
ROLE BASED ACCESS CONTROL FOR SOFTWARE DEFINED NETWORKING:

FORMAL MODELS AND IMPLEMENTATION

by

ABDULLAH AL-ALAJ, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Ravi Sandhu, Ph.D., Co-Chair

Ram Krishnan, Ph.D., Co-Chair
Palden Lama, Ph.D.

Gregory White, Ph.D.
Weining Zhang, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
August 2020

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Published by ProQuest LLC (

 ProQuest

). Copyright of the Dissertation is held by the Author.

All Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

28091185

28091185

2020

Copyright 2020 Abdullah Al-Alaj
All rights reserved.

DEDICATION

This dissertation is affectionately dedicated to my mother, Nofa Alsheiab, for being a woman like
no other. It is also dedicated to my wife, Aminah Altaani, and our sons, Ammar and Ghaith. I am
blessed to have a family like this.

ACKNOWLEDGEMENTS

My passion in the research domain of security in Software Defined Networking (SDN), access

control in particular, led my way to the doctoral program at the University of Texas at San Antonio

(UTSA), where my advisors furthered my understanding of the field, helped me establish my goals

as a researcher, equipped me with various research tools, and opened a door for me to the scientific

research world.

Foremost, I would like to express my sincere gratitude to my advisors, Prof. Ravi Sandhu and

Dr. Ram Krishnan, for the continuous support of my Ph.D. study and research, for their patience,

motivation, enthusiasm, and immense knowledge. Their guidance helped me in all the time of

research and writing of this dissertation.

I would like to thank my dissertation committee: Dr. Palden Lama, Prof. Gregory B. White, Dr.

Xiaoyin Wang (in Proposal), and Dr. Weining Zhang for their valuable observations and insightful

comments.

My sincere thanks also goes to members of the Institute for Cyber Security (ICS), UTSA,

Farhan Patwa and James Benson for their help and time at the beginning of my research journey.

Also, I would like to thank Suzanne Tanaka and Susan Allen from the ICS and the CS department

for their assistance during my Ph.D. journey.

I also thank all my fellow labmates in the ICS for the stimulating discussions we have had and

continuous support.

Also, I would like to thank my mother, wife, sisters, brothers, friends, and every wonderful

person in my life.

iv

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance
with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-
toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters
Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements
explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-
sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a
full introduction and literature review, and a final overall conclusion. Additional material (proce-
dural and design data as well as descriptions of equipment) must be provided in sufficient detail to
allow a clear and precise judgment to be made of the importance and originality of the research
reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include
as chapters authentic copies of papers already published, provided these meet type size, margin,
and legibility requirements. In such cases, connecting texts, which provide logical bridges between
different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the
student is required to make an explicit statement in the introductory material to that manuscript
describing the students contribution to the work and acknowledging the contribution of the other
author(s). The signatures of the Supervising Committee which precede all other material in the
Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

August 2020

v

ROLE BASED ACCESS CONTROL FOR SOFTWARE DEFINED NETWORKING:

FORMAL MODELS AND IMPLEMENTATION

Abdullah Al-Alaj, Ph.D.
The University of Texas at San Antonio, 2020

Supervising Professors: Ravi Sandhu, Ph.D. and Ram Krishnan, Ph.D.

The architecture of Software Defined Networking (SDN) provides the flexibility in developing

innovative networking applications for managing and analyzing the network from a centralized

controller. Since these applications directly and dynamically access critical network resources,

any privilege abuse from controller applications could lead to various attacks impacting the en-

tire network domain. It is believed that SDN can, in time, prove to be one of the most impactful

technologies to drive a variety of innovations in network technology. However, the security com-

munity is relatively slow in embracing SDN. As a result, the security concern is ranked one of the

top issues that slow full adoption of this technology.

When network applications submit an operation to manipulate network state or request state

information, the controller should employ methods to identify unauthorized access requests sub-

mitted by applications. Access control is a natural solution for preventing unauthorized operations

and avoid insecure access to network resources. However, at present there is no widely accepted

authorization system for applications for SDN. One reason for lack of such system is the absence

of clear definition of an access control model for SDN Applications.

We believe the reason why the security community is slow in embracing access control in

SDN is mainly because proper access control solutions and use cases are currently not sufficiently

exposed to them yet. A deeper understanding of access control in SDN technology will help

security researchers produce new, better, and effective solutions.

In this dissertation, we show our steps towards developing effective operational and administra-

tive role-based access control models for SDN. In an attempt to understand and develop effective

authorization solutions for SDN, we first formalize an access control system pertaining to an au-

vi

thorization system from literature called security-enhanced Floodlight.

Second, we propose a role based access control model for SDN controller apps, we called SDN-

RBAC, complaint with generally accepted academic concepts of RBAC. We implement SDN-

RBAC model with multi-session support in Floodlight controller and use hooking techniques to

enforce the security policy without any change to the code of the controller. The implementation

verifies the model’s usability and effectiveness against unauthorized access requests by controller

applications and shows how the framework can identify application sessions and reject unautho-

rized operations in real time.

Third, to cater for the need to a more granular access control and the need for applying min-

imum privileges on applications, we propose ParaSDN, an enhanced model that provides a fine

grained access control using the concept of parameterized roles and permissions. To demonstrate

the applicability and feasibility of our proposed model, we configured proof of concept use cases

and implemented a prototype in the controller.

Finally, we introduce a concept of proxy and custom operations to extend the capabilities of

SDN controller, and provide fine grained custom permissions specialized for the administration

of SDN access control. With these extended features, we present SDN-RBACa, an administrative

model to manage access control actions that define network app authorizations. Through proof

of concept use cases and implementation, we demonstrate the usability of proxy operations and

custom permissions and show how they enable and facilitate the administration of access control

in SDN.

vii

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xii

List of Figures . xiv

Chapter 1: Introduction . 1

1.1 Main Features Provided by SDN . 2

1.2 Motivation . 3

1.3 Problem Statement . 4

1.4 Thesis Statement . 4

1.5 Scope and Assumption . 4

1.6 Summary of Contributions . 5

1.7 Organization of the Dissertation . 6

Chapter 2: Background and Literature Review . 8

2.1 Overview of SDN Architecture . 8

2.2 The Need for Access Control for SDN Apps . 8

2.3 SDN Planes and Security Perspectives . 10

2.3.1 Control Plane . 10

2.3.2 Application Plane . 10

2.3.3 Data Plane . 11

2.4 Access Control for SDN apps: Literature Review 11

2.4.1 Capability based Approaches . 11

2.4.2 Role-based Approaches . 13

viii

2.5 Access Control Model for SE-Floodlight Controller 14

2.5.1 Overview . 14

2.5.2 Authorization Framework of SE-Floodlight Controller 16

2.5.3 Formalized SE-Floodlight Access Control Model 17

2.5.4 Use Case Scenario . 22

2.5.5 Discussion and Proposed Extensions . 24

Chapter 3: Enabling Role-based Access Control for SDN Applications 28

3.1 Motivation and Background . 28

3.2 The SDN-RBAC Model . 29

3.2.1 Formal Model . 29

3.2.2 System Functions Specifications . 33

3.3 Session Handling Approaches . 34

3.3.1 Developer-driven Session Handling . 35

3.3.2 System-driven Session Handling . 35

3.3.3 Smart Sessions . 36

3.3.4 Master-Slave Sessions . 37

3.4 Use Case Scenario: A Multi-session App . 38

3.5 Framework Implementation . 40

3.6 Performance Evaluation . 43

Chapter 4: Fine Grained Role Based Access Control for SDN Enhanced with Parameter-

ized Roles and Permissions . 45

4.1 Motivation . 45

4.2 ParaSDN Components Overview . 47

4.2.1 Parameters . 47

4.2.2 Parameterized Permissions . 48

4.2.3 Parameterized Roles . 49

ix

4.2.4 Parameter Value Assignment . 50

4.2.5 Parameter Verification . 50

4.3 ParaSDN Conceptual Model and Definition . 51

4.4 App and Permission Assignment . 55

4.5 Framework Architecture and Parameter Engine Components 56

4.6 Parameter Categories for SDN . 58

4.7 Proof of Concept Use Case . 60

4.8 Implementation and Evaluation . 64

Chapter 5: A Model for the Administration of Access Control in SDN using Custom

Permissions . 68

5.1 Motivation and Scope . 68

5.2 Administrative Units in SDN . 69

5.3 Custom and Proxy Operations . 71

5.4 Custom Permissions . 72

5.5 SDN-RBACa Model . 73

5.5.1 Introducing Tasks . 74

5.5.2 SDN-RBACa Operational Model . 74

5.5.3 SDN-RBACa Administrative Model . 76

5.6 Task and Role Engineering for SDN using Custom Permissions 77

5.6.1 Tasks and Roles with Custom Permission 78

5.6.2 Custom Permissions with ‘Flow Mod’ Role 79

5.7 Proof of Concept Use Cases . 80

5.7.1 Basic Use Case - Web Admin Unit . 80

5.7.2 Extended Use Case . 83

5.8 Implementation . 85

5.9 Performance Evaluation . 86

x

Chapter 6: Conclusion and Future Work . 89

6.1 Summary . 89

6.2 Future Work . 90

Appendix A: Extended Use Case Configuration . 92

Bibliography . 97

Vita

xi

LIST OF TABLES

Table 2.1 Types of data exchange operations along with the minimum authorization

role [42]. 15

Table 2.2 SE-Floodlight Authorization Model Definitions without Flow Rule Con-

flict Resolution. 19

Table 2.3 SE-Floodlight Authorization Model Definitions with Flow Rule Conflict

Resolution. 20

Table 2.4 Administrative Model for SE-Floodlight. 21

Table 2.5 Configuration of the Formal Access Control Model defined in Table 2.2 for

the Use Case Scenario in Section 2.5.4. 22

Table 3.1 Formal Definitions of SDN-RBAC. 31

Table 3.2 Specifications of system functions. 32

Table 3.3 Roles assigned to DataUsageCapMngr app and other selected roles from

SDN-RBAC. 38

Table 3.4 The LOF caption . 39

Table 4.1 ParaSDN Formal Model Definition. 52

Table 4.2 Parameter Checking Functions. 53

Table 4.3 Language LVerify to form verifiers. 54

Table 4.4 App authorization function. 54

Table 4.5 Formal specification of assignApp(a, pr, valset) and assignPPerm(pp, pr)

administrative functions. 56

Table 4.6 Examples for Flow-driven Parameters for SDN. 58

Table 4.7 Configuration of the proof of concept use case of section 4.7 in ParaSDN

(Part 1). 61

xii

Table 4.8 Configuration of the proof of concept use case of section 4.7 in ParaSDN

(Part 2). 62

Table 4.9 Configuration of parameter engine functions for use case of section 4.7

(Part 3). 63

Table 5.1 Formal Definition of SDN-RBACa Administrative Model. 75

Table 5.2 Configuration of the administrative model for the use case in Section 5.7.1

- Part1. 81

Table 5.3 Configuration of the administrative model for the use case in Section 5.7.1

- Part2. 82

Table 5.4 Examples of Administrative User Authorization Functions corresponding

to some Administrative Actions. Examples belong to extended use case in

Section 5.7.2 . 84

Table 5.5 Administrative user assignment relation for use case in Section 5.7.2 84

Table A.1 Complete use case configuration of SDN-RBACa for two administrative

units - part1. 92

Table A.2 Complete use case configuration of SDN-RBACa for two administrative

units - part2. 93

Table A.3 Complete use case configuration of SDN-RBACa for two administrative

units - part3. 94

Table A.4 Complete use case configuration of SDN-RBACa for two administrative

units - part4. 95

Table A.5 Complete use case configuration of SDN-RBACa for two administrative

units - part5. 96

xiii

LIST OF FIGURES

Figure 2.1 General Overview of SDN Architecture. 9

Figure 2.2 The LOF caption . 17

Figure 2.3 Proposed Role Hierarchy. 24

Figure 3.1 Conceptual SDN-RBAC Model. 30

Figure 3.2 Multi-session apps and methods for inter-session interaction. (a) App with

atomic sessions. (b) Two sessions access shared data. (c) Conditional ses-

sion creation. (d) Interaction via inter-session interaction APIs. (e) Active

role set sent from master session to slave sessions. 37

Figure 3.3 Overview of SDN-RBAC architecture. 41

Figure 3.4 Snapshot of authorization check result for getAllLinks() operation requested

by DataUsageAnalysisSession - Access Denied. 42

Figure 3.5 Snapshot of authorization check result for getBandwidthConsumption() op-

eration requested by DataUsageAnalysisSession - Access Granted. . . . 42

Figure 3.6 Average execution time required to finish the tested operations, including

and excluding SDN-RBAC. 43

Figure 4.1 ParaSDN Conceptual Model. 48

Figure 4.2 Parameter values assigned via assignApp administrative action propagate

automatically from role parameters to permission parameters. 51

Figure 4.3 General Overview of the ParSDN system components and Architecture . . 57

Figure 4.4 Topology for proof of concept use case in section 4.7. 60

Figure 4.5 Average execution time required to finish the tested operations. 65

Figure 4.6 Average authorization time required to finish the tested operations includ-

ing error bars. 65

xiv

Figure 4.7 Overhead imposed by parameters in ParaSDN compared to SDN-RBAC

system. 66

Figure 4.8 Overhead imposed by parameters in ParaSDN compared to SDN-RBAC

system including error bars. 67

Figure 5.1 Target, custom, and proxy operations. 71

Figure 5.2 Example of custom and proxy operations for the target operation addFlow . 73

Figure 5.3 Conceptual model of SDN-RBACa. 74

Figure 5.4 Conceptual representation of associations between custom permissions, tasks,

roles, and apps. 78

Figure 5.5 Example of creating three roles using custom permissions and their associ-

ations with tasks and apps. 79

Figure 5.6 ‘Web Admin Unit’ and ‘VoIP Admin Unit’ (gray) along with tasks, roles,

and app pools they exclusively manage. The figure also shows apps that

admin units can manage via app-pools. 83

Figure 5.7 Screenshot of authorization check result for addWefFlow proxy operation

requested by WebTestApp - Access denied because of incorrect tcp_port

number. 85

Figure 5.8 Average authorization time in SDN-RBAC and SDN-RBACa Operational

Model. 86

Figure 5.9 Average authorization time along with the standard deviation in SDN-RBAC

and SDN-RBACa Operational Model. 87

xv

CHAPTER 1: INTRODUCTION

Software Defined Networking (SDN) has become one of the most important network architectures

for simplifying network management and enabling innovation through network programmability.

Thereby, SDN promises to provide the scale and versatility necessary for different fields including

data centers, Internet of Things (IoT) [12], cloud computing and virtualization [29]. SDN gets

more popularity due to the flexibility in developing controller applications (apps) for extending the

capabilities of the SDN controller.

The emergence of the SDN paradigm has changed the way networks are built and managed.

Although SDN was born in academia [13,14,34], its movement is driven by the successful adoption

by researchers and industry. For example, Google has been at the forefront of companies who have

taken advantages of SDN [30]. In 2011 leading companies including Google, Facebook, Microsoft,

Yahoo and Verizon founded Open Networking Foundation (ONF) for accelerating research in SDN

[51]. With increasing adoption and research, gradual deployment of SDN is anticipated to grow in

the near future.

At the core of SDN is decoupling the control logic of the network (control plane) from the for-

warding hardware (data plane). This promises to facilitate network programmability via providing

an abstract view to the network infrastructure in order to develop specialized networking appli-

cations (application plane). The control plane, and the so-called controller, works as a network

operating system (NOS) and thus is responsible for controlling and managing the whole network

through a holistic visibility across the network resources.

SDN controllers act as the interaction point between network applications and the network

infrastructure. They provide an application programming interface (Northbound API) such that

applications implemented on top of the controller perform the actual network management [15,

22, 24, 35, 40]. On the other hand, the underlying communication between the controller and the

switch is performed using the OpenFlow protocol [34] (Southbound API) standardized by the Open

Networking Foundation (ONF) [23].

1

When network applications submit an operation to manipulate network state or request state

information, the controller should employ methods to identify unauthorized access submitted by

applications. Preventing unauthorized operations will avoid insecure access to network resources

and protect against network misconfiguration so as to ensure correct functioning of the network

entities. Therefore, it is vital that all controller solutions inherently embrace access control systems

to circumvent unauthorized manipulation of network logic.

1.1 Main Features Provided by SDN

The benefits provided by SDN architecture are mainly driven by three main features: (i) dynamic

flow control, (ii) logically centralized control with a network-wide visibility, and (iii) network pro-

grammability.

Dynamic Flow Control: One of the basic features of SDN is that network apps can dynamically

control network behavior by installing traffic forwarding rules into OpenFlow enabled switches [5].

Several network applications can benefit from this capability, such as dynamic load balancing [53].

Logically Centralized Control with a Network-Wide Visibility: SDN provides the opportunity

of holistic visibility across all network devices in the network infrastructure, i.e., the data plane.

All devices in the data plane are connected to a central controller, or a so-called logically central-

ized controller, which receive control messages from applications (e.g., flow statistics collection,

flow rule insertion, etc.). The controller collects network status information by frequently querying

the data plane devices via openFlow messages and making the results available to network apps.

A network app thus has a central view to all data plane devices, given that an app is authorized

to access such information. Such network-wide capability is required by many applications, for

example network monitoring applications [8] and network management applications [31].

Network Programmability: Since SDN controller provides capability for data plane devices to

be controlled by applications and provides the later with real time network status information, this

opens the scope for extending the controller’s capabilities with new intelligent network function-

alities, just like programming a smartphone app (e.g., Android) [27].

2

1.2 Motivation

Although the programmability aspect of SDN simplifies network management and enables innova-

tion in communication networks via network APIs, it is one of the features that makes SDN more

vulnerable to malicious code exploits and attacks. This is because the abstractions of the underlay-

ing data plane resources and flows provided by the controller can be easily used for exploitations,

cyber-attacks, and, most dangerously, reprogramming the entire network.

Network applications dynamically access network resources via generating network operations

like flow rule insertion, network state inquiry, port configuration, etc. These operations are received

by the controller which submits them to OpenFlow switches. OpenFlow switches, as a dummy

forwarding device, has no means to verify application operations and so absolutely trust them and

operate accordingly.

Verifying application operations sent to the data plane is an absolute prerequisite for maintain-

ing a consistent network security policy which is the responsibility of the controller. However,

current SDN controllers do not implement methods for controlling application’s access rights on

the infrastructure. This allows buggy or malicious applications to run arbitrary commands which

makes SDN network vulnerable to various attacks from application plane. Therefore SDN OS

requires an effective authorization mechanisms to ensure secure network operations [19].

The application plane within a single network might consist of a wide range of network apps

for network management. These apps send OpenFlow messages and request access the data plane

resources. As a request mediator, the controller is one of the most critical yet vulnerable component

in the network. Typically, people assume absolute trust in the security of control plane which make

it even more vulnerable to attacks.

SDN apps that are residing in the SDN controller and written in the same language of the con-

troller are of a major security concern. This is because they are compiled as part of the controller

and have direct access to various controller native classes, their methods and data. Intuitively, the

more permissions available to an app the more resources accessible through these permissions,

the more exposure to network attack surface. As a result, applying the principle of least privilege

3

is vital in access control for SDN apps, especially with the fact that such app may be malicious,

buggy, or having logic flaws. Without these measures, there is an increased danger that an app

may be granted more access to resources than minimum because of missing or poor control by the

controller.

Access control is a native solution for restricting unauthorized access to system resources and

for a secure data exchange among entities in computer systems. Many access control models have

been proposed and few of them have received practical deployment [28, 45–47]. Notably, among

these models, role-based access control (RBAC) [20, 46] has received considerable attention from

businesses, academia, and standard bodies due to many features including its flexibility in support-

ing various access control policies and in simplifying access control administration. Because the

motivation behind SDN architecture is to simplify network management, and because the motiva-

tion behind RBAC is to simplify the task of access control policy setup and administration, it is

very practical to adopt RBAC for SDN.

1.3 Problem Statement

Current Software Defined Networking technology is lacking access control models and enforce-

ment for protecting network resources residing in the SDN controller from unauthorized access by

OpenFlow applications.

1.4 Thesis Statement

Role-based access control model and its extensions comprise an effective approach for the specifi-

cation and administration of dynamic access control for Software Defined Networking

1.5 Scope and Assumption

The scope of this dissertation is to develop foundational aspects of access control for SDN appli-

cations and its administration. Some of the assumptions taken during this work, and its limitations,

are as follows.

4

• The foundation of access control models for SDN applications will be based on the current

SDN architecture supported by Open Networking Foundation (ONF).

• In our implementation of access control models in Floodlight (Java based), we use the app’s

fully-qualified name (e.g., net.floodlightcontroller.datacapmngr.DataCapMngr) as an app ID.

The fully-qualified name of an app is composed of the full package name followed by the

app’s class name. We assume this ID is trusted and authenticated.

• We confine our attention to network resources accessed by different OpenFlow applications

and managed by a single controller. Other issues in the context of multiple controllers are

planned to be pursued in a future work.

• We consider that all network devices are connected only via OpenFlow enabled switches.

• SDN-RBACa model for access control administration assumes that administrative users are

enabled for SDN controllers. How to implement and authenticate administrative users in

SDN environment is out of scope of this dissertation.

• Several SDN controllers are available but this dissertation primary focuses on Floodlight

platform which is one of the widely used platforms for SDN academic research.

1.6 Summary of Contributions

The central contributions of this dissertation are as follows:

• We have developed and implemented a foundational role-based access control model (SDN-

RBAC) for SDN applications. We have identified different approaches in which the system

can handle application sessions in order to reduce exposure to the network attack surface in

case of application being compromised, buggy, or malicious. Through proof-of-concept pro-

totype, we have implemented our model with multi-session support in Floodlight controller

and used hooking techniques to enforce the security policy without any change to the code

of the Floodlight framework. We verified the model’s usability and effectiveness against

5

unauthorized access requests by controller applications and showed how the framework can

identify application sessions and reject unauthorized operations in real time.

• We have developed ParaSDN, an access access control model to allow system administrators

to specify granular access controls for SDN applications using the concept of parameterized

roles and permissions. A proof of concept prototype has been implemented in an SDN con-

troller to demonstrate the applicability and feasibility of our proposed model by enhancing

access control granularity for SDN with support of role and permission parameters.

• We have introduced an approach for creating custom SDN operations to extend the capabili-

ties of SDN services and provide fine grained custom permissions specialized for the admin-

istration of access control in SDN. These custom SDN operations are introduced to enable

the creation of administrative units necessary for access control administration. Through

proof of concept prototype and use cases, we demonstrate the usability of custom permis-

sions and show how they facilitate the administration of access control in SDNs.

• We have presented SDN-RBACa, an administrative model to manage the access control

actions that define network app authorizations.

1.7 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 covers background and literature

review. It provides an overview of the SDN architecture and its need for access control. We then

discuss the literature of access control for SDN and present a formal access control model we have

developed and published [4] as an initial effort towards understanding access control for SDN.

Chapter 3 presents SDN-RBAC, a foundational model to enable role-based access control model

for SDN applications. It discusses different approaches for handling sessions and discusses a use

case, framework implementation and performance evaluation. We also show model’s usability

and effectiveness in a controller framework. The model has been published in [3]. In Chapter 4,

we propose ParaSDN, an access control model to allow system administrators to specify granular

6

access controls for SDN applications using the concept of parameterized roles and permissions.

Through a proof of concept prototype in an SDN controller, we demonstrate the applicability and

feasibility of our proposed model in enhancing access control granularity for SDN with support

of role and permission parameters. The model has been submitted for publication. Chapter 5

presents SDN-RBACa, an administrative model to manage the access control actions that define

network app authorizations. The chapter also discusses an approach to extend the capabilities of

SDN controller via creating custom SDN operations to enable the creation of custom permission

necessary for the administration of access control in SDN. We also demonstrate the usability of

custom permissions and show how they enable and facilitate the administration of access control

in SDN. The work in this chapter has been submitted for publication. Chapter 6 concludes the

dissertation and give a discussion about the future work.

7

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

In this chapter, we provide an overview of the three-layered SDN architecture and discuss the

literature of access control in SDN.

2.1 Overview of SDN Architecture

Software defined networking (SDN) decouples the network control and data planes. The network

intelligence and state are logically centralized and the underlying network infrastructure is ab-

stracted from applications. SDN enhances network security by means of global visibility of the

network state where a conflict can be easily resolved from the logically centralized control plane.

Hence, the SDN architecture empowers networks to actively monitor traffic and diagnose threats

to facilitate network forensics, security policy alteration, and security service insertion. The sepa-

ration of the control and data planes, however, opens many security challenges. Figure 2.1 shows

the general architecture of SDN.

2.2 The Need for Access Control for SDN Apps

SDN has two principal properties which make the foundation of networking innovation on one

hand, and the basis of security challenges on the other. First, the ability to control a network by

software, and second, centralization of network intelligence in network controllers. Since most

of the network functions can be implemented as SDN applications, malicious applications if not

stopped early enough, can spread havoc across a network.

Applications can pose serious security threats to network resources, services and functions.

In SDN, applications running on the controller implement a majority of the functionalities of the

control plane and are typically developed by other parties than the controller vendors. These ap-

plications inherit the privileges of access to network resources, and network behavior manipula-

tion mostly without proper security mechanisms for protecting network resources from malicious

activities. Hence, authentication and authorization of the increasing number of applications in

8

Figure 2.1: General Overview of SDN Architecture.

programmable networks with centralized control architecture is a major security challenge.

Today there are no existing authorization mechanisms to establish a trust relationship between

the controller and applications in SDNs. Hence, a malicious application can potentially create

havoc in the network since the SDN controllers provide abstractions that are translated to configu-

ration commands for the underlying infrastructure by applications. Since applications implement

most of the network services in SDN, proper access control is needed to ensure the security of a

network.

9

2.3 SDN Planes and Security Perspectives

2.3.1 Control Plane

Because the control plane (e.g., Floodlight controller) is a centralized decision-making entity, it can

be highly targeted for compromising the network or carrying out malicious activities in the network

due to its pivotal role. One of the main security challenges and threats existing in the control plane

is threats from applications which requires building access control systems to prevent unauthorized

access to network resources.

Applications implemented on top of the control plane can pose serious security threats to the

control plane. Generally, the controller security is a challenge from the perspectives of controller

capability to authenticate applications and authorize resources used by applications with proper

isolation, auditing, and tracking.

2.3.2 Application Plane

The network applications dictate the behavior of the forwarding devices. The applications submit

high-level policies to the control plane, which is responsible for enforcing these policies by imple-

menting them as flow rules on network forwarding devices. An SDN application plane consists of

one or more network applications (e.g. security, visualization etc.) that interact with controller(s)

to utilize abstract view of the network for their internal decision making processes.

Many different SDN applications have already been developed, and the the current focus is

to have an App Store support for SDNs [62], where customers can dynamically download and

install network apps. Most SDN applications fall into one of the following five categories: traffic

engineering, mobility and wireless, measurement and monitoring, security and dependability, and

data center networking.

10

2.3.3 Data Plane

The data plane is composed of networking equipments such as switches specialized in packet for-

warding. However, unlike traditional networks, these are just simple forwarding elements with no

embedded intelligence to take decisions. These devices communicate through standard OpenFlow

interface with the controller. An OpenFlow enabled forwarding device has a forwarding table,

which has three parts: 1) Rule matching; 2) Actions to be executed for matching packets; and

3) Counters for matching packet statistics. The rule matching fields include Switch port, Source

MAC, Destination MAC, Ethernet Type, VLAN ID, Source IP, Destination IP, TCP Source Port,

TCP Destination Port. A flow rule may be defined a combination of these fields.

Because network applications dictate the behavior of the forwarding devices in the data plane,

network devices in the data plane need to be secured from unauthorized access by apps because

flow rules inserted by apps reflect the network security policy.

2.4 Access Control for SDN apps: Literature Review

A number of security issues have been identified concerning SDN applications [2, 18, 19, 32] with

specific issues related to application authorization. Several approaches have been proposed to

protect the SDN resources from unauthorized access by network applications and limit access

rights of applications to SDN resources. We classify the application authorization into two main

categories. Firstly, permission-based application authorization which includes techniques wherein

application authorization is driven by assigning a permission set to applications. Secondly, role-

based application authorization in which application authorization is driven by assigning a role to

applications.

2.4.1 Capability based Approaches

The problem of granting network applications the full access to network resources without pro-

tection is identified in pemrOF [54]. The authors proposed a permission system to network appli-

cations. PermOF proposed a set of different permissions for apps to interact with the underlying

11

network, which are then checked and enforced at the API entry. The system’s goal is to apply min-

imum privilege to the applications for protecting the network from attacks caused by unauthorized

access.

OperationCheckPoint [48] is motivated by the consideration that applications should not be

granted complete privilege of network access. The authors adopted the concept of PermOF and

they, in a manner similar to that of the Android permissions system, defined a permission set

to which the application must subscribe on initialization. Also, they implemented the system in

Floodlight controller with a component for permission checking before authorizing application

commands. OperationCheckpoint maps a unique application ID to the set of permissions granted

to that application. Network administrator can use this ID to add or remove permissions to ap-

plications with an ability for applications to query the controller and discover their assigned per-

missions. For securing and hardening the methods of Floodlight, OperationCheckpoint needs to

scan all related functions (java methods) in Floodlight source code and modify the function if it

performs an operation related to each of the permissions in the permission set.

Also, inspired by Android permission system, [36] proposed a permission system based on

OF messages’ states. The permission system has five states for each of the permissions. The

state is used as the unit to which the permission details can be applied. They proposed two main

permission sets in the permission policy of SDN applications: OpenFlow message permission set

and OS resource permission set. The permission sets of the network application can be structured

in a format similar to XML. When an application tries to perform an action, a wrapper function

verifies whether the action is allowed, based on the permission policy of the application.

Banse et al [9] proposed a permission system which allows for authorization and access control

for network resources. In their design, network resources managed by a controller must not be

accessible by applications that do not possess the appropriate permission. This registration process

needs to incorporate an identification of the application as well as the negotiation of access control

mechanisms, such as permissions. The system provides a registration service which applications

can use to register themselves. The registration service includes application identification as well

12

as a permission set negotiation process. Before authorizing access requests, a check against the set

of allowed permissions is performed.

The authors in [39] introduced a security framework called AEGIS to prevent malicious net-

work applications from misusing controller APIs. In their system, security access rules are defined

based on the relationships between applications and data in the SDN controller. For performing

a permission check, the usage of each API call is verified in real time using these security access

rules. The system uses API hooking to intercept the execution flow of network applications and

protect the controller from malicious applications.

In all the aforementioned approaches, there is a direct relation between network operations

and applications which complicates the management of the permission system which is of a major

consideration in access control.

2.4.2 Role-based Approaches

Prior to SE-Floodlight controller, as a solution to the problem of malicious applications, Porras

et al proposed FortNOX [41], a more basic version of SE-Floodlight implementation on the NOX

controller. Similarly, FortNOX implements role-based authorization for determining the security

authorization of each OpenFlow application with three roles. SE-FloodLight [42] is an extension

and improvement of the FortNOX system.

SM-ONOS [56] proposed a permission system at four-level granularity. First, code packages

are classified as either app or non-app OSGi bundles. Next, app bundles are assigned either admin

or user role with the appropriate permissions. Non-administrative API-permissions then granted

to apps followed by network-level permissions. Based on API-level permissions from SM-ONOS,

[50] proposed information flow control among apps for the ONOS controller.

Tseng et al [49] proposed Controller DAC to prevent SDN controllers from API abuse. Con-

troller DAC has a policy engine which predefines an APIs request thresholds for each OpenFlow

app and their permission scope. They also predefined a priority for each app either individually

or via the API-role. By referring to [41, 42], Controller DAC proposes three API-roles Admin,

13

Security, and DEFAULT with different priorities representing different authority levels.

None of the previous works comply with the standard RBAC model and none of them describe

the concept of sessions for SDN apps. However, in our work we describe different approaches for

handling and deploying sessions in the context of standard role-based access control. Besides, we

propose a fine-grained role based access control for SDN using parameterized roles and permis-

sions.

Because SDN’s motivation is to simplify network management, and because RBAC’s motiva-

tion is to simplify administration of authorizations, it is very important to think about the adminis-

tration of access control in SDN. In this regard, several administrative models have been proposed

in the literature for RBAC administration [16, 17, 33, 37, 43, 44, 52]. To the best of our knowledge,

this dissertation discusses administration of access control in SDN for the first time in literature.

2.5 Access Control Model for SE-Floodlight Controller

2.5.1 Overview

One of the inherent features of SDN is to enable the communication between OpenFlow appli-

cations and network devices in the data plane. This interaction should be coordinated by SDN

controllers to control access to different network resources and enforce security policies in the data

plane. SDN controllers provides this mediation to manage how OpenFlow applications deploy

network functionalities and manipulate the network behavior.

The application plane within a single network may consist of multiple applications that send

OF messages to access the data plane for flow rules installation, network device configuration, and

inquiring about network state information. Application co-existence calls attention to two main

SDN network security issues. First, it emphasizes the need for an authorization mechanism for

managing application permissions to issue various network operations. Second, it points out the

need for resolving the conflicts that may arise among various application commands.

To address these issues, in this section we present a formal access control model we have devel-

oped as an initial effort towards understanding and designing an effective access control for SDN.

14

Table 2.1: Types of data exchange operations along with the minimum authorization role [42].

The formal model is designed based on SE-Floodlight authorization framework as a reference.

This formal model and discussions on associated security aspects along with proposed solutions

for security flaws has been published in the following venue [4].

• Abdullah Al-Alaj, Ravi Sandhu, and Ram Krishnan. A Formal Access Control Model for

SE-Floodlight Controller. In Proceedings of the ACM International Workshop on Security

in Software Defined Networks & Network Function Virtualization, pages 1-6. ACM, 2019.

Although SE-Floodlight authorization system does not adopt RBAC sessions, it adopts the con-

cept of role hierarchy, inheritance relation between roles which, compared to other authorization

systems [49, 50, 56], make it the reference for our initial work for formalizing and analyzing apps

authorization in SDN.

15

2.5.2 Authorization Framework of SE-Floodlight Controller

Prior studies have addressed access rights of SDN apps to protect against insecure access to data

plane resources [41]. SE-Floodlight [21, 42] is a security extension for Floodlight in which Porras

et al informally proposed Role-based access control (RBAC) to enforce the security policy on the

data exchange operations between network apps and the forwarding switches in addition to flow

rule conflict resolution strategy driven by roles.

The SE-Floodlight authorization system aims to control access to all OpenFlow messages ex-

changed between apps and the data plane. Each data exchange operation is abstracted using an

OpenFlow operation type. For example, operations like insertion, deletion, and update of a flow

rule are all of type ‘Flow rule mod’. In SE-Floodlight, types of data exchange operations are

assigned to roles and then roles are assigned to apps.

The authorization system identifies three authorization roles, namely, ADMIN, SEC, and APP

with a total order role hierarchy. For instance, apps in SEC role indirectly have permission to

receive packet-in notifications which is originally assigned to the lower role APP. This is analogous

to role inheritance relation in RBAC model [20, 46].

Table 2.1 identifies the types of data exchange operation types that alternate between apps and

OpenFlow switches along with the minimum role that must be assigned to an app to perform an

operation of that type. The table also shows, for each operation type, the corresponding OpenFlow

message type required to carry the operation.

With app co-existence, an app may insert a flow rule that causes a conflict with another pre-

existing flow rule in the switch. For resolving conflicts, SE-Floodlight associates each role with

a priority limit that represents the maximum priority value that can be assigned to flow rules pro-

duced by apps of this role. Flow rules produced by an app of a specific role have higher precedence

than rules produced by apps in a lower role. An app also uses this value to prioritize its own set of

flow rules within the sub-range of priorities corresponding to its role.

16

Figure 2.2: SE-Floodlight conceptual authorization model 1.

2.5.3 Formalized SE-Floodlight Access Control Model

In this section we formalize the authorization model of SE-Floodlight [42] and describe its com-

ponents.

Overview

The basic components of SE-Floodlight authorization model include: Apps (A), Roles (R), Data

Exchange Operations (DXOP), and types of DXOPs. We also discuss the credential entity which is

implicitly included in the model. The model and the relations between the components are shown

in Figure 2.2, and discussed below.

Apps (A): This component represents the two types of OpenFlow applications. Firstly, remote

applications installed in a remote host and utilizes REST API calls to communicate with controller

and written in any appropriate programming language. Secondly, local applications installed in the

same process context as the controller and written using the programming language API that the

controller uses, which is java in SE-Floodlight case.

Roles (R): Roles in SE-Floodlight are used for two main purposes: application permission autho-

1Arrows denote binary relations with the single arrowhead indicating the one side and double arrowheads the many
side.

17

rization and role based conflict resolution. As an authorization component, a role is a ion of data

exchange operations which can be assigned to different OpenFlow applications. Three default roles

are implemented in a hierarchical authorization scheme, namely ADMIN, SEC and APP. Only one

role can be assigned to each application.

Data Exchange Operations (DXOP) and Operation types (T): These operations represent Open-

Flow messages exchanged between the dataplane and the apps. These operations belong to differ-

ent operation types. For example, flow table modification messages add, modify, modify_strict,

delete, and delete_strict are grouped under the type ‘Flow rule mod’, represented by the mes-

sage type OFPT_FLOW_MOD. Also, operations that query the system for statistical informa-

tion about flows, ports, tables, queues, etc, are all of type ‘Switch stats request’, represented by

OFPT_STATS_REQUEST message type. Table 2.1 summarizes all these data exchange operations

and their corresponding messages within an OpenFlow v1.0 stack.

Credentials: Credentials are used for both authorization and authentication. Each app is uniquely

identified by an administrator-assigned credential which also contains the authorization role as-

signed to the app. The credential is added to each message sent by the app. When a message is

submitted, the role embedded within the credentials is extracted to identify the app and its role.

Formal SE-Floodlight Access Control Model

For this model, we assume the SDN infrastructure has multiple switches controlled by a single

controller within the same slice. For simplicity and easier reference, we created a basic formal

model without flow rule conflict resolution in Table 2.2 and an extended model including the

conflict resolution in Table 2.3.

As shown from the definition in Table 2.2, an app can be assigned to only one role denoted

by AR relation. TR relation denotes that an operation type can be assigned to one role. The type

of each data exchange operation can be specified using type function. The Authorization Rule is

stated based on all the previously defined relations and functions considering the effect of role

inheritance.

18

Table 2.2: SE-Floodlight Authorization Model Definitions without Flow Rule Conflict Resolution.
- Basic Sets and Functions:

A: a finite set of OpenFlow apps.

T: a finite set of types of data exchange operations.

R = {ADMIN, SEC, APP}: a fixed set of three roles.

>: a total order on R where ADMIN > SEC and SEC > APP.

AR ⊆ A × R, a many-to-one relation, i.e., (a,r1)∈AR ∧ (a,r2)∈AR ⇒ r1 = r2, mapping each
app to one role.

TR ⊆T×R, a many-to-one relation, i.e., (t,r1)∈TR ∧ (t,r2)∈TR ⇒ r1 = r2, mapping each
operation type to one role.

DXOP: a set of possible data exchange operations where each operation op ∈DXOP contains a
flow rule and a priority if o = ′add flow rule′.

type: DXOP→ T, a function specifying the type of each operation. Equivalently viewed as a
many-to-one relation OT ⊆ DXOP × T , where (o,t1)∈OT ∧ (o,t2)∈OT ⇒ t1 = t2.

- Authorization Rule:

Authorization_rule: A × DXOP → {T, F}, checks whether a ∈ A has the right to perform an
operation o ∈ DXOP.

Authorization_rule (a : A, o : DXOP) ≡(∃r1, r2∈ R· (a, r1) ∈ AR∧ (type(o), r2) ∈ TR∧ r1 ≥
r2).

The authorization model is extended in Table 2.2 in which the rule conflict algorithm con-

tributes to authorizing ‘add flow rule’ operations. The function priorityLimit assigns a natural

number to each role. This number represents the maximum priority an app in this role can assign

to new flow rules submitted with ‘add flow rule’ operation. It is used to resolve conflicts between

different flow rules. Authorization_ruleop=′add alow rule′ checks, using the RCA function, whether

an app has the right to insert a new flow rule . Finally, Authorization_ruleop∈DXOP−′add flow rule′

checks whether an app has the right to perform all operations other than ‘add flow rule’ operations

that are not mediated by the RCA function.

It should be noted that if Authorization_ruleop=′add alow aule′ returns true, which means a suc-

cessful addition of new flow rule, then the access control model updates the set FT of the target

switch by adding the new flow rule and removing the conflicting rule, if any. This happens only

19

Table 2.3: SE-Floodlight Authorization Model Definitions with Flow Rule Conflict Resolution.
- Basic Sets and Functions:

All basic sets and functions from Table \ref{P01-tbl:SEFloodlightModelDefinitions}.

FR: a set of all possible flow rules where for each fri∈ FR there should be a priority.

priority_limit: R→ N, the mapping of role to the highest priority an app in r ∈ R may assign
to its flow rules, where priority_limit(ADMIN) > priority_limit(SEC) > priority_limit(APP).

S: Set of switches in the network slice.

FT: S→ 2FR, the set of flow rules currently in a switch’s flow table.

rule: DXOP→ FR, a function that returns the flow rule frc∈FR of an operation op ∈ DXOP
given that type(op) =′Flow Rule Mod′.

priority: FR→ N, the mapping of a flow rule frc∈FR to its priority.

RCA(frc: FR, prc:N, st:S)→ {Reject, Add, Exchange}, a function uses rule-based conflict
analysis described in [42] that returns the result of a request to add of new flow rule frc into
FT(st) submitted with priority prc. ‘Reject’, ‘Add’, or ‘Exchange’ indicates whether frc is,
rejected, added without removing pre-existing rules, or exchanged with a conflicting flow rule
fri ∈ FT (st), respectively.

- Authorization Rules:

Authorization_ruleop=′add flow rule′ : A ×S→ {T, F}, checks whether a ∈ A has the right to
insert a flow rule rule(op) into FT(st ∈ S).

Authorization_ruleop=′add flow rule′ (a : A, st:S) ≡
(∃r1, r2∈ R· (a, r1) ∈ AR ∧ (type(op), r2) ∈ TR ∧ r1 ≥ r2) ∧
(RCA(rule(op), priority(rule(op)), st)∈{Add,Exchange}).

Authorization_ruleop∈DXOP−′add flow rule′: A × S→ {T, F}, checks whether a ∈ A has the right
to perform a non-flow-rule-insertion operation.

Authorization_ruleop∈DXOP−′add flow rule′ (a : A, st:S) ≡
(∃r1, r2∈ R· (a, r1) ∈ AR ∧ (type(op), r2) ∈ TR ∧ r1 ≥ r2)

20

Table 2.4: Administrative Model for SE-Floodlight.
Function Condition Update
addApp(a) a/∈A A’=A∪{a}
deleteApp(a) a∈A∧(a,r)∈AR AR’=AR\{(a,r)}, A’=A\{a}
addType(t) t/∈T T’=T∪{t}
deleteType(t) t∈T∧(o,t)∈OT∧ (t,r)∈TR OT’ =OT\{∀(o,t)∈OT},

TR’=TR\{(t,r)},T’=T\{t}
addRole(r) r/∈R R’ = R ∪{r}
deleteRole(r) r∈R∧(a,r)∈AR∧ (t,r)∈TR AR’=AR\{∀(a,r)∈AR},

TR’=TR\{∀(t,r)∈TR},
R’=R\{r}

assignApp(a,r) a∈A∧r∈R∧(a,r)/∈AR AR’=AR ∪ {(r,a)}
revokeApp(a,r) a∈A∧r∈R∧(a,r)∈AR AR’=AR \ {(a,r)}
assignType(t,r) t∈T∧r∈R∧(t,r)/∈TR TR’=TR ∪ {(t,r)}
revokeType(t,r) t∈T∧r∈R∧(t,r)∈TR TR’=TR \ {(t,r)}
assignOp(o,t) o∈DXOP∧t∈T∧(o,t)/∈OT OT’=OT ∪{(o,t)}
revokeOp(o,t) o∈DXOP∧t∈T∧(o,t)∈OT OT’=OT \ {(o,t)}

if the result of rule conflict algorithm RCA returns ‘Add’ or ‘Exchange’. Also, the model registers

the flow rule priorities so that they can be used in future authorization decisions.

Administrative Model

Next we discuss the administrative model that is used for the creation and maintenance of the

system’s basic element sets, functions, and relations. It is assumed that all administrative functions

are performed by a network operator user with enough privileges. Table 2.4 formally specifies the

administration functions to manage the apps, roles, operations, and operation types. The second

column shows the condition required to perform the function and the third column shows the

corresponding updates to the authorization system.

As shown in Table 2.4, administration functions for managing registration and de-registration

of apps are addApp and deleteApp, respectively. Roles are created and removed from the system

using addRole and deleteRole functions. Types are created and removed from the system using

addType and deleteType functions. When a role is deleted, all assignment relations between the

deleted role and any app or operation type must be found and deleted from the system as shown in

21

Table 2.5: Configuration of the Formal Access Control Model defined in Table 2.2 for the Use
Case Scenario in Section 2.5.4.
A = {LS,LB,NIP, FW,OC},

R = {APP, SEC,ADMIN} with a total order > on R ,as defined in Table 2.2,

T = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15, t16, t17, t18}, as labled in Table 2.1,

AR = {(LS,APP), (LB,APP), (NIP, SEC), (FW,SEC), (OC,ADMIN)},

TR = {(ti, APP), (t13, SEC), (tj, ADMIN)|(ti ∈ T |1 ≤ i ≤ 12, tj ∈ T |14 ≤ j ≤ 18)),

DXOP = {′add flow rule′,′packet in′,′flow stats′,′packet out′},

Type(′add flow rule′) =′ Flow rulemod′, T ype(′packet in′) =′ Packet− In return′,
T ype(′flow stats′) =′ Switch stats request′ =′ Switch stats report′,
T ype(′packet out′) =′ Packet−Out′,

AuthorizationRule(LS,′ add flow rule′) = true,
AuthorizationRule(LB,′ add flow rule′) = true,
AuthorizationRule(FW,′ add flow rule′) = true,

AuthorizationRule(LS,′ packet in′) = true, AuthorizationRule(LB,′ packet in′) = true,
AuthorizationRule(NIP,′ packet in′) = true,
AuthorizationRule(FW,′ packet in′) = true AuthorizationRule(OC,′ packet in′) = true,

AuthorizationRule(LB,′ flow stats′) = true,
AuthorizationRule(FW,′ packet out′) = true.

the third column.

Functions assignApp and revokeApp are used to create and delete a relation between apps and

roles. Operation types are assigned to roles using assignType and revoked using revokeType func-

tion. Operations are assigned to their types using assignOp function and revoked using revokeOp

function.

2.5.4 Use Case Scenario

Applying this formal model by network operators depends on the use case under implementa-

tion. In this section we configure the formal model for a use case scenario and show the relevant

authorization aspects.

In this use case we have five OpenFlow apps, namely Learning Switch (LS), Load Balancer

(LB), Network Intrusion Prevention (NIP), Firewall (FW), and Operator Console (OC) app. LS

22

app requires insertion of flows in switches that routes packets of all devices in the topology after

they have been learned using Packet-In messages, so it needs permission to operation types ‘Flow

rule mod’ and ‘Packet-In return’.

The LB app requires permission to collect flow statistics from the switches and to distribute

traffic among deferent servers/links accordingly. It requires permission to operation of type ‘Flow

rule mod’, ‘Switch stats request’ , and ’Switch stats report’ so it is enough to be assigned the APP

role.

The NIP app detects and blocks intrusion attempts on the network. In order to do so, it requires

permission to receive packet-in notifications for performing packet inspection to drop malicious

traffic and it needs permission to insert flow rules for forwarding sanitized traffic to the correct

destination [55]. The Operation types required by this app are ‘Flow rule mod’ and ‘Packet-In

return’. Despite that it is enough to assign it to the APP role, this app is intended to enforce

security policy and so should be assigned to the SEC Role in order to replace conflicting flow rules

inserted by apps in APP role.

The FW app [55] that performs basic firewall tasks such as enforcing Access Control List

(ACL) on OpenFlow switches. For each incoming Packet-In message, the firewall compares the

header fields against each rule in the sorted list sequentially from the highest priority. The app

matches every single packet against the firewall rules. Hence, the Forwarding app uses Packet-Out

messages to forward each packet. It forwards a packet through sending a Packet-Out message

with an appropriate action for an ALLOW decision, while it drops a packet through sending a

Packet-Out message without specifying an Output action for a DROP decision. So this app needs

permission to ‘Packet-In return’ and ‘Packet-Out’ operation types.

Finally, the (OC) app is capable of performing all operation types and to configure and read

network state, so its assigned the ADMIN role. The configuration of the formal access control

model for this use case scenario is given in Table 2.5.

23

Figure 2.3: Proposed Role Hierarchy.

2.5.5 Discussion and Proposed Extensions

In this section we discuss some of the issues that may violate access control principles and call for

modifications in the model.

Over-privileged apps

SDN apps should be confined to the principle of least privilege. However, following the fixed

set R and the TR relation as shown in Table 2.1 may grant an app the permission to one or more

operations. All apps in the lowest role APP will have the permission to add flow rules whereas

some apps don’t require this permission. For example, a billing app requires only to read statistics

24

of the port connected to a host’s device (NIC). It computes a monthly bill for a customer based

on the sent and received bytes. APP role grants this app the permission to insert flow rules which

violates the least privilege principle and this could be maliciously exploited to attack the controller

or other apps. The network state can be modified and then the controller and other apps might take

decisions based on this inconsistent state.

App upgrading problem

To satisfy network security needs and respond to security threats, flow rules inserted by security

apps should have higher priority than those of traffic engineering apps. Therefore, based on the SE-

Floodlight access control model, such apps will be upgraded from APP to SEC role only to satisfy

the priority requirement. As a result, they will be granted permission to ‘packet-Out’ operation

type. This is a violation of the least privilege principle of access control. The NIP app, discussed

in Section 2.5.4, is an example of this case.

Limitations of role hierarchy

Some apps might need to perform different set of operations and the network operator wants to

assign them the same priority limit. This is impossible in SE-Floodlight authorization system due

to the total order relation between roles. Furthermore, assigning roles to apps based on the tasks

they achieve is limited with the existence of only three role levels and the way operation types are

assigned to roles in Table 2.1.

App downgrading problem

When a role r is assigned to an app a, it provides the permission to possibly multiple operation

types. If the network operator later wants to downgrade a, by revoking only one operation type

t from a for example. Revocation of t cannot be directly applied to a, it should be done through

revokeType(t,r) function. However, this kind of revocation doesn’t work because r is most likely

shared by multiple apps and this will downgrade all apps in r. This can be done only by creating a

25

new role r′ that has all operation types in r except t then applying assignApp(a, r′). This scenario

calls for a more flexible role hierarchy.

For addressing the above problems, we refine the total order hierarchy and propose a partial or-

der role hierarchy as shown in Figure 2.3. We modify the AR relation to be many-to-many relation

to allow for assigning multiple roles to one app. Types of operations are assigned to roles based

on the task they achieve taking into consideration inherited permission types. In this hierarchy we

consider only app interactions with the forwarding infrastructure and omit app requests to read and

write controller data stores that maintain information about end hosts, network topology, etc.

Also, roles are organized based on the sensitivity of operation type set managed by this hier-

archy. An operation type that may alter the network state should be part of higher roles whereas

lower roles should encapsulate non-harmful operation types. The role name indicates the general

function achieved by operation types in the role and its inherited permissions. For resolving rule

conflicts, higher roles should have higher priority limit as they have more power in the authoriza-

tion system. Incomparable roles should be assigned same priority limit or based on the network

operator’s configuration.

App’s access rights can be managed by manipulating AR and TR relations or by creating/deleting

a role inheritance relation. Each role in this partial order hierarchy encapsulates less permission

types compared to the roles of the total hierarchy of SE-Floodlight and the application-level roles

of [56]. We don’t propose direct assignment of permission types to apps since we believe it would

be a management burden for network operators.

This role hierarchy avoids the limitations of the total role hierarchy with a more flexible and

finer grained operation type-to-role assignment. Based on this hierarchy, apps can be assigned ap-

propriate roles and thus network operators can avoid over-privileged apps. Also, as a result of this

flexible app-role assignment, app upgrading problem is fixed because priorities for incomparable

roles can be configured by network operator. In this case app upgrading will not be conducted only

for priority limit reasons.

App downgrading problem is solved by this hierarchy since each role has a small number of

26

strongly related operation types that can be granted as all-or-none basis. As a result, for an app a

that is assigned role r, revoking type t from a can be done by invoking revokeApp(a,r) followed by

assignApp(a, r′) where r′ is the immediate ascendant or r.

27

CHAPTER 3: ENABLING ROLE-BASED ACCESS CONTROL FOR SDN

APPLICATIONS

In this chapter, we discuss a role-based access control model for SDN controller apps, refered to as

SDN-RBAC. We discuss different approaches in which the system can handle app sessions which

help in applying the least of privilege principle. We also provid the functional system specifications

required for app session management and for making access control decisions at the session level.

We verify the model’s usability and effectiveness by implementing a prototype in a popular SDN

controller. Significant portion of this chapter has been published in the following venue [3].

• Abdullah Al-Alaj, Ram Krishnan, and Ravi Sandhu. SDN-RBAC: An Access Control Model

for SDN Controller Applications. In 2019 4th International Conference on Computing,

Communi- cations and Security (ICCCS), pages 1-8. IEEE, 2019.

3.1 Motivation and Background

SDN apps that are residing in the SDN controller and written in the same language of the controller

are of a major security concern. This is because they are compiled as part of the controller and

have direct access to various controller native classes, their methods and data. Intuitively, the more

permissions available to an app the more resources accessible through these permissions, the more

exposed the network attack surface. As a result, applying the principle of least privilege is vital in

access control for SDN apps. The key idea is to minimize the amount of operations available to an

app at a given time.

In SDN, it is most likely that one controller app performs several networking tasks, either se-

quentially or concurrently. If the app executes all these tasks in one session this means higher

exposure to the network attack surface in case of app being compromised, buggy, or malicious.

This ensures that cooperation of multiple sessions is required to perform all the tasks of a com-

plete SDN app process, either sequentially or concurrently, so that accountability can be enforced

28

and damage caused by either a session mistake, or an accident or deception can be avoided or

minimized.

This initiates the need for serious efforts in creating access control models for SDN controllers

where, usually, human being has no direct control of the running apps. To address this issue we

propose a Role-based Access Control Model for the apps residing in the SDN controller.

In this context the concept of a session has several motivations. It supports the least privilege

principle in the sense that an app can delay the activation of roles currently unused in a session

until they really required [10,46]. Also, it permits delaying the creation of particular sessions until

they really required. All these serve to reduce the amount of operations executable by an app at

a given time which reduces the amount of resources accessible by these operations and thus the

attack surface.

To address the above problems, in this chapter we depict our work in the design and implemen-

tation a formal role-based access control model (SDN-RBAC) for SDN applications that helps in

applying least of privilege principle at the level of applications and their sessions. We also identify

different approaches in which the system can handle application sessions in order to reduce expo-

sure to the network attack surface and, as a result, reduce possible damage that the system incurs

in case of application being compromised, malicious, has vulnerability, or even crashed.

3.2 The SDN-RBAC Model

3.2.1 Formal Model

In this section we introduce SDN-RBAC with its basic element sets and functions. Being able to

create roles for SDN apps, which contain optimum number of permissions, is one of the challenges

in SDN environment. We believe that deciding which permissions to assign to which roles is

completely up to the app’s function. Currently, there is no any reference standard that states which

kinds of controller apps should use which kind of permissions. There is also no satisfactory system

that can identify the permissions appropriate for the different categories of apps. We believe that

this topic by itself is a research area that needs further study.

29

Figure 3.1: Conceptual SDN-RBAC Model.

SDN-RBAC has the following basic components: Controller Apps (APPS), Roles (ROLES),

Operations (OPS), Objects (OBS), and Object Types (OBTS). The conceptual model and the

relations between the components of SDN-RBAC are shown in Figure3.1, and discussed below.

• Apps (APPS): The set of OpenFlow apps residing in the SDN controller.

• Roles (ROLES): The authorization roles assigned to apps.

• Objects (OBS): Data and objects (resources) managed by the controller and should be

protected from unauthorized access. The controller manages these resources to maintain a

consistent state of the network infrastructure. A specific port instance in a particular switch

instance, and a device instance are examples of objects.

• Object Types (OBTS): The type under which a specific object instance or group of object

instances are categorized. For example, all port instances within the authority of (V LANid =

10) can be associated to the type ‘PORT-VLAN-5’ and all ports within (V LANid = 10) can

be associated to the type ‘PORT-VLAN-10’. Also, ‘LINK-ACC’ could be the type of all link

instances attached to the hosts in the Accounting Department.

• Operations (OPS):. Operations performed on objects and exposed by the controller as a

service. For example, the Device Service exposes operations to query the list of devices/hosts

30

Table 3.1: Formal Definitions of SDN-RBAC.
- Model Element Sets:

- APPS, ROLES, OPS, OBS and OBTS, a finite set of OpenFlow apps, roles,
operations, objects and object types, respectively.

- PRMS = 2OPS×OBTS , the set of permissions.

- SESSIONS, a finite set of sessions.

- Assignment Relations:

- PR ⊆ PRMS ×ROLES, a many-to-many mapping permission-to-role assignment
relation.

- AR ⊆ APPS ×ROLES, a many-to-many mapping app-to-role assignment relation.

- OT ⊆ OBS ×OBTS, a many-to-one relation mapping an object to its type.

- Mapping Functions

- assigned−perms(r : ROLES)→ 2PRMS , the mapping of role r into a set of permissions.
Formally, assigned−perms(r) ⊆ {p ∈ PRMS|(p, r) ∈ PR}.

- app−sessions(a : APPS)→ 2SESSIONS , the mapping of an app into a set of sessions.

- session−app(s : SESSIONS)→ APPS, the mapping of session into the corresponding
app.

- session−roles(s : SESSIONS)→ 2ROLES , the mapping of session into a set of roles.
Formally, session−roles(s) ⊆ {r ∈ ROLES|(session−app(s), r) ∈ AR}.

- type : OBS → OBTS, a function specifying the type of an object, where
(o, t1) ∈ OT ∧ (o, t2)∈OT ⇒ t1 = t2

- avail−session−perms(s : SESSIONS)→ 2PRMS , the permissions available to an app in
a session =

⋃
r∈session−roles(s)assigned−perms(r).

based on one of Mac Address, VLAN id, IPv4 Address, IPv6 Address, or a combination of

them. Inserting flow rules and reading switch statistics are another examples of operations.

• Sessions (SESSIONS): A mapping between an app and an activated subset of app roles.

An app can have multiple sessions and a session belongs to only one app.

As shown in Table 3.1, permissions PRMS is the set of all possible combinations between the

set of operations OPS and object types OBTS. The function type returns the type of an object

that was associated to it via the OT relation.

31

Table 3.2: Specifications of system functions.
Function Authorization Condition Update
createSession(a :
APPS, s :
SESSIONS, ars :
2ROLES)

ars ⊆ {r ∈ ROLES |
(a, r) ∈ AR}∧
s /∈ SESSIONS

SESSIONS ′ = SESSIONS ∪
{s}, app−sessions′(a) =
app−sessions(a) ∪
{s}, session−roles′(s) = ars

deleteSession(a :
APPS, s :
SESSIONS)

s ∈ app−sessions(a) app_sessions′(a) =
app_sessions(a)\{s},
SESSIONS ′ = SESSIONS\{s}

addActiveRole(a :
APPS, s :
SESSIONS, r :
ROLES)

s ∈ app−tsessions(a) ∧
(a, r) ∈ AR∧
r /∈ session−roles(s)

session−roles
′(s) =

session−roles(s) ∪ {r}

dropActiveRole(a :
APPS, s :
SESSIONS, r :
ROELS)

s ∈ app−sessions(a)∧
r ∈ session−roles(s)

session_roles′(s) =
session_roles(s)\{r}

checkAccess(s :
SESSIONS, op :
OPS, ob : OBS)

∃r ∈ ROLES : r ∈
session−roles(s)∧
((op, type(ob)), r) ∈ PR

A role can be assigned multiple permissions as expressed by the PR relation. An app might

need to have multiple permissions to access different network resources which may result in re-

quiring multiple roles. This is expressed by the AR relation. The function assigned_perms is

used by the system to get the set of permissions attached to a role.

An app may have multiple session instances running at the same time. Each session may

have different combinations of active roles adequate for accomplishing its task. It is important for

authorization purposes to identify all instances of an app sessions, the system uses the function

app_sessions for this purpose.

Each session executes on behalf of only one app which is constant during the session’s lifetime.

The system uses the function session_app to identify this app. Generally, at the time of session

establishment and during the lifetime of a session, an app can activate any subset of the roles

attached to it that is suitable for the session’s task to be accomplished. The function session_roles

is used by the system to identify all roles currently active for a particular session. The effective

permissions available to a session will then be the permissions assigned to all the effective roles

32

activated by the app for that session.

The function avail_session_perms returns the union of all permissions assigned to sesssion’s

active roles. It should be noted that object access requests from an app’s session is authorized

based on the type of the requested object. The type function is used for this purpose.

3.2.2 System Functions Specifications

System functions in SDN-RBAC define features for the creation and deletion of app sessions, role

activation and deactivation in a session, and for calculation of an access decision. The specifica-

tions of system functions are shown in Table 3.2, and discussed below.

• createSession: The system function CreateSession creates a new session s ∈ SESSIONS

for a given app a ∈ APPS as owner and an active role set ars ∈ ROLES to be used during

the session lifetime. The function is valid if and only if the active role set is a subset of the

roles assigned to that app. The system updates the set SESSIONS by adding s to it. This

also updates app_sessions and the session_roles mappings.

• deleteSession: The function deleteSession deletes a given session s ∈ SESSIONS for a

given app a ∈ APPS. The function is valid if and only if the session is owned by the given

app. The system updates the set SESSIONS by removing s. The mapping app_sessions

is also updated by this removal.

• addActiveRole and dropActiveRole: For repairing the network security policy at runtime,

adding or doping of session’s active roles might be also required. The activation and de-

activation of a roles during a session is done by the system functions addActiveRole and

dropActiveRole, respectively. Adding an active role is valid if and only if the role is as-

signed to the app, and the session is owned by that app. Drop an active role is valid if and

only if the session is owned by the app and the role is an active role of that session.

• checkAccess: The function checkAccess returns whether an app’s session is or is not al-

lowed to perform a given operation on a given object. The session has the privilege to

33

perform the operation on that object if and only if a permission that combines that operation

to the object type is assigned to (at least) one of the session’s active roles set.

3.3 Session Handling Approaches

In a multi-session SDN app, app sessions can have an independent existence and run sequentially

or simultaneously without reference to each other. An atomic session instance is the one which has

a self-contained task definition and is not dependent on other session instances (i.e., a session that

is not described in terms of other sessions and has no interaction with other session instances). See

Fig. 3.2 (a).

In other cases, it is possible to have inter-session dependency and the execution of one session

affects another one. Inter-session dependency initiates the need for inter-session interaction at

runtime as will as functions and conditions for session creation/deletion, nomination of session’s

active role set, and adding/dropping an active role to a session. Fig. 3.2 shows several cases

for multi-session apps and various methods for inter-session interaction. The relations between

different sessions from different apps is beyond the scope of this discussion.

An executing session instance may, conditionally, initiate the creation of one or several session

instances. In other cases, a session is created when another session completes. Given a system

with a complete view of an app’s entire functionality, all possible sessions, the task that should be

achieved by each session, and inter-session dependencies among them, then a complete view of

session-to-session relations can be represented using a directed graph. For example, if session cre-

ation happens conditionally based on another session, a directed edge between these two sessions,

starting from the initiating instance, may indicate the condition and the active role set required for

session creation as indicated in Fig. 3.2(c) and (e), respectively.

The management of inter-session dependency and inter-session interaction can be done either

by the developer (developer-driven approach), the app system (system-driven approach), or the

sessions themselves (session-driven approach). We believe that the interaction among app sessions

should be well defined and managed. In this section we discuss different approaches for handling

34

session instances of an SDN controller app.

3.3.1 Developer-driven Session Handling

This approach requires that the developer has full and prior knowledge of all possible sessions

and roles required for each one to achieve its task. This information is provided to the controller

before app execution and the system is configured accordingly. i.e., the controller knows before

app execution what session instances will be created, the tasks that will execute in each session,

and the set of roles required for it to execute correctly.

For each session instance, the developer should specify at design time different session han-

dling aspects: First, the task that will be achieved by each session. Second, the condition (or

precondition) under which a particular session may be created/deleted (e.g., after exceeding a

bandwidth consumption cap, after new device detected, at system start-up, etc.). It should be noted

here that the developer knows in advance the condition/criteria of a particular session creation as it

is fixed and hard coded in the application and cannot be configured at runtime by the administrator

or the controller. Example, create Data Cap Enforcing session if a host exceeded a bandwidth

consumption cap. So, this session will start only after this condition is met. Creating this session

cannot happen under any other circumstances. Third, the active role set that should be activated

during session creation (e.g., Packet-inHandler and FlowMod roles for a one-hour deep packet

inspection session that will temporarily inspect traffic payload incoming from black-listed hosts).

Finally, adding or dropping an active role for a session (e.g., add DeviceTracking role to the

transmission rate monitoring session).

3.3.2 System-driven Session Handling

In this approach, the controller has full control on session handling. The developer only provides

the set of roles required by the app and then she has no discretion on determining any of other

sessions’ properties at runtime. Shipped with adequate capabilities, the controller should have the

ability to specify at runtime what session instances will be created and how to handle them. Given

35

an app and the set of roles required by the app, the controller should figure out each task that might

execute in a separate session and the set of roles required for it to execute correctly. This approach

is challenging and the hardest to implement.

For each session instance, the controller should specify dynamically at runtime the various

properties: First, the set of sessions required to achieve the entire app’s functionality. Second,

the condition under which a particular session instance may be created/deleted (e.g., after attack

detected, completion of another session, change of risk value, etc.). It should be noted here that,

in contrast to the developer-driven approach, the developer doesn’t know why a particular session

could be created/terminated. The criteria for creating a session could be computed dynamically

by the controller or configured by the administrator at runtime. For example, creating intrusion

prevention session based on the outcome of statistical analysis or risk assessment. Third, the active

role set that should be activated during session creation (e.g., Routing and LinkHandler roles for

a session that recomputes shortest path after a new link discovery), and Finally, adding or dropping

an active role for a session.

3.3.3 Smart Sessions

For deploying this category of session handling, inter-session interaction should be conducted via a

well defined set of session interaction APIs designed specifically for this purpose and managed by

the system. The app developer should comply to these APIs during app design. These APIs allow

sessions to get information about other sessions like names of currently active sessions, their active

roles, their status (e.g., idle, up time, etc.) as will as they provide a way for passing information

and notifications between sessions (e.g., results of calculations) as indicated in Fig. 3.2 (d).

A session is smart in the sense that it can take decisions based on the result of communica-

tions via inter-session interaction APIs. Thus, it can adjust its behavior to take knowledgeable

decisions on future session interaction API calls and on different session handling aspects: First,

the condition under which a particular session instance may be created/deleted (e.g., start traffic

redirection session after an alarm is fired by packet inspection session). Second, the active role

36

Figure 3.2: Multi-session apps and methods for inter-session interaction. (a) App with atomic
sessions. (b) Two sessions access shared data. (c) Conditional session creation. (d) Interaction via
inter-session interaction APIs. (e) Active role set sent from master session to slave sessions.

set that should be activated during session creation (e.g., Packet-inHandler role and FlowMod

role for a deep packet inspection session if web-traffic filtering session detected malicious pay-

loads.), Third, adding or dropping an active role for a session (e.g., add Device Tracking role to

the transmission rate monitoring session).

3.3.4 Master-Slave Sessions

In this approach, a master session initiates the creation of one or several slave sessions and provides

the system with the required roles to be activated for each one, as indicated in fig. 3.2(e). Slave

sessions help the master session in achieving a subtask. So this approach has two restrictions:

First, the active role set of any slave session should be a subset of the master session’s active

role set. Second, the master session cannot terminate during the life of a slave session. During

its execution, master session passes control to slave sessions and waits until completion. When

completed, each slave session passes results and control back to the master session. This approach

37

Table 3.3: Roles assigned to DataUsageCapMngr app and other selected roles from SDN-
RBAC.

Role General Functionality
Device Handler permissions for querying the controller about devices
Bandwidth
Monitoring

permissions to read the bandwidth consumption for switch ports.

Flow Mod permissions to insert/update/delete flow rules into a switch’s flow
tables.

Link Handler permissions to get information about network links
Device Tracking permissions to get notifications about changes on network devices

(added, removed, Moved, Address Changed, etc.)
Port Handler permissions to read information about ports and their status
Routing permissions to get and compute routes between various source and

destination nodes

can be considered a special case of smart-sessions approach as it can use inter-session interaction

APIs. App developer should be aware of what sessions should be master and which ones should

be slave and design the app to apply this dominance via these APIs.

3.4 Use Case Scenario: A Multi-session App

In this section we describe a use case scenario in which an SDN app has two tasks that run in two

separate sessions. Table 3.4 shows the configuration of the use case in SDN-RBAC. The app’s

main functionality is to limit the amount of traffic that any particular host transfers within a period

of time. In order to achieve this, the app requires access to bandwidth consumption statistics of

all hosts’ attachment points. When a device exceeds the data usage cap, the app inserts a flow

rule to rate-limit or temporarily quarantine a host who has exceeded the cap. We called the app

DataUsageCapMngr.

To be able to get the required permissions, we associate the app with three roles described in the

first three rows in Table 3.3. These three roles are composed totally of eleven permissions. So, for

space limitation and convenience, we avoid showing all permissions in the use case configuration

in table 3.4. We show only selected permissions enough to understand the app’s use case and its

model configuration aspects.

38

Table 3.4: The configuration of the DataUsageCapMngr and its two sessions as a use case in
SDN-RBAC1.
- Use case sets:

- APPS = {DataUsageCapMngr}.

- ROLES = {DeviceHandler, BandwidthMonitoring, F lowMod} .

D = set of all network devices. FT = set of all flow tables in all switches, PS = set of
all port statistics in all switches.

- OBS = {D,FT, PS}.

- OBTS = {DEV ICE, PORT -STATS, FLOW -TABLE}.

- OT = {(D,DEV ICE), (PS, PORT -STATS), (FT, FLOW -TABLE)}.

- Permissions:

- PRMS = {p1, p2, p3}1 with p1 = (getAllDevices,DEV ICE), p2 =
(getBandwidthConsumption, PORT -STATS), p3 = (addF low, FLOW -TABLE)}.

- Permissions assignment:

- PR = {(p1, DeviceHandler), (p2, BandwidthMonitoring), (p3, F lowMod)}.

- assigned−perms(DeviceHandler) =
{p1}1, assigned−perms(BandwidthMonitoring) =
{p2}1, assigned−perms(FlowMod) = {p3}1

- Role assignment:

- AR = {(DataUsageCapMngr,DeviceHandler)
(DataUsageCapMngr,BandwidthMonitoring), (DataUsageCapMngr, F lowMod)}

- Sessions:

- SESSIONS = {DataUsageAnalysisSession,DataCapEnforcingSession}.

- app−sessions(DataUsageCapMngr) =
{DataUsageAnalysisSession,DataCapEnforcingSession}.

- session−app(DataUsageAnalysisSession) = {DataUsageCapMngr},
session−app(DataCapEnforcingSession) = {DataUsageCapMngr}.

- Active role sets:

- session−roles(DataUsageAnalysisSession) =
{DeviceHandler, BandwidthMonitoring}.

- session−roles(DataCapEnforcingSession) = {FlowMod}.
1Sets with this mark in the table include minimum elements enough to understand the use case.

39

Instead of executing the app in one monolithic process with all three roles active at once, we

separate its functionality into two main tasks each to be running in a different session instance. We

moved the sensitive task of inserting flow rules into a separate session.

We called one session DataUsageAnalysisSession which probes for statistics on a regular

basis (every 5 seconds). This session reads the bandwidth consumption for switch ports, analyzes

the data and stores the results into an object ‘usageCapBlackList’ managed by the system. This

session is created with an active role set composed of two roles as shown in session_roles function

in Table 3.4. The other session is called DataCapEnforcingSession which requires inserting

flow rules and so its active role set is composed of the FlowMod role as shown in session_roles

function in Table 3.4.

3.5 Framework Implementation

In order to demonstrate our proof-of-concept prototype, we developed and ran the framework in

Floodlight platform v1.2 release [22]. The Floodlight platform is deployed on a virtual machine

that has 8GB of memory and runs on Ubuntu 14.04 OS installation. We created a topology with

three virtual switches (Open vSwitch v2.3.90) connected to each other and each switch is con-

nected to two hosts. Switches are connected to the controller and hosts are virtual machines that

has 2GB and run Ubuntu 14.04 OS server.

We implemented our RBAC system in Floodlight platform and used hooking techniques with-

out any change to the code of Floodlight modules. We implemented hooking for all operations

exposed by Floodlight services to controller apps. We used AspectJ [6] which is a seamless aspect-

oriented extension to Java. Our system intercepts methods before execution. When a session issues

a request the hooked API invokes the RBAC policy engine for performing access verification and

reply back. This system can be deployed to all other Java-based SDN controllers.

An overview of SDN-RBAC framework architecture is shown in Fig. 3.3. It contains three

main components: interception component which represents the system’s policy enforcement point

(PEP), request evaluation component which represents the policy decision point (PDP), and SDN-

40

Figure 3.3: Overview of SDN-RBAC architecture.

RBAC policy which represents the policy information point (PIP) in the system.

We developed the DataUsageCapMngr app described in Section 3.4 and configured in the

SDN-RBAC model as shown in Table 3.4. The first session DataUsageAnalysisSession is de-

signed to probe for port bandwidth statistics on a regular basis (every 5 seconds). After reading

the bandwidth consumption for switch ports and analyzing the data to find cap limit violations, it

stores the list of hosts who has exceeded the cap limit into a list ‘usageCapBlackList’ managed

by the system. The second session DataCapEnforcingSession is designed to check periodi-

cally (every 60 seconds) for black listed hosts in order to insert flow rules to isolate them from the

network. It reads the object ‘usageCapBlackList’ for this manner.

It should be noted that there is no direct interaction between these two sessions. They are

41

Figure 3.4: Snapshot of authorization check result for getAllLinks() operation requested by
DataUsageAnalysisSession - Access Denied.

running simultaneously and not directly dependent on each other. i.e., one won’t crash/stop/start

based on the state of the other. Also, the active role set is not provided by either one to the other

and neither of them adds/drops an active role for the other. The tasks and roles associated with each

session is determined at design time. This deployment is compliant with the ‘Developer-driven’

session handling approach described in Section 3.3.1 and uses the inter-session interaction method

indicated in Fig. 3.2 (b).

Figure 3.5: Snapshot of authorization check result for getBandwidthConsumption() operation re-
quested by DataUsageAnalysisSession - Access Granted.

During the lifetime of the app, our access control system keeps mediating all sessions access

requests for performing security authorizations. It can identify each session, mediate each access

request and send it for authorization check based on SDN-RBAC configuration. To show that

our system can identify and reject any unauthorized operations submitted at the session level, we

forced DataUsageAnalysisSession to practice the permission (getAllLinks, LINK) which is

assigned to the role LinkHandler. This role is not a member of the active role set of the session

DataUsageAnalysisSession. Thus, (getAllLinks, LINK) it is not a member of the available

session permissions. A snapshot of the execution result is shown in Fig. 3.4. It shows how our

system can identify and reject this unauthorized access from this session. On the other hand,

42

Figure 3.6: Average execution time required to finish the tested operations, including and exclud-
ing SDN-RBAC.

Fig. 3.5 shows how DataUsageAnalysisSession was able to pass the authorization check when

getBandwidthConsumption operation was called.

3.6 Performance Evaluation

For evaluating the performance of our proposed system, We selected fifty operations covered by

twenty different roles and we incrementally assigned these roles to one test app running in one

session. Despite the fact that this app doesn’t require all these roles, the purpose of this test is to

check the overhead caused by SDN-RBAC components on the system’s performance by reporting

the execution time with different security policies. We change the security policy by changing the

active role set of the app’s session. In the first security policy one role is assigned to the session’s

active role set, in the second policy two roles where assigned, and so on until twenty roles.

For each security policy, the session executes all fifty operations. The system is set to find

the time required by all SDN-RBAC components to finish execution and make an access control

decision for each operation submitted by the session. The timer starts at the beginning of the

Policy Enforcement Point (PEP) and stops when Policy Decision Point (PDP) finishes execution.

The total time is calculated for all fifty operations. We repeated this test hundred times for each

security policy. The average elapsed time for authorizing fifty operations is reported as shown in

Fig. 3.6. It should be noted here that execution times does not include floodlight’s boot-up time,

43

the time for loading the SDN-RBAC policy and creating the corresponding relations.

This evaluation of SDN-RBAC shows that SDN-RBAC adds on average 0.031 millisecond

overhead on the performance of Floodlight controller to execute fifty network operations. Autho-

rization overhead is inevitable in SDN-RBAC as well as other authorization models. Therefore,

we believe that SDN-RBAC introduces acceptable evaluation overheads.

44

CHAPTER 4: FINE GRAINED ROLE BASED ACCESS CONTROL FOR

SDN ENHANCED WITH PARAMETERIZED ROLES AND

PERMISSIONS

In this chapter, we propose ParaSDN, an access control model to enhance access control granularity

for SDN with support of role and permission parameters.

4.1 Motivation

Software Defined Networking (SDN) has become one of the most important network architectures

for simplifying network management and enabling innovation through network programmabil-

ity. Network applications submit network operations that directly and dynamically access critical

network resources and manipulate the network behavior. Therefore, validating these operations

submitted by SDN applications is critical for the security of SDNs.

The granularity of access provided by current access control systems for SDN applications is

not sufficient to satisfy access control requirements for SDN applications. A feasible access con-

trol mechanism should allow system administrators to specify constraints that allow for applying

minimum privileges on applications. In this chapter, we introduce ParaSDN, an access control

model to address the above problem using the concept of parameterized roles and permissions.

Our model provides the benefits of enhancing access control granularity for SDN with support of

role and permission parameters. We implemented a proof of concept prototype in an SDN con-

troller to demonstrate the applicability and feasibility of our proposed model in identifying and

rejecting unauthorized access requests submitted by controller applications.

Information about network resources stored in the SDN controller are highly valuable which

makes it an attractive target for attackers and increases the potential to be gained via unauthorized

access. Also, the potential damage that can be done increases dramatically if this unauthorized

access is done by compromised, buggy, or malicious SDN apps.

In prior works on access control for SDN apps [3], permissions are created based on object

45

types rather than specific object instances. For example, a permission to read an object of type

flow rule is generally used to read every flow rule in a switch. In another example, a permission to

access a network device allows access to all network devices in the SDN controller. However, based

on their network functions, different network apps require access to different network resources.

However, in real SDN environments, there is often the need to assign permissions to subset of

all object instances that have the same object type. For example, in a campus network environment

with multiple departments it might be required for an app to access switches in CS department

only. Moreover, there is a need to assign permissions with a more accurate granularity depending

on the content of the object. For example, in some network environments it is required that an app

can only access and modify flow rules that handle web traffic only.

This requires an access control system that restricts apps’ access scope to unique object in-

stances. An easy solution for this problem is to have an access control system in which a separate

permission is created for each single object. However, adopting such approach in role-based sys-

tems has known problems and hard to manage as it requires creating and managing huge number

of permissions, roles, permission-role associations, and app-role associations.

A more flexible access control mechanism should allow the system administrator to directly

specify the constraint that every app can only access and modify specific object instances com-

mensurate to its authorization requirements. Because of the known advantages of role-based ac-

cess control especially in facilitating access control management, we are proposing ParaSDN, an

access control model that addresses the above problems using the concept of parameterized roles

and permissions.

Role-based authorizations proposed in the literature for SDN don’t provide fine grained access

control that can be customized for complex use cases in SDNs [41,42,49]. However, in this chapter

we present a more convenient approach for creating roles and permissions that suit complex SDN

use cases.

Works in [1, 25, 26] used the concept of parameterization with roles and privileges. However,

their formalization is not well structured in a complete model, which make it hard to adopt in

46

different contexts. In this work, we introduce a formal definition for parameterized roles and

permissions that conform to the standard RBAC model and more flexible to adopt in a variety of

use cases.

4.2 ParaSDN Components Overview

In this sesction, we present an overview of the model components and give examples of the syntax

and semantic in the context of SDN environment.

4.2.1 Parameters

A parameter is a name:value pair that, when assigned to a permission, indicates a subset of net-

work resources that an app can exercise using this permission. A parameter value: (1) may be a

list of network resources identified directly via resource IDs. For example, the parameter attach-

ment_point can have the value {0x1:1, 0x1:2, 0x2:1} to indicate the listed switch:port combina-

tions; (2) might be a label that indicates a group of network resources. For example, the parameter

dept with a value of CS can indicate all switch ids in the CS department; or (3) point to a property

existing in the requested object. For example, the parameter traffic with the value of web indicates

the set of TCP ports used for Web protocol.

An aggregate parameter can be defined as a label that indicates set of potential individual

parameter values. For example, the parameter dept with a value of CS can indicate all switch

ids in the CS department. Also, the parameter web can indicate all ports numbers used for web

traffic. Parameter value aggregation (1) simplifies the job of parameter management (as they only

have to directly deal with a limited number of parameter aggregates, rather than a potentially high

number of individual parameter values) and (2) enhances managements scalability (as the growth

of number of parameter values (e.g., recourse IDs) does not necessarily imply additional load in

parameter management).

Each parameterized role is associated with a finite set of parameters. The range of each pa-

rameter is represented by a finite set of atomic values. For example, the range of dept parameter

47

Figure 4.1: ParaSDN Conceptual Model.

is a set of department names that share the network infrastructure. Each parameter can either be

atomic or set-valued from its declared range. For a particular parameter p, it is range is composed

only from those values authorized by the system administrator. Different categories of parameters

for SDN with examples of each category are discussed in section 4.6.

4.2.2 Parameterized Permissions

A parameterized permission is represented by the ordered pair:

((opi, oti), {(par1, val1), (par2, val2), ...})

where (opi, oti) combines a network operation with an object type in the ordinary permission

format, and {(par1, val1), (par2, val2), ...} is a subset of parameter:value pairs. In the parameterized

permission, the object type oti indicates all object instances of that type on which operation opi can

be exercised. If it is used alone, it provides a very course-grained access privilege and impractical

48

for many SDN security policies. In many situations, what is required is to provide access to

subset of object instances of that type. This is achieved with the help of the parameters associated

with this permission. The semantics of this parameterized permission is that an app can execute

the operation opi on only object instances of type oti that satisfy the restrictions imposed by the

parameter values.

Permission parameters are not assigned values within the permission itself; instead, their values

are defined when it is associated with a parameterized role whose parameter values already defined,

i.e., permission parameters are steered by role parameters.

So, when security architects create a parameterized permission, they initialize parameter values

with a special value ⊥ which means unknown. For example, the parameterized permission:

((addFlow, FLOW-RULE), {(dept, ⊥), (traffic, ⊥)})

indicates that an app can insert flow rules in switches of as-yet-unknown department(s) and these

rules can handle traffic of as-yet-unknown type. If the values of parameters dept and traffic are CS

and web then an app can add flow rules that handle Web traffic in switches of CS department.

4.2.3 Parameterized Roles

A parameterized role is represented using an ordered pair:

(ri, {(par1, val1), (par2, val2), ...})

where ri represents a role name, and {(par1, val1), (par2, val2), ...} is a set of parameter:value pairs.

Initially, all role parameters are assigned a special value ⊥ which means unknown. For example,

(Flow Mod, {(dept, ⊥), (traffic, ⊥)})

is a parameterized role that includes permissions to read, update, insert, and delete flow rules in

switches of as-yet-unknown department(s) and these rules can handle traffic of as-yet-unknown

type. If the values of parameters dept and traffic are CS and web then an app can exercise these

operations only to flow rule instances that reside in switches of CS department and handle traffic

destined to Web servers.

49

4.2.4 Parameter Value Assignment

At the time of role engineering, there is no need to worry about actual parameter values at the level

of permissions and roles. As mentioned above, parameterized permissions and parameterized roles

are instantiated with parameter values assigned a special value ⊥ which means unknown.

A parameterized permission is assigned to a parameterized role via the administrative ac-

tion assignPPerm(pp, pr), where pp is a parameterized permission and pr is a parameterized

role. At this time, no actual parameter values are assigned. This is demonstrated in step 1

of Fig. 4.2 (a). Because parameter values are assigned based on the requirements for an app

to access system resources, their values will remain unknown until app-to-role assignment via

assignApp(a, pr, valset) administrative action, where a is an app, pr is a parameterized permis-

sion, and valset is the set of values to be supplied to pr. The values in valset propagates automat-

ically to corresponding permission parameters. This app-to-role assignment and value propagation

is demonstrated in steps 2 and 3 of Fig. 4.2 (a). The final state of the parameterized role and

parameterized permission as associated with app a is shown in Fig. 4.2 (b).

4.2.5 Parameter Verification

We consider an app’s access request to an object as a right of access claim by that app to that object.

This claim requires verification by the access control system. We use specific functions, called

Verifiers, to check the validity of this claim by comparing the parameter values in the actual access

rights of the app (i.e., the available parameterized permissions of the session) with the properties

of requested object. Based on the examples discussed above, for example, a verifier VRuleSwitch

will be called after exercising the permission ((addFlow, FLOW-RULE), (dept, CS), (traffic, web)).

It is used to verify that a flow rule that is being submitted by an app for insertion is to be inserted

in an authorized switch. That is in switches if the CS department. The verifier exploits information

from the object, i.e., the flow rule, and parameter values from the parameterized permission, i.e.,

CS department. If the accessed switch is within the switches of CS department, a positive response

is returned, otherwise the verifier returns negative response.

50

Figure 4.2: Parameter values assigned via assignApp administrative action propagate automati-
cally from role parameters to permission parameters.

It worth mentioning that one verifier can serve multiple parameterized permissions. For exam-

ple, the same verifier VRuleSwitch will be called with the permission ((deleteFlow, FLOW-RULE),

(dept, CS), (traffic, web)). Associating one verifier with multiple parameterized permissions re-

duces the management effort when dealing with large number of permissions. Also, one parameter-

ized permission might require multiple verifiers. For example, another verifier that will be invoked

for any of the above parameterized permissions is VRuleTraffic which verifies that the accessed

flow rule handles Web traffic. Number of verifiers required to be called for one parameterized

permission depends on the number of parameters associated with the permission.

4.3 ParaSDN Conceptual Model and Definition

The conceptual model and the relations between the components of ParaSDN are shown in Fig. 4.1.

ParaSDN has the following basic components: OpenFlow apps APPS, roles ROLES, operations

OPS, objects OBS, object types OBTS, the parameter set PAR, and the set of parameter values

VAL.

The basic sets and functions in ParaSDN are shown in Table 4.1. APPS refer to the set of

OpenFlow apps. ROLES is the set of role names. OPS is the set of all operations exposed by

the controller services to apps and performed on objects. For example, the Device Service exposes

51

Table 4.1: ParaSDN Formal Model Definition.
1.Basic Sets:
– APPS, ROLES, OPS, OBS, OBTS, PAR, and VAL: set of apps, roles, operations, objects,

object types, parameters, and parameter values.
– For each par ∈ PAR, Range(par) represents the parameter’s range, a finite set of atomic

values. We assume VAL includes a special value “⊥” to indicate that the value of a
parameter is unknown.

– parType: PAR→ {set, atomic} specifies parameter type as set of atomic valued.
– PRMS ⊆ OPS × OBTS, set of ordinary permissions.
– SESSIONS, set of sessions.
2.Assignment Relations:
– OT ⊆ OBS × OBTS, a many-to-one relation mapping an object to its type, where

(o, ot1) ∈ OT ∧ (o, ot2) ∈ OT⇒ ot1 = ot2.
– PVPAIRS ⊆ PAR × VAL, a many-to-many mapping parameter to value assignment

relation. For convenience, for every pvpair = (pari, vali) ∈ PVPAIRS, let pvpair.par = pari
and pvpair.val = vali.

– PPRMS ⊆ PRMS × 2PV PAIRS , a relation mapping a permission role to subset of
(parameters , value) combinations. For convenience, for every pp = ((opi, oti), PVPAIRSi)
∈ PPRMS, let pp.op = opi, pp.ot = oti, and pp.PVPAIRS = PVPAIRSi.

– PROLES ⊆ ROLES × 2PV PAIRS , a relation mapping a role to subset of combinations of
parameters and their values. For convenience, for every pr = (ri, PVPAIRSi) ∈ PROLES,
let pr.r = ri and pr.PVPAIRS = PVPAIRSi.

– PPA ⊆ PPRMS × PROLES , a many-to-many mapping parameterized permission to
parameterized role assignment relation.

– AA ⊆ APPS × PROLES, a many-to-many mapping app to parameterized role assignment
relation.

3.Derived Functions:
– assigned_pperms: PROLES→ 2PPRMS , the mapping of parameterized role into a set of

parameterized permissions. Formally, assigned_pperms(pr) = {pp ∈ PPRMS | (pp, pr) ∈
PPA}.

– app_sessions: APPS→ 2SESSIONS , the mapping of an app into a set of sessions.
– session_app : SESSIONS→ 2APPS , the mapping of session into the corresponding app.
– session_roles: SESSIONS→ 2PROLES , the mapping of session into a set of parameterized

roles. Formally, session_roles(s) = {pr ∈ PROLES | (session_app(s), pr) ∈ AA}.
– type: OBS→ OBTS, a function specifying the type of an object defined as type(o) = {t ∈

OBTS | (o, t) ∈ OT}.
– avail_session_pperms: SESSIONS→ 2PPRMS , the parameterized permissions available to

an app in a session. Formally, avail_session_pperms(s) =⋃
pr∈session−roles(s)assigned_pperms(pr).

4.Parameter Verification Functions:
– VERIFIERS = {V1, V2, ..., Vn} a finite set of Boolean functions.

For each Vi ∈ VERIFIERS.Vi : SESSIONS × OPS ×OBS × PVPAIRS→ {True, False}.
– param_verifier: OBTS × PAR→ VERIFIERS, a function that maps a combination of

object type and parameter to the corresponding verification function needs to be evaluated.

52

Table 4.2: Parameter Checking Functions.
A. Verifiers:
Language LVerify is used to define each verifier Vi(s: SESSIONS, op: OPS, ob: OBS, pvpair :
PVPAIRS) in VERIFIERS.
B. CandidateVerifiers: a function that maps each object type to its applicable set of verifiers.
CandidateVerifiers(ot: OBTS, pvpairs : 2PV PAIRS){

verifiers = {};
For each pvpairi ∈ pvpairs do

Vi = param_verifier(ot, pvpairi.par);
verifiers := verifiers ∪ {(Vi × pvpairi)};

return verifiers;
}
C. ParamCheck: a function that checks an object against all candidate verifiers until the first
failure is discovered or a true is returned as the final outcome.
ParamCheck(s: SESSIONS, op: OPS, ob: OBS, pvpairs: 2PV PAIRS){

For each (Vi × pvpairi) ∈ CandidateVerifiers(type(ob), pvpairs) do
if ¬Vi(s, op, ob, pvpairi)

return false;
return true;

}

operations to query the list of devices/hosts based on one of Mac Address, VLAN id, IPv4 Address,

IPv6 Address, or a combination of them. Inserting flow rules and reading port statistics are another

examples of operations. OBS is the set of object instances that are managed by the controller and

should be protected from unauthorized access. They are managed by the controller to maintain

a consistent state of the network infrastructure. An element in OBTS represents the type of a

specific object instance. For example, FLOW-RULE, DEVICE, and LINK refer to the type of

actual instances of flow rules, devices, and links respectively.

PAR represents the set of all parameters in the system. This could be atomic or set valued

as determined by the type of the parameter. Type of a parameter, set or atomic, is specified by

the function parType. VAL is a set of parameters values used in the system. PRMS is the set

of permissions, where a permission combines a network operations with an object type. The set

SESSIONS represents a mapping between an app and an activated subset of parameterized roles.

An app can have multiple sessions and a session belongs to only one app. OT is relation for the

combinations between objects and their types. PVPAIRS is a subset of parameter:value pairs.

53

Table 4.3: Language LVerify to form verifiers.
ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ) | ¬ϕ | ∃x ∈ set.ϕ | ∀x ∈ set.ϕ | set setcompare set | atomic ∈ set |
atomic atomiccompare atomic setcompare ::= ⊂ | ⊆ | *atomiccompare ::= < | = | ≤
set ::= setpar.val | ConstSet
atomic ::= atomicpar.val | ConstAtomic
setpar ∈ {pvpair | pvpair ∈ PVPAIRS ∧ parType(pvpair.par) = set}
atomicpar ∈ {pvpair | pvpair ∈ PVPAIRS ∧ parType(pvpair.par) = atomic}

PPRMS defines the set of parameterized permissions as discussed in Section 4.2.2. PROLES

defines the set of parameterized roles as discussed in Section 4.2.3.

Table 4.4: App authorization function.
Function Authorization Condition
checkAccess(s: SESSIONS,
op: OPS, ob: OBS)

∃pr ∈ PROLES : pr ∈ session_roles(s),
∃pp ∈ PPRMS : (pp, pr) ∈ PPA ∧
(op, type(ob)) = (pp.op, pp.ot) ∧
ParamCheck(s, op, ob, pp.PVPAIRS) = True.

Functions required for parameter verification are defined in part 4 of Table 4.2. VERIFIERS

is a set of boolean functions defined by security administrators for parameter verification. Each

Vi ∈ VERIFIERS is applied on an object and a parameter to check whether an object satisfies the

requirements of the parameter. Param_verifier is a function that returns a verifier tat need to be

executed at the time of access request. It maps an (object type, parameter) pairs to their related

verifier.

In our model, parameter checking and verification process is an essential part of evaluating

each session’s access request. It requires different components to communicate as illustrated in

Table 4.2. Security administrators firstly need to define a parameter verification function Vi (or

so-called a verifier) that must be executed to find whether an object fulfills the requirements of

a parameter. Verifiers are defined by means of the language LVerify defined in Table 4.3. The

language LVerify allows to create conditions that involves parameter values and information about

the object. In this language, ConsSet and ConsAtomic are constant sets and atomic values.

Because not all the verifiers need to be executed for a requested object, security administra-

54

tors need to specify the subset of verifiers applicable to the requested object and the permission

parameters. An access request might need to execute multiple verifiers depending on the number

parameters associated with the parameterized permission under the check. At the time of access

request, the function CandidateVerifiers receives all parameters associated with a parameterized

permission need to be checked. This function is responsible of retrieving the set of applicable

verifiers and submitting this set to the function ParamCheck for evaluation. In order to do this,

it passes the object type along with each parameter to param_verifier function that retrieves the

applicable verifier.

For an object and set of permission parameters, it should be mentioned that the function Can-

didateVerifiers doesn’t deal with the parameter values or the object instances themselves, however,

it relies on the parameter name and the object types to fetch a relevant verifier. On the other hand,

verifiers use information about actual object and actual parameter values for evaluation.

The function ParamCheck receives the applicable verifiers for the object and verifies if the

object can be accessed based on the provided parameter values. It achieves this by invoking the

verifiers one by one. For finding the final outcome of session’s access request, the system function

CheckAccess is used. This function is formally defined in Table 4.4. As part of final decision,

it invokes the function ParamCheck to evaluate the compliance of the object with the permission

parameters. It is responsible of returning the final decision whether an app’s session is or is not

allowed to perform a given operation on a given object.

4.4 App and Permission Assignment

The specification of a complete list of administrative functions is out of the scope of this work. We

only show two administrative functions assignApp(a, pr, valset) and assignPPerm(pp, pr) due

to their relation to the parameter values as described in Section 4.2.4. The formal specification of

these two administrative functions is shown in Table 4.5. The function assignApp(a, pr, valset)

assigns an app a to a parameterized role pr and assigns the values in valset to parameters in pr.

The values in valset propagates automatically to the corresponding permission parameters in every

55

Table 4.5: Formal specification of assignApp(a, pr, valset) and assignPPerm(pp, pr) administrative
functions.

Function Authorization
Condition

Update

assignPPerm(pp,
pr)

pp ∈ PPRMS ∧
pr ∈ PROLES
∧ (pp, pr) /∈
PPA

PPA’ = PPA
⋃

{(pp, pr)}

assignApp(a,
pr, valset)

a ∈ APPS ∧ pr
∈ PROLES ∧
valset ∈ VAL ∧
(a, pr) /∈ AA

//Assign values to role parameters.
For each pr_pvpairi ∈ pr.PVPAIRS, vi ∈ valset, 1 ≤ i ≤
|pr.PVPAIRS| do

pr_pvpairi.val = vi
//Pass parameter values from pr to its member parameterized
permissions.
For each pp ∈ PPRMS : (pp, pr) ∈ PPA do

For each pr_pvpairi ∈ pr.PVPAIRS, pp_pvpairi ∈
pp.PVPAIRS, 1 ≤ i ≤ |pr.PVPAIRS| do

pp_pvpairi.val = pr_pvpairi.val
AA’ = AA

⋃
{(a, pr)}

parameterized permission pp associated with pr. A parameterized permission pp can be assigned

to a role parameterized pr via the assignPPerm(pp, pr) function.

4.5 Framework Architecture and Parameter Engine Components

In this section, we show how ParaSDN is designed to integrate role parameters in the decision pro-

cess, and also we introduce how ParaSDN works by presenting its operational scenario. As shown

in Fig. 4.3, ParaSDN consists of four main components: (1) Policy Enforcement Point (PEP), (2)

Policy Decision Point (PDP), (3) Policy Information Point (PIP), and (4) Parameter Engine. The

General functionality of the Parameter Engine itself is distributed among multiple components,

namely, Parameter Check Point (PCP), Verifiers Retrieval Point (VRP), and multiple Parameter

Verification Points (PVPs). These components function together to provide parameter evaluation

essential for generating an access control decision fundamental for security policy enforcement.

When an app’s session submits an access request, the authorization flow involves intercepting

the session’s access request by PEP, passing the request to the PDP, and inquiring the PIP for

56

Figure 4.3: General Overview of the ParSDN system components and Architecture

available session parameterized permissions. Before involving parameters in the authorization

process, the regular permissions in the parametrized permissions available for a session provides

the right to operate on all objects of specific type. However they not enough for identifying certain

set of objects accessible by a session. The authorization flow is proceeded by sending the object

and the parameters to the Parameter Engine for verification.

The first component of the Parameter Engine is the PCP. It represents a central point in the

Policy engine. It is responsible of receiving the object and the permission parameters and verifying

if the object can be accessed based on the provided parameters’ values. In order to do this, the PCP

must check if the requested object complies with the requirements of each and every parameter

associated with the permission. This is done by invoking candidate verifiers each represents a

57

Table 4.6: Examples for Flow-driven Parameters for SDN.
Parameter Description
tcp_src, tcp_dst TCP source/distination port
udp_src, udp_dst UDP source/distination port
vlan_id VLAN id
ip_proto IP protocol
ipv4_src, ipv4_dst IPv4 source/distination address
ipv4_src_mask,
ipv4_dst_mask

IPv4 source/distination subnet mask

parameter verification point (PVPs).

Each PVP is a boolean expression designed by the security administrator to verify if an object

satisfies the requirement of the parameter. In other words, each PVP receives an object and a

parameter and evaluates the session’s right to access the object based on the parameter value. If

any PVP returns FALSE, which means that the requirements of that parameter is not satisfied, the

PCP stops the whole parameter verification process and returns false to the PDP. On the other hand,

the PCP will return true if and only if the object satisfies all the perimeter requirements, i.e., all

PVPs return TRUE. The PDP logic relies on this result to allow or deny access to the requested

object.

Before the PCP calls any PVP, it need to specify the subset of PVPs need to be invoked. We

design the VRP as responsible of identifying these PVPs and submitting them to the PCP. The

VRP does this by referring to the VerifiersMap which maps pairs of object type and parameter to

their applicable PVP.

4.6 Parameter Categories for SDN

We identify four categories of parameters that can be used with parameterized roles and permis-

sions for SDN environment.

1. Topology-specific parameters: parameters to identify subsets of network switches, links,

or ports. For example, the set-valued parameter switch_id with a value of 00:00:00:00:00:00:00:01

assigned to a role Topology-Visualizer restricts role holders from accessing other switches.

58

2. Flow-driven parameters: represent parameters to identify flow rules. They can be supplied

to roles (e.g., ‘Flow Mod’) that authorize access to objects of type FLOW-RULE. For example,

parameter tcp_dst assigned a value of 80 will identify all flow rules that manipulate traffic destined

to an HTTP server. A parameter ipv4_dst_mask assigned a value of 192.168.5.0/24 identifies flow

rules targeting this subnet. i.e., targeting IP addresses in the range 192.168.5.0 - 192.168.5.255

that has subnet mask of 255.255.255.0. Table 4.6 shows examples of Flow-driven parameters.

3. Application-specific parameter: This parameter represents an app_id. It is supplied to

roles to identify particular app that will operate using this role. For example, assume the param-

eter app_id is supplied to role ‘Pool Manager’ and app_id is assigned the value "Load Balancer"

(assuming "Load Balancer" is an app ID for a load balancer app), this means that this role can

operate only by "Load Balancer" app. Every time a request is submitted by a session using this

role, a verifier function VApp_id should verify that session_app(s) = app_id(‘Pool Manager’), i.e.,

session_app(s) = "Load Balancer". Assuming this session is compromised by an app MalApp, this

makes session_app(s) = MalApp. As a result, any request using this session will not be granted

because the verifier VApp_id will fail since the check session_app(s) = app_id(‘Pool-Manager’)

will return false because the parameter value ‘Pool Manager’ is attached as the parameter value in

the parameterized role. This requires sending the session id as parameter to the verifier function in

order to use session_app(s) in the evaluation process which is already depicted in the formal model

in Table 4.1.

4. Organization-specific parameters: They represent parameters pertaining to internal or-

ganizational structure such as divisions and departments operating internally at some level in the

organization hierarchy. For example, a parameter dept with the value of CS or CE associated with

a ‘Flow Mod’ role identifies network resources that can be accessed by apps operating under Com-

puter Science or Computer Engineering departments, respectively. These resources might include

set of switches, ports and links under the authority of specific department. The interpretation of the

organization-specific parameters and the resources associated with them is an internal organization

issue. In another example, a parameter tenant with the value tenant1, authorizes an app to access

59

Figure 4.4: Topology for proof of concept use case in section 4.7.

tenant1 resources.

4.7 Proof of Concept Use Case

In this section we demonstrate and configure a use case in ParaSDN. Assume in a small campus

network we have the network infrastructure as depicted in Fig. 4.4. The infrastructure is divided

between two departments CS and CE. Assume CS dept independently manages two switches, 0x1

and 0x2 and the four hosts connected to them. Host-3 runs a web server. The CE department

separately manages one switch 0x3 and two hosts host-5 and host-6. Host-5 runs a web server.

hosts1-4 are assigned vlan_id=1, and hosts-5 and Host-6 are assigned to vlan_id=2. Switches are

connected to one controller. The controller has two apps, one for each Department. ‘Data Usage

Cap Mngr’ is authorized on resources of CS dept and ‘Intrusion Prevention App’ is authorized

on resources of CE dept. The basic sets and assignment relations of the use case configuration is

shown in Table 4.7.

The app ‘Data Usage Cap Mngr’ is designed to protect web server on host-3 from any denial-of-

service. It needs to monitor bandwidth consumption on attachment points in switches of CS dept.

Thus, is assigned to the parameterized role (Bandwidth Monitoring, (attachment_point, 0x1:1,

60

Table 4.7: Configuration of the proof of concept use case of section 4.7 in ParaSDN (Part 1).
1. Model Basic Sets:
– APPS = {Data Usage Cap Mngr, Intrusion Prevention App}.
– ROLES = {Device Handler, Bandwidth Monitoring, Flow Mod, Packet-In Handler}.
– OPS = {queryDevice, getBandwidthConsumption, addFlow, readPacketInPayload}.
– OBS = D ∪ PS ∪ FR ∪ PIP, where D = set of all network devices, PS = set of all port

statistics in all switches, FR = set of all flow rules, and PIP = set of all packet-in messages.
– OBTS = {DEVICE, PORT-STATS, FLOW-RULE, PI-PAYLOAD}.
– PAR = {vlan_id, attachment_point, dept, traffic}.
– Range(vlan_id) = {1, 2}. Range(attachment_point) = {0x1:1, 0x1:2, 0x2:1, 0x2:2, 0x3:1}.

Range(dept) = {CS, CE}. Range(traffic) = {web}.
– parType(vlan_id) = atomic. parType(attachment_point) = set. parType(dept) = set.

parType(traffic) = atomic.
– PRMS = {(queryDevice, DEVICE), (getBandwidthConsumption, PORT-STATS),

(addFlow, FLOW-RULE), (readPacketInPayload, PI-PAYLOAD)}.
– SESSIONS = {DataUsageAnalysisSession, DataCapEnforcingSession,

IntrusionPreventionSession}.
2. Assignment Relations:
– OT = {(d, DEVICE) : d ∈ D}

⋃
{(ps, PORT-STATS) : ps ∈ PS}

⋃
{(fr, FLOW-RULE) : fr

∈ FR}
⋃

{(pip, PI-PAYLOAD) : pip ∈ PIP}}.
– PPRMS = {((queryDevice, DEVICE), {(vlan_id, ⊥)}), ((getBandwidthConsumption,

PORT-STATS), {(attachment_point, ⊥)}),
((addFlow, FLOW-RULE), {(dept, ⊥), (traffic, ⊥)}), ((readPacketInPayload,
PI-PAYLOAD), {(attachment_point, ⊥)})}

– PROLES = {(Device Handler, {(vlan_id, ⊥)}), (Bandwidth Monitoring,
{(attachment_point, ⊥)}),
(Flow Mod, {(dept, ⊥), (traffic, ⊥)}), (Packet-In Handler, {(attachment_point, ⊥)})}

– PPA = {(((queryDevice, DEVICE), {(vlan_id, ⊥)}), (Device Handler, {(vlan_id, ⊥)})),
(((getBandwidthConsumption, PORT-STATS), {(attachment_point, ⊥)}), (Bandwidth
Monitoring , {(attachment_point, ⊥)})),
(((addFlow, FLOW-RULE), {(dept, ⊥), (traffic, ⊥)}), (Flow Mod, {(dept, ⊥), (traffic,
⊥)})),
(((readPacketInPayload, PI-PAYLOAD), {(attachment_point, ⊥)}), (Packet-In Handler,
{(attachment_point, ⊥)}))}.

– AA = {(Data Usage Cap Mngr, (Device Handler, {(vlan_id, 1)})), (Data Usage Cap Mngr,
(Bandwidth Monitoring, {(attachment_point, {0x1:1, 0x1:2, 0x2:1, 0x2:2})})), (Data
Usage Cap Mngr, (Flow Mod, {(dept, {CS}), (traffic, web)})), (Intrusion Prevention App,
(Device Handler, {(vlan_id, 2)}), (Intrusion Prevention App, (Packet-In Handler,
{(attachment_point, {0x3:1})}), (Intrusion Prevention App, (Flow Mod, {(dept, {CE}),
(traffic, web)}))}.

61

Table 4.8: Configuration of the proof of concept use case of section 4.7 in ParaSDN (Part 2).
3. Derived Functions:
– assigned_pperms((Device Handler, {(vlan_id, ⊥)})) = {((queryDevice, DEVICE),

{(vlan_id, ⊥)})}.
assigned_pperms((Bandwidth Monitoring, {(attachment_point, ⊥)})) =
{((getBandwidthConsumption, PORT-STATS), {(attachment_point, ⊥)})}.
assigned_pperms((Flow Mod, {(dept, ⊥), (traffic, ⊥)})) = {((addFlow, FLOW-RULE),
{(dept, ⊥), (traffic, ⊥)})}.
assigned_pperms((Packet-In Handler, {(attachment_point, ⊥)})) =
{((readPacketInPayload, PI-PAYLOAD), {(attachment_point, ⊥)})}.

– app_sessions(Data Usage Cap Mngr) = {DataUsageAnalysisSession,
DataCapEnforcingSession}.
app_sessions(Intrusion Prevention App) = {IntrusionPreventionSession}.

– session_roles(DataUsageAnalysisSession) = {(Device Handler, {(vlan_id, 1)}),
(Bandwidth Monitoring, {(attachment_point, {0x1:1, 0x1:2, 0x2:1})})}.
session_roles(DataCapEnforcingSession) = {(Flow Mod, {(dept, {CS}), (traffic, web)})}.
session_roles(IntrusionPreventionSession) = {(Device Handler, {(vlan_id, 2)}), (Packet-In
Handler, {(attachment_point, {0x3:1})}), (Flow Mod, {(dept, {CE}), (traffic, web)})}.

– avail_session_pperms(DataUsageAnalysisSession) = {((queryDevice, DEVICE),
{(vlan_id, 1)}),
((getBandwidthConsumption, PORT-STATS), {(attachment_point, {0x1:1, 0x1:2,
0x2:1})})}.
avail_session_pperms(DataCapEnforcingSession) = {((addFlow, FLOW-RULE), {(dept,
{CS}), (traffic, web)})}.
avail_session_pperms(IntrusionPreventionSession) = {((queryDevice, DEVICE),
{(vlan_id, 2)}), ((readPacketInPayload, PI-PAYLOAD), {(attachment_point, {0x3:1})}).
((addFlow, FLOW-RULE), {(dept, {CE}), (traffic, web)})}.

4.Parameter Verification Functions:
– VERIFIERS = {VDeviceVlan, VStatsAttachpoint, VRuleSwitch, VRuleTraffic,

VPInAttchpoint}.
– param_verifier((DEVICE, vlan_id)) = VDeviceVlan.

param_verifier((PORT-STATS, attachment_point)) = VStatsAttachpoint.
param_verifier((FLOW-RULE, dept)) = VRuleSwitch.
param_verifier((FLOW-RULE, traffic)) = VRuleTraffic.
param_verifier((PI-PAYLOAD, attachment_point)) = VPInAttchpoint.

62

Table 4.9: Configuration of parameter engine functions for use case of section 4.7 (Part 3).
A. Verifiers:
A.1. VDeviceVlan(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from app Data Usage Cap Mngr via DataUsageAnalysisSession with the following:
//ob = host tagged with vlan_id=1
//pvpair = (vlan_id, 1)
(ob.vlan_id = pvpair.val); //will return true

}
A.2. VStatsAttachpoint(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from app Data Usage Cap Mngr via DataUsageAnalysisSession with the following:
//ob = 0x1:1
//pvpair = (attachment_point, {0x1:1, 0x1:2, 0x2:1: 0x2:2})
(ob ∈ pvpair.val); //will return true

}
A.3. VRuleSwitch(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from app Data Usage Cap Mngr via DataCapEnforcingSession with the following:
//ob = flow_rule[switch_id=0x2,tcp_dst=80,...]

//pvpair = (dept, {CS})
//switches(CS) = {0x1, 0x2}
(∃d ∈ pvpair.val : ob.switch_id ∈ switches(d)); //will return true

}
A.4. VRuleTraffic(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from app Data Usage Cap Mngr via DataCapEnforcingSession with the following:
//ob = flow_rule[switch_id=0x2,tcp_dst=80,...]

//pvpair = (traffic, web)
(ob.tcp_dst ∈ protocol_ports(pvpair.val)); //will return true

}
A.5. VPInAttchpoint(s: SESSIONS, op: OPS, ob: OBS, pvpair : PVPAIRS){

//assume a request from Intrusion Prevention App via IntrusionPreventionSession with the following:
//ob = packet-in message with source switch_id = 0x3
//and out_port = 1
//pvpair = (attachment_point, {0x3:1})
(attachment_point(ob.switch_id, ob.out_port) ∈ pvpair.val); //will return true

}
B. CandidateVerifiers(ot: OBTS, pvpairs : 2PV PAIRS){

verifiers = {};
For each pi ∈ {dept, traffic} do

V1 = param_verifier(FLOW-RULE, dept); //V1=VRuleSwitch.
verifiers := verifiers ∪ VRuleSwitch;
V2 = param_verifier(FLOW-RULE, traffic); //V2=VRuleTraffic.
verifiers := verifiers ∪ VRuleTraffic;

return verifiers; //verifiers = {VRuleSwitch, VRuleTraffic}.
}
C. ParamCheck(s: SESSIONS, op: OPS, ob: OBS, pvpairs: 2PV PAIRS){

//Example for flow rule insertion by DataCapEnforcingSession.
verifiers = CandidateVerifiers(type(flow_rule[switch_id=0x2,tcp_dst=80,...]), {(dept, {CS}),

(traffic, web)}).
VRuleSwitch(DataCapEnforcingSession, addFlow, flow_rule[switch_id=0x2,tcp_dst=80,...],

(dept, {CS}));
VRuleTraffic(DataCapEnforcingSession, addFlow, flow_rule[switch_id=0x2,tcp_dst=80,...],

(traffic, web));
return true;

}

63

0x1:2, 0x2:1, 0x2:2)). When this application notices high transmission of packets destined to the

web server, it inserts flow rules to block sender’s traffic. This app is authorized to handle web

traffic only. For that reason it is assigned to to the parameiretized role (Flow Mod, (dept, CS),

(traffic, web)). ‘Data Usage Cap Mngr’ is allowed to read information about hosts with vlan_id =

1 only. For this reason it is assigned to the parameterized role (Device Handler, (vlan_id, 1)). Thie

relations between apps and these parameterized roles is specified in AA relation in item 2 of table

4.7.

The function of ‘Intrusion Prevention App’ is to inspect packets destined to the web server in

host-5. It inserts flow rules to block any malicious activity destined to this web server. Because

it is authorized for switch 0x3 only, the app is assigned to parameterized roles (Flow Mod, (dept,

CE), (traffic, web))) and (Packet-In Handler, (attachment_point, 0x3-1).

When access requests are submitted by these apps, ParaSDN checks each access requests using

the CheckAccess function described in Table 4.4. The Parameter Engine calls the verifiers to verify

if apps requests are legitimate based on parameter values. Examples of verifiers for are shown in

item A of Table 4.9. For example, the verifier VRuleSwitch Will be called to make sure that the

flow rule is inserted in a switch under the authority of the requester app. if app1 tries to insert a

flow rule in switch 0x2. The verifier VRuleSwitch will be elected as a candidate verifier based on

the object type and the parameter. It will receive the object and the parameter (dept, CS) and verify,

based on the condition, that the flow rule will be inserted in switches of CS department. Otherwise,

a false is returned and access will be denied. The verifiers in the item A of Table 4.9 gives some

assumed access requests based on the use case and the corresponding verifier’s decision. The two

Apps achieve these tasks via sessions. These sessions and their parameterized roles are shown in

item 3 of Table 4.8 via the function session_roles.

4.8 Implementation and Evaluation

In order to demonstrate our proof-of-concept prototype, we developed and ran the framework in

Floodlight platform v1.2 release [22]. The Floodlight platform is deployed on a virtual machine

64

Figure 4.5: Average execution time required to finish the tested operations.

Figure 4.6: Average authorization time required to finish the tested operations including error bars.

that has 8GB of memory and runs on Ubuntu 14.04 OS installation. We created a topology with

three virtual switches (Open vSwitch v2.3.90) connected to each other and each switch is con-

nected to two hosts. Switches are connected to the controller and hosts are virtual machines that

has 2GB and run Ubuntu 14.04 OS server.

We implemented our ParaSDN system in Floodlight platform and used hooking techniques

without any change to the code of Floodlight modules. We implemented hooking for all operations

exposed by Floodlight services to controller apps. We used AspectJ [6] which is a seamless aspect-

oriented extension to Java. Our system intercepts methods before execution. When a session issues

a request the hooked API invokes the ParaSDN components for performing access verification and

65

Figure 4.7: Overhead imposed by parameters in ParaSDN compared to SDN-RBAC system.

reply back. This system can be deployed to all other Java-based SDN controllers.

App requests are intercepted by our framework before reaching to the SDN service. Access

will be provided by the service only after successful authorization check. During the lifetime of

the app, our access control system keeps mediating all sessions access requests for performing

security authorizations. It can identify each session, mediate each access request and send it for

authorization check based on ParaSDN configuration.

To evaluate the performance of ParaSDN, we created a test app and assigned the app fifty

network operations. The purpose is to perform a pressure test on ParaSDN by executing these

operations with different security configurations. Each security configuration is characterized by

the number of parameterized roles assigned to the app and number of parameters associated with

each of them. We created test parameters and associated them with parameterized roles and created

corresponding test verifiers. For each security configuration, the test is repeated for hundred times.

In the first configuration, the fifty operations are executed with one fixed parameterized role and

varying number of test parameters. The total authorization time is reported for these fifty operations

as shown in Fig. 4.5. Each subsequent test is performed by assigning one more parameterized role

to the app and repeating the same previous test with varying number of parameters until ten roles.

The execution time for all tests is reported as shown in Fig. 4.5 and the same results including the

66

Figure 4.8: Overhead imposed by parameters in ParaSDN compared to SDN-RBAC system in-
cluding error bars.

error bars are shown in Fig. 4.8.

The results in Fig. 4.5 demonstrates that the latency overhead of ParaSDN increases linearly

with the number of parameters and the number of roles, thus ParaSDN is highly scalable even if

the number of parameters and the complexity of security configuration grow in the future.

To compare the overhead imposed by parameters in ParaSDN with the one without using Pa-

rameters, i.e, the SDN-RBAC system, we repeated the same test on SDN-RBAC. We computed the

average times required to finish all parameters with fixed number of roles and aligned the results

of with that of SDN-RBAC. The results are shown in Fig. 4.7 and repeated again with error bars

in Fig. 4.8. The overall results show that ParaSDN adds negligible overhead to the Floodlight

controller which doesn’t impact the whole controller’s performance.

67

CHAPTER 5: A MODEL FOR THE ADMINISTRATION OF ACCESS

CONTROL IN SDN USING CUSTOM PERMISSIONS

In this chapter, we first present an extension to SDN-RBAC by introducing tasks, and then we

present an administrative model for administering app-role and task-role relations, referred to as

SDN-RBACa.

5.1 Motivation and Scope

The centralized SDN controller in conjunction with network operations provided by controller

services result in a programmable network. This programmability allows network administrators to

provide network services that enable more flexible, customized, and intelligent networking through

applications. SDN offers the possibility for SDN applications to further extend the functionality of

the network. These and other features make SDN suitable for technologies like Cloud Computing

[7] and IoT [38].

Access rights of network apps must follow the minimum privilege principle. Recently, various

methods have been proposed for adopting RBAC for the management of access rights of network

apps [3, 4, 41, 49]. Thus, administration of access rights of network apps is necessary. In large

SDNs with possibly large number of network apps, and with the possibility of an increased number

of network services provided by the controller, the number of roles can be in the hundreds or

thousands, and apps can be in the tens or hundreds or thousands. Managing permissions, roles,

apps, and their interrelationships could be a tremendous task which needs simplification.

Because the motivation behind adopting RBAC [20,46] for SDN is to simplify the administra-

tion of app authorizations, and because the most commonly carried out administrative activities in

SDN-RBAC are maintaining the app-role and permission-role relations, in this chapter we present

an extension to SDN-RBAC operational model by introducing tasks, and then we present an ad-

ministrative model, referred to as SDN-RBACa, for administering app-role and task-role relations.

To the best of our knowledge, this is the first time in the literature a model is presented for the

68

administration of access control in SDN.

For designing our administrative model, we adopt concepts from Uni-ARBAC [11] administra-

tive model because it unifies the administrative principles and novel concepts from many admin-

istrative models in the literature [16, 17, 33, 37, 43, 44, 52]. Following Uni-ARBAC, in our model

instead of administering individual permissions, permissions are combined into tasks which are

assigned to roles as a unit. Moreover, roles and tasks are partitioned and assigned into adminis-

trative units. Apps are assigned to app-pools from where individual apps are assigned to roles.

Administrative users in an admin unit can assign apps to roles only if these apps (via app pools)

and these roles are assigned to the admin unit in which this user is a member.

5.2 Administrative Units in SDN

Small SDN networks with small number of SDN apps and roles could be managed easily by

a single administrator or a single admin unit that handles all network functions and all traffic

types. As SDN networks grow larger with more apps, however, they become more complex and

difficult to centrally manage all access control components and their associations by a single,

fully-trusted administrative authority. Thus, access control administration has to be decentralized

into multiple partially-trusted administrative authorities which are assigned appropriate power to

change portions of the RBAC state.

In our model, rather than having administrative roles, we adopt the concept of Administrative

Units (AU) [11] to decentralize access control administration for SDN-RBAC. In large SDNs, the

need for specialized apps to deal with specific network traffic becomes more prominent. For exam-

ple, Web load balancer, VoIP load balancer, Web Firewall, VoIP Firewall, etc. In order to enable the

administration of SDN-RBAC, we have to engineer administrative units based on the functions of

network apps and their access rights. For example based on traffic types or organizational entities

(e.g., department in a campus network, tenant network slice, etc.).

Engineering of admin units requires that each admin unit manages an exclusive set of roles

which is not under the authority of another admin unit. If administration is divided into multiple

69

admin units, each specialized with one traffic type, for example web admin unit, VoIP admin unit,

email admin unit, and ftp admin unit, this makes each admin unit responsible for managing exclu-

sive set of roles that handle similar network functions. In this case, web admin unit exclusively

manages roles related to network functions that handle web traffic. Similarly VoIP admin unit ex-

clusively manages roles related to network functions that handle VoIP traffic. In another scenario,

if admin units are divided based on organizational entities, multiple tenants for example, then each

admin unit manage exclusive roles of one tenant. And this admin unit authorizes SDN apps of this

tenant (via role assignment) to independently operate on this tenant’s resources.

Practically, if an operation allows access to a wide range of resources, and these resources need

to be managed by different admin units, this precludes the flexibility in engineering appropriate

admin units. The flexibility stems from the presence of operations fine grained enough to provide

the convenience in engineering set of roles exclusive for each admin unit.

Because engineering of admin units requires that each admin unit manages an exclusive set

of roles and, to some extent, exclusive set of resources which can be accessed by permissions in

these roles, it is vital for the operations/APIs exposed by the system under consideration to be

fine grained enough to the level necessary to engineer these roles. Otherwise, engineering of such

admin units will be infeasible.

Unfortunately, the currant state of the art SDN controllers doesn’t provide such fine grained

network operations. For example, an app with the permission to add a flow rule can insert a flow

rule that manipulates any traffic type. Also, it can insert the flow rule in any switch reachable by

the controller. From an administrative point of view, this precludes the coexistence of different

administrative units for access control in SDN. For example, to engineer Web AU and VoIP AU, it

is necessary to engineer set of roles that only handle web traffic and another set of roles that only

handles VoIP traffic. Each set of roles will be exclusively managed by its respective AU. Such

capability is not possible by native operations provided by SDN controllers.

A solution for this problem is to create a refined version of the coarse grained operation in a way

that satisfies fine grained access control needs of SDN apps and enables engineering of different

70

Figure 5.1: Target, custom, and proxy operations.

admin units necessary for access control administration. The refined version of an operation is

called customized or custom operation as will be described later in the following section.

5.3 Custom and Proxy Operations

In this context, an SDN controller operation is a java API call submitted by an SDN controller apps

to access network resources. We call these operations as target operations OPTarget since they are

the current target by SDN apps and need to be refined. We call the refined version as the custom

operation OPcustom. So, a custom operation is the refined version of a target operation.

A custom operation is created by first cloning the target operation and then refining its code

by adding a fine grained check on the desired attributes based on which an admin unit is defined.

For example, because a web admin manages web-related roles, it requires the existence of network

operations that handle only web traffic and disallow treatment of other traffic types. Thus, the

target operation is refined by adding a check inside its custom operation to make sure that accessed

objects are web-related only. If each custom operation will check for a specific type of traffic (e.g.,

web, VoIP, ftp, email), then multiple custom operations must be created, one for each traffic type.

And because custom operations are exact copies of target operations, plus a refinement code added

71

to it, this approach has some problems: i) it significantly increase the number of lines of the native

code in SDN controller, ii) it requires extra effort in refining multiple very close custom operations

for one target operation, and ii) it increases the compilation time of the controllers code.

To avoid such problems, we create what we call proxy operations OPProxy. Each proxy op-

eration calls one custom operation and passes a parameter value based on which refinement will

be done. The general process for creating custom and proxy operations and their interaction is

schematically depicted in Fig. 5.1. The process starts by cloning the target operation OPTarget that

should be refined. The new resulted operation OPCustom is refined first by adding a new formal

parameter to the parameter list of OPTarget. Then it is further refined by adding the statements to

either check the accessed object against the parameter value or adding statements to filter out unau-

thorized objects based on the parameter value. Proxy operations can be considered as abstractions

for custom operations.

Each proxy operation contains a simple call to the custom operation. This call passes a param-

eter value to the custom operation based on which the refinement will be done and specific objects

will be accessed. For ease of reference and review, the name of the proxy operation should reflect

the parameter value passed to its custom operation.

By customizing the operations in such a way, a proxy operation becomes not only fine-grained

but also expressive and makes the design of access control systems and their administration much

easier. Figure 5.2 shows an example for creating a custom operation addFlow(.., traffic) for

addFlow operation and then creating three proxy Operations addWebFlow, addVoIPFlow, and

addFtpFlow. Using proxy operations makes OPCustom and its parameter abstract from the app.

This prevents the app from providing values for parameters of custom operations while submitting

any access request.

5.4 Custom Permissions

Custom permissions are those permissions that are created using the proxy operations. For exam-

ple, in SDN-RBAC, the permissions (addFlow, FLOW-RULE) uses the target operation addFlow.

72

Figure 5.2: Example of custom and proxy operations for the target operation addFlow .

After creating the custom operation addFlow(traffic), we create the proxy permissions (addWebFlow,

FLOW-RULE) and (addVoIPFlow, FLOW-RULE) for adding flow rules that handle web and VoIP

traffic, respectively.

A proxy group is the group of operations that invoke the same custom operation and pass

different parameter values. Members in a proxy group allow access to different set of objects.

Therefore, permissions composed of different proxy operations in one proxy group allows for the

creation of specialized roles. This enables exclusive role management by different admin units.

5.5 SDN-RBACa Model

In this section, we describe the SDN-RBACa administrative model, along with its formal defini-

tions. The overall structure of SDN-RBACa is illustrated in Fig. 5.3. We consider SDN-RBACa in

two parts: the operational model for SDN-RBAC with respect to regular roles and permissions as

well as tasks which will be introduced shortly, and the administrative model for administering the

app role and task-role relations of the former. These are discussed in the following subsections.

73

Figure 5.3: Conceptual model of SDN-RBACa.

5.5.1 Introducing Tasks

We view a task as a named set of several related permissions that represent a unit of network func-

tion for SDN apps. Adopting tasks for SDN-RBAC [3] has some administrative motivations. i)

Because custom permissions (see section 5.4) increase the number of total permissions currently

available in the SDN controller, using tasks reduces the extra management overhead entailed from

these newly resulted custom permissions. ii) In role engineering process, task-to-role assignment

is a more convenient abstraction than assigning individual permissions, especially when these per-

missions are related. Therefore, adopting tasks as a basic component in SDN-RBAC reduces

administration overhead typically associated with managing fine-grained permissions. In the next

section we show a the SDN-RBAC model with tasks as a basic component.

5.5.2 SDN-RBACa Operational Model

The sets and relations in the top part of Fig. 5.3 represent the SDN-RBACa operational model,

which is slightly different from the SDN-RBAC model [3]. The most distinguished difference is

that there is a level of indirection in role-permission assignment, so permissions are assigned to

tasks and tasks are assigned as units to roles. Adopting tasks has several motivations, as discussed

in Section 5.5.1. App-role assignment remains unchanged from SDN-RBAC. For simplicity, we

74

Table 5.1: Formal Definition of SDN-RBACa Administrative Model.

75

have not considered the SDN-RBAC concepts of sessions and role activation.

The SDN-RBACa operational model is formalized in Table 5.1. The first six components from

Item 1 specify the basic sets carried over from SDN-RBAC. TASKS is the set of tasks added to

SDN-RBAC. The last three sets belong to the administrative model (see section 5.5.3). Item 2

specifies the assignment relations in the operational model including the additional components

which effect the additional indirection between permissions and roles via tasks. Item 3 shows the

type derived function and shows the authorized_perms function which formalizes the interaction

between the permission-task and task-role assignments. The authorization function in item IV

specifies the authorization required for an app to exercise a permission and access an object, which

is that the permission must be authorized to at least one role assigned to the app.

5.5.3 SDN-RBACa Administrative Model

In this section we describe the SDN-RBACa administrative model illustrated in the lower part of

Fig. 5.3, and formalized in Table 5.1. The administrative model introduces a number of additional

components.

First we have the notion of app-pools. Examples of app-pool include ’Web Load Balance Pool‘

and ’Web Security Pool‘ as will be described in the use case in Section 5.7. Adopting app-pool

facilitates the allocation of several apps that achieve similar network functions to an admin unit.

The set of app-pools is denoted as AP. Apps are assigned to app-pools via the AAPA app to app-

pool assignment relation which is formally specified in item 5 of Table 5.1.

The set of administrative units is denoted as AU. SDN-RBACa requires that roles are parti-

tioned into different admin units and each role is allocated to exactly one unit for administration.

In other words, each admin unit manages an exclusive set of roles which is not under the authority

of another admin unit. This roles partitioning is formally specified using the roles function in item

6 of Table 5.1. The partitioning concept is further applied to tasks and app-pools via the tasks and

app_pools functions in item 6 of Table 5.1.

The result of roles, tasks, and app-pools partitioning is that an admin unit manages an explicitly

76

assigned partition of roles, to which it can assign apps from an assigned partition of app-pools and

tasks from an assigned partition of tasks. The outcome of this partitioning directly impacts the

results of authorization functions specified in item 8 of Table 5.1.

Assignment of administrative users to admin units can be done via the TA_admin or the

AA_admin relation. An administrative user in TA_admin is authorized to perform the adminis-

trative actions which assign a tasks to a roles, while a user in AA_admin is authorized to perform

the administrative actions which assign a apps to a roles. It should be mentioned that these capa-

bilities can be separately assigned to two different administrative users, even though they assigned

to one administrative unit. Such administrative actions bring apps and permissions together and,

in some critical SDN networks, they are best to be done by different network administrators.

Item 8 of Table 5.1 specifies the authorization functions for administrative users. The function

can_manage_task_role returns whether a given admin user can assign/revoke a given task to/from

a given role. The requirement is that this user must be assigned as TA_Admin to the unique

administrative unit which has exclusive authority over this role and this task.

Similarly, can_manage_app_role is an authorization function that returns true or false. This

function specifies the conditions for a given user to assign/revoke a given app to/from a given role.

The requirement is that this user must be assigned as AA_Admin to the unique administrative unit

which has exclusive authority over this role and over an app-pool to which this app is directly

assigned via AAPA relation.

The last item in Table 5.1 formalizes the four administrative actions to assign/revoke a task

to/from a role or an app to/from a role. This supports the reversibility principle which requires that

administrative actions should be reversible. If an administrative user makes a mistake, they can go

back.

5.6 Task and Role Engineering for SDN using Custom Permissions

In the following two subsections, we discuss the process of engineering tasks and roles using

custom permissions. The abstract process is illustrated in Fig. 5.4 and an example is described in

77

Figure 5.4: Conceptual representation of associations between custom permissions, tasks, roles,
and apps.

Section 5.6.2.

5.6.1 Tasks and Roles with Custom Permission

Because each custom permission is created using a proxy operation, it enables access to specific

fine grained resource known in advance before task or role engineering. Now, lets compare the use

of a target operation against a proxy operation in creating a permission. As shown in Fig. 5.4, three

proxy operations (x11, x12, and x13) are resulted from target operation op1, each one provides

access to a resource more fine grained than what is originally provided by the target operation op1.

This makes p1 = (x11, ot) more fine grained compared to using op1 to create the same permission,

i.e., (op1, ot), where ot is some object type. In turn, because we assign the custom permission p1

to task t1, this makes t1 a fine grained, or more specialized, task. Again, this is compared to using

op1 in the first place to engineer the same task. As shown in Fig. 5.4, task t1 is engineered with

the three custom permissions p1, p4, and p7 created using the proxy operations x11, x21, and x31,

respectively. Each one provides more fine grained access, and thus makes task t1 more fine grained

78

Figure 5.5: Example of creating three roles using custom permissions and their associations with
tasks and apps.

compared to using the target operations op1, op2, and op3 to create the same permissions. More

importantly, this process allows for the creation of more specialized tasks like t2 and t3 in the same

way.

The granularity of access resulted from using proxy operations to create custom permissions

escalates to roles. For example, roles r1, r2 and r3 in Fig. 5.4 provide more fine grained and

specialized access to network resources. Now, imagine that we want to engineer three admin

units au1, au2, and au3, each specialized with managing resources accessed by t1, t2, and t3,

respectively, then we simply assign each task and to its respective admin unit, and do the same

thing with roles r1, r2, and r3. On the contrary, starting the process with op1, op2, and op3 to

engineer these roles and tasks preclude the possibility of creating the required admin units.

5.6.2 Custom Permissions with ‘Flow Mod’ Role

In this section, we describe an example using the ‘Flow Mod’ SDN role to illustrate the creation

of nine proxy operations from three target operations (via custom operations), namely, addFlow,

deleteFlow, and readFlow. The example is depicted in Fig. 5.5. These target operations allow

network apps to access flow rules that handle any type of traffic. If it is required to have three

79

administrative units, each specialized with one type of traffic, namely, Web, VoIP, and FTP, and

if these three target operations are assigned to the three admin units (via permissions, tasks, and

roles), this means that an app, specialized with web flows, for example, might access unauthorized

flow rules that handle non-web traffic. To solve this problem, three proxy groups are created, one

for each target operation. Each proxy operation in a proxy group is specialized with one traf-

fic type. Now, for the ‘Web Admin Unit’, which is specialized with Web traffic, three custom

permissions, namely, (addWebFlow, FLOW-RULE), (deleteWebFlow, FLOW-RULE), and (read-

WebFlow, FLOW-RULE), will be created by picking the corresponding proxy operation from each

proxy group as shown in Fig. 5.5. These three custom permissions contribute to the engineering

of the tasks ‘Web Traffic Forwarding’ and ‘Web Flow Viewing’, which will be under exclusive

authority of ‘Web Admin Unit‘. These two tasks will be assigned to the role ‘Web Flow Mod’,

which also will be under exclusive authority of the same admin unit. This role can be assigned only

by administrative users who are members in ‘Web Admin Unit‘ to apps that handle web traffic and

belong to the authority of the same admin unit, such as ‘Web Intrusion Prevention’. The same idea

applies to ‘VoIP Flow Mod’ and ‘FTP Flow Mod’ roles.

5.7 Proof of Concept Use Cases

5.7.1 Basic Use Case - Web Admin Unit

In this section we discuss a proof of concept use case to demonstrate the use of custom permis-

sions in enabling the administration of SDN-RBAC. The use case configured in the SDN-RBACa

administrative model is shown in Tables 5.2 and 5.3.

The use case describes a scenario in which we have one administrative unit, called ‘Web Admin

Unit’. This admin unit is specialized of managing web resources. This administrative unit exclu-

sively manages five web-related roles as listed in the set ROLES in Table 5.2. It also exclusively

manages ten web-raled tasks listed in the set TASKS. All these roles and tasks provide access

to web resources, such as flow rules that handle web traffic, packet in headers and payloads that

contains web traffic, web pool servers, and statistics about web flows. These resources can be ac-

80

Table 5.2: Configuration of the administrative model for the use case in Section 5.7.1 - Part1.

cessed via twenty six custom permissions as listed in the set PRMS. All these custom permissions

are created using the proxy operations listed in the set OPS. The admin unit ‘Web Admin Unit’

exclusively manages the two web-related app-pools ‘Web Load Balance Pool’ and ‘Web Security

Pool’ listed in the set AP. Members in these two pools are the three network apps, ‘Web Intrusion

Prevention’, ‘Web Application Firewall’, and ‘Web Load Balancer’, specialized with web traffic

and require access to web resources. The relation between the two app-pools and the three apps

81

Table 5.3: Configuration of the administrative model for the use case in Section 5.7.1 - Part2.

are specified in AAPA relation shown in item 3 of Table 5.3.

The functions roles, tasks, and app_pools in item 4 show the partitioned assignment of the

five web-related roles, ten web-related tasks, and two web-related app-pools to the admin unit

82

Figure 5.6: ‘Web Admin Unit’ and ‘VoIP Admin Unit’ (gray) along with tasks, roles, and app
pools they exclusively manage. The figure also shows apps that admin units can manage via app-
pools.

‘Web Admin Unit’. This admin unit has two administrative users, web_functions_admin_user and

web_apps_admin_user. The former is authorized, via TA_admin relation, to assign/revoke tasks

to/from roles, and the later is authorized, via AA_admin relation, to assign/revoke apps to/from

roles. These two relations are specified in item 5 of Table 5.3.

5.7.2 Extended Use Case

For the sake of simplicity and readability, the use case in Section 5.7.1 is configured using one

administrative unit. In this section, we describe an extension to the use case by including more

admin units. The use case in Section 5.7.1 uses only web-related proxy operation from each proxy

group that handles multiple traffic types (see section 5.6.2). In this section, we show how we can

use another proxy operation from each proxy group to create another administrative unit. Fig. 5.6

83

Table 5.4: Examples of Administrative User Authorization Functions corresponding to some Ad-
ministrative Actions. Examples belong to extended use case in Section 5.7.2

depicts an extended use case with two admin unit ‘Web Admin Unit’ and ‘VoIP Admin Unit’. The

configuration of ‘Web Admin Unit’ is similar to that described in section 5.7.1.

Table 5.5: Administrative user assignment relation for use case in Section 5.7.2

The VoIP-related tasks in Fig. 5.6 are engineered in the same way Web-related tasks are en-

gineered. VoIP-related tasks are engineered using custom permissions which are created using

VoIP-related proxy operations. For example, three custom permissions, namely, (addVoIPFlow,

FLOW-RULE), (deleteVoIPFlow, FLOW-RULE), and (readVoIPFlow, FLOW-RULE) will be used

84

Figure 5.7: Screenshot of authorization check result for addWefFlow proxy operation requested
by WebTestApp - Access denied because of incorrect tcp_port number.

to engineer the tasks ‘VoIP Traffic Viewing’ and ‘VoIP Traffic Forwarding’. Both of these tasks

will contribute to the engineering of ‘VoIP Flow Mod’ role. A complete configuration for this use

case is given in ..

Using the same approach, we can create other admin units, for example, ‘Ftp Admin Unit’ and

‘Email Admin Unit’. It is clear that, by the power of proxy operations and the custom permis-

sions created from them, it becomes more flexible to create more administrative units, each one

specialized with different type of traffic.

Table 5.4 shows examples of administrative user authorizations corresponding to some admin-

istrative actions based on the extended use case in this section. The table shows the results of the

authorization function. The use case assumes the existence of four administrative users assigned

to the two admin units as specified in Table 5.5.

5.8 Implementation

To demonstrate the effectiveness of custom permissions with our access control, we implemented

a prototype on Floodlight, a Java based SDN controller. we developed and ran the prototype

in Floodlight SDN controller v1.2 release [22]. The Floodlight platform is deployed on a virtual

machine that has 8GB of memory and runs on Ubuntu 14.04 OS installation. We created a topology

with three virtual switches (Open vSwitch v2.3.90) connected to each other and each switch is

connected to two hosts. Switches are connected to the controller and hosts are virtual machines that

has 2GB and run Ubuntu 14.04 OS server. We implemented the access control using AspectJ [6], a

seamless aspect-oriented extension to Java. AspectJ ensures that all access requests from apps are

intercepted by our access control components. This system can be deployed to all other Java-based

85

Figure 5.8: Average authorization time in SDN-RBAC and SDN-RBACa Operational Model.

SDN controllers.

We created a simple test app, WebTestApp and assigned it to the role ’Web Flow Mod’. Thus,

it can access web flow rules only. We designed the app to insert a flow rule with TCP_DST = 25,

which is a non-web port. Our refined custom operation addFlow considers ports 80 and 443 as web

traffic. The proxy operation addWebFlow only allows ports 80 and 443 to be used for flow rule

insertions. The purpose of this test app is to demonstrate how our access control system checks

custom permissions and rejects unauthorized access. We created a flow rule and set the TCP_DST

match field to 25 using the java instruction: matchbuilder.setExact(MatchField.TCP_DST, Trans-

portPort.of(25));. This causes an access violation since the tcp port number is incorrect. A screen-

shot of the output console is shown in Fig. 5.7.

5.9 Performance Evaluation

To evaluate the effectiveness of our access control system utilizing custom permissions, we created

a test app and selected fifty proxy operations, from which we created fifty custom permissions.

These custom permissions are assigned to eighteen tasks and ten different roles. We incrementally

86

Figure 5.9: Average authorization time along with the standard deviation in SDN-RBAC and
SDN-RBACa Operational Model.

assigned these roles to the test app which runs in one session. Despite the fact that this app doesn’t

require all these roles, the purpose of this test is to check the overhead caused by our access control

on the system’s performance by reporting the execution time with different security policies. We

change the security policy by changing the active role set of the app’s session. In the first security

policy one role is assigned to the session’s active role set, in the second policy two roles where

assigned, and so on until ten roles.

For each security policy, the session executes all fifty proxy operations. The system is set to

compute the authorization delay imposed by the access control components to finish execution

and make an access control decision for each proxy operation submitted by the session. The timer

starts when the call is intercepted by AspectJ hook, and stops when the access decision is calculated

based on the available custom permissions for the session. The total time is calculated for all fifty

proxy operations. We repeated this test hundred times for each security policy. For overhead

comparison, we performed the same test on SDN-RBAC, but without custom operations. The

average elapsed authorization times calculated for SDN-RBACa operational model and the SDN-

87

RBAC model are reported as shown in Fig. 5.8. For ease of comparing the standard deviation,

the results are shown again in a bar chart format in Fig. 5.9. It should be noted here that delay

times does not include floodlight’s boot-up time, the time for loading the policy and creating the

corresponding relations.

This evaluation shows that the authorization check of operational model of SDN-RBACa adds

an average of 0.0252 ms overhead on the floodlight controller while SDN-RBAC adds 0.0245 ms

on average. This observed latency in both cases is negligible. Fig. 5.9 shows that the standard

deviation of authorization check time are generally larger for SDN-RBACa operational model

compared to SDN-RBAC model. We believe that this is because using tasks in SDN-RBACa

operational model introduces additional variance in the authorization check time. As an overall

result, the difference in overhead between the two models is also negligible. Therefore, we believe

that the operational model of SDN-RBACa introduces acceptable overhead to the controller for the

sake of access control administration.

88

CHAPTER 6: CONCLUSION AND FUTURE WORK

This chapter summarizes the contributions of this dissertation and provide some future research

directions.

6.1 Summary

In this dissertation, we identified fundamental elements of access control in SDN. We showed our

steps towards evolving effective access control models for a SDN environment. We started by

formalizing an authorization system for SDN proposed in the literature for Floodlight controller.

Based on the shortcomings of this model, we proposed a role based access control model for SDN

controller applications which we named SDN-RBAC. We implemented SDN-RBAC model with

multi-session support in Floodlight controller and used hooking techniques to enforce the security

policy without any change to the code of the Floodlight platform. We showed how the imple-

mentation verifies the model’s usability and effectiveness against unauthorized access requests by

controller applications, and showed how the framework can identify and reject unauthorized oper-

ations in real time.

Due to the need for a more granular access control for SDN apps and the need to apply the

least privilege principle, we enhanced our initial work by proposing ParaSDN, an access control

model that provides a fine grained access control using the concept of parameterized roles and

permissions. To demonstrate the applicability and feasibility of our proposed model, we configured

proof of concept use cases and implemented a prototype in an SDN controller.

We followed this work by proposing an administrative model, referred to as SDN-RBACa.

The goal of SDN-RBACa is to manage app-role and task-role relations in access control models

for SDN. To enable the administration for SDN, we introduced an approach for creating custom

SDN operations to extend the capabilities of SDN controller and provide fine grained custom

permissions necessary for the engineering of administrative units. Also, to facilitate access control

administration, we extended SDN-RBAC with tasks as a unit of network function and a more

89

convenient abstraction than dealing with permissions. Through proof of concept prototype and use

cases, we demonstrated the usability of custom permissions and showed how custom permissions

simplify the engineering of roles, tasks, and administrative units; hence, enable and facilitate the

administration of access control in SDN.

6.2 Future Work

SDN is a relatively new technology that incorporates some promising research directions and open

research problems that can be explored. For example access control for SDN-enabled Cloud and

SDN-enabled IoT. It is appealing to apply what what we have achieved by researching access

control in SDN to investigate and study authorization aspects in more complex SDN-enabled tech-

nologies, in particular, SDN-enabled Cloud and SDN-enabled IoT infrastructures. The goal is to

design and implement access control models to solve open authorization problems in such hot

technologies.

Access control for SDN with multi-tenancy. One possible research direction in SDN to

investigate open problems related to multi-tenancy with multi-controller setup for SDN-enabled

technologies. A common north-bound API and the resulting deployment of various third-party

applications poses new security threats in SDN. Malicious applications can leverage such an API

and attack the SDN network. These threats become even more evident when network resources are

shared among user groups, divisions, or even other companies. Network owner may lease part of

the network as network slices, each slice has its own network resources monitorred by a specific

controller that can be administered by the leasing tenant. Tenants install multiple OF applications

into the network controller to access network resources in their domain. Also, Tenants create users

and thus applications run on behalf or created users. One research direction is to investigate open

authorization problems for SDN with multi-tenancy, and design, and implement access control

models to handle existing problems.

Risk-Aware Access Control for SDN Apps. Because SDN is a battle space for traffic and

information from different sources. Security and privacy of transmitted information should be kept

90

at the highest level. Network traffic is almost vulnerable to all kinds of network attacks. Thus, ana-

lyzing traffic and resource misuse and malicious modification of system configuration and security

policy files is very important for building an access control mechanism based on risk assessment.

It is promising to explore this issue and build an access control model that relies on factors related

to risk calculation and assessment. The eventual goal is to build access control models based on

the information gathered from assessment factors and based on the experience gained and lessons

learned from implementing such risk aware access control and to help in developing more fine

grained access control in SDN-enabled technology.

91

APPENDIX A: EXTENDED USE CASE CONFIGURATION

This Appendix shows the complete configuration of SDN-RBACa administrative model for the

extended use case described in Section 5.7.2. The formal definition of the administrative model is

described in Section 5.5.3.

Table A.1: Complete use case configuration of SDN-RBACa for two administrative units - part1.

92

Table A.2: Complete use case configuration of SDN-RBACa for two administrative units - part2.

93

Table A.3: Complete use case configuration of SDN-RBACa for two administrative units - part3.

94

Table A.4: Complete use case configuration of SDN-RBACa for two administrative units - part4.

95

Table A.5: Complete use case configuration of SDN-RBACa for two administrative units - part5.

96

BIBLIOGRAPHY

[1] Ali E Abdallah and Etienne J Khayat. A formal model for parameterized role-based access

control. In IFIP World Computer Congress, TC 1, pages 233–246. Springer, 2004.

[2] Ijaz Ahmad, Suneth Namal, Mika Ylianttila, and Andrei Gurtov. Security in software defined

networks: A survey. IEEE Communications Surveys & Tutorials, 17(4):2317–2346, 2015.

[3] Abdullah Al-Alaj, Ram Krishnan, and Ravi Sandhu. Sdn-rbac: An access control model for

sdn controller applications. In 2019 4th International Conference on Computing, Communi-

cations and Security (ICCCS), pages 1–8. IEEE, 2019.

[4] Abdullah Al-Alaj, Ravi Sandhu, and Ram Krishnan. A formal access control model for

se-floodlight controller. In Proceedings of the ACM International Workshop on Security in

Software Defined Networks & Network Function Virtualization, pages 1–6. ACM, 2019.

[5] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, Amin

Vahdat, et al. Hedera: dynamic flow scheduling for data center networks. In Nsdi, volume 10,

pages 89–92, 2010.

[6] AspectJ. Aspectj: A seamless aspect oriented extension to java, 2020. https://www.

eclipse.org/aspectj/.

[7] Siamak Azodolmolky, Philipp Wieder, and Ramin Yahyapour. Sdn-based cloud computing

networking. In 2013 15th International Conference on Transparent Optical Networks (IC-

TON), pages 1–4. IEEE, 2013.

[8] Jeffrey R Ballard, Ian Rae, and Aditya Akella. Extensible and scalable network monitoring

using opensafe. Inm/wren, 10, 2010.

[9] Christian Banse and Sathyanarayanan Rangarajan. A secure northbound interface for sdn

applications. In 2015 IEEE Trustcom/BigDataSE/ISPA, volume 1, pages 834–839. IEEE,

2015.

97

https://www.eclipse.org/aspectj/
https://www.eclipse.org/aspectj/

[10] Khalid Zaman Bijon, Ram Krishnan, and Ravi Sandhu. Risk-aware rbac sessions. In Inter-

national Conference on Information Systems Security, pages 59–74. Springer, 2012.

[11] Prosunjit Biswas, Ravi Sandhu, and Ram Krishnan. Uni-arbac: A unified administrative

model for role-based access control. In International Conference on Information Security,

pages 218–230. Springer, 2016.

[12] Nikos Bizanis and Fernando A Kuipers. Sdn and virtualization solutions for the internet of

things: A survey. IEEE Access, 4:5591–5606, 2016.

[13] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Natasha Gude, Nick McKe-

own, and Scott Shenker. Rethinking enterprise network control. IEEE/ACM Transactions on

Networking, 17(4):1270–1283, 2009.

[14] Martin Casado, Michael J Freedman, Justin Pettit, Jianying Luo, Nick McKeown, and Scott

Shenker. Ethane: Taking control of the enterprise. ACM SIGCOMM computer communica-

tion review, 37(4):1–12, 2007.

[15] Open SDN controller, ,. http://floodlight.openflowhub.org/.

[16] Jason Crampton. Understanding and developing role-based administrative models. In Pro-

ceedings of the 12th ACM conference on Computer and communications security, pages 158–

167, 2005.

[17] Jason Crampton and George Loizou. Administrative scope: A foundation for role-based

administrative models. ACM Transactions on Information and System Security (TISSEC),

6(2):201–231, 2003.

[18] Scott-Hayward et al. Sdn security: A survey. In Future Networks and Services (SDN4FNS),

2013 IEEE SDN For, pages 1–7. IEEE, 2013.

[19] Scott-Hayward et al. A survey of security in software defined networks. IEEE Communica-

tions Surveys & Tutorials, 18(1):623–654, 2016.

98

http://floodlight.openflowhub.org/

[20] David F Ferraiolo, Ravi Sandhu, Serban Gavrila, D Richard Kuhn, and Ramaswamy Chan-

dramouli. Proposed nist standard for role-based access control. ACM Transactions on Infor-

mation and System Security (TISSEC), 4(3):224–274, 2001.

[21] Security Enhanced Floodlight, 2020. https://www.sdxcentral.com/projects/

openflow-sec-security-enhanced-floodlight/.

[22] Floodlight-Project, 2020. http://www.projectfloodlight.org/.

[23] Open Networking Foundation, 2020.

[24] Ryu SDN Framework, 2020. http://osrg.github.io/ryu/.

[25] Mei Ge and Sylvia L Osborn. A design for parameterized roles. In Research Directions in

Data and Applications Security XVIII, pages 251–264. Springer, 2004.

[26] Luigi Giuri and Pietro Iglio. Role templates for content-based access control. In Proceedings

of the second ACM workshop on Role-based access control, pages 153–159, 1997.

[27] Stephan Heuser, Adwait Nadkarni, William Enck, and Ahmad-Reza Sadeghi. {ASM}: A

programmable interface for extending android security. In 23rd {USENIX} Security Sympo-

sium ({USENIX} Security 14), pages 1005–1019, 2014.

[28] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R Friedman, Alan J Lang, Margaret M

Cogdell, Adam Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scarfone, et al. Guide

to attribute based access control (abac) definition and considerations (draft). NIST special

publication, 800(162), 2013.

[29] Raj Jain and Subharthi Paul. Network virtualization and software defined networking for

cloud computing: a survey. IEEE Communications Magazine, 51(11):24–31, 2013.

[30] Sushant Jain, , et al. B4: Experience with a globally-deployed software defined wan. In ACM

SIGCOMM Computer Communication Review, volume 43, pages 3–14. ACM, 2013.

99

https://www.sdxcentral.com/projects/openflow-sec-security-enhanced-floodlight/
https://www.sdxcentral.com/projects/openflow-sec-security-enhanced-floodlight/
http://www.projectfloodlight.org/
http://osrg.github.io/ryu/

[31] Hyojoon Kim and Nick Feamster. Improving network management with software defined

networking. IEEE Communications Magazine, 51(2):114–119, 2013.

[32] Diego Kreutz et al. Towards secure and dependable software-defined networks. In Proceed-

ings of the second ACM SIGCOMM workshop on Hot topics in software defined networking,

pages 55–60. ACM, 2013.

[33] Ninghui Li and Ziqing Mao. Administration in role-based access control. In Proceedings

of the 2nd ACM symposium on Information, computer and communications security, pages

127–138, 2007.

[34] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer

Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling innovation in campus

networks. ACM SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[35] Python network controller. 2018. http://www.noxrepo.org/pox/aboutpox/.

[36] Jiseong Noh, Seunghyeon Lee, Jaehyun Park, Seungwon Shin, and Brent Byunghoon Kang.

Vulnerabilities of network os and mitigation with state-based permission system. Security

and Communication Networks, 9(13):1971–1982, 2016.

[37] Sejong Oh and Ravi Sandhu. A model for role administration using organization structure.

In Proceedings of the seventh ACM symposium on Access control models and technologies,

pages 155–162, 2002.

[38] Mike Ojo, Davide Adami, and Stefano Giordano. A sdn-iot architecture with nfv implemen-

tation. In 2016 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE, 2016.

[39] Hitesh Padekar, Younghee Park, Hongxin Hu, and Sang-Yoon Chang. Enabling dynamic

access control for controller applications in software-defined networks. In Proceedings of the

21st ACM on Symposium on Access Control Models and Technologies, pages 51–61, 2016.

[40] The OpenDaylight platform, 2020. https://www.opendaylight.org/.

100

http://www.noxrepo.org/pox/aboutpox/
https://www.opendaylight.org/

[41] Philip Porras, Seungwon Shin, Vinod Yegneswaran, Martin Fong, Mabry Tyson, and Guofei

Gu. A security enforcement kernel for openflow networks. In Proceedings of the first work-

shop on Hot topics in software defined networks, pages 121–126, 2012.

[42] Phillip A Porras et al. Securing the software defined network control layer. In NDSS, 2015.

[43] Ravi Sandhu, Venkata Bhamidipati, and Qamar Munawer. The arbac97 model for role-based

administration of roles. ACM Transactions on Information and System Security (TISSEC),

2(1):105–135, 1999.

[44] Ravi Sandhu and Qamar Munawer. The arbac99 model for administration of roles. In Pro-

ceedings 15th Annual Computer Security Applications Conference (ACSAC’99), pages 229–

238. IEEE, 1999.

[45] Ravi S. Sandhu. Lattice-based access control models. Computer, 26(11):9–19, 1993.

[46] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based access

control models. Computer, 29(2):38–47, 1996.

[47] Ravi S Sandhu and Pierangela Samarati. Access control: principle and practice. IEEE com-

munications magazine, 32(9):40–48, 1994.

[48] Sandra Scott-Hayward, Christopher Kane, and Sakir Sezer. Operationcheckpoint: Sdn ap-

plication control. In 2014 IEEE 22nd International Conference on Network Protocols, pages

618–623. IEEE, 2014.

[49] Yuchia Tseng, Montida Pattaranantakul, Ruan He, Zonghua Zhang, and Farid Naït-

Abdesselam. Controller dac: Securing sdn controller with dynamic access control. In 2017

IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2017.

[50] Benjamin E Ujcich, Samuel Jero, Anne Edmundson, Qi Wang, Richard Skowyra, James

Landry, Adam Bates, William H Sanders, Cristina Nita-Rotaru, and Hamed Okhravi. Cross-

101

app poisoning in software-defined networking. In Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security, pages 648–663, 2018.

[51] Steven J Vaughan-Nichols. Openflow: The next generation of the network? Computer,

(8):13–15, 2011.

[52] He Wang and Sylvia L Osborn. An administrative model for role graphs. In Data and

Applications Security XVII, pages 302–315. Springer, 2004.

[53] Richard Wang, Dana Butnariu, Jennifer Rexford, et al. Openflow-based server load balancing

gone wild. Hot-ICE, 11:12–12, 2011.

[54] Xitao Wen, Yan Chen, Chengchen Hu, Chao Shi, and Yi Wang. Towards a secure controller

platform for openflow applications. In Proceedings of the second ACM SIGCOMM workshop

on Hot topics in software defined networking, pages 171–172, 2013.

[55] Changhoon Yoon, Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin, and Zonghua

Zhang. Enabling security functions with sdn: A feasibility study. Computer Networks, 85:19–

35, 2015.

[56] Changhoon Yoon, Seungwon Shin, Phillip Porras, Vinod Yegneswaran, Heedo Kang, Mar-

tin Fong, Brian O’Connor, and Thomas Vachuska. A security-mode for carrier-grade sdn

controllers. In Proceedings of the 33rd Annual Computer Security Applications Conference,

pages 461–473, 2017.

102

VITA

Abdullah Al-Alaj (abdullah.al-alaj@utsa.edu) was born in Jordan. After completing his High

School at Irbid in June 2000, Abdullah joined Jordan University of Science and Technology (JUST)

in Irbid, Jordan. He received his M.Sc. and B.Sc. degrees from the Department of Computer Sci-

ence at JUST in 2004 and 2006. After completing the M.Sc. degree, he worked as an instructor in

the Department of Computer Science at JUST. In Fall 2016, he joined the Department of Computer

Science at the University of Texas at San Antonio (UTSA) to pursue his doctoral degree. He joined

the Institute for Cyber Security (ICS) at UTSA and started working with Prof. Ravi Sandhu and

Dr. Ram Krishnan since 2017. His research interests include designing and implementing access

control models to enhance the security of software defined networking.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Main Features Provided by SDN
	Motivation
	Problem Statement
	Thesis Statement
	Scope and Assumption
	Summary of Contributions
	Organization of the Dissertation

	Chapter 2: Background and Literature Review
	Overview of SDN Architecture
	The Need for Access Control for SDN Apps
	SDN Planes and Security Perspectives
	Control Plane
	Application Plane
	Data Plane

	Access Control for SDN apps: Literature Review
	Capability based Approaches
	Role-based Approaches

	Access Control Model for SE-Floodlight Controller
	Overview
	Authorization Framework of SE-Floodlight Controller
	Formalized SE-Floodlight Access Control Model
	Use Case Scenario
	Discussion and Proposed Extensions

	Chapter 3: Enabling Role-based Access Control for SDN Applications
	Motivation and Background
	 The SDN-RBAC Model
	Formal Model
	System Functions Specifications

	Session Handling Approaches
	Developer-driven Session Handling
	System-driven Session Handling
	Smart Sessions
	Master-Slave Sessions

	Use Case Scenario: A Multi-session App
	Framework Implementation
	Performance Evaluation

	Chapter 4: Fine Grained Role Based Access Control for SDN Enhanced with Parameterized Roles and Permissions
	Motivation
	ParaSDN Components Overview
	Parameters
	Parameterized Permissions
	Parameterized Roles
	Parameter Value Assignment
	Parameter Verification

	ParaSDN Conceptual Model and Definition
	App and Permission Assignment
	Framework Architecture and Parameter Engine Components
	Parameter Categories for SDN
	Proof of Concept Use Case
	Implementation and Evaluation

	Chapter 5: A Model for the Administration of Access Control in SDN using Custom Permissions
	Motivation and Scope
	Administrative Units in SDN
	Custom and Proxy Operations
	Custom Permissions
	SDN-RBACa Model
	Introducing Tasks
	SDN-RBACa Operational Model
	SDN-RBACa Administrative Model

	Task and Role Engineering for SDN using Custom Permissions
	Tasks and Roles with Custom Permission
	Custom Permissions with `Flow Mod' Role

	Proof of Concept Use Cases
	Basic Use Case - Web Admin Unit
	Extended Use Case

	Implementation
	Performance Evaluation

	Chapter 6: Conclusion and Future Work
	Summary
	Future Work

	Appendix A: Extended Use Case Configuration
	Bibliography
	Vita

