Magic Horse, MBT, Nimda, Shtirlitz, Stukach,

Tapiras, WinPC IOS; denial of service vulnerabilities in Point-to-Point Tunneling Protocol Virtual

Private Networking (PPTP) and data exfiltration vulnerabilities in the Symantec Endpoint Protec-

tion Manager and Symantec Backup Exec System Recovery Manager [13].

4.3.6 Dataset D2 Results

Experimental Results with respect to RQ1

The 4,437 attackers in D2 are divide in 27 families, Table 4.4 shows the basic statistics of the

number of attacker and the number of unique countries in each family. The attacker reconnaissance
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Figure 4.3: Unique hierarchy tree for family representatives. (a)-(b) The representatives for the
family of attackers from Brazil, (c) the representative for the family of attackers from Colombia,
(d) the representative for the family of attackers from India, (e) the representative for the family of
attackers form Turkey and (f)-(h) the representatives from the family of attackers form the United
States.
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Figure 4.4: Family representatives hierarchy trees: (a) optimal betweenness score, (b) optimal
closeness score, (c) largest degree and (d) optimal pagerank score representative.
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Figure 4.5: Attackers geo-locations.
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families in average has 120 members from 20 different countries. The largest family has 479

members and the family geographically more diversified contained members from 68 different

countries.

Experimental Results with respect to RQ2

On average there are 164 attackers from 28 different countries in each family. There are four

families where all the attackers are from the same countries: (i) a family of 18 attacker from Iran

with an unique hierarchy tree family representative shown in Figure 4.6a, (ii) a family with 48

attackers from India with an unique hierarchy tree family representative shown in Figure 4.6b,

(iii) a family with 76 attackers from China with an unique hierarchy tree family representative

shown in Figure 4.6d and (iv) a family with 33 attackers from Thailand with an unique hierarchy

tree family representative shown in Figure 4.6c. The single country families with attacker from

Iran, India and Thailand focus the reconnaissance to the SMB service. The single country family

with attackers from China targets multiple services including: SMB, SSH, Telnet (target port 23),

domain name service (DNS, target port 53), simple mail transfer protocol (SMTP, target port 25,

465 for outgoing SSL encryption and 587 for outgoing TLS encryption), network time protocol

(NTP, target port 123), simple network management protocol (SNMP, target port 161), remote job

entry target port 5 (also known to be exploit by trojans Incoming Routing Redirect Bomb and

yoyo [1,13]) Chargen service target port 19 (also known to be used by the trojan Skun [1,13]) and

post office protocol (POP3) on target port 110 (also known to be exploitable by the ADM worm,

ProMail trojan, Bancos and Civcat exploits [1, 13]).

Among the families with attackers from multiple countries, six families did reconnaissance

only in the SMB service, two families did reconnaissance only in the TELNET service targeting

target ports 23 and its commonly used variant 2323, five families did reconnaissance only for the

HTTP service, two families did reconnaissance only for the SSH service targeting target port 22

and its commonly used variant port 2222. Additionally six families were known to focus their

reconnaissance on target ports that are known to be associated with trojan and threats. A family of
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Figure 4.6: Single country families representatives: (a) Iran, (b) India, (c) Thailand and (d) China.
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140 attackers from 13 different countries shown in Figure 4.7a did reconnaissance on target port

8033 associated with the RingZero trojan [12, 13]. A family of 312 attackers from 62 different

countries shown in Figure 4.7b did reconnaissance on target port 7001 associated with trojans

Freak2k, Freak88, and NetSnooper Gold, also with an exploit on the WLS Security component in

Oracle WebLogic Server [8,13]. A family of 158 attackers from 40 countries shown in Figure 4.7c

did reconnaissance on the target port 8800 associated to the apple address book, the W32.Noomy

worm and the arbitrator code execution vulnerability on the Sun Java System Web Server [6,13,14].

A family of 328 attacker from 49 countries shown in Figure 4.7d did reconnaissance on target port

3390 associated with the Backdoor.Dawcun trojan, vulnerabilities on Voice Over IP Phones, and

the Unidata Shell [2,4,5,13]. A family of 52 attackers from 15 countries shown in Figure 4.7e did

reconnaissance on target port 37215 associated with vulnerabilities in Huawei HG532 routers [9,

11, 13], and a family of 83 attacker from 17 countries shown in Figure 4.7f did reconnaissance

on target port 3306 associated two MySQL vulnerabilities, the W32.Spybot.IVQ worm, and the

Nemog trojan [3, 7, 10, 13].

Insight 33. By characterizing the representatives of attacker reconnaissance trajectory families,

the defender can reduce analysis load by 96% on average.

4.3.7 Experimental Results with respect to RQ3

We found that dataset D1 and D2 have two attackers in common from Spain and South Korea

Figure 4.8 show the attacker reconnaissance trajectories hierarchy tree in year 2014 targeting the

SMB and the radmin services. Figure 4.9 show the attackers trajectory trees in year 2019 where

both attacker did reconnaissance in the same service they did in year 2014.

The fact that some attackers show the same reconnaissance trajectory hierarchy tree in different

time spams motivate us to explore the intersection of heavy hitter attacker form datasets D1 and D2.

For the aforementioned task we compute a second set of heavy hitter attacker in D2 using α = 100

and denote it ΩH
D2.2. We found the intersection set of heavy hitter attacker ΩH

I = ΩH
D1 ∩ ΩH

D2.2,

where |ΩH
I | = 45. Where 44 of the attackers u ∈ ΩH

I have identical reconnaissance trajectory
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Figure 4.7: Attacker geo-location for families of attacker associated with: (a) the RingZero tro-
jan [12,13] (b) trojans Freak2k, Freak88 and NetSnooper Gold and an exploit on the WLS Security
component in Oracle WebLogic Server [8, 13], (c) the W32.Noomy worm, and the arbitrator code
execution vulnerability on the Sun Java System Web Server [6, 13, 14], (d) Backdoor.Dawcun tro-
jan, vulnerabilities on Voice Over IP Phones and the Unidata Shell [2,4,5,13] (e) with vulnerabili-
ties in Huawei HG532 routers [9,11,13] and (f) two MySQL vulnerabilities, the W32.Spybot.IVQ
worm, and the Nemog trojan [3, 7, 10, 13]
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Figure 4.8: Attackers reconnaissance trajectory hierarchy trees in dataset D1, year 2014: (a) at-
tacker form South Korea and (b) attacker from Spain.
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Figure 4.9: Attackers reconnaissance trajectory hierarchy tress in dataset D2, year 2019: (a) at-
tacker form South Korea and (b) attacker from Spain.
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Table 4.5: Summary of the number of attackers (#MEMB) and the number of unique attacker
countries (#UCTS) for each family in ΩH

I .

Family Id #UCTS #MEMB
1 7 13
2 6 10
3 6 11
4 5 10

●

●●

● ●

●●●
●●

●
●

●

Family
● 1

2
3
4

Figure 4.10: Geo-location of attackers for the families in ΩH
I . Family one label as •, family two

label as N, family three label as � and family four label as +.

hierarchy tree in both period of time. We found four families of attacker in ΩH
I , Table 4.5 shows the

number of attackers in each families and the number of unique attackers countries of each family.

In Figure 4.10 we show the geographical information, and Figure 4.11 shows the representative

of each family of attacker in ΩH
I , where the representatives of family one do reconnaissance on

the SMB service only, family two representatives target SMB and TELNET services, family three

target the RDP services and family four representative focus in HTTP and FTP services.

Insight 34. Families of attacker reconnaissance trajectories with similar hierarchy trees in 2014

and 2019 are mostly from countries in Asia.
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Figure 4.11: Attacker reconnaissance trajectory hierarchy tree family representative for attackers
in ΩH

I . Unique representatives for: (a) family one , (b)-(c) family two, (d) family three and (e)-(f)
family four.
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4.4 Related Work

The present study contributes to one of the pillars in the Cybersecurity Dynamics framework [33,

91, 93, 96, 130, 134, 135, 143, 145], the field of cybersecurity data analytics. Previous studies in

this field include: univariate time series forecasting [33,93,132,143–145], multivariate time series

forecasting [96, 130], and graph time series of attacker-victim relations [54]. The present study

investigates a new aspect of multivariate time series, namely the temporal and spatial behaviors of

cyber attacker reconnaissance through the lens of trajectories.

From the datasets perspective, low-interaction honeypot data has been analyzed from the fol-

lowing perspectives: the visualization of the attacks source, destination IP addresses and ports [61];

the analysis of attack inter-arrival times [18,63]; the forecasting of attack rates [33,93,96,143,145];

the detection of malware and botnets [22, 44, 51, 68, 74, 79, 97–99]; the clustering attacks [19–21,

39]. When compared with these previous studies, we focus on a different aspect, namely the char-

acterization of cyber attacker reconnaissance trajectories with one ultimate goal of understanding

the families of attackers in the wild, purely based on their reconnaissance trajectories trees. This

aspect could be integrated with the others investigated in the literature to enrich our understanding

of cyber attacks.

Two other kinds of datasets have been analyzed in the literature as well, although none of

these studies analyzed the families of attacker reconnaissance trajectories. Datasets collected at

enterprise networks have been analyzed in [23, 59]. Thonnard et. al [119] cluster attacks feature

with the goal of discovering attribution. There has been studies on analyzing blackhole-captured

cyber attacks (e.g., [88,125,130,144]), but not on the attackers reconnaissance trajectories tree. On

the other hand, Katipally et. al uses a multi-stage attack detection system to cluster attackers base

on their behavior [64], focusing in dividing the attacker in seven groups. To define the attackers

behaviors they use the alerts from the intrusion detection system SNORT, this alert heavily required

the attack payload while for our study we focus in the attacker reconnaissance effort e.g. probing

rates, without knowing the attack payload. In contrast to the aforementioned work we abstract

the attacker behavior via trajectory reconnaissance and the attacker trajectory reconnaissance tree
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which depend solely on the attacks protocols, TCP flags, destination IP address and port and the

temporal and spatial patter of the trajectories.

4.5 Conclusion

We presented the novel abstraction of reconnaissance trajectory for characterizing cyber attack

reconnaissance behaviors. We further presented on how to organize and represent reconnaissance

trajectories into a hierarchy tree, and how to use such trees to cluster attacker reconnaissance

behaviors. We applied the methodology to two datasets and found that thousands of attacker can

be respectively divide into 31 and 27 families according to their reconnaissance trajectories. We

also draw some useful insights from the empirical studies.
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CHAPTER 5: CONCLUSION

5.1 Summary

The present dissertation initiated a systematical study of cyber attack reconnaissance behaviors at

three levels of abstraction: macroscopic, mesoscopic and microscopic.

• At the macroscopic level, we presented a framework for characterizing the evolution of

attacker-victim relation graphs. We also conducted a case study with emphasis on identi-

fying the number of time resolutions to characterize the evolution of attacker-victim relation

graphs.

• At the mesoscopic level, we proposed a two-resolution clustering approach to identifying

the families of cyber attack reconnaissance behaviors based on cyber attack reconnaissance

rates. We investigated the evolution of the attacker families and found the parameter combi-

nations that led to the LRD property. Our case study showed that two sets of parameters are

sufficient to provide a comprehensive analysis of cyber attack reconnaissance behaviors.

• At the microscopic level, we proposed a novel abstraction for characterizing cyber attack

reconnaissance trajectories. For our case study, we used two datasets.

5.2 Future Work

The present dissertation represents the first step towards ultimately tackling a problem of funda-

mental importance. Open problems are abundant, such as:

• How many levels of abstractions are necessary and sufficient for obtaining a holistic under-

standing of cyber attack reconnaissance behaviors?

• What are the properties or factors that determine the number of levels of abstractions for

obtaining a holistic understanding of cyber attack reconnaissance behaviors?
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• For a given level of abstraction, how many parameter combinations are necessary and suffi-

cient for obtaining a comprehensive cyber attack reconnaissance behaviors?

• For a given level of abstraction, what are the properties or factors that determine the number

of parameter combinations that are are necessary and sufficient for obtaining a comprehen-

sive cyber attack reconnaissance behaviors?

• What cyber attacker information can or cannot be derived from cyber attack reconnaissance

behaviors given that reconnaissance behaviors do not contain attack payload?
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