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Mobile applications (apps) are widely used and frequently process sensitive data, such as

a user’s current location, health information, or dating preferences. Because of their access to

sensitive data, mobile applications have made privacy a well-known challenge in the ecosystem.

Users are usually unaware of, and have little control over, what and how their data is collected,

stored and transmitted.

To assess the data practices of mobile apps, research community has made significant efforts

in developing data flow analysis tools that can be applied to app code. These tools are designed to

detect tainted information flows from sources, which allow access to sensitive data (e.g., the user’s

location), to sink, which are potential channels through which sensitive data could be leaked to an

adversary (e.g., a network connection).

The data flow analysis tools require a list of sources and sinks as input and are generally clas-

sified into two categories : 1) Dynamic taint analysis, which tracks taint flow during runtime. The

effectiveness of dynamic analysis is limited by the execution coverage and run-time overhead. 2)

Static taint analysis, which inspects code without running it, is theoretically conservative and in-

tend to detect all possible taint flows. However, it often reports false negatives due to 1) static

inaccessibility. Static code analysis does not have access to the code that is only visible or deter-

minable during run time execution, such as reflection, dynamically loaded code, native code, code

executed on a remote server and so on; 2) incomplete sources, no matter how good the tool is,

it can only guarantee data security when its list of sources and sinks is complete. If a source is

missing, a malicious app can retrieve this data without being detected by the analysis tool. Ear-

lier research efforts in this area have primarily focus on tracing the sensitive data extracted from
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Android device through Android platform APIs with little works regarding sensitive data extracted

through methods defined by apps or third-party libraries, which are also sources.

This thesis aims to reduce the false negatives in static taint analysis by uncovering sensitive data

access through methods defined by app and third-party libraries other than Android platform APIs.

Specifically, we utilize hybrid (combined static and dynamic) code analysis and machine learning

techniques to detect such sensitive data access. The exposed data access can be used as 1) inter-

mediate sources of Android API source whose taint path was interrupted by static inaccessibility

code. 2) a new type of source that may lead to leaks.
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Chapter 1: INTRODUCTION

Over the last decade, most people have used smartphones on a daily basis to perform a variety

of tasks. The popularity of smartphones can be attributed to their ability to access millions of

mobile apps, which provide people with a variety of features for both personal and professional

use. As of September 2021, there are over 2.7 million Android apps available on Google Play

[72]. Mobile apps may collect, process, and share sensitive user data for a variety of functional

or commercial purposes. For example, most apps that require registration require the user’s email

address; a shopping app may save the user’s name, credit card information, and home address; and

a navigation app requires the user’s current location.

Access to user’s sensitive information invariably leads to privacy invasions. App users are usu-

ally unaware of, and have little control over, how mobile apps access and transmit their personal

data. According to the report from Norwegian Consumer Council [68], Tinder, Grindr, and other

eight apps were under investigation for sharing sensitive personal data with advertisers without the

user’s knowledge. Previous studies [111,129,147] also shown that users have a poor understanding

of how sensitive data is used, and existing interfaces fall short of providing users with the informa-

tion they need to make informed decisions. Data collection that goes beyond what is required for

the apps to function, often without users’ knowledge, results in privacy leaks and policy violations.

A number of regulations and policies are in place to protect mobile users’ privacy, such as

EU General Data Protection Regulation (GDPR), California Consumer Privacy Act(CCPA), and

Health Insurance Portability and Accountability Act (HIPAA). They exist to ensure that organiza-

tions do not use or disclose customers’ personal information in an unauthorized manner. Organi-

zations must follow these privacy standards to legitimately access or disclose personal information

acquired. Violations of these privacy regulations may result in legal ramifications and face se-

vere financial penalties. For example, Facebook has been fined $5 billion by The Federal Trade

Commission, for deceiving users about their ability to control the privacy of their personal in-

formation [27]. WhatsApp has been fined $267 million for violating the European Union’s data
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privacy regulations. According to the decision, WhatsApp did not properly inform EU citizens

about how it handles their personal data, including how it shares that information with its parent

company [74].

To provide users with the information they need to make decisions about using an app, regula-

tors have mandated that app developers post privacy policies that inform their users about which

and how their information will be collected, stored, and shared, as well as the purpose of the data

collection and sharing. Each mobile app has its own privacy policy that users must accept before

signing up or registering to use the app. However, previous research [117, 155, 165] has shown

that few users read privacy policies because the text is verbose and difficult to understand. Be-

sides, these policies may be written by people other than the developers, such as lawyers, who may

not understand well about the data collection and sharing at the code level, the privacy policies

they write may be inconsistent with the app code, or do not reflect the app’s actual data prac-

tices [183, 201] .

To learn app’s actual data practices, a number of ongoing research efforts focusing on iden-

tify sensitive data access and transmission by applying data flow analysis on app’s code, statically

[78, 90, 94, 118, 138, 204] or dynamically [108, 187, 215]. These analysis tools primarily trace the

information flow from sources, which allow access to sensitive data (e.g., the user’s location), to

sink, which are potential channels through which sensitive data could be leaked to an adversary

(e.g., a network connection). Dynamic taint analyses propagate taints at run time through memory

locations so they always find true taint flows. However, they may miss taint flows which are not

triggered during testing and will cause run-time overhead if applied during production. Alterna-

tively, static taint analyses, propagate taints based on an overestimation of all possible program

paths leading to the detection of all possible taint flows with no false negatives but some false pos-

itives due to infeasible execution paths. Despite the theoretical soundness of static taint analyses,

various practical complexities often lead to false negatives in real-world scenarios [133, 143, 157].

Such false negatives may result in undetected vulnerabilities, privacy leaks, malicious apps, etc.

The cause of these false negatives can often be attributed to 1) static inaccessibility. Static code

2



analyses are unable to access code that is only visible or determinable during run time execution,

such as dynamically loaded code, native code, reflection code, code executed on a remote server,

and so on; 2) incomplete sources. no matter how good the tool is, it can only guarantee data se-

curity when its list of sources and sinks is complete. If a source is missing, a malicious app can

retrieve this data without being detected by the analysis tool.

To mitigate the issue of false negative in static taint analysis, many previous research efforts

have primarily focused on handling inaccessible code, such as reflection code and dynamic loaded

code. Various techniques have been used to deal with reflection: dynamic analysis, which uses

refection information obtained at run-time to assist static taint analysis by connecting the class that

invoked the reflection method with the class constructed by the reflection method [88, 191, 224];

static analysis, which uses static code analysis to resolve reflection, leveraging string information

[139, 144, 185], data types [221], class name and member signature [140]. Dynamically loaded /

generated code is typically handled by incorporating dynamic analysis as a supplement, utilizing

the collected information such as dynamically generated code [206], dynamic code update [224],

and calling structure [107] to supplement static analysis.

These works reduce false negatives of static taint analysis by resolving specific types of dy-

namic language features codes to complete interrupted program paths. They focus on filling in

the inaccessible code so that the taint path is not interrupted. Other than completing the inacces-

sible code, few works have been done from the perspective of tainted data. Our research aims to

identify sensitive data access that originated from the tainted source whose path was interrupted,

and then use the identified data access as intermediate sources to detect whether it flows to sink.

Our work differs from previously mentioned works in that it is not specific to any types of inac-

cessible code and treats inaccessible code as a blackbox, whereas the previous works dealt with

specific code features that cause code inaccessibility. When applied to complex code practice in

real-world apps, the independence of inaccessible types is a significant advantage over existing

works. Also, there is a handful of work aim to identify sensitive data extracted through Android

platform APIs [161], sensitive user input [126, 151] and privacy leaks caused by those sensitive
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data access [79, 126, 151, 183, 201]. Little research has been conducted on sensitive data access

through methods defined by apps or third-party libraries other than Android APIs, which could be

new sources for detecting new leaks or intermediate sources of the sources whose taint path was

interrupted by inaccessible code in static taint analyses.

1.1 Problem Statement

Mobile apps’ ability to access users’ sensitive data results in privacy invasions. Mobile users

are often unaware of and have limited control over how mobile apps access and transmit their

personal data. A number of ongoing research efforts focus on tracing sensitive data extracted

through the Android platform APIs, little work has been done to explore the sensitive data access

through methods defined by apps and third-party libraries , and see to what extent these data access

could cause privacy leaks.

The fundamental goal of this thesis is to uncover data access through methods defined by apps

and third-party libraries, which enables the detection of privacy leaks caused by data access beyond

Android APIs, thus reduce false negatives in static taint analysis. We are aiming to answer two

key research questions. The first one is, how do we discover sensitive data access through methods

defined by app and third-party libraries? The other key research question is whether the identified

data access can serve as valid sources in static taints analysis to reveal previously unknown privacy

leaks, which is what users and developers are most concerned about.

1.2 Thesis Statement

Utilizing hybrid analysis (combined static and dynamic analysis) and machine learn-

ing techniques, we can build a framework that accurately identifies sensitive data

access through methods defined by apps and third-party libraries. The identified

data access can help users and developers in understanding what information has

been collected, as well as reduce false negatives in taint analysis for privacy leak

detection.
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To achieve our goal, we first conducted an empirically study over 1,000 mobile apps about data

collection and sharing. Second, we developed a hybrid taint analysis approach to discover data

access through methods defined by app and third-party libraries, which can be used as supplement

sources in static taint analysis for privacy leak detection. We evaluated this approach on both

benchmark and real-world apps, and compared it with the state-of-the-art static analysis tools.

We proceed to show that hybrid taint analysis can effectively detect data access through methods

defined by apps and third-party libraries, as well as previously unknown privacy leaks. Third,

we developed a machine-learning-based approach to identify methods for accessing sensitive data

defined by apps and third-party libraries, as well as privacy leaks caused by them. We evaluated

our approach by applying it on previously unseen apps. The results show that machine learning

techniques can be used to predict sensitive data access with high precision. The predicted data

access also cause privacy leaks that are not detected by program analysis based approaches.

1.3 Thesis Approach

Based on the objectives and the techniques involved, this thesis involves three major works.

In this section, we will give a brief introduction to each of the three works and outline the key

techniques we used.

1.3.1 Data Collection and Sharing: A Study on Analytic Services

For a better understanding of users’ behavior, app developers often use analytic service to

gather user’s data. Analytic services usually provide client libraries that app developers could

utilize in their app, which will record an app user’s interaction with the app and send the corre-

sponding data to the server of the analytic service. Later, the analytic services can link the activity

of a mobile app user over time into a behavior report. The behavior report includes detailed usage

information about this user. The analytic services can then aggregate all the users’ reports and

provide analytic data to the app developers so that they can improve their product or make better

business decisions based on the analytic report. A major privacy risk associated with third-party
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analytic services is the data usage after the behavioral reports have been collected by the analytic

service. Once the data have left the app and reached an analytic service, the developers and users

lose control of the information. Even if the third-party service is trusted not to misuse the data,

accumulated long-term storage of user behavioral data is susceptible to theft or leakage [8,27,38].

Third-party services may also share the data to their business partners or do not provide enough

protection for them.

To understand whether app shared user’s PII (Personally Identifiable Information ) with an-

alytic services, we developed a semi-automatic approach to observe the data sharing during run

time. In this approach, we first investigated the documentation of the 18 most popular analytic ser-

vices in the mobile analytic ecosystem as listed in AppBrain [10]. Through their specification, we

collected the Application Program Interface (API) that specifically for sharing uses’ data. With this

list of APIs, we designed and conducted an experiment to dynamically and automatically evaluate

the top 1,000 Google Play store apps. We detected invocations of those data sharing API at run

time and recorded parameter values to study what the common practices were and whether they

abode by the app’s privacy policies, the analytic service guidelines, and best practices of using PII

in analytic services. We also investigated the analytic reports generated by the analytic services to

study whether the services applied any mechanisms to anonymize or aggregate the collected data.

This study provides a foundation for us to better understand mobile apps in terms of data

collection and sharing with third party services.

1.3.2 Uncover Data Access and Reduce False Negatives of Static Taint Analysis through

Hybrid Program Analysis

Mobile apps and their included third-party services extensively collect private information. One

main concern of mobile app users is the leakage of their private information. To address this issue,

researchers have proposed a variety of analysis tools for detecting privacy leaks. The majority of

approaches apply data flow analysis on the app code, either through static or dynamic taint analysis.

Those tools require a list of sources that allow access to sensitive data (e.g., the user’s location) as
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well as a list of sinks, which are potential channels through which sensitive data could be leaked to

an adversary (e.g., a network connection). Researchers have constructed lists of sensitive sources

and sinks within the Android platform API. However, Android app developers may also store

sensitive information within their apps or access sensitive data through third-party libraries, which

are also sources. No matter how good the tool is, it can only guarantee data security when its list of

sources and sinks is complete. If a source is missing, a malicious app can retrieve this data without

being detected by the analysis tool. Incomplete source list cause false negatives in static taint

analysis. Earlier studies [133,143] also show the existence of false negatives in static taint analyses

caused by dynamic programming language features such as reflection calls in Java, dynamically

loaded or generated code, external code execution through database servers and network servers,

and multi-language code (e.g., native code and shell scripts). In static taint analysis, these code are

invisible or indeterminable , so the tracing of tainted data will be interrupted by them, resulting in

false negatives.

To reduce false negatives in static taint analysis, we proposed an approach to identify sensitive

data access through methods defined by app and third-party libraries, which can be used as inter-

mediate sources in a interrupted path, or new sources not included in the existing source list. We

developed a novel approach, DySTA, which uses dynamic taint analysis to observe sensitive data

access and use them as additional sources for static taint analysis. However, naively adding sources

causes static analysis to lose context sensitivity and thus produce false positives. Thus, we devel-

oped a hybrid context matching algorithm and corresponding tool, ConDySTA, to preserve context

sensitivity in DySTA. We applied ConDySTA on both benchmark and real-world apps from google

play store to show that hybrid analysis can detect data access through methods defined by app and

third-party libraries, as well as privacy leaks that missed by the state-of-art static taint analysis

tools.
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1.3.3 Uncover Data Access and Reduce False Negatives of Static Taint Analysis through

Machine Learning Techniques

ConDySTA replies on dynamic taint analysis to discover sensitive data access, which is limited

on the test coverage, one data access can be missed if the method was not triggered during testing.

In order to trigger sensitive data related events as many as possible, ConDySTA requires human ef-

fort to register and login to the app, making it not feasible for use on a large scale. To avoid human

effort and the limitation on test coverage, we propose, DAISY, which uses machine learning tech-

niques to identify sensitive data access through methods defined by app and third-party libraries,

specifically, to identify app’s or third-party libraries’ methods that return sensitive information.

DAISY is trained on an automatically labelled data set of methods and their calling context.

During training, we run all training apps and collects run-time return values of methods being exe-

cuted. Then all the executed methods can be automatically labeled by testing whether their return

values contain planted sensitive data (we can plant sensitive data such as device ID and account

email address before running the apps). Some methods can be partially sensitive because they

sometimes return sensitive values but do so only under certain context. Instead of just classifying

single method, DAISY classifies methods along with calling contexts (called in-context methods).

The same method with different calling context can be labelled differently during training and

predicted differently during testing.

We consider methods’ signatures as natural language sentences to leverage the advances in

natural language processing (NLP) and machine learning to classify a method. While a word

embedding provides a robust semantic representation of text, it can hardly handle words not seen

in the training set, which are common in method signatures with informal abbreviated texts. We

handle informal texts by taking advantage of the sub-word embedding feature of FastText [89,130]

framework. We evaluated DAISY on previously unseen apps and DAISY was able to identify

sensitive methods in them with high precision. The identified sensitive methods were used as

sources in static taint analyses and detected privacy leaks that were missed by existing tools.
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1.4 Contribution

In short, this thesis contributes to data in mobile apps including:

• We conducted an empirical study on how apps collect and process user’s data through ana-

lytic services, which is the most widely used service for analyzing user’s data. We studied

the real practice of 1,000 popular apps from the Google Play store using analytic services.

• We found 120 out of 1,000 apps share user’s PII with analytic service without encryption.

• We manually inspected the policies of the 120 apps and found 27 of them may violate their

own privacy policies by sharing PII with third-party services.

• Taint analysis is a widely used technique for detecting sensitive data access and transmission.

We proposed a new approach for reducing false negatives of static taint analysis by utilizing

dynamic taint analysis to uncover sensitive data access through methods defined by app and

third-party services.

• We demonstrated the feasibility of using the uncovered sensitive data access as source to de-

tect more privacy leaks. Among 100 top Android apps from Google Play Store, we detected

39 leaks which are missed by the state-of-the-art static taint analysis tool.

• We proposed a machine learning based approach to identify sensitive methods defined by

apps and third-party libraries

• We provided manually and automatically labeled data sets of in-context methods with sensi-

tive information types that can be leveraged in future research.

This dissertation is organized as follows. Chapter 2 introduces the background and related work.

Chapter 3 describes our empirical study on how apps collect and process user’s data through an-

alytic services. Chapter 4 presents our hybrid taint analysis approach to reduce false negatives in

static taint analysis. Chapter 5 describes our machine learning approach for identifying sensitive
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methods defined by app and third-party libraries. Chapter 6 concludes this thesis and discuss our

future work.
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Chapter 2: BACKGROUND AND RELATED WORK

In this chapter, I will summarize the general background of this study and a review of related

literature.

2.1 Regulations

2.1.1 Privacy laws and PII

The EU General Data Protection Regulation (GDPR) and the California Consumer Privacy Act

(CCPA) are two of the most conspicuous privacy protection laws. Both give consumers legal rights

in many circumstances to access personal data collected or processed by a regulated entity. Those

regulations applies to mobile apps that collect and process personal data.

Personally identifiable information (PII) is the most sensitive data and GDPR has the following

definition [29]:

"Personal Data: an identifiable natural person is one who can be identified, directly or

indirectly, in particular by reference to an identifier such as a name, an identification

number, location data, an online identifier or to one or more factors specific to the

physical, physiological, genetic, mental, economic, cultural or social identity of that

natural person."

Based on the definition from GDPR, PII is the information that could be used on its own to

directly identify, contact, or precisely locate an individual. This includes: email addresses, mailing

addresses, phone numbers, precise locations, full names or usernames. In mobile apps, sharing

user’s PII with other entity could raise privacy risks.

2.1.2 Privacy policies

A privacy policy serves as an essential way to communicate with users regarding which and

how user’s information has been accessed, collected, and the purpose of the data collection and
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sharing. Users read the policies to make informed decisions on accepting the privacy terms before

installing the apps. For example, the following excerpt from the TikTok app’s privacy policy listed

on Goole Play [73]:

"Device Information

We collect information about the device you use to access the Platform, including

your IP address, unique device identifiers, model of your device, your mobile carrier,

time zone setting, screen resolution, operating system, app and file names and types,

keystroke patterns or rhythms, and platform.

Location data

We collect information about your location, including location information based on

your SIM card and/or IP address. With your permission, we may also collect Global

Positioning System (GPS) data."

Existing works have been working on detecting misalignment between privacy policy and the

actual data practice in app code [183, 201, 217, 226]. They analyzed the app code and detected

what sensitive information types from user input or Android platform API invocations are sent

to network. After that, they compared the collected and shared with information types with the

statements in privacy policies.

2.1.3 Terms of service from third-party services

Mobile app developers often share user’s data with third-party services to improve their apps,

such as user behavior analysis or crash analysis. In order to protect user’s privacy and avoid unnec-

essary data sharing, many services provide documentation specifically discouraging or prohibiting

sharing user’s PII when using their services. For example, Flurry, a popular analytic service, has

the following text in its documentation for their API setUserID() [25]:

"Warning: It is a violation of our terms of service to track personally identifiable

information such as a device ID (e.g. Android ID) using this method. If you have a
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user login that you wish to send to Flurry using this method, you must anonymize the

data using a hashing function such as MD5 or SHA256 prior to calling this method."

2.2 User Data Collection and Sharing in Android

2.2.1 Permission and Platform Resources

Android utilizes the Linux security model and layers through a user-based permission system.

The Android permission system aims to control the access of mobile apps to sensitive resources. In

the latest android platform, there exist more than 200 permissions controlling different resources.

Through the permission system, an app can access resources such as the device’s GPS location,

camera, network connections, and other sensors [223]. To access private user resources, an app

needs to declare the corresponding permissions in the manifest files. At the installation time or

when the app is performing operations that require permissions during runtime, the user will be

asked to grant or refuse the permissions. If the user grants the permissions, the app can access the

private user data. If the user refuses the permissions, the app won not have access to the requested

resources.

With growing privacy concerns, Android permission system evolved to let the user has more

control over their private data. As Figure 2.1a shows, in Android nine and lower, users made

persistent choices when granting permission to apps. They could either deny or allow, the latter

of which gave apps access all the time (foreground and background). To avoid resource access

in the unnecessary scenario, Android 10 gives users three options for allowing the app access to

a device’s resources. As Figure 2.1b shows, if the user selects "Allow only while the app is in

use", an app can access location only while the user is using the app. Starting from Android 11,

whenever an app requests a permission related to location, microphone, or camera, the permission

dialog contains an option called "Only this time". As Figure 2.1c shows, if the user selects this

option in the dialog, the app will be granted a temporary one-time permission.
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(a) Location permission in Android 9 and below (b) Location permission in Android 10 (c) Location permission in Android 11

Figure 2.1: Permission system revolution

2.2.2 Android APIs

Android Platform provides large-scale application programming interfaces (APIs) to support

application development. These APIs enable the developer to access the system’s features and

resources such as user data, settings, and hardware. To access the user’s data, once the user grants

permissions, the app could access the device’s corresponding resources through the Android re-

sources APIs. For example, if the LOCATION permission has been granted, the developer could

call getLastLocation () to retrieve the device location. If the READ_PHONE_STATE permission

has been granted, developers could call getDeviceId() to retrieve the device’s IMEI.

2.2.3 Data Sharing with Third-Party Services

Mobile app developers often rely on third-party services to improve their apps, such as inte-

grate social network, and crash analysis. Among the most popular types of third-party services,

analytic services enable app developers to gather user behavior information to improve their prod-

ucts and monetize their apps with targeted ads. Such analytic services can be integrated into apps

through package libraries. App developers use the provided APIs to collect and send user activ-

ities to the analytic servers for analysis. The server-side analysis will then generate aggregated

reports for the app’s developers. Existing research efforts mainly studied what user activities are
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tracked by analytic services and what information they may collect. Liu et al. [142] investigated

the types of user activities being tracked by analytic services. Their results reveal different levels

of user-activity tracking on different UI event types. Since analytic libraries are integrated into

the app, they receive the same privilege (e.g., permissions) of the enclosing app from the Android

platform. This allows the analytic services to collect some personally sensitive device information.

Seneviratne et al. [176] show that 60% of paid apps are connected to analytic services that collect

personal data compared to 85% - 95% of free apps. They perform static analysis on Android API

calls inside the analytic libraries and summarize the type of personal data collected by the analytic

services from the Android platform.

There has been a lot of work on the detection of information leask on mobile platform to third-

parties. In particular, CLUEFINDER [152] leverages NLP technology for building a learning system

to identify sensitive data leaks from apps to third parties. Network traffic analysis techniques have

also been applied to detect personal data that app share with third parties [164] [167] [166].

Razaghpanah et al. [163] detect third-party advertising and analytic services at the traffic level.

Ren et al. [167] instrument VPN servers to identify privacy leaks in network traffic. Vallina et

al. [195] analyze mobile ISP traffic logs to identify advertisement traffic.

2.3 Taint Analysis

To ensure that information is only used in accordance with the relevant confidentiality poli-

cies, it is necessary to analyze how information flows within the using program [174]. There is a

large body of work towards enforcing secure information flow through static, dynamic or hybrid

program analysis. The common static techniques for enforcing secure information flow including

type systems [159, 199], model checking [190] and dataflow analyses [134, 179]. Purely dynamic

enforcement performs dynamic security checks during execution. A monitor is often developed

to track implicit information flow [182], timeout instructions [173], and information release or

declassification [82].Hybrid enforcement combines static and dynamic techniques. It has the ad-

vantage of increasing permissiveness because more information about the actual execution trace
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is available at runtime, while also minimizing runtime overhead as some static information can be

gathered before the execution [98, 135, 136, 141].

Taint analysis is a type of information flow analysis in which objects are tainted and tracked

using dataflow analysis. Static taint analysis is performed prior to execution by considering all

possible execution paths. It has been used to analyze data lifetime for Android applications [79],

web application [192], and exploit code detection [202]. Dynamic taint analysis is more precise

than static taint analysis as it only propagates taint along the real path taken at run time. It is used in

a variety of security applications, including data flow policy enforcement [153,160,212], malware

analysis [181] and Android security [109].

For smartphone apps, a data leak occurs when private data (phone numbers, device identifiers,

contact data) flows from sensitive sources to public sinks (Internet, SMS transmission). In this

case, sensitive data is leaked. Taint analysis is most frequently used to detect such leaks: it taints

sensitive data at its source, and propagates the taint information through the application (or even a

combination of apps), issuing a warning if tainted data reaches a sink.

2.3.1 Source and Sink Definition

Taint analysis aims to discover connections between sources and sinks. This requires a defi-

nition of sources and sinks. When using taint analysis to detect privacy leaks, we are interested

in whether user’s sensitive data flows to untrusted parties. For example, if an app reads the user’s

location from his device and send it to a remote server though network. In this example, the source

is the method that reads the location data, and the sink is the method that send this data to the

remote server. In the code example from Listing 4.1, which is from the DirectLeak1 test case in

DroidBench [80], the user’s device ID is read and send out as the text of an SMS message. In this

sample code, the device ID is accessed though the Android API getDeviceId() (on Line 4), which

is the source, and the the device ID is sent out though the method sendTextMessage (on Line 8),

which is the sink.
1 void onCreate() {
2 // Get the data
3 TelephonyManager mgr = (TelephonyManager) this.getSystemService(TELEPHONY_SERVICE);
4 String deviceId = mgr.getDeviceId();
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5
6 // Leak the data SmsManager sms = SmsManager.getDefault();
7 sms.sendTextMessage("+49 1234", null , deviceId , null , null);
8 }

Listing 2.1: Simple Data Leakage Example.

To perform taint analysis, these source and sink methods need to be defined as input. An-

droid provides certain APIs for the app to access data from the operating system, such as the GPS

location, or device identifiers. Previous research attempted to identify APIs that return sensitive

information or can be used to send data to third parties. Many approaches [161, 183] focus on

platform information extracted from the Android device through the Android APIs. Consider that

the Android operating system contains a very large number of public API methods, it is impos-

sible to manually verify each of them. Therefore, Rasthofer et al. proposed Susi [161], a tool to

automatically identify source and sink methods in the Android API. It utilizes machine learning to

take a small set of manually annotated source and sink methods as their training set. More recent

work [126, 151, 201] further consider user’s input data as source, which cannot be identified using

the Android API alone, and requires tracing potentially sensitive data through GUI API method

executions, e.g., android.widget.EditText.getText(). This tracing requires classify-

ing the information types by first analyzing the GUI hierarchy [171] and then classifying labels

associated with the method invocations.

2.3.2 Taint Analyses for Android

Taint analysis [78, 108] can detect taint flows in software programs and has a wide range of

applications in privacy leak detection [90, 126, 151, 201]. FLOWDROID [79] leverages static taint

analysis with tunable sensitivity to trace information from sources to sinks so it can also be used

to detect information leaks. Other Android-oriented static information analysis techniques include

CHEX [145], LeakMiner [213], and ScanDroid [115]. Specifically, CHEX [145] detects compo-

nent hijacking vulnerabilities in Android applications by tracking taints between externally acces-

sible interfaces and sensitive sources or sinks. LeakMiner [213] is an earlier context-insensitive

information-flow analysis technique for detecting privacy leaks in Android apps. ScanDroid [115]
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tracks taint flows among multiple apps and detects privacy leaks into other apps.

There are also dynamic taint analysis techniques such as TaintDroid [108] and CopperDroid [189]

that perform OS-level or application-level of dynamic taint propagation. TaintArt [187] and Taint-

Man [215] further extends the existing dynamic taint analysis to support Android RunTime (ART)

which adopts ahead-of-time compilation strategy and replaces previous virtual-machine-based

Dalvik. Jung et al., [132] proposed PrivacyOracle, which uses differential analysis of tainted val-

ues perform dynamic taint analysis on black-box systems without instrumenting the application or

the underlying OS. Tripp et al. [193] utilized Bayesian reasoning to determine if an information

release at a sink point represents a privacy leak. It calculates the possibility of legitimate informa-

tion releases at a sink based on the distance between the information about to be released and the

original sensitive data. Continella et al. [101] proposed a black-box analysis tool to detect privacy

leaks in mobile apps by analyzing network traffic.

2.3.3 Tackling Practical Unsoundness of Static Analysis

Prior researchers have already noticed the unsoundness of static analysis in practice. Re-

searchers from Coverity [13] explained the challenges of applying static analysis to real world [86],

and they mentioned in the paper that the static inaccessibility to code as one of the major chal-

lenges. In academia, different dynamic supplements of static analysis have been proposed. On

handling reflections, Livshits et al. [144] proposed an approach to statically infer information about

reflective call sites from program code. TAMIFLEX [88] perform dynamic analysis to record des-

tinations of reflection calls and use such records to supplement the program call graph, which is

the basis for many static analyses. [191] tests while instrumenting reflection methods to record

the classes constructed from invocations of the reflection methods. Then, for each invocation of

a reflection method, it adds an reflective edge from the class that invoked the reflection method

to the class constructed by the reflection method. [224] reveal the program behaviors caused by

dynamic code update techniques, such as dynamic class loading and reflection. It uses a modified

Android virtual machine to log all triggering actions of reflective calls. DroidRA [139] uses static
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constant propagation to estimate potential reflection call destinations in Android apps. On handling

dynamically loaded / generated code, Wei and Ryder [206] developed blended taint analysis for

JavaScript which summarizes dynamically generated code from dynamic analysis output and per-

form static taint analysis based on the summaries. AVERROES [76] generates mock libraries with

analysis summaries so it can be used for replacement of missing libraries. Dufour [107] proposed

to collect calling structure data at run time, and feed it as input to static method-escape analysis,

so that some complicated code portions can be analyzed more efficiently. PRuby [116] by Furr et

al. is a static-type inference system for the Ruby programming language. It uses dynamic profiles

to handle the three dynamic language features in Ruby: send, require and eval, which performs

reflection invocations, dynamic code loading, and dynamic code generation, respectively.

2.4 Assistant Taint Analysis by Machine Learning on Code

To identify sources and sinks in a program, there have been techniques on the classification of

elementary code units such as methods and variables. SUSI [161] uses machine learning to identify

Android platform API methods that retrieves sensitive information. Many works use machine

learning to perform certain tasks on code. CODE2VEC [77] trains code embeddings to infer high

level semantics of code, and their evaluation is performed via method name prediction, where they

generate method names from the method code. Vasilescu et al. [196] proposed a machine learning

based approach to infer variable names from obfuscated code. Hellendoorn et al. [121] examined

the feasibility of using deep learning on source code. They compare deep learning models with

statistical models and mixed models (i.e., a combination of statistical and deep learning models)

over performance on source code word prediction. Hindle et al. [122] showed the similarity exists

between code and natural language, and code is even less surprising than text. It implied that NLP

technologies can also be applied to deal with code. Hou et al. use a combination of deep learning

and dynamic analysis to detect malware in Android apps. Their system, DEEP4MALDROID, uses

a dynamic analysis approach called Component Traversal to maximize the code executed for a

given app [125]. A deep learning framework is then applied over the resulting graph to identify
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malware based on Android system calls. While deep learning and program analysis are used by

DEEP4MALDROID to detect security-related constructs, the system entails a complete, or nearly

complete, directed graph of the app in question, rather than an individual, arbitrary method. Xie

et al. use dynamic analysis to detect anomalous runtime behavior in high-performance computing

systems [211]. The approach builds tree representations (CSTrees) as feature vectors from the

stacks and applies a One-Class Support Vector Machine to detect anomalies.
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Chapter 3: DATA COLLECTION AND SHARING: A STUDY ON

ANALYTIC SERVICES

Before analyzing sensitive data flow in mobile apps. It is necessary to gain a deeper under-

standing of mobile apps with regard to their way to collect and share user’s privacy-related data.

In this chapter, I will provide technical details of how we obtained metadata and binary files (also

known as apk files) of apps from Goole Play, and how we decompile and instrument these apps to

observe data collection and sharing with third-party services.

3.1 Overview

Mobile apps often rely on third-party services to enhance user experience through features such

as social network integration and crash analysis. Among the most popular types of third-party

services, analytic services enable app developers to gather user behavior information to improve

their products and monetize their apps with targeted ads. Such analytic services can be integrated

into apps through package libraries to collect user activities and send user behavior to their servers

for analysis. Server-side analysis can then generate aggregated reports for the app’s developers.

For example, such aggregated reports may describe how many users are from New York City, how

many users reached a specific activity, or how long they tend to spend on a specific activity.

Analytic services provide specific methods that allow app developers to set attributes for their

users, we refer to those methods as Attributes Setting Methods (ASMs). For example, one com-

monly used category of ASMs is “set user identifier”, which allows app developers to store a user

ID for the individual using their apps. These methods are usually optional and can be used to

recognize the same user across multiple usages of an app. Once a unique ID is assigned through

such a method, the user’s behavior reports will be labeled with the provided user ID. These identi-

fiers are strictly used for identification with respect to the service and do not need to be personally

identifying. For example, a random, unique number or hash value could be used instead of an
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email address. Using personally identifiable information (PII)1 as an ID would be considered as

bad practice in this case as it presents an unnecessary exposure of sensitive data. By misusing PII

(e.g., email, username, device ID) with ASMs this effectively un-anonymizes the reports produced

by the analytics service resulting in privacy risk. Furthermore, such misuse may violate the app’s

own privacy policy, the analytic service providers’ terms of service, or general best practices (e.g.,

data overuse, least privilege).

A major privacy risk associated with third-party analytic services is the data usage after the

behavioral reports have been collected by the analytic service. Once the data have left the app

and reached an analytic service, the developers and users lose control of the information. Even

if the third-party service is trusted not to misuse the data, accumulated long-term storage of

unanonymized user behavioral data is susceptible to theft or leakage [8, 27, 38]. Not expecting

PII to exist in the collected behavioral reports, third-party services may share the data to their busi-

ness partners or do not provide enough protection for them. Furthermore, when multiple apps use

the same PII for the same analytic service, multiple behavioral reports can be combined to build

more comprehensive personal profiles.

Legal requirements such as EU General Data Protection Regulation (GDPR) requires law-

ful basis (e.g. legal obligation, explicit consent) to process users’ data [30], unless the data is

anonymized [28]. For these reasons, it is imperative that unnecessary use of PII for behavioral-

report labeling to be eliminated.

Many of the most commonly used analytic services provide documentation specifically dis-

couraging or prohibiting the use of PII as user attributes when using their ASMs. For example,

Google’s Firebase [11] includes the following in their documentation [24] for configuration of

ASM setUserProperty():

“When you set user properties, be sure to never include personally identifiable information

such as names, social security numbers, or email addresses, even in hashed form.”

Flurry, another popular analytics service, has the following text in its documentation [25] for ASM

1We use the union of GDPR and Google Analytics definitions for PII [29, 66].
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setUserID():

“Warning: It is a violation of our terms of service to track personally identifiable informa-

tion such as a device ID (e.g. Android ID) using this method. If you have a user login that

you wish to send to Flurry using this method, you must anonymize the data using a hashing

function such as MD5 or SHA256 prior to calling this method.”

App developers may also attempt to reduce PII-related misconfigurations by adopting privacy

policies that require anonymization or aggregation of data when used with analytic services. For

example, the privacy policy for the app ShopClues [64] claims:

“ShopClues.com may also aggregate (gather up data across all user accounts) personally

identifiable information and disclose such information in a non-personally identifiable man-

ner to advertisers and other third parties for other marketing and promotional purposes.”

Despite such documents and policies, it is not clear whether app developers always follow

them in reality as they may neglect them during development. In this paper, we perform a study to

understand how app developers invoke ASMs in practice and whether those practices comply with

the documents and policies of the analytic service providers and the apps themselves. It should be

noted that, while there exist research efforts on data collection behavior, over-privilege, and leak

detection for third-party libraries [127, 164, 167, 176, 178], our work is different in that it studies

the cause of leaks related to misconfiguration of third-party services. Specifically, we try to answer

the following four research questions in this study.

• RQ1: What configuration methods do analytic service provide and how do apps invoke those

methods?

• RQ2: How commonly do app developers use PII when configuring analytic service?

• RQ3: Do analytic services provide mechanisms to protect anonymity in the case of miscon-

figuration as a result of RQ2?
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• RQ4: Do analytic service misconfigurations result in violations of apps’ own privacy poli-

cies and analytic service providers’ documents/policies?

To answer these research questions we developed a semi-automatic approach, Privacy-Aware

Analytics Misconfiguration Detector for Android (PAMDROID), to detect and analyze misconfig-

urations that may lead to privacy risk. In this approach, we first investigated the documentation of

the 18 most popular analytic services in the mobile analytic ecosystem as listed in AppBrain [10].

We acquired the methods provided by these analytic services through their Application Program

Interface (API) specifically for configuring user attributes (ASMs). We also collected the config-

uration instructions and terms of service notices from these analytic services, when available, to

gather their guidelines and recommendations for use. With this data, we designed and conducted

an experiment to dynamically and automatically evaluate the top 1,000 Google Play store apps that

contained at least one ASM invocation in their code. We detected invocations to attribute-setting

ASMs at run time and recorded parameter values to study what the common practices were and

whether they abode by the app’s privacy policies, the analytic service guidelines, and best practices

concerning PII for using analytic services. We also investigated the analytic reports generated by

the analytic services to study whether the services applied any mechanisms to anonymize or ag-

gregate the collected data.

We have the following major findings:

• Based on the results of our semi-automated approach, 555 out of 1,000 top apps from the

Google Play store had at least one ASM invocation observed at run time and 120 of them

used PII to configure analytic service without encryption.

• All the analytic services we investigated provide behavior reports on individual users to app

developers and the reports are labeled with exactly the same identifiers provided by app

developers. Therefore, if PII is used as an identifier, they will be directly linked to the user

behavior reports, resulting in targeted, non-anonymous and non-aggregated information.

• We manually inspected the policies of the 120 apps and found 27 of them may violate their
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own privacy policies by using PII as user attributes.

• Using PII with analytic services may also violate the Terms of Service (TOS) of analytic ser-

vices. Among the analytic services we studied, we found that four of them explicitly require

app developers to avoid passing PII to ASMs. They are Firebase, Google Analytics, Flurrry

and Mixpanel, and they have the app-market shares of 55.95% [57], 26.84% [59], 5.12%

[58], 0.77% [60], respectively. Although only four analytic services state this requirement

explicitly, Firebase, Google Analytics, and Flurry are the top three market share holders and

dominate the market, so we believe this requirement is a standard for analytic services. Our

result shows that 37 apps which are using the four analytic services did set user’s PII to the

ASMs, and thus may violate analytic services’ terms of service (Firebase, Google Analytics,

Flurrry) or privacy guidelines (Mixpanel).

3.2 Analytic Services

For a better understanding of users’ behavior, app developers often choose to utilize analytic

services. Analytic services usually provide client libraries that app developers could utilize in their

app, which will record an app user’s interaction with the app and send the corresponding data to

the server of the analytic service. Later, the analytic services can link the activity of a mobile app

user over time into a behavior report. The behavior report includes detailed usage information

about this user. The analytic services can then aggregate all the users’ reports and provide analytic

data to the app developers so that they can improve their product or make better business decisions

based on the analytic report.

3.2.1 Tracked User events

Analytic services automatically collect some events that are triggered by basic interactions such

as ad impressions, ad clicks, and screen transitions. Table 3.1 shows the default events collected

by Firebase and Mixpanel. From the table, we can see that the collected events contain detailed

information about the user’s usage of the app and interactions with the ads.
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Table 3.1: Analytic services collect user events by default

Firebase
ad_click, ad_exposure, ad_impression,
screen_view, user_engagement, session_start,
app_clear_data, app_exception, etc. [18]

Mixpanel
first app open,app updated, app crashed, app session
in app purchase. [40]

3.2.2 Analytic Service Configuration

Analytic services provide Attributes Setting Methods (ASMs) that enable developers to cus-

tomize the analytic service by setting some attributes for their users. Developers can set identifiers

or other attributes such as age, gender, and location on each app user. Later, developers can use

those attributes as a filter or metrics in their analytics reports. For instance, a developer may want

to know the geography distribution, or age distribution of their users. The data that developers pass

to those ASMs will be associated with the users’ collected events and then sent to the server of an-

alytic services. To protect users’ privacy, analytic services have certain guidelines or suggestions

for how the developer should use those ASMs. We list two from some analytic services here as

examples:

In Firebase [24] [22]:

When you set user properties, be sure to never include personally identifiable information

such as names, social security numbers, or email addresses, even in hashed form.

Note: You are responsible for ensuring that your use of the user ID is in accordance with

the Google Analytics for Firebase Terms of Service. ... For example, you cannot use a

user’s email address or social security number as a user ID.

In Mixpanel [42]:

If you wish to track users truly anonymously, however, then your tracking implementa-

tion should not use user-specific information, such as the user’s email address. Instead

use a value that is not directly tied to a user’s PI (personal information), whether it be a

unique anonymous hash, or a non-PI internal user identifier.
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These instructions require the app developers to not use any PII to configure analytic services

and encourage them to use anonymous data instead.

3.2.3 Personally Identifiable Information

We consider PII as the union of the definitions by Google Analytics and the EU General Data

Protection Regulation (GDPR). The following statement is from Google Analytics [66].

“Google interprets PII as information that could be used on its own to directly identify, con-

tact, or precisely locate an individual. This includes: email addresses, mailing addresses,

phone numbers, precise locations (such as GPS coordinates - but see the note below), full

names or usernames”

The following statement is from GDPR [29].

“Personal Data: ... an identifiable natural person is one who can be identified, directly

or indirectly, in particular by reference to an identifier such as a name, an identification

number, location data, an online identifier or to one or more factors specific to the physical,

physiological, genetic, mental, economic, cultural or social identity of that natural person.”

GDPR also defines online identifiers [31] which we include as PII:

“Online Identifiers: Natural persons may be associated with online identifiers provided by

users’ devices, application, tools or other identification tag and it could be used to associate

with natural persons, because online identifiers may leave traces which, in particular when

combined with unique identifiers and other information received by the servers, may be used

to create profiles of the natural persons and identify them.”

3.3 PAMDROID and Study Design

The goal of this research is to detect misconfigurations in analytics services as they may lead

to privacy risks. To this end, we developed PAMDROID, a semi-automated approach to detect
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the misconfiguration of analytic services due to setting PII to ASMs. As illustrated in Figure 3.1,

there are two manual preparation steps of PAMDROID. First, we manually collect a set of most

popular analytic services and Android apps. For each analytic service, we investigate its API

documentation to collect all ASMs that app developers can use to set user attributes. Second, we

set up an Android device and collected all its information to construct a reference user profile. The

profile includes different platform IDs (e.g., device ID, serial number, Android ID, advertising ID),

a synchronized Google account (e.g., user name, user email, address, age, gender, date of birth),

and other sensitive information (e.g., location, IP address, MAC address).

After these two steps, PAMDROID first performs static smali code analysis on the apps to filter

out the apps that do not invoke any ASMs at all. Then, PAMDROID automatically instruments

all ASMs (detected with static smali code analysis) to print their argument values to system log.

After that, PAMDROID uses Monkey [65] to test the instrumented apps’ user interface. Note that

many apps trigger analytic services only after a user is logged in. As a supplement of Monkey,

we perform manual login for all apps that require login to get to the start page. Finally, PAM-

DROID compares the collected system logs with the reference user profile. When certain types

of information in the reference user profile show up in the system log, PAMDROID detects an

ASM misconfiguration. After all misconfigurations are detected, we manually inspect the corre-

sponding apps’ privacy policies and corresponding analytic services’ terms of services to detect

violations and misalignments. It should be noted that the major goal of this research is to study the

commonality and characteristics of ASM misconfigurations, and PAMDROID is developed for the

study, so we supplemented it with manual analysis to acquire most comprehensive and accurate

results. If we do not perform manual log-in and adopt existing automatic approaches for policy

analyses [183,201,217,226], PAMDROID can be made fully automatic, but its effectiveness is not

clear and it is not the focus of this paper.
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Figure 3.1: Privacy-Aware Analytics Misconfiguration Detector(PAMDROID)

3.3.1 Collection of Apps and Analytic Services

We identified the 18 most popular analytic services using published statistics provided by App-

Brain [10], a company specializing in app marketing and promotion. After that, we identified

the ASMs provided by the selected analytic services. The top 1,000 free apps containing at least

one invocation of the studied ASMs were collected from PlayDrone [45], a collection of metadata

for Android apps on the Google Play store. We identified those apps which invoked ASMs by

analyzing their smali code2. If an app obfuscated the ASMs it invoked, we could not apply our ap-

proach to it. Furthermore, we also ruled out apps that were incompatible with our device and those

no longer existing in Google Play due to being removed since being included in the PlayDrone

database.

To determine whether an app had an invocation of a studied ASM, we first decoded the analytic

libraries into smali format using APKTool [194] and identified each ASM’s smali signature. We

then decompiled each app’s APK (Android Package) file into smali format and scanned the result-

ing file for occurrences of ASM signatures. Only apps containing at least one ASM signature were

kept for consideration.
2Assembler for the dex format used by Dalvik
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3.3.2 Runtime Information Collection

There are multiple approaches to detect information flow to ASMs. The first approach we

considered was using static taint analysis. To this end, we used FLOWDROID [79] to analyze

the 1,000 apps and defined ASMs as sinks and personal information sources from SUSI [161] as

sources. The result showed that FLOWDROID only identified 10 data flows from sources to sinks.

Through further investigation, we found that the sources of PII sent to ASMs are often not Android

API methods, but system files or databases. Furthermore, PII often flow through paths that are not

handled by FLOWDROID, such as android.content.SharedPreferences, which is a

data structure in Android system that stores user information such as username, device ID, etc. If

we add all these API methods as sources of FLOWDROID, it will report many false positives as

files, databases, and Android system data structures may also contain a lot of non-PII.

To make sure our study is conservative (all reported misconfigurations are real), we ultimately

utilized value-based dynamic taint analysis. As mentioned earlier, we prepared a reference user

profile to match arguments sent to ASMs. To make sure values in our user profile are not confused

with other values, we designed very strange information (e.g. user name, email address) for the

synchronized Google account. To make sure our matching is robust, for the values in the reference

user profile, we further generate values with different value transformations, such as reverting and

truncating. We also produced hashes for all PII using common hashing algorithms provided by

Android API methods so that we could identify hashed values (although in the study we did not

find hashes being sent). Note that we manually confirmed all matched results to make sure that our

value-transformations do not lead to wrong matches. One limitation of value-based taint analysis

is that we cannot detect encrypted PII with an app-specific key. Notably, using encrypted PII as

user attributes on analytic service already reduces the risk to privacy, because the unencrypted PII

will not be combined with collected user behavior.

In order to catch the arguments of ASM invocations during runtime, we instrumented all ASMs

in smali code by adding a call to the Android logger to report the invocation at the beginning of the

ASM implementation. This allows us to use the Android system log to analyze method argument
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Table 3.2: System log of ASM invocation

1 01-10 18:16:55.024 1931 1931 W System.err: java.lang.Exception: Third-party API invoke detection:Print StackTrace with parameter:
2 01-10 18:16:55.024 1931 1931 W System.err: at com.google.firebase.analytics.FirebaseAnalytics.setUserProperty(Unknown Source)
3 01-10 18:16:55.024 1931 1931 W System.err: at com.vivino.android.a.a.a(FirebaseHelper.java:160)
...
...
17 01-10 18:16:55.024 1931 1931 I Third-party API invoke detection:Print StackTrace with parameter:: vivino_email
18 01-10 18:16:55.024 1931 1931 I Third-party API invoke detection:Print StackTrace with parameter:: *******@gmail.com

values being set at runtime. After inserting the code, we rebuilt the smali code back into APK

format for testing. We used the Android Debug Bridge (adb) to automatically install the rebuilt

apps onto our test device and run the apps and then executed Monkey to perform the testing. For

each app, we automatically installed, executed, tested, uninstalled and saved the system log into

the local file system for later inspection. During testing, we found 254 apps requiring login to an

account to show the app’s start page, so we manually created accounts for these apps using the

reference user profile to complete the login process.

Finally, PAMDROID searched the system logs generated during testing and extracts argument

values of ASMs based on flags inserted during instrumentation. Table 3.2 is an example where Line

1 shows our inserted flag; Line 2 shows the ASM that be invoked (Firebase.setUserProperty),

and Line 17 shows our flag and the first argument value that was passed to the ASM (“vivino_email”).

Line 18 shows the second argument value which was the email address (represented as "********@gmail.com").

3.4 Study Results

3.4.1 Apps’ Usage of Analytic Services

To answer RQ1, for each analytic service, we first investigated their documentation and col-

lected the ASMs. We noticed that every analytic service provides the methods that allow developers

to set attributes for their users, such as setUserID, setCustomerUserId, or setUserIdentifier,

etc. Firebase provides an method called setUserProperty, which allows developer to set

any attributes to describe their user. It takes two arguments which are similar as a pair of “key”

and “value”. Other methods include setUserEmail, setLocation, setAge, setGender,
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setDeviceId, setPhoneNumber, etc. The full list of ASMs are available at our anonymous

project website 3. Four analytic services (Firebase, Google Analytics, Flurry, Mixpanel) explicitly

require app developers to avoid setting PII [22, 23, 25, 42] to ASMs.

A method to set user identifier (e.g., setUserId) is provided by every analytic service and

mostly commonly invoked in our test. For example, Crashlytics.setUserIdentifier

was invoked in 147 apps, and Flurry.setUserId was invoked in 67 apps. We present these

frequencies in Table 3.3. In the table, the first column presents the analytic service name; the

second column presents the total number of apps that invoked the ASMs from this analytic service.

The third column represents the ASM name; and the fourth column presents the number of apps

that invoked the corresponding ASM. Among the 1000 apps that contain ASM invocations in their

smali code, 555 apps invoked 29 ASMs from 13 different analytic services during our runtime

testing. Table 3.3 shows that Firebase and Crashlytics are the most commonly invoked analytic

services. Note that a single app could use more than one analytic services, within one analytic

service, the app could invoke multiple ASMs to set user attributes.

To understand how apps use different types of ASMs over all analytic services, we categorized

all ASMs in Table 3.3 into a number of categories according to their purposes. In particular, the

categories are “set user identifier”, “set user properties”, “set device identifier”, “set user email”,

“set username”, “set age”, and “set location”. In Figure 3.2, we present the number of apps that

invoke different categories of ASMs. We observed that 387 apps set user identifiers to at least

one analytic service, showing that many app developers set identifiers for users to differentiate

individual user interactions through the analytic service, and the function is also well supported

by analytic services in general. Furthermore, 198 apps set user properties to at least one analytic

service. Since ASMs in the “set user properties” category are very general and can be used to set

almost any data, it is difficult to statically tell what information is sent through them.

3https://sites.google.com/site/trackersec2019/
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Finding 1. Our answer to RQ1 is that, all our studied analytic services provide ASMs for app

developers to set user attributes, and more than half (555 of 1,000) of apps trigger ASMs to

label user behavior reports.

Table 3.3: #Apps Invoke Different ASMs

Analytic library # Apps Method # Apps

Firebase 216
setUserId 64
setUserProperty 193

Crashlytics 163
setUserEmail 21
setUserIdentifier 147
setUserName 38

AppsFlyer 81
setAndroidIdData 31
setAppUserId 4
setCustomerUserId 63

Flurry 70
setAge 6
setLocation 2
setUserId 67

Tune 38

setAndroidId 12
setDeviceId 3
setUserEmail 2
setUserName 2
setUserId 27
setFacebookUserId 6
setGoogleUserId 6
setTwitterUserId 6

IronSource 24 setUserID 24
mixpanel 17 identify 17
Applovin 13 setUserIdentifier 13

Leanplum 12
setDeviceId 6
setUserId 4
setUserAttributes 5

Branch 11 setIdentity 11
Google Analytics 7 setClientID 7
Appsee 6 setUserId 6
Newrelic 4 setUserId 4

3.4.2 PII set to ASMs in Misconfiguration

To answer RQ2, we further studied what types of data are set to ASMs in our studied apps. By

matching the logged method arguments to the controlled user profiles (see Section 3.3.2), we can

detect misconfigurations on the fly.
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Figure 3.2: #Apps Invoking Different Types of ASMs

Table 3.4 presents the number of apps setting different types of PII to ASMs. In particular,

Columns 1-4 present the type of PII, ASM name, the number of Apps setting certain type of PII to

a certain ASM, and the total number of Apps setting certain type of PII to all ASMs. We make three

major observations. First, overall 120 apps set PII or PII’s transformation (11 apps) to ASMs. It

should be noted that a single app may set multiple data types, so the values in Column 4 do not add

up to 120. Second, among the 120 apps, 79 apps set Android ID to ASMs, 24 apps set users’ email

addresses to ASMs, and 19 apps set users’ registered username to ASMs. Note that registered

usernames are used to uniquely identify users in the app, and many users use the same username

across apps, so Google Analytics explicitly lists username as PII [56]. Third, one type of PII is

observed to be set to ASMs for multiple purposes. For example, Android IDs are mainly set to

ASMs in the category “set user identifier”, but it is also set to Crashlytics.setUserName()

and Firebase.serUserProperty(). Email addresses are also set to ASMs in the categories

of “set user properties” and “set user identifier”. So the vagueness and generality of ASM design

may have aggravated their misuse.

In Figure 3.3, we further show the number of apps that set different PII to different analytic

services. In the figure, we organize the number of apps setting various PII to each analytic service

as a separate column chart. In each sub-column-chart, the x-axis shows different analytic services,

and the y-axis shows the number of apps setting different personal information type in that analytic

service. From the figure, we can see that Crashlytics and AppFlyer are receiving PII from the most

number of apps, and Crashlytics also received user email addresses from the most number of apps.
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Figure 3.3: # Apps set different PII to different analytic services

Furthermore, Firebase and Flurry, which explicitly require app developers to not send PII to them,

both receive various types of PII, including Android ID, device series number, and username.

Firebase further receives email address, and Flurry further receives IMEI.

Finally, Figure 3.4 presents the category distribution of our dataset and the percentage of apps

(in each category) setting PII to ASMs. Each bar represents the total number of apps in the specific

category, while the dark portions represent the number of apps in the category that set PII to the

ASMs. We further label the percentage of dark bar portion for each bar. The figure shows that there

is not a specific category of apps that are much more likely to use PII as user attributes. Compared

with others, apps in Photography, Communication and Shopping have higher possibility of setting

PII to ASMs. Besides PII, our test result shows that 24 apps used Advertising IDs, which can be

changed by users and sometimes encouraged by analytic services to be used as user identifiers.

However, if users do not change Advertising IDs frequently, they can still be actually PII. Since

we want our study results to be conservative, we do not include them as PII in our study results.

Finding 2. Our answer to RQ2 is that, among the 1,000 apps we studied, at least 120 apps

(detected by PAMDROID) misconfigure ASMs with PII. In particular, Android ID (in 79 apps),

User Email (in 24 apps), Username (in 19 apps), IMEI (in 6 apps), and Serial Number (in 3 apps)

are the types of PII being set to ASMs.
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Table 3.4: #Apps Setting Different PII to ASMs

Personal Info Tracker API #Apps Total

Android ID

Firebase.setUserId 8

79

Firebase.serUserProperty 5
AppsFlyer.setAndroidIdData 29
AppsFlyer.setCustomerUserId 2
Flurry.setUserId 11
Mixpanel.identify 4
Tune.setAndroidId 11
Tune.setDeviceId 1
Crashlytics.setUserIdentifier 16
Crashlytics.setUserEmail 1
Crashlytics.setUserName 1
Applovin.setUserIdentifier 2
GoogleAnalytic.setClientId 1
Appsee.setUserId 1

Email

Firebase.serUserProperty 3

24

Mixpanel.identify 2
Tune.setUserEmail 2
Tune.setUserName 1
Crashlytics.setUserEmail 12
Crashlytics.setUserIdentifier 1
Crashlytics.setUserName 5

Username

Firebase.serUserProperty 1

19

Flurry.setUserId 2
Tune.setUserName 1
Crashlytics.setUserName 14
Crashlytics.setUserIdentifier 1
Leanplum.setUserAttributes 1
Leanplum.setUserId 1

IMEI
Flurry.setUserId 3

6Tune.setDeviceId 2
Crashlytics.setUserIdentifier 1

Serial Number
Flurry.setUserId 2

3
Firebase.serUserProperty 1
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Figure 3.4: # Apps distribution in categories

3.4.3 Enforcement of Aggregated and Anonymous Reports

To answer RQ3, we studied all 13 analytic services being invoked to find out whether they

have enforcement mechanisms to reject PII being set to ASMs. Unfortunately, none of 13 services

have such built-in enforcement mechanisms. Only one of them, Appsflyer [12], provides a method

to set user email address with encryption, but none of apps in our data set actually invoked this

method. Furthermore, we studied whether the information set to ASMs is encrypted before they

are combined with behavior reports, and no analytic service is performing the encryption. It should

be noted that all the analytic services which we studied use encrypted network connection (e.g.,

HTTPS) to send collected information. However, if the PII set to the ASMs is combined with

behavior reports in un-encrypted form, the anonymity of the collected user behavior is already lost

as the whole data will be decrypted later.

It is very challenging to tell how data is stored and processed on servers of analytic services.

However, we can predict their practice from the behavior reports they provided to developers.

Therefore, we further studied whether the analytic services provide reports on individual user be-

haviors. We found that for all analytic services that we investigated, their online analysis reports for
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Figure 3.5: A demo report in Dashboard of Flurry [26]

developers are not limited to aggregated data, but are instead itemized by received user attributes.

Figure 3.5 , Figure 3.6 and Figure 3.7 presents example report screen-shots from Flurry, Mixpanel,

and Crashlytics. From the three figures, we see that reports are organized by user attributes and

presented to app developers, and the identifiers (e.g., user email, username or device IDs) are pre-

sented without anonymization. Figure 3.5 shows that Flurry’s report not just contains the userId,

but also user’s latitude and longitude data.

Finding 3. Our answer to RQ3 is that, analytic services do not have any mechanisms to vet or

anonymize PII they received from ASMs. The PII are directly combined with behavior reports

when stored and provided to app developers.

3.4.4 Policy Violations and Misalignment

We present our answer to RQ4 in this subsection. As we discussed in our results above, it

is a privacy risk when PII was set by app developers on analytic services without encryption or

anonymization. Such misconfiguration may cause two types of policy-related issues. First, to

protect user privacy and avoid legal liabilities, analytic services may state in their TOS that they
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Figure 3.6: A demo report in Dashboard of Mixpanel [105]

Figure 3.7: A demo report in Dashboard of Crashlytics [15]

do not allow developers to set PII to their ASMs. So the misconfiguration of ASMs will cause

TOS violations. Second, the app’s own privacy policy may claim anonymous data analytics or

fail to describe the sharing of PII to analytic services, so the misconfiguration of ASMs will cause

misalignment between code and privacy policies.

TOS Violations

Figure 3.3 shows that 120 apps set PII on ten analytic services. As we mentioned in Section 1,

four analytic services (Firebase, Google Analytics, Flurry, Mixpanel) explicitly require app devel-

opers to avoid setting PII to ASMs in their terms of service (Firebase, Google Analytics, Flurry,

note that they are the top three market-share holders in analytic services) or privacy guidance

(Mixpanel).

Based on our experiment results, 31 apps have set PII to ASMs of Firebase, Google Analytic,

or Flurry, and thus we believe that the misconfiguration of ASMs actually violates their terms of

services. Furthermore, 6 apps have set PII to ASMs of Mixpanel, so they are violating Mixpanel’s
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privacy guidance. It should be noted that, although the remaining 83 apps did not violate the poli-

cies of analytic services, their practice of setting PII to ASMs still jeopardizes users’ privacy. Also,

the top 3 market share holders have relatively less (31/120) misconfigurations maybe because they

have instructions of ASMs in their documentation and TOS, which help avoid misconfigurations.

Misalignment of Apps’ Privacy Policies

Misconfiguration of ASMs may also cause misalignment between an app’s code and privacy

policy. To find such apps, for each of the 120 apps that set PII to ASMs , three of the authors

independently read the app’s privacy policy and wrote arguments on why he / she believes using

PII for analytic services is a potential policy misalignment or not. Then, the authors met to discuss

the arguments for each app, and voted to determine whether the misconfiguration is misaligned

with the privacy policy.

We found 27 out of 120 apps have misconfigurations that are misaligned with their own privacy

polices. 15 apps vaguely mentioned in their privacy policy that they may share PII of users with

third parties. 58 apps have no misalignment with their own privacy policies as they explicitly

indicate that they will share specific personal information type to third-parties. The remaining 20

apps either have a non-English privacy policy or the privacy policy web-page is not available. The

detailed discussion record of all 120 apps is available in our anonymous website, and misalignment

examples are presented later in this subsection.

Privacy Misalignment. We consider an app to be misaligned with its privacy policy if the policy

does not indicate that it will share PII with third parties, or if the policy claims anonymous data

collection. For example, the social app Emojidom’s privacy policy [61] states that:

Do third parties see and/or have access to information obtained by the Application?

Only aggregated, anonymized data is periodically transmitted to the analytics tools which

help us evaluate the Application’s usage patterns and improve the Application over time.

However, our test results show that this app set user email addresses to Crashlytics, which is
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misaligned with this privacy policy.

Vague Privacy Policies. Privacy policies should inform users about types of user information

are shared with third parties. Third party analytic services also request app developers to make this

sharing explicit in their apps’ privacy policies. For example, Crashlytics is one of the most popular

third party analytic services for helping developers to analyze crashes in their apps. Crashlytics

requires that all developers maintain a privacy policy that fully and accurately discloses the type

of information shared with Crashlytics [46]. Among 120 apps that send PII to analytic services,

15 of them abstractly indicate that they may share personal information to third-parties without

specifying what the information types are. For example, the shopping app Staples sets user email

address to Crashlytics and its privacy policy states that [63]:

We may share your Personal Information with our third-party service provider to process

transactions or provide services on our behalf, including but not limited to providers of

product delivery services (for example UPS and FedEx) and website analytics (for example

Google Analytics).

No misalignment We consider an app has no misalignment with its privacy policy if it clarifies

the data types being shared with third-party service providers.

Finding 4. Our answer to RQ4 is that, among 120 apps with misconfiguration of ASMs, the

misconfigurations cause terms-of-service violation of analytic services in 31 apps, and privacy

policy misalignment in 27 apps.

3.4.5 Threats to Validity

The major threat to internal validity of our study is the false positives and negatives in our

misconfiguration detection process. Since we report only observed misconfigurations at run time,

we should not have false positives. It is possible that our dynamic analysis failed to trigger some

misconfigurations, our collected ASMs are not complete, or our matching process missed some
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sophisticated transformed argument values. So our reported number of misconfigurations is actu-

ally an under-estimation, which will not undermine our major findings. To reduce this threat, we

carefully scanned the documentation of analytic services, combined monkey and manual log-in

to enhance the code coverage, and considered various value transformations when matching the

reference user profile with system logs. Since most developers will perform configuration of ana-

lytic libraries when the app is started, the false negative rate caused by uncovered misconfiguration

should not be high. The major threat to external validity of our study is that our findings may apply

to only the 1,000 apps under study. To reduce this threat, we chose the top apps from Google Play

store and these apps covers almost all different app categories.

3.5 Lessons Learned

In this section, we discuss the potential privacy risks found and our recommendations for dif-

ferent parties involved in the configuration of analytic services.

3.5.1 Privacy Risks

Although top analytic services advise app developers to not use PII as user attributes, many

app developers still do so and no mechanism has been provided (either by Android or the ana-

lytic services themselves) to prevent app developers from using PII. This means that the analytic

services may unintentionally link a behavior report to a specific individual. Based on our exper-

iment results, a non-trivial number of apps are using emails and device identifiers (e.g., Android

ID, IMEI, serials number) as user attributes. These identifiers are long-lived and can be used to

construct a user’s comprehensive profile from multiple apps using the same analytic service. Since

most analytic services further share their collected data to third parties for business purposes, the

personal-identifiable comprehensive profiles can be exposed to more risk due to the neglect of PII

inside the data.

Since analytic services and app developers hold a large amount of valuable user data, it is very

likely that they can be targeted for information theft/leakage attacks. When an information leakage
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incident happens, if the data stored on the server is not in an anonymous and aggregated form,

the consequence will be much more severe than the scenarios where they are anonymized and

aggregated. Because analytic services do not expect app developers to set PII to the ASMs, they

may not have corresponding mechanism to detect PII in the collected data, and thus may not use

protection mechanisms (e.g., encryption) on the collected data.

3.5.2 Actionable Suggestions

Base on our study, the five parties involved in analytic services may take some counteractions

to reduce the privacy risk caused by ASM misconfigurations.

Research Community In order to precisely and comprehensively detect misuse of analytic service

ASMs, new static techniques are desired to detect the data flow from PII sources to the ASMs.

Although it is possible to take advantage of off-the-shelf information flow analyses [79, 109], the

challenge still remains of detecting PII sources and ASMs. For PII sources, many types of PII (e.g.,

username, user’s email) are user defined so their source may be a text box, a local file or a database

which cannot be easily differentiated from other non-PII information. Therefore, more precise

techniques to identify PII sources or intermediate sources (e.g, a variable that loads PII values from

a file or the database) are required. For ASMs, although we manually constructed ASM sets for

18 popular analytic services in the study, the analytic services are continuously evolving and new

analytic services may become popular. For this reason, our sets can quickly become out-of-date.

Therefore, novel techniques to automatically identify ASMs and their behaviors are desirable.

Another potential research endeavor is studying how analytic services can vet and anonymize

PII so that they can enforce the privacy requirement of using ASMs. One challenge is that the

analytic services do not know where the argument values come from. So, a likely solution is

value-based detecting of PII, where a classification model may be learned to detect PII values in

run-time arguments.

Privacy profiles [164] are automatically extracted from apps to provide fine-grained informa-

tion of collected and shared information types, but they cannot handle advanced privacy properties
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such as data anonymity and aggregation. Anonymity may be verified by checking whether data is

combined (e.g., concatenated, put into one object or key-value pair) with PII. Aggregation may be

verified by checking whether individual data is destroyed (e.g., freed) at the end after they are read.

App Developers. App developers should take more care in following ASM documentation/terms

of service and avoid setting any PII as user attributes. Instead of using raw PII, developers could

encrypt or hash the data before it is passed to analytic services or use non-PII instead. For exam-

ple, if the differentiation of users helps on more precise statistics (e.g., how many users are using

their app or certain activity), they can use Advertising IDs, randomly-generated IDs, or encrypt-

ed/hashed PII as user’s identifier. App developers should pay attention to their privacy policies

as well, as they need to make sure the policy is consistent with their practice of using analytic

services. At the same time, a clear profile on what kind of PII is set to ASMs can help users

understand how their privacy data can be used by analytic services.

Analytic Services. Analytic service developers should enhance and enforce data anonymity and

aggregation in their code base. In particular, just like Google Analytics, Firebase, Flurry, and

MixPanel, other analytic services should also try to provide a more clear and easily reachable

instruction about privacy-aware configuration. Meanwhile, when designing and implementing

methods, analytic service developers should avoid or limit the usage of over-broad/vague methods

(e.g., setProperties()) and methods that are meant to receive PII (e.g., setUserEmail(),

setUserLocation()). They should also add encryption features for methods that may receive

PII from the app.

Second, when an app sets PII to ASMs, analytic services could have mechanisms to detect

and anonymize the PII (e.g., regular expressions). In this way, analytic services could add vetting

mechanisms in the implementation of ASMs to reject PII or raise warnings on detection. Alterna-

tively, instead of transparently handing over the PII to app developers in their reports, they could

encrypt the PII or replace it with other non-PII, and then perform analysis on the pre-processed

data. After that, analytic services should generate a report that only contains aggregated data about

user behaviors.
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Platform Providers. The Android platform has applied some strategies to reduce the privacy risk

over the years. For example, in Android version 8.0 and higher, Android ID is no longer a constant

value for different apps installed on the same device. This mechanism helps to prevent the analytic

services from gathering an individual user information across multiple apps. Since the Android

platform has access to much PII for the device’s users, such as Google email account, Android ID,

Device ID, it should be able to vet such data sent to ASMs of analytic services. Working together

with analytic services (e.g., asking them to annotate ASMs), the Android SDK could provide

on-the-fly suggestions on which APIs and API options should be used while app developers are

coding. Furthermore, the Android platform could provide the option to automatically reset the

Advertising ID periodically for users.

App Users. App users should be aware that they can be un-anonymously tracked if app developers

do not properly set their attributes on analytic service. Our study found that some app developers

use usernames in analytic services so we suggest app users to avoid using their real names or PII

when registering with different apps. In addition, Google Advertising ID has been encouraged to

be used as the individual identifier in the analytic services. However, if a user does not reset the

Advertising ID frequently, it becomes another long-lived online identifier. So we encourage app

users to reset their Advertising IDs periodically to avoid being identified as the same individual for

a long time period.
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Chapter 4: UNCOVER DATA ACCESS AND REDUCE FALSE

NEGATIVES OF STATIC TAINT ANALYSIS THROUGH HYBRID

PROGRAM ANALYSIS

In the previous chapter, we discussed how we use our semi-automatic framework to observe

sensitive data that apps share with certain types of third-party services. In order to automatically

analyze data collection transmission in mobile apps, we investigated static taint analysis tech-

niques, which traces information flow of tainted sensitive data access (source) to potential chan-

nels through which sensitive data could be leaked (sink). However, static taint analysis suffers

from false negatives due to statically inaccessible code and incomplete source list. In this chapter,

we proposed a novel approach to reduce such false negatives in static taint analysis. Specifically,

we proposed a hybrid taint analysis approach to uncover the inaccessible sensitive data access and

the leaks caused by them.

4.1 Overview

As a means to reduce false negatives in static taint analysis, we propose an approach that uses

the results of dynamic taint analysis as additional sources to supplement static taint analysis. We

implement and evaluate our approach for the Android platform because it has well-established

static taint analysis tools [6, 7, 81] and downstream applications [126, 146, 201]. Although the

effectiveness of such dynamic supplement is limited by the test coverage, our evaluation shows that

it can reduce many false positives with a simple random testing strategy based on Monkey [65].

The base version of our approach is referred as DySTA (Dynamic Supplement of static Taint

Analysis). DySTA first runs static taint analysis and dynamic taint analysis with the same set

of initial sources, respectively. Once DySTA observes a variable holding a tainted value in the

dynamic taint analysis that is not observed as tainted by the static taint analysis, the variable will be

considered a new source (referred to as an intermediate source to be differentiated from the original

sources). For the set of all intermediate sources, DySTA runs the static taint analysis again to find
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additional taint flows. Unlike with static analysis, dynamic analysis is performed at run time, so it

is less affected by blockers and is able to trace taint flows through dynamically loaded or generated

code. Furthermore, even for pure black boxes (e.g., external flows through network servers or

un-instrumented code), it is still possible to apply value-based dynamic taint analyses [132] which

detect taint flows based on the observation of unique values preset at the source locations. As a

result, DySTA retains the static taint analysis ability to trace all possible program paths outside

of blockers which may not be triggered during testing while gaining the ability to detect traces

through blockers thanks to the taint flows detected by dynamic taint analysis.

While the above approach can reduce false negatives, the basic design of DySTA has an impor-

tant limitation. Since it simply concatenates static and dynamic taint flows without any constraints,

the context sensitivity of the original static taint analysis will be lost. Therefore DySTA alone will

lead to additional false positives besides those in the original static taint analysis for cases where

blockers were analyzed. To overcome this, we further propose hybrid context matching in which

the context of dynamic taint flows is injected into the intermediate sources. DySTA is then aug-

mented so the subsequent static taint analysis considers only taint flows matching the injected con-

text. By incorporating context matching, we implemented ConDySTA (Context-aware DySTA)

as an extension of FLOWDROID, a state-of-the-art static taint analysis tool for Android apps. We

evaluated DySTA and ConDySTA with REPRODROID, a benchmarking framework for Android

analysis tools [158]. The results show that both DySTA and ConDySTA were able to reduce 12

out of the 28 common false negatives missed by all six static taint analyses considered in REPRO-

DROID, and context preservation enabled ConDySTA to further eliminate all nine additional false

positives reported by DySTA. We also performed a comparison of our approach and FLOWDROID

on the 100 most downloaded Android apps according to PlayDrone [45]. Our evaluation showed

that, with minimal testing and dynamic analysis, ConDySTA was able to detect 39 additional taint

flows on top of the 281 taint flows reported by FLOWDROID. Furthermore, ConDySTA was able

to preserve context sensitivity and rule out 1,029 taint flows with context mismatches from the

detection results of DySTA.
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This paper presents the following contributions.

• We demonstrate that dynamic taint analysis results can be used as a supplement to static taint

analysis to reduce false negatives in practice.

• We developed a novel approach, ConDySTA, to preserve the context sensitivity of static taint

analysis when supplemented by dynamic taint analysis.

• We performed evaluations using the REPRODROID benchmark and 100 top Android apps

from Google Play demonstrating that ConDySTA can reduce many false negatives reported

by state-of-the-art taint analysis tools and largely reduce false positives from our baseline

solution.

4.2 Running Example

1 public String foo(String in){
2 blocker(in );
3 return foo2();
4 }
5 public String foo2(){
6 String inter = blocker2(); //an intermediate source
7 return inter ;
8 }
9 public void bar(boolean flag){

10 String in = source(); //an original source
11 String out = foo(in);
12 if ( flag){
13 sink(out); //a potential taint flow
14 String in2 = "safe";
15 sink(foo(in2 )); //a false positive
16 }
17 }

Listing 4.1: Static Taint Analysis False Negative Example

4.2.1 Running Example

Consider the example code in Listing 4.1. In the code, method foo() simply returns the value

it receives as the argument. In particular, we assume that the parameter value of foo() is passed

to blocker(...), and the value is fetched in method foo2() by invoking blocker2(), and

foo2() returns the fetched value, which is further returned by foo(). Here, we do not make

assumptions about the implementation of blocker(...) and blocker2(), but one example

of such an implementation can be the writing and reading files in the file system or tables in a
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String in = source();

String out = foo(in);

if(flag)

sink(out);

String in2 = “safe”;

String out2 = foo(in2);

blocker(in);

String out = foo2();

sink(out2);

String inter = blocker2();

return inter;

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2
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public void bar(boolean flag) public String foo(String in) public String foo2()

Control flows
Fact Flows (red for real taint flows, 
blue for false positive taint flows)

Dynamic Taint Flows
Imprecisely Added Taint without 

Context Sensitivity

Figure 4.1: Analysis of the Running Example using IFDS Framework

database, respectively. Such a taint flow could not be traced as we assume blocker code portions

(i.e., methods blocker(...) and blocker2()) are not accessible or analyzable by static taint

analysis. Therefore, static taint analyses will not taint variable inter in Line 6 and will thus miss

the taint flow from method invocation source() in Line 10 to sink(out) at Line 13.

4.2.2 DySTA Approach

Our basic solution, DySTA, executes the program and performs dynamic taint analysis after

the initial static taint analysis. In the example, DySTA would taint variable inter at Line 6 as an

intermediate source according to the result of the dynamic taint analysis which is able to follow

the data flow through methods blocker(...) and blocker2(). Static analysis would then

be applied again incorporating the intermediate source, thus detecting the taint flow at Line 13.

However, since DySTA would not consider the calling context of foo(...) and foo2(), the

taint would be further propagated to the expression foo(in2) at Line 15, although the argument

in2 passed in here is not a user information value from the original source method invocation
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String a = source();

String b = a;

a

a

0

0

0

b

b

a b

Figure 4.2: Illustration of Taint Flow Functions

at Line 10. Therefore, DySTA will detect an additional taint flow at Line 15. This false positive

would be due to the second static taint analysis which incorporates the intermediate source from the

dynamic analysis which does not include the calling context. So while the static taint analysis itself

is context sensitive, the combination of dynamic taint analysis and static taint analysis becomes

partially context-insensitive.

It should be noted that, because dynamic taint analysis cannot cover all possible paths, static

taint analysis may be necessary to detect the taint flow at Line 13 (i.e., when parameter flag is

not true during the execution). Furthermore, the lack of execution coverage on Lines 13-15 would

make it impossible to rule out the false positive at Line 15 based on dynamic analysis alone (i.e.,

finding out foo(in2) at Line 15 is returning value “safe”).

4.2.3 Code Analysis with the IFDS Framework

The IFDS framework, developed by Reps, Horwitz and Sagiv [169], defines a general mecha-

nism to perform inter-procedural, flow-sensitive, and context-sensitive analysis. The framework is

based on a program’s inter-procedural control flow graph, referred as the “exploded super graph”.

The exploded super graph of our running example is presented in Figure 4.1. In Figure 4.1, we use

dashed arrows to present control flows. Cross-procedure control flows are decorated with labels

such as “foo-call-1”, “foo-ret-1”, and “foo-call-2” to differentiate call sites. For example, we can

tell from the labels that call edge “foo-call-1” matches with return edge “foo-ret-1”.

IFDS uses flow functions to represent transfer functions in flow-sensitive analysis on distribu-
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tive finite properties. A flow function consists of a set of “from facts” and “destination facts”, as

well as arrows from the former to the latter. An arrow from fact a in the “from facts” to fact b in

the “destination facts” indicates that if a holds before the statement is executed, b will hold after

the statement is executed.

For example, Figure 4.2 shows flow functions of static taint analysis in which the facts are local

variables (indicating that the variable is tainted or not), plus 0, a special fact that always holds. For

statement String a = source();, the arrow from fact 0 to fact a indicates that variable a will

be tainted no matter what (as 0 always holds). The arrow from fact b to fact b indicates that if b

is tainted before the statement, then it is still tainted after its execution. Similarly, for statement

String b = a;, the arrow from a to a indicates that whether a is tainted is unchanged before

and after the statement, and the arrow from a to b indicates that if a is tainted before the statement

execution, b will be tainted afterward. Given flow functions of all statements in the exploded super

graph, the inference of a fact at a certain statement can be deduced to a graph reachability problem.

In particular, it is a CFL reachability problem [168] because along the reachability path the arrows

labeled with call-sites and return-sites must match to preserve context sensitivity.

In Figure 4.1, we show the flow functions of all statements in the three methods as solid arrows

to the left of the control flow graph. Note that for method bar(boolean), we omitted the fact

for variable flag and the flow functions (and control flow) of the else branch to enhance the

readability of the graph. From the figure, we marked as red the edges that form the taint flow from

method invocation source() to the method invocation sink(out). This flow cannot be detected

by IFDS because it contains a dynamic taint flow path (presented as the red dash-dotted arrow on

the top left) through blocker(String) and blocker2(), which cannot be statically analyzed

at all. Without dynamic taint flow, IFDS finds no flows from the source to the sinks.

It should also be noted that if we simply add the dynamic taint flow path as an additional flow

as shown in the graph, IFDS will still not identify the taint flow (marked in red), because the

return edge “foo2-ret-1” will be mismatched with “foo-call-1” in this flow, and this flow is actu-

ally not along a feasible execution path as it directly goes from foo(String) to foo2(). An-
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other possible solution is to add the whole dynamic execution paths inside blocker(String),

blocker2(), and their dependencies into the exploded super graph. However, since the code

inside blockers are out of the box of the original static analysis, their transfer functions (i.e., flow

functions) may be undefined. This can make the implementation of combined analysis very com-

plicated and even infeasible. From figure 4.1, we can also see that, if we directly use inter as

the source (i.e., adding the dotted blue arrow from fact 0 to fact inter), IFDS will identify the

two flows to both sink(out) (true positive, marked in red) and sink(out2) (false positive,

marked in blue), because IFDS allows unmatched call/return sites (feasible paths) but disallows

mismatched call/return sites (infeasible paths).

4.2.4 Incorporating Context

In ConDySTA, we inject the dynamic calling context of an intermediate source s to the static

taint analysis from s. In particular, the dynamic calling context of an intermediate source s consists

of all the call-sites that have not returned on the dynamic taint propagation path from the original

source to s. In the calling context, the call-sites are ordered in the same order as they are in the

dynamic taint path. In our running example, the dynamic calling contexts of intermediate source

inter at Line 6 will be foo(in) at Line 11, and foo2() at Line 3.

With the acquired dynamic calling context of s, in the following static taint analysis from s,

ConDySTA will filter out the static taint propagation paths that do not match with the dynamic

calling context. This is not a straightforward process due to recursive calls (for which there can

be infinite static taint propagation paths). In particular, in the CFL-reachability [168] algorithm

to solve the IFDS problem [169], besides finding feasible paths with matched call-site-return-site

pairs (so that the paths are feasible with context sensitivity), we need to further identify the feasible

paths containing a sequence of unmatched return-sites that match with the dynamic calling context

C. We refer to such static taint-propagation paths as C-context-matching paths.

ConDySTA implements this by extending the exploded super graph in IFDS framework with

a virtual flow to the intermediate source with the dynamic calling context as the edges. In the
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String inter = blocker2();

return inter;

0 inter

0 inter
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public String foo2()

Figure 4.3: Illustration of ConDySTA Solution

extended graph, we can directly apply the standard CFL-reachability algorithm, and each taint

propagation path from the original source in the extended graph can be mapped to a C-context-

matching path. Figure 4.3 shows the solution of ConDySTA on the running example. From the

figure we can see that we added a virtual fact v, that taints the intermediate source inter and a

number of virtual arrows on v before it taints inter. These virtual arrows are labeled with call-

edges in the dynamic calling context, and are added in the reverse order so that they can match the

return edges during the following IFDS analysis.

4.2.5 Lack of Dynamic Taint-Propagation Paths

Typical dynamic taint analyses propagate taints along with read/write accesses to memory

locations along with program execution, so it is natural for them to record the dynamic taint-

propagation paths. However, even this recording can sometimes be difficult in practice.

First of all, if the taint propagation is at the OS/hardware level [108, 154], it can be difficult to

map the taint propagation paths back to source code due to multiple levels of abstractions. Even

if a mapping is constructed, the mapping can be fragile and specific to a version of programming

language runtime and OS. Second, the dynamic taint analysis itself may still miss some taint paths
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through file systems, databases, and networks. Third and most importantly, unlike static taint

analyses which are based on relatively stable programming language syntax/semantics, dynamic

taint analyses need to work with most fine-grained system features and implementation details,

so they can be easily out-of-date due to fast software evolution. For example, there have been

two major dynamic taint analysis frameworks for the Android system: TAINTDROID [108] and

TAINTART [187]. Neither of them support analysis on Android system versions above Android 6

(currently 8 and 9 are the most common Android versions [69]). Therefore, the simpler value-based

dynamic taint analyses [132] often has better applicability. In particular, value-based dynamic taint

analyses detect taint flows by inserting taints into the value fetched at the original sources (e.g.,

replacing the fetched value with strange values indicating the source location), or by changing data

values at source locations in different executions and monitoring correlated value changes at other

locations.

In all of these cases, ConDySTA may face a situation where the dynamic taint analysis can

provide only tainted code locations, but not the taint propagation paths from the sources. So for

the code in Listing 4.1, we can tell that variable inter at Line 7 is tainted, but we may not tell

where the taint comes from and cannot extract the dynamic calling context from the dynamic taint-

propagation path. To handle such cases, ConDySTA takes advantage of a key observation that

the dynamic calling context of an intermediate source s is always a sub-sequence of the call stack

trace of s. So we can directly extract the dynamic calling context from the stack trace, which is

almost always accessible in dynamic taint analyses. For our example, the call stack trace for the

intermediate source is as below.

at method foo2() (Line 7)

at method foo(String) (Line 3)

at method bar(boolean) (Line 11)

at some method (some line)

...

In the stack trace, the first three items actually provide the dynamic calling context: a call-site

of foo2() at Line 3 of method foo(String) and a call-site of foo(String) at Line 11 of
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method bar(boolean). We can see that not all items of the stack trace belong to the dynamic

calling context. For example, the call-site of bar(boolean) is not part of the dynamic calling

context, because source() is invoked inside/after it, so the call edge for bar(boolean) does

not need to be matched. On the other hand, if a call-site belongs to dynamic calling context, all

call-sites above it in the stack trace are part of the dynamic calling context as the source value must

go through these call-sites to reach the intermediate source as arguments, global variables, or value

containers in blockers.

The key challenge is to decide how long a prefix of the stack trace needs to be in the dynamic

calling context. The basic idea is that, if a call-site belongs to the dynamic calling context, it must

be executed after the source location. Therefore, we can determine whether a call-site belongs

to the dynamic calling context by checking the call stack of the source location or checking for

tainted values in the reachable memory from the call-site.

4.3 Approach

In this section, we will first introduce the algorithm for DySTA and then present the construc-

tion algorithm for dynamic calling contexts in ConDySTA for propagation-based dynamic taint

analysis. Finally, we will describe how dynamic calling contexts can be extracted for value-based

dynamic taint analysis.

Before describing the approach, we provide the following static and dynamic taint analysis

definitions. In our definitions, we use the term expression location to describe a pair of the form

(expr, line) where expr is an expression and line is a description of where the expression is read or

written in the code. For example, an expression location in our running example is (inter, Line

6).

Definition 1. Static Taint Analysis We define a static taint analysis as a function STA: (Code,

Srcs) → TaintLocs, where Code is the code base to be analyzed and Srcs are the set of ex-

pression location in Code serving as the sources. TaintLocs are a set of expression locations in

Code.
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Definition 2. Propagation-Based Dynamic Taint Analysis We define a propagation-based dy-

namic taint analysis as a function Dp: (Code, Inputs, Srcs)→ Paths, where Code and Srcs

are as defined in Definition 1, and Inputs are input used to execute the code base. Paths are

a set of taint propagating program paths. Each path p in Path is in the form of (s1, s2, ..., sn),

where ∃ src ∈ Srcs such that s1 reads src, and ∃ i ∈ Input such that p is a contiguous sub-

sequence of exec(Code, i) (representing the execution path of Code with input i), and the taint can

be transitively propagated on p.

Definition 3. Value-Based Dynamic Taint Analysis We define a value-based dynamic taint anal-

ysis as a function Dv: (Code, Inputs, Srcs)→ LocStacks, where Code, Srcs, and Inputs are

as defined in Definition 2. LocsStacks are a set of pairs in the form of (loc, stack), where loc

is an expression location that holds tainted value at least once in the execution, and stack is a

corresponding call stack when loc holds a tainted value.

It should be noted that for both propagation-based and value-based dynamic taint analysis, one

expression location may be tainted multiple times, and ConDySTA considers them as different

intermediate sources if they have different taint propagating program paths or call stacks, because

they may have different dynamic calling contexts which lead to different context matching in the

following static taint analysis.

4.3.1 DySTA Algorithm

Based on the definitions above, our algorithm for DySTA is presented in Algorithm 1. The

basic idea behind the algorithm is to first identify intermediate sources from the results of dynamic

taint analysis (Lines 1-14), and then apply static taint analysis using them as sources (Lines 15-

16). In particular, we first fetch the results of static taint analysis using original sources (Line 1),

fetch the results of dynamic taint analysis (Line 2), and initialize the set of intermediate sources

(Line 3). Then, for each statement in each taint-propagating execution path p (Lines 4-5), we

first check whether the statement is re-entering statically analyzable code (Line 6). If so, DySTA

checks which expression locations in that statement are tainted (Lines 7-8), and add those tainted
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Algorithm 1: DySTA Algorithm
Require:

Code is the code base to analyze
Srcs is the set of source locations
Inputs is the set of inputs for dynamic analysis

Ensure:
TaintLocs is a set of tainted locations

1: TaintLocs← STA(Code, Srcs)
2: Paths← Dp(Code, Srcs, Inputs)
3: interSrcs← ∅
4: for all p ∈ Paths do
5: for all si ∈ p do
6: if ¬blocked(si) ∧ blocked(si−1) then
7: for all expression locations t ∈ si do
8: if tainted(t) ∧ t /∈ TaintLocs then
9: Add t to interSrcs

10: end if
11: end for
12: end if
13: end for
14: end for
15: NewTaintLocs← STA(Code, interSrcs)
16: TaintLocs← TaintLocs ∪NewTaintLocs

expression locations to the set of intermediate sources (Line 9).

DySTA extracts intermediate sources from only the statements re-entering statically analyzable

code (referred to as re-enter statements) to avoid useless intermediate sources. In a statically

analyzable segment of p, a taint on an earlier statement can be also statically propagated to tainted

expression locations in later statements. Therefore, if static taint analysis using tainted expression

locations in an earlier statement generates resulte, and static taint analysis using tainted expression

locations in a later statement generates resultl, resulte will be a strict super set of resultl. Thus,

there is no need to extract intermediate sources from later statements. For similar reason, in Line

8, we do not consider as intermediate sources the expression locations that are already tainted by

the original static taint analysis STA. In other words, we consider only the dynamic taint flows

through blockers, which are not detectable by static taint analyses.
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Algorithm 2: Construction Dynamic Calling Context
Require:

path is a taint propagating program path
InterSrcs is the set of intermediate sources

Ensure:
ContextMap is a Hashmap from intermediate sources on path to their corresponding
dynamic calling context

1: DContext← ∅
2: ContextMap← ∅
3: for all si ∈ p do
4: for all expression locations t ∈ si do
5: if t ∈ InterSrcs then
6: ContextMap.Put(t, DContext.copy())
7: end if
8: end for
9: if isCallSite(si) then

10: DContext.push(si)
11: else if isReturnSite(si) then
12: DContext.pop()
13: end if
14: end for

4.3.2 Dynamic Calling Context and Graph Extension

For ConDySTA, we extend DySTA with the matching of dynamic calling contexts. In par-

ticular, at Line 15 of DySTA algorithm, before calling STA to perform IFDS-based static taint

analysis, ConDySTA inserts two processes. The first process extracts dynamic calling contexts

for each intermediate source, and the second process extends the exploded super graph to add the

dynamic calling context to it (see Section 4.2.4 and Figure 4.3). We present the algorithm we use

to construct dynamic calling context from taint propagation paths as Algorithm 2.

The algorithm walks along the taint-propagating execution path (Lines 3-4), and collect all

call-sites that have not returned in a stack DContext (Lines 9-13). When an intermediate source

t is reached (Line 5), ConDySTA copies the current DContext and save it as t’s dynamic calling

context.
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Figure 4.4: Implementation of ConDySTA

4.3.3 ConDySTA for Value-based Taint Analyses

When the taint-propagating execution path is not available (e.g., in value-based taint analysis),

we cannot take advantage of the path to fetch the intermediate sources and the dynamic calling

context. In such a case, we directly use the expression locations detected to hold tainted values

as intermediate sources, and their call stack trace as dynamic calling contexts, as explained in

Section 4.2.5. The challenge is to determine how many levels in the call stack trace (denoted as

stacki) belong to the dynamic calling context. Since only the open call-sites executed after the

original source location need to be matched along the taint path, only items executed after the

original source location need to be identified in the call stack trace.

If the source location is known, we can instrument the source location and fetch its call stack

trace stacks. Then we compare stacks and stacki to extract their common post-fix post. We can

see that call-sites in post are not-yet-returned call sites executed before the original source location,

so stacki \ post will be the dynamic calling context to be matched. If the source location is not

known, we cannot use the solution above. In this case, we can instrument all call sites in stacki,

and scan the reachable memory locations at the call site to check whether the tainted value can be

observed. If the tainted value exists, we consider the call-site to be a part of the dynamic calling

context, as the call-site should be executed after the source location is executed.
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4.4 Implementation

In our implementation of ConDySTA, we use FlowDroid [78] for static taint analysis, as it is a

state-of-the-art tool based on IFDS framework, and is compatible with the most updated Android

system and apps. For dynamic taint analysis, we use value-based dynamic taint analysis, because

the state-of-the-art propagation-based tools [108, 187, 215] are all out-of-date and do not work

with Android 6.0 or higher (Android now is at 10). Although having the weakness of not handling

control dependencies and encrypted data, value-based dynamic taint analysis also has its advantage

on handling pure black boxes (e.g., web APIs whose implementations are on remote servers).

Note that ConDySTA can always take advantage of new dynamic taint analysis once they are

available. Figure 4.4 shows the implementation of DySTA and ConDySTA. They both first collect

intermediate sources with dynamic analysis, and then detect additional taint flows using static

taint analysis from intermediate sources. ConDySTA additionally checks whether an additional

taint flow has a calling context matching with the dynamic calling context of the corresponding

intermediate source.

4.4.1 User Profile For Tainted Values

Value-based dynamic taint analysis requires tainted values for sources. Specifically, we use the

values in the user profile of an Android device as the tainted values. The information type and taint

values are presented in Table 4.1.

4.4.2 Intermediate Source Collection

When collecting the intermediate sources, we instrument all return values of methods whose

return types are java.lang.String. The reason is that all the tainted values are of string type

and are stored in string variables. Although they are sometimes organized as fields in objects, there

is often a method declared in the object’s class to fetch the value of the sensitive data as a string.

Due to performance concern, we only implemented the return value. In further research, we may

apply static analysis or machine learning to select part of string-type parameters as instrumentation
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Table 4.1: User Info and Corresponding Source

User Info Source for FlowDroid
IMEI = "355458061189396" android.telephony.TelephonyManager: java.lang.String getDeviceId()
Serial = android.os.Build: java.lang.String getSerial ()
"ZX1G22KHQK" android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()

AndroidID = android.provider.Settings.Secure: java.lang.String getString(android.content.ContentResolver,java.lang.String)
"a54eccb914c21863" android.provider.Settings.System: java.lang.String getString(android.content.ContentResolver,java.lang.String)

Email = android.accounts.AccountManager: android.accounts.Account[] getAccounts()

"********@gmail.com"
android.accounts.AccountManager: android.accounts.Account[] getAccountsByType(java.lang.String)

PassWord = "******"
UserName = "******"

android.os.UserManager: java.lang.String getUserName()
android.widget.TextView: java.lang.CharSequence getText()
android.widget.EditText: android.text.Editable getText()
android.widget.TextView: android.text.Editable getEditableText()

language = "English" java.util.Locale: java.lang.String getDisplayLanguage()
java.util.Locale: java.lang.String getDisplayLanguage(java.util.Locale)
java.util.Locale: java.lang.String getLanguage()
java.util.Locale: java.util.Locale getDefault()

country = "US"

<java.util.Locale: java.lang.String getCountry()
java.util.Locale: java.lang.String getDisplayCountry(java.util.Locale)
java.util.Locale: java.lang.String getDisplayCountry()
android.location.Address: java.lang.String getCountryName()
java.util.Locale: java.util.Locale getDefault()

AdvertiserId = "fc1303d8-7fbb-44d8-
8a68-a79ffac06fea"

com.google.android.gms.ads.identifier.AdvertisingIdClient.Info: java.lang.String getId ()

timezone_1 = "CST"
timezone_2 =
"Central Standard Time"

com.android.exchange.utility... getTimeZoneDateFromSystemTime(byte[],int)
com.android.calendar.Utils: java.lang.String getTimeZone(android.content...)
com.android.calendar.CalendarUtils$TimeZoneUtils:... getTimeZone(...)
java.util.Calendar: java.util.TimeZone getTimeZone()
java.util.TimeZone: java.util.TimeZone getTimeZone(java.lang.String)
java.util.TimeZone: java.util.TimeZone getDefault()
com.adobe.xmp.impl.XMPDateTimeImpl: java.util.TimeZone getTimeZone()
android.util.TimeUtils: java.util.TimeZone getTimeZone(int,boolean,long...)
java.text.DateFormat: java.util.TimeZone getTimeZone()

Manufacturer = "motorola" android.os.Build.MANUFACTURER
NetWork = "Wi-Fi" android.net.NetworkInfo: java.lang.String getTypeName()

points.

After instrumentation, we rebuild the smali code back into APK format for testing. We use

the Android Debug Bridge (adb) to automatically install the rebuilt apps onto our test device,

login with predefined profile if required, and use Monkey [65] to explore the app for 20 sec-

onds. We use minimal testing in the implementation and evaluation of ConDySTA to check

whether it can detect additional taint flows even with minimal testing. So our evaluation results

actually show a lower estimation of the ability of ConDySTA, and equipping ConDySTA with

more advanced testing may further enhance its effectiveness. During testing, we utilize the An-

droid system log to record the return values and call stacks of String type methods. Table 5.3

shows an example where Line 1 shows the return value; Line 2 shows the method that be invoked

(com.facebook.internal.AttributionIdentifiers.
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Table 4.2: System log of String method

1 09-12 16:25:13.442 W System.err: java.lang.Exception: fc1303d8-7fbb-44d8-8a68-a79ffac06fea
2 09-12 16:25:13.443 W System.err: at com.facebook.internal.AttributionIdentifiers.getAndroidAdvertiserId

(AttributionIdentifiers.java:1)
3 09-12 16:25:13.443 W System.err: at com.facebook.marketing.internal.RemoteConfigManager.run

(RemoteConfigManager.java:5)
4 09-12 16:25:13.443 W System.err: at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1133)
5 09-12 16:25:13.443 W System.err: at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:607)
6 09-12 16:25:13.443 W System.err: at java.lang.Thread.run(Thread.java:761)

getAndroidAdvertiserId). The following lines show the call stack trace of this method. We

consider a method as an intermediate source when its return value contains any user info in Table

4.1. In this example, the return value is the AdvertiserId, so we consider getAndroidAdvertiserId()

as an intermediate source. We also check for concatenated, reversed and hashed format of the user

info. For example, "355458061189396_ZX1G22KHQK" is a concatenation form of IMEI and

Serial number.

Due to the essential weakness of value-based dynamic taint analysis, we will miss encrypted

values. Please note that this can be resolved if ConDySTA is integrated with a propagation-based

dynamic taint analysis tool (which is straightforward once such a tool is available). Furthermore,

the taint flow of encrypted values are usually of less concern.

4.4.3 Applying FlowDroid

We run FLOWDROID with the original sources to detect statically tainted locations and rule

them out intermediate sources, this reduces the source locations for the second round of static

analysis and makes sure that ConDySTA always finds new taint flows. After we collected the

intermediate sources, we feed these sources to FLOWDROID as new source locations, and run

FLOWDROID again.

Context Match. Using the generated full path, we can perform context matching with the call

stack trace. First, we convert the call stack trace to a call path. For the example call stack trace in

Table 5.3, we generate the call path as Figure 4.5. Then, we will convert this call path to the form

of exploded super graph as shown in Figure 4.3, and combine it with the exploded super graph

generated by FLOWDROID before running it for static taint analysis.
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Intermediate Source

Call: com.facebook.internal.AttributionIdentifiers.getAndroidAdvertiserId()
Location: <com.facebook.marketing.internal.RemoteConfigManager.run()>
Line number: RemoteConfigManager.java: 5 

Call: com.facebook.marketing.internal.RemoteConfigManager.run()
Location: < java.util.concurrent.ThreadPoolExecutor.runWorker()>
Line number: ThreadPoolExecutor.java: 1133

Call: java.util.concurrent.ThreadPoolExecutor.runWorker()
Location: <java.util.concurrent.ThreadPoolExecutor\$Worker.run()>
Line number: ThreadPoolExecutor.java: 607

…

Node 1

Node 0

Node 2

Figure 4.5: ConDySTA Call Path

4.5 Evaluation

In our evaluation, we consider two data sets. The first data set is a part of REPRODROID [157],

a large and up-to-date benchmark which combines multiple earlier benchmarks [78, 90, 205] for

static taint analysis for Android apps. REPRODROID’s data set primarily consists of small apps

with labeled taint flows (i.e., ground truth) written by researchers. The second data set consists

of real-world apps from the Google Play store. We selected the 100 most downloaded apps that

could be instrumented and successfully analyzed by FLOWDROID according to PlayDrone [45],

a collection of meta data for Android apps on the Google Play store. The full list of the apps (as

well as ConDySTA’s implementation and detailed results) are available at our anonymized project

website1.

4.5.1 Research Questions and Summarized Answers

• RQ1: How many more taint flows can ConDySTA detect than static taint analysis alone?

28 taint flows across 28 apps from the benchmark were not detected by any of the six state-

of-the-art static taint analysis . Of those 28 common false negatives, ConDySTA was able

to detect 12. Among the 100 real-world apps, ConDySTA detected 39 more taint flows than

FLOWDROID across 12 apps. FLOWDROID detected a total of 281 taint flows across 57

1https://sites.google.com/view/condysta2020
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apps in total. The tainted information included email addresses, country, language, device’s

manufacturer, advertising ID, user’s full name and username.

• RQ2: How many false positives can context sensitivity preservation reduce compared to

naïve dynamic supplementation? In the benchmark evaluation, DySTA detected 21 taint

flows (12 true positives and nine false positives) and ConDySTA reduced all of the nine false

positive without missing any true positives. In the real-world app evaluation, ConDySTA was

able to remove 1,029 taint flows with mismatched context from the result of DySTA.

• RQ3: Does ConDySTA detect taint flows not detected by the dynamic taint analysis itself?

Among the 39 taint flows detected by ConDySTA, 19 of them were also directly detected

(and thus confirmed) by dynamic taint analysis, the remaining 20 were additionally detected

through static taint analysis.

• RQ4: How efficient is ConDySTA? The execution time of ConDySTA ranges from less than

one second (when no intermediate sources are found) to 4,266 seconds, which is comparable

to the execution time of FLOWDROID.

4.5.2 Evaluation on the Benchmark

A major challenge in evaluating program analysis on real-world applications is the lack of

ground truth, so we first evaluate ConDySTA on the REPRODROID [158] benchmark, which con-

sists of apps with taint flows labeled by earlier researchers. REPRODROID combines three existing

benchmarks: DroidBench [80], ICCBench [205], and DIALDroidBench [90] and contains addi-

tional apps with code features not covered by the three benchmarks. The apps in REPRODROID are

mostly written by earlier researchers and are simple enough for the researchers to manually iden-

tify and label all taint flows (i.e., pairs of source and sink locations2) in the app. The apps cover

many different code features to check whether static analysis can handle handle those features.

In the initial study [158] on REPRODROID, the authors evaluated six state-of-the-art static taint
2Multiple flows between the same pair of source and sink locations are considered as one.

64



analysis : AMANDROID [6], DIALDROID [7], DIDFAIL [3], DROIDSAFE [4], FLOWDROID [81],

ICCTA [5], and reported detailed results.

Reducing False Negatives

In order to evaluate the effectiveness of ConDySTA on detecting additional taint flows, we

applied ConDySTA on the apps (from REPRODROID) which contain at least one taint flow that

cannot be detected by any of the six static taint analysis (i.e., a common false negative of all

six ). We consider these apps and taint flows because users can always combine existing static

taint analysis and use the union of their results to reduce false negatives, and we want to check

whether ConDySTA can further reduce false negatives on top of that. We identified 33 common

false negative taint flows from 33 apps (one common false negative per app). Their covered code

features include implicit taint flows, native code, reflection, and inter component communication.

Among the 33 apps, five of them were out-of-date and thus could not be installed or crashed

immediately upon execution (note that none of the labeled taint flows in these apps are observed),

so they were excluded. We applied ConDySTA on the remaining 28 apps, and it detected 12 correct

taint flows and thus reduced 12 out of the 28 common false negatives. We also applied DySTA

on the 28 apps and it detected the exact same taint flows, thus showing that by adding context

sensitivity, ConDySTA did not introduce false negatives.

Table 4.3 shows the details of these 12 taint flows. In the table, the four columns repre-

sent their IDs in the benchmark, covered code features, enclosing apk names, and source/sink

pairs. In flow 124 (ImplicitFlow), the data has been converted into an array of Char and copied

back to another string before flowing to the sink. In flows 191 and 192 (Native code), native

code is used to fulfil part of the taint flow. In flows 203 and 206-209, part of the taint flow

(sending information through intents) is fulfilled with method invocations performed by reflec-

tion along with dynamic generation of class/method signatures used in reflection. In flows 24,

25, 27 and 32, the data is transmitted across components through intents. Notably, the latter two

code features (Reflection and ICC) are supported by some of the tested (e.g., AMANDROID [6],
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DIALDROID [7], and ICCTA [5]), but they are only partially supported so some complicated

cases cannot be handled as shown in the result of ReproDroid study [158]. ConDySTA de-

tected these 12 flows based on intermediates sources such as de.ecspride.ImplicitFlow1:

java.lang.String copyIMEI(java.lang.String), android.content.Intent:

java.lang.String getStringExtra(java.lang.String), etc. From the result, we can

also see that ConDySTA is independent from code features (i.e., types of blockers), so it reduces

common false negatives caused by various types of blockers.

ConDySTA failed to reduce the remaining 16 common false negatives, simply because the cor-

responding taint flows do not involve any string type return values (which are the only instrumenta-

tion points of ConDySTA) and thus ConDySTA fails to detect intermediate sources. If ConDySTA

instrumented all string type parameters, it would be able to detect all 28 of the common false neg-

atives. However, we did not implement ConDySTA to instrument all string parameters due to the

high overhead (due to the need to extract call-stacks at all instrumentation points) in real-world

apps, resulting in a lack of scalability. In real-world apps, taint flows are much longer and more

complicated so a string type return value is more likely to be involved. Upon further research, we

may select only part of string-type parameters and other-type variables as instrumentation points,

which may realize the full potential of ConDySTA.

False Positives

To evaluate ConDySTA’s performance on reducing false positive caused by context insensi-

tivity, we applied both DySTA and ConDySTA on 43 apps from REPRODROID that contained at

least one true negative. When constructing REPRODROID and earlier benchmarks, researchers

also labeled fake taint flows (i.e., pairs of sources and sinks without a flow between them). These

labeled true negatives can be used to check whether static analysis report false positives. Of the

186 such fake taint flows in the 43 apps, DySTA mistakenly reported nine of them. With context

matching, ConDySTA did not report any of them, so it reduced nine false positives of DySTA to

zero. Note that ConDySTA is implemented to supplement a static taint analysis (i.e., FlowDroid),

66



Table 4.3: False negative taint flows detected by ConDySTA

ID Feature Apk Source & Sink
DroidBenchExtend

124 ImplicitFlows ImplicitFlow1
android.telephony.TelephonyManager.getDeviceId()
android.util.Log.i(java.lang.String,java.lang.String)

191 Native SinkInNativeLibCode
android.telephony.TelephonyManager.getDeviceId()
mod.ndk.ActMain.cFuncSendData(java.lang.String)

192 Native SourceInNativeCode
mod.ndk.ActMain.cFuncGetIMEI(android.content.Context)
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

203 Reflection_ICC OnlyIntent
android.telephony.TelephonyManager.getDeviceId()
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

206 Reflection_ICC OnlyTelephony
java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

207 Reflection_ICC OnlyTelephony_Dynamic
java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

208 Reflection_ICC OnlyTelephony_Reverse
java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager. sendTextMessage(java.lang.String, ...)

209 Reflection_ICC OnlyTelephony_Substring
java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

ICCBench

24 IccTargetFinding icc_dynregister1
android.telephony.TelephonyManager.getDeviceId()
android.util.Log.d(java.lang.String,java.lang.String)

25 IccTargetFinding icc_dynregister2
android.telephony.TelephonyManager.getDeviceId()
android.util.Log.d(java.lang.String,java.lang.String)

27 IccTargetFinding icc_explicit1
android.telephony.TelephonyManager.getDeviceId()
android.util.Log.d(java.lang.String,java.lang.String)

32 IccTargetFinding icc_implicit_mix1
android.telephony.TelephonyManager.getDeviceId()
android.util.Log.d(java.lang.String,java.lang.String)

and the static taint analysis itself may report false positives which are not caused by ConDySTA.

4.5.3 Evaluation on Real World Apps

Five of the six used in the REPRODROID benchmark could not be applied to our real-world

app dataset as four of them (AMANDROID, DIDFAIL, DROIDSAFE, and ICCTA) do not execute on

recent apps3 [158], and one (DIALDROID) targets only inter-app taint flows and not general intra-

app taint flows. For these reasons, we were able to benchmark ConDySTA against those apps using

REPRODROID’s compatible test set, but we could not use REPRODROID to compare ConDySTA’s

performance against these for modern apps. To address this and present a more complete evalua-

tion, we also evaluated ConDySTA on current real-world apps and compared it with the remaining

working ConDySTA, FLOWDROID, to test ConDySTA’s relevance to the current app landscape.

For fair comparison, we count taint flows the same way as FLOWDROID. In particular, multiple

3They support up to Android API level 19, and Android API is currently at level 29
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Table 4.4: Taint flows detected by ConDySTA in real-world apps

App Package Name Size
(KLOC) FlowDroid DySTA ConDySTA

(Dynamic)

ExecTime(s)
DySTA+
ConDySTA

ExecTime(s)
FlowDroid

com.amazon.mShop.android.shopping 10881 1 25 2(0) 25 257
com.dianxinos.dxbs 3034 1 77 15(6) 4266 1162
com.disney.WMWLite 1489 2 11 2(2) 357 131
com.forthblue.pool 1778 3 22 2(0) 1630 270
com.gameloft.android.ANMP.GloftDMHM 2540 20 3 3(0) 29 18
com.mxtech.videoplayer.ad 4044 3 4 1(1) 574 27
com.pinterest 5534 0 2 4(4) 95 138
com.sgiggle.production 6015 0 1 1(0) 44 32
com.tubitv 7660 0 5 3(2) 38 273
com.waze 2996 1 1 1(0) 16 115
org.mozilla.firefox 2155 24 74 4(4) 18 1265
paint.by.number.pixel.art.coloring.drawing.puzzle 4795 0 14 1(0) 23 64
... ... ... ... ...

Total N/A 281 1068 39(19) N/A

taint flows between the same pair of source and sink locations are counted as one taint flow. So even

if ConDySTA detects a different taint flow for a pair of source and sink locations between which

FLOWDROID already detects a flow, we do not consider ConDySTA to have found a new taint

flow. Furthermore, we use the configuration of FLOWDROID with context sensitivity and least false

negatives (FLOWDROID has some configurations sacrificing soundness for performance). Finally,

we make sure ConDySTA and FLOWDROID use the same set of sources and sinks. Column 2

of Table 4.1 shows the sources we use for each user information type. Note that full name, user

name and password are provide through user input, so we use the EditText.getText() method

invocations of the corresponding UI widget as the sources. To further confirm, we instrumented

the EditText.getText() method invocations and print out the value passed in to make sure our

input values are caught by these sources.

We present our evaluation results on additionally-detected taint flows in Table 4.4. In the table,

Columns 1-5 present the name of the app, the size of the app in thousands of lines of smali code

(note that we have only the byte code of apps as they are closed source), the number of taint flows

detected by FLOWDROID, the additional number of taint flows detected by DySTA, the additional

number of taint flows detected by ConDySTA (with the number of taint flows that also detected

by dynamic taint analysis within these flows in brackets), and the execution time. Note that as we

have 100 apps and limited space, we present only the apps with at least one taint flow detected by
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ConDySTA. The full results are available in Tables 4.5 and 4.6. Also, for the execution time, we

include only the following context-aware static taint analysis portion. Since the execution time of

dynamic taint analysis largely depends on the testing intensity (and we are using minimal testing

in our evaluation), it does not make much sense to combine the execution time.

Additionally Detected Flows Over FlowDroid

Among the 100 apps tested, FLOWDROID detected 281 taint flows using the Android plat-

form sources, while ConDySTA detected 39 more taint flows. 19 of these 39 were confirmed with

dynamic taint analysis and eight of the remaining can be manually confirmed (see Section 4.5.3

for more detailed inspection results). From Table 4.4, we can see that these 39 flows are dis-

tributed over 12 different apps. This shows that the practical complexity that causes unsound-

ness of static taint analysis is very common among top Android apps. For some of the apps (e.g.,

com.dianxinos.dxbs), FLOWDROID detects zero or very few taint flows while ConDySTA detected

many, which shows that ConDySTA may be very helpful for some apps where blockers are used

intensively.

ConDySTA vs. DySTA

A comparison between Columns 4 and 5 in Table 4.4 shows the benefit of ConDySTA. In

particular, ConDySTA reduced 1,029 context-mismatched taint flows from 49 apps. So we can see

that the reduction of context-mismatched taint flows happens in almost all of the apps. It should

be noted that a context mismatched taint flow may not necessarily be fake. In very rare cases,

the taint flow may happen under a different context not covered by dynamic taint analysis or even

through another intermediate source not observed in dynamic taint analysis. However, we believe

they should be removed because they should not be inferred from observed facts of the dynamic

taint analysis. As an analogy, a weather forecaster may have a flaw so that Wednesday’s weather

is always reported to be stormy, which could be true in rare cases, but the flaw and corresponding

forecasting results should be removed because they are not results from the forecasting model
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Table 4.5: Taint flows detected by ConDySTA in real-world apps

App Package Name Size
(KLOC) FlowDroid DySTA ConDySTA

(Dynamic)

ExecTime(s)
DySTA+
ConDySTA

ExecTime(s)
FlowDroid

art.coloringpages.paint.number.zodiac.free 4348 11 1402 16
com.abtnprojects.ambatana 6094 2 4 620 75
com.adobe.reader 2084 3 45 4841 114
com.amazon.mShop.android.shopping 10881 1 25 2(0) 25 257
com.appsci.sleep 4815 7 5 65 807
com.arlo.app 7178 1 33 1946 197
com.audible.application 7531 2319 2383
com.audiomack 6796 1 18 19
com.aviary.android.feather 2579 5 31 1761 134
com.bbm 8208 1 20 2318
com.bfs.papertoss 2089 7 7 125 32
com.bydeluxe.d3.android.program.starz 5022 6 3319 10
com.calm.android 6352 1 1 209 487
com.cbs.app 8355 19 16
com.chewy.android 2873 23 20
com.classdojo.android 6088 1 19 120
com.cleanmaster.mguard 8771 15 11 2993 536
com.clearchannel.iheartradio.controller 8188 24 25
com.contextlogic.wish 2943 2 19 6082 1259
com.creativemobile.DragRacing 5630 3 4 4069 310
com.creditkarma.mobile 4594 8 14 47
com.devuni.flashlight 2371 1 11 1762 28
com.dianxinos.dxbs 3034 1 77 15(6) 4266 1162
com.discord 3238 8 922 105
com.disney.WMWLite 1489 2 11 2(2) 357 131
com.domobile.applock 2393 2 7 1268 31
com.dropbox.android 5656 56 36
com.drweb 2393 1 1868 26
com.duolingo 4309 1 15 347 191
com.ebay.mobile 8050 21 27
com.enflick.android.TextNow 9949 1 20 151
com.espn.scorecenter 966 26 203
com.facebook.mlite 2326 5 20 361
com.fingersoft.hillclimb 4468 11 36 21
com.forthblue.pool 1778 3 22 2(0) 1630 270
com.fox.now 5085 7 25 39

Total N/A 281 1068 39(19) N/A N/A
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Table 4.6: Taint flows detected by ConDySTA in real-world apps, Cont.

App Package Name Size
(KLOC) FlowDroid DySTA ConDySTA

(Dynamic)

ExecTime(s)
DySTA+
ConDySTA

ExecTime(s)
FlowDroid

com.game.JewelsStar 2946 2 6 45 12
com.game.SkaterBoy 2571 2 14 80 14
com.gameloft.android.ANMP.GloftDMHM 2540 20 3 3(0) 29 18
com.gameloft.android.ANMP.GloftIAHM 1596 49 40 2158 19
com.gau.go.launcherex 6996 8 41 919 140
com.gau.go.launcherex.gowidget.weatherwidget 4065 8 41 564 171
com.gonoodle.gonoodle 2736 1 17 18
com.goodrx 3883 3 76 160
com.gotv.nflgamecenter.us.lite 6308 2 17 324
com.groupme.android 2942 7 3 77 394
com.grubhub.android 4995 18 26 404
com.hulu.plus 5101 22 304
com.ibotta.android 8898 1521 14
com.imangi.templerun 2425 27 16
com.imangi.templerun2 2403 3 36 13
com.indeed.android.jobsearch 2066 33 39
com.kakao.story 3471 1 8 2150 237
com.konylabs.capitalone 5125 3 236 152
com.life360.android.safetymapd 5844 2 1 51 53
com.mcdonalds.app 8329 21 39
com.microsoft.appmanager 12102 2 26 250
com.microsoft.office.outlook 8169 74 90
com.mxtech.videoplayer.ad 4044 3 4 1(1) 574 27
com.naver.linewebtoon 6744 11 28 37
com.netflix.mediaclient 4682 3 35 7
com.offerup 8054 43 128
com.outfit7.talkinggingerfree 7787 25 14
com.outfit7.talkingtom 7990 30 20
com.outfit7.talkingtom2free 7958 36 26
com.pandora.android 13149 28 19
com.particlenews.newsbreak 3787 4 16 1016 222
com.picsart.studio 10604 1 41 41
com.pinterest 5534 2 4(4) 95 138
com.pof.android 3533 1 2 34 22
com.popshow.yolo 2801 1 16 67
com.poshmark.app 5163 4 16 13
com.postmates.android 2947 87 1203 515
com.roidapp.photogrid 6867 1 25 3340 750
com.roku.remote 4133 18 82
com.rovio.angrybirdsseasons 1814 1 7 33 23
com.sgiggle.production 6015 1 1(0) 44 32
com.shootbubble.bubbledexlue 1460 6 33 1609 187
com.skype.raider 2563 2 19 15
com.squareup.cash 3654 5 28 293
com.supercell.clashofclans 1141 3 14 3
com.supercell.hayday 1323 3 14 4
com.surpax.ledflashlight.panel 3101 1 31 1165 31
com.tencent.mm 13678 1 1 42 49
com.topfreegames.bikeracefreeworld 4423 70 21
com.tubitv 7660 5 3(2) 38 273
com.UCMobile.intl 6924 7 31 46
com.venmo 4018 3 111 9820 1064
com.viber.voip 2741 12 10 3876 1813
com.waze 2996 1 1 1(0) 16 115
com.yahoo.mobile.client.android.mail 5851 13 441
com.zillow.android.zillowmap 5331 15 5
flipboard.app 3406 569 291
jp.naver.line.android 13113 19 18 126 77
me.pou.app 1923 7 22 159
org.mozilla.firefox 2155 24 74 4(4) 18 1265
paint.by.number.pixel.art.coloring.drawing.puzzle 4795 14 1(0) 23 64
scratch.lucky.money.free.real.big.win 4571 1 30 1220 349
us.ozteam.bigfoot 4628 10 22 426
vStudio.Android.Camera360 6692 9 43 1920

Total N/A 281 1068 39(19) N/A N/A
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(which may be imperfect by itself). Note that in our evaluation on REPRODROID, all the removed

context-mismatched taint flows are fake flows.

Comparison with Pure Dynamic Taint Analysis

We further studied whether ConDySTA detects only the taint flows that are already detected by

dynamic taint analysis. If so, its value would be diminished. Among the 39 taint flows detected

by ConDySTA, we instrumented the sink methods and applied dynamic taint analysis to check

how many taint flows could be detected. The results are presented in the brackets of Column 5 in

Table 4.4, which shows that 19 taint flows can be detected (and thus confirmed as true positives)

and the remaining 20 cannot be detected. This shows that ConDySTA does provide more value by

performing static taint analysis from the intermediate sources.

Execution Time

Finally, we recorded the execution time of ConDySTA (see Column 6 of Table 4.4). We can see

that the execution time is within 5,000s, and for most of the apps it ranges from several hundred

seconds to thousands of seconds. This is similar to those of FLOWDROID. Notably, as ConDySTA

invokes FLOWDROID for intermediate sources, the largest portion of its execution can be attributed

to FLOWDROID. It should be noted that DySTA+ConDySTA sometimes take much longer time

than simply running FLOWDROID because of the additional intermediate sources.

Qualitative Analysis

To understand why FLOWDROID has the false negatives that ConDySTA detected, we further

performed a qualitative analysis on the taint flows detected by ConDySTA but not FLOWDROID.

Among the 39 taint flows, 23 flows are in apps which are heavily obfuscated and we were not

able to understand the full taint paths (Note that 11 of the 23 flows were confirmed in dynamic

taint analysis). Among the remaining 16 flows that we managed to fully understand, six flows

were missed by FLOWDROID because the data flowed through the network (sent to remote servers
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and fetched back), four flows were not detected because the data flowed to local cache files and

were later read back, and six flows were not detected due to FLOWDROID’s flawed modeling of

HashMap.putAll(), which we confirmed with a trivial app with only this function on the

taint path. Note that HashMap is particularly difficult to handle in static analysis as it can easily

create many false positives if the entire HashMap is conservatively tainted. Finally, we can see

that the blockers in real-world apps are very different from those pre-defined in REPRODROID.

So ConDySTA’s independence of blocker types can be an important benefit when applied to real-

world apps.

4.5.4 Threats to Validity

One major threat to the internal validity comes from value-based taint analysis. Due to coinci-

dent string matches, some of the detected false negatives may not be real false negatives. To reduce

such threat, we use complicated profile data to avoid coincident matches, and manually confirmed

all detected false negatives on ReproDroid, and a large portion of those from real-world Android

apps. One major threat to the external validity comes from the size and variety of our subject apps.

To reduce such threat, we consider both a large existing benchmark and top real-world Android

apps.

4.6 Discussion

Generality on Dynamic Taint Analysis. Since ConDySTA needs only intermediate sources

(nodes on the taint paths) and their calling contexts (method invocations along the taint paths)

from the dynamic taint analysis, ConDySTA should be able to directly take the output of any

propagation-based dynamic taint analysis. Even if the method invocations along the taint paths are

not provided by the dynamic taint analysis tool (which is unlikely for propagation-based analysis),

ConDySTA can still directly use the system stack traces at intermediate sources as estimated call-

ing contexts (just as how it handles value-based dynamic taint analysis). So, once a new dynamic

taint analysis framework becomes available, ConDySTA can easily take advantage of it.
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Generality on Static Taint Analysis. ConDySTA uses FlowDroid as the static analysis tool to be

supplemented because it is context-sensitive, very robust to be still able to handle most Android

apps on the market, and has been adopted by many downstream research efforts (e.g., [126]

and [201]). DySTA integrates with static taint analysis by providing intermediate sources as new

sources, so it can be directly used with almost any static taint analysis tools (as long as they

allow adding new sources) without any effort. ConDySTA further encodes calling context into

the inter-procedure control-flow graph in the IFDS framework, so it can be directly integrated to

any IFDS-based static taint analysis. ConDySTA can be further adapted to integrate with more

broader categories of static taint analyses by encoding the calling context into the intermediate

code representation the analyses are based on.
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Chapter 5: UNCOVER DATA ACCESS AND REDUCE FALSE

NEGATIVES OF STATIC TAINT ANALYSIS THROUGH MACHINE

LEARNING TECHNIQUES

In the previous chapter, we presented the design and evaluation of our framework ConDySTA,

which use hybrid taint taint analysis to discover sensitive data access and detect leaks. Since

ConDySTA rely on dynamic testing to trigger sensitive data related event, it is limited on the test

coverage, one data access can be missed if the method was not triggered during testing. Also,

ConDySTA requires human effort to register and login to the app, making it not feasible for use on

a large scale. To avoid human effort and the limitation on test coverage, in this chapter we discuss

about our framework, DAISY, which uses machine learning techniques to identify sensitive data

access through methods defined by app and third-party libraries, specifically, to identify app’s or

third-party libraries’ methods that return sensitive information.

5.1 Overview

Taint analysis has been widely used to identify privacy leaks. Many approaches [161,183] focus

on platform information extracted from the Android device through the Android API. Because the

Android API is relatively stable, these approaches depend upon existing lists of Android API

methods that return sensitive data (e.g., Android.telephony.TelephonyManager.

getDeviceID() returns the phone’s IMEI), which is provided to static or dynamic analysis

tools [79, 109] to determine the destination of sensitive data flows. By analyzing these flows, it is

possible to determine what sensitive data is potentially accessed and collected from the app. More

recent work [126, 151, 201] further traces the flow of user input data, which cannot be identified

using the Android API alone, and requires tracing potentially sensitive data through GUI API

method executions (e.g., android.widget.EditText.getText()). This tracing requires

classifying the information types by first analyzing the GUI hierarchy [171] and then classifying

labels associated with the method invocations.
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These approaches have limitations because the Android API and user input of the app do not

cover all possible sources of sensitive data. For example, an app may acquire data from back-end

servers (e.g., from user profiles that were previously collected through a web portal, a different

app from the same organization, or even a hand-written registration form) and then share this data

with other entities through the app. As another example, an app may also fetch data from third-

party services or apps (e.g., Facebook profiles) or use third-party services to store / process data

(e.g., Firebase Storage) and fetch the stored / processed data back later. All of the sources in the

above examples are not Android API methods, but methods from either third-party libraries or

the app itself. Therefore, predefined lists of sensitive data sources in the Android platform can be

insufficient, and an approach to identify additional sources beyond Android platform / GUI API

methods is desirable.

To more thoroughly trace sensitive data in Android apps and supplement existing approaches,

we propose DAISY (Dynamic-Analysis-Induced Source DiscoverY for sensitive data), which is

a novel approach to automatically identify methods in the apps or third party libraries that return

sensitive data (or a sensitive method). Below, we discuss the three major technical challenges to

overcome in the application of natural language processing and machine learning for code analysis

in DAISY along with the intuition behind our solutions.

• Constructing a sufficiently large training set. While automatic extraction of methods from

many Android apps is easy, manually labelling each method as sensitive / non-sensitive could

be prohibitively expensive due to the complexity of code semantics and sparsity of sensitive

method (hundreds of non-sensitive methods may need to be reviewed before one sensitive

method is found).

Solution: DAISY overcomes this challenge by dynamic-analysis-induced automatic la-

belling. During training, we run all training apps and collects run-time return values of

methods being executed. Then all the executed methods can be automatically labeled by

testing whether their return values contain planted sensitive data (we can plant sensitive data

such as device ID and account email address before running the apps).
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Table 5.1: Example of context-method

Return Value: xxxxxxxxxxx@gmail.com
Call Stack:
com.tubitv.helpers.PreferenceHelper.getString(PreferenceHelper.java:2)
com.tubitv.helpers.PreferenceHelper.getString(PreferenceHelper.java:3)
com.tubitv.helpers.UserAuthHelper.getEmail(UserAuthHelper.java:1)
...

• Handling partially sensitive methods. Some methods can be partially sensitive because

they sometimes return sensitive values but do so only under certain conditions. For exam-

ple, in the call stack in TABLE 5.1, it is impossible to determine the information type of

the PreferenceHelper.getString(o method at the top because it is used across

multiple contexts returning either sensitive or non-sensitive data. To address this issue, we

consider a method’s calling context (UserAuthHelpr.getEmail(...)), to infer that

PreferenceHelper.getString(...) may return email address.

Solution: Instead of just classifying single method, DAISY classifies methods along with

calling contexts (called in-context methods). The same method with different calling context

can be labelled differently during training and predicted differently during testing.

• Recognizing text semantics in method signatures. We consider methods’ signatures as

natural language sentences to leverage the advances in natural language processing (NLP)

and machine learning to classify a method. While a word embedding provides a robust

semantic representation of text, it can hardly handle words not seen in the training set, which

are common in method signatures with informal abbreviated texts.

Solution: We handle informal texts by taking advantage of the sub-word embedding feature

for FASTTEXT [89, 130] framework. Sub-word embedding further considers sub-strings of

words when constructing the word embedding so that an unseen word with a seen sub-string

can still be properly represented.

We trained DAISY with 200 top-ranked apps (all rankings are based on PlayDrone [197]).

The learned models are tuned by searching the hyper-parameter space of the training process for

optimized hyper-parameter values that leads to best performance on the validation set. After this,
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we applied DAISY on 2,816,751 in-context methods statically extracted from the call-graphs of

100 apps ranked from 201 to 300, and discovered 26,927 potentially sensitive in-context methods.

Since it is virtually impossible to manually label all discovered sensitive in-context methods, we

chose two subsets. The first subset (high-confidence set) consists of 170 in-context methods which

are predicted by DAISY with the highest confidence for different considered context lengths and

information types (up to top 10 for each combination). This subset evaluates the effectiveness of

DAISY when a user is interested in only the most-likely sensitive methods (e.g., when an user

has limited time or resources for scanning a batch of apps). The second set (random set) consists

of 144 in-context methods which are randomly sampled (with 20% rate) from in-context methods

of the top 5 apps (i.e., apps ranked 201 to 205) in our testing app set. This subset evaluates the

effective of DAISY when a user is interested in all sensitive methods (e.g., when an app developer

seeks to avoid privacy violations). The evaluation results show that DAISY is able to achieve an

average precision of 75.3% for the high-confidence set and an average precision of 41.0% for the

random set. Further analyses of the confirmed new sources show that (1) among 187 detected and

confirmed new sources, 178 can be detected by neither value-based dynamic analysis nor static

taint analysis and (2) further considering calling contexts of length 2 and 3 helps to discover 24

and 12 more new sources, respectively.

The contributions in paper are summarized as follows:

• A novel approach, DAISY, to discover sensitive methods in Android apps along with their

calling context based on machine learning and sub-word embedding.

• An automatic labeling technique based on dynamic exploration of app code to extract large-

scale training data sets from real-world apps.

• Viability for Android app marketplaces and developers to discover sensitive sources defined

in the third party libraries and apps. Our evaluation shows DAISY yielding a significant

number of manually confirmed new sources that can be used in static and dynamic taint

analysis.
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Figure 5.1: A sample call stack.

• Multiple manually and automatically labeled data sets of in-context methods with sensitive

information types that can be leveraged in future research.

5.2 Call Stack and Calling Context

5.2.1 Dynamic Call Stack

A call stack refers to the actual method invocation sequence that happens during runtime. De-

velopers can print a call stack at any point in the app code using provided API methods. For

example, a call stack can be generated when the app crashes due to an error or exception, pro-

viding a list of method calls that lead up to the thrown exception. Call stacks provide valuable

information for developers to locate and fix the cause of the crash. Figure 5.1 is an example of a

call stack. In DAISY, we utilize call stacks to automatically collect the training set for our learning

models.

5.2.2 Calling Context

A call graph is a directed graph, wherein app methods are nodes, and edges represent an invo-

cation from a caller method to a callee method. The app’s call graph is generated by statically an-

alyzing the app code. Figure 5.2 shows a sample call graph of a login Activity for an Android app.

When a user opens the app on their device, the login Activity will be launched. The onCreate()

79



Login Activity
Launched

onCreate() onClick()

getUserInput()

setOnClickListener() Authentication()

getUsername()getPasswords()

Figure 5.2: A sample call graph in activity.

callback will be invoked and an onClickListener is set to invoke onClick() when the user

clicks (or taps) the “Login” button on the screen. Once the user clicks the button, onClick()

will be invoked. It will then call Authentication() and getUserInput()methods, which

will invoke getPasswords() or getUsername() to collect a username or a password re-

spectively.

A calling context is a single path in the call graph which represents a method execution se-

quence. In Figure 5.2, the path from onClick() to getPassword() is a static trace, and the

path from onClick() to getUsername() is another static trace. A method is sensitive, if

it extracts sensitive information from the application or device. The methods getUsername()

and getPassword() are sensitive, because they would return the username and password of the

user. In this work, we propose DAISY to predict sensitive methods in the app’s call graph.

5.3 Approach

Our approach aims to identify sensitive methods defined in unseen Android apps and third-

party libraries. To achieve this goal, DAISY utilizes call stacks collected by dynamic analysis

to created a large automatically labelled data set and then uses the data set to train classification

models. For a given unclassified method with its calling context extracted from a call graph, the

classification models will predict whether it may return sensitive information. Figure 5.3 shows

the overview of our approach. For the data preparation shown on the left side of the figure, we
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describe two important components (bold in the figure). The first component automatically labels

data sets for training and the second component converts call stacks (during training) and static

calling contexts (during prediction) into a format that can be processed and learned by a machine

learning model. These processes result in artifacts which are used to train machine learning models

as seen on the right side of the figure.

5.3.1 Training Data Preparation

We collect the call stacks and label them based on value-based dynamic taint analysis which

identifies information flows by checking whether run-time values of variables contain predefined

sensitive values (e.g., username). We use value-based dynamic taint analysis because it is ro-

bust enough to handle native code and out-of-scope data flows (e.g., information from third-party

services such as Facebook, manual / web-based registration information from remote servers, in-

formation from file / user interface). The major limitation of value-based dynamic taint analysis

is its inability to handle encrypted / obfuscated data, but since we are monitoring variables inside

app code, we believe such inability may not cause much noises as encryption and obfuscation are

typically performed only when data is sent out. The automatic labeling process consists of five

steps as we introduce below.

Sensitive Data User Profile

To reduce noise in value-based dynamic taint analysis, sources must be unique, predefined

values are so that other values do not accidentally contain them. We consider such values as the

user profile of an Android app. The profile includes six unique identifiers device ID, serial num-

ber, Android ID, advertising ID, email address and user name. Table 5.2 shows example values

of a user profile. Many apps collect and access profile data, which ensures this step is broadly

applicable across a large number of apps. We chose those six information type because they are

personally identifiable information (PII) defined by the EU General Data Protection Regulation

(GDPR) [29, 31] and prior works [137] [220] also consider them as the major types of sensitive
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data in privacy protection. This profile, labeled Sensitive Data User Profile in Figure 5.3, serves

as an input for the auto-labeling component.

App Instrumentation

In order to identify the return value of String-type methods at run time, we instrumented all

String-type methods in the smali code by inserting Android logging invocations at their return

statements (Instrument String Methods in Figure 5.3). Each inserted invocation prints the run-

time value of the returned variable and the call stack (i.e., run-time calling context) at the return

statement. In particular, we acquire the call stack by throwing an exception and catching it immedi-

ately, while fetching the call stack saved in the exception variable. It should be noted we instrument

only String-type methods because their return values are readable, and although sensitive data

are often packaged into objects, they are typically accessed through String-type methods. For

example, a method getUserProfile() may return an object of type UserProfile which

contains username and android id as fields, but the actual values of username and android id are

typically still accessed through UserProfile.getName() and UserProfile.getID()

which are both String-type methods. For this process, we use Apktool [208] to decompile APK

files into smali code1. The resulting Instrumented APKs are then used as input to generate call

stacks, as seen in Figure 5.3.

Call Stack Generation

The resulting instrumented code is rebuilt back into the APK format for automatic runtime

testing (Generate Call Stacks in Figure 5.3). We use the Android Debug Bridge (adb) to automat-

ically install the rebuilt apps onto our test device and run MONKEY [2] to perform the testing of

apps. For each app, we automatically install, execute, test, uninstall, and save the system log into

the local file system for later inspection. We manually created accounts using the user profile data

to complete the login process for apps that require registration and login during testing. This en-

1Assembler for the dex format used by Dalvik
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Table 5.2: Sensitive Data User Profile

Info Type Value
Advertising Id "fc1303d8-7fbb-44d8-8a68-a79ffac06fea"
AndroidID "a54eccb914c21863"
Email "********@gmail.com"
IMEI "355458061189396"
Serial "ZX1G22KHQK"
User Name "******"

Table 5.3: System log of String-type method call stack

1 09-12 16:25:13.442 W System.err: java.lang.Exception: fc1303d8-7fbb-44d8-8a68-a79ffac06fea
2 09-12 16:25:13.443 W System.err: at com.facebook.internal.AttributionIdentifiers.getAndroidAdvertiserId

(AttributionIdentifiers.java:1)
3 09-12 16:25:13.443 W System.err: at com.facebook.marketing.internal.RemoteConfigManager.run

(RemoteConfigManager.java:5)
4 09-12 16:25:13.443 W System.err: at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1133)
5 09-12 16:25:13.443 W System.err: at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:607)
6 09-12 16:25:13.443 W System.err: at java.lang.Thread.run(Thread.java:761)

sures that DAISY will identify sensitive call stacks by searching for the values from the predefined

profile data. Table 5.3 shows an example of a sensitive trace where Line 1 shows the return value,

Line 2 shows the method that has been invoked (com.facebook.internal.AttributionIdentifier.getAndroid

AdvertiserId()), and the rest of lines show the call stack of this method.

Automatic Labeling

When run time testing is completed, the system log contains the collected call stacks of

the String-type methods and their corresponding return String values under the context of

that call stack (App Methods with Context in Figure 5.3). If a call stack’s return value

matches a sensitive information type’s value in Table 5.2, the call stack will be labeled with

that sensitive information type (Auto Label in Figure 5.3). Otherwise it will be labeled

as “non-sensitive”. In the example of Table 5.3, Line 2 shows the String-type method

com.facebook.internal.AttributionIdentifiers.getAndroid

AdvertiserId(). Line 1 shows its return String value “c1303d8-7fbb-44d8-8a68-

a79ffac06fea”, which matches with the information type “AdvertiserID” in our user profile. In
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this example, the call stack (Line 2-6) will be labeled with the sensitive information type “Ad-

vertisingID”. Note that a call stack can be labeled with multiple sensitive information types if its

return value contains multiple values in TABLE 5.2

As discussed in Section 5.1, some methods may return different values in different calling

contexts. To address this challenge, we label call stacks up to the length being considered, and

label a call stack d with a sensitive information type t only when all the observed call stacks with d

as their prefix returns the sensitive information type t. As an example, consider three dynamically

observed call stacks with method a at the top: [email]a ←− b ←− c, [email]a ←− b ←− d, and

[]a←− c←− e. Here the first two call stacks return the email address, and the third call stack returns

an empty string, and we assume that there are not other call stacks with a at their top. In such a

case, if we consider call stacks with length one, we will mark a as insensitive because not all call

stacks starting with a returns email. If we consider call stacks with length two, we will mark a←− b

as sensitive with type email, and a ←− c as insensitive. Using this strategy, we can make sure that

we can identify both unconditional sensitive methods and conditional sensitive methods together

with their calling context.

Method Signature Preprocessing

Each method signature from the call stacks is converted into a list of words that can be pro-

cessed by a natural language processing model (Preprocess Signatures in Figure 5.3). At level 1,

we remove parameters from the end of the method name and split the method signature on the dot

operator ( . ). Next, each part of the method signature is split on the punctuation allowed in Android

method names (i.e., _ and $), followed by word-splits at capitalization changes (i.e., camel case

boundaries) using a simple regular expression. Finally, all words are changed to lowercase. After

preprocessing, for example, the method signature android.location.Location.getLatitude()

becomes [android, location, location, get, latitude]. For contexts at suc-

cessive levels (e.g., level 2, level 3, etc.), the above steps are applied to each method signature in

order and then concatenated into one word list.
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Figure 5.3: Model Training Approach Overview

As shown in Table 5.1, it is sometimes difficult to tell whether a method returns sensitive infor-

mation by looking at the method itself. With this intuition, our approach predicts the information

type of a method based on its calling context. In our approach, we consider different numbers of

most recent calls, or trace length, in the call stack, for training and testing our model. This step

consists of choosing the last call (level 1), the last two calls (level 2), and the last three calls (level

3) in each call stack.

5.3.2 Training of Classification Models

As described in Section 5.3.1, our approach produces Labeled Return Values and Natural

Language Signatures as a result of our data preparation processes. In turn, these artifacts are

used to train and configure two machine learning models: FastText and a Mult-Label Logistic

Regression Classifier as seen in Figure 5.3.

Method Signature Word Embeddings

A calling context consists of a list of fully qualified method names denoting the order the

methods to be called. These method names are usually composed of words from natural language

(e.g., android.location.Location.getLatitude() is the method signature and it

is pre-processed into a sequence of words: [android, location, location, get,

latitude]. A common problem in word vector representations is how to handle unknown

words. If a model has never seen a word previously, then finding a semantically relevant rep-

resentation is difficult. Unknown words cause very severe problem in texts extracted from calling
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contexts and call stacks due to the informal language usage in source code so multiple abbrevi-

ated words are often combined to form a code identifier (e.g., “addr” for “address”, “droid” for

“Android”).

To overcome this challenge, we use FASTTEXT [130] to produce vector representations for

the word sequence of a calling context. FASTTEXT is a text classification technique based on the

skip-gram Word2Vec [150] model for learning vector representations for words and text classifi-

cation. FASTTEXT framework helps to overcome the challenge of unknown words by breaking

all words down into subwords, which are the set of overlapping character n-grams contained in a

word. A character n-gram is simply a sequence of n characters of a word. Each character n-gram

is assigned a vector representation and learned similar to a whole word. The subword vector repre-

sentations and the whole word vector representation, if previously seen, are used to compute a final

word representation. Thus, any new word representation can be approximated using its constituent

subwords. For example, an unseen word “biometric” would have no existing vector representation,

yet the tri-gram subwords would consist of:

<bi, bio, iom, ome, met, etr, tri, ric, ic>

Because subwords are shared across multiple words, they have a higher probability of being seen

that whole words, and thus a higher probability of having existing vector representations. The

subword vector representations are then averaged together to derive a semantically relevant whole

word vector representation for “biometric”. Notably, in FastText, whole words are preprocessed

by enclosing the words in the“<”and “>” characters to differentiate n-grams from n-length words,

e.g., the tri-gram “met” can be differentiated from “<met>”.

It should be noted that although sub-word features are being considered, our data pre-processing

(see 5.3.1) to split full method signatures to word sequence is still required so that sub-word ex-

traction will be performed only within words.
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Sensitive Method Classifier

The learning task is to classify a given method on whether its top method’s return value is

of a sensitive information type. Normally, one would construct a multi-class learning model that

predicts the best information type class, among a few information type classes, plus one non-

sensitive class. This approach has a limitation of multi-labeling. The multi-label problem arises

because a single method can return multiple sensitive information types, yet multi-class models

typically predict one best class for each input. To mitigate these limitations, we decompose the

learning task into separate binary learning problems: for each sensitive information type, a binary

classification predicts whether the type is a specific sensitive type or “not that type”. If a given

method is classified by all models as “not that type”, then it is assumed to be non-sensitive.

After FASTTEXT has completed it’s subword tokenization and embedding averaging (described

in Section 5.3.2), the input vector representation is provided to six different binary logistic regres-

sion classifiers. The output of each classifier for a single method follows the equation below:

f(CallTrace) = g(B
m∑
i∈Φ

AXi/m) (5.1)

B ∈ Rc×h, A ∈ Rh×v, Xi ∈ Rv

where g is the sigmoid function, A is an embedding matrix containing all of the model’s whole-

word and subword embeddings, Φ is the set of all embedding indices that compose the full call

trace representation, and Xi is a one-hot vector indicating the current index of the representation

being summed. The matrix B holds the parameters for the logistic regression unit for each class. c,

h,and v represent the number of classes, the hidden size of each embedding vector, and size of the

vocabulary (full-word and subword vocabularies together), respectively. For clarity, the summation

simply describes the averaging of the full-word and subword embeddings.

Both matrix A and B are randomly initialized, which means the method representations are

completely learned during the training phase. We found in our experiments that initializing with

87



embeddings pre-trained on our call stack corpus did not improve classification performance for our

task.

During training, labels from dynamic testing are given to the model to calculate the loss for

each call stack. Each of the six regression unit’s losses are calculated separately according to the

well-known binary logistic regression loss function:

− yic · log(f(CallStack)) + (1− yic) · log(f(CallStack)) (5.2)

where yic ∈ {0, 1} is an indicator variable for the ith method’s membership in class c. Minimizing

the sum of equation 5.2 over each call stack is solved asynchronously using stochastic gradient

descent [130]. Multiple threads are used to optimize performance and the number of threads is a

hyperparameter of our model.

During inference, the output of equation 5.3.2 is calculated for each class. Our model predicts

class membership using a threshold of 0.5 and, therefore, multiple classes can be predicted for a

method. If no class probability is above 0.5 then the call trace is predicted to be “non-sensitive”.

5.3.3 Collecting Methods for Prediction

After the classification models are trained, given an Android app, DAISY automatically ex-

tracts methods with their calling contexts and identify sensitive methods from them. Utilizing the

Androguard framework [106], DAISY disassembles an app and extracts its method call graph.

From the method call graph, DAISY extracts only String-type methods as methods for predic-

tion as they may directly return sensitive information (for the same reason as explained in Sec-

tion 5.3.1). It should be noted that other methods may still be a part of the calling contexts of these

String-type methods. Then, for each method for prediction, DAISY traverses the call graph

starting from its node and traverse backward towards the root (i.e., the program entry method)

along all paths for up to two edges. By doing so, we are able to extract a list of static calling

contexts for each method for prediction. They are pre-processed in the same way as described

in Section 5.3.1, and then feed into the trained classification model. It should be noted that the
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same method with different calling contexts and different level of calling contexts are fed into the

classification models separately. For example, a method a with two calling contexts a ←− b ←− c

and a←− b←− d will be separated to four inputs: a, a←− b, a←− b←− c, and a←− b←− c.

5.4 Evaluation

5.4.1 Research Questions

Our evaluation aims to answer the following research questions:

• RQ1: How precisely can DAISY identify sensitive methods and categorize them?

• RQ2: How many of the sensitive methods discovered by DAISY can not be found by apply-

ing existing static analysis and dynamic analysis?

• RQ3: How many additional conditional sensitive methods can DAISY find by considering

more levels of calling contexts?

5.4.2 Experiment Process

From the call graphs of the 100 testing apps, Using the approach described in Section 5.3.3,

we extracted 196,282 methods (i.e., considered as in-context methods with calling context to level

1), 904,476 in-context methods with calling contexts to level 2, and 1,715,993 in-context methods

with calling contexts to level 3. We consider calling contexts up to level 3 because longer calling

contexts will lead to even more data, leading to huge cost in the prediction process. Please note

that in this paper our goal is to validate the usefulness of calling contexts, and we leave the de-

termination of an optimal calling-context length (which may differ for different information types

and apps) as future work. Meanwhile, we trained and validated 18 classification models (the com-

bination of three calling context lengths and six information types) using the call stacks collected

from apps in the training and validation set.

After that, we fed the collected in-context methods to their corresponding classification models

(e.g., an in-context method with calling context to level 2 will be fed to all six classification models
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trained / validated with call stacks with length 2). After the prediction process, DAISY reported

2,237, 7,214, and 17,476 in-context methods as sensitive for calling context level 1, 2, and 3,

respectively.

5.4.3 Ground Truth Labelling

The 100 apps in our testing set contain more than 2.8 million in-context methods. So, it is

impossible to label all of them and calculate the recall of DAISY. Furthermore, the recall metrics of

DAISY does not affect its practical usability much. Since there is no approach that can exhaustively

detect all sensitive methods anyway, any approach that can discover many more sensitive methods

undetected by existing approaches or lists will provide much additional value. Since the users may

need to either manually review the discovered sensitive methods, or manually review the detect

information leaks from the discovered sensitive methods, the precision of DAISY can be very

important, because it indirectly measures the additional effort DAISY users may need to spend

when using it.

To calculate the precision of DAISY, we need to label the sensitive in-context methods reported

to confirm true positives and false positives. However, it is still infeasible to label the entire set

of more than 26,000 reported sensitive in-context methods. Therefore, we label the following two

sampled subsets to evaluate DAISY in two different usage scenarios. In the first usage scenario, we

consider DAISY to be used in the app scanning at app stores / security analysis services where a

human user cannot review too many sensitive methods because she / he is handling a large number

of apps. Therefore, the user may review only reported sensitive in-context methods that are most

likely to be true positive. Therefore, we sample the first subset (high-confidence set) by choosing

the 10 reported sensitive in-context methods with highest confidence from each of the 18 classifi-

cation models (combination of three different calling-context lengths and six information types).

In total, this subset contains 170 reported sensitive in-context methods (no positive in-context

methods were reported for IMEI information type with calling context to level 1). In the second

usage scenario, we consider DAISY to be used by the app developer / app producing organization
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Table 5.4: Precision of DAISY on the High-Confidence Subset

InfoType Level 1 Level 2 Level 3 Overall
AdsID 8/10 10 /10 8/10 26/30 (86.7%)
AndroidID 8/10 8/10 8/10 24/30 (80.0%)
Email 7/10 7/10 6/10 20/30 (66.7%)
IMEI 0/0 3/10 7/10 10/20 (50.0%)
Seriel 8/10 9/10 10/10 27/30 (90.0%)
Username 4/10 8/10 9/10 21/30 (70.0%)
Overall 35/50 45/60 48/60 128/170 (75.3%)

who wants to avoid privacy policy violations, so that they want to review all suspicious methods.

For this scenario, we randomly chose 20% reported sensitive in-context methods from the top 5

ranked apps in the testing set. Using the second subset (random set), we can evaluate DAISY’s

precision on each of these apps. We manually labelled all the total 324 in-context methods in the

two data sets. To reduce potential labelling errors, we have two authors to independently label all

the methods, and a third author to resolve the conflicts. It should be noted that method labelling

is a costly task which requires examination of all relevant code of the method in byte-code form,

especially considering that much code are obfuscated in the top apps. Among the 314 in-context

methods, there are still 22 that we cannot confirm whether they are really sensitive or not, so we

conservatively considered all of them to be false positives in the evaluation.

5.4.4 Precision of Sensitive Method Discovery

To answer RQ1, we present the precision of DAISY on the high-confidence subset and the

random subset in TABLE 5.4 and TABLE 5.5, respectively. In each table, Column 1 presents the

information type (TABLE 5.4) or the app name (TABLE 5.5). To fit the table into the text column

we use abbreviated package name of apps in TABLE 5.5 and the full names are in our anonymized

website. Columns 2-4 present the precision for each information type / app with each length of

calling context. In each cell, the number before the / symbol is the number of manually confirmed

true positives, and the number after the / symbol is the number of reported in-context methods.

Column 5 shows the overall precision which combines data in Columns 2-4.
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Table 5.5: Precision of DAISY on the Random Subset

App Level 1 Level 2 Level 3 Overall
simplygood.ct 1/2 3/5 6/13 10/20 (50.0%)
fitnessflow 0/1 1/5 2/6 3/12 (25.0%)
zengatv 1/1 5/12 5/22 11/35 (31.4%)
mlssoccer 3/5 10/14 15/24 28/43 (65.1%)
oki.letters 0/3 2/4 5/27 7/34 (20.6%)
Overall 5/12 21/40 33/92 59/144 (41.0%)

From TABLE 5.4, we can see that in the high-confidence subset, DAISY is able to achieve an

average precision of 70%, 75% and 80% for calling context length one, two, and three, respec-

tively. The overall precision of 75.3% indicate that the majority of in-context methods identified

by DAISY are true positives, and a user will be able to identify 128 real sensitive in-context meth-

ods from 100 testing apps by reviewing only 170 top reported in-context methods. It should be

noted that these‘170 in-context methods are from 41 different apps so they cover a large portion

of testing apps. Among different information types, DAISY performs best on Android ID, Adver-

tisement ID, and Serial Number, partly because they are more technical with standard names, so

methods returning these information types tend to have more standard name. In contrast, Email

and User Name are more difficult to identify due to the various ways to refer to them, but DAISY

still achieved 66.7% precision for email and 70.0% precision for user name, indicating that us-

ing DAISY developers do not need to spend too much time on ruling out false positives. DAISY

performs worst on IMEI, partly because methods returning IMEI are rarely called so the dataset

becomes very unbalanced. In the training set, less than 0.1% of in-context methods are labeled

with IMEI, indicating that a random selection will lead to a precision of only 0.1% and DAISY is

500 times more discriminative than that.

From TABLE 5.5, we can see that in the random subset, DAISY is able to achieve an average

precision values from 20.6% to 65.1% in five apps, and an overall precision of 41.0%. From

different calling-context lengths, the precision value is 5/12 (41.7%), 21/40 (52.5%), and 33/92

(35.9%), respectively. It should be noted that sensitive in-context methods are very sparse so the

data unbalance is severe. In our training set, less than 1% of all in-context methods are labeled as

92



sensitive, indicating that a random selection will lead to an overall precision of less than 1%, and

DAISY performs tens of times better than that.

5.4.5 Supplementing Existing Approaches

To answer RQ2, we check whether the sensitive in-context methods detected by DAISY can be

detected by either static taint analysis or dynamic analysis.

Static Taint Analysis. Based on an existing list of sensitive API methods, it is possible to use

static taint analysis to expand the list and discover more sensitive API methods. LIST 5.1 shows

an example, where sensitive method findDeviceId() (detected by DAISY) obtained the IMEI

information from Android API android.telephony.

TelephonyManager.getDeviceId(), so findDeviceId() is considered to be detectable

by static taint analysis. To check whether our reported in-context methods are also detectable by

static taint analysis, we applied FlowDroid [79] using sensitive API method list of SUSI [161]

as sources, and checks whether sensitive information may flow to the confirmed true positives

in-context methods in TABLE 5.4 and TABLE 5.5. The analysis results show that none of the

discovered in-context methods are detected with static taint analysis.

1 /* findDeviceId () is the source identified by DAISY */
2

3 /* android . telephony .TelephonyManager.getDeviceId() is an Android API source identified
by Susi */

4

5 public String findDeviceId (Context context ){
6 TelephonyManager tm = (TelephonyManager) context.getSystemService("phone");
7 return tm.getDeviceId () ;
8 }

Listing 5.1: An example of a DAISY source obtaining IMEI from a SUSI source

Dynamic Analysis. It is also possible to use dynamic analysis to detect sensitive methods.

Actually, our automatic labelling in the training process can be deemed as an approach to discover

sensitive methods. However, fully automatic dynamic analysis are limited by test coverage, while

manual testing to improve test coverage will bring in additional human effort. In our comparison,

we use MONKEY to perform the testing because it is fully automatic and robust enough to be ap-

plied to all apps. Furthermore, existing studies [200] show that it achieves comparable coverage
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with state-of-art tools. For each app, we ran MONKEY for one hour without any human interaction

and used automatic labelling described in Section 5.3.1 to identify sensitive in-context methods.

The comparison shows that among the 187 true positives from TABLE 5.4 and TABLE 5.5, only

nine are discovered with dynamic analysis. Eight of them (four for Ads ID, one for Android ID,

and three for Serial Number) are from TABLE 5.4, and the remaining one is from app "simplely-

good.ct" in TABLE 5.5.

To sum up, the comparison shows that almost all sensitive methods detected by DAISY are

new and cannot be easily detected by static taint analysis or dynamic analysis.

5.4.6 Conditional Sensitive Methods

To answer RQ3, we performed a statistical analysis on the result to see how many extra sensitive

in-context methods are identified when we increase the length of calling context to be considered.

Note that when the considered length is equal to one, our model identifies only unconditional

source methods. When the length increase, our model identifies more conditional source methods,

together with their calling contexts.

Table 5.6 shows the additional sensitive in-context methods reported when increasing levels of

calling contexts (numbers in Columns 3 and 4). From the table, we can see that increasing calling

context level to two helps DAISY to report 4,195 more potential sensitive in-context methods, and

increasing the calling context level to three further helps DAISY to report 9,324 more potential

sensitive in-context methods. Note that an in-context method a −→ b is considered additional if

and only if a −→ b is reported as sensitive in Level 2, but a is not reported as sensitive in Level

1. Table 5.7 shows the total additional sensitive in-context methods that are confirmed in our

evaluation subsets. With calling-context length increased to two, DAISY identified 24 additional

sensitive in-context methods that cannot be identified at level 1, increasing the calling-context

length to three further helps to identify 12 sensitive in-context methods. Since in-context methods

for different levels are sampled separately, in this table, an in-context method a −→ b is considered

additional if and only if a −→ b is reported and manually confirmed as sensitive in Level 2, but a is
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Table 5.6: Additionally Reported In-context Methods by Increasing Calling-Context Levels

InfoType Level 1 ∆ Level 2 ∆ Level 3
Advertising ID 1128 1602 2368
Android ID 484 874 1132
Email 386 910 3986
IMEI 0 183 308
Serial 108 47 97
User name 131 569 1433
Total 2237 4195 9324

Table 5.7: Additionally Confirmed In-context Methods by Increasing Calling-Context Levels

InfoType Level 1 ∆ Level 2 ∆ Level 3
Advertising ID 12 2 0
Android ID 8 3 1
Email 8 5 7
IMEI 0 3 4
Serial 8 3 0
User name 4 8 0
Total 40 24 12

not reported as sensitive in Level 1 (note that a does not need to be in the sampled sets). From the

results in two tables, we can see that (1) increasing calling context length to two and three helps

DAISY to detect many more in-context methods which are not detectable by classifying methods

only and (2) the additionally detected in-context methods cover all information types, indicating

that conditional sensitive methods are common in all information types.

5.4.7 Origin of DAISY sources

We further investigated the source methods DAISY identified to find out where the methods

are declared. Most of the extra sensitive methods found by DAISY are from third-party libraries.

For example, one Advertising ID source com.facebook.internal.Attribution

Identifiers.getAndroidAdvertiserId() is from a Facebook library. For the sources

that come from a user’s input, like email and username, most sources were located within the app

itself (i.e., app-specific methods). Such as an Email source "com.dozuki.ifixit
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Return Value: “expiration_date”                                     not source
Call Stack:
com.crashlytics.android.core.CrashlyticsCore.sanitizeAttribute(CrashlyticsCore.java:845)
com.crashlytics.android.core.CrashlyticsCore.setString(CrashlyticsCore.java:560)
com.fitradio.ui.login.task.BaseLoginJob.handleLoginResponse(BaseLoginJob.java:153)
com.fitradio.ui.login.task.EmailLoginJob.getUserLoginEvent(EmailLoginJob.java:68)
com.fitradio.ui.login.task.BaseLoginJob.onRunRun(BaseLoginJob.java:67)

Return Value:  **********@gmail.com conditional source
Call Stack:
com.crashlytics.android.core.CrashlyticsCore.sanitizeAttribute(CrashlyticsCore.java:845)
com.crashlytics.android.core.CrashlyticsCore.setUserEmail(CrashlyticsCore.java:528)
com.fitradio.ui.login.task.BaseLoginJob.handleLoginResponse(BaseLoginJob.java:146)
com.fitradio.ui.login.task.EmailLoginJob.getUserLoginEvent(EmailLoginJob.java:68)
com.fitradio.ui.login.task.BaseLoginJob.onRunRun(BaseLoginJob.java:67)

Figure 5.4: An Email Conditional Source and Its Non-sensitive Context

.ui.auth.LoginFragment.getEmail()" is an app-specific source method from the app

"com.dozuki.ifixit". We can tell from the method signature this method collects email account

while a user login.

In Figure 5.4, we present a conditional source method of information type email that is idenfied

by DAISY. In particular, method com.crashlytics.android.core.CrashlyticsCore.sanitize

Attribute() returns the user’s email address when it was invoked from com.crashlytics.android.core.CrashlyticsCore.set

UserEmail(), but returns a non-sensitive information when it was called by other method. More

examples of DAISY sources can be found in Figure 5.5.

5.4.8 Examples of Identified Sources

We present some identified example sources in Figure 5.5, covering various device identifiers,

email, and username. From the figure we can see that, DAISY can not only identify unconditional

source methods such as getAndroidId(), but also identify conditional source methods (e.g.,

getString()) which return general values but will return sensitive information under certain

calling context.
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Device Identifiers 
Unconditional source: 
com.facebook.internal.AttributionIdentifiers.getAndroidAdvertiserId()
com.google.android.gms.ads.identifier.AdvertisingIdClient$Info.getId() 
io.fabric.sdk.android.services.common.IdManager.getAndroidId()   
com.getjar.sdk.data.DeviceMetadata.findDeviceId()
io.fabric.sdk.android.services.common.IdManager.getSerialNumber()

Conditional source: 
com.appsflyer.AppsFlyerProperties.getString()
com.appsflyer.AppsFlyerLib.callRegisterBackground()
kr.co.ladybugs.common.h.getPreferenceString()
kr.co.ladybugs.liking.a.c.getAdId()

Email / Username 

Unconditional source: 
com.firsteapps.login.models.User.getEmail()
com.dozuki.ifixit.ui.auth.LoginFragment.getEmail()
com.pinnatta.models.UserProfile.getEmail()
com.global.guacamole.data.signin.UserAccountDetails.getEmai()
com.firsteapps.login.models.User.getFirstName()
com.pinnatta.models.UserProfile.getFirstName()
Conditional source:  
com.crashlytics.android.core.CrashlyticsCore.sanitizeAttribute()
com.crashlytics.android.core.CrashlyticsCore.setUserEmail()
com.newrelic.agent.android.instrumentation.JSONObjectInstrumentation.toString()  
com.appsflyer.AppsFlyerLib.setUserEmails()

Figure 5.5: DAISY Sources
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5.4.9 Threats to Validity

The main threat to the internal validity of our evaluation is in the selection and labeling of

reported in-context methods. To reduce the bias and errors in the labelling process, we have two

people to perform manual labelling independently, and a third people to resolve conflicts. The

main threat to the external validity of our evaluation is that the results may apply to only the testing

set and the labeled dataset. To provide a more comprehensive evaluation of DAISY, we used two

different selection mechanisms, corresponding to two usage scenarios of DAISY. The evaluation

results on two selected subsets are reasonably consistent as they both show high discrimination

power of the classification models, but the results on the random subset is lower than those on the

high-confidence subset, which is as expected.

5.5 Discussion

5.5.1 Using Conditional Sources

Once we identify the sensitive methods and determine their information type, the next step

is to use them as sources in information flow analysis. For conditional sensitive methods, we

need to make sure that their calling contexts are also encoded in the taint analysis. Some recent

work [220] can encode the calling context as an information flow prefix in the IFDS [169] (Inter-

procedural Finite Distributive Subsets) static analysis framework, so that the calling context will

be automatically matched in the information flow analysis (e.g., in FlowDroid).

5.5.2 Domain-Specific Information Types

In our research, we consider top Android apps and common sensitive information such as

email address. However, our approach can also be applied to domain-specific information types

such as transaction information in financial apps or grading information in education apps. To

work on domain-specific information types, we can construct domain-specific app sets for sensitive

application domains, such as education, finance, and health/medical care. Furthermore, to address
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the potential sparsity problem for domain-specific information types, we plan to leverage transfer

learning [214] which incorporates a model trained from a large general data set (e.g., general

information type data set), and adjusts the weights and parameters of the model based on a smaller

adaptation data set from the specific domain.

5.5.3 Evaluation Strategies

As it is to labor and time-intensive to manual verify and label all reported sensitive in-context

methods, we manually validate a subset of the methods. We chose two approaches to select subsets.

In the first selection strategy, we chose the 10 top most likely (i.e., highest probability) predictions

made by DAISY for each of the six information types under each of the three context lengths. This

resulted in 180 predictions for manual labeling and validation and represents the effectiveness of

DAISY on the in-context methods that it is most confident are sensitive. This highest-confidence

subset is useful to show DAISY’s effectiveness for processing batches of apps which is of interest

to third-party audits and quality and security assurance. For the second selection strategy, we

selected five apps and randomly sampled 20% of DAISY predictions from those apps for manual

labeling and validation. From the 100 apps in the testing set, we chose the top five apps, resulting

in 144 in-context methods.

There were two other selection strategies we considered. The first was a confidence threshold

strategy where separate evaluations were reported at different confidences (i.e., different prediction

probability thresholds) to show the precision of DAISY at those confidences. Unfortunately, due

to the size of the number of sensitive in-context predictions made it was infeasible to perform a

manual labeling and validation of even the top confidence thresholds (i.e., 100% or 99% confi-

dence). Instead, we chose the highest-confidence strategy in order to show DAISY’s effectiveness

at its very highest confidence. The second was a random sampling of the predictions. Again, due

to the number of sensitive in-context predictions made it would be infeasible to attempt a manual

labeling and validation of more than 1% of the total predictions. This sampling would be too small

to guarantee a good representation of all ranks of apps throughout the dataset. We chose to perform
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the ranked selection strategy instead in order to have a more accurate representation of the dataset.
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Chapter 6: CONCLUSION AND FUTURE WORK

In this chapter, we summarize the contributions of this thesis and point out some directions for

future work.

6.1 Thesis Summary

The main purpose of this thesis work is to uncover sensitive data access in mobile apps and

reduce false negatives of taint analysis for privacy leak detection. More specifically, this thesis

made significant contributions in the following aspects.

Firstly, this thesis presents an empirical study of how mobile apps collect and share user’s data.

We specifically focused on analyzing what data was collected and shared with analytic services,

which is widely used to analyze users’ behavior. We developed a semi-automatic framework to

monitor data sent to analytic services during runtime. According to the findings of this study,

many popular apps shared user’s PII with analytic services, which may be a violation of their own

privacy policies or analytic services’ Terms of Service. This study provides a foundation for us to

understand the data leakage from apps to third-party services.

Secondly, this thesis contribute to privacy leak detection by reducing false negatives in taint

analysis caused by inaccessible code and incomplete source list. We developed a hybrid taint

analysis framework to identify sensitive data access through methods defined by app and third-

party services, and use them as additional sources in static taint analysis. We tested our framework

on both benchmark and real-world apps from google play store. The evaluation results show that

our new proposed framework effectively detects data access as well as privacy leaks that missed

by the state-of-art static taint analysis tools.

Our previous proposed approach requires human effort to trigger sensitive data-related events

as many as possible. To avoid human effort and test coverage limitation, we further proposed a

machine learning based approach to identify sensitive data access through methods defined by app

and third-party libraries. The classifier is trained on an automatically labelled data set of methods
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and their calling context. We tested it on previously unseen apps and discovered that it was able to

identify sensitive methods in them with high precision. The identified sensitive methods were used

as sources in static taint analyses and detected privacy leaks that were missed by existing tools.

Although this thesis focused primarily on free Android apps in Google Play, we believe that

the frameworks we developed could be applied to other App Markets such as the Amazon App

Store or the Apple App Store. We expect that the knowledge we discovered about apps and the

lessons we learned about data collection and leaks will assist users in making informed decisions,

app developers in avoiding regulatory violations, and market owners in improving their current

privacy frameworks.

Meanwhile, we acknowledge that privacy has many facets. This thesis only proposed a few

possible ways to eliminate this problem. We believe other aspects, such as educating users and app

developers, as well as improving and enforcing laws and regulations, are also critical for protecting

the privacy of mobile users.

6.2 Future work

This thesis work also leaves several directions worth improving and extending.

6.2.1 Increase test coverage

Our approach to identifying sources is heavily reliant on UI testing. We intend to trigger more

user data-related events in order to identify more sources. Current approaches of automatic UI test-

ing suffer from low coverage, especially for the apps that require user input and communication

with remote servers, such as the process of registration, login processes. We intend to explore tech-

niques for generating appropriate user input or bypassing some communication by synthesizing the

response data from the remote server when necessary.
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6.2.2 Accountable software under privacy laws

There has been an increase in the number of laws and regulations designed to protect user’s

privacy, and software is expected to comply with these regulations. We intend to work towards a

deeper understanding and formalization of the relationship between softwares and privacy laws.

To assist developers in designing accountable software under those regulations, we could enforce

the notice of data collection and sharing at the code level so that users are aware of what data is

collected and with whom that data is shared.Furthermore, privacy laws require that each app to

provide a privacy policy that describes data collection and sharing. We could use our code analysis

frameworks to generate natural language texts that accurately reflect the app’s behavior.

6.2.3 Privacy in Augmented Reality Application

Augmented Reality (AR) has gained increased public attention in recent years. Different from

traditional apps, AR apps often have access to a much larger interface of the users’ privacy, and the

private data can be in a variety of formats, such as text, image, and video. It will be interesting to

see how such complicated data affects user privacy. For example, an AR app often requires contin-

uous access to the smartphone’s camera. If an app is collecting more than necessary information

from the users’ camera, or if the data collection is not mentioned in the app’s privacy policy, users’

privacy is compromised.
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Bor-Yuh Evan Chang, Samuel Z Guyer, Uday P Khedker, Anders Møller, and Dimitrios

Vardoulakis. In defense of soundiness: a manifesto. Communications of the ACM, 58(2):44–

46, 2015.

[144] Benjamin Livshits, John Whaley, and Monica S Lam. Reflection analysis for java. In Asian

Symposium on Programming Languages and Systems, pages 139–160. Springer, 2005.

[145] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: Statically vetting

android apps for component hijacking vulnerabilities. In Proceedings of the 2012 ACM

Conference on Computer and Communications Security, pages 229–240, 2012.

[146] Long Lu, Zhichun Li, Zhenyu Wu, Wenke Lee, and Guofei Jiang. Chex: statically vetting

android apps for component hijacking vulnerabilities. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 229–240, 2012.

119



[147] Kirsten Martin and Katie Shilton. Putting mobile application privacy in context: An em-

pirical study of user privacy expectations for mobile devices. The Information Society,

32(3):200–216, 2016.

[148] Isabella Mastroeni and Damiano Zanardini. Data dependencies and program slicing: from

syntax to abstract semantics. In Proceedings of the 2008 ACM SIGPLAN symposium on Par-

tial evaluation and semantics-based program manipulation, pages 125–134. ACM, 2008.

[149] Wei Meng, Ren Ding, Simon P Chung, Steven Han, and Wenke Lee. The price of free:

Privacy leakage in personalized mobile in-apps ads. In NDSS, 2016.

[150] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[151] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng Wang.

Uipicker: User-input privacy identification in mobile applications. In 24th {USENIX} Se-

curity Symposium ({USENIX} Security 15), pages 993–1008, 2015.

[152] Yuhong Nan, Zhemin Yang, Xiaofeng Wang, Yuan Zhang, Donglai Zhu, and Min Yang.

Finding clues for your secrets: Semantics-driven, learning-based privacy discovery in mo-

bile apps. In Proceedings of the 2018 Annual Network and Distributed System Security

Symposium (NDSS)(San Diego, California, USA, 2018.

[153] James Newsome and Dawn Xiaodong Song. Dynamic taint analysis for automatic detection,

analysis, and signaturegeneration of exploits on commodity software. In NDSS, volume 5,

pages 3–4. Citeseer, 2005.

[154] Edmund B Nightingale, Daniel Peek, Peter M Chen, and Jason Flinn. Parallelizing security

checks on commodity hardware. In ACM Sigplan Notices, volume 43, pages 308–318.

ACM, 2008.

120



[155] Jonathan A Obar and Anne Oeldorf-Hirsch. The biggest lie on the internet: Ignoring the

privacy policies and terms of service policies of social networking services. Information,

Communication & Society, 23(1):128–147, 2020.

[156] European Parliament and The Council of the European Union. General data protection

regulation (gdpr), 2016.

[157] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do android taint analysis tools keep their

promises? In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, pages

331–341, 2018.

[158] Felix Pauck, Eric Bodden, and Heike Wehrheim. Do android taint analysis tools keep their

promises? In Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering, pages

331–341, 2018.

[159] François Pottier and Vincent Simonet. Information flow inference for ml. In Proceedings

of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming languages,

pages 319–330, 2002.

[160] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan Zhou, and Youfeng Wu. Lift:

A low-overhead practical information flow tracking system for detecting security attacks. In

2006 39th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’06),

pages 135–148. IEEE, 2006.

[161] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach for classi-

fying and categorizing android sources and sinks. In NDSS, volume 14, page 1125. Citeseer,

2014.

[162] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric Bodden. Harvesting runtime

values in android applications that feature anti-analysis techniques. In NDSS, 2016.

121



[163] Abbas Razaghpanah, Rishab Nithyanand, Narseo Vallina-Rodriguez, Srikanth Sundaresan,

Mark Allman, Christian Kreibich, and Phillipa Gill. Apps, trackers, privacy, and regulators:

A global study of the mobile tracking ecosystem. 2018.

[164] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian Kreibich,

Phillipa Gill, Mark Allman, and Vern Paxson. Haystack: In situ mobile traffic analysis in

user space. arXiv preprint arXiv:1510.01419, pages 1–13, 2015.

[165] Joel R Reidenberg, Travis Breaux, Lorrie Faith Cranor, Brian French, Amanda Grannis,

James T Graves, Fei Liu, Aleecia McDonald, Thomas B Norton, and Rohan Ramanath. Dis-

agreeable privacy policies: Mismatches between meaning and users’ understanding. Berke-

ley Tech. LJ, 30:39, 2015.

[166] Jingjing Ren, Martina Lindorfer, Daniel J. Dubois, Ashwin Rao, David R. Choffnes, and

Narseo Vallina-Rodriguez. Bug fixes, improvements, ... and privacy leaks - A longitudinal

study of PII leaks across android app versions. In 25th Annual Network and Distributed

System Security Symposium, NDSS 2018, San Diego, California, USA, February 18-21,

2018, 2018.

[167] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes. Re-

con: Revealing and controlling pii leaks in mobile network traffic. In Proceedings of the

14th Annual International Conference on Mobile Systems, Applications, and Services, pages

361–374. ACM, 2016.

[168] Thomas Reps. Program analysis via graph reachability. Information and software technol-

ogy, 40(11-12):701–726, 1998.

[169] Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis

via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages, pages 49–61. ACM, 1995.

122



[170] Dustin Rhodes, Cormac Flanagan, and Stephen N Freund. Bigfoot: static check placement

for dynamic race detection. ACM SIGPLAN Notices, 52(6):141–156, 2017.

[171] A Rountev, D Yan, S Yang, H Wu, Y Wang, and H Zhang. Gator: Program analysis toolkit

for android, 2017.

[172] Rebecca Russell, Louis Kim, Lei Hamilton, Tomo Lazovich, Jacob Harer, Onur Ozdemir,

Paul Ellingwood, and Marc McConley. Automated vulnerability detection in source code

using deep representation learning. In 2018 17th IEEE international conference on machine

learning and applications (ICMLA), pages 757–762. IEEE, 2018.

[173] Alejandro Russo and Andrei Sabelfeld. Securing timeout instructions in web applications.

In 2009 22nd IEEE Computer Security Foundations Symposium, pages 92–106. IEEE, 2009.

[174] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security. IEEE

Journal on selected areas in communications, 21(1):5–19, 2003.

[175] Koushik Sen, Darko Marinov, and Gul Agha. Cute: a concolic unit testing engine for c. In

ACM SIGSOFT Software Engineering Notes, volume 30, pages 263–272. ACM, 2005.

[176] Suranga Seneviratne, Harini Kolamunna, and Aruna Seneviratne. A measurement study of

tracking in paid mobile applications. In Proceedings of the 8th ACM Conference on Security

& Privacy in Wireless and Mobile Networks, page 7. ACM, 2015.

[177] Aritra Sengupta, Swarnendu Biswas, Minjia Zhang, Michael D Bond, and Milind Kulka-

rni. Hybrid static–dynamic analysis for statically bounded region serializability. In ACM

SIGPLAN Notices, volume 50, pages 561–575. ACM, 2015.

[178] Jaebaek Seo, Daehyeok Kim, Donghyun Cho, Insik Shin, and Taesoo Kim. Flexdroid:

Enforcing in-app privilege separation in android. In NDSS, 2016.

123



[179] Umesh Shankar, Kunal Talwar, Jeffrey S Foster, and David A Wagner. Detecting format

string vulnerabilities with type qualifiers. In USENIX Security Symposium, pages 201–220.

Citeseer, 2001.

[180] Shashi Shekhar, Michael Dietz, and Dan S Wallach. Adsplit: Separating smartphone adver-

tising from applications. In USENIX Security Symposium, volume 2012, 2012.

[181] M Sheldon, GV Weissman, and B Retrace. Collecting execution trace with virtual ma-

chine deterministic replay [c]. In Proceedings of the Third Annual Workshop on Modeling,

Benchmarking and Simulation (MoBS 2007), 2007.

[182] Paritosh Shroff, Scott Smith, and Mark Thober. Dynamic dependency monitoring to secure

information flow. In 20th IEEE Computer Security Foundations Symposium (CSF’07), pages

203–217. IEEE, 2007.

[183] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan, Jaspreet

Bhatia, Travis D Breaux, and Jianwei Niu. Toward a framework for detecting privacy policy

violations in android application code. In Proceedings of the 38th International Conference

on Software Engineering, pages 25–36. ACM, 2016.

[184] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic excavator for

reverse engineering data structures. In NDSS, 2011.

[185] Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin Bravenboer. More

sound static handling of java reflection. In Asian Symposium on Programming Languages

and Systems, pages 485–503. Springer, 2015.

[186] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads know about mobile

users. In NDSS, 2016.

[187] Mingshen Sun, Tao Wei, and John Lui. Taintart: A practical multi-level information-flow

tracking system for android runtime. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security, pages 331–342. ACM, 2016.

124



[188] Ruoxi Sun and Minhui Xue. Quality assessment of online automated privacy policy gen-

erators: an empirical study. In Proceedings of the Evaluation and Assessment in Software

Engineering, pages 270–275. 2020.

[189] Kimberly Tam, Salahuddin J. Khan, Aristide Fattori, and Lorenzo Cavallaro. Copperdroid:

Automatic reconstruction of android malware behaviors. In 22nd Annual Network and Dis-

tributed System Security Symposium, 2015.

[190] Tachio Terauchi and Alex Aiken. Secure information flow as a safety problem. In Interna-

tional Static Analysis Symposium, pages 352–367. Springer, 2005.

[191] Andreas Thies and Eric Bodden. Refaflex: Safer refactorings for reflective java programs. In

Proceedings of the 2012 International Symposium on Software Testing and Analysis, pages

1–11, 2012.

[192] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman. Taj:

effective taint analysis of web applications. ACM Sigplan Notices, 44(6):87–97, 2009.

[193] Omer Tripp and Julia Rubin. A bayesian approach to privacy enforcement in smartphones.

In 23rd {USENIX} Security Symposium ({USENIX} Security 14), pages 175–190, 2014.
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