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FEASIBILITY ANALYSIS OF ACCESS CONTROL POLICY MINING

Shuvra Chakraborty, Ph.D.
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Access control enforces who can access what inside a system, allowing only legitimate users

to get legitimate access to resources inside the system. To clarify, access control governs resource

access based on a variety of criteria, such as user credential verification, environmental condi-

tions, resource characteristics, and so on. To keep up with the fast changing requirements, new

"robust and resilient" models in the access control domain are being developed to keep pace with

the expanding complexity and innovation of technology, such as ABAC (Attribute-Based Access

Control), ReBAC (Relationship-Based Access Control), AReBAC (Atrribute-aware ReBAC), etc.

When a system is already protected by an established access control model, the "policy mining

problem" refers to the process of automating or at least partially automating the conversion to an-

other model. To migrate to another target access control system, policy mining generally requires

the existing source access control model and additional information. Policy mining tasks are fre-

quently guided by a set of assumptions, such as the target access control system must have the

identical set of users, resources and authorizations. Our investigation begins in pursuit of the feasi-

bility of access control policy mining under specific assumptions, which is essentially an in-depth

examination of various types of policy mining issues.

This dissertation investigates feasibility analysis of access control policy mining for variety

of source and target access control models, develops algorithms to find the feasibility, resolves

the cases of infeasibility, and demonstrates effectiveness of the developed approaches through

mathematical proofs and implementation.

The first step towards feasibility analysis begins with ABAC policy mining, where the source

access control system was Enumerated Authorization System (EAS). Using the limitations of the

state-of-the-art ABAC policy mining approaches, it first develops the concept of feasibility in
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ABAC policy mining, formally named as ABAC RuleSet Existence Problem. Furthermore, the

concept of feasibility in ABAC policy mining was extended while source access control model is

Role Based Access Control (RBAC) system as well. Besides, for both cases, infeasibility solution

algorithms are proposed and unrepresented partition problem is also discussed.

Feasibility of ReBAC policy mining was explored in the second step. Similar to the first step,

feasibility problem in ReBAC policy mining is defined and formulated as ReBAC RuleSet Exis-

tence Problem. In addition, different versions of ReBAC RuleSet Existence Problem are intro-

duced. Infeasibility solution, and significant directions for future enhancement are noted. Signifi-

cant example cases are included to demonstrate the effectiveness of the proposed approach.

Although feasibility analysis of ABAC and ReBAC policy mining provide an insightful study,

however, the combination of both, Attribute-aware ReBAC increases the expressiveness and flexi-

bility. Attribute-aware ReBAC RuleSet Existence Problem is introduced in this context, analyzed

and feasibility as well as infeasibility algorithms are provided with associated proofs. One impor-

tant contribution here is: the notion of approximate solutions in the case of infeasibility is briefly

mentioned. Later, significant example cases are discussed with future directions.

As the final step, this dissertation introduces a novel concept of extending the concept the fea-

sibility analysis of ABAC and ReBAC policy mining, formally named as Extended ABAC and

ReBAC RuleSet Existence Problem, EAREP and ERREP in short, respectively. Initially, the moti-

vation and objective of defining these problems are demonstrated with example. Later, infeasibility

solution and associated pros and cons are discussed briefly.

Finally, the dissertation work is concluded with significant directions for future extensions.
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CHAPTER 1: INTRODUCTION

Protecting information or other resources from unauthorized access is one of the prime components

in security enforcement, where access control comes into play. Access control coexists with other

security services in a system and is a vital part of ensuring that resources or objects get accessed by

legitimate users only. Numerous access control models have been proposed so far, beginning from

Lampson’s access matrix to date; however, only a couple of them achieved the practical traction

to be widely recognized. These include, Discretionary Access Control (DAC) [39], Mandatory

Access Control (MAC, also referred as Lattice-Based Access Control) [40], Role-Based Access

Control (RBAC) [21, 38], Attribute-Based Access Control (ABAC) [24, 28], Relationship-Based

Access Control (ReBAC) [22, 23].

DAC is a classical model that became widely popular due to its flexibility and simplicity. In

DAC, access to resources is verified based on the discretion of the resource/object owner. MAC

overcomes a key limitation of DAC: it imposes restrictions on the flow of information from higher

to lower level. Usually, each object and user in MAC is assigned a security label, expressing their

sensitivity level in the system. A user can access an object only if some relationship between their

security labels holds. The general assumption is: higher security label dominates over lower ones,

according to the hierarchy of labels established by the system policy. As a matter of growing de-

mand in many commercial enterprise system, there have been a good amount of works to extend

DAC and MAC but a more organized access control model was needed to overcome the rigid char-

acteristics of MAC and the autonomous nature of DAC. RBAC successfully filled this gap when it

came into picture in the early‘90s. The main component of RBAC is role, an intermediary between

user and permissions in the system. In basic RBAC, a user can have multiple roles where each

role might contain multiple permissions assigned to it [21]. Although RBAC is a widely popular

model for its capability to manage large scale authorizations, it has limitations which Attribute-

Based Access Control (ABAC) seeks to address. ABAC can encompass the advantages as well

as go beyond the limits [28] of all the foregoing three models mentioned so far. Although it is
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arguable which one of RBAC or ABAC is more flexible, scalable, auditable, and provides more

support for the dynamic environment [44], the emergence of ABAC cannot be denied. ABAC can

be configured to DAC, MAC, and RBAC [28], suitable for large enterprises and notably overcome

some limitations of RBAC, for example, role explosion [25]. The flexibility of ABAC in dynamic

as well as distributive environment causes migration to ABAC from different already deployed

access control models. Another well-recognized field of access control model is Online social net-

works (OSNs) which is different from traditional ones. OSNs have emerged rapidly over the past

several years and now, billions of users in all over the world are connected through different rela-

tionships! Relationship-Based Access Control (ReBAC) is employed to protect the huge amount

of sensitive and private information (i.e., photo, contacts, blogs) over the OSNs from unauthorized

manipulation. Although ReBAC expresses authorization through direct and indirect relationships,

there are cases where only using relationships is insufficient. Consider a policy that, in a social

network, one can send a friend request to anyone older than her. Here, age of source and target

must be known. So, each user in that social network must have an attribute/characteristic indicat-

ing age. Integrating attributes with ReBAC components certainly add more expressiveness [18],

formally named as Attribute-aware ReBAC (AReBAC).

Now, one question is, which one is the best to use? Depending on the system requirement,

access control models can sustain throughout the changes made by the policymakers. However,

sometimes it gets necessary to migrate from one access control system to another. For example,

suppose an organization uses the Access Control List (ACL) for system resource protection pur-

poses. Due to the growing size of the organization and change in the mode of operation, now it

is being difficult to manage the huge set of permitted authorizations. Therefore, system adminis-

trator decided to migrate to RBAC or ABAC (advantages of ABAC and RBAC will be discussed

later). Although it is possible to complete the migration process by relying on human support, an

automated solution that is free of manual errors may require less effort and time. Access control

policy mining refers to the partially automated migration process from one access control system

to another. The feasibility analysis of access control policy mining is the general term that encom-
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passes all those issues that arise during the migration. For example, as mentioned earlier, given

an ACL (access control list) and supporting attribute data, what could be the list of few possible

issues arise during the migration process to ABAC?

1. Are those given data sufficient enough to generate an equivalent ABAC system? (By equiv-

alent, we mean the exact set of authorizations allowed in both systems where inexact or

approximate equivalency means the more or less number of authorizations allowed.)

2. If the given data is insufficient, how to generate approximate solutions with suitable security

measure?

3. Can the given attribute set be minimized/reduced? Does that reduction process hamper the

expressiveness of ABAC?

4. Is it possible to design the suitable attribute set so that migration can be fully automated?

5. Is it possible to reduce the generated policy size even if the generated system is equivalent?

Considering the variety of issues, domain of feasibility analysis in Access Control Policy Mining

merits systematic study. The domain of the feasibility of access control policy mining includes

all mining problems such as RBAC mining [33], ABAC mining [41], AReBAC mining [6] and so

on. Hence, it can be stated that, as new access control model joins the access control domain, the

feasibility analysis domain also grows accordingly.

This dissertation focuses on the formulation, development, and implementation of feasibility

analysis in access control policy mining domain, especially for ABAC, ReBAC and AReBAC pol-

icy mining problems. Rigorous examples of motivation and detailed case studies are also provided.

Based on the analysis works so far, classification of infeasibility solutions, and future enhancement

are also noted. It should be noted that, each type of feasibility analysis formulates their own access

control model specification while utilizing the fundamental aspects of model itself.
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1.1 Problem Statement

While access control policy mining problems are an emerging research concern, the issues which

arise during the automated migration process (such as use of entity ids in the policy, the equiva-

lence of the source and target access control systems) are not yet addressed rigorously. There is

a significant gap, especially lack of formal logical frameworks and academic literature with re-

spect to variety of access control policy mining problems. On the other hand, characteristics of

access control models, supplementary data required for the migration process and the amount of

efforts required to automate the whole process make the feasibility analysis technically interesting.

Thereby, a conceptual framework needs to be defined in order to facilitate a smooth migration from

a source access control system to the target so that it cope up with the real world access control

policy mining applications.

1.1.1 Thesis Statement

As a matter of growing real-world challenges and advancements in technology, migration of one

access control system to another is an emerging problem. The complete or partially automated

solution to this migration process is called the access control policy mining problem. During the

mining process, a set of assumptions and criteria are imposed to precisely define the migration

goals. The feasibility analysis of the access control policy mining problem formulates the logical

framework of the problem, resolves the infeasibility issues possibly arising during the policy mining

process so that the solution can satisfy those imposed criteria, and provides a rigorous foundation

for the migration process.

1.2 Scope and Assumption

Briefly, the scope and assumptions of the proposed work are as follows:

1. In this dissertation, the domain of feasibility analysis of the access control mining problem

is comprised of the domain of access control models. Here, we work with the best known
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models (RBAC, ABAC, ReBAC, etc.).

2. As the feasibility analysis framework is newly defined, infeasibility solution approaches do

not follow any specific guidelines, and performance measurement is limited to analyzing

algorithmic complexity only. It can be said, use of real world data would make the experi-

mental results more interesting.

3. Right at this moment, any issue related to the feasibility of migration of one access control

system to another is part of our problem domain. However, a clear boundary is yet to be de-

fined. For example, if we migrate an ACL system to RBAC, having the equivalent protection

from the generated system could be the determining factor. Besides, getting the optimal role

set even if the equivalency has to be compromised; is also a part of the feasibility analysis

domain.

4. RBAC, ABAC, and other access control model (Which models are the key component of

our work) are defined and extended by many previous works and vary from each others in

features. Here, we work with our own version of those access control models such as [13,14].

Our work is not directly capable of providing solutions for all situations. A separate study is

needed to extend our work in these areas.

5. This dissertation work does not claim to compete with human expertise at all. Rather than

that, this dissertation focuses on the full automation of migration process while a certain set

of instruction or criteria are imposed.

1.3 Summary of Contribution

The major contributions of this dissertation are visually presented in Fig. 1.1 and listed below.

1. Established a novel direction for defining feasibility analysis in access control policy mining

domain.
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Figure 1.1: Summary of contribution

2. Developed algorithms for feasibility analysis for a particular set of access control mining

problems such as ABAC and ReBAC.

3. In the case of infeasibility, solution algorithms are presented to make it feasible under given

criteria. The solutions are mostly equivalent, however, approximate solutions are also dis-

cussed in some cases.

4. Showed usefulness of feasibility analysis process through a qualitative measure such as com-

plexity analysis.

5. Demonstrated the generated algorithms with proof-of-concept case studies to show the ef-

fectiveness.

1.4 Organization of the Dissertation

The rest of this dissertation is organized as follows: chapter 2 presents an introductory review on

popular access models, and policy mining literatures. In chapter 3, the work on the feasibility of

ABAC policy mining problem from authorizations and RBAC are presented. Chapter 4 discusses
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the work on the feasibility of ReBAC policy mining along with infeasibility solutions. Chapter 5

formulates feasibility of AReBAC policy mining where inexact solution of infeasibility problem

is introduced as well. Chapter 6 proposes an extension towards the feasibility of ReBAC policy

mining, and finally, Chapter 7 summarizes the dissertation work and lists some interesting direction

for future works.
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CHAPTER 2: LITERATURE REVIEW

In this chapter, a brief overview of related access control models is presented. It further discusses

prior literature on the theory of access control policy mining. Although feasibility of access control

policy mining encompasses the entire domain of access control models, this dissertation work is

limited to the most relevant ones, such as RBAC, ABAC. ReBAC, and AReBAC.

Significant portion of this chapter has been published as background studies at the following venues

[11–14].

• Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2019. On the Feasibility of Attribute-

Based Access Control Policy Mining. In 2019 IEEE 20th International Conference on Infor-

mation Reuse and Integration for Data Science (IRI). 245–252.

• Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2020. On the Feasibility of RBAC to

ABAC Policy Mining: A Formal Analysis. In Secure Knowledge Management In Artificial

Intelligence Era. Springer Singapore, Singapore, 147–163.

• Shuvra Chakraborty and Ravi Sandhu, Formal Analysis of ReBAC Policy Mining Feasibility.

In Proceedings of the 11th ACM Conference on Data and Application Security and Privacy

(CODASPY), Virtual Event, April 26-28, 2021.

• Shuvra Chakraborty and Ravi Sandhu, On Feasibility of Attribute-Aware Relationship-Based

Access Control Policy Mining. In Proc. 33rd Annual IFIP WG 11.3 Working Conference on

Data and Applications Security and Privacy (DBSec), Virtual Event, July 19-20, 2021.

2.1 Access Control Models

The main purpose of access control is to limit the activities of the legitimate users in the system

where it is presumed that the identity of the user is pre-verified. Access control is not the only

one that protects the system from security breaches; rather it is coupled with other security mea-

sures like authentication, auditing, etc. The very basic components of an access control model are
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Figure 2.1: The Core RBAC model [21]

user/subject and object/resources. Although some access control models make a clear distinction

between user and subject [28], in our work, user and subject are used interchangeably.

2.1.1 Role-Based Access Control (RBAC)

The base component of RBAC [21, 38] is the role, an intermediary between user and permission

in the system. Each user in the system acquires the set of permissions through the roles being

assigned to them. Usually, there is a system administrator who assigns the permissions to the

roles, although the role and permission assignment setup may vary depending on the model and

other factors. The NIST standard of RBAC [21] comprises of these four: Core RBAC, Hierarchical

RBAC, Static Separation of Duty Relations, and Dynamic Separation of Duty Relations. Amongst

them, Core RBAC model with five basic elements (users (USERS), roles (ROLES), objects (OBS),

operations (OPS), and permissions (PRMS) ) is shown in Fig. 2.1.

RBAC is policy-neutral [38], auditable, offers permission and user-level abstraction, and pro-

vides operational and administrative scalability through roles.
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2.1.2 Attribute-Based Access Control (ABAC)

RBAC has been a de facto standard access control model for over the last two decades. However,

some limitations of RBAC have drawn practitioner attention into possible extensions of RBAC or

invention of a new model. Among the RBAC limitations, a couple of notable issues are: i) in

dynamic environments, additional information other than role might be required to evaluate access

decisions, for example, an employee can access office files while his official device is connected

to the internet through office LAN but not from home/other places so that apart from the employee

role, that particular device location and time is important here, ii) Role explosion problem [20],

and iii) it is hard to manage homogenous objects with Basic RBAC which does not support object

attributes, etc. ABAC came into the picture to overcome the shortcomings of other access control

models. ABAC is flexible [24, 25], able to work as an alternative of DAC, MAC, and RBAC [28],

avoids the necessity for explicit authorizations to be directly assigned to individual subjects prior to

an access request [25]. Fig. 2.2 shows a unified ABAC model [28] for reference purpose; the prime

components are users (U), subjects (S), objects (O), user attributes (UA), subject attributes (SA),

object attributes (OA), permissions (P), authorization policies, and constraint checking policies for

creating and modifying subject and object attributes. In our work, we have avoided the explicit

distinction between user and subject, more details are available in [13, 14].

2.1.3 Relationship Based Access Control (ReBAC)

So far, we have discussed access control models which evaluate access decisions depending on the

identities, sensitivity level, role, and attributes. ReBAC is a bit different from those models men-

tioned earlier (DAC, MAC, RBAC, and ABAC) and is especially used for online social networks

(OSN) [18]. OSN requires an access control system that offers support to scalability and dynamic-

ity, lets the user and resource owner specify their own policy and evaluates access requests (hence

provide security and privacy) based on the relationship. The relationship in OSN could be of dif-

ferent types, user to user [16], object to object [1] and so on. In [4], ReBAC is represented as an

object-oriented extension of ABAC where entities (user, resource, etc.) are referred as classes and
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Figure 2.2: ABACα model components [28]

relationships are expressed as fields between classes. For example, Fig. 2.3 shows an example of a

class model diagram in [4]. In this example, each of the rectangular boxes represents an entity (or

class) in the system where the directed arrows from one class to another denote that the originator

has a field (relationship) of the pointed class. For more details, [4] can be consulted.

2.1.4 Attribute-aware Relationship-Based Access Control

Although ReBAC offers an effective way of configuring access control policies in OSNs, there are

shortcomings as well. For example, most ReBAC models cannot exploit the complicated topolog-

ical information residing in a social graph, other than type, depth, or strength of relationships [18].

Besides, it generally lacks support for different contextual information of users, resources, and

relationships available in OSN (also called attribute, utilized for flexible and finer grained access

control) [18]. Attribute-aware ReBAC incorporates variety of attributes with ReBAC structure,

such as [18] mentions about i) node (usually, node in a social graph is user or resource), ii) edge

(relationship), and iii) count (the occurrence requirement for the attribute-based path) attributes.

In [18], an Attribute-aware ReBAC policy has been specified which enhances access control capa-

bility and offers finer-grained controls compared to ReBAC. [37] presents an attribute-supporting

ReBAC model for Neo4j (a popular graph database) that provides finer-grained access control by
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Figure 2.3: ReBAC class diagram example from [4]

operating over resources.

2.2 Background of Feasibility Analysis

Each access control system has its pros and cons and is chosen according to system require-

ments by the administrator. However, advancements in technology, change in mode of opera-

tions and growing/shrinking size of the organization may lead to migration to another more ap-

propriate access control model. Therefore, access control policy mining comes into the field to

simplify/partially automate the conversion process. Manual effort is often error-prone, time con-

suming and experience-based, That’s why, a robust, reliable, and efficient (in terms of resource

utilization, such as memory or runtime) access control policy mining technique may reduce the

time, effort needed, and expense related to transition from one access control system to another.

Based on the circumstances stated above, automation of access control policy mining can cer-

tainly reduce the human effort and time needed, remove the burden of checking errors. Feasibility

analysis answers the question related to access control policy mining such as i) is the support-
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ing data good enough under the given criteria, ii) can we replace/remove the supporting data to

simplify the migration process, and so on. As far as we could possibly know, feasibility notions

of access control policy mining problem has been introduced without precedent in this disserta-

tion. There is no prior literature that deals explicitly with these issues. There exist noteworthy

past works on the field of access control policy mining, such as rule mining, role mining, ABAC

mining, Relationship-Based Access Control (ReBAC) mining [4], etc.

2.2.1 Access Control Policy Mining Review

There are notable previous works on the field of policy mining, such as rule mining, role mining,

ABAC mining, Relationship-Based Access Control (ReBAC) mining [4], and so on. For example,

Role Mining [33, 35, 36, 43, 48] is a prevalent branch of RBAC policy mining which partially

automates the process “role” construction, while user-permission assignment and possibly other

information are given. In recent years, Attribute Based Access Control (ABAC) policy mining has

been studied, whose feasibility is in the scope of this dissertation.

ABAC policy mining problem was first introduced formally in [47]. Given an access control

list policy as input, [47] finds out equivalent ABAC policy. Here, ABAC rule is a tuple specifying

sets of users, objects, operations, and constraints involving user and objects attributes. Although

constraints give more generalized rule, but only a few forms of constraints are allowed in this study.

Another work with authorization data as input is [42]. Despite having the same asymptotic com-

plexity, [42] shows better performance with respect to total execution time. In [42], two algorithms

for ABAC mining, ABAC-FDM, and ABAC-SRM has been proposed. ABAC-FDM is accurate but

due to its exponential complexity, more efficient ABAC-SRM is proposed. Both [42, 47] aim at

generating compact ABAC policy, more specifically, set of ABAC rules with minimum Weighted

Structural Complexity(WSC) as described in [47] and deal with positive ABAC rules only.

A new out of the box approach is given in [26], which deals with positive as well as negative

ABAC rules. This work basically depends on PRISM, an existing rule mining algorithm. A special

note about ABAC policy mining algorithm in [26] is, a complete log is assumed to be given as input
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or denied otherwise. The output is consistent with respect to input log like previous works.

Based on variety of the input data, some other notable ABAC policy mining works are: from

RBAC [45], log data [46], sparse log [19], etc. A deep learning approach towards ABAC policy

mining from logs using Restricted Boltzmann Machine (RBM) has been presented in [34]. Apart

from these works, an evolutionary computation approach for ABAC policy mining is presented

in [32], based on incremental learning of single rules and search-optimizing features. An unsuper-

vised learning based approach for mining ABAC policies is described in [29]. Another informative

literature can be found in [30].

The recent proliferation of OSNs has accelerated the research of finding an access control

paradigm which is different from traditional dominant access control models like ABAC [25],

RBAC [21], etc. According to the early literature, ReBAC policy is characterized by the explicit

tracking of interpersonal relationships between users [22]. ReBAC is a general-purpose access

control model which supports the natural expression of parameterized roles, the composition of

policies, and the delegation of trust [23]. A further extended hybrid-logic based ReBAC policy is

given in [3].

In general, given an OSN, users and resources are interconnected via various types of relation-

ships. In order to specify ReBAC policies, particular relationship directions between users and

resources can play significant roles. For example, [17] specifies ReBAC policies based on user

to user (U-U) relationships in OSN. Similarly, [1] uses resource to resource (R-R), and [15] uses

resource to user (R-U) and vice versa to express ReBAC policies. In addition, [2] presents a com-

parative analysis of expressive power and performance implications between ReBAC and ABAC

features, [31] does an extensive analysis when the OSN is updated, and [18] proposes ReBAC to

be integrated with ABAC to enhance the capability and allows finer-grained controls.

Given an access control system along with supporting data, ReBAC policy mining algorithms

find the equivalent ReBAC policy. This provides partial automation to the overall migration pro-

cess, reduces cost and uses some measures to find the most efficient rule set. A few works on

ReBAC policy mining are discussed briefly as follows. The work in [8] presents ReBAC as an
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object-oriented extension of ABAC where the “class” structure is able to realize the relationship

between various entities, beyond the user and resources paradigms. In [9], the work in [8] is ba-

sically extended, where heuristic-guided greedy and grammar-based evolutionary algorithms for

ReBAC policy mining are presented. A further extension is proposed in [7], to the evolutionary

ReBAC policy mining in [9]. The extended ReBAC policy mining in [7] follows the simplification

as well as feature selection by using neural network resulting in a more scalable and efficient algo-

rithm. Some other ReBAC policy mining algorithms use decision tree [5], incomplete and noisy in-

put data [10], and mine ReBAC policies from graph transition [27]. In comparison with [5,10,27],

this feasibility study is limited to static relationship graph with complete input information only.

Compared to [5,7–10], our work in this study concentrates on whether ReBAC mining is feasi-

ble or not without altering the core spirit of ReBAC, i.e., relationships should be the key to express

policies and use of unique user or resource ids is prohibited. This is a fundamental difference since

ReBAC policy mining is always feasible with such ids.

Although both ABAC and ReBAC have their own advantages to express authorization policies

(e.g., [2] presents a rigorous study on that), integrating ABAC with ReBAC can provide finer-

grained controls and improve the expressiveness that is not present in standalone ABAC or ReBAC.

For example, [18] presents an attribute aware ReBAC access control model.

Although the policy specification language in this study is far different from [6, 37], these two

works should be recognized as related works. In [6], an approach to mine ABAC and ReBAC

policies has been proposed where access control lists and incomplete information about entities

are given. A few significant points about [6] are i) the proposed algorithm prefers the context of

ReBAC mining because ReBAC is more general than ABAC, ii) entity ids are allowed to be used

(which makes the generated policy less general), and iii) there is a policy quality metric available.

Compared to [6], entity ids are strictly prohibited in the attribute-aware context of this study. On

the other hand, [37] presents an attribute-supporting ReBAC model for Neo4j (a popular graph

database) that provides finer-grained access control by operating over resources.
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CHAPTER 3: ON THE FEASIBILITY OF ATTRIBUTE-BASED ACCESS

CONTROL POLICY MINING

Attribute-Based Access Control (ABAC) model has taken a considerable amount of time to get

established, but now it is fast replacing other popular counterparts (e.g. RBAC, DAC) in industry,

enterprise, and government applications. Due to the ongoing demand, switching to ABAC from

an already employed access control system has acquired significant research interest. Automated

or at least partially automated solutions can certainly reduce the amount of efforts needed and re-

move the errors caused by manual interventions but depend on the variety of input access control

models. A specific offshoot of such problem, constructing equivalent ABAC policy from a given

complete access control system (such as enumerated authorizations), and accompanying attribute

data is called ABAC policy mining. In this chapter, we have identified a new problem called ABAC

RuleSet Existence, in this context. The notion of ABAC RuleSet Infeasibility Correction has been

introduced formally for the first time, along with algorithm analysis. In addition, promising future

research directions have been discussed.

Significant portion of this chapter has been published at the following venues [13, 14].

• Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2019. On the Feasibility of Attribute-

Based Access Control Policy Mining. In 2019 IEEE 20th International Conference on Infor-

mation Reuse and Integration for Data Science (IRI). 245–252.

• Shuvra Chakraborty, Ravi Sandhu, and Ram Krishnan. 2020. On the Feasibility of RBAC to

ABAC Policy Mining: A Formal Analysis. In Secure Knowledge Management In Artificial

Intelligence Era. Springer Singapore, Singapore, 147–163.

3.1 Motivation

To investigate the process of ABAC policy mining, let us consider two extreme cases.
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1. All users have identical attribute values and likewise for all objects. Rules based on attribute

values thereby cannot distinguish any two user, object pairs and can only give uniform au-

thorization for all such pairs, which is hardly useful in practice.

2. At the other extreme assume, user identity and object identity are included as attribute values

for users and objects respectively, where identity is globally unique. Every user, object

pair is thereby distinguishable from every other pair, so authorization for each pair can be

differentiated. In general, the inclusion of identity attributes will guarantee the existence of

ABAC policy rules even if all other attributes are ignored.

We believe that identity attributes are antithetical to the spirit of ABAC and we disallow them,

which makes the feasibility question germane. ABAC RuleSet Existence problem studies whether

the intended ABAC policy generation is feasible or not under a set of criteria imposed, such as

explicit unique ids are not allowed as attribute, equivalent ABAC policy is needed compared to the

source access control system, etc. This problem has been investigated based on two types of source

access control model, i) Enumerated Authorization System and ii) RBAC system. The notion of

ABAC RuleSet Infeasibility Correction has been introduced and equivalent solutions are proposed

as well. The rest of the chapter formulates ABAC RuleSet Existence Problem, associated terms,

and related issues.

3.2 Preliminaries

In this section, some preliminaries of ABAC RuleSet Existence Problem will be noted and rest of

the chapter will repeatedly use these definitions.

We consider access control systems that mediate access of users to objects. We specifically

omit the user-subject distinction, e.g. as in [28]. Given that a user requests to perform an operation

on an object, every access control system must define a checkAccess function to decide whether

or not this operation should be permitted or denied.

Definition 1. checkAccess
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checkAccess : U × O × OP → {True, False} where, U, O, and OP are finite sets of users,

objects, and operations, respectively. A user u ∈ U is allowed to perform operation op ∈ OP on

object o ∈ O if and only if checkAccess(u, o, op) is True.

In general, the checkAccess function changes with the system state. Since our focus is on a

single state we omit explicit mention of the state. The specification of checkAccess, typically as a

logical formula, depends upon the details of the underlying access control model.

3.2.1 Source Access Control System

As mentioned before, this chapter studies ABAC RuleSet Existence problem with two varieties of

source access control system. A simple authorization system, where user-object-operation tuples

are used directly to control access is as follows.

Definition 2. Enumerated Authorization System (EAS)

An EAS is a tuple 〈U, O, OP, AUTH, checkAccessAUTH〉 where, U, O, and OP are finite sets

of users, objects and operations, respectively. Here, AUTH ⊆ U × O × OP , is a specified

authorization relation and checkAccessAUTH(u, o, op) ≡ (u, o, op) ∈ AUTH .

For instance, user Paul can read object F if and only if (Paul, F, read)∈AUTH, whereby

checkAccessAUTH is True. We require that the authorization state in the ABAC policy mining

problem be given as an EAS. Note that however checkAccess is specified in an access control sys-

tem, an equivalent AUTH relation can be computed for finite sets of users, objects and operations.

So this is a reasonably general assumption.

The second variety of source access control system is RBAC system. The key component

of RBAC system is role [21], an intermediary between user and permissions in the system. For

example, all users assigned to a role “manager” may practice all permissions associated with that

role. A complete RBAC system is defined as follows:

Definition 3. RBAC system

An RBAC system 〈U,O,OP,Roles,RPA,RUA, RH, checkAccessRBAC〉 is a tuple where,
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1. U, O, and OP are finite sets of users, objects, and operations, respectively.

2. P = O × OP , is the set of all possible permissions in the system. A permission p ∈ P is

an object-operation pair where ops(p) and obj(p) denote the operation and object associated

with p, respectively.

3. Roles is a finite set of role names.

4. The set of permissions directly assigned to a role r ∈ Roles is given by RPA(r) where,

RPA : Roles → 2P . The set of users directly assigned to a role r ∈ Roles is given by

RUA(r) where, RUA : Roles→ 2U .

5. The role hierarchy relation is RH ⊆ Roles × Roles where RH must be acyclic. Here,

(r, r′) ∈ RH denotes r is a senior role than r’.

6. Let reflexive transitive closure of RH be denoted by RH ′. A role r ∈ Roles acquires the

set of permissions associated with all junior roles according to given hierarchy, and de-

noted by authPerm(r) = {p ∈ RPA(r′)|(r, r′) ∈ RH ′}. A role r ∈ Roles inherits all

the users associated with seniors roles in hierarchy, and denoted by authUser(r) = {u ∈

RUA(r′)|(r′, r) ∈ RH ′}.

7. Finally, checkAccessRBAC(u : U, o : O, op : OP ) ≡ ∃r ∈ Roles.(u ∈ authUser(r) ∧ p ∈

authPerm(r) ∧ (o, op) = (obj(p), ops(p)). In simple words, given a role r ∈ Roles, a user

u ∈ authUser(r) may practice all permissions p ∈ authPerm(r).

Suppose the sets of users (U), objects (O), operations (OP) and roles (Roles) are {u1, u2, u3, u4, u5},

{o1, o2, o3}, {op1, op2}, and {r1, r2, r3, r4}, respectively. Given, RH = {(r1, r3)}, the user and

permission assignment for each role ∈ Roles is shown in Table 3.1. Here, user u1 can perform

operation op1 on object o3 since checkAccessRBAC(u1, o3, op1) evaluates to True.
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Table 3.1: RBAC system

Roles RPA RUA authPerm authUser
r1 {(o1, op1)} {u1} {(o1, op1), (o3, op1)} {u1}
r2 {(o2, op2)} {u3} {(o2, op2)} {u3}
r3 {(o3, op1)} {u4, u5} {(o3, op1)} {u1, u4, u5}
r4 {(o1, op1), (o3, op1)} {u2} {(o1, op1), (o3, op1)} {u2}

3.2.2 Target Access Control System

In this chapter, the target access control system is ABAC system. Before defining the ABAC

RuleSet Existence problem, a complete specification of ABAC policy as well as the rule evaluation

procedure is necessary.

Our ABAC model is adapted from [28] with two major deviations. Firstly, as mentioned above

we omit the user-subject distinction. Secondly, attributes in [28] can be atomic-valued or set-

valued. For example, the age attribute of a user is atomic valued. On the other hand a user’s

department attribute could be atomic valued if only one department is permitted or set-valued if

a user can be in multiple departments. Note that set-valued attributes can be replaced by atomic-

valued attributes by simply enumerating all combinations and assigning a symbol for each. For

simplicity we assume all attributes are atomic valued.

In ABAC, authorization of whether a user can do an operation on an object is decided using the

attributes value assignments of both user and object. (Many ABAC systems also include contextual

attributes, which we ignore in this study.) The core of ABAC is a set of rules, which constitute the

ABAC policy.

Definition 4. ABAC policy

An ABAC policy, POLABAC is a tuple, 〈OP, UA, OA, RangeSet, RuleSet〉 where,

• OP is a finite set of operations, and UA and OA are finite sets of user and object attribute

function names respectively. We assume without loss of generality UA ∩OA = ∅.

• RangeSet = {(att, value) | att ∈ (UA ∪ OA) ∧ value ∈ Range(att)} where, Range(att)

specifies a finite set of atomic values.
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• RuleSet is a set of rules, where, for each operation op, RuleSet contains a single rule,Ruleop.

Formally, RuleSet = {Ruleop | op ∈ OP}. Each Ruleop is specified using the grammar

below.

Ruleop ::= Ruleop∨ Ruleop | (Atomicexp)

Atomicexp::=Atomicuexp∧Atomicoexp|Atomicuexp|Atomicoexp | True | False

Atomicuexp ::= Atomicuexp ∧ Atomicuexp | uexp

Atomicoexp ::= Atomicoexp ∧ Atomicoexp | oexp

uexp ∈ {ua(u) = value | ua ∈ UA ∧ value ∈ Range(ua)}

oexp ∈ {oa(o) = value | oa ∈ OA ∧ value ∈ Range(oa)}

Each Ruleop is specified with user u and object o as formal parameters. The semantics of

Ruleop, evaluated for an actual user a and object b is given in Definition 5. For example, suppose

ABAC rule for read operation, denoted by Ruleread is specified as (rank(u) = manager ∧ type(o)

= attendance log) ∨ (rank(u) = manager ∧ type(o) = Annual report). Here any user in U with rank

manager can read both types of objects, attendance log and annual report.

A complete ABAC system defines authorization based on ABAC policy as follows.

Definition 5. ABAC system

An ABAC system is a tuple, given by, 〈U, O, UAValue, OAValue, POLABAC , checkAccessABAC〉

where,

• U and O are finite sets of users and objects, respectively. OP, UA, OA, RangeSet and

POLABAC are defined as in Definition 4.

• UAV alue = {UAV alueua|ua ∈ UA} where the function UAV alueua : U → Range(ua),

such that UAV alueua(u) returns the value of attribute ua for user u. For convenience, we

understand ua(u) to mean UAV alueua(u).

• OAV alue = {OAV alueoa|oa ∈ OA} where the function OAV alueoa : O → Range(oa),

such that OAV alueoa(o) returns the value of attribute oa for object o. For convenience, we

understand oa(o) to mean OAV alueoa(o).
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• checkAccessABAC(a:U, b:O, op:OP) ≡ Ruleop(a:U, b:O) where Ruleop is as stated in Defi-

nition 4. Given any user a ∈ U along with attribute value assignments ua(a), where ua ∈ UA

and an object b ∈ O along with attribute value assignment oa(b), where oa ∈ OA, the ex-

pression Ruleop(a, b) is evaluated by substituting the values ua(a) for ua(u) and oa(b) for

oa(o) in the Ruleop expression. User a is permitted to do operation op on object b if and only

if Ruleop(a, b) evaluates to True.

We also define a partially defined ABAC system to be a tuple, 〈U, O, UAValue, OAValue,

POLABAC−RuleSet〉 where POLABAC−RuleSet is a tuple 〈OP, UA, OA, RangeSet〉 where OP, UA,

OA, and RangeSet are as in Definition 4 and RuleSet is undefined.

Definition 6. Equivalency

An EAS, 〈U, O, OP, AUTH, checkAccessAUTH〉, and an ABAC system, 〈U, O, UAValue, OAValue,

POLABAC , checkAccessABAC〉 with identical U, O, and OP are said to be equivalent iff,

checkAccessAUTH(u, o, op)⇐⇒ checkAccessABAC(u, o, op) for all u ∈ U , o ∈ O, and op ∈ OP .

3.3 ABAC RuleSet Existence Problem Definition

Based on the foregoing, ABAC RuleSet Existence problem where source access control system is

EAS is defined as follows.

Definition 7. ABAC RuleSet Existence problem with EAS input

Given, an EAS 〈U, O, OP, AUTH, checkAccessAUTH〉 and a partially defined ABAC system 〈U,

O, UAValue, OAValue, POLABAC−RuleSet〉 where U, O and OP are identical to the given EAS,

does there exist a RuleSet so that the resulting ABAC system is equivalent to the given EAS? Such

a RuleSet, if it exists, is said to be a suitable RuleSet.

To illustrate the ABAC RuleSet Existence problem consider the example data in Table 3.2,

where U = {u1, u2, u3, u4}, O = {o1, o2}, UA = {ua1, ua2} and OA = {oa1}. Table 3.2(c) spec-

ifies the attribute ranges while Tables 3.2(a) and (b) gives attribute values for users and objects

respectively. All of this specifies a partially defined ABAC system. Suppose we are given an EAS
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Table 3.2: Example data set

(a) UAValue
User ua1 ua2
u1 F C
u2 F B
u3 F C
u4 G D

(b) OAValue
Object oa1

o1 F
o2 G

(c) Range
ua1 {F,G}
ua2 {B,C,D}
oa1 {F,G}

with AUTH={(u1, o1, op)}. A suitable RuleSet cannot exist since users u1 and u3 cannot be dis-

tinguished based on their attribute values. However, if AUTH={(u1, o1, op),(u3,o1,op)} then a

suitable Ruleop is (ua1(u)=F ∧ ua2(u)=C ∧ oa1(o)=F).

Similarly, ABAC RuleSet Existence problem where source access control system is RBAC

system is defined as follows.

Definition 8. ABAC RuleSet Existence problem with RBAC input

Given, an RBAC system and a partially defined ABAC system where U, O and OP are identical to

the given RBAC system, does there exist a RuleSet so that the resulting ABAC system is equivalent

to the given RBAC system? Such a RuleSet, if it exists, is said to be a suitable RuleSet.

To demonstrate the significance of the problem, let’s consider the RBAC example in Table 3.1

and ABAC example in Table 3.3 with identical set of users, objects, and operations: does there

exist a RuleSet so that the resulting ABAC system is equivalent to the given RBAC system? Note

that it is always possible to generate equivalent ABAC system when explicit IDs are introduced

for both user and object [45]. We strongly believe that the inclusion of such IDs is antithetical to

the spirit of ABAC. Hence, we rule out the use of such IDs. For example, RBAC example in Table

3.1, user u1 can perform operation op1 on object o1 whereas user u3, a user with the same attribute

value assignment as u1, is not allowed to do so. It is clearly evident that no suitable ABAC RuleSet

can exist.
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Table 3.3: ABAC example data

(a) UAValue
User uat1
u1 F
u2 F
u3 F
u4 G
u5 G

(b) OAValue
Object oat1

o1 F
o2 F
o3 G

(c) Range
uat1 {F,G}
oat1 {F,G}

3.4 ABAC RuleSet Existence Problem with EAS input

In this section, solution to ABAC RuleSet Existence Problem with EAS input is discussed. In the

case of infeasibility, solution is also provided.

3.4.1 Solution Approach

The essential concept to solve the ABAC RuleSet Existence problem is that the attribute name,

value combinations induce a partition on the set of user, object pairs. We formalize this intuition

as follows.

Definition 9. Binary relation R

Given, a partially defined ABAC system, 〈U, O, UAValue, OAValue, POLABAC−RuleSet〉, the bi-

nary relation R on set UO = U ×O is defined as

R ≡ {((u1, o1), (u2, o2)) | (∀ua ∈ UA.ua(u1)=ua(u2)) ∧ (∀oa ∈ OA.oa(o1)=oa(o2))}

Lemma 1. R is an equivalence relation.

Proof: Trivial by inspection.

The resulting partitions induced by R on UO are formally referred to as follows.

Definition 10. Partition set P

Let P = {P1, P2, ..., Pn} be the equivalence classes of R. Each Pi ∈ P is called a partition

element (or simply partition) and P is called the partition set. Each Pi ∈ P is identified by a unique

collection of (attribute name, value) pairs, given by PV (Pi) where,
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Figure 3.1: Partition set example.

PV (Pi) ≡ For any (u1, o1) ∈ Pi, (UV (u1) ∪OV (o1))

UV(u:U) ≡ {(ua, value)|ua ∈ UA ∧ value = ua(u)}

OV(o:O) ≡ {(oa, value)|oa ∈ OA ∧ value = oa(o)}

For instance, using the example data in Table 3.2, UO = {(u1, o1), (u1, o2), (u2, o1), (u2, o2),

(u3, o1), (u3, o2), (u4, o1), (u4, o2)}. The resulting partition set is shown in Fig. 3.1. The PV set

for the partition containing (u1, o1) and (u3, o1) is {(ua1, F ), (ua2, C), (oa1, F )}.

Finally, we introduce the following notion.

Definition 11. Conflict-free partition

Given an EAS, 〈U,O,OP,AUTH, checkAccessAUTH〉 and partition set P, a Pi ∈ P is conflict-

free with respect to a specific op ∈ OP iff the following statement is true,

(∀(u, o) ∈ Pi.(u, o, op) ∈ AUTH) ∨ (∀(u, o) ∈ Pi.(u, o, op) 6∈ AUTH)

Pi has conflict with respect to op ∈ OP otherwise. Partition set P is conflict-free iff for all

op ∈ OP , every Pi ∈ P is conflict-free with respect to op. P is called a conflicted partition set,

otherwise.

An example of conflict-free partition set is presented in Fig. 3.1 where, user-object pairs in

bold black belong to AUTH with respect to OP = {op}, while others are not. By inspection, all

partitions in Fig. 3.1 are conflict-free with respect to given AUTH and op ∈ OP . Hence, resulting

partition set is conflict-free. The concept of conflict-free partitions is used to solve ABAC RuleSet

Existence problem as follows.
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Theorem 1. Given an ABAC RuleSet Existence problem instance, a suitable RuleSet exists iff P is

conflict-free.

Proof:

Only if part is proved by contraposition. If P is not conflict-free, by definition, a conflict partition

Pi ∈ P with respect to a specific op ∈ OP , contains some (u, o) ∈ Pi which are permitted in

AUTH, while others are not. Since all (u, o) ∈ Pi are represented by same PV (Pi), these two

logical parts of Pi cannot be separated using UAValue and OAValue. Thereby, Ruleop generation

is not possible. Note that this only if proof is independent of the actual policy language for Ruleop.

If part is proved by constructing a suitable RuleSet and showing that, if P is conflict-free then

resulting ABAC system with generated RuleSet is equivalent to EAS. By definition, RuleSet contains

a Ruleop, for each op ∈ OP . For a op ∈ OP , Ruleop is given by:

Ruleop =
∨

Pi×{op}⊆AUTH

(uexp(PV (Pi)) ∧ oexp(PV (Pi)))

uexp(PV (Pi)) =
∧

(ua,value)∈PV (Pi)

(ua(u) = value)

oexp(PV (Pi)) =
∧

(oa,value)∈PV (Pi)

(oa(o) = value)

To prove equivalency between the resulting ABAC system with RuleSet and EAS, it is necessary

and sufficient to show that, for a specific op in OP, (a, b, op) ∈ AUTH ⇐⇒ Ruleop(a, b), for all

a ∈ U , b ∈ O.

To prove the only if part: by inspection, each (u, o) ∈ U × O belongs to only one partition in P.

Let (a, b) ∈ Pi. Since P is conflict-free, corresponding Pi × {op} must be a subset of AUTH. By

construction,Ruleop includes a conjunctive clause for every Pi×{op} ⊆ AUTH , which evaluates

to True for any user-object pair in Pi. Since Ruleop is a disjunction of such conjunctive clauses,

thereby, Ruleop(a, b) evaluates to True. Hence, only if part is proved.

To prove if part: by inspection, if Ruleop(a, b) evaluates to True, then there must be a conjunctive
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clause of Ruleop, which is evaluated to True. By construction, each such conjunctive clause in

Ruleop is representing a specific Pi ∈ P where, Pi × {op} ⊆ AUTH . Since P is conflict-free,

every user-object pair in corresponding Pi is permitted with respect to op, thus belongs to AUTH.

Thereby, (a, b, op) ∈ AUTH , which proves if part.

Hence, given P is conflict-free, generated suitable RuleSet completes the ABAC system equivalent

to given EAS.

Based on this result, a formal algorithm for ABAC RuleSet existence problem is presented in

Algorithm 3.1.

Corollary 1. Complexity of Algorithm 3.1 is O(|OP | × |U | × |O|).

Proof:

Given an equivalence relation R as in definition 9, the complexity of partition set P generation is

O(|U | × |O|), considering partition creation, search, and insertion operations take constant time.

For each op ∈ OP , checking whether P is conflict-free or not, requires O(|OP | × |U | × |O|)

as the maximum number of possible partition is (|U | × |O|). Hence, the overall complexity is

O(|OP | × |U | × |O|). Note that the size of any attribute range does not impact this complexity.

Simple rule generation will be illustrated with an example presented in Fig. 3.1. Since P is

conflict-free with respect to given AUTH, using the rule construction procedure listed in Theorem

1, corresponding conjunctive clauses for each Pi ∈ P where Pi × {op} ⊆ AUTH in Fig. 3.1 are

< ua1(u) = F ∧ ua2(u) = C ∧ oa1(o) = F >, < ua1(u) = F ∧ ua2(u) = B ∧ oa1(o) = F >,

< ua1(u) = G∧ua2(u) = D∧oa1(o) = F >, and< ua1(u) = G∧ua2(u) = D∧oa1(o) = G >.

By construction, Ruleop consists of disjunction of all the conjunctive clauses listed here. Now, any

rule simplification approach can be used for further minimization.

3.4.2 Infeasibility Correction

We know from subection 3.4.1 that if the partition set is conflicted a suitable RuleSet cannot exist.

There are at least two approaches to dealing with this situation in practice. One approach is to

construct RuleSets that are only approximately equivalent to the given AUTH relation. Various
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Algorithm 3.1 ABAC RuleSet Existence Algorithm
Require: EAS, Partially defined ABAC system where U, O, and OP are identical to EAS
Ensure: Partition set P and SUCCESS or FAILURE

1: Partition P := ∅
2: while ∃(u, o) ∈ U ×O do
3: if ∃Pi ∈ P.PV (Pi) = (UV (u) ∪OV (o)) then
4: Pi := Pi ∪ {〈u, o〉}
5: else
6: Create new Pi = {〈u, o〉}
7: P := P ∪ Pi
8: U ×O := U ×O − {〈u, o〉}
9: while ∃op ∈ OP .∃Pi ∈ P .!((Pi × {op} ⊆ AUTH) ∨ (Pi × {op} ⊆ AUTH)) do

10: return FAILURE
11: return SUCCESS

notions of approximation can be defined and their security implications analyzed. The second

approach, which we study in this chapter, is to introduce additional attributes to reconcile the

conflicted partitions. This leads us to introduce the following notion.

Definition 12. ABAC RuleSet Infeasibility Correction problem

Given, EAS 〈U,O,OP,AUTH, checkAccessAUTH〉 and a partially defined ABAC system with

unspecified RuleSet where, U, O, and OP are identical to the given EAS such that the partition set

P is conflicted, the ABAC Ruleset Infeasibility Correction problem is to 1) add new attributes UA

and/or OA, and 2) assign appropriate values to the added new attributes, so that it is possible to

generate a suitable RuleSet.

Ideally, the newly added attributes should have semantic significance grounded in the under-

lying application domain, and should be assigned meaningful values appropriate to different users

and objects. This will presumably require expert input from security architects, perhaps aided by

artificial intelligence, machine learning and other automated techniques. Study of such approaches

is beyond the scope of this chapter. Here we investigate a purely automated approach which intro-

duces new “artifical” attributes with “artificial” values.

We note that conflict-free partitions that are authorized for access with respect to an operation

op can have rules generated as explained in the proof of Theorem 1, ignoring consideration of any

new attributes. However, the conflicted partitions need to be further refined by means of these new
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attributes to remove the conflict. There can be many ways to do this. Clearly the minimum possible

split of a conflicted partition is into two refined partitions, one with all user-object pair permitted

for op while the second contains the denied ones. The maximum possible split is to put each tuple

in the conflicted partition into its own refined partition. One possible approach to constructing

appropriate refinements is described below.

Given ABAC RuleSet Infeasibility Correction instance, consider a Pi ∈ P which is conflicted

with respect to some op ∈ OP . Define the binary relation RPi on Pi as:

RPi ≡ {((u1,o1), (u2,o2))|∀o ∈ O.∀op ∈ OP .((u1, o, op)∈ AUTH⇔(u2, o, op)∈ AUTH) ∧

∀u ∈ U .∀op ∈ OP .((u, o1, op)∈AUTH⇔(u, o2, op)∈AUTH)}

Lemma 2. RPi is an equivalence relation.

Proof: Trivial by inspection.

Hence, RPi induces a partition on Pi.

Definition 13. Partition set Si

Let Si be the partition on Pi induced by RPi and denoted by Si = {Si1, Si2, ..., Sim}, where

1 ≤ m ≤ |Pi|. Each Sik ∈ Si is called a partition element (or shortly partition) and Si is called

partition set. By definition of RPi, each Sik ∈ Si is represented by a collection of (attribute name,

value) pairs, PV (Sik) where,

PV (Sik) ≡ For any (u1, o1) ∈ Si, (UV (u1) ∪OV (o1))

The concept of conflict-free partition from Section 3.4 is extended to Si.

Definition 14. Conflict-free partition set Si

Given an EAS, 〈U,O,OP,AUTH, checkAccessAUTH〉 and partition set Si stated in definition 13,

a Sik ∈ Si is conflict-free with respect to a specific op ∈ OP and given AUTH in EAS, iff the

following statement is true:

(∀(u,o) ∈ Sik.(u,o,op) ∈ AUTH) ∨ (∀(u,o)∈ Sik.(u,o,op) 6∈ AUTH)

Sik has conflict with respect to op ∈ OP otherwise. Partition set Si is conflict-free with respect to

given AUTH in EAS iff for all op ∈ OP , every Sik ∈ Si is conflict-free with respect to op.
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Table 3.4: Example data set

(a) UAValue
User uat1
u1 F
u2 F
u3 F
u4 G
u5 G

(b) OAValue
Object oat1

o1 F
o2 F
o3 F
o4 G

(c) Range of attributes
uat1 {F,G}
oat1 {F,G}
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Figure 3.2: Refined partition set example.

Fig. 3.2 shows the resulting partitions for Table 3.4 where, bold black user-object pairs be-

long to AUTH with respect to OP = {op} and rest are not. Here, U = {u1, u2, u3, u4, u5}, O =

{o1, o2, o3, o4}, UA = {uat1}, OA = {oat1}, and Table 3.4 shows user attribute value assignment

(UAValue), object attribute value assignment (OAValue), and range of attributes in (a), (b), and

(c), respectively. To make visual comparison, the dotted rectangles in Fig. 3.2 shows partition

set P for Table 3.4 as defined in Section 3.4. The leftmost conflicted parition is refined into four

sub-partitions.

Lemma 3. Given a conflict partition Pi ∈ P with respect to op ∈ OP , the following holds:

a. Si is conflict-free

b. Si refines Pi

c. For all Sik ∈ Si, PV(Sik) is the same

Proof:

By inspection of definition Si, it is conflict-free. Si refines Pi because for each Sik ∈ Si, Sik ⊆ Pi.
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Since each Pi ∈ P is identified by an unique PV (Pi) and Si does the refinement only, therefore,

for all Sik ∈ Si, PV(Sik) is same and (c) follows.

Definition 15. Given a partition Pi ∈ P , let uListi and oListi denote the sets of users and objects

present in Pi. Let uListi be further partitioned as follows: any two users u1, u2 ∈ ulisti belong

to same partition iff ∀op ∈ OP.∀o ∈ O.(u1, o, op) ∈ AUTH ⇐⇒ (u2, o, op) ∈ AUTH . Let

this assumption split uListi into q partitions, denoted by {uli1, ..., uliq}. Similarly let oListi be

partitioned as follows: any two objects o1, o2 ∈ olisti belong to same partition iff ∀op ∈ OP.∀u ∈

U.(u, o1, op) ∈ AUTH ⇐⇒ (u, o2, op) ∈ AUTH . Let this assumption split oListi into r

partitions, denoted by {oli1, ..., olir}.

Lemma 4. Si = {uli1, ..., uliq} × {oli1, ..., olir}.

Proof: Trivial by inspection of definitions.

Definition 16. Introducing new user and object attributes

If Pi is a conflict partition, the following steps are proposed where, UND specifies “Unknown”

status of an attribute value assignment.

1. UA = UA ∪ exU and OA = OA ∪ exO where, exU and exO are new user and object

attributes, respectively. Initially, for all u ∈ U , exU(u) := UND and for all o ∈ O,

exO(o) := UND.

2. To ensure clarity, PVnew(Sik ∈ Si) is introduced.

PVnew(Sik) ≡ For any (u1, o1) ∈ Sik, (UVnew(u1) ∪OVnew(o1))

UVnew(u:U) ≡ {(ua, value)|ua ∈ (UA ∪ exU) ∧ value = ua(u)}

OVnew(o:O) ≡ {(oa, value)|oa ∈ (OA ∪ exO) ∧ value = oa(o)}

Here, Range(exU) and Range(exO) are sets of unique random values where Range(exU) ∩

Range(exO) = ∅. The sets of random values are chosen so that new attribute and corre-

sponding range can be added in an automated manner without human provided input.

3. Given a Pi ∈ P , algorithm 3.2 is used to assign appropriate values to the newly added at-

tributes. Inside partitionCorrection, each of the q partitions∈ {uli1, ..., uliq} is assigned an
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unique random value from Range(exU). Hence, every user in the same partition gets the

same exU value. Similarly, each of the r partitions∈ {oli1, ..., olir} is assigned an unique

random value from Range(exO). Hence, every object in the same partition gets the same

exO value.

Note: By Definition 15, uListi and oListi is further partitioned using universal quantifi-

cations on the sets U, O, and OP. Thereby, regardless of conflict partitions, once the exU

and exO values are assigned by algorithm 3.2, they remain unchanged throughout the entire

RuleSet generation process.

Lemma 5. Based on Definition 22, for each Sik ∈ Si, PVnew(Sik) is unique.

Proof: Follows trivially from Lemma 4 and Definition 22.

For instance, given a conflict partition, Pi in Fig. 3.2 where only (u1, o1) belongs to AUTH

with respect to op, it is refined into four new partitions. Initially, uListi is {u1, u2, u3} and oListi

is {o1, o2, o3}. According to Algorithm 3.2, uListi is further partitioned into {{u1}, {u2, u3}}.

Similarly, oListi is further partitioned into {{o1}, {o2, o3}}. The resulting refined partitions has

same PV, given by {(uat1, F ), (oat1, F )}. According to Definition 22 and Algorithm 3.2, let exU

value for {u1} and {u2, u3} be 1 and 2, respectively. Similarly, {o1} and {o2, o3} are assigned 3

and 4 for exO, respectively. Thereby, resulting unique PVnew value for the refined partitions are

{(uat1, F), (oat1, F), (exU, 1), (exO, 3)}, {(uat1, F), (oat1, F), (exU, 1), (exO, 4)}, {(uat1, F), (oat1,

F), (exU, 2), (exO, 3)}, and {(uat1, F), (oat1, F), (exU, 2), (exO, 4)}, respectively.

Theorem 2. Given, an ABAC RuleSet Infeasibility Correction problem instance, it is always pos-

sible to find a suitable RuleSet such that the resulting ABAC system is equivalent to given EAS.

Proof:

The theorem will be proved by construction. For a specific op ∈ OP , Ruleop construction steps

are as follows. It is assumed that, partition set P construction does not depend on exU and exO.

1. Each conflict-free partition Pi ∈ P is included in Ruleop as conjunctive clause (same as

Theorem 1) where, Pi × {op} ⊆ AUTH .
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Algorithm 3.2 PartitionCorrection
Require: Conflict partition Pi and corresponding ABAC Ruleset Infeasibility Correction instance
Ensure: Refined partition set Si where each PVnew(Sik ∈ Si) is unique

1: uL := {uli1, ..., uliq} //Def. 15
2: oL := {oli1, ..., olir} //Def. 15
3: if ∃u ∈ uListi.exU(u) = UND then
4: while ∃partu ∈ uL do
5: uRandom := v ∈ Range(exU) such that ∀u ∈ U \ partu.exU(u) 6= v
6: For all u1 ∈ partu, exU(u1) := uRandom
7: uL := uL \ partu
8: if ∃o ∈ oListi.exO(o) = UND then
9: while ∃parto ∈ oL do

10: oRandom := v ∈ Range(exO) such that ∀o ∈ O \ parto.exO(o) 6= v
11: For all o1 ∈ parto, exO(o1) := oRandom
12: oL := oL \ parto
13: return Si //{uli1, ..., uliq} × {oli1, ..., olir}

2. Each conflict partition Pi ∈ P is refined by Definitions 15 and 22, which generate conflict-

free partitions only and ensure that for each such Sik ∈ Si, PVnew(Sik) is unique. For

each of the resulting partition Sik ∈ Si, a conjunctive clause is included in Ruleop only if

Sik × {op} ⊆ AUTH . For conflict partitions only, Ruleop is given by:

Ruleop =
∨

Pi∈cp(P )

(uexp(PVnew(Sik)) ∧ oexp(PVnew(Sik)))

where cp(P) = {Pi ∈ P is a conflict partition}, Sik ∈ partitionCorrection(Pi), and Sik ×

{op} ⊆ AUTH .

uexp(PVnew(Sik)) =
∧

(ua,value)∈PVnew(Sik)∧ua∈UA∪exU

(ua(u) = value)

oexp(PVnew(Sik)) =
∧

(oa,value)∈PVnew(Sik)∧oa∈OA∪exO

(oa(o) = value)

Here, Ruleop is disjunction of all the conjunctive clauses generated in step 1 and 2. By definition,

RuleSet contains a Ruleop, for each op ∈ OP . Hence, RuleSet can be generated. To prove

equivalency between the resulting ABAC system with RuleSet and EAS, it is necessary and sufficient
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to show that, for a op in OP, (a, b, op) ∈ AUTH ⇐⇒ Ruleop(a, b) where a ∈ U , b ∈ O.

To prove the only if part: by inspection, (a, b) ∈ U ×O belongs to only one partition, a Pi ∈ P . If

Pi is conflict-free with respect to op then Pi×{op}must be a subset of AUTH. Hence, step 1 works.

If Pi is a conflict partition, step 2 works. Let, (a,b)∈ Sik where, Sik ∈ Si. Hence, Sik × {op} must

be a subset of AUTH. Since Ruleop is disjunction of all the conjunctive clauses generated in step 1

and 2, thereby, Ruleop(a, b) evaluates to true. Hence, only if part is proved.

To prove if part: by inspection, if Ruleop(a, b) evaluates to true, then there must be a conjunctive

clause of Ruleop, which is evaluated to true. By construction, each such conjunctive clause in

Ruleop is representing a specific partition where partition × {op} ⊆ AUTH . Since each such

partition is conflict-free, every user-object pair in corresponding partition is permitted with respect

to op, thus belongs to AUTH. Thereby, (a, b, op) ∈ AUTH , which proves if part. Hence, it can

be concluded that generated suitable RuleSet proposed by the steps above, completes the ABAC

system, and equivalent to given EAS.

Based on last example, two partitions {(u1, o1)}, and {(u4, o4), (u5, o4)} are included in

Ruleop. Hence, Ruleop is (uat1(u) = F ∧ oat1(o) = F ∧ exU(u) = 1 ∧ exO(o) = 3) ∨

(uat1(u) = G ∧ oat1(o) = G) and the RuleSet is {Ruleop}. In this example, both exU and exO

are used for RuleSet Infeasibility Correction. If every user in U is represented by distinct user

attribute value combination, exU is not required. The same condition holds for objects and exO.

Asymptotic complexity of ABAC RuleSet Infeasibility Correction is O(|OP | × (|U | × |O|)3).

Given a partition set P with conflict, checking whether each Pi ∈ P is conflict-free or not takes

O(|OP | × (|U | × |O|)). If a Pi ∈ P is in conflict with respect to a op ∈ OP , Algorithm 3.2 is

called to refine Pi only. Inside Algorithm 3.2, corresponding list of users in Pi is futher partitioned

by comparing each user-user pair, hence takes O(|U |2) complexity. Similarly, list of objects in Pi

is partitioned; hence takes O(|O|2) complexity. Since a partition cannot have more than |U | users

and |O| objects, while loops inside PartitionCorrection have upper bound O(|U |) and O(|O|),

respectively. Hence, overall asymptotic complexity of PartitionCorrection algorithm is O((|U | ×

|O|)2). Thereby, overall complexity is given by O(|OP | × (|U | × |O|)3).
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3.5 ABAC RuleSet Existence problem with RBAC input

In this section, solution to ABAC RuleSet Existence Problem with RBAC input will be discussed.

In the case of infeasibility, solution is also provided. More examples can be found in [14].

3.5.1 Solution Approach

Given an RBAC system, it is trivial to find an equivalent AUTH relation, such that (u, o, op) ∈

AUTH ⇔ checkAccessRBAC(u, o, op). Since RBAC system to AUTH conversion takes O(|U | ×

|O|) complexity, the partition-based solution from section 3.4 can be reused in RBAC context by

simply deriving the equivalent AUTH relation for the given RBAC system.

It is apparent that the binary relation R as in Def. 9 is an equivalence relation and thereby

induces a partition P on UO induced by R as in Def. 10. The idea of conflict-free partition is

defined in RBAC context as follows:

Definition 17. Conflict-free partition

Given 〈U,O,OP,Roles,RPA,RUA, RH, checkAccessRBAC〉 as an RBAC system and partition

set P where U, O and OP are identical, a Pi ∈ P is conflict-free with respect to a specific op ∈ OP

iff the following statement is true:

∀(u, o) ∈ Pi.checkAccessRBAC(u, o, op) = True ∨ ∀(u, o) ∈ Pi.checkAccessRBAC (u, o, op) =

False

Pi has conflict with respect to op ∈ OP otherwise. Partition set P is conflict-free with respect to

given RBAC system iff for each op ∈ OP , every Pi ∈ P is conflict-free. P is called a conflict

partition set, otherwise.

It is shown in section 3.4 that given an AUTH relation and partially defined ABAC system,

a suitable RuleSet exists iff partition set P is conflict-free. The overall asymptotic complexity of

ABAC RuleSet Existence problem with EAS input in section 3.4 is O(|OP | × (|U | × |O|)). The

construction of AUTH relation by enumerating every possible user-object-operation tuple from an

RBAC system takes O(|U | × |O|) time, thus overall asymptotic complexity of determining ABAC
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RuleSet Existence in RBAC context remains the same as section 3.4, O(|OP | × (|U | × |O|)). By

definition, suitable RuleSet (Theorem 1, section 3.4) consists of |OP | rules, one for each op ∈

OP . Each conflict-free partition Pi ∈ P is included in Ruleop as a conjunctive clause where,

Pi×{op} ⊆ AUTH . For a specific op ∈ OP , Ruleop (Theorem 1, section 3.4) construction steps

are shown below:

Ruleop =
∨

Pi×{op}⊆AUTH

(uexp(PV (Pi)) ∧ oexp(PV (Pi)))

uexp(PV (Pi)) =
∧

(ua,value)∈PV (Pi)

(ua(u) = value)

oexp(PV (Pi)) =
∧

(oa,value)∈PV (Pi)

(oa(o) = value)

Note*: Related examples can be found in [14].

If partition set P is not conflict-free, no suitable RuleSet exists (section 3.4). Hence, in order to

make the equivalent ABAC system generation always possible, one possible approach is to ensure

that P is always conflict-free. There can be many possible ways to achieve this, either exact or

approximate. In this study, ABAC RuleSet Infeasibility Correction problem in RBAC context is

defined as follows.

Definition 18. ABAC RuleSet Infeasibility Correction problem

Given, RBAC system and partially defined ABAC system with unspecified RuleSet where U, O,

and OP are identical to the given RBAC system, and a conflicted partition set P, ABAC Ruleset

Infeasibility Correction problem is adding new attributes to 1) only UA or only OA or, both UA,

OA, and 2) assign appropriate values to the new attributes, so that suitable RuleSet generation is

always possible.

In the next section, an exact solution algorithm is presented for ABAC RuleSet Infeasibility

Correction problem with the help of role-based attributes.
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3.5.2 Infeasibility Correction

It is already established that if partition set P is conflict-free an equivalent ABAC system generation

is always possible, since each Pi ∈ P is uniquely identified by attribute values. Given a conflict

partition set P, new role-based attributes are added and values are assigned accordingly so that each

conflict partition in P is split into conflict-free fragments uniquely identified by attribute values.

Thereby, equivalent RuleSet can be generated. Here, each conflict partition is processed separately

to prevent unnecessary split of conflict-free partitions.

According to the construction in [28], an RBAC system can be configured to equivalent ABAC

system even if no user, subject and object attributes are provided. The role membership information

of an RBAC system can be utilized to generate appropriate attribute sets and value assignments. We

adapt the construction in [28] to our user-object context as set-valued role membership attributes

and omit the subject notion of [28].

Definition 19. Role-based user attribute

Given 〈U, O, OP, Roles, RPA, RUA, RH, checkAccessRBAC〉 as RBAC system tuple, role-based

user attribute is a set-valued attribute, uroleAtt : U → 2Roles. For a user u ∈ U , uroleAtt(u) =

{r ∈ Roles|u ∈ authUser(r)}.

Definition 20. Role-based object attribute

Given 〈U, O, OP, Roles, RPA, RUA, RH, checkAccessRBAC〉 as RBAC system tuple, role-based

object attribute for a op ∈ OP is a set-valued attribute, denoted by oroleAttop : O → 2Roles. For

an object o ∈ O, oroleAttop(o)= {r ∈ Roles|p ∈ authPerm(r) ∧ (o, op) = (obj(p), ops(p))}.

Although uroleAtt is set-valued by definition, it is treated specially in this study: same as an

atomic attribute. In order to generate uexp, “value” is as given in the definition 19 and to evaluate

“uroleAtt(u) = value” in rule expression, “=” is considered as set equality operator. Similarly, each

role-based object attribute w.r.t. a op ∈ OP is treated specially as an atomic attribute. In order to

generate oexp, “value” is as given in the definition 20 and to evaluate “oroleAttop(o) = value” in

rule expression, “=” is considered as set equality operator.
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Lemma 6. Given an RBAC system, one user attribute as in definition 19 and |OP | object attributes

as in definition 20 (for each op ∈ OP ) are sufficient to generate equivalent ABAC system.

Proof:

Follows from the RBAC to ABAC configuration in [28]. Let the set of user attributes, UA =

uroleAtt and set of object attributes, OA = {oroleAttop|op ∈ OP}. The attribute value assign-

ments of user and object attributes are as in definitions 19 and 20, respectively. To generate an

equivalent ABAC system, each Pi ∈ P must be identified by unique PV values as well as partition

set P should be conflict-free (Theorem 1). It is trivial to show that both conditions are true, thereby,

equivalent ABAC system generation is always possible.

This unique property of role membership in RBAC system makes it independent of supporting

attribute data. It is a significant difference as compared to given authorization relation in subsection

3.4.2 where, a user and an object attributes are added to the attribute sets and unique random values

are assigned to resolve infeasibility issue. The unique random value generation can be considered

as an additional task whereas role membership attributes eliminate the need for such values and

promotes self-sufficiency. Although Lemma 6 specifies the sufficiency of the role-based attributes

to make an equivalent ABAC system generation, a more practical scenario is where supporting

attribute data are provided. Therefore, the following definitions and proofs are presented to resolve

ABAC Infeasibility Correction problem when supporting attribute data are provided; so that the

resulting partition set becomes conflict-free where each partition element is uniquely identified by

attribute values.

Definition 21. Binary relation RPi on Pi ∈ P

RPi ≡ {((u1,o1), (u2,o2))|∀o ∈ O.∀op ∈ OP .((u1, o, op)∈ AUTH⇔(u2, o, op)∈ AUTH) ∧

∀u ∈ U .∀op ∈ OP .((u, o1, op)∈AUTH⇔(u, o2, op)∈AUTH)}

By inspection, RPi is an equivalence relation (Lemma 2). Let, RPi induces a partition on Pi,

say Si = {Si1, Si2, ..., Sim}, where 1 ≤ m ≤ |Pi|. Each Sik ∈ Si is called a partition element

(or shortly partition) and Si is called partition set. By definition, Si further refines the partition

Pi. Given a partition Pi ∈ P , let uListi and oListi denote the sets of users and objects present in
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Pi. By inspection of definition of R, Pi = uListi × oListi. Let uListi be further partitioned as

follows: any two users u1, u2 ∈ ulisti belong to same partition iff ∀op ∈ OP.∀o ∈ O.(u1, o, op) ∈

AUTH ⇐⇒ (u2, o, op) ∈ AUTH . Let this assumption split uListi into q partitions, denoted

by {uli1, ..., uliq}. Similarly let oListi be partitioned as follows: any two objects o1, o2 ∈ olisti

belong to same partition iff ∀op ∈ OP.∀u ∈ U.(u, o1, op) ∈ AUTH ⇐⇒ (u, o2, op) ∈ AUTH .

Let this assumption split oListi into r partitions, denoted by {oli1, ..., olir}.

Lemma 7. Si = {uli1, ..., uliq} × {oli1, ..., olir} and it is conflict-free.

Proof: Trivial (Lemma 4).

Given a conflict partition Pi ∈ P , Si has to be conflict-free and each Sik ∈ Si should be

identified uniquely by attribute values. The given set of attributes are not sufficient to serve this

purpose unless there is some change in given attribute value assignments. The following definition

adds the already defined role-based attributes to the given attribute set:

Definition 22. Add new role-based user and object attributes

Given ABAC RuleSet Infeasibility Correction instance, the following steps are proposed.

1. UAnew = UA∪uroleAtt andOAnew =OA ∪ {oroleAttop|op ∈ OP}. Hence, total 1+|OP |

attributes are added.

Note: Initially, all new attributes are assigned UND which specifies “Unknown” attribute

value assignment.

2. To ensure clarity, PVnew(Sik ∈ Si) is introduced.

PVnew(Sik) ≡ (UVnew(u1) ∪OVnew(o1)) for any (u1, o1) ∈ Sik where

UVnew(u:U) ≡ {(ua, value)|ua ∈ UAnew ∧ value = ua(u)}

OVnew(o:O) ≡ {(oa, value)|oa ∈ OAnew ∧ value = oa(o)}

Lemma 8. Given a conflict partition Pi ∈ P w.r.t. a op ∈ OP , PVnew(Sik) is unique.

Proof:

By inspection of definition of R, for each Pi ∈ P , PV (Pi) is unique. By definition, Si further
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refines the partition Pi. Hence, if it is proved that, given a conflict partition Pi w.r.t. a op ∈ OP ,

new user attribute can uniquely identify each element of {uli1, ..., uliq} and similarly, |OP | object

attributes can do the same for {oli1, ..., olir}, then PVnew(Sik) is unique.

If u1 ∈ ulim and u2 ∈ ulin where m 6= n, let uroleAtt(u1) = uroleAtt(u2). If uroleAtt(u1) =

uroleAtt(u2) then u1 and u2 cannot belong to two different partitions of uListi since it ensures

uroleAtt(u1) and uroleAtt(u2) derives the exactly same set of permissions. Hence, uroleAtt(u1) 6=

uroleAtt(u2) proves. Thereby, each element of {uli1, ..., uliq} is uniquely identified by uroleAtt

value. However, given u3, u4∈ ulim, it is possible that uroleAtt(u3) 6= uroleAtt(u4), although the

resulting permissions are the same. By inspection, Algorithm 3.2 picks the minimum cardinality

role set as role-based attribute value for every user in ulim. Similarly, it can be proved that, If

o1 ∈ olim and o2 ∈ olin where m 6= n, ∃op ∈ Op.oroleAttop(o1) 6= oroleAttop(o2). Thereby,

PVnew(Sik) is unique.

Lemma 9. Given Pi = uListi×oListi and Pj = uListj×oListj , if u1 ∈ uListi and u1 ∈ uListj ,

then uListi = uListj .

Proof:

Follows from definition of R, it is trivial. Similarly, it can be proved that, if o1 ∈ oListi and

o1 ∈ oListj , then oListi = oListj .

Note: In Algorithm 3.2, Lemma 9 is used to prevent repeated role-based attribute value assignment

of users and objects. Based on the foregoing, the following theorem states and proves the solution

of ABAC RuleSet Infeasibility Correction problem.

Theorem 3. Given an ABAC RuleSet Infeasibility Correction problem instance as in Def. 18, it

is always possible to find a suitable RuleSet such that the resulting ABAC system is equivalent to

given RBAC system (adapted from Theorem 2).

Proof:

Given an RBAC system, equivalent AUTH relation is generated first. Given a op ∈ OP , theRuleop

construction procedure is described below. Here, partition set P construction entirely depend on

the given attribute set only (no role-based attributes).
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1. Each conflict-free partition Pi ∈ P is included in Ruleop as conjunctive clause where, Pi ×

{op} ⊆ AUTH . For a op ∈ OP , such Ruleop is defined in Section 3.5.

2. After applying definition 22, each conflict partition Pi ∈ P is further refined by Algorithm

3.2. By using Lemma 8, ∀Sik ∈ Si, PVnew(Sik) is unique where each Sik ∈ Si is conflict-

free. A conjunctive clause is included inRuleop only if Sik×{op} ⊆ AUTH where Sik ∈ Si.

The following shows Ruleop construction procedure for conflict partitions in P only:

Ruleop =
∨

Pi∈CFP (P )

(uexp(PVnew(Sik)) ∧ oexp(PVnew(Sik)))

where CFP(P) consists of all conflict partitions in P with respect to op ∈ OP , Sik ∈

confRefine(Pi), and Sik × {op} ⊆ AUTH .

uexp(PVnew(Sik)) =
∧

(ua,value)∈PVnew(Sik)

(ua(u) = value)

oexp(PVnew(Sik)) =
∧

(oa,value)∈PVnew(Sik)

(oa(o) = value)

Here, Ruleop is the disjunction of all the conjunctive clauses generated in step 1 and 2. By defini-

tion, RuleSet consists of total |OP | rules, one for each op ∈ OP . Hence, a RuleSet can be con-

structed. To prove equivalency between the resulting ABAC system with constructed RuleSet and

RBAC system, it is necessary and sufficient to show that, for a op in OP, checkAccessRBAC(c,d,op)

= True ⇐⇒ Ruleop(c, d) where c ∈ U , d ∈ O which implies (c, d, op) ∈ AUTH ⇐⇒

Ruleop(c, d).

The proof is divided into two parts: (i) only if and (ii) if. To prove (i): by inspection of partition

and related definitions, (c, d) ∈ U × O belongs to only one partition in P. Let, (c, d) ∈ Pi where

Pi ∈ P . If Pi is conflict-free with respect to op then ∀(u, o) ∈ Pi.(u, o, op) ∈ AUTH holds (step

1 in Ruleop generation). If Pi is a conflict partition then step 2 is followed. Let, (c,d)∈ Sik where

Sik ∈ Si. Hence ∀(u, o) ∈ Sik.(u, o, op) ∈ AUTH holds. As a result, Sik is included in Ruleop

as conjunctive clause (as per step 2 in Ruleop construction procedure). Since Ruleop consists of
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disjunction of all the conjunctive clauses generated in step 1 and 2, Ruleop(c, d) evaluates to true

and (i) is proved.

The part (ii) of the proof: by inspection of Ruleop construction stated above, if Ruleop(c, d) eval-

uates to true then there exists a conjunctive clause of Ruleop which turned into true. By Ruleop

construction procedure, each such conjunctive clause in Ruleop is presenting a particular partition

where for all (u, o) ∈ partition.(u, o, op) ∈ AUTH . Thereby, the statement (c, d, op) ∈ AUTH

is true and (ii) is proved. Hence, the constructed RuleSet completes the ABAC system, and equiv-

alent to given RBAC system (proved by construction).

One notable optimization at this point is: role-based attributes should be used only when they are

needed. For example, if each user in the given user set is represented by a unique user attribute

value assignment then there is no need to introduce a role-based user attribute, even if the partition

set is conflicted. The same strategy can be applied for role-based object attribute: if each object

is represented by unique attribute value assignment, role-based object attributes are unnecessary

even if partition set is conflicted. If both of the cases do not hold, still role-based attributes can be

removed while generating a conjunctive clause for a particular conflicted partition. For a conflict

partition Pi ∈ P where Pi = uListi × oListi, if |uListi| = 1 then role-based user attribute can be

avoided while generating conjunctive clauses for Pi. Similarly, role-based object attribute can be

ignored when |oListi| = 1.

The asymptotic complexity of ABAC RuleSet Infeasibility Correction in RBAC context is

given by O(|OP | × (|U | × |O|)3), same as in in EAS context.

3.6 Unrepresented partitions

Given range of attributes and a specific set of attribute value assignment to users and objects, it

is quite possible that some attribute value combinations will not show up while generating parti-

tion set. We call these partitions as “unrepresented", since the range of attributes clearly allows

presence of those, but due to the peculiarity in the given user and object attribute value assign-

ment, these partitions remain empty. For instance, all possible attribute value combinations (each
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one represents a possible partition) for Table 3.2 data is given by {FCF, FBF, GDF, GDG, FCG,

FBG, FDF, FDG, GBF, GCF, GBG, GCG}, considering an order of < ua1, ua2, oa1 >. Only

first six combinations of this set are present, while the remaining six are unrepresented according

to the given data. The ABAC policy mining approaches in [42, 47] ignore unrepresented parti-

tions, whereby the generated rules may or may not authorize these attribute value combinations to

have access. If these unrepresented partitions get populated in future, this may lead to unexpected

checkAccess decisions.

To have an insight using the same data set for ABAC policy mining where authorizations

are presented in Fig. 3.1, [47] derives two rules without user and object id, <true, true, {op},

{ua1=oa1}> and <ua1={G}, true, {op}, ∅>. Since [47] works fine for all possible user-object

pair, first four of the attribute value combinations are allowed, while FCG and FBG are de-

nied. Amongst unrepresented attribute value combinations, {GCG,GBG,FDF} satisfies the

first clause of the rule, and {GBF,GCF,GBG,GCG} are accepted by the second clause. Only

{FDG} gets rejection according to the generated rules! The question of unrepresented attribute

combinations is treated as a rule simplification concern, rather than a security concern in [47].

Another approach in [42] generates two rules, < (oa1 = F ) > and < (ua2 = D) > and works

fine for given authorizations. In case of unrepresented partition, {FDF, FDG,GBF,GCF} gets

acceptance, while {GBG,GCG} is denied. This mixed response shows “don’t care” for unrepre-

sented attribute value combinations again. The security architect should be at least aware of these

unrepresented combinations. He might decide to don’t care, or take suitable action based on his

expertise. Both of our approaches defined in the previous sections deny access to unrepresented

partitions which is a conservative and safe security posture.

3.7 Use Cases and Implementation

More use cases of ABAC RuleSet Existence Problem can be found in [13,14]. For example, given

a complete RBAC system, the role membership information of an RBAC system can be utilized

to generate appropriate attribute sets and value assignments. According to Lemma 6, the set of
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Table 3.5: Role-based attribute values for RBAC system in Table 3.1

Objects oroleAttop1 oroleAttop2
o1 {r1, r4} {}
o2 {} {r2}
o3 {r1, r3, r4} {}

Users uroleAtt
u1 {r1, r3}
u2 {r4}
u3 {r2}
u4 {r3}
u5 {r3}

role-based attributes and corresponding value assignment of RBAC system in Table 3.1 are shown

in Table 3.5.

The implementation part in feasibility of ABAC policy mining is a simple module which re-

solves ABAC RuleSet Existence Problem with EAS input and generates the final ABAC rule. In

the event of infeasibility, the implementation adds additional user and object attributes as men-

tioned earlier, thus ABAC rule generation is always feasible. A simple Java implementation of the

aforementioned with sample randomly generated cases is available upon request.
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CHAPTER 4: FORMAL ANALYSIS OF REBAC POLICY MINING

FEASIBILITY

Relationship-Based Access Control (ReBAC) expresses authorization in terms of various direct and

indirect relationships amongst entities, most commonly between users. The need for ReBAC policy

mining arises when an existing access control system is reformulated into ReBAC. This chapter

considers the feasibility of ReBAC policy mining in context of user to user authorization, such as

arises in various social and business contexts. In accordance with the policy mining literature, we

assume that complete data is provided regarding user to user authorizations for a given user set,

along with complete relationship data amongst these users comprising a labeled relationship graph.

A ReBAC policy language is also specified. ReBAC policy mining seeks to formulate a ReBAC

policy with the given policy language and relationship graph, which is exactly equivalent to the

given authorizations. ReBAC policy mining feasibility problem asks whether such a policy exists

and if so to provide the policy. We investigate this problem in context of different ReBAC policy

languages which differ in the relationships, inverse relationships and non-relationships that can be

used to build the policy. We develop a feasibility detection algorithm and analyze its complexity.

We show that our policy languages are progressively more expressive as we introduce additional

capability. In case of infeasibility, various solution approaches are discussed.

This chapter has been published at the following venue [11].

• Shuvra Chakraborty and Ravi Sandhu, Formal Analysis of ReBAC Policy Mining Feasibility.

In Proceedings of the 11th ACM Conference on Data and Application Security and Privacy

(CODASPY), April 26-28, 2021, Virtual Event.

4.1 Motivation

ReBAC policy mining problem seeks to automate the process of obtaining an ReBAC policy when

a complete access control system along with supporting relationship data is given. ReBAC policy

mining algorithms offer promising advancement in automating policy generation, whereas manual
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effort requires more time, and could be error-prone.

ReBAC policy mining approaches such as [5, 7–10] permit use of the unique identity (id) of

entities (e.g., users and resources) in the generated ReBAC policies. Hence, ReBAC policy mining

is always feasible. We believe that use of such ids is contrary to the core ReBAC spirit. Thereby,

determining feasibility becomes a significant question in mining ReBAC policies. In case of infea-

sibility, we propose various solutions as an alternative to using ids in ReBAC policy generation.

In this chapter, we investigate the ReBAC policy mining approach from a novel perspective.

We study the feasibility of the ReBAC policy mining process, in context of various ReBAC rule

structures.

4.2 Preliminaries

In this section, some preliminaries of ReBAC RuleSet Existence Problem will be noted and rest of

the chapter will repeatedly use these definitions.

A user is an entity who performs operations (also called actions). An operation is an act per-

formed by a user on another user. A user can be an initiator or a target of an operation. The finite

(but unbounded) set of current users is denoted as U. The finite set of operations is denoted by OP,

where each operation in OP is independently authorized.

Given that a user requests to perform an operation on another user, every access control system

must define a checkAccess function to decide whether or not this operation is permitted or denied.

The specification of checkAccess, typically as a logical formula, depends upon the details of the

underlying access control model.

Definition 23. checkAccess

checkAccess : U × U × OP → {True, False} where U and OP are finite sets of users and

operations respectively. A user u ∈ U is allowed to perform operation op ∈ OP on a user v ∈ U

iff checkAccess(u, v, op) is True.

Without loss of generality, we assume OP is the singleton set {op}, since each operation is inde-

pendently authorized. For simplicity, OP is thereby omitted from further definitions. For a specific
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access control model M we write checkAccessM(u, v).

An access request is a tuple 〈u, v〉, where u, v ∈ U and u 6= v, which specifies user u has

requested to perform operation op on user v.

4.2.1 Source Access Control System

This chapter studies ReBAC RuleSet Existence problem with a single type of source access control

system. A simple authorization system, where user to user tuples are used directly to control access

authorization is as follows.

Definition 24. Enumerated Authorization System (EAS)

An EAS is a tuple 〈U,AUTH, checkAccessEAS〉 where, U is the finite set of users, AUTH ⊆

U ×U , is the authorization relation where ∀(u, v) ∈ AUTH.u 6= v, and checkAccessEAS(u, v) ≡

(u, v) ∈ AUTH .

Given the set of users U = {Alice, Bob, Cathy} and AUTH = {(Alice, Bob), (Bob, Cathy)}, an

access request 〈Alice, Bob〉 is granted whereas 〈Alice, Cathy〉 is denied. AUTH is essentially an

access matrix.

It is a trivial task to convert an access control system to EAS, therefore, various type source

access control system can be accommodated.

4.2.2 Target Access Control System

In this chapter, the target access control system is ReBAC system. Before defining the ReBAC

RuleSet Existence problem, a complete specification of ReBAC policy as well as the rule evalua-

tion procedure is necessary.

Relationships are represented as a directed labeled graph.

Definition 25. Relationship Graph (RG)

The Relationship Graph RG = (V,E,Σ) of a system is a directed labeled graph where,

i) V is the set of vertices in RG, representing the current set of users, ii) E ⊆ V × V ×Σ is a finite
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set of labeled directed edges where Σ is a finite set of relation type specifiers.

An edge (u, v, σ) ∈ E, u 6= v, represents the relation σ ∈ Σ from user u ∈ V to v ∈ V in RG

where σ is the edge label.

For example, consider the RG in Fig. 4.1 where V = { Alice, Bob, Cathy }, E = {(Alice, Bob, F)},

and Σ = {F} (F represent the friend relation). Then Alice is a friend of Bob, but not vice versa,

whereas Cathy is a completely isolated user.

Direct relationships are represented as edges in RG, while indirect relationships are represented

as paths. For our purpose, it is convenient to define path in two steps as follows.

Definition 26. Linked Sequence of Vertices

Given RG = (V,E,Σ) and a vertex pair (u, v) ∈ V × V where u 6= v, a (simple) linked se-

quence of vertices is a set of triples where the terminating (i.e., second) vertex of each triple

is same as the starting (i.e., first) vertex of the next triple given by 〈(u, vi, σw), (vi, vj, σx), ...,

(vk, vl, σy), (vl, v, σz)〉, where u, vi, vj, ..., vk, vl, v ∈ V , and σw, σx, ..., σy, σz ∈ Σ, such that once

a vertex vi occurs as a start vertex it cannot be the terminating vertex in subsequent triples.

Definition 27. Path in Relationship Graph

A (simple) linked sequence of vertices is a (simple) path from u to v if each triple belongs to E in

RG, i.e., it is an edge. The path label of a path is σwσx.....σyσz. Its length is the number of triples,

or equivalently the number of symbols in the path label.

Since we only consider simple paths in this study we will often drop the simple qualifier. It should

be noted that Def. 26 and 27 would traditionally be merged to define a path, but separating them

makes it convenient to define path variations later in Def. 31. For convenience, given a path p in

RG we understand pathLabel(p) to denote the path label of path p.

A crucial component of ReBAC is a set of rules called the ReBAC policy, formally defined as

follows:

Definition 28. ReBAC Policy

A ReBAC policy, POLReBAC is a tuple, given by 〈Σ, RuleSet〉 where:
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Figure 4.1: Example Relationship Graph

• Σ denotes the finite set of relation type specifiers in the system.

• RuleSet is a set of rules where, for each operation op ∈ OP , RuleSet contains the single rule

Ruleop. Each Ruleop is specified using the grammar below.

Ruleop ::= Ruleop ∨Ruleop | pathRuleExpr

pathRuleExpr ::= pathRuleExpr ∧ pathRuleExpr | pathLabelExpr

pathLabelExpr ::= pathLabelExpr.pathLabelExpr | edgeLabel

edgeLabel ::= σ, σ ∈ Σ

Here "." is the concatenation operator. As stated earlier, it suffices to consider OP to be a singleton,

so RuleSet consists of a single rule. The Ruleop expression consists of disjunction of pathRule-

Expr, where each pathRuleExpr consists of conjunction of pathLabelExpr. The pathLabelExpr is

a concatenated string of relationship type specifiers. The Ruleop evaluation procedure is described

in Def. 29.

This leads to the following definition of a ReBAC system.

Definition 29. ReBAC System

A ReBAC system is a tuple, 〈RG,POLReBAC , checkAccessReBAC〉where checkAccessReBAC(a:V,

b:V) is evaluated as follows: (i) for each pathLabelExpr in Ruleop substitute True if there exists

a simple path p from a to b in RG with path label pathLabelExpr, otherwise substitute False, (ii)

evaluate the resulting boolean expression.

For example, consider Fig. 4.1 with Ruleop = F . Given an access request 〈Alice, Bob〉, there is a
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simple path from Alice to Bob with path label F so True is substituted for F and Ruleop evaluates

to True whereby the access request is granted.

4.3 ReBAC RuleSet Existence Problem

This section develops the formal definition of the ReBAC RuleSet Existence Problem (RREP).

As we are going to investigate variations of RREP later in this study, we call the the core RREP

problem defined in this section as RREP-0.

The definitions provided above bring us to definition of the central problem addressed in this

study.

Definition 30. ReBAC RuleSet Existence Problem (RREP-0)

Given an EAS = 〈U,AUTH,checkAccessEAS〉 and RG = (V,E,Σ) with V=U, does there exist a

RuleSet as in Def. 28 so that the resulting ReBAC system satisfies:

(∀u, v ∈ U)[checkAccessReBAC(u, v)⇔ checkAccessEAS(u, v)]

Such a RuleSet, if it exists, is said to be a suitable RuleSet, otherwise the problem is said to be

infeasible.

For example, for the RG in Fig. 4.1, a suitable RuleSet exists only if the given AUTH = {(Alice, Bob)},

with Ruleop = F . Any other AUTH relation will not have a suitable ReBAC RuleSet.

RuleSet Generality

A natural question to investigate at this point is the generality of our ReBAC RuleSet structure. We

consider three criteria in this regard: variety of entities available, expressiveness of policy language

and relationship depth. In this study, we limit our scope to user to user relationships only which is

a common case in OSNs. More generally, ReBAC policy mining may incorporate multiple entity

types. For example, [8] uses the familiar class-object concept in their ReBAC rules, where each

class represents a a particular entity type and an object is an instance of a class. In comparison

with [8], we deal with a single class User. We discuss expressiveness in Section 4.4 and will
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show by examples that our rule structure is not the most general one. Given a vertex pair (a,b) in

RG and simple path p from a to b, the relationship depth is the length of the path. With finite RG,

the relationship depth is inherently limited by the maximum simple path length between any vertex

pair in RG. In [8], relationship depth is provided as algorithm input. While in our work relationship

depth is not provided as input, a slight modification would accommodate this. Specifically, adding

a constraint in line 5 of Algorithm 4.1 to limit the maximum simple path length to a provided

value. Other constraints could be similarly enforced. For example, a constraint that limits the

number of path labels used in the conjunctive term generation in line 16-17 of Algorithm 4.1 to a

given numeric value.

Algorithm 4.1 ReBAC RuleSet Existence Problem-0 Algorithm
Input: An EAS 〈 U,AUTH,checkAccessEAS〉 and a RG = (V,E,Σ) where V=U
Output: Feasible/infeasible status. If feasible → generate ReBAC rule, return "infeasible" and

set of infeasible authorization tuples otherwise.
1: Ruleop := NULL
2: failedAuthList := ∅
3: AUTHset := AUTH //copying AUTH
4: while ∃(a, b) ∈ AUTHset do
5: SP (a, b) := FindAllSimplePath(a,b, RG) // Algo. 4.2
6: if SP (a, b) = ∅ then
7: failedAuthList := failedAuthList ∪ {(a, b)} //Not Feasible for (a,b) tuple
8: AUTHset\ := {(a, b)} and Continue
9: PATHLABEL(a.b) := {pathLabel(p)|p ∈ SP (a, b)}

10: for each pl ∈ PATHLABEL(a.b) do
11: SATab(pl) = {(c, d) ∈ V × V | there exists a simple path s from c to d in RG, c 6=d,

(c,d) 6∈AUTH, pl=pathLabel(s)}
12: Qab :=

⋂
pl∈PATHLABEL(a.b)

SATab(pl)

13: if Qab 6= ∅ then
14: failedAuthList := failedAuthList ∪ {(a, b)} //Not Feasible for (a,b) tuple
15: AUTHset\ := {(a, b)} and Continue
16: if Ruleop is NULL then Ruleop :=

∧
pl∈PATHLABEL(a.b)

pl else Ruleop := Ruleop ∨∧
pl∈PATHLABEL(a.b)

pl

17: AUTHset\ := {(a, b)}
18: if failedAuthList is ∅ then return ("feasible", Ruleop) else return ("infeasible", Ruleop,

failedAuthList)

51



Algorithm 4.2 FindAllSimplePath
Input: Vertex source, vertex dest, RG = (V,E,Σ)
Output: Set of all simple paths from source to dest in RG

1: //visitVertex is a map where visitVertex[u ∈ V ] = white means "not visited", visitVertex[u ∈
V ] = grey means "visited but not finished yet"

2: //visitEdge is a map where visitEdge[e ∈ E]=white means "not visited", visitEdge[e ∈
E]=grey means "visited but not finished yet"

3: for u ∈ V do
4: visitVertex[u]:=white
5: for e ∈ E do
6: visitEdge[e]:=white
7: PS := ∅
8: Modified-DFS-Visit(source, dest, RG, PS, 〈〉) //assuming visitVertex and visitEdge are glob-

ally defined
9: return PS

Algorithm 4.3 Modified-DFS-Visit
Input: vertex src, vertex dest, RG(V,E,Σ), PS, tempPath
Output: Path generation from src to dest in RG

1: if src == dest then
2: PS∪ := tempPath
3: return
4: visitVertex[src]:=grey
5: for each edge e ∈ E, where e=(x,y,σ) and x=src do
6: if visitEdge[e] == white and visitVertex[y] == white then
7: Modified-DFS-Vist(y,dest,RG,PS,appendSeq(tempPath,e)) //appendSeq() is a trivial

function which appends edge e to the path sequence, tempPath and returns the new or-
dered path sequence

8: visitVertex[src]:=white
9: for each edge e ∈ E, where e=(x,y,σ) and x=src do

10: visitEdge[e] := white
11: return

52



4.3.1 Feasibility Detection Algorithm

In this subsection, the feasibility detection Algorithm 4.1 for RREP-0 is presented along with

proofs and complexity analysis. The algorithm iterates through each tuple (a, b) ∈ AUTH , and

either finds a rule that is correct for (a, b) or deems the tuple to be infeasible and records it in

failedAuthList. In each iteration it computes all possible simple paths from a to b to find whether

the resulting collection of pathLabels is collectively satisfied by any unauthorized tuple (i.e., a

tuple not in AUTH). The function FindAllSimplePath, which is able to find all simple paths

between any vertex pair in RG, is described briefly in Algorithm 4.2 and 4.3. For completeness,

the algorithm used for all possible path generation in Algorithm 4.1, called FindAllSimplePath has

been included. Given a RG and a vertex pair (source,dest), algorithm FindAllSimplePath returns

the set of all possible simple paths from source to dest in RG. It is basically a modified form of

core Depth-First-Search from vertex source to vertex dest in RG.

If (a,b) is disconnected in RG then it is infeasible. Otherwise, all possible pathLabels for (a,b)

are generated in line 9 as in Def. 27. If there exists any unauthorized vertex pair which satisfies all

possible pathLabels from a to b, (a,b) is infeasible as in line 14. The Ruleop is updated otherwise

and (a,b) is removed from further consideration, as shown in line 16-17.

At the end, if rule generation is not feasible for any particular tuple in AUTH, i.e., failedAuth-

List is not empty, the algorithm returns an infeasible result along with all infeasible tuples in

failedAuthList. Another alternative is to abort at the point where first infeasible tuple is encoun-

tered if failedAuthList is not available. If rule generation is feasible for every tuple (a, b) ∈

AUTH , Ruleop is generated and feasible status is returned.

Theorem 4. The overall complexity of RREP-0 feasibility detection Algorithm 4.1 is O(|V |4 ×

(|E|!)).

Proof:

In order to compute Algorithm 4.1 complexity, Algorithm 4.2 and 4.3 are needed to be considered

first. Algorithm 4.2 finds the set all possible simple paths between a vertex pair in RG using a
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variant of DFS in Algorithm 4.3. Since it considers only simple path, the overall complexity of

Algorithm 4.2 is O(|E|!), considering |V | ≤ |E|. Therefore, the complexity of line 5 and 9 in

Algorithm 4.1 is O(|E|!). In line 10-11, the SATab function computation takes overall O(|V |2 ×

(|E|!)). The computation complexity of finding set intersections in line 10 takes O(|E|!). Line 13-

17 produces trivial complexity compared to the others. The while loop in line 4-17 runs |AUTH| <

|V |2 times. Hence, the overall complexity of Algorithm 4.1 is O(|V |4 × (|E|!)).

The asymptotic complexity of the current approach is high, especially because computation

of all possible simple paths between any pair of vertices in RG gives the ultimate lower bound.

However, RG can be a sparse one. Also, it can be easily noticed that pre-computing and storing all

possible simple paths between any pairs in RG regardless of the AUTH can effectively reduce the

computation time inside the loop. Moreover, for many such practical problems heuristic solutions

are often effective. Later in this study, it has been discussed that our ReBAC rule structure is not

the most general one. Feasibility algorithm can certainly change based on the variety of ReBAC

rule structures. Therefore, overall complexity of determining ReBAC policy mining feasibility can

vary based on such factors. A detailed study of these is out of scope of this chapter.

The correctness proof of Algorithm 4.1 is as follows.

Theorem 5. Given a RREP-0 instance as in Def. 30, a suitable RuleSet exists iff Algorithm 4.1

generates the Ruleop.

Proof:

Assume, Algorithm 4.1 generates the Ruleop. According to Algorithm 4.1, for each (a, b) ∈

AUTH , all possible paths from a to b in RG are searched over to find the collection of pathLabel(p)

where p is a simple path from a to b, such that there exists no unauthorized tuple (c, d) ∈ V × V \

AUTH, c 6= d where the collection of pathLabel(q) is a superset of the collection of pathLabel(p),

where q is a simple path from c to d in RG. In Algorithm 4.1, Ruleop consists of disjunctions of

such conjunction of the collection of pathLabel(p), generated for each (a, b) ∈ AUTH . By the

definition of checkAccess in Def. 29, the generated Ruleop evaluates to true for each (a, b) ∈

AUTH while denying all (c, d) ∈ V × V \ AUTH, c 6= d. Hence, Ruleop constitutes a suitable
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RuleSet.

To prove the opposite direction, assume a suitable RuleSet Rule′op constituted by Def. 28 ex-

ists. Therefore, by the definition of RREP-0, Rule′op evaluates to true for each (a, b) ∈ AUTH

while denying all unauthorized tuple (c, d) ∈ V × V \AUTH, c 6= d. By the procedure of Rule′op

evaluation provided in Def. 29, there exists at least a conjunctive term in Rule′op which is true for a

(a, b) ∈ AUTH where for all pathLabelExprs in the corresponding conjunctive term, there exists a

simple path p from a to b in RG such that pathLabel(p) = pathLabelExpr. According to Algorithm

4.1, for each (a, b) ∈ AUTH , all possible paths from a to b in RG are searched over to find such

conjunction of the collection of pathLabel(p) and Ruleop consists of disjunction of such conjunc-

tions, generated for each (a, b) ∈ AUTH . Thereby, Algorithm 4.1 generates the feasible status

and Ruleop, where each conjunctive term denoted by t’ in Rule′op must have at least a conjunctive

term t in Ruleop where the pathLabels in t’ are a subset of the pathLabels in t. Hence, the claim

holds in both directions and Theorem 5 is proved.

RREP-0 is the core of our ReBAC feasibility analysis. An example of ReBAC rule generation

is discussed in Section 4.6.

4.4 Variations of ReBAC Ruleset Existence Problem

By definition of RREP-0 in Def. 30, there are three key factors which affect the feasibility detection

process: i) the authorization relation AUTH, ii) Ruleop structure, and iii) RG. For example, an

AUTH relation can be symmetric or asymmetric, RG can be directed or undirected, and theRuleop

specification grammar can be modified to add more or less expressive power. In this section, we

consider some RREP variations focusing on ReBAC rule structure.

4.4.1 Proposed RREP Variations

The following discussion proposes four variations of RREP. According to Def. 25, the given RG

is a directed labeled graph. Therefore, Algorithm 4.1 can work with directed RG only. Given an
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undirected relationship graph RGγ = (V,Eγ,Σ), an equivalent directed labeled relationship graph

RG = (V,E,Σ) can be generated by enhancing the set of edges. For each edge (a, b, σ) ∈ Eγ ,

symmetric edges (a, b, σ) and (b, a, σ) are added to E. For each (u, v) ∈ AUTH , symmetric

authorization tuples (u, v) and (v, u) are added to updated AUTH relation as well. It is evident that

the undirected RG along with undirected AUTH can be reduced to core RREP-0 and Algorithm

4.1 can be deployed to solve the feasibility detection. Thus it suffices to consider directed RG.

Before proceeding to the other variations of RREP, three extended sets of relationships are

defined as follows for a given Σ.

• Σ = {σ|σ ∈ Σ}. For each relation type specifier σ ∈ Σ, σ denotes "no σ relation". There-

fore, Σ is the set of non-relationship type specifiers in RG.

• Σ−1 = {σ−1|σ ∈ Σ}. For each relation type specifier σ ∈ Σ, σ−1 denotes "inverse σ

relation". Therefore, Σ−1 is the set of inverse relation type specifiers in RG.

• Σ
−1

= {σ−1|σ ∈ Σ}. Here, Σ
−1

denotes the set of non-relationship inverse relation type

specifiers in RG.

The inverse non-relationship specifier σ−1 is not considered, since it is equivalent to σ−1 and hence

redundant.

Theorem 6. The inverse non-relationship specifier σ−1 is not considered, since it is equivalent to

σ−1 and hence redundant.

Proof

Given a σ ∈ Σ, σ−1 is called the inverse non-relationship of σ. We show that σ−1 ≡ σ−1. Fig. 4.2

shows a sequence of equivalences going from top to bottom, or vice versa, which establish this.

Relationships that cannot exist are shown in dotted lines while relationships that must exist are

shown in solid lines. From top to bottom, a relationship σ−1 from a to b precludes a relationship

of σ−1 from a to b, which in turn precludes a relationship of σ from b to a. Thereby there is a

non-relationship σ from b to a, and finally its inverse σ−1 from a to b. The argument in reverse

holds from bottom to top.
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Figure 4.2: Given a σ ∈ Σ, σ−1 ≡ σ−1

Table 4.1: Path variations in RG

Characteristics SCP SPP SCPP

(a, b, σ) → (a, b, σ) ∈
E, σ ∈ Σ

X X X

(a, b, σ) → (a, b, σ) 6∈ E,
σ ∈ Σ

X X

(a, b, σ−1) → (b, a, σ) ∈ E,
σ−1 ∈ Σ−1

X X

(a, b, σ−1) → (b, a, σ) 6∈ E,
σ−1 ∈ Σ

−1
X

There is no redundancy amongst σ, σ−1 and σ−1, as we will see in Section 4.6.

RREP-0 uses simple path definition in RG. In order to specify extensions to RREP-0, three

path variations in RG are defined as follows utilizing the extended relation types defined above.

Definition 31. Path Variations in RG

The definition of (simple) linked sequence of vertices in Def. 26 is extended to include the extended

symbols in Σ, Σ−1 and Σ
−1

, in addition to Σ. The definition of (simple) path in Def. 27 is extended

as summarized in Table 4.1 to give the following three extended notions of path.

i) Simple Complementary Path (SCP) allows symbols from Σ and Σ respectively requiring the

triple to be an edge or not an edge as indicated in the top two rows of Table 4.1.

ii) Simple Permissive Path (SPP) allows symbols from Σ and Σ−1 respectively requiring the

triple to be an edge or the inverse of an edge as in the first and third rows of Table 4.1.
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Table 4.2: RREP variations

(a) RREP-0 (b) RREP-1 (c) RREP-2 (d) RREP-3

RuleSet as in
Def. 28

edgeLabel ::= σ|σ edgeLabel ::= σ|σ−1 edgeLabel ::= σ|σ|σ−1|σ−1

checkAccess
as in Def. 29

simple path is re-
placed by SCP

simple path is re-
placed by SPP

simple path is replaced by
SCPP

Alice

Cathy

Bob
F

Figure 4.3: RG of Fig. 4.1 enhanced with non-relationship edges.

iii) Simple Complementary Permissive Path (SCPP) allows symbols from Σ, Σ, Σ−1 and Σ
−1

respectively requiring the triple to be an edge, not an edge, the inverse of an edge or the

inverse of a “not an edge” as in the four rows of Table 4.1.

Based on the three path definitions introduced above, three variations of RREP problem, named

as RREP-1, RREP-2, and RREP-3 are defined as follows.

Definition 32. RREP-1, RREP-2, and RREP-3

Given the definition of RREP-0 as in Def. 30, the definitions of RREP-1, RREP-2, and RREP-3

are similar, except for distinctions noted in Table 4.2.

Table 4.2 describes the distinctions of RREP-1 to 3 in terms of comparison with RREP-0 fea-

tures. Table 4.2 shows that RREP-1 to 3 vary from RREP-0 based on two related aspects: RuleSet

and checkAccess definitions. Row 1 of Table 4.2 shows that, the Ruleop grammar specified for

RREP-1 to 3 vary in edgeLabel definitions only, compared to RREP-0 RuleSet definition as in

Def. 28. Row 2 of Table 4.2 shows that Ruleop of RREP-1 to 3 uses the same evaluation criteria

compared to RREP-0, except simple path is changed to SCP, SPP and SCPP respectively.
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Figure 4.4: RG of Fig. 4.1 enhanced with inverse edges.

Alice

Cathy

Bob

F
F-1

-1

-1

-1

Figure 4.5: RG of Fig. 4.1 enhanced with non-relationship, inverse and non-relationship inverse
edges.

4.4.2 Reduction of RREP Variations

The major difference between RREP-0 and the proposed variations RREP-1 to RREP-3 is that

simple path definition in RREP-0 consists of given edges in RG, whereas SCP, SPP and SCPP

bring additional “virtual edges” into consideration. We can reduce the enhanced path definitions

of SCP, SPP and SCPP to the traditional path definition by enhancing the original RG with these

virtual edges. Given the RG of Fig. 4.1, its enhancements with additional edges for SCP, SPP and

SCPP are respectively shown in Figs. 4.3, 4.4 and 4.5. These enhancements are formally stated as

follows.

Definition 33. Enhancements of RG

Given a directed labeled relationship graph RG = (V,E,Σ), let

• E = {(u, v, σ) | u 6= v ∧ (u, v, σ) 6∈ E}

These are called non-relationship edges.

• E−1 = {(u, v, σ−1) | u 6= v ∧ (v, u, σ) ∈ E}
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These are called inverse edges.

• E−1 = {(u, v, σ−1)|u 6= v ∧ (v, u, σ) 6∈ E}

These are called non-relationship inverse edges.

The enhanced RG, denoted RGE, is defined as follows:

• For RREP-1: RGE = (V,E ∪ E,Σ ∪ Σ)

Note that RGE imposes some consistency requirements such as (u, v, σ) is an edge in RGE iff

(u, v, σ) is not an edge in RGE.

The lemma below follows trivially from the definitions.

Lemma 10. There is an SCP (respectively SPP, SCPP) p from u to v with pathLabel(p) in RG

iff there is a simple path p from u to v in RGE for RREP-1 (respectively RREP-2, RREP-3) with

pathLabel(p).

It follows that Algorithm 4.1 for RREP-0 with correspondingly enhanced RG can be used to

solve the feasibility detection problem for RREP-1, RREP-2 and RREP-3 as well.

4.4.3 Limitation of RREP-0 to RREP-3

It is easy to construct examples that are beyond the scope of the variations discussed above. In the

RGs of both Fig. 4.6 and Fig. 4.7, there are two simple paths from Alice to Ray with path labels

"F.F" and "F.F.F". However, there is a significant difference between the two RGs. In Fig. 4.6

the simple paths from Alice to Ray are disjoint with respect to their edges, while this is not so for

Fig. 4.7. Specification of disjoint paths is not possible in our rule structure variations. In the most

general case any computable property of RG can be utilized in the rule structure.

A ReBAC policy language for user to user relationship is presented in [17]. Although [17] of-

fers different rule structures for accessing user, target user as well as system administrator views, a

basic comparative study between the rule set structure of our work and the ReBAC policy presented

in [17] is as follows.
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Figure 4.7

1. In [17], each pathLabelExpr is limited by the maximum number of edges allowed in the

path, specified as hopcount. Our rule structure does not allow such numeric value on edge

count in RG. Moreover, [17] offers negative pathLabelExpr, that means an entire relationship

pattern that must not exist from accessing user to target user in the RG. In our work, allowing

non-relationship edges accomplish the fact of traversing the graph in "not in a relationship"

directions, however, its semantics is completely different.

2. Repeating a relationship pattern unlimited (*) or 0/1 times (?) has been included in [17].

Our ReBAC policy can accomplish the similar task by repeating the rule expressions as

many times as desired. Note that infinite repetitions are not possible for simple paths in a

finite graph.

3. The rule evaluation in [17] can start from a particular user as noted in the rule, but our

ReBAC policy evaluation starts from any node in RG, therefore, can be referred as system

policy. For both of the works, pathLabelExprs are constituted by using disjunction and

conjunction operators.

61



From the discussions above, it can be summarized that, our rule structure lacks some features

as compared to [17] such as hopcount on the pathLabelExpr, enhances a few such as allowing

complementary and permissive path in RG, and has similar structure such as use of disjunction

and conjunction of pathLabelExpr.

4.5 Proposed Infeasibility Solutions

In this section we propose a solution to infeasibility in RREP-0 and illustrated by examples. Other

possible direction of solution approaches and limitations will be discussed briefly.

4.5.1 Proposed Infeasibility Correction

Given a RREP-0 instance as in Def. 30, if no suitable RuleSet exists (i.e., Algorithm 4.1 returns

infeasible result) we say there is an infeasibility problem. In such cases we can make a suitable

RuleSet generation possible by adding new relationships as follows.

i) Select a symbol op 6∈ Σ.

ii) Add the path expression op as a disjunction to the generated Ruleop by Algorithm 4.1 to

construct Ruleop ∨ op.

iii) For each (u, v) ∈ failedAuthList add an edge (u,v,op) to E in RG.

Theorem 7. The infeasibility correction solution above is correct for the modified RREP-0 problem

with modified RG and Σ.

Proof:

For each (u, v) ∈ AUTH , where Algorithm 4.1 fails to generate the rule, the proposed solution

above adds an edge from u to v in RG with edge label op. It is trivial that a simple path of length 1

with pathLabelExpr op thereby exists in the modified RG for each such (u, v) ∈ failedAuthList,

generated by Algorithm 4.1. Therefore, the pathLabelExpr op turns true for each such infeasible

authorization tuples only.
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Figure 4.8: RREP-0 infeasibility example.
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Figure 4.9: Adding "priority" attribute to Fig. 4.8.

Fig. 4.8 presents an RG the set of users V = {Alice, Bob, Cathy,Ray}, the set of edges E

= {(Alice, Bob, F ), (Bob, Cathy, F ), (Cathy,Ray, F ), (Ray,Alice, F )}, and the set of relation

type specifiers, Σ = {F}. Let AUTH = {(Alice, Bob), (Cathy,Ray)}. According to the RuleSet

structure given in Def. 28, RREP-0 fails since there exists a single simple path from Alice to

Bob, where path label is F. However, "F" is also true for (Alice, Bob), (Bob, Cathy), (Cathy, Ray),

and (Ray, Alice). The same scenario occurs while finding rule for (Cathy, Ray). Therefore, the

given AUTH is concluded as infeasible by Algorithm 4.1, and failedAuthList contains both (Alice,

Bob) and (Cathy,Ray). According to the solution above, two additional edges (Alice, Bob,op) and

(Cathy,Ray,op) are added to E, and Σ is updated to {F, op}. The generated Ruleop is op.

4.5.2 Alternate Infeasibility Correction

An alternate approach to infeasibility correction is to add an attribute named "priority" to each

vertex in the RG, illustrated by example as follows. Consider the solution provided in Fig. 4.9,

given the prior infeasibility example: AUTH = {(Alice, Bob), (Cathy,Ray)} and RG is as shown
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in Fig. 4.8. Each user vertex in the given RG in Fig. 4.8 has been assigned a positive integer

priority value, and the ordered sequence of vertex priority values associated with the path p from

vertex a to b in RG is the same order followed by the vertices through the path p. For example,

ordered sequence of vertex priority values associated with the path from Alice to Ray in Fig. 4.9

is 〈4, 1, 3, 2〉. The Ruleop given in Def. 28 is modified in order to accommodate the use of priority

value as follows:

Ruleop ::= Ruleop ∨Ruleop|pathRuleExpr

pathRuleExpr ::= pathRuleExpr ∧ pathRuleExpr |(pathLabelExpr, priorityOrder)

priorityOrder ::=> | < |φ

pathLabelExpr ::= pathLabelExpr.pathLabelExpr|edgeLabel

edgeLabel ::= σ, σ ∈ Σ

where >,<, and φ represent increasing, decreasing and don’t care orders, respectively, and pathRule-

Expr consists of conjunction of (pathLabelExpr, priorityOrder) pairs.

The evaluation procedure of checkAccessReBAC(a:V, b:V) in a ReBAC system with the speci-

fied Ruleop is as follows:

(i) for each (pathLabelExpr, Order) pair in Ruleop substitute True if there exists a simple path p

from a to b in RG with path label pathLabelExpr where the ordered sequence of vertex priority

values associated with path p follows the priorityOrder order, otherwise substitute False, (ii) eval-

uate the resulting boolean expression.

Let’s recall the AUTH = {(Alice, Bob), (Cathy,Ray)} noted earlier for Fig. 4.8. According

to the proposed Ruleop structure, the generated Ruleop = (F,<) solves the infeasibility because

the simple path labeled F from Alice to Bob follows the decreasing order as 4 > 2. The same case

occurs for (Cathy, Ray) since 3 > 2, whereas (Bob, Cathy) and (Ray, Alice) do not.
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4.5.3 Limitations of Current Infeasibility Solution

The infeasibility solution provided in Section 4.5 adds only a single pathLabelExpr "op" to the

Ruleop, regardless of the number of infeasible tuples in the AUTH, adding |AUTH| number of

additional edges in RG in the worst case. For example, given the RG in Fig. 4.10 and the set of

authorization tuples {(Alice, Ray), (Alice, Bob), (Alice, Cathy)}, this solution adds three edges

with label op originating from Alice to Bob, Ray, and Cathy, respectively. Therefore, the Ruleop

is "op". However, a solution fewer added edges can be obtained for the given AUTH by adding a

single edge from Alice to Tom labeled as "op". It is clearly evident that the edge from Alice to Tom

creates simple paths from Alice to Ray, Bob, and Cathy. Therefore, the possible Ruleop for the

given AUTH is "op.F". This demonstrates the trade-off between minimum size of rule and adding

minimum number edges in RG to correct infeasibility. The solution of Subsection 4.5.1 keeps the

given RG unchanged while adding new relationship edges to RG. An alternative approach could

be to remove some edges from the given RG.

4.6 Use Cases and Implementation

In this section we present case studies to show the relative power of the rule structures of RREP

variations defined in this study. We also discuss the need for rule optimization.

Consider the RG shown in Fig. 4.11(a), along with its inverse, non-relationship and non-

relationship inverse edges shown in Figs. 4.11(b), 4.12(a) and 4.12(b). For different values of

AUTH we get different feasibility results as follows, where we understand that Algorithm 4.1 will
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be run with correspondingly enhanced RGs (i.e., Fig. 4.11(a) for RREP-0, union of Figs. 4.11(a)

and 4.12(a) for RREP-1, union of Figs. 4.11(a) and 4.11(b) for RREP-2, and union of Figs. 4.11(a),

4.11(b), 4.12(a) and 4.12(b) for RREP-3).

1. Let AUTH = {(Ray,Cathy), (Bob,Cathy)}. Then Algorithm 4.1 will return success for

RREP-0, RREP-1, RREP-2 and RREP-3. Note that feasibility of RREP-0 always implies

feasibility of RREP-1, RREP-2 and RREP-3 since the simple path of RREP-0 is included

in the enhanced path definitions of the latter. The rule returned for RREP-0 and RREP-2

is F∨F which is logically equivalent to F. The rules generated for RREP-1 and RREP-3 are

more complex due to the increased number of paths in the enhanced RGs.

2. Let AUTH = {(Cathy,Ray), (Cathy,Bob)}. For RREP-0 and RREP-1 Algorithm 4.1 will re-

turn failure. For RREP-2 it will return F−1∨F−1. The formula for RREP-3 is more complex.

3. Let, AUTH = {(Alice, Bob), (Alice, Cathy), (Alice, Ray), (Bob, Alice), (Bob, Ray), (Cathy,

Alice), (Cathy, Bob), (Cathy,Ray), (Ray, Alice), (Ray,Bob)}. For RREP-0 and RREP-2 Al-

gorithm 4.1 will return failure. For RREP-1 and RREP-3 it will return success with complex

formulae due to the multiplicity of paths in the enhanced RGs.

4. Let’s consider, AUTH = {(Ray,Cathy), (Bob,Cathy), (Cathy,Ray), (Cathy,Bob), (Alice, Cathy)}.

For RREP-0, RREP-1 and RREP-2 Algorithm 4.1 will return failure. For RREP-3 it will re-

turn success with a complex formula which would logically reduce to F
−1
.F
−1
.F ∨ F−1.

These examples establish that the rule structure of RREP-3 is strictly more expressive than RREP-

0, RREP-1 and RREP-2. Note that RREP-0 is the weakest as argued above. RREP-1 and RREP-2

are incomparable.

The generated rule may contain unnecessary path labels in conjunctive terms if all possible

path labels are being used. Therefore, a few simple rule optimization techniques are used in the

implementation. As stated in Algorithm 4.1, for any tuple (a,b) in AUTH, all possible path labels

from a to b are AND’ed to form the conjunctive term after determining the feasibility. Instead of
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Figure 4.11: (a) Given RG, (b) Inverse edges for RG of Fig. 4.11(a)
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Figure 4.12: (a) Non-relationship edges for RG of Fig. 4.11(a), (b) Non-relationship inverse edges
for RG of Fig. 4.11(a)

using all possible path labels, the smallest possible subset of those is used to form the conjunctive

term such that it does not evaluate to true for any unauthorized tuple. For example, given the

RG in Fig.4.11(a), and an EAS where V is identical and set of authorization relations AUTH =

{(Alice, Ray), (Alice, Bob)}, the Ruleop computed using RREP-3 by Algorithm 4.1 comprises a

conjunction of 24 terms as follows:

F .F−1 ∧ F−1 ∧ F .F ∧ F−1.F ∧ F .F−1 ∧ F−1.F−1.F−1 ∧ F−1.F .F ∧ F−1.F−1 ∧ F−1.F−1.F ∧

F .F−1.F
−1 ∧ F .F−1.F ∧ F−1.F−1.F−1 ∧ F .F .F ∧ F .F .F−1 ∧ F−1.F .F−1 ∧ F−1.F−1.F ∧

F .F−1.F ∧ F .F.F ∧ F ∧ F−1.F.F−1 ∧ F .F−1.F−1 ∧ F−1.F.F ∧ F−1.F−1 ∧ F .F.F−1

Both tuples (Alice, Bob) and (Alice, Ray) in AUTH would generate this conjunction since they

have the same set of path labels. After applying the specified smallest possible subset of path

labels in a conjunctive term technique, the specified Ruleop turns into significantly smaller rule,

given by F .F−1. Another way of rule minimization is: after completion of rule generation, a

conjunctive term in the generated rule, say c1, removes all conjunctive terms c2 in the rule if all

path labels in c1 are included in c2. The Java implementation of feasibility detection along with
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the described rule minimization techniques can be provided upon request.
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CHAPTER 5: ON FEASIBILITY OF ATTRIBUTE-AWARE

RELATIONSHIP-BASED ACCESS CONTROL POLICY MINING

Relationship-Based Access Control (ReBAC) emerged from the access control requirements of

Online Social Networks, and expresses authorization policy in terms of various relationship pa-

rameters such as type and depth, whereas Attribute-Based Access Control (ABAC) has been mo-

tivated by its generalized structure and versatility in access control policy specification through

attributes of user, resource, environment, etc. Although combination of ABAC and ReBAC, such

as Attribute-aware ReBAC (AReBAC), have previously been defined and shows additional expres-

sive power compared to standalone ABAC and ReBAC, feasibility analysis of AReBAC policy

mining is still unexplored. This chapter studies whether conversion to AReBAC system is possible

from an Enumerated Authorization System (EAS) given supporting attribute and relationship data.

Attribute-aware ReBAC Ruleset Existence Problem (ARREP) has been introduced formally for the

first time, and solved algorithmically along with complexity analysis. In case of infeasibility, no-

tions of equivalent and approximate solutions are developed. Directions for future enhancements

are also discussed.

Significant portion of this chapter has been published at the following venue [12].

• Shuvra Chakraborty and Ravi Sandhu, On Feasibility of Attribute-Aware Relationship-Based

Access Control Policy Mining. In Proc. 33rd Annual IFIP WG 11.3 Working Conference on

Data and Applications Security and Privacy (DBSec), Virtual Event, July 19-20, 2021.

5.1 Motivation

Although both ReBAC and ABAC are powerful, flexible and comparable [2] in expressing autho-

rization policies, relying solely on one is often insufficient. An example case will be used in order

to compare ABAC policy presented in [13] and ReBAC policy in [11] with the proposed AReBAC

policy in this study.

Consider the relationship graph with attributes in Fig. 5.1 where the set of users V = {Alice,
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Figure 5.1: Example ARG with (Gender, Profession) user attribute values

Bob, Cathy, Ron}, the set of user attribute function names, VA = {Gender, Profession}, the set

of relationship specifiers, Σ = {F} where “Friendship” is abbreviated as “F”, and the set of edges

E = { (Alice, Ron, F), (Alice, Bob, F), (Ron, Cathy, F), (Cathy, Bob, F) }.

1. ReBAC policy can express the authorization state (Alice, Bob) whereas only ABAC policy

cannot. ABAC rule fails because Alice and Cathy have the same attribute value combination.

The generated ReBAC rule is “F.F.F".

2. ABAC policy can express the authorization state (Ron, Bob) whereas only ReBAC policy

cannot. ReBAC rule fails because there is only one path labeled “F.F" from Ron to Bob

which is satisfied by unauthorized pair, such as, (Alice, Cathy). The generated ABAC rule

is, “Gender(u)=Male ∧ Profession(u)=Student ∧Gender(v)=Male ∧ Profession(v)=Officer".

3. Authorization state (Alice, Ron), cannot be expressed by both ABAC and ReBAC. ABAC

rule fails because Alice and Cathy have the same attribute value combination. ReBAC rule

fails because the only path label “F" is satisfied by other unauthorized pairs, such as (Alice,

Bob).

These example cases shows that, there are certain conditions where ABAC and ReBAC can
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fail, either singly or both. Later on, the same example will be used to show that AReBAC is more

expressive than ABAC [13] and ReBAC [11]. Additionally, it can be clearly observed that, if entity

ids are allowed, AReBAC policy will never fail (such as [6]). However, imposing this condition

conflicts with core principles of ABAC and ReBAC. Therefore, the AReBAC policy specification

in this study checks whether the target access control system could be generated avoiding explicit

use of unique entity id.

5.2 Preliminaries

In this section, some preliminaries of Attribute-aware ReBAC RuleSet Existence Problem will be

noted and rest of the chapter will repeatedly use these definitions.

A user/subject is an entity who performs operation on a resource/object. The set of users is

represented by U. A user requests to perform an operation on another user. An operation is an

action performed by a user on another user. The set of operations in the system is represented

by OP. Without loss of generality it is assumed that OP is a singleton given by {op}, since each

operation has its specific policy or rules. An access request is a tuple 〈u, v〉 where user u is asking

permission to perform operation op on user v where u, v ∈ U, op ∈ OP, u 6= v. An access request

is either granted or denied, based on the access control policy. In any access control system, a

logical construct is required to decide the outcome of an access request. The logical construct is

formally defined as, checkAccess : U×U → {True, False}, where the result True grants access

while False denies it.

5.2.1 Source Access Control System

As mentioned before, this chapter studies Attribute-aware ReBAC RuleSet Existence problem with

a single type of source access control system.

We define a simple authorization system, EAS as follows:

Definition 34. Enumerated Authorization System (EAS)

An EAS is a tuple 〈U, AUTH, checkAccessEAS〉 where, U is the finite sets of users and AUTH ⊆
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U × U , is a specified authorization relation where

checkAccessEAS(u, v) ≡ (u, v) ∈ AUTH

For example, given U = {Alice, Bob} and OP={readData}, Bob can read Alice’s data iff (Bob,

Alice) belongs to AUTH.

5.2.2 Target Access Control System

In this chapter, the target access control system is Attribute-aware ReBAC system. Before defining

the Attribute-aware ReBAC RuleSet Existence Problem, a complete specification of Attribute-

aware ReBAC policy as well as the rule evaluation procedure is necessary

In order to define an Attibute-aware ReBAC system, the key component is Attribute-aware

Relationship Graph (ARG), which is defined as follows.

Definition 35. Attribute-aware Relationship Graph (ARG)

The Attribute-aware Relationship Graph ARG = (V, VA, VA-RangeSet, UATTValue, EA, EA-

RangeSet, E) is a directed labeled graph where,

a. V is the set of vertices in ARG, representing the set of users in the system.

b. VA is the finite set of atomic user attribute function names {va1, va2, ..., vam}.

c. For each vai ∈ V A, Range(vai) specifies a finite set of atomic values for user attribute vai.

VA-RangeSet = {(vai, value)|vai ∈ V A ∧ value ∈ Range(vai)}.

d. UATTValue denotes the user attribute value assignments. UATTValue = {UATTV aluevai|vai ∈

V A} where UATTV aluevai : V → Range(vai). For convenience, we understand vai(a) to de-

note UATTV aluevai(a), that is the attribute value assignment of an actual user a for attribute

vai.

e. EA is the finite set of edge attribute function names, {ea1, ea2, ..., ean}.
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f. For each eai ∈ EA, Range(eai) specifies a finite set of atomic values for edge attribute eai.

EA-RangeSet = {(eai, value)|eai ∈ EA ∧ value ∈ Range(eai)}.

g. E ⊆ V × V × Range(ea1)× Range(ea2)× ...× Range(ean) is a finite set of directed edges

where, an edge (u, v, σ1, σ2, ..., σn) ∈ E, u 6= v, represents the relations σ1, σ2, ..., σn from user

u ∈ V to v ∈ V in ARG where σ1 ∈ Range(ea1), σ2 ∈ Range(ea2), ..., σn ∈ Range(ean).

Note: For a directed edge e from vertex a to vertex b in ARG, eai(e) specifies the associated

edge attribute value assignment for eai ∈ EA.

Fig. 5.1 presents an ARG where the set of users V = {Alice, Bob, Cathy, Ron}, the set of user

attribute function names, VA = {Gender, Profession}, the set of edge attribute function names,

EA = {Relation− type}, and the set of edges E = { (Alice, Ron, F), (Alice, Bob, F), (Ron, Cathy,

F), (Cathy, Bob, F) }. The user and edge attribute value assignments are shown in Fig. 5.1. The

notion of a path in an ARG is defined as follows:

Definition 36. Path in ARG

Given ARG as in Def. 35 and a vertex pair (u, v) ∈ V × V where u 6= v, a path from u to v is a

sequence of edges where the terminating (i.e., second) vertex of each edge is same as the starting

(i.e., first) vertex of the next edge given by 〈(u, vi, σw1, σw2, ..., σwn), (vi, vj, σx1, σx2, ..., σxn), ...,

(vk, vl, σy1, σy2, ..., σyn), (vl,

v, σz1, σz2, ..., σzn)〉, where

a. u, vi, vj, ..., vk, vl, v ∈ V

b. σw1, σx1, ..., σy1, σz1 ∈ Range(ea1), σw2, σx2, ..., σy2, σz2 ∈ Range(ea2), ..., σwn, σxn, ..., σyn, σzn ∈

Range(ean).

A path p from u to v is said to be simple iff u, vi, vj, ..., vk, vl, v ∈ V are distinct. The length of

p, denoted by |p|, is the number of edges in the path. The attribute aware path label of the path p

from u to v, denoted by pathLabelatt(p), is

(va1(u), va2(u), ..., vam(u)).(σw1, σw2, ..., σwn).(va1(vi), va2(vi), ..., vam(vi)).(σx1,
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σx2, ..., σxn).(va1(vj), va2(vj), ..., vam(vj)).....(va1(vk), va2(vk), ..., vam(vk)).(σy1,

σy2, ..., σyn).(va1(vl), va2(vl), ..., vam(vl)).(σz1, σz2, ..., σzn).(va1(v), va2(v), ...,

vam(v)).

Clearly, pathLabelatt(p) is a string, consisting of concatenated tuples of vertex and edge at-

tribute value assignments, traversed in the same order as the vertices and edges appear in path p.

Note that, the vertex and edge attribute values follow specific orders, given by 〈va1, va2, ..., vam〉

and 〈ea1, ea2, ..., ean〉, respectively. For sth edge in path p where 1 ≤ s ≤ |p|, starting vertex, edge,

and terminating vertex attribute value assignments are represented by (2× s− 1)th, (2× s)th, and

(2× s+ 1)th tuples in pathLabelatt(p), respectively.

Given ARG in Fig. 5.1, the only path p from Cathy to Bob is 〈(Cathy,Bob, F )〉with pathLabelatt(p)

= (Female, Student).(F ).(Male,Officer). Henceforth, we understand path to mean simple path.

Definition 37. Attribute aware ReBAC policy

An Attribute aware ReBAC policy, POLAAR is a tuple, given by 〈 OP, VA, EA, RuleSet〉 where,

a. OP, VA, and EA are as defined in Def. 35.

b. RuleSet is a set of rules where, for each operation op ∈ OP , RuleSet contains a rule Ruleop.

Each Ruleop is specified using the grammar below.

Ruleop ::= Ruleop ∨Ruleop | pathRuleExpr | Attexp

pathRuleExpr ::= pathRuleExpr ∧ pathRuleExpr | (pathLabelExpr)

pathLabelExpr ::= pathLabelExpr.pathLabelExpr | edgeExp

Attexp ::= Attexp ∧ Attexp| uexp = value | vexp = value

edgeExp ::= edgeExp ∧ edgeExp| edgeuexp = value | edgevexp = value | edgeattexp = value

where, value is a atomic constant.

uexp ∈ {va(u)|va ∈ V A}, u is a formal parameter.

vexp ∈ {va(v)|va ∈ V A}, v is a formal parameter.

edgeuexp ∈ {va(e.u)|va ∈ V A}, e.u is a formal parameter.
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edgevexp ∈ {va(e.v)|va ∈ V A}, e.v is a formal parameter.

edgeattexp ∈ {ea(e)|ea ∈ EA}, e is a formal parameter.

Here “." is the concatenation operator. The length of a pathLabelExpr is given by the number

of concatenation operators plus 1. A pathLabelExpr can be split at the point of each . operator into

edgeExp, and numbered sequentially, starting from 1 to the length of the pathLabelExpr.

Based on the stated POLAAR, the following defines an access control system:

Definition 38. Attribute aware ReBAC system

An Attribute aware ReBAC system is a tuple, 〈ARG,POLAAR, checkAccessAAR〉 where ARG

and POLAAR are as in Def. 35 and 37, respectively. For an access request (a, b), checkAccessAAR(a:V,

b:V) ≡ Ruleop(a:V, b:V) where Ruleop is evaluated as follows:

Step 1:

a. for each Attexp in Ruleop, substitute the values va(a) for va(u) and va(b) for va(v), where

va ∈ V A.

b. For a pathLabelExpr in Ruleop, substitute True iff i) there exists a simple path p from a to b in

ARG such that |p| = length of pathLabelExpr, and ii) each sth edgeExpr of the pathLabelExpr

where 1 ≤ s ≤ length of pathLabelExpr, evaluates to True. To evaluate sth edgeExpr, substitute

va(e.u), ea(e), and va(e.v) by the corresponding va ∈ V A, ea ∈ EA, and va ∈ V A attribute

value assignments from (2 × s − 1)th, (2 × s)th, and (2 × s + 1)th tuples in pathLabelatt(p),

respectively.

Step 2:

Evaluate the resulting boolean expression.

User a is permitted to do operation op on object b if and only if Ruleop(a, b) evaluates to True.

For example, given ARG in Fig. 5.1, andRuleop = (Gender(e.u)=Female∧ Profession(e.u)=Student
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∧Relation-type(e) = F∧Gender(e.v)=Male∧ Profession(e.v)=Student),Ruleop(Alice, Ron) eval-

uates to True.

Although both ReBAC and ABAC are powerful, flexible and comparable [2] in expressing

authorization policies, relying solely on one is often insufficient. An example case will be used

in order to compare ABAC policy presented in [13] and ReBAC policy in [11] with the proposed

AReBAC policy in Def. 37. Consider the ARG in Fig. 5.1 and Table 5.1. Each row of table 5.1

represents a case and an associated authorization state example.

1. Row 1 indicates that both AReBAC and ReBAC policies can express the authorization state

(Alice, Bob) whereas only ABAC rules cannot. ABAC rule fails because Alice and Cathy

have the same attribute value combination. The generated ReBAC and AReBAC rules are

“F.F.F" and “(Relation-type(e)=F.Relation-type(e)=F.Relation-type(e)=F)", respectively.

2. Row 2 indicates that both ABAC and AReBAC policies can express the authorization state

(Ron, Bob) whereas only ReBAC rules cannot. ReBAC rule fails because there is only

one path labeled “F.F" from Ron to Bob which is satisfied by unauthorized pair, such as,

(Alice, Cathy). The generated ABAC and AReBAC rule is the same, “Gender(u)=Male ∧

Profession(u)=Student ∧ Gender(v)=Male ∧ Profession(v)=Officer".

3. The 3rd row, authorization state (Alice, Ron), cannot be expressed by both ABAC and

ReBAC. ABAC rule fails because Alice and Cathy have the same attribute value combi-

nation. ReBAC rule fails because the only path label “F" is satisfied by other unautho-

rized pairs, such as (Alice, Bob). The AReBAC rule is “(Gender(e.u)=Female ∧ Profes-

sion(e.u)=Student ∧ Relation-type(e) = F ∧ Gender(e.v)=Male ∧ Profession(e.v)=Student)".

4. The 4th row, Auth = {(Bob, Alice)} is not expressible by only ABAC (Since (Bob, Cathy)

will be allowed), only ReBAC (since no path exists from Bob to Alice), and AReBAC ((Bob,

Cathy) will be allowed and no path exists).

According to the used policy specification language, AReBAC is more expressive than ABAC

[13] and ReBAC [11]. Additionally, it can be clearly observed that, if entity ids are allowed,
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Table 5.1: Example data
ReBAC ABAC AReBAC AUTH

Yes No Yes {(Alice, Bob)}
No Yes Yes {(Ron, Bob)}
No No Yes {(Alice, Ron)}
No No No {(Bob, Alice)}

AReBAC policy will never fail (such as [6]). However, imposing this condition conflicts with core

principles of ABAC and ReBAC. Therefore, the AReBAC policy specification in this study checks

whether the target access control system could be generated avoiding explicit use of unique entity

id. Based on this motivation, ARREP problem will be defined in the next section.

5.3 Attribute-aware ReBAC RuleSet Existence Problem

This section defines the ARREP along with a feasibility detection algorithm and its associated

proof of correctness and complexity analysis.

Definition 39. Attribute aware ReBAC RuleSet Existence Problem(ARREP)

Given an EAS and an ARG as in Def. 34 and 35, respectively, where V=U, does there exist a

RuleSet as in Def. 37 so that the resulting Attribute aware ReBAC system satisfies:

(∀u, v ∈ U)[checkAccessAAR(u, v)⇔ checkAccessEAS(u, v)]

Such a RuleSet, if it exists, is said to be a suitable RuleSet, otherwise the problem is said to be

infeasible.

The following subsection develops a ARREP solution algorithm.

5.3.1 ARREP Solution Algorithm

Algorithm 5.1 resolves the ARREP problem. Given an ARREP instance, it returns either feasible

status and Ruleop, or infeasible status, incomplete Ruleop and failed authorizations. Given any

graph, the task finding all possible simple paths from a source vertex to a target vertex is well

known, hence, details of function FindAllSimplePath() in Algorithm 5.1 are not provided (it can
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be adapted from [11]). The overall complexity of computing all possible paths from a vertex to

another in ARG is O(|E|!) as it considers only simple paths.

Theorem 8. The overall complexity of ARREP feasibility detection Algorithm 5.1 is O(|V |4 ×

(|E|!)).

Proof. In Algorithm 5.2, overall complexity of Lines 1, 4, 2-3 and 5-6 are O(|U |), O(|U |), O(|AUTH|),

and O(|AUTH|), respectively. Therefore, overall complexity of Algorithm 5.2 is O(|AUTH|).

The overall complexity of Algorithm 5.3 is O(|V |) since the maximum number of edges allowed

in a simple path of ARG is |V |-1. Combining all these, the computational complexity of Algo-

rithm 5.1 as follows: Lines 4-7 of Algorithm 5.1 give O(|AUTH|2) complexity. According to the

complexity of FindAllSimplePath() noted before, Lines 9 and 13, both give O(|E|!) complexity.

The overall complexity of Lines 14-15 isO(|V |2×(|E|!)), and the set intersection in Line 16 takes

O(|E|!). Lines 17-21 can be ignored compared to others, therefore, the loop from Lines 8-21 takes

overall O(|V |4 × (|E|!)) complexity as the loop may iterate |AUTH| ≤ |V |2 times. Hence, the

worst case complexity of Algorithm 5.1 is O(|V |4 × (|E|!)).

The correctness proof of Algorithm 5.1 is similar to the feasibility detection algorithm in [11],

and is therefore omitted. Although overall complexity of feasibility detection algorithm in [11] and

Algorithm 5.1 are same, however, the latter may have more or less computation time. If Algorithm

5.2 succeeds ∀(a, b) ∈ AUTH , only O(|AUTH|2) will be the real computational complexity,

which is linear compared to the computed worst case complexity. The computational complexity

significantly reduces even if Algorithm 5.2 succeeds for some (a, b) ∈ AUTH since avoiding

all possible path generation from a source vertex to target vertex in ARG (FindAllSimplePath()

in Line 9) to any extent helps. Otherwise, taking both user and edge attribute value combination

into consideration certainly adds overhead to the computation time of Algorithm 5.1, compared to

feasibility detection algorithm in [11].

Let us consider the ARG in Fig. 5.1 where Range(Relation-type) is changed from {Friendship}

to {Friendship, Parent}. Since the “Parent" relation is not present anywhere as edge attribute
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Algorithm 5.1 ARREP Solution Algorithm
Input: An EAS and an ARG where V=U.
Output: Feasible/infeasible status and Ruleop. If infeasible, set of failed authorization tuples.

1: Ruleop := NULL
2: failedAuthPairs := ∅
3: tempAUTH := AUTH
4: for each (a, b) ∈ tempAUTH do
5: if ABAC-Expr(EAS, VA, UATTValue, a, b) == SUCCESS then
6: if Ruleop is NULL then Ruleop :=

∧
va∈V A

va(u) = va(a) ∧
∧

va∈V A

va(v) = va(b) else

Ruleop := Ruleop ∨
∧

va∈V A

va(u) = va(a) ∧
∧

va∈V A

va(v) = va(b)

7: tempAUTH\ := {(a, b)}
8: while ∃(a, b) ∈ tempAUTH do
9: SP (a, b) := FindAllSimplePath(a,b, ARG)

10: if SP (a, b) = ∅ then
11: failedAuthPairs := failedAuthPairs ∪ {(a, b)} //Not Feasible for (a,b) tuple
12: tempAUTH\ := {(a, b)} and Continue
13: PATHLABELatt(a.b) := {pathLabelatt(p)|p ∈ SP (a, b)}
14: for each pl ∈ PATHLABELatt(a.b) do
15: SATab(pl) = {(c, d) ∈ V × V | there exists a simple path s from c to d in ARG, c6=d,

(c,d) 6∈AUTH, pl=pathLabelatt(s)}
16: Qab :=

⋂
pl∈PATHLABELatt(a.b)

SATab(pl)

17: if Qab 6= ∅ then
18: failedAuthPairs := failedAuthPairs ∪ {(a, b)} //Not Feasible for (a,b) tuple
19: tempAUTH\ := {(a, b)} and Continue
20: ifRuleop is NULL thenRuleop :=

∧
pl∈PATHLABELatt(a.b)

(generateRule(pl)) elseRuleop :=

Ruleop ∨
∧

pl∈PATHLABELatt(a.b)

(generateRule(pl))

21: tempAUTH\ := {(a, b)}
22: if failedAuthPairs is ∅ then
23: return "feasible" and Ruleop
24: else
25: return "infeasible" and failedAuthPairs and Ruleop
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Algorithm 5.2 ABAC-Expr
Input: EAS, VA, UATTValue, vertex a, vertex b.
Output: SUCCESS or FAILURE

1: R1 = {u1|∀va ∈ V A.va(a) = va(u1)}
2: if ∃u1, u2 ∈ R1.(u1, u3) ∈ Auth ∧ (u2, u3) ∈ Auth where u3 ∈ V then
3: return FAILURE
4: R2 = {u4|(∀va ∈ V A.va(b) = va(u4)}
5: if ∃u4, u5 ∈ R2.(u4, u6) ∈ Auth ∧ (u5, u6) ∈ Auth where u6 ∈ V then
6: return FAILURE
7: return SUCCESS

Algorithm 5.3 generateRule
Input: String pathlabel
Output: String rule

1: rule := NULL
2: SubStr := splitStr(pathlabel,".") // The splitStr function splits pathlabel using . into an ordered

list of substrings, and return the saved substrings into an array.
3: numEdges := (number of elements in SubStr-1)÷ 2
4: //rm function returns the given string after removal of leading "(" and trailing ")"
5: for i = 1 to numEdges do
6: tempu := splitStr(rm(SubStr[2*i-1]), ",")
7: tempv := splitStr(rm(SubStr[2*i+1]), ",")
8: tempe := splitStr(rm(SubStr[2*i]), ",")
9: if rule is NULL then rule :=

∧
1≤j≤m

vaj(e.u) = tempu[j] ∧ vaj(e.v) = tempv[j] ∧∧
1≤k≤n

eak(e) = tempe[k] else rule := rule .
∧

1≤j≤m

vaj(e.u) = tempu[j] ∧ vaj(e.v) =

tempv[j] ∧
∧

1≤k≤n

eak(e) = tempe[k] //. means the concatenation

10: return rule

in the ARG, the effect of introducing a new user with “Parent" relation in ARG remains undeter-

mined. This might happen to any ARG with a particular rule structure as change in relationships

or adding a new user may effect the validity of the current rule set. We call this “unrepresented

path labels" problem in ARG. The rule structure in this study compares direct values, the Ruleop

generated by Algorithm 5.1 does consider all user and edge attributes, and ARG is static by nature.

Thereby, unrepresented path labels does not impact the Ruleop.

In order to show a comparison with our AReBAC policy language in user to user relationship

context, the model presented in [18] is compared as follows:
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• By construction, the policy language in this study does not support inverse relationship and

count attribute as in [18].

• The policy language in Def. 37 is unable to count the number of existing paths between

access initiator and target users. Another example is, the policy language in Def. 37 is

unable to compare attribute value assignments of any two particular users along the path

from initiator to target in ARG.

• The policy language in [18] supports the common regular expression feature, wildcard (*

means to 0 to any number), optional (? means 0 or 1) notation, and negative path expression,

while this study completely ignores them.

Clearly the AReBAC rule structure presented in this study is not the most general one. More

expressiveness can be added such as in [18] and current feasibility problem statement could be

correspondingly reformulated.

5.4 ARREP Infeasibility Solution

Given an infeasible ARREP instance as in Def. 39, an infeasibility solution basically generates a

RuleSet which completes the AReBAC system. Formally,

1. An infeasibility solution is said to be exact iff:

(∀u, v ∈ U)[checkAccessAAR(u, v)⇔ checkAccessEAS(u, v)]

2. An infeasibility solution is said to be approximate iff:

(∃u, v ∈ U)[checkAccessAAR(u, v) 6= checkAccessEAS(u, v)]

An infeasibility solution is said to be inclusive approximate only if:

(∀u, v ∈ U)[checkAccessAAR(u, v) = True→ (u, v) ∈ AUTH]

In this section, different approaches for ARREP infeasibility solution will be discussed briefly.

Later on, algorithms for infeasibility solution will be presented.
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5.4.1 Exact Solution

In this subsection, an exact solution to infeasibility in ARREP will be discussed with computational

complexity as well as shortcomings. It is accomplished by adding edges to the given ARG as

follows:

Definition 40. Add relationship edge

Given an ARREP infeasible instance, Algorithm 5.1 returns a set of failed authorization pairs,

failedAuthPairs. Subsequently, the following steps are used:

1. It is assumed that, ∀ea ∈ EA.op 6∈ Range(ea).

2. ∀ea ∈ EA,Range(ea)∪ := op, where op ∈ OP .

3. For each (a, b) ∈ failedAuthPairs, E := E ∪ {(a,b,op,op,...,op)}.

Note*: for all the newly added edges, ∀ea ∈ EA.ea(e) = op.

4. Ruleop := Ruleop ∨ (
∧

ea∈EA

ea(e) = op), Ruleop is returned by Algorithm 5.1.

For example, given the previous infeasible example where Auth = {(Bob,Alice)} and ARG as

in Fig. 5.1, Fig. 5.2 shows the additional edge from Bob to Alice, labeled by the operation op∈ OP

where op is added to Range(Relation-type). The following theorem proofs the correctness of the

stated infeasibility correction approach in Def. 40.

Theorem 9. Def. 40 provides an exact solution to infeasibility in ARREP.

Proof:

As stated, for all (a, b) ∈ failedAuthPairs, adding an edge from vertex a to b in ARG creates

a path of length 1. Clearly, by the checkAccess evaluation presented in Def. 38, all (a, b) ∈

failedAuthPairs satisfies (
∧

ea∈EA

ea(e) = op), and therefore, adding only one term is sufficient

enough for a operation op ∈ OP . Since it is assumed that, ∀ea ∈ EA.op 6∈ Range(ea), therefore,

no other U × U \ failedAuthPairs satisfies (
∧

ea∈EA

ea(e) = op). Hence, the claim is correct.

As stated in Def. 40, the solution adds upto |AUTH| edges to the ARG. Therefore, the worst
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Alice

Cathy

Bob
F

Ron

(Female, Student)

F

F

F

(Female, Student)(Male, Student)

(Male, Officer)

op

Figure 5.2: Additional Relationship edge from bob to Alice

case complexity is linear to the number of authorizations given. However, this solution approach

has limitations. For example, less number of additional edges could be used to resolve the infea-

sibility ( [11]). Furthermore, there might be cases where it is undesirable to alter the given ARG

and Range of attributes at all. Keeping this conditions in mind, the next subsection presents an

inclusive approximate infeasibility solution approach by using additional information to the rule

only, enclosed by [].

5.4.2 Inclusive Approximate Solution

Given an ARG, a radiusValue∈ Z+, and a user a ∈ U , Algorithm 5.4 returns the set of neighbors

within distance radiusValue∈ Z+, denoted by Neighbor[a]. Algorithm 5.4 uses the basic principles

of Breadth First Search (BFS) graph traversal algorithm. Given ARG in Fig. 5.3, user u0, and

radiusValue 2, Algorithm 5.4 returns {(U12, 1), (U13, 1), (U21, 1)}.

It can be observed that given a starting vertex, Algorithm 5.4 considers the direction of edges while

searching for neighbors. A slight modification to Algorithm 5.4, for example, making the search

undirected, could change the number of neighbors found.

Given the same example: ARG in Fig. 5.3, user u0, and radiusValue 2, modifying Algorithm
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u13

u12

u22
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Figure 5.3: Example ARG (user and edge attribute information are ignored).

5.4 with undirected search returns the following:

{(U11, 1), (U12, 1), (U13, 1), (U21, 1), (U22, 2), (U23, 2)}. We leave it to the system designer to uti-

lize the neighbor search direction.

It is evident that the complexity of Algorithm 5.4 is linear: O(|E| × RadiusV alue). In this

study, the radiousValue will be kept to 1. The following definition specifies the additional infor-

mation to resolve infeasibility:

Definition 41. For any (a, b) ∈ U×U, u 6= v, the additional information is denoted byNeighbor(a, b)

defined as follows:∧
va∈V A,(c,i)∈Neighbour(a)

va(u, i) = va(c)∧
∧

va∈V A,(d,j)∈Neighbour(b)

va(v, j) = va(d) where va(u,i) and

va(v,j) are formal parameters, va(c) and va(d) are va attribute value assignment of actual user c and

d.

Based on the defined additional information regarding any pair of vertices in ARG, the follow-

ing definition lists the steps to resolve infeasibility:
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Algorithm 5.4 Approximate Infeasibility Solution Algorithm
Input: ARG, user a, RadiusValue∈ Z+

Output: Neighbor[a]
1: ∀u ∈ U,USED[u] := FALSE
2: USED[a] := True
3: Neighbor[a] := ∅
4: Prev := {a}
5: for r = 1 to RadiusValue do
6: newPrev := ∅
7: //Given an edge e1∈ E, e1.u1 and e1.v1 denotes the starting and terminating vertices, re-

spectively
8: for e1 ∈ E do
9: if e1.u1 ∈ Prev ∧ USED[e1.v1] == FALSE then

10: Neighbor[a] := Neighbor[a] ∪{(e1.v1, r)}
11: USED[e1.v1] := TRUE
12: newPrev ∪ := {e1.v1}
13: if newPrev == ∅ then
14: return Neighbor[a]
15: Prev := newPrev
16: return Neighbor[a]

Definition 42. For each (a, b) ∈ failedAuthPairs, Ruleop := Ruleop ∨
∧

va∈V A

va(u) = va(a) ∧∧
va∈V A

va(v) = va(b) ∧ [Neighbour(a, b)] where the following assumption holds:

there does not exist a (f, g) ∈ AUTH such that i) Neighbour(a,b) = Neighbour(f,g), and ii) the

conjunctive term
∧

va∈V A

va(u) = va(a) ∧
∧

va∈V A

va(v) = va(b) turns true by substituting the value

of va(u) and va(v) by va(f) and va(g), respectively.

Note*: The additional information is enclosed in [] is not a part of the AReBAC rule structure,

therefore, it is evaluated separately from the rule. The Ruleop will be evaluated as stated in Def.

38. For any pair (s, t) ∈ U × U, s 6= t the additional information enclosed in [] is substituted by

True only if Neighbor(s,t) = additional information.

Based on the additional information above, the following theorem proves that the proposed

infeasibility solution is inclusive approximate one:

Theorem 10. As stated in Def. 42, the proposed infeasibility solution is inclusive approximate.

Proof
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According to the assumption provided in Def. 42, it is trivial.

More approaches of infeasibility correction are left as future works.

5.5 Use Cases and Implementation

In this section, use cases with significant results will be discussed briefly. Later on, some imple-

mentation details will be listed with rule minimization technique.

5.5.1 Infeasibility solution with additional information

Given ARG as in Fig. 5.1, AUTH = {(Bob,Alice)}, and radiusValue = 1, Neighbor[Bob] and

Neighbor[Alice] computed by Algorithm 5.4 is given by ∅ and {(Ron, 1), (Bob, 1)}, respectively.

Therefore, by Def. 42:

Ruleop = gender(u) = Male ∧ Profession(u) = Officer ∧ gender(v) =

Female ∧ Profession(v) = Student ∧ [gender(v, 1) = Male ∧ Profession(v, 1) =

Student ∧ gender(v, 1) = Male ∧ Profession(v, 1) = Officer]

As noted before, utilizing the neighbor search direction has it’s pros and cons. If undirected search

for neighbors is used, the example of AUTH = {(Bob,Alice)} can not be resolved as Alice and

Cathy will have the same set of neighbors. Since directed search as stated in Algorithm 5.4 is

used, Neighbor[Cathy] = {(Bob, 1)}. However, undirected neighbor search increases the scope of

finding neighbors within the same computational complexity. We leave further analysis on this as

future work.

5.5.2 Order of operations in Algorithm 5.1

Let Auth be a singleton. It is evident that, for a pair (a, b) ∈ AUTH , Algorithm 5.1 checks whether

it is possible to generate the conjunctive term with the user attribute value assignments only. If that

step fails, it proceeds with all possible path generation from vertex a to b in ARG and follows the
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rest of the procedure. For example, given ARG as in Fig. 5.1 and Auth ={(Ron,Bob)}, consider-

ing Attexp first to generate the conjunctive term results in 〈Gender(u) = Male∧Profession(u) =

Student∧Gender(v) = Male∧Profession(v) = Officer〉whereas the reverse order generates

(Gender(e.u) = Male ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧Gender(e.v) = Female ∧

Profession(e.v) = Student . Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e)

= F ∧ Gender(e.v) = Male ∧ Profession(e.v) = Officer). By observation, it can be precisely con-

cluded, the Ruleop might change due to the order but feasibility result does not change. However,

considering the user attribute information first can significantly reduce the computational complex-

ity if it succeeds, remains same otherwise.

5.5.3 Implementation

Although the rule structure defined in Def. 37 allows any possible combination of user and

edge attributes, Algorithm 5.1 does not eliminate any user or edge attribute while generating

Ruleop. Attribute elimination may results in unrepresented partition and path labels problem,

therefore, rule minimization in this study is limited to finding minimal number of path labels in

conjunctive terms only. As stated in Algorithm 1, for a tuple (a,b) in AUTH, the conjunctive

term is formed by AND’ing all possible path labels from a to b iff i) Algorithm 5.2 fails, and

ii) the conjunctive term evaluates false for all unauthorized tuples. Instead of using all possi-

ble path labels in the conjunctive term of such (a,b), the smallest possible subset (except empty

set) of those is used to form the conjunctive term, ensuring that the minimal size conjunctive

evaluates false for all unauthorized tuples. For instance, given ARG in Fig. 5.1 and AUTH =

{(Alice, Bob)}, i) Algorithm 5.2 returns FAILURE for (Alice, Bob), ii) there exists two paths,

say p1 and p2, from Alice to Bob in ARG where pathLabelatt(p1) and pathLabelatt(p2) are

(Female, Student).(F).(Male,Officer) and (Female, Student).(F).(Male,Student).(F).(Female, Stu-

dent).(F).(Male,Officer). Without any rule minimization, Ruleop generated by Algorithm 5.1 is

given by the conjunction of generateRule(pathLabelatt(p1)) and generateRule(pathLabelatt(p2)),

given by, (Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧Gender(e.v)
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= Male ∧ Profession(e.v) = Officer) ∧ (Gender(e.u) = Female ∧ Profession(e.u) = Student ∧

Relation-type(e) = F ∧ Gender(e.v) = Male ∧ Profession(e.v) = Student . Gender(e.u) = Male

∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧ Gender(e.v) = Female ∧ Profession(e.v) =

Student . Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧ Gender(e.v)

= Male ∧ Profession(e.v) = Officer). The possible subset of path labels in this case is: either one or

both. It is evident that, i) only pathLabelatt(p1) not possible because it is satisfied by unauthorized

pair (Cathy, Bob) ii) only pathLabelatt(p2) is possible because it is not satisfied by any unautho-

rized pair. Thereby, minimum subset of path labels in the conjunction principal reduces Ruleop to

(Gender(e.u) = Female ∧ Profession(e.u) = Student ∧ Relation-type(e) = F ∧ Gender(e.v) = Male

∧ Profession(e.v) = Student . Gender(e.u) = Male ∧ Profession(e.u) = Student ∧ Relation-type(e)

= F ∧ Gender(e.v) = Female ∧ Profession(e.v) = Student . Gender(e.u) = Female ∧ Profession(e.u)

= Student ∧ Relation-type(e) = F ∧ Gender(e.v) = Male ∧ Profession(e.v) = Officer). A simple

Java implementation of ARREP with sample randomly generated cases where the specified rule

minimization technique has been utilized is available upon request.
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CHAPTER 6: EXTENDING THE FEASIBILITY OF RELATIONSHIP

AND ATTRIBUTE-BASED ACCESS CONTROL POLICY MINING

Access control policy mining problem seeks to automate the process of obtaining an equivalent

target policy when a complete source access control system along with supporting data is given.

Access control policy mining algorithms offer promising advancement in automating policy gen-

eration, whereas manual effort requires more time, and could be error-prone.

Feasibility analysis of ReBAC policy mining investigates whether migration to a ReBAC sys-

tem is possible or not when a complete access control system along with supporting relationship

data is given. This chapter studies feasibility analysis of ReBAC policy mining from a different an-

gle, formally named as Extended ReBAC RuleSet Existence Problem (ERREP). Various directions

of ERREP are discussed, defined, and solved algorithmically, along with complexity analysis. A

similar study has been conducted on feasibility analysis of ABAC policy mining as well, Extended

ABAC RuleSet Existence Problem (EAREP) and variations are defined and solved precisely. In

both ReBAC and ABAC cases, notions of exact and approximate infeasibility solutions are devel-

oped and studied with example cases.

6.1 Motivation

Before further discussion, the exact and approximate terms should be cleared briefly. Given a

source and a target access control system, both are equivalent/exact only if i) they have identical

user and resource/object sets, and ii) the authorizations (who can access what) are same, approxi-

mate otherwise.

Consider a scenario where a complete ReBAC system is given. It is trivial to generate the

equivalent enumerated set of authorizations from the given ReBAC system. If some authorizations

are removed or added from the generated set of authorizations, it is no longer equivalent to the

given ReBAC policy. For example, consider the EAS and ReBAC policy definition in [11]. The

directed RG in Fig. 6.1 where V={Alice, Bob, Ray,Tom}, E={(Alice, Tom, F), (Tom, Ray, F),
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(Tom, Bob, F), (Bob, Ray, F)}, Σ = {F} and Ruleop = F.F . The equivalent set of authorizations

is clearly, AUTH = { (Alice, Ray), (Alice, Bob), (Tom, Ray)} and let the EAS tuple consists of

identical user set V, OP = {op}, and AUTH relation. Now, let two authorizations are removed from

AUTH, and it becomes AUTH = { (Alice, Ray)}. Now the given ReBAC policy is representing

more authorizations that the modified AUTH relations.

To generate an equivalent ReBAC policy of the modified authorization set, starting from scratch

with an ReBAC policy mining algorithm (Such as [11]) is an obvious option. However, the question

is, can we use the existing ReBAC policy somehow to generate the target ReBAC policy? We

formulate this question by defining a new problem, Extended ReBAC RuleSet Existence Problem

(ERREP). A few varieties of ERREP are introduced briefly as well.

Similar objectives draw the attention to Extended ABAC RuleSet Existence Problem (EAREP).

If some authorizations are removed or added from the given ABAC system, it is no longer remain

equivalent. Therefore, the similar question raises, can we use the existing ABAC policy somehow

to generate the target ABAC policy?

Alice

Bob

RayFTom
F

F F

Figure 6.1: Directed RG example

6.2 Extended ReBAC RuleSet Existence Problem

In this section, some preliminaries of Extended ReBAC RuleSet Existence Problem (ERREP) will

be noted first. Later, the solution and infeasibility will be discussed briefly.
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6.2.1 Source and Target Access Control System

This chapter studies Extended ReBAC RuleSet Existence problem with EAS (Enumerated Autho-

rization System) and ReBAC system as source access control systems. As mentioned earlier, the

ERREP problem looks for an ReBAC policy, therefore, the target access control system is ReBAC

system as well. Although the idea of ERREP can be accommodated with any ReBAC model, in

order to keep continuity, the EAS and ReBAC system defined in chapter 4 are adopted without

alteration.

Before defining ERREP and variations, a precise measurement of rule quality is needed to be

established since the success of ERREP depends on the amount of reuse of the existing ReBAC

policy. The rule quality metric is defined as follows:

Definition 43. Rule Quality Metric for ERREP

Given a Ruleop for an op ∈ OP using the Def. 28, let the number of pathRuleExpr in Ruleop is

denoted by Card(Ruleop). Let Ruleop does not have any duplicate pathRuleExpr and pr denotes

a pathRuleExpr in Ruleop which is decomposed into pathLabelExprs. The set of pathLabelExprs

present in pr is denoted by pLabels(pr). Let Rule′op denotes another rule for the same op ∈ OP

which follows the same rule structure asRuleop, andRule′op does not have any duplicate pathRule-

Expr. Given Ruleop and Rule′op where op ∈ OP using the Def. 28,

commonTerms(Ruleop,Rule′op) = {pr′|pr′ is a pathRuleExpr inRule′op where there exists a pathRule-

Expr pr in Ruleop such that pLabels(pr’) ⊆ pLabels(pr) }.

The rule quality metric of a Ruleop w.r.t. Rule′op is given by a non negative numeric value:

|commonTerms(Ruleop, Rule′op)|/Card(Rule′op).

Clearly, the maximum possible value of rule quality metric is 1.

Given Ruleop and Rule′op as F.F ∧ F.F.F and F.F , respectively, commonTerms(Ruleop,

Rule′op) = {F.F} since {F.F} ⊆ {F.F.F, F.F}. Subsequently, rule quality metric of Ruleop

w.r.t. Rule′op is given by 1.

Based on the foregoing, Extended ReBAC RuleSet Existence Problem (ERREP) is defined as
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follows:

Definition 44. Extended ReBAC RuleSet Existence Problem (ERREP)

Given 〈U,AUTH,checkAccessEAS〉 as an EAS and 〈RG,POLReBAC , checkAccessReBAC〉 as a

ReBAC system, as shown in Def. 24 and 29, respectively, where i) RuleSet consists of a rule

Rule′op, ii) V=U, and iii) AUTH 6= {(u, v)|u, v ∈ U, checkAccessReBAC(u, v) = true}, does there

exist a Ruleop as defined in Def. 28 such that Rule′op is substituted in the given ReBAC system by

Ruleop and the resulting ReBAC system satisfies:

• (∀u, v ∈ U)[checkAccessReBAC(u, v)⇔ checkAccessEAS(u, v)]

• Rule quality metric as in Def. 43, |commonTerms(Ruleop, Rule′op)|/|Rule′op| is maxi-

mized.

Such a RuleSet consisting of Ruleop, if it exists, is said to be a suitable RuleSet, otherwise the

problem is said to be infeasible.

For example, consider the given RG in Fig. 6.1, Rule′op = F.F , and AUTH = { (Alice,

Ray)}. Clearly, Rule′op satisfies { (Alice, Ray), (Alice, Bob), (Tom, Ray)}. Substituting Rule′op by

Ruleop = F.F ∧ F.F.F makes the EAS and ReBAC system equivalent and the rule quality metric

is 1.

Based the comparison between AUTH and {(u, v)|u, v ∈ U, checkAccessReBAC(u, v) = true},

ERREP is classified into three types as follows:

Definition 45. ERREP Variations

Classification of ERREP completely follows the ERREP defined as in Def. 44 only except condi-

tion (iii) which is substituted by the following accordingly:

1. ERREP-0: AUTH⊂ {(u, v)|u, v ∈ U, checkAccessReBAC(u, v) = true}

2. ERREP-1: {(u, v)|u, v ∈ U, checkAccessReBAC(u, v) = true} ⊂ AUTH

3. ERREP-2: AUTH∩{(u, v)|u, v ∈ U, checkAccessReBAC(u, v) = true} 6= ∅ (assuming it is

not ERREP 0 or1)
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This simple variations make subtle differences in the solving technique of ERREP. The subse-

quent discussion will carry out solutions to all variations of ERREP 0-2.

Theorem 11. ERREP-1 can be solved by using Algorithm 4.1.

Proof

Trivial. By definition of ERREP-1, ReBAC rule is required to be found for only the authorization

set, AUTH \ {(u, v)|u, v ∈ U, checkAccessReBAC(u, v) = true} as the rest of the authoriza-

tions are already covered by given Rule′op. The parameters to be sent to Algorithm 4.1 are fairly

straightforward, and the resulting rule is OR’ed with the given Rule′op. Even in the the case of

infeasibility, an exact infeasibility solution is provided in Chapter 4. Therefore, exact solution is

guaranteed.

6.2.2 ERREP-0 Algorithm

In this subsection, the solution algorithm 6.1 for ERREP-0 is presented along with associated

proofs and complexity analysis. This algorithm iterates through each pathRuleExprs in the given

Rule′op, and looks for a suitable Ruleop which substitutes Rule′op in the given ReBAC system to

make it equivalent to the given EAS, and ensures the maximum utilization of Rule′op. If no such

Ruleop is found, it looks into the Algorithm 4.1 to generate rule for the authorizations left out. If

the Algorithm 4.1 returns infeasible as well, Algorithm 6.1 returns infeasible status.

Let PATHLABEL denotes the set of pathlabels for any vertex pair in the RG. Formally, PATHLA-

BEL(c,d) := {pathLabel(p)| c, d ∈ V, c 6= d and p is a simple path from c to d in RG}.

Theorem 12. Asymptotic complexity of ERREP-0 Algorithm 6.1 is O((Card(Rule′op) × 2|V |
2
) +

|V |4 × |E|!)

Proof:

For simplicity, we assume for each pair (a,b) in V × V, a 6= b, PATHLABEL(a,b) is precomputed

usingO(|V |2×|E|) complexity [11]. We also assume, subsets in line 11 are accessed in decreasing

order.
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Algorithm 6.1 ERREP-0 Solution Algorithm
Input: An ERREP-0 problem instance.
Output: Feasible/infeasible status and Ruleop.

1: Ruleop := NULL, failedPathRuleExpr := ∅
2: for each pathRuleExpr pr in Rule′op do
3: SATpr := U × U
4: for each pl in pLabels(pr) do
5: SATpl = {(c, d) ∈ V × V | there exists a simple path s from c to d in RG, c6=d,

pl=pathLabel(s)}
6: SATpr∩ := SATpl
7: unAuthpr := SATpr \ AUTH
8: Authpr := SATpr \ unAuthpr
9: if Authpr is ∅ then Continue

10: if unAuthpr is ∅ then Ruleop := Ruleop. ∨ pr; Continue
11: for each subset ∈ 2Authpr \ ∅ do
12: PL :=

⋂
(a,b)∈subset

PATHLABEL(a, b)

13: if 6 ∃(c, d) ∈ unAuthpr.PL ⊆ PATHLABEL(c,d) then Break
14: if PL is ∅ then failedPathRuleExpr∪ := pr; Continue
15: if Ruleop is Null then Ruleop :=

∧
pl∈PL∪pLabels(pr)

pl else Ruleop := Ruleop. ∨∧
pl∈PL∪pLabels(pr)

pl

16: Rule′op substitutes Ruleop
17: AUTHReBAC = {(u, v)|u, v ∈ V ∧ checkAccessReBAC(u, v) = True}.
18: if AUTHReBAC == AUTH then return "Feasible" and Ruleop
19: 〈Status,Rule′′op, failedAuthPairs〉 := RREP-0(EAS, RG) //Calling Algorithm 4.1 where

line 3 is substituted by AUTHset := AUTH \ AUTHReBAC

20: if Status == "feasible" then return "Feasible" and Ruleop.∨ := Rule′′op else
21: return "Infeasible" and Ruleop.∨ := Rule′′op and failedAuthPairs
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In order to compute Algorithm 6.1 complexity, the for loop from line 2-15 is the dominant factor.

The for loop from line 2-15 runs Card(Rule′op) times. The for loop from line 4-6 takes O(|V |2 ×

(|V | + |E|)) complexity at the worst case. In addition to this, the for loop of line 11-13 takes

O(2|V |
2
).

Therefore, overall complexity of the loop from line 2-15 is O(Card(Rule′op) × 2|V |
2
). Be-

sides, Algorithm 4.1 in line 19 takes O(|V |4 × |E|!) complexity. Therefore, overall complexity of

ERREP-0 feasibility detection Algorithm 6.1 is O((Card(Rule′op)× 2|V |
2
) + |V |4× |E|!), consid-

ering the rest of the lines produce significantly less complexities.

Based on the complexity analysis, the ERREP-0 algorithm has additional complexity compared

to the starting from scratch using Algorithm 4.1. However, there are multiple significant factors

that should be counted for performance analysis because i) there might be cases when ERREP-0

algorithm is able to completely avoid the use Algorithm 4.1, and ii) line 10 in ERREP-0 algorithm

succeeds frequently means the overall complexity can get significantly lower. Therefore, ERREP-

0 algorithm can provide much better performance based on case to case analysis and we leave the

rest of the analysis for the future work.

For example, consider the directed RG in Fig. 6.1 where V={Alice, Bob, Ray,Tom}, E={(Alice,

Tom, F), (Tom, Ray, F), (Tom, Bob, F), (Bob, Ray, F)}, Σ = {F} and Ruleop = F.F . The equiv-

alent set of authorizations is clearly, AUTH = { (Alice, Ray), (Alice, Bob), (Tom, Ray)} and let

the EAS tuple consists of identical user set V, OP = {op}, and AUTH = { (Alice, Ray)}. Clearly,

it is an ERREP-0 instance. By using Algorithm 6.1, Ruleop = F.F ∧ F.F.F is generated. The

generated Ruleop substitutes Rule′op in the given ReBAC system, and makes the EAS and ReBAC

system equivalent.

Theorem 13. Algorithm 6.1 is correct.

Proof:

Algorithm 6.1 is correct only if the following statement holds:

Given a ERREP-0 instance as in Def. 44, a suitable RuleSet exists iff Algorithm 6.1 generates the
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Ruleop.

Assume, Algorithm 6.1 generates the Ruleop. By specification, Algorithm 6.1 considers each in-

dividual pathRuleExpr in the given Rule′op and checks for the set of authorized tuples by them. If

a pathRuleExpr generates all authorized tuples belongs to given AUTH, it is kept unaltered. On

the other hand, if a pathRuleExpr generates all unauthorized tuples compared to the given AUTH,

it is completely discarded. There is a point to be mentioned here. By the definition of common-

Terms in Def. 43, rule quality metric counts only when the pathRuleExpr is used as it is or some

pathlabels are AND’ed with it. It is trivial that, if the pathlabels are AND’ed with an individual

pathRuleExpr, the set of tuples authorized by pathRuleExpr beforehand, either decreases or re-

mains the same. We understand that removing some pathlabels from the pathRuleExpr is another

way of utilizing it, however, during this study, this concept is ignored because we limit the concept

to utilize the given rule only. If the pathRuleExpr does contain both authorized and unauthorized

tuples, Algorithm 6.1 looks for the set of pathlabels to be AND’ed to the pathRuleExpr being

considered so that all unauthorized tuples authorized by unaltered pathRuleExpr beforehand gets

denied. Algorithm 6.1 continues the same step for each pathRuleExpr and at the end of iteration if

it generated Ruleop is not equivalent to the given AUTH, then it calls for Algorithm 4.1 to generate

rest of the part of the Ruleop. It is already proved that Algorithm 4.1 is correct [11], therefore, by

construction, if a suitable Ruleop exists, algorithm 6.1 finds the Ruleop.

On the other hand, assume, a suitable Ruleop as defined by Def. 44 and ERREP-0 exists. By con-

struction, Algorithm 6.1 considers each individual pathRuleExpr in the given Rule′op and keeps,

ignores and alters them based on the generated authorizations. If a pathRuleExpr generates all au-

thorized tuples belongs to given AUTH, it is kept unaltered. On the other hand, if a pathRuleExpr

generates all unauthorized tuples compared to the given AUTH, it is completely discarded. If the

pathRuleExpr does contain both authorized and unauthorized tuples, Algorithm 6.1 looks for the

set of pathlabels to be AND’ed by considering all possible paths for all authorized tuples satisfied

by the pathRuleExpr and AUTH. By the definition of rule quality metric, Algorithm 5.1 considers

every pathRuleExpr to maximize the goal, and does not use entity ids. If algorithm 6.1 fails, by
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construction, Algorithm 4.1 all possible pathlabels to generate the rest of the rule [11]. Thereby, if

a suitable Ruleop exists, Algorithm 6.1 finds the Ruleop.

Hence, Algorithm 6.1 is correct.

Theorem 14. ERREP-2 can be resolved by slightly modifying and combining the procedure of

Algorithm 4.1 and 6.1.

Proof

By investigation, trivial.

6.2.3 ERREP-0 Infeasibility Solution

This section discusses about an exact and an approximate infeasibility solution of the ERREP-0

problem.

6.2.4 Exact Solution

If Algorithm 6.1 fails, the exact solution is similar to the infeasibility solution defined in [11].

1. For each tuple in the failedAuthPairs, add a relationship edge labeled as op in the RG.

2. Call Algorithm 4.1 again.

Lemma 11. The proposed Exact solution to ERREP-0 is correct.

Proof

Trivial from [11].

6.2.5 Approximate Solution

Exact solution could be the most desired one, however, approximate solution proposed here will

provide flexibility. The proposed solution in subsection 6.2.4 alters the given RG which might not

be desirable in some cases. Therefore, an alternate approximate solution has been proposed here
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which utilizes the aim of rule quality metric.

First step towards the approximate infeasibility correction is, add an attribute named "priority" to

each vertex in the RG. The Ruleop given in Def. 28 is modified in order to accommodate the use

of priority value as follows:

Ruleop ::= Ruleop ∨Ruleop | (pathRuleExpr, priorityOrder)

pathRuleExpr ::= pathRuleExpr ∧ pathRuleExpr |pathLabelExpr

priorityOrder ::=> | φ

pathLabelExpr ::= pathLabelExpr.pathLabelExpr | edgeLabel

edgeLabel ::= σ, σ ∈ Σ

where > and φ represent increasing and don’t care orders, respectively, and Ruleop consists of

disjunction of (pathRuleExpr, priorityOrder) pairs.

The evaluation procedure of checkAccessReBAC(a:V, b:V) in a ReBAC system with the speci-

fied Ruleop is as follows:

(i) for each (pathRuleExpr, Order) pair in Ruleop substitute True if i) for each pathLabelExpr in

the pathRulelExpr, there exists a simple path p from a to b in RG with path label pathLabelExpr,

and ii) priority(a) and priority(b), denoting the vertex priority values associated with user a and b,

respectively, follows the priorityOrder order, otherwise substitute False, (ii) evaluate the resulting

boolean expression.

Note that, priorityOrder don’t care resembles that the order does not matter.

Definition 46. Approximate Solution to ERREP-0

Approximate solution to infeasibility in ERREP-0 can be generated using the following steps.

1. Execute Algorithm 6.1: collect failedPathRuleExpr andRuleop. Note that, calling Algorithm

4.1 can be omitted to reduce complexity.

2. AuthPair := ∅, unAuthPair := ∅

3. For each pathRuleExpr pr in failedPathRuleExpr, i) compute Authpr and AuthPair∪ :=

Authpr, ii) compute unAuthpr and unAuthPair∪ := unAuthpr. (Computation of Authpr
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and unAuthpr is as shown in Algorithm 6.1).

4. Constitute a graph G’ = (V’, E’) where the set of vertices V’ := V, the set of edges E :=

{(c, d)|(c, d) ∈ unAuthPair or (d, c) ∈ AuthPair}.

5. Run topological sort algorithm on G’. If there is an order, the solution is exact. If an or-

der in found, assign priority values to the vertices in decreasing order. The final Ruleop is

Ruleop := Ruleop.
∨

pr∈failedPathRuleExpr

(pr,>). Otherwise, the solution is approximate and

return the existing Ruleop.

Theorem 15. Def. 46 is correct and complexity is linear.

Proof

By investigation of the topological sort algorithm, correctness of the proposed steps are trivial.

The worst complexity is linear as the complexity of running topological sort on a graph is linear.

6.3 Extended ABAC RuleSet Existence Problem

Similar to the previous section, this section defines some preliminaries of Extended ABAC RuleSet

Existence Problem (EAREP). The solution to EAREP and remedies to infeasibility are also noted.

6.3.1 Source and Target Access Control System

This chapter studies Extended ABAC RuleSet Existence problem with EAS (Enumerated Autho-

rization System) and ABAC system as source access control system. Similar to ERREP mentioned

earlier, the EAREP problem looks for an ABAC policy, therefore, the target access control system

is an ABAC system as well. Although the idea of EAREP can be accommodated with any ABAC

model, in order to keep continuity, the EAS and ABAC system defined in chapter 3 are adopted

without alteration.

Before defining EAREP and variations, a precise measurement of rule quality is needed to be

established since the success of EAREP depends on the amount of reuse of the existing ABAC

policy. The rule quality metric is defined as follows:
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Definition 47. Rule Quality Metric for EAREP

Given aRuleop for an op ∈ OP using the Def. 4, let the number of Atomicexp inRuleop is denoted

byCard(Ruleop). LetRuleop does not have any duplicate Atomicexp and ar denotes an Atomicexp

in Ruleop which is decomposed into uexp and oexp. Let, uoLabel(ar) = {(ua,value1)|ua(u)=value1

is a uexp in ar}∪{(oa,value2)|oa(o)=value2 is a oexp in ar}. Let Rule′op denotes another rule for

the same op ∈ OP which follows the same rule structure as Ruleop, and Rule′op does not have any

duplicate Atomicexp. Given Ruleop and Rule′op where op ∈ OP using the Def. 4,

commonTerms(Ruleop,Rule′op) = {ar′|ar′ is an Atomicexpr inRule′op where there exists an Atom-

icexp ar in Ruleop such that uoLabels(ar’) ⊆ uoLabels(ar) }.

The rule quality metric of a Ruleop w.r.t. Rule′op is given by a non negative numeric value:

|commonTerms(Ruleop, Rule′op)|/Card(Rule′op).

Clearly, the maximum possible value of rule quality metric is 1.

It is assumed that, set of operations OP is a singleton, given by {op}, thus eliminated from

further definitions. Based on the foregoing, Extended ABAC RuleSet Existence Problem (ERREP)

is defined as follows:

Definition 48. Extended ABAC RuleSet Existence Problem (EAREP)

Given an EAS = 〈U,O, AUTH,checkAccessAUTH〉 and an ABAC system 〈U, O, UAValue, OAValue,

POLABAC , checkAccessABAC〉 as in Def. 2 and 5, respectively, where i) RuleSet consists of a

rule Rule′op, ii) EAS and ABAC system have identical user and object sets, and iii) AUTH 6=

{(u, o)|(u, o) ∈ U × O, checkAccessABAC(u, v) = true}, does there exist a Ruleop as defined

in Def. 4 such that Rule′op is substituted in the given ABAC system by Ruleop and the resulting

ABAC system satisfies:

• (∀u, o ∈ U ×O)[checkAccessABAC(u, o)⇔ checkAccessAUTH(u, o)]

• Rule quality metric as in Def. 47, |commonTerms(Ruleop, Rule′op)|/|Rule′op| is maxi-

mized.
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Such a RuleSet consisting of Ruleop, if it exists, is said to be a suitable RuleSet, otherwise the

problem is said to be infeasible.

Based the comparison between AUTH and {(u, o)|(u, 0) ∈ U ×O, checkAccessABAC(u, o) =

true}, EAREP is classified into three types as follows:

Definition 49. EAREP Variations

Classification of EAREP completely follows the EAREP defined as in Def. 48 only except condi-

tion (iii) which is substituted by the following accordingly:

1. EAREP-0: AUTH⊂ {(u, v)|u, v ∈ U, checkAccessABAC(u, v) = true}

2. EAREP-1: {(u, v)|u, v ∈ U, checkAccessABAC(u, v) = true} ⊂ AUTH

3. EAREP-2: AUTH∩{(u, v)|u, v ∈ U, checkAccessABAC(u, v) = true} 6= ∅ (assuming it is

not EAREP 0 or1)

This simple variations make subtle differences in the solving technique of EAREP. The subse-

quent discussion will carry out solutions to all variations of EAREP 0-2.

Theorem 16. EAREP-1 can be solved by using Algorithm 4.1.

Proof

Trivial. By definition of EAREP-1, ABAC rule is required to be found for only the authorization

set, AUTH \ {(u, o)|u, o ∈ U ×O, checkAccessABAC(u, o) = true} as the rest of the authoriza-

tions are already covered by given Rule′op. The parameters to be sent to Algorithm 3.1 are fairly

straightforward, and the resulting rule is OR’ed with the given Rule′op. Even in the the case of

infeasibility, an exact infeasibility solution is provided in Chapter 3. Therefore, exact solution is

guaranteed.

6.3.2 EAREP-0 Algorithm

In this subsection, the solution algorithm 6.2 for EAREP-0 is presented along with associated

proofs and complexity analysis. This algorithm iterates through each AtomicExp in the given
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Algorithm 6.2 EAREP-0 Solution Algorithm
Input: An EAREP-0 problem instance.
Output: Feasible/infeasible status and Ruleop.

1: Ruleop := NULL
2: for each Atomicexpr ar in Rule′op do
3: SATar := {u1 ∈ U |ua ∈ UA ∧ ∀(ua, v1) ∈ uoLabel(ar).ua(u1) = v} × {o1 ∈ O|oa ∈

OA ∧ ∀(oa, v2) ∈ uoLabel(ar).oa(o1) = v2}
4: unAuthar := SATar \ AUTH
5: Authar := SATar \ unAuthar
6: if unAuthar is ∅ then Ruleop := Ruleop. ∨ ar; Continue
7: UA′ := UA \ {ua|ua ∈ UA ∧ (ua, v1) ∈ uoLabel(ar)}, OA′ := OA \ {oa|oa ∈ OA ∧

(oa, v2) ∈ uoLabel(ar)}
8: if UA′ == ∅ ∧OA′ == ∅ then Continue
9: ATTValSet := {(ua, ua(u1))|ua ∈ UA′} ∪ {(oa, oa(o1))|oa ∈ OA′} where (u1, o1) ∈

Authar
10: Find UL ⊆ ATTV alSet such that 6 ∃(u2, o2) ∈ unAuthar so that PL ⊆ AttV (u2, o2)

where for any (u, o) ∈ U × O, AttV(u,o) = {(ua, ua(u))|ua ∈ UA}∪{(oa, oa(o))|oa ∈
OA}

11: if UL is ∅ then Continue
12: if Ruleop is Null then Ruleop := ar ∧

∧
(ua,val1)∈UL

ua(u) = val1 ∧
∧

(oa,val2)∈UL

oa(o) = val2

else Ruleop := Ruleop. ∨ ar ∧
∧

(ua,val1)∈UL

ua(u) = val1∧
∧

(oa,val2)∈UL

oa(o) = val2

13: Rule′op substitutes Ruleop
14: AUTHABAC = {(u, o)|u, o ∈ U ×O ∧ checkAccessABAC(u, o) = True}.
15: if AUTHABAC == AUTH then return "Feasible" and Ruleop else Call Algorithm 3.1 for

feasibility “status” for the AUTH \ AUTHABAC and generate Rule′′op
16: if Status == "feasible" then return "Feasible" and Ruleop.∨ := Rule′′op else
17: return "Infeasible" and Ruleop.∨ := Rule′′op
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Rule′op, and looks for a suitable Ruleop which substitutes Rule′op in the given ABAC system to

make it equivalent to the given EAS, and ensures the maximum utilization of Rule′op. If no such

Ruleop is found, it looks into the Algorithm 3.1 to generate rule for the authorizations left out. If

the Algorithm 3.1 returns infeasible as well, Algorithm 6.2 returns infeasible status.

As shown in Chapter 3, finding feasibility of ABAC RuleSet Existence Problem takes O(|U |×

|O|) when OP is a singleton. Therefore, the dominant factor in EAREP-0 Algorithm 6.2 are the

number of AtomicExpr in Ruleop multiplied by complexity of line 10 where worst case could be

exponential. However, that does not make the proposed solution worse than starting from scratch

approach as in Chapter 3. There are multiple factors, i) there might be cases where Algorithm 3.1

is not needed at all, and ii) if line 6 succeeds more frequently, most of the complexities can be

avoided. Therefore, a case-based comparative study is needed to analyze the performance.

Theorem 17. Algorithm 6.2 is correct.

Proof:

The proof is very similar to Theorem 13. Therefore, omitted.

Theorem 18. EAREP-2 can be resolved by slightly modifying and combining the procedure of

Algorithm 3.1 and 6.2.

Proof

By investigation, trivial.

6.3.3 EAREP-0 Infeasibility Solution

This section discusses about an exact and an approximate infeasibility solution of the EAREP-0

problem.

6.3.4 Exact Solution

If Algorithm 3.1 fails, the exact solution is similar to the infeasibility solution defined in [13],

adding an user attribute and an object attribute to the UA and OA, respectively. The complete
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details to resolve infeasibility can be found in [13], hence, omitted.

Theorem 19. Exact solution to ERREP-0 infeasibility always maximizes the rule quality metric.

Proof:

By observation of the infeasibility solution procedure in 3, the additional attributes preserves the

original Atomicexpr while additional (attribute,value) expression is AND’ed to it. Thereby, trivial.

6.3.5 Approximate Solution

Exact solution could be the most desired one, however, approximate solution proposed here will

provide flexibility. The proposed solution in subsection 6.3.4 alters the given UA and OA which

might not be desirable in some cases. Therefore, an alternate approximate solution has been pro-

posed here which utilizes the aim of rule quality metric.

The proposed approximate solution is straightforward and does not add complexity at all. By the

definition provided in chapter 3, conflict-free partitions are used to generate conjunctive terms

which are ‘OR‘ed to the Ruleop. To keep it simple enough, we propose to discard the conflicted

partitions completely and use the conjunctive terms generated from conflict-free partitions only.

By observation, it can be clearly said, the proposed approximate solution will never allow more

authorizations than the given AUTH, therefore, with the cost of restricting the power of Ruleop,

the system is protected from unauthorized access. By investigation of the conflict-free partition

and Ruleop generation concept in Chapter 3, the approximate solution claim holds and the proof is

trivial.

6.4 Case Studies

This section provides two detailed case studies for ERREP and EAREP, respectively.

6.4.1 ERREP Case Study

The following example shows a relevant case of the infeasibility solutions proposed for ERREP.
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Figure 6.2: Infeasbility examples

Figure 6.3: Infeasbility examples

First, consider the directed RG in Fig. 6.2(a) where V = {Alice, Bob, Cathy, Ray}, E = {(Alice,

Bob, op), (Bob, Cathy, op), (Cathy, Ray, op), (Ray, Alice, op)}, and Σ = {F}. Let AUTH =

{(Alice, Bob)} and Rule′op = F . Algorithm 6.1 fails here. Therefore, the exact solution is adding

an relationship edge from Alice to Bob labeled as op as shown in Fig. 6.2(b). According to the

aforementioned steps, Ruleop = op.

Second, consider the same Directed RG in Fig. 6.2(a) w.r.t. AUTH = {(Alice, Bob)} and

Rule′op = F . As described by Def. 46, AuthPair = {(Alice, Bob)} and unAuthPair = {(Ray,Alice),

(Bob, Cathy), (Cathy,Ray)} and the resulting G’ is shown in Fig. 6.3(c). The topological sort

algorithm returns a order Alice-> Ray-> Cathy -> Bob. According to that, the assigned priority

values are shown in Fig. 6.3(d) and the final Ruleop is (F, >).

6.4.2 EAREP Case Study

Here, an example of exact solution of EAREP will be shown first. Later, the proposed rigorous

approximate solution will be shown on the same example. We reuse an example data from [13] for
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Table 6.1: Example ABAC data

(a) UAValue
User uat1
u1 F
u2 F
u3 F
u4 G
u5 G

(b) OAValue
Object oat1

o1 F
o2 F
o3 F
o4 G

(c) Range of attributes
uat1 {F,G}
oat1 {F,G}
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Figure 6.4: Refined partition set example.

this one.

Fig. 6.4 shows the resulting partitions for Table 6.1 where, bold black user-object pairs be-

long to AUTH with respect to OP = {op} and rest are not. Here, U = {u1, u2, u3, u4, u5},

O = {o1, o2, o3, o4}, UA = {uat1}, OA = {oat1}, and Table 6.1 shows user attribute value as-

signment (UAValue), object attribute value assignment (OAValue), and range of attributes in (a),

(b), and (c), respectively. The given ABAC rule, Rule′op is (uat1(u) = F ∧ oat1(o) = F ) ∨

(uat1(u) = G ∧ oat1(o) = G). To make visual comparison, the dotted rectangles in Fig. 6.4

shows partition set P for Table 6.1 as defined in Section 3.4. Clearly, this is an EAREP-0 instance.

As per Algorithm 6.2, (uat1(u) = G ∧ oat1(o) = G) satisfies only authorizations belongs to

AUTH, therefore, utilized in the rule. The other one, (uat1(u) = F ∧ oat1(o) = F ) satisfies both

authorized and unauthorized pair, but no additional user and object attributes remain to be consid-

ered, therefore, ignored. The Algorithm 6.2 returns infeasibility as well, therefore, the rule quality

measure is 0.5 here. In order to provide an infeasibility solution, the leftmost conflicted parition is

refined into four sub-partitions using the exact infeasibility solution procedure.
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For instance, given a conflict partition, Pi in Fig. 6.4 where only (u1, o1) belongs to AUTH

with respect to op, it is refined into four new partitions. Initially, uListi is {u1, u2, u3} and oListi

is {o1, o2, o3}. According to Algorithm 3.2, uListi is further partitioned into {{u1}, {u2, u3}}.

Similarly, oListi is further partitioned into {{o1}, {o2, o3}}. The resulting refined partitions has

same PV, given by {(uat1, F ), (oat1, F )}. According to Definition 22 and Algorithm 3.2, let exU

value for {u1} and {u2, u3} be 1 and 2, respectively. Similarly, {o1} and {o2, o3} are assigned 3

and 4 for exO, respectively. Thereby, resulting unique PVnew value for the refined partitions are

{(uat1, F), (oat1, F), (exU, 1), (exO, 3)}, {(uat1, F), (oat1, F), (exU, 1), (exO, 4)}, {(uat1, F), (oat1,

F), (exU, 2), (exO, 3)}, and {(uat1, F), (oat1, F), (exU, 2), (exO, 4)}, respectively.

Based on this, two partitions {(u1, o1)}, and {(u4, o4), (u5, o4)} are included in Ruleop and

rule quality metric is 1 now. Hence, Ruleop is (uat1(u) = F ∧ oat1(o) = F ∧ exU(u) =

1 ∧ exO(o) = 3) ∨ (uat1(u) = G ∧ oat1(o) = G) and the RuleSet is {Ruleop}. In this example,

both exU and exO are used for RuleSet Infeasibility Correction.

The approximate solution to this problem is straightforward, discarding the conflicted partitions

generates the Ruleop as (uat1(u) = G ∧ oat1(o) = G).

6.5 Summary

This concludes the chapter. The extension works on the feasibility of ReBAC and ABAC policy

mining are introduced and more analysis will be added in the future.
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CHAPTER 7: CONCLUSION AND FUTURE WORK

This chapter summarizes the contributions made in this dissertation work. Furthermore, it dis-

cusses the possible enhancement and future directions briefly.

7.1 Summary

To the best of our knowledge, feasibility analysis in access control policy mining is the first such

study made on the domain of access control policy mining. In order to analyze the feasibility,

the first step is to identify the source and target access control system. After that, prime concern

is whether supplementary information required, and a precise set of criteria or objectives. For

example, given an RBAC System as source and ABAC system as target, supplementary data is

optional [14], and the significant criteria is the target system is equivalent or approximate as com-

pared to the source where entity id based rules are not allowed. This work presents an insightful

study on the feasibility of ABAC, ReBAC, and AReBAC policy mining. Finally, an extension of

the ABAC and ReBAC policy mining is proposed.

First work is on ABAC policy mining [13,14]: as shown in Chapter 3, ABAC RuleSet Existence

problem is defined and analyzed here for EAS and RBAC as source access control systems. In

order to devise a feasibility solution, set partition based approaches are utilized, and an idea of

conflict-free partition is developed. Finally, ABAC rule is generated, regardless of infeasibility

issues as we provide an additional attribute based remedy to the infeasibility problem arise here.

Furthermore, associated proofs and complexity analysis are presented.

Second work is on ReBAC policy mining [11]: ReBAC policy mining is an emerging research

field. As shown in Chapter 4, The ReBAC policy mining feasibility problem entails determining

whether a ReBAC policy exists with the given structure and assumptions and, if so, how to obtain

it. This topic is investigated in the context of various ReBAC policy languages, which differ in the

types of relationships, inverse relationships, and non-relationships that can be utilized to construct

the policy. We devise a feasibility detection technique and assess its difficulty. We show that when
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we add more capabilities to our policy languages, they become more expressive. Various solutions

are discussed in the event of infeasibility.

Third work is on AReBAC policy mining [12]: as shown in Chapter 5, this research investigates

if an Enumerated Authorization System (EAS) can be converted to an AReBAC system using

supporting attribute and relationship data. In this study [12], the Attribute-aware ReBAC Ruleset

Existence Problem (ARREP) is explicitly defined for the first time, and it is solved algorithmically

via complexity analysis. In the event of infeasibility, equivalent and approximate solutions are

devised. Future enhancement directions are included in this study.

As shown in Chapter 6, fourth work is on a novel direction on the feasibility of ABAC and

ReBAC policy mining: this work studies feasibility analysis of ReBAC policy mining from a novel

direction, formally named as Extended ReBAC RuleSet Existence Problem (ERREP). Various

directions of ERREP are discussed, defined, and solved algorithmically, along with complexity

analysis. A similar study has been conducted on feasibility analysis of ABAC policy mining as

well, Extended ABAC RuleSet Existence Problem (EAREP) and variations are defined and solved

precisely. In both ReBAC and ABAC cases, notions of equivalent and approximate infeasibility

solutions are developed. Finally, an elaborated case study has been included to clarify the concept.

7.2 Future Work

The study of access control policies is a relatively new area. As a result, the feasibility analysis

of access control policy mining offers a novel route that includes certain interesting research di-

rections as well as open research challenges that can be investigated. The research findings are

attractive, and adopting them with real-world complex data is a major goal for the future. The

final goal of this dissertation is to address the aforementioned concerns and to expand on them in

numerous dimensions in order to enhance the newly developed feasibility problem domain.

• The future directions of Chapter 3 are as noted in [13, 14]. First things to be considered

here is that whether we can improve the complexity of feasibility detection and infeasibility

solution approaches. As ABAC RuleSet Existence Problem is defined now, variety of exact
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and approximate solutions can be proposed, and real industry data can be used to validate

and analyze the execution time as well. For example, as discussed in Chapter 3, a conflicted

partition can be split into two or more fragments, however, a solution where we can always

divide the conflicted partition into two conflict-free partition would be much better solution.

Another aspect is whether addition of more attributes can impact the infeasibility solution

approach. The impact of combining positive and negative ABAC rules could improve or

degrade the current procedure as well. A statistical study on the feasibility of ABAC policy

mining is the ultimate goal now to ensure the optimal outcome.

• As included in [11], the future direction of RREP will be noted here. In this study, the Re-

BAC RuleSet Existence Problem is being defined for the first time. Significant directions

for improvement remain as open research problem. For example, ReBAC rule minimiza-

tion, reducing exponential asymptotic complexity of the proposed algorithm, etc. Further-

more, adding more feature to the given rule structure, or the impact of proposing a new rule

structure and a study on how the proposed algorithm is modified with it could be appealing

reasearch problem. A more optimized question could be whether the feasibility detection

process can be totally automated given any ReBAC rule structure. A study on RG with cy-

cles and loops along with considering unlimited path length will be an interesting direction

to consider. If significantly adjusted, our current technique would work with paths that in-

clude cycles and have a length restriction. We haven’t looked into cycles that aren’t limited

in length. Extending the feasibility problem formulation as well as infeasibility solutions

beyond user to user context is another key direction.

• As shown in Chapter 5 and [12], the ARREP has been introduced for the first time, to the

best of our knowledge. A few directions for future enhancement will be addressed briefly.

The proposed feasibility detection algorithm produces overall exponential asymptotic com-

plexity. A significant form of improvement would be reducing the computation complexity.

Extending the ARREP to other entities and consideration of various rule structures can be

interesting research problems as well. More efficient infeasibility solution approaches (both

110



exact and approximate) can be proposed, which remained as open research problem. We

consider cycle-free paths in ARG only. Including the cycle could be an interesting direction.

Introducing different type of path in ARG, such as complementary path from [11], can opti-

mize the current infeasibility solution approach. Additionally, the given ARG is static here.

Accommodating the changes in ARG could be a valuable extension.

• As shown in Chapter 6, the proposed ERREP and EAREP offers some flexibility in redesign-

ing the policy, especially when the existing policy is slightly modified. We leave the big case

analysis with real world examples for future study.

This dissertation establishes the framework for feasibility in access control policy mining. It is

now an open field where new issues can be incorporated as new access control models joins the

domain.
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