
A FRAMEWORK FOR QUANTIFYING SECURITY EFFECTIVENESS OF CYBER

DEFENSES

by

HUASHAN CHEN, M.Sc.

DISSERTATION
Presented to the Graduate Faculty of

The University of Texas at San Antonio
In Partial Fulfillment
Of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY IN COMPUTER SCIENCE

COMMITTEE MEMBERS:
Ravi Sandhu, Ph.D., Co-Chair
Shouhuai Xu, Ph.D., Co-Chair

Mimi Xie, Ph.D.
Xiaoyin Wang, Ph.D.

Gregory B. White, Ph.D.

THE UNIVERSITY OF TEXAS AT SAN ANTONIO
College of Sciences

Department of Computer Science
October 2021

Copyright 2021 Huashan Chen
All rights reserved.

DEDICATION

In loving memory of my father, Mr. Wenwu Chen, who will be in my heart forever.

To my mother, Mrs. Yuexia Xi, for her tremendous love, patience and trust.

To my wife, Shanshan Ding, and her family, for their unconditional support.

To my sister, Xiaohong Chen, for her continuous encouragement.

ACKNOWLEDGEMENTS

I would like to express my most sincere gratitude and deepest appreciation to my advisor, Dr.

Shouhuai Xu, for taking me into the challenging but exciting field of Cybersecurity. Without his

great guidance, unlimited support, and continuous encouragement throughout my doctoral studies,

this dissertation cannot be accomplished. His scientific attitude, holistic vision, creative thinking,

and extreme enthusiasm on the research inspired me not only the way to approach a technical hard

problem but also how to overcome difficulties in my life.

I would like to express my gratitude to my co-advisor Dr. Ravi Sandhu and other committee

members Dr. Mimi Xie, Dr. Xiaoyin Wang and Dr. Gregory B. White for their insightful comments

and helpful suggestions on the dissertation.

I would like to thank my lab colleagues Dr. Marcus Pendleton, Dr. Richard B. Garcia-Lebron,

Dr. John Charlton, Zheyuan Sun, Eric Ficke, and Mir Mehedi Ahsan Pritom for their sharing of

ideas. I have benefited a lot from my interactions with them.

I would like to thank Suzanne Tanaka, Susan Allen, Lisa Ho and other staff members from the

ICS and the CS department at UTSA for their great help during my doctoral studies.

I would like to thank my friends Sen He and Jinfu Chen for their various help, and other friends

at UTSA for their companionship during this wonderful journey.

This PhD Dissertation research was supported in part by ARO Grant #W911NF-17-1-0566 and

NSF Grant #2122631 (#1814825).

This Masters Thesis/Recital Document or Doctoral Dissertation was produced in accordance
with guidelines which permit the inclusion as part of the Masters Thesis/Recital Document or Doc-
toral Dissertation the text of an original paper, or papers, submitted for publication. The Masters
Thesis/Recital Document or Doctoral Dissertation must still conform to all other requirements
explained in the Guide for the Preparation of a Masters Thesis/Recital Document or Doctoral Dis-
sertation at The University of Texas at San Antonio. It must include a comprehensive abstract, a
full introduction and literature review, and a final overall conclusion. Additional material (proce-
dural and design data as well as descriptions of equipment) must be provided in sufficient detail to
allow a clear and precise judgment to be made of the importance and originality of the research
reported.

It is acceptable for this Masters Thesis/Recital Document or Doctoral Dissertation to include
as chapters authentic copies of papers already published, provided these meet type size, margin,

iv

and legibility requirements. In such cases, connecting texts, which provide logical bridges between
different manuscripts, are mandatory. Where the student is not the sole author of a manuscript, the
student is required to make an explicit statement in the introductory material to that manuscript
describing the students contribution to the work and acknowledging the contribution of the other
author(s). The signatures of the Supervising Committee which precede all other material in the
Masters Thesis/Recital Document or Doctoral Dissertation attest to the accuracy of this statement.

October 2021

v

A FRAMEWORK FOR QUANTIFYING SECURITY EFFECTIVENESS OF CYBER

DEFENSES

Huashan Chen, Ph.D.
The University of Texas at San Antonio, 2021

Supervising Professors: Ravi Sandhu, Ph.D. and Shouhuai Xu, Ph.D.

Cybersecurity metrics and quantification is a holy-grail challenge that has yet to be tackled.

While significant progress has been made in quantifying building-blocks security, the problem

of quantifying security from a holistic perspective is largely open. One fundamental factor that

makes the problem so hard is the dynamics phenomenon incurred by complex attacker-defender-

user interactions in cyberspace, meaning that the networked system itself, the employed defense

posture, the adversaries, the users behaviors, and the global cybersecurity state evolve with time.

This Dissertation makes a significant step towards ultimately understanding, characterizing,

quantifying and managing cybersecurity from a holistic perspective, by proposing a high-fidelity

simulation framework to model cyber attack-defense interactions while making weak assumptions.

The framework falls under the Cybersecurity Dynamics approach, meaning that networks, users,

attacks, defenses, and cybersecurity states all can evolve with time. The usefulness of the frame-

work is demonstrated by three scenarios: quantifying security effectiveness of firewalls and DMZs;

quantifying security effectiveness of coarse-grained dynamic network diversity; and quantifying

security effectiveness of fine-grained static network diversity.

vi

TABLE OF CONTENTS

Acknowledgements . iv

Abstract . vi

List of Tables . xi

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Background and Research Motivation . 1

1.2 Research Focus of the Present Dissertation . 2

1.3 Dissertation Overview . 3

1.3.1 A General Framework (Chapter 2) . 3

1.3.2 Quantifying Security Effectiveness of Firewalls and DMZs (Chapter 3) . . 3

1.3.3 Quantifying Security Effectiveness of Network Diversity (Chapters 4-5) . . 4

1.4 Dissertation Organization . 6

Chapter 2: A High-Fidelity Simulation Framework . 1

2.1 Chapter Introduction . 1

2.2 Representations . 3

2.2.1 Representation of Networked Systems . 3

2.2.2 Representation of Vulnerabilities . 4

2.2.3 Representation of Attacks . 5

2.2.4 Representation of Defenses . 6

2.2.5 Representation of Cybersecurity State . 7

2.3 Chapter Summary . 7

vii

Chapter 3: Quantifying Security Effectiveness of Firewalls and DMZs 8

3.1 Chapter Introduction . 8

3.1.1 Chapter Contributions . 9

3.1.2 Related Work . 10

3.1.3 Chapter Organization . 10

3.2 Instantiating the Framework to Quantify Security Effectiveness of Firewalls and

DMZs . 11

3.2.1 Representation of Enterprise Networks 11

3.2.2 Representation of Vulnerabilities . 19

3.2.3 Representation of Attacks . 21

3.2.4 Representation of Defenses . 29

3.2.5 Metrics for Measuring the Cybersecurity State of an Enterprise Network . . 31

3.3 Simulation Experiments and Results . 31

3.3.1 Simulation Setting and Methodology . 31

3.3.2 Simulation Results and Analysis . 35

3.4 Chapter Summary . 38

Chapter 4: Quantifying Security Effectiveness of Coarse-Grained Dynamic Network Di-

versity . 39

4.1 Chapter Introduction . 39

4.1.1 Chapter Contributions . 40

4.1.2 Related Work . 41

4.1.3 Chapter Organization . 44

4.2 Instantiating the Framework to Quantify Security Effectiveness of Coarse-Grained

Dynamic Network Diversity . 44

4.2.1 Representation of Enterprise Networks 47

4.2.2 Representation of Vulnerabilities . 51

4.2.3 Representation of Attacks . 52

viii

4.2.4 Representation of Defenses . 54

4.2.5 Metrics for Measuring the Cybersecurity State of an Enterprise Network . . 56

4.3 Simulation Experiments and Results . 60

4.3.1 Simulation Setting and Methodology . 61

4.3.2 Simulation Results and Analysis . 67

4.4 Chapter Summary . 80

Chapter 5: Quantifying Security Effectiveness of Fine-Grained Static Network Diversity 81

5.1 Chapter Introduction . 81

5.1.1 Chapter Contributions . 82

5.1.2 Related Work . 83

5.1.3 Chapter Organization . 84

5.2 Instantiating the Framework to Quantify Security Effectiveness of Fine-Grained

Static Network Diversity . 85

5.2.1 Representation of Enterprise Networks 85

5.2.2 Representation of Vulnerabilities . 93

5.2.3 Representation of Attacks . 94

5.2.4 Representation of Defenses . 100

5.2.5 Metrics for Measuring the Cybersecurity State of an Enterprise Network . . 103

5.3 Simulation Experiments and Results . 104

5.3.1 Simulation Setting and Methodology . 105

5.3.2 Simulation Results and Analysis . 109

5.4 Chapter Summary . 122

Chapter 6: Conclusion . 123

6.1 Summary of the Dissertation . 123

6.2 Future Research Directions . 124

ix

6.2.1 Future Research Related to Quantifying Security Effectiveness of Fire-

walls and DMZs . 124

6.2.2 Future Research Related to Quantifying Security Effectiveness of Coarse-

Grained Dynamic Network Diversity . 125

6.2.3 Future Research Related to Quantifying Security Effectiveness of Fine-

Grained Static Network Diversity . 126

6.2.4 Future Research Towards the Ultimate Goal 126

Bibliography . 128

Vita

x

LIST OF TABLES

Table 3.1 Summary of key notations used for quantifying security effectiveness of

firewalls and DMZ. 12

Table 4.1 Summary of key notations used for quantifying security effectiveness of

dynamic network diversity. 48

Table 5.1 Summary of key notations used for quantifying security effectiveness of

static network diversity. 86

Table 5.2 Description of the explanatory variables and the dependent variables pca

and pcos. 121

xi

LIST OF FIGURES

Figure 2.1 A framework for systematically modelling cyber attack-defense interac-

tion, which refines an earlier framework we proposed in [24]. 1

Figure 3.1 A graph-theoretic representation of computer i, namely Gi = (Vi, Ei), in

an enterprise network of n computers. 15

Figure 3.2 Illustration of the inter-computer communication relation. 17

Figure 3.3 An attack lifecycle model adapted from Lockheed Martin’s Cyber Kill

Chain [65] and Mandiant’s Attack Life Cycle [95]. 22

Figure 3.4 Five combinations of firewalls and DMZ employment (identified by γ =

0, 1, 2, 3, 4 and elaborated in the text). 34

Figure 3.5 pca(t) and pcsa(t) of different combinations of firewalls and DMZ. 36

Figure 3.6 pca(T) and pcsa(T) with T = 100 and different γ’s (i.e., combinations of

firewalls and DMZ). 36

Figure 3.7 ∆pca(T, γ) and ∆pcsa(T, γ) with T = 100 and different γ’s. 38

Figure 4.1 Illustration of dynamic diversity in a network of 5 computers (1 ≤ i ≤ 5).

The time horizon shown is t = 0, 1, . . . , 5. 45

Figure 4.2 The COODAL framework for characterizing the effectiveness of dynamic

network diversity. 46

Figure 4.3 Modeling the local effect of dynamic network diversity at the program level

(i.e., program running at v ∈ V). 56

Figure 4.4 Illustration of the relationships between the metrics, where “X → Y ”

means X is a factor in determining Y . 60

Figure 4.5 Illustration of our agent-based simulation of attack-defense experiments. . . 62

xii

Figure 4.6 Attacker A’s 5-phase strategy (i.e., γA,1, . . . , γA,5) and possible decisions

(i.e., the arrows), which are adopted from ATT&CK’s attack simulator

called CALDERA [9]. 64

Figure 4.7 Plots of attacker slow-down ASDD,q under different diversity strategies

(where reactive is short for reactive-adaptive) with varying tolerable com-

promise threshold τ , where 2 ≤ q ≤ 5 and dotted vertical lines indicate τ

= 1/3. 69

Figure 4.8 Plots of AWDG,~,X,Q(A,Dq, 500) and AECD,q with 2 ≤ q ≤ 5. 73

Figure 4.9 Plots of AWDG,~,X,Q(A,Dq, 500) and VTD,q with 2 ≤ q ≤ 5. 74

Figure 4.10 Plots of AWDG,~,X,Q(A,D3, 500) and AOCmin
D,3. 76

Figure 4.11 Plots of AWDG,~,X,Q(A,D4, 500) and AOCD,4. 77

Figure 4.12 Plots of AWDG,~,X,Q(A,D5, 500) and AOCD,5. 78

Figure 4.13 Plots of ASDD,q and AECD,q, where 2 ≤ q ≤ 5. 79

Figure 5.1 A graph-theoretic representation of computer i (or the i-th computer), de-

noted by Gi = (Vi, Ei). 89

Figure 5.2 Illustration of the communication relation with E0 = {(appi,2, appj,1)}. . . 91

Figure 5.3 The proposed attack lifecycle model inspired by [65, 95]. 95

Figure 5.4 Example network used for the simulation study. 105

Figure 5.5 Plots of pca(t) and pcos(t) with natural diversity. 110

Figure 5.6 Plots of attacker’s effort |X| with respect to fixed ζ and cor. 112

Figure 5.7 Plots of pca(100) and pcos(100). 114

Figure 5.8 Plots of pca and pcos highlighting the smooth, rather than abrupt, decreases

in security with increasing attacker capabilities. 115

Figure 5.9 pca(100) and pcos(100). 117

Figure 5.10 pca(t) and pcos(t). 118

Figure 5.11 Plot of pca(100) and pcos(100) with respect to (NOS1 , NOS2). 120

xiii

CHAPTER 1: INTRODUCTION

1.1 Background and Research Motivation

The physicist Lord Kelvin once said, “If you cannot measure it, you cannot improve it” [88]. This

famous quote has been widely used by the cybersecurity community to highlight the importance

of cybersecurity metrics. This is not surprising because if we cannot measure cybersecurity, we

cannot quantify the progress we may have made. This has many real-world implications. For

example, we cannot achieve quantitative cyber defense decision-making and cybersecurity risk

management from a network-wide point of view without the support of cybersecurity metrics and

quantification methods. As a consequence, there is a lack of body of knowledge that can be used

by a Chief Security Officer (CSO) to answer questions that may be asked by a Chief Executive

Officer (CEO), such as: What would be the gain in cybersecurity if we invest another $10M to

enhance our cybersecurity posture? The cybersecurity community has been confronted with the

preceding unpleasant situation for decades. In particular, the cybersecurity metrics problem has

been highlighted by several lists of Cybersecurity Hard Problems [33, 101, 119].

Although it may be intuitive that measuring cybersecurity means, in general, to quantify the

degree at which a system can be expected to perform its intended function under particular condi-

tions of operation, including attacks [87], there is a lack of fundamental progress for many reasons.

This is true despite many studies, such as [28,30,60,103,112,131,132,165]. For example, studies

show that we, the cybersecurity research community as a whole, do not really know what metrics

must be defined and measured [32, 106, 157].

Recently, a systematic approach to modeling, quantifying and analyzing cybersecurity from

a holistic perspective has emerged. The approach is known as Cybersecurity Dynamics [148,

149, 152, 153]. This approach is centered at, and driven by, cybersecurity metrics and quantifi-

cation from a holistic perspective [32, 76, 98, 106, 154]. One key idea behind the Cybersecurity

Dynamics approach is to embrace dynamics, which is inherent to cyberspace and cybersecurity.

This is achieved by explicitly considering the time-dimension into every aspect of a cybersecu-

1

rity models, including threats and defenses. Correspondingly, time-dependent metrics are needed

to describe, among other things, the evolution of the global cybersecurity state of networks in

questions. This explicit use of time-dimension is a paradigm shift [149]. This view treats the dy-

namics or evolutions in the cyber domain as “natural” phenomena, which are incurred by attacker-

defense-user interactions in cyberspace. Another key idea behind the Cybersecurity Dynamics

approach is to embrace uncertainty, which is also inherent to cyberspace and cybersecurity. For

example, in order to answer the CEO’s question mentioned above, the estimated gain in cyberse-

curity does not have to, or should not, be a specific number; rather, it is likely a random variable

with a certain statistical distribution. Such uncertainty has been embedded into many models

(e.g., [55,146,147,150,155,156,168]). At the same time, leveraging uncertainty to achieve cyber-

security objectives have start to receive researchers’ attention as well [77].

The holistic perspective taken by the Cybersecurity Dynamics offers a great potential in “con-

necting the dots” or unifying the segmented cybersecurity knowledge into a unified framework

[148, 149, 152, 153]. For example, software vulnerabilities are exploited to wage cyber attackers.

Therefore, Cybersecurity Dynamics models aim to explicitly model software vulnerabilities. The

question is: How should we quantify software vulnerabilities? In order to answer this question,

we would need to consider, among other things, the capabilities of software vulnerability detec-

tors, which is an active research topic [81–84, 169, 170] especially because the robustness of such

detectors is still an open problem [85].

1.2 Research Focus of the Present Dissertation

Given that the motivating problem is so broad, the present Dissertation needs to have a focus.

Specifically, this Dissertation aims to advance the state-of-the-art in the Cybersecurity Dynamics

approach to modeling and quantifying cybersecurity from a holistic perspective. The advancement

is to bridge the theoretical study of Cybersecurity Dynamics models (e.g., [55, 146, 147, 150, 155,

156, 168]) and the real world by making weak assumptions, which are arguably realistic.

Specifically, the Dissertation aims to answer two specific research questions:

2

• How can we quantify the security effectiveness of firewalls and DeMilitarized Zones (DMZs)?

It is somewhat ironic that firewalls and DMZs have been widely used in cyber defense prac-

tice for many years but there is no scientific investigation on their effectiveness from a whole-

network point of view until our study [23].

• How can we quantify the security effectiveness of enforcing network diversity?

This problem is important because software monoculture has been a big factor that ampli-

fies the effect or damage of cyber attacks. Despite the studies [117, 120, 124] on analyzing

the effectiveness of software diversity techniques (e.g., N -version programming [10, 26],

compiler-based diversification [35, 46, 61, 66, 73], software runtime environment diversifi-

cation [11, 14, 41, 45, 70, 140]), there is no systematic study on how to employ diversified

software implementations in order to achieve better cybersecurity from the perspective of

looking at a network as a whole rather than from a building-block perspective.

The preceding two questions represent two complementary perspectives in the following sense:

firewalls and DMZs are representative of preventive cyber defense mechanisms; whereas, network

diversity can be proactive and/or reactive defense mechanisms [75, 150, 156, 168].

1.3 Dissertation Overview

1.3.1 A General Framework (Chapter 2)

In order to answer the preceding motivating questions, we propose a simulation framework for

modeling attacker-defender-user interactions in networks. The framework is the first of its kind

in terms of making weak (i.e., realistic) assumptions. This framework is described in Chapter 2,

which falls under the Cybersecurity Dynamics approach mentioned above.

1.3.2 Quantifying Security Effectiveness of Firewalls and DMZs (Chapter 3)

Firewalls and DMZs are employed in almost every network to attempt to assure that authorized

network traffic can traverse a network and unauthorized network traffic will be blocked. In order

3

to quantify security effectiveness of firewalls and DMZs, we instantiate the proposed simulation

framework described in Chapter 2 to model firewalls and DMZs, with emphasise of modelling the

inter-computer communication relations within a network and the internal-external communication

relations between the computers that reside inside the network and the computers that reside out-

side of the network. These two kinds of communication relations can accommodate the network

traffic that should be inspected by firewalls and DMZs. Another salient feature of this framework

is that it neither makes the independence assumption nor assumes any specific kind of dependence

between the attack events, which goes much beyond the existing studies.

The framework further guides us to conduct systematic simulation experiments to answer the

following Research Questions (RQs) with respect to the security effectiveness firewalls and DMZs,

including:

• RQ1: How much security is gained by employing firewalls and/or DMZs?

• RQ2: Does firewalls and DMZs always lead to higher security? If not, when??

• RQ3: Which deployment leads to highest security among different combinations of firewalls

and DMZs?

• RQ4: Which network components benefits most from employing firewalls and DMZs?

1.3.3 Quantifying Security Effectiveness of Network Diversity (Chapters 4-5)

Given diversified implementations of programs, there are several ways to employ them in a net-

work. A simple method is to distribute diversified software implementations in the network-wide

software stacks in some fashion and the deployment stays static or unchanged during the time

horizon of interest; this called static diversity. In contrast, dynamic diversity aims to dynami-

cally re-employ diversified programs at the computers’ software stacks, where the employment (or

configuration) does change during the time horizon of interest.

Due to the big difference between static diversity and dynamic diversity in employing diver-

sified programs, we propose instantiating two independent frameworks to quantify their security

4

effectiveness. Another factor that needs to be considered is the matter of granularity, as fine-

grained studies would be much more involved than their coarse-grained counterparts. This is

because where a coarse granularity means that each software program is treated as an “atom” in

describing networked systems, whereas a fine granularity means that we treat individual applica-

tions, library functions, and operating system kernel functions as “atoms” in describing networked

systems. This prompts us to:

• instantiate a coarse-grained framework to investigate the security effectiveness of dynamic

network diversity. This coarse-grained modelling makes it easier to characterize the re-

employment of diversified program implementations in dynamic network diversity.

• instantiate a fine-grained framework to investigate the security effectiveness of static net-

work diversity. This granularity allows us to realistically model cyber attacks in a flexible

manner because the dependence relations between the atomic objects can affect the attack

consequences on diversified software programs.

In any case, the proposed frameworks further guide us to conduct systematic simulation experi-

ments to quantify the security effectiveness of the diversity defenses.

In order to characterize the effectiveness of dynamic network diversity, Chapter 4 addresses the

following Research Questions (RQs) by simulations:

• RQ1: To what extent can dynamic network diversity slow down the attacker?

• RQ2: How much extra cost can dynamic network diversity impose on the attacker?

• RQ3: To what extent can dynamic network diversity increase the defender’s vulnerability

tolerance?

• RQ4: To what extent can dynamic network diversity increase the defender’s average opera-

tional cost?

• RQ5: Is it true that the more diversified implementations the better?

5

In order to characterize the effectiveness of static network diversity, Chapter 5 addresses the

following Research Questions (RQs) by simulations:

• RQ1: Does natural diversity always lead to higher security? If not, when?

• RQ2: Does artificial diversity always lead to higher security? If not, when?

• RQ3: Does the use of natural and artificial diversity together always lead to higher security?

If not, when?

• RQ4: What are the most effective defense strategies in the presence of network diversity?

1.4 Dissertation Organization

The reminder of this dissertation is organized as follows. Chapter 2 propose the overview of

our framework. Chapter 3 uses the framework to quantify the security effectiveness of firewalls

and DMZ. Chapter 4 uses the framework to quantify the security effectiveness of coarse-grained

dynamic network diversity. Chapter 5 uses the framework to quantify the security effectiveness

of fine-grained static network diversity. Finally, Chapter 6 concludes the Dissertation with future

research directions.

6

CHAPTER 2: A HIGH-FIDELITY SIMULATION FRAMEWORK

2.1 Chapter Introduction

Any approach that aims to understand cybersecurity from a holistic perspective needs to model

the interactions between the various kinds of cyber attacks and the various kinds of cyber defenses

in networked systems, including critical infrastructures and cyber-physical-human systems. This

view is proposed by the Cybersecurity Dynamics approach [148, 149, 152, 153], which aims to

model and quantify cybersecurity from a holistic perspective [32, 76, 106, 154].

Representation
of enterprise

network (G(t))

Representation
of defenses (D(t))

Representation
of attacks (A(t))

Representation
of attack

consequences

Legend: Abstraction Control / instruction flow

Representation
of software

vulnerabilities

Representation
of human factors

Representation
of vulnerabilities

(B(t))

AttackerDefender

Security metrics

Network
Security

Results & Insights

Figure 2.1: A framework for systematically modelling cyber attack-defense interaction, which
refines an earlier framework we proposed in [24].

Figure 2.1 highlights the framework that will guide the study of this Dissertation. The frame-

work falls under, and enriches, the Cybersecurity Dynamics approach by focusing on quantifying

the security effectiveness of defenses in networked systems. The framework has five components

in terms of: (i) abstracting networked systems, including traditional enterprise IT infrastructures,

cloud/edge/end computing systems, cyber physical systems, cyber-physical-human systems, and

critical infrastructures; (ii) representing vulnerabilities in networked systems, including the vul-

nerabilities of software stacks and human users’ vulnerabilities to social engineering cyber attacks

1

and insider threats; (iii) representing various kinds of attacks (i.e., threat models) against net-

worked systems including malware propagation, DDoS attacks, and targeted APT attacks; (iv)

representing the various kinds of defense mechanisms that are employed to protect networked sys-

tems including preventive defenses, reactive defenses, proactive defenses, and active defenses; and

(v) representing the outcome of attack-defense interaction.

Correspondingly, five groups of cybersecurity metrics are defined: (i) metrics for describing

networked systems including its configurations; (ii) metrics for describing software vulnerabilities

and human vulnerabilities in networked systems; (iii) metrics for describing cyber attacks against

networked systems; (iv) metrics for describing defenses employed to protect networked systems;

and (v) metrics for describing the global cybersecurity state or cybersecurity situational awareness

of networked systems.

Following [75, 89, 148–150, 152, 153, 155, 156, 167, 168], the high-level idea of Cybersecurity

Dynamics is described as follows. LetG(t) denote a networked system (e.g., enterprise network as

mentioned above) of interest at time t (including its hardware and software configurations), B(t)

denote the vulnerabilities in the network at time t (including known and possibly zero-day software

vulnerabilities, human factors with uncertainty), A(t) denote the attacks that are waged against the

network at time t, D(t) denote the defense posture at time t (i.e., the defense that are employed

at time t to protect the network), and M = {mi} denote a set of rigorously defined security

metrics of interest. We will discuss how G(t), B(t), A(t), D(t) and M are represented later in this

section because they will be geared towards specific studies, owing to the complexity of modeling

everything at this stage of our understanding (as illustrated by the journey in understanding just one

kind of Cybersecurity Dynamics [75,156,168]). In principle, there exists a family of mathematical

functions Fi for computing a network’s security in terms of metric mi ∈M , namely

mi(t) = Fi(G(t), B(t), A(t), D(t)). (2.1)

Intuitively, mi reflects the outcome of the interaction between attacks A(t) and defenses D(t) in

a network G(t) with vulnerabilities B(t). This allows us to compare the global cybersecurity of:

2

networks with two different configurations, say G(t) vs. G′
(t); networks with two different groups

of vulnerabilities, say B(t) vs. B′
(t); networks in the presence of two different threat models, say

A(t) vs. A′
(t); networks with two different defense postures, sayD(t) vs. D′

(t). These differences

are measured by the corresponding evolution of security metrics mi(t) and m′
i(t) over time, where

mi ∈ M . For example, we can quantify the security effectiveness of firewalls by comparing the

security effectiveness achieved by two filtering rule configurations, say D(t) and D′
(t), namely

Fi(G(t), B(t), A(t), D(t)) vs. Fi(G(t), B(t), A(t), D
′
(t)).

In what follows, we discuss how to obtain mathematical representations of network configu-

rations G(t), vulnerabilities B(t), threats A(t), and defense postures D(t). These representations

naturally lead to quantitative metrics M .

2.2 Representations

2.2.1 Representation of Networked Systems

A networked system is typically made up of some interconnected computers, which exchange

messages through physical links. Each computer may run multiple software for certain functional-

ity. In principle, we can use an undirected graph to abstract a real-world networked system because

communication is often two-way. In the rare case that one-way communication is relevant, directed

graph can be used instead. Specifically, a evolving network can be modeled as a time-dependent

graph G(t) = (V (t), E(t)), where V (t) is the node or vertex set at time t and E(t) is the edge or

arc set at time t. A node v ∈ V (t) represents an “atom” which could be, for example, a computer

or software component. An edge or arc (u, v) ∈ E(t) means that there exits a path from node u to

node v, which may be used by the attacker for compromising other nodes.

Network can be represented at different granularity, meaning that V (t) and E(t) may stands

for different meanings at different granularity. At a coarse granularity, each node v ∈ V (t) rep-

resents a computer and one edge represents the wired or wireless communication link between

3

two computers accordingly. At a finer granularity, each node v ∈ V (t) may represent a software

component (e.g., application program, operating system). In this case, an edge between two soft-

ware components running on different computers represents the communication relation between

them and an edge between two software components running on a computer may represent the

caller-callee dependency relation between them [23, 24].

Having obtained the graph-theoretic representation G(t) = (V (t), E(t)) of interest, we may

define metrics to characterize G(t). For example, we may use node degree distribution and giant

component to characterize the structure of G(t); we may use defective edges to characterize the

software configuration of G(t); we may use algebraic connectivity to characterize the robustness

of G(t).

2.2.2 Representation of Vulnerabilities

We propose considering two types of vulnerabilities: software vulnerabilities and human vulner-

abilities, both of which are widely used in a broad sense. To be specific, a software vulnerability

refer to a weakness that can be exploited by an attacker within a computer system, which means

that software vulnerability may occur in the entire software stack, including applications, libraries,

and operating systems. Human vulnerabilities, on the other hand, refer to the vulnerabilities caused

by the users, such as vulnerabilities to social-engineering attacks (e.g., phishing) as well as insider

threats and the vulnerabilities caused by the use of weak passwords.

Each vulnerability may be associated with a set of attributes. For example, a software vulner-

ability may have the following attributes: (i) attack vector, which reflects the context by which

vulnerability exploitation is possible; (ii)attack complexity, which describes the conditions beyond

the attacker’s control that must exist in order to exploit the vulnerability; (iii) privileges required,

which describes the level of privileges an attacker must possess before successfully exploiting the

vulnerability; and (iv)user interaction, which captures the requirement for a user, other than the

attacker, to participate in the successful compromise of the vulnerable component.

There are some public resources that can be considered to define metrics for measuring soft-

4

ware vulnerabilities. For example, the Common Vulnerability Scoring System (CVSS) [96] is an

open framework for communicating the characteristics and severity of software vulnerabilities. In

terms of human vulnerabilities, they may be described by the chance that a user is vulnerable to

social-engineering attacks.

2.2.3 Representation of Attacks

We propose to represent cyber attacks from the following perspectives: (i) attacker’s knowledge,

which describes what an attacker may know at time t, including cybersecurity metrics, cyberse-

curity models, cybersecurity state, social science knowledge (e.g., human factors), and operator

experience. For example, an attacker may incorporate information of the network to build a formal

representation or model of the network, which is stored in the knowledge base and is directly ac-

cessible for inference and planning. (ii) attacker’s goals, which describes what an attacker attempts

or aims to accomplish at time t. For example, an attacker’s goal may be to compromise as many

computers as possible, or to compromise certain computers of interest (e.g., APT). (iii) attacker’s

strategies, which specify a procedure of multiple phases (or steps) for the purpose of achieving

the attacker goal. Examples include the Cyber Kill Chain [65] and MITRE ATT&CK [3]. (iv)

attacker’s capabilities, which describes the actions that can be taken by an attacker at time t. Ex-

amples include the set of exploits that are available to the attackers. (v) attacker’s decision-making,

which dynamically generates, chooses and organizes attack plans for its goal by anticipating their

outcomes during the course of attack-defense interactions. Examples include immediate selection

(e.g, random selection, greedy selection and finite-state machine selection) and automatic planning

(e.g., classical planning, probabilistic planning and partially-observable planning). (vi) attacker’s

execution, which describes how the dynamic decisions made by an attacker decision-making en-

gine may be executed. Examples include centralized Command and Control and distributed multi-

agent systems.

Many kinds of metrics can be defined to measure attacks, such as (i) attack success probability,

which refers to the probability that attacks are successfully performed; (ii) mean time to compro-

5

mise a system, which indicates how long an attacker takes to compromise an entire system; (iii)

attack complexity, which describes the number of phases an attack goes through; (iv) attack efforts,

which describes the how much overhead and/or impact is introduced to attackers to perform their

attacks.

2.2.4 Representation of Defenses

We propose to model cyber defenses from the following perspectives: (i) defender’s knowledge,

which describes what a defender may know about the networked system at time t. Different from

an attacker who may possess a nearly-empty view of the network initially, a defender can possess

near-complete information of the networked system. (ii) defender’s goals, which describes what

a defender attempts or aims to accomplish at time t. For example, a defender’s goal may be

to guarantee some critical resources from being compromised. (iii) defender’s strategies, which

specify what defense action should be taken under what state or condition at time t. For example,

the defender may refer to NIST’s Cybersecurity Framework [12] to guide their defenses. (iv)

defender’s capabilities, which describes the set of defense tools (e.g., using new tools or updating

the attack signatures or detection models of certain tools) that can be employed by the defender at

time t. (v) defender’s decision-making, which describes the set of orientation algorithms employed

by the defenders at time t. (vi) defender’s execution, which describes how the dynamic decisions

made by a defender’s decision-making engine may be deployed.

Various types of the defender’s metrics can be defined to measure defenses, such as (i) defense

success probability, which estimated the rate of executing successful defenses (e.g., for a defender,

the rate at which tasks are executed and completed); (ii) mean time to failure, which refers to a

system reliability metric capturing the system’s up-time in the presence of attacks when failures

can happen due to either defects or security threats; and (iii) defense costs, which describes the

amount of extra efforts the defender paid and the damage on the system functioning caused by the

defenses.

6

2.2.5 Representation of Cybersecurity State

For any model resolution (e.g., treating a computer/device as an atom vs. treating a software

component as an atom), the security state of an “atom” can be in one of multiple states, such as

secure, vulnerable, or compromised, denoted by

state(v, t) =

0 node v ∈ V is in secure state at time t

1 node v ∈ V is in vulnerable state at time t

2 node v ∈ V is in compromised state at time t

Therefore, at any point in time, the global cybersecurity state can be defined by four time-

dependent metrics: percentage of compromised atoms at time t; percentage of cumulative com-

promised atoms at time t, namely atoms that have been compromised at least once till time t;

percentage of vulnerable atoms at time t and percentage of secure atoms at time t.

2.3 Chapter Summary

In this Chapter, we present the overall architecture of the time-dependent framework for systemati-

cally modelling cyber attack-defense interactions. We further discuss the how to obtain mathemat-

ical representations of each component in the framework as well as the security metrics. In what

follows, we will demonstrate how to instantiate the framework to quantify the security effective-

ness of three kinds of cyber defenses: firewalls and DMZ, dynamic network diversity, and static

network diversity.

7

CHAPTER 3: QUANTIFYING SECURITY EFFECTIVENESS OF

FIREWALLS AND DMZS

3.1 Chapter Introduction

Firewalls and DMZs are two widely employed security mechanisms. On one hand, firewalls en-

force security policies to filter or block unauthorized communication traffic between the outside

network and an enterprise network or between the sub-networks within an enterprise network. The

filtering operation can be conducted at the packet layer, the flow layer (i.e., examining flow-level

content), and the application layer (i.e., inspecting application-layer data) [6, 64]. For the purpose

of the present study, we focus on the functionality of firewalls in filtering unauthorized commu-

nication traffic, while safely assuming away the implementation details (e.g., the layers at which

filtering is conducted). On the other hand, DMZs isolate the external network from an enterprise

network while providing the external users with interfaces to access the enterprise’s Internet-facing

servers (e.g., websites and email servers). Intuitively, DMZs may slow down, or even prevent, some

attacks against enterprise networks.

Despite the wide use of firewalls and DMZs, their security effectiveness has yet to be quanti-

fied and characterized. To the best of our knowledge, no prior studies have aimed at systematically

answering the following question: How much security is gained by employing firewalls and/or

DMZs? The void of this knowledge motivates the present study. The existence of the void is

true despite that quantifying security is one of the well-recognized open problems [102, 106, 113].

Indeed, the importance of quantifying security has led to industrial efforts that focus on software

vulnerabilities (e.g., the Common Vulnerability Scoring System or CVSS [105]) and academic

investigations that treat an entire network as a whole (e.g., [36, 79, 113, 136]). However, the afore-

mentioned motivational question remains unaddressed.

8

3.1.1 Chapter Contributions

This Chapter makes a first step towards quantifying the security effectiveness of firewalls and

DMZs, by making two contributions.

First, we instantiate the proposed framework for modeling firewalls and DMZs in protect-

ing enterprise networks, while treating software components as “atoms” in describing enterprise

networks. Compared with the existing studies that aim to quantify security by treating an en-

tire network as a whole, the present study have two salient features. (i) Existing studies often

make the independence assumption between the attack events. For example, attacks against a

victim (e.g., computer) are assumed to be independently waged by multiple compromised com-

puters [20, 79, 136, 150, 156]. Although there have been some efforts to weaken the assumed

independence [36,146,147], they can only accommodate some specific kinds of dependence rather

than completely eliminating the matter of independence. The present study neither makes the in-

dependence assumption (unlike [20, 136, 150, 156]) nor assumes any specific kind of dependence

(unlike [36,146,147]). We achieve this by developing a framework to allow for simulation studies,

rather than for analytic treatment. (ii) The present study accommodates the threat models known

as Lockheed Martin’s Cyber Kill Chain [65] and Mandiant’s Attack Life Cycle [95]. These threat

models accommodate realistic attacks that are not considered in the existing studies mentioned

above, which investigate epidemic spreading over arbitrary network structures [20, 136, 150, 156]

or the more general notion of cybersecurity dynamics [56, 152, 167, 168].

Second, the framework guides us to conduct systematic simulation experiments. Our prelimi-

nary experiments lead to the following findings. (i) When the applications and operating systems

(OSes) have few or too many vulnerabilities, firewalls and DMZ do not have a significant impact

on security. This is because in the former case, the network cannot be attacked, with or without

employing firewalls and DMZs, and in the latter case, these defense mechanisms cannot prevent

attacks from succeeding. (ii) When the OSes are not vulnerable but the applications are, security

effectiveness of firewalls and DMZs decreases as the fraction of vulnerable applications increases.

(iii) When effective, employing perimeter firewalls alone has little impact on security, but further

9

employing DMZ and internal firewalls (to separate an enterprise network into smaller ones) will

substantially increase security. This justifies the practice of employing both DMZ and firewalls.

(iv) When effective, employing perimeter firewall and DMZ increases security of the sever appli-

cations.

3.1.2 Related Work

As discussed in the Introduction, quantifying security is one of the most fundamental open prob-

lems [102, 106, 113]. The present work moves a further step beyond existing studies [36, 79, 136,

146,147,152] by getting rid of the independence assumption and by accommodating a new class of

threats [65,95]. To make the comparison fair, we should note that these gains in modeling capacity

are obtained at the price of using simulations to characterize the security effectiveness of firewalls

and DMZs. Nevertheless, the present study leads to new insights, such as those mentioned above

and those will be reported in the full version of the present work, that are not known until now.

This can be attributed to the following fact: existing studies often use some parameters (e.g., prob-

abilities) to abstract the capability of defense mechanisms such as firewalls and DMZs; in contrast,

we aim to precisely quantify and characterize the security effectiveness of firewalls and DMZs by

treating an entire enterprise network as a whole.

To the best of our knowledge, the present study initiates the investigation of how to quantify

the security effectiveness of firewalls and DMZs. This can be justified by the fact that based on

recent surveys [103, 106, 113], there are neither metrics nor models for explicitly measuring the

security effectiveness of firewalls and DMZs by treating a network as a whole.

3.1.3 Chapter Organization

The rest of this Chapter is structured as follows. Section 3.2 instantiates the proposed framework.

Section 3.3 presents the simulation experiments and the resulting insights. Section 3.4 concludes

the work with open problems for future research.

10

3.2 Instantiating the Framework to Quantify Security Effectiveness of Fire-

walls and DMZs

In order to quantify the security effects of firewalls and DMZs, we propose a framework for de-

scribing enterprise networks. The framework has the following components: (i) abstract repre-

sentation of an enterprise network, including the software stacks of the computers beloning to the

network and the communication relations between the applications; (ii) abstract representation of

the vulnerabilities in the software stacks and the vulnerabilities of human users; (iii) abstract rep-

resentation of the defense mechanisms that are employed to protect an enterprise network; (iv)

abstract representation of attacks against an enterprise network; (v) definitation of security metrics

for measuring the security effects of firewalls and DMZs.

Table 3.1 summarizes the notations that are used in the rest of the Chapter.

3.2.1 Representation of Enterprise Networks

An enterprise network consists of a number of computers (including both user computers and

servers), each of which runs a software stack. Moroever, the computers within an enterprise net-

work may communicate with each other through some applications, and the computers within an

enterprise network may communicate with computers in the outside network through some appli-

cations.

Representation of Software Stacks

A computer runs a software stack. In this work, we consider two layers of the software stack:

the application layer and the OS layer. An operating system (OS) not only contains the kernel

functions but also contains the device drivers. In what follows we elaborate on the representations

of applications and OSes, respectively.

Representation of applications. An application (or application program) consists not only the

code of an application program, but also the code of the software components upon which they

11

APP the universe of applications
OS the universe of operating systems
η η : APP → {0, 1, 2} indicates the types of applications: client (‘0’), Internet-

facing server (‘1’), or internal server (‘2’)
Gi Gi = (Vi, Ei) is a computer, where Vi = Vi,app ∪ Vi,os and Ei = Ei,aa ∪Ei,af ∪

Ei,ff
G = (V,E) G is an enterprise network of n computers, where V = V1 ∪ . . . ∪ Vn and

E = E1 ∪ . . . ∪ En ∪ E0 ∪ E∗
G′ = (V ′, E ′) G′ is the attacker’s view of the target network G = (V,E) after reconnaissance

process where V ′ ⊆ V and E ′ ⊆ E
VUL the universe of software vulnerabilities
φ(v) the set of vulnerabilities contained in node v ∈ V
ψ(v) the probability that the user of computer i is vulnerable to social engineering

attacks where v ∈ Vi
loc(vul) whether the exploitation of vul ∈ VUL requires local access (‘0’) or not (’1’)
zd(vul) whether vul ∈ VUL is known (‘0’) or zero-day (‘1’)
priv(vul) whether the exploitation of vul ∈ VUL causes the attacker to get the root

privilege (‘1’) or not (’0’)
A the number of zero-day vulnerabilities in G
K the number of known vulnerabilities in G
B the number of known vulnerabilities against which the exploits can be detected

and blocked in G
C the number of known vulnerabilities against which the exploits cannot be

blocked in G
k the fraction of known vulnerabilities can be prevented from being exploited by

NIPS
α the probability a social engineering attack is blocked
HIPS the employment policy of HIPS
ζ the probability privilege escalation attempts are blocked by HIPS
X the set of exploits that are available to the attacker
ρ(x, vul) the probability x ∈ X successfully exploits vul ∈ VUL
(a, b, c) the percentage of vulnerabilities that can be exploited by the attacker corre-

sponding to (A,B,C)
ω ω = |V ′|/|V | is the fraction of nodes the attacker can discover by initial recon-

naissance
p1 the probability a desktop runs a FTP client application
p2 the probability a desktop runs a database client application
δ the probability that each OS function is called by each application
β the probability that each application contains a vulnerability
N the number of vulnerabilities in the OSes
ϑ(vul) the probability vul ∈ VUL is remotely exploitable
τ(vul) the probability vul ∈ VUL is zero-day
γ the firewalls and DMZ employment
pca(t), pcos(t) % of compromised applications and operating systems at time t, respectively

Table 3.1: Summary of key notations used for quantifying security effectiveness of firewalls and
DMZ.

12

depend (e.g., the libraries that are called by an application program). An application and the

software components upon which it depends are treated as a unit because they run with the same

pivilege and they are loaded into the same memory space. We consider each application as an

atomic object, because (i) each process running in the user-space memory is an instance of an

application; (ii) a vulnerable application can be an entry-point for a remote attacker to penetrate

into a computer (e.g., remote code execution); (iii) an application is a privilege entity in the sense

that if any part of an application is compromised, the entire application is compromised; and (iv) a

system call from a compromised application can cause the compromise of OS.

Let APP denote the universe of applications running in an enterprise network consisting of n

computers. For computer i in the network, we denote by appi,z the z-th application running on

computer i, where appi,z ∈ APP.

We propose classifying applications into the following two kinds: client applications (e.g.,

browsers, email clients) and server applications (e.g., web servers, email servers, SQL servers).

Moreover, server applications can be further divided into two kinds: Internet-facing servers (i.e.,

these servers are accessile from the Internet) and internal servers (i.e., these servers can be accessed

by the computers in the enterprise network but cannot be accessed from the Internet). In order to

represent this attribute, we define the following mathematical function:

η : APP→ {0, 1, 2} (3.1)

such that

η(app) =

0 app ∈ APP is a client application

1 app ∈ APP is an Internet-facing server application

2 app ∈ APP is an internal server application.

This classification is useful because different kinds of applications have differen security impli-

cations. For example, a client application may be vulnerable to social engineering attacks, but

a server application may be compromised by the exploitation of software vulnerabilities. More-

13

over, an external attacker may be able to directly compromise an Internet-facing server, but cannot

directly compromise an internal server unless the attacker already penetrated into the enterprise

network.

Representation of OSes. An OS is a software running in the kernel space. It manages computer

hardware and software resources and provides services to the applications running on top of it.

We propose treating each OS function, rather than the entire OS, as an “atomic” entity because

(i) applications often make system calls (syscall) to invode some OS functions; (ii) a vulnerable

OS is not compromised unless a vulnerable OS function is exploited by a syscall incurred by a

compromised application.

Let OS denote the universe of OSes running in an enterprise network consisting of n computers.

For computer i in the network, we denote by osi the OS running on computer i and by fi,z ∈ osi

the z-th OS (i.e., kernel or device driver) function in osi.

Representation of Computers

Having abstracted the software stack running on a computer as two layers (i.e., the application layer

and the OS layer), we now describe how to represent computers in an enterprise network. In order

to represent a computer, we also need to accommodate the security-related relations between the

“atomic” entities in a computer. Specifically, we propose accommodating the following two kinds

of relations, respectively dubbed the dependence relation and the inter-application communication

relation.

• The dependence relation represents the caller-callee relation between two software programs

running on the same computer, including the caller-callee relations between applications

and OS functions and the caller-callee relations between two different OS functions. For

example, an application may make a syscall, which may further call anoter OS function. The

dependence relation should be accommodated because a vulnerability in an atomic entite on

the caller-callee sequence can cause a successful exploitation.

• The inter-application communication relation represents the communications between two

14

applications running on the same computer. This relation should be accommodated because

it can be exploited to wage attacks. For example, if one application is allowed to communi-

cate with another application, then the compromise of the former can cause the compromise

of the latter, assuming the latter has a vulnerability that can be exploited.

Vi,app

fi,1

appi,1 appi,2 appi,3

Vi,os

osi

appi,4

fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10

Figure 3.1: A graph-theoretic representation of computer i, namely Gi = (Vi, Ei), in an enterprise
network of n computers.

Fig. 3.1 illustrates a toy example of computer i, which runs four applications that are respec-

tively denoted by appi,1, appi,2, appi,3 and appi,4. Let Vi,app denote the set of application running

on computer i. In this example, we have

Vi,app = {appi,1, appi,2, appi,3, appi,4}. (3.2)

Let Vi,os denote the OS of computer i. In this example, the OSes has 10 functions, namely

Vi,os = osi = {fi,1, fi,2, fi,3, . . . , fi,9, fi,10}. (3.3)

Let us define the node set

Vi = Vi,app ∪ Vi,os, (3.4)

where Vi,app and Vi,os are respectively given by Eqs. (3.2) and (3.3). Let us also define the arc set

Ei = Ei,af ∪ Ei,ff ∪ Ei,aa, (3.5)

15

where

• Ei,af represents the dependence relation between the applications and OS functions running

on computer i. For example, in Fig. 3.1 we have Ei,af = {(appi,1, fi,1),

(appi,1, fi,3), (appi,2, fi,1), (appi,2, fi,5), (appi,3, fi,1),

(appi,3, fi,6), (appi,4, fi,4), (appi,4, fi,8), (appi,4, fi,10)}.

• Ei,ff represents the dependence relation between OS functions running on computer i. For

example, in Fig. 3.1 we have Ei,ff = {(fi,1, fi,2), (fi,10, fi,7)} because fi,1 calls fi,2 and fi,10

calls fi,7.

• Ei,aa represents the inter-application communication relation between the applications run-

ning on computer i. For example, in Fig. 3.1 we have Ei,aa = {(appi,1, appi,2),

(appi,1, appi,4)} meaning that appi,1 can initiate communications with appi,2 and appi,4 and

that the compromise of appi,1 can cause the compromise of appi,2 and appi,4, assuming the

latter have vulnerabilities that can be exploited from appi,1.

By putting the aforementioned pieces together, we propose modeling computer i as a graph

Gi = (Vi, Ei) (3.6)

where Vi and Ei are respectively defined in Eqs. (3.4) and (3.5).

Representation of the inter-computer communication relation in a network

The inter-computer communication relation describes which applications running on one com-

puter can communicate with which other applications running on the other computers. We pro-

pose accommodating this relation because it can represent how attacks may be waged from one

compromised computer to another vulnerable one. It is important to model the inter-computer

communication relation because inter-computer communications are often monitored by firewalls.

Fig. 3.2 illustrates the inter-computer communication relation between computer i and com-

puter j, which are respectively described by graphs Gi = (Vi, Ei) and Gj = (Vj, Ej) as mention

16

appi,1 appi,3

Vi, os

Computer i

appi,2

fi,1

osi

Vi, app

fi,2 fi,3 fi,4 fi,5 fi,6 fi,7 fi,8 fi,9 fi,10

appi,4 appj,1 appj,3

Vj, os

Computer j

appj,2

fj,1

osi

Vj, app

fj,2 fj,3 fj,4 fj,5 fj,6 fj,7 fj,8 fj,9 fj,10

Figure 3.2: Illustration of the inter-computer communication relation.

above. We use an arc set E0 to represent the inter-computer communication relation between the

applications runnin on computer i and the applications running on computer j, namely

E0 ⊆ {Vi,app × Vj,app} ∪ {Vj,app × Vi,app}, (3.7)

where 1 ≤ i, j ≤ n and i 6= j. In the example illustrated in Fig. 3.2, appi,2 running on computer

i is allowed to communicate with appj,1 running on computer j. Suppose appi,2 and appj,1 are

respectively a browser and a web server, we have

E0 = {(appi,2, appj,1), (appj,1, appi,2)},

where arc (appi,2, appj,1) indicates that a vulnerable web server (i.e., appj,1) can be compromised

by attacks that are waged from a browser (i.e., appi,2), and arc (appj,1, appi,2) means a vulnerable

browser (i.e., appi,2) can be compromised by a malicious web server (i.e., appj,1) via the “drive

by” download attack.

In general, we propose distinguishing the afore-mentioned two kinds of attack activities by

partitioning E0 into E00 and E01, such that E0 = E00 ∪ E01, E00 represents the attacks against

clients (including peers in peer-to-peer application), and E01 represents the attacks against servers.

More specifically, we have:

• (appj,y, appi,x) ∈ E00 can be abused to launch attacks from a server or client or peer appli-

cation appj,y against a client application appi,x, where η(appi,x) = 0.

17

• E01 = E0 \E00: Any inter-computer communication other than what are accommodated by

E00.

We stress that e ∈ E0 often corresponds to a commuication or routing path, rather than a physical

communication link unless the two communication end-points reside in the same sub-network or

local area network (which is networked via a swtich rather than a router).

Representation of the internal-external communication relation

The computers in an enterprise network often need to communicate with some computers out-

side of the enterprise network. Similarly, some computers outside of the network often need to

communicate with some computers residing in an enterprise network. It is clear that these com-

munications have security consequences, meaning that they can be leveraged to wage attacks. The

internal-external communication relation aims to accommodate these communications.

Formally, we use arc setE∗,io = {(appi,z, ∗)} to denote the internal-to-external communication

relation from computer i to any external computer outside of the network, and use arc set E∗,oi =

{(∗, appj,z)} to denote the external-to-internal communication relation from any computer outside

of the network to computer j. Then, we define

E∗ = E∗,io ∪ E∗,oi. (3.8)

We stress that e ∈ E∗,io ∪ E∗,oi always corresponds to a commuication or routing path going

through a number of routers.

Representation of networks

Putting together the pieces mentioned above, we represent a network of n computers as G =

(V,E), where

V = V1 ∪ . . . ∪ Vn and E = E1 ∪ . . . ∪ En ∪ E0 ∪ E∗ (3.9)

18

with Gi = (Vi, Ei) being given by Eq. (3.6) and representing computer i, E0 being given by

Eq. (3.7) and representing the inter-computer communication relation between computers in the

network, and E∗ being given by Eq. (3.8) and representing the internal-external communication

relation.

For ease of reference, we use V(app) and V(os) to respectively denote the set of applications, and

OSes running in the computers of an enterprise network, namely

V(app) = V1,app ∪ . . . ∪ Vn,app, (3.10)

V(os) = V1,os ∪ . . . ∪ Vn,os. (3.11)

We also use v ∈ V to indicate an arbitrary node v.

3.2.2 Representation of Vulnerabilities

In order to describe the vulnerabilities of an enterprise network, we consider two types of vulner-

abilities: software vulnerabilities and human vulnerabilities following [106].

Representation of software vulnerabilities

Let VUL denote the set of software vulnerabilities in the software stacks of the computers in an

enterprise network. We define a mathematical function

φ : V → 2VUL (3.12)

such that φ(v) represents the set of software vulnerabilities that are contained in node v (i.e., the

software programs running at node v). Note that |φ(v) = 0| or φ(v) = ∅ means that v is not

vulnerable.

Since different kinds of software vulnerabilities can incur different consequences, each vulner-

ability vul ∈ VUL has an associated vector of attributes, including the access that is required in

order to exploit a vulnerability, whether a vulnerability is zero-day or not, and whether or not the

19

exploitation of a vulnerability can cause privilege escalation.

• Access required: This attribute describes what kind of access an attacker must have in order

to exploit vul ∈ VUL, namely whether or not an attack requires to having local access in

order to exploit vul. In order to represent this attribute of vulnerabilities, we define predicate

loc such that loc(vul) = 0 means exploitation of vul requires local access and loc(vul) = 1

otherwise.

• Zero-day: This attribute describes whether a vulnerability vul ∈ VUL is zero-day or not. This

is important because the exploitation of a zero-day vulnerability often cannot be detected.

We define predicate zd such that zd(vul) = 0 means that vulnerability vul is known and

zd(vul) = 1 means that vul is zero-day.

• Privilege escalation: This attribute describes the security consequence that can be caused by

the exploitation of a vulnerability. We define predicate priv such that priv(vul) = 0 means

that the exploitation of vul will not grant the attacker the root privilege, and priv(vul) = 1

means otherwise. This attribute is important because remote-2-user attacks exploit vul’s

with loc(vul) = 0 and priv(vul) = 0 [38, 52] and remote-2-root attacks exploit vul’s with

loc(vul) = 0 and priv(vul) = 1 [68, 111, 121], and user-2-root attacks exploit vul’s with

loc(vul) = 1 and priv(vul) = 1 [52, 111, 127].

Representation of human vulnerabilities

Users of the computers may be subject to social engineering attacks. In order to model human

vulnerabilities to social engineering attacks, we define mathematical function

ψ : V → [0, 1] (3.13)

such that ψ(v) for v ∈ Vi represents the probability of the user of computer i is vulnerable to social

engineering attacks.

20

3.2.3 Representation of Attacks

We describe attacks via two aspects: the set of exploits that are available to an attacker, and the

strategies that are employed by the attacker. In order to describe the attack consequence, we define

mathematical function

state(v, t) : V × T → {0, 1}

such that state(v, t) = 0 means v is not compromised at time t and state(v, t) = 1 means v is

compromised at time t, where T is the time horizon of interest (in principle, T can be discrete or

continuous).

Representation of exploits

Let X denote the set of exploits that are possessed by the attacker. We define mathematical func-

tions

ρ : X × VUL→ [0, 1] (3.14)

such that ρ(x, vul) represents the success probability when applying exploit x ∈ X against vulner-

ability vul ∈ VUL.

In order to describe the exploitation capability of the attacker, let us denote by A the number of

appearances of zero-day vulnerabilities in an enterprise network, by B the number of appearances

of known vulnerabilities against which the exploits can be detected and blocked by the defender

where B = k ×K, and by C the number of appearances of known vulnerabilities against which

the exploits cannot be blocked by the defender where C = (1−k)×K. We represent the attacker’s

exploitation capability by (a, b, c), where a is the percentage of the zero-day vulnerabilities that can

be exploited by the attacker (i.e., the attacker can exploit a × A zero-day vulnerabilities), b is the

percentage of the known vulnerabilities that can be exploited by the attacker but will be detected

and blocked by the defender (i.e., the exploitation of these b×B vulnerabilities will result in vein

to the attacker), and c is the percentage of the known vulnerabilities that can be exploited by the

21

attacker and will not be detected by the defender (i.e., the exploitation of these c×C vulnerabilities

will succeed). It is intuitive that the higher the a and the c, the more attacks will succeed; the higher

the b, the more attacks will be blocked.

Representation of attack strategies

For representing attack strategies, we use the attack lifecycle model highlighted in Fig. 3.3, which

is adapted from Lockheed Martin’s Cyber Kill Chain [65] and Mandiant’s Attack Life Cycle [95].

The model includes five phases that an attacker inescapably follows to plan and carry out an intru-

sion, that is, reconnaissance, weaponization, initial compromise, further reconnaissance, escalate

privileges, and lateral movement. These phases are elaborated below.

Reconnaissance Weaponization
Initial

compromise
Further

reconnaissance
Privilege

escalation
Lateral

movement

Figure 3.3: An attack lifecycle model adapted from Lockheed Martin’s Cyber Kill Chain [65] and
Mandiant’s Attack Life Cycle [95].

Phase 1: Reconnaissance. Recall that an enterprise network is described by G = (V,E), where

V is the node set and E represents that legitimate commuication relations. Note that as stressed

above, e ∈ E reflects the logical communication relation and therefore often corresponds to a

communication path, rather than a physical link (unless the two end-points reside in the same

sub-network). Moreover, G is not a complete graph because, for example, an application running

on one computer is not authorized to communicate with an operating system function on another

computer.

Reconnaissance means gathering information about a target enterprise network, including the

communication topology G and the vulnerabilities in the software stacks of the computers in the

network. The outcome of an reconnaissance process can be described by the attacker’s view of

the target network, denoted by G′ = (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E (i.e., G′ is a sub-graph

of G induced by the reconnaissance process). For each v ∈ V ′, the attacker may further obtain

22

information such as η(v), namely the type of the application running at node v; φ(v), namely

the set of software vulnerability v contains; and ψ(v), namely the human factor vulnerability of

v. Moreover, for each vulnerability vul ∈ φ(v) where v ∈ V ′, the attacker may further obtains

information such as loc(vul), namely whether the vulnerability can be remotely exploited or not;

zd(vul), whether the vulnerability is zero-day or not; and priv(v), whether the exploitation of the

vulnerability can lead to a privilege escalation or not.

We propose using ω = |V ′|/|V | to describe the attacker’s initial reconnaissance capability. It

is an interesting future study to investigate its alternate definisitons, such as |E ′|/|E| or (|V ′| +

|E ′|)/(|V |+ |E|).

Phase 2: Weaponization. Weaponization is for designing and developing a penetration plan

according to the information gathered from the reconnaissance phase and the exploits possessed

by the attacker. In particular, given the outcome G′ = (V ′, E ′) of the reconnaissance phase and

the attacker’s set of exploits X , the attacker now determines the nodes v ∈ V ′ suitable for targets.

Since initial compromises are often geared towards applications and there are two kinds of nodes

in general (i.e., client application vs. server application), a candidate node for initial compromise

should satisfy one of the following two conditions: one for client applications and the other for

server applications.

The first condition is for client applications. A candidate client node for initial compromise

should satisfy the following conditions: (i) v ∈ Vi, where Vi ⊆ V ′, runs a client application app ∈

APP on computer i, namely η(app) = 0; (ii) v is involved in some internal-external communication

relation, meaning (v, ∗) ∈ E∗,io ∩ E ′ or (∗, v) ∈ E∗,oi ∩ E ′; (iii) either app contains a software

vulnerability, namely ∃vul ∈ φ(v) = φ(app), the app contains no vulnerability but an operating

system function called by the app contains a software vulnerable (i.e., there existing an access path

from a secure app to a vulnerable operating system function).

In order to precisely test the preceding condition (iii), we say that there is a dependence path

between two nodes v and u in the same computer, say computer i or Vi, if there is, according to

the dependence relation defined above, a path of dependence arcs starting from node v and ending

23

at node u (i.e., the software program running at node u can be called, or reached, by the software

program running at node v). We define the predictate

dep_path(v, u) : Vi × Vi → {True,False} (3.15)

such that

dep_path(v, u)

=

True there is a path of dependence arcs from v to u

False otherwise.

As a result, the preceding condition (iii) can be formally described as

(∃vul ∈ φ(v), ∃x ∈ X : ψ(v) = 1 ∧ ρ(x, vul) > 0) ∨

(∃vul ∈ φ(u),∃x ∈ X : (u ∈ Vi,os) ∧ (v ∈ Vi,app) ∧ (3.16)

dep_path(v, u) ∧ ψ(u) = 1 ∧ ρ(x, vul) > 0)).

Putting the preceding discussion together, we can define the set of candidate client applications

for initial compromise as:

Weapon0 = {v ∈ (V ′ ∩ Vi,app) : η(v) = 0 ∧ (((v, ∗) ∈ E∗,io ∩ E ′) ∨

((∗, v) ∈ E∗,oi ∩ E ′)) ∧ condition (3.16) holds}. (3.17)

The second condition is for server applications. A candidate server node v ∈ Vi,app for initial

compromise should satisfy the following conditions: (i) v runs an Internet-facing server application

app ∈ APP on computer i, meaning η(app) = 1 and (∗, app) ∈ (E∗,oi ∩ E ′); (ii) either the app

contains a remotely-exploitable software vulnerability, namely ∃vul ∈ φ(app) such that loc(vul) =

1, or the app can call a operating system function that contains a remotely exploitable vulnerability.

24

Similar to the discussion above, the preceding condition (ii) can be precisely described as

(∃vul ∈ φ(v),∃x ∈ X : loc(vul) = 1 ∧ ρ(x, vul) > 0) ∨

(∃vul ∈ φ(u),∃x ∈ X : (u ∈ Vi,os) ∧ (v ∈ Vi,app) ∧ (3.18)

dep_path(v, u) ∧ loc(vul) = 1 ∧ ρ(x, vul) > 0).

Therefore, we can define the set of candidate server applications for initial compromise as:

Weapon1 = {v ∈ V ′ ∩ Vi,app : η(v) = 1 ∧ (∗, v) ∈ (E∗,oi ∩ E ′) ∧ condition (3.18) holds}.

By putting the two kinds of initial compromises together, we obtain the set of candidates for

initial compromise as:

Weapon = Weapon0 ∪Weapon1. (3.19)

Phase 3: Initial compromise. After determining Weapon according to (3.19), the attacker selects

a subset of Weapon for initial compromise according to some strategy. An example strategy that

will be considered for our simulation study is the following.

• The attacker prefers using exploits againat zero-day vulnerabilities to using exploits against

known vulnerabilities. This is because exploits against zero-day vulnerabilities cannot be

detected by the defense and using such exploits would enhance the attacker’s chance in

penetrating into the target enterprise network.

• The attacker strives to compromise the operating systems whenever possible. This is be-

cause the compromise of an operating system automatically causes the compromises ot the

applications running on top of it. This can also reduce the chance that the attack is detected

when compared with the strategy that the attacker first compromises the vulnerable applica-

tions and then compromises the vulnerable operating system beneath them (in this case, the

attack against the applications may be detected by the defense because the defense may be

employed in the kernel space).

25

• If the attacker cannot compromise the operating system on computer i, then the attacker will

strive to compromise all of the vulnerable applications on computer i.

According to this example strategy, the attacker can identify the set of suitable nodes for initial

compromise, denoted by

IniComp = {v ∈ Weapon : attacker selects v to attack}.

Phase 4: Further reconnaissance. Further reconnaissance means that once the attacker com-

promises a computer in the enterprise network, the attacker will attempt to obtain information

about the sub-graph G − G′, where G = (V,E) represents the enterprise network as well as the

application-induced dependence relation, inter-application communication relation, and internal-

external communication relation, and G′ = (V ′, E ′) is the sub-graph obtained by the attacker

at the initial reconnaissance phase. Since further reconnaissance can be conducted recursively,

we also use G′ = (V ′, E ′) to denote the outcome after further reconnaissance, while noting that

G′ = (V ′, E ′) increases with further reconnaissance. This is so because, supposing appi,1 ∈ V ′

(i.e., the attacker already knew obtained information about the node v at which application appi,1

runs), arcs of the kind (appi,1, appj,2) ∈ (E0 ∩ E ′) and the kind (appm,2, appi,1) ∈ (E0 ∩ E ′) will

be discovered by the attacker, and so are nodes appj,2 and appm,2, where j,m 6= i. Therefore, the

attacker will update its information about the enterprise network as

V ′ = V ′ ∪ {appj,2, appm,2}

and

E ′ = E ′ ∪ {(appi,1, appj,2), (appm,2, appi,1)}.

Phase 4: Privilege escalation. After compromising an application v ∈ Vi,app but not the underly-

ing operating system, the attacker would strive to achieve privilege escalation to compromise the

underlying operating system based on the outcome of further reconnaissance. This can be achieved

26

by compromising some vulnerable operating system functions. Another important factor affecting

the success of privilege escalation is the host-based prevention system (HIPS), which may enforce

a tight or loose policy.

• A tight policy says that the dependence (i.e., caller-callee) relation in a computer is strictly

enforced. This means that the attacker cannot leverage a compromised application running

at v ∈ Vi,app to compromise the underlying operating system via a vulnerable function run-

ning at u ∈ Vi,os, unless v was authorized to call u already. More specifically, a privilege

escalation occurs under the following condition:

∃v ∈ Vi,app,∃u ∈ Vi,os,∃vul ∈ φ(u),∃x ∈ X :

state(v, t) = 1 ∧ dep_path(v, u) ∧ ρ(x, vul) > 0. (3.20)

• A loose policy says that the dependence relation is not strictly enforced. This means that the

attacker can leverage a compromised application running at v ∈ Vi,app to compromise the

underlying operating system via a vulnerable function running at u ∈ Vi,os, even if v was

not authorized to call u. More specifically, a privilege escalation occurs under the following

condition:

∃v ∈ Vi,app,∃u ∈ Vi,os,∃vul ∈ φ(u),∃x ∈ X :

state(v, t) = 1 ∧ ρ(x, vul) > 0. (3.21)

Phase 5: Lateral movement. Lateral movements means once the attacker compromises a com-

puter in the enterprise network, the attacker will leverage the inter-computer communication re-

lation e ∈ E ′ to launch further attacks for compromising more computers. This can occur in

one of the following two scenarios, depending on the new victim is a client (including a peer in

peer-to-peer applications) or server application.

In the first scenario, the attacker has compromised a client or server or peer application on

27

computer i and attempts to use the inter-computer communication relation e ∈ (E ′ ∩E00) to com-

promise a client application on computer j. This occurs under one of the following two conditions:

(∃u ∈ Vj,app,∃vul ∈ φ(u),∃x ∈ X : state(v, t) = 1 ∧

state(u, t) = 0 ∧ (v, u) ∈ (E ′ ∩ E00) ∧

ψ(u) = 1 ∧ ρ(x, vul) > 0); (3.22)

∨(∃u ∈ Vj,app,∃w ∈ Vj,os,∃vul ∈ φ(w),∃x ∈ X :

state(v, t) = 1 ∧ state(u, t) = 0 ∧

(v, u) ∈ (E ′ ∩ E00) ∧ ψ(u) = 1 ∧

dep_path(u,w) ∧ ρ(x, vul) > 0). (3.23)

In the second scenario, the attacker has compromised a client or server application on computer

i and attempts to use the inter-computer communication relation e ∈ (E ′ ∩ E01) to compromise a

server application on computer j. This occurs under one of the following two conditions:

(∃u ∈ Vj,app,∃vul ∈ φ(u),∃x ∈ X : state(v, t) = 1 ∧

state(u, t) = 0 ∧ (v, u) ∈ E ′ ∩ E01 ∧

ρ(x, vul) > 0 ∧ loc(vul) = 1); (3.24)

∨(∃u ∈ Vj,app,∃w ∈ Vj,os,∃vul ∈ φ(w),∃x ∈ X :

state(v, t) = 1 ∧ (u, t) = 0 ∧ (v, u) ∈ E ′ ∩ E01 ∧

dep_path(u,w) ∧ ρ(x, vul) > 0 ∧ loc(vul) = 1). (3.25)

Note that Eqs. (3.22) and (3.24) say that an application app running on computer j can be

exploited from a compromised application running on computer i when app contains a software

vulnerability; Eqs. (3.23) and (3.25) say that an application app running on computer j can be

exploited from a compromised application running on computer i when app calls a vulnerable

operating system function.

28

3.2.4 Representation of Defenses

Representation of Firewalls

A firewall can be employed to monitor the inbound and outbound traffic of an enterprise network

or monitor the traffic between sub-networks of the enterprise network. A firewall has multiple

physical interfaces, each corresponding to an internal sub-network or the external network [64]. If

needed, multiple interfaces (i.e., the corresponding multiple sub-networks) can be grouped into a

security zone such that the traffic within the same security zone is not monitored but the inbound

and outbound traffic of a security zone is monitored [94]; otherwise, each interface corresponds to

a security zone. The monitored traffic will be examined according to some security rules, which

specify what kinds of traffic should be permitted or denied between different security zones. Secu-

rity rules can be specified at the packet level and/or the flow level, while noting that a flow consists

of one or multiple related packets between the same communication end-points using the same

protocol within a short period of time. Packet-level rules examine each IP packet to determine

whether to permit or deny the packet; whereas, flow-level rules (aka “stateful” firewalls) examine

flows to determine whether to permit or deny the flow. It is widely accepted that firewalls will deny

any accesses that are not explicitly specified.

For the purpose of the present study, it is sufficient to model the functionality of firewalls as

monitoring and examining the traffic over the aforementioned inter-application communication re-

lation, inter-computer communication relation within an enterprise network, and internal-external

communication relation. It is worth mentioning that the monitoring and examination of these kinds

of traffic can be enfored at the packet- and/or flow-level, while noting that these implementation

details can be safely assumed away.

Representation of DMZ

DMZ is a special security zone and typically hosts publicly accessible (i.e., Internet-facing) server

applications, such as Web servers, Mail servers and DNS servers [139]. DMZ provides a kind of

29

isolation between an enterprise network and the outside network in the sense that the computers

in the external network have, in general, no legitimate reasons to directly communicate with the

computers residing within an enterprise network (i.e., such external-to-internal communicatio traf-

fic could be filtered). A DMZ can be attained by using a firewall that has three kinds of interfaces:

one or multiple internal interfaces (connecting to the internal network), an external interface (con-

necting to the external network), and a DMZ interface (connecting to a DMZ) [122]. Again, the

concrete implementation of DMZ is not important to the purpose of the present study.

Representation of Other Defense Mechanisms

In addition to firewalls and DMZ, we further consider the following defenses, while leaving the

incorporation of other defenses to future research. First, we consider the defense of NIPS, which

may operate at the network, flow, or application layer as mentioned in the Introduction. NIPS may

be able to detect and prevent some attacks that attempt to exploit some known software vulnera-

bilities. Denote by K the number of apperances of known vulnerabilities in an enterprise network

(e.g., 3 appearances of the same vulnerability in different computers leading to K = 3). In the

ideal case, the defender should have patched all known vulnerabilities, meaning K = 0; in prac-

tice, some vulnerabilities, even if known, may not be patched. Suppose NIPS can detect and block

attacks that attempt to exploit a k fraction of the known vulnerabilities (i.e., k ×K vulnerabilities

can not be exploited), where 0 ≤ k ≤ 1.

Second, we consider the defense in dealing with human vulnerabilities to social engineering

attacks. Recall that the probability that a user is vulnerable to social engineering attacks is defined

by ψ : V → [0, 1]. The defense against social engineering attacks can be measured as the reduction

of ψ to ψ(1−α), where α denote the probability a social engineering attack is detected and blocked

by the defender.

Third, we consider host-based intrusion prevention systems (HIPSes). HIPS an enforce a tight

or loose policy, where tight means that (a secure) HIPS monitors which software (e.g., applica-

tion) is allowed to call which other software in a computer (e.g., an OS function) and blocks any

30

unauthorized calls or communications, and loose means that the HIPS does not operate as such

(e.g., the HIPS does not prevent a compromised application from making an unauthorized call to

an OS function). Moreover, HIPS may be able to detect and block privilege escalation attempts.

Let ζ denote the probability a privilege escalation attempt is detected and blocked by HIPS. Since

enforcing a tight policy would consume more resources than enforcing a loose policy, we will

quantify how much security can be gained by enforcing a tight policy.

3.2.5 Metrics for Measuring the Cybersecurity State of an Enterprise Network

In the above we have defined various metrics to measure vulnerabilities, defenses and attacks. Now

we propose using the following two metrics to describe the outcome of the attack-defense interac-

tions: percentage of compromised applications at time t or pca(t), and percentage of compromised

operating systems at time t or pcos(t), which are respectively defined as:

pca(t) = |{v ∈ V(app) : state(v, t) = 1}|/|V(app)|, (3.26)

pcos(t) = |{v ∈ V(os) : state(v, t) = 1}|/|V(os)|. (3.27)

3.3 Simulation Experiments and Results

3.3.1 Simulation Setting and Methodology

Simulating an Enterprise Network

We consider an enterprise network of 1,000 desktops and five servers. For the experimental study,

we need a concrete G = (V,E) representation of an enterprise network, which is obtained as

follows.

Simulating software stacks. Suppose the five servers respectively run one of the following server

applications: web server, email server, DNS server, FTP server, and database server. Suppose

each desktop runs 4 applications: web browser, email client, instant messaging (IM, a peer-to-peer

application), adobe reader. Suppose each desktop may run a FTP client application with probability

31

p1 and a database client application with probability p2, where 0 ≤ p1, p2 ≤ 1. This means that

employees can use these applications.

For the OS layer, we assume the OS is Microsoft Windows with three components: OS kernel,

subsystem drivers, and the hardware abstraction layer. We use this example scenario as we can

obtain realistic parameters, namely that there are 2,500, 1,300, and 130 functions respectively

corresponding to these components [21, 93]. This means |Vi,os| = 3, 930.

Simulating network computers. Recall that computer i is represented by Gi = (Vi, Ei) for

i = 1, . . . , 1, 005. In order to obtain Ei, we assume there are no inter-application communications

between the applications mentioned above. This is natural in the present setting but may not be true

in general. In order to obtain the dependence relation within computer i, we assume for simplicity

that each OS function is called, directly or indirectly, by each application with probability δ.

Simulating inter-computer communication relation E0. In order to obtain E0, we make the

following assumptions: a web browser in the enterprise network needs to communicate with the

web server and the DNS server in the network; an email client needs to communicate with the

email server to retrieve and send emails; a FTP client (if present) needs to communicate with the

FTP server; a database client (if present) needs to communicate with the database server; an IM

application needs to communicate with the other IM applications within the same sub-network;

the web server needs to communicate with the database server. Since the email clients need to

communicate with each other, this communication relation is reflected in E0.

Simulating internal-external communication relation E∗. In order to obtain E∗, we make the

following assumptions: a web browser needs to communicate with the web servers that reside

outside of the network; IM applications need to communicate with their peers outside of the en-

terprise network; email clients in the network need to send emails to, and receive emails from, the

external network; Adobe readers need to open PDF files received from the external network; the

Internet-facing servers (i.e., web server, email server, and DNS server) can be accessed by external

computers.

32

Simulating Vulnerabilities

Suppose each application or OS function has at most one vulnerability. Let N denote the number

of vulnerabilities that uniformly reside in N OS functions. Let β be the probability that every

application contains a vulnerability. The attributes of a vulnerability vul ∈ VUL is set as follows:

If vul belongs to an OS function, we set priv(vul)=1; otherwise, priv(vul)=0. Let ϑ(vul) be the

probability vul can be exploited remotely for any vul ∈ VUL, namely Pr(loc(vul) = 1), and τ(vul)

be the probability that vul ∈ VUL is zero-day, namely Pr(zd(vul) = 1).

For human vulnerabilities, we let ψ(v) ∈ [0, 1] be the probability that a client application is

vulnerable to social engineering attacks for every v ∈ Vi. Note that this holds for every v ∈ Vi

because Vi corresponds to computer i, meaning it is the user of computer i who may be subject to

social engineering attacks.

Simulating Attacks

We consider an attacker outside of the network attempting to penetrate into the network and com-

promise as many computers as possible. Attacks proceed according to the strategy highlighted in

Figure 3.3. The parameters reflecting attacks, namely ρ, ω and (a, b, c), will be given in specific

simulation scenarios.

Simulating Defenses

Since we focus on quantifying the security effectiveness of firewalls and DMZ, our simulation

considers the five example combinations of firewalls and DMZ illustrated in Fig.3.4, which are

respectively represented by γ = 0, 1, . . . , 4. The other parameters representing defenses are as

described in the framework and will be given in specific simulation scenarios.

Fig.3.4(a) corresponds to γ = 0, meaning neither firewall nor DMZ is employed. As a conse-

quence, a communication not belonging to E0 or E∗ will not be blocked.

Fig.3.4(b) corresponds to γ = 1, meaning there is only a perimeter firewall to separate the

enterprise network from the external network. That is, the firewall blocks any internal-external

33

Internet

Perimeter
firewall

Enterprise
network

Internet

Perimeter
firewall

DMZ

Internet

Enterprise
network

Internal
firewall

Perimeter
firewall

Subnet1

Subnet6

Internet

Internal
firewall

Perimeter
firewall

Subnet1

Subnet6

DMZ

Internet Enterprise
network

(b) γ = 1 (c) γ = 2

(d) γ = 3 (e) γ = 4

(a) γ = 0

Figure 3.4: Five combinations of firewalls and DMZ employment (identified by γ = 0, 1, 2, 3, 4
and elaborated in the text).

communication that does not belong to E∗.

Fig.3.4(c) corresponds to γ = 2, meaning that there is a perimeter firewall and a DMZ for

running the Internet-facing servers (i.e., web server, email server, and DNS server). This firewall

enforces as in the case of γ = 1 and further enforces that only the web server (both not the other two

servers) in the DMZ can communicate with the database server in the internal enterprise network.

Fig.3.4(d) corresponds to γ = 3, meaning that there is a perimeter firewall and there are internal

firewalls to separate the internal sub-networks from each other. The 1,005 computers are divided

into six sub-networks, among which five sub-networks run 200 desktops each and the other sub-

network runs the five servers. The perimeter firewall allows internal-external communications

according to E∗ and the internal firewalls allow inter-computer communications according to E0.

Fig.3.4(e) corresponds to γ = 4, meaning that there is the same as in the case of γ = 3 except

that the DMZ runs the Internet-facing servers (i.e., web server, email server, and DNS server). As

in the case of γ = 2, the perimeter firewall enforces that only the web server (both not the other two

servers) in the DMZ can communicate with the database server in the internal enterprise network.

Simulation Algorithm

The simulation algorithm executes the attach strategy discussed above. Each simulation run leads

to a sequence state(v, t) for v ∈ V and t = 1, . . . , T . We conduct 200 independent simulation runs

with the given parameters specified below. From these sequences we derive the average values of

34

metrics pca(t), pcsa(t) and pcos(t) per data point.

3.3.2 Simulation Results and Analysis

In the present simulation experiments, we assume that OSes are not vulnerable, but the HIPS and

NIPS are not effective. This is because we focus on measuring the effectiveness of firewalls and

DMZs. Because the OSes are not vulnerable, we only consider metrics pca and pcsa.

The parameters are set as follows: p1 = 0.1 (the probability a desktop runs a FTP client

application), p2 = 0.1 (the probability a desktop runs a database client application), δ = 0.1 (the

probability that an OS function is called by an application), N = 0 (OSes are not vulnerable),

ψ(v) = 0.5 (the probability v ∈ V is vulnerable to social engineering attacks), ϑ(vul) = 0.5 (the

probability vul can be exploited remotely), τ(vul) = 0.5 (the probability vul is zero-day), k = 0

(the probability an attack attempting to exploit a known-but-unpatched vulnerability is blocked

by the NIPS), α = 0 (the probability a social engineering attack is blocked by HIPS), ζ = 0

(the probability a privilege escalation is blocked by HIPS), (a, b, c) = (1, 1, 1), ρ(x, vul) = 1 (the

probability that x ∈ X successfully exploits vulnerability vul ∈ VUL), ω = 1 (the fraction of nodes

that are discovered by the attacker’s initial reconnaissance), and HIPS enforces the loose policy.

Note that the parameter setting implies the worst scenario in which the attacker can obtain all

of the exploits against the vulnerabilities in the network and can discover all of the nodes via an

initial reconnaissance. We consider k = 0 and α = 0 (i.e., both NIPS and HIPS cannot block any

attacks) because in the present work we focus on measuring the security effectiveness of firewalls

and DMZs.

Determining simulation time horizon T . Fig. 3.5 plots pca(t) and pcsa(t) of different combina-

tions of firewalls and DMZ (reflected by γ = 0, 1, 2, 3, 4), where β = 0.5 (i.e., the probability that

an application is vulnerable). We observe that both pca(t) and pcsa(t) first increase exponentially

and then converge to a steady value. The exponential increase is caused by communications be-

tween email clients and/or between IM clients, namely that the compromise of any of these clients

can cause the compromise of the other vulnerable clients. A similar phenomenon is observed for

35

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
a(

t)

t
(a) pca(t)

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
sa

(t
)

t
(b) pcsa(t)

Figure 3.5: pca(t) and pcsa(t) of different combinations of firewalls and DMZ.

other values of β. Therefore, we will set T = 100 as the simulation time horizon for the simulation

experiments reported below.

Security effectiveness of firewalls and DMZ. Fig.3.6 plots pca(T) and pcsa(T) for T = 100 with

respect to β under different combinations of firewalls and DMZ (γ = 0, 1, 2, 3, 4). Fig.3.7 plots

∆pca(T, γ) and ∆pcsa(T, γ) for T = 100 with respect to β, where ∆pca(T, γ) = pcaT,γ=0 −

pcaT,γ , ∆pcsa(T, γ) = pcsaT,γ=0 − pcsaγ , and pcaT,γ and pcsaT,γ respectively represent pca(T)

and pcsa(T) with respect to a specific γ value. Note that ∆pca(T, 0) = 0 because γ = 0, namely

that neither firewall nor DMZ is employed, which is the baseline case. The key findings are dis-

cussed below.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
a(

T)

β

(a) pca(T)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0
 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

pc
sa

(T
)

β

(b) pcsa(T)

Figure 3.6: pca(T) and pcsa(T) with T = 100 and different γ’s (i.e., combinations of firewalls
and DMZ).

Finding 1: Fig. 3.6a shows that 1 − pca(100) with respect to a fixed firewall and DMZ

configuration (i.e., fixed γ) decreases as β increases. This means that for a fixed defense strategy,

36

the attack-defense interaction outcome is dominated by the degree of vulnerability of an enterprise

network, namely the fraction of applications that contain at least one vulnerability. A similar

phenomenon is also observed in Fig.3.6b. This leads to:

Insight 1. When OSes are not vulnerable, the security effectiveness of a fixed combination of

firewalls and DMZ decreases as the fraction of vulnerable applications increases.

Finding 2: Fig.3.7 shows that ∆pca(T, γ) and ∆pcsa(T, γ) for a fixed γ are large when β is

neither too small nor too large, but approaches zero when β tends to 0 or 1. That is, when few

or most applications are vulnerable, firewalls and DMZ are not effective because in the former

case, few applications can be compromised and in the latter case, most applications are eventually

compromised.

Insight 2. Firewalls and DMZ are not effective when few or most computers are vulnerable.

Finding 3: Fig.3.7a shows that ∆pca(T, 1) ≈ 0 or 1.08% when averaged over β, meaning

that the perimeter firewall is not effective. This is because the attacker can penetrate into the

network via means that cannot be blocked by the perimeter firewall. When averaged over β, the

difference between ∆pca(T, 1) and ∆pca(T, 2) is 8.71%, and the difference between ∆pca(T, 1)

and ∆pca(T, 3) is 12.98%. Finally, we see that γ = 4 (i.e., enforcing comprehensive firewalls and

DMZ defense) leads to the highest security among them, which justifies the real-world defense

practice.

Insight 3. Employing the perimeter firewall lone has a little security impact, but a comprehensive

use of firewalls and DMZ can substantially increases security.

Finding 4: Fig.3.7b shows that the security effectiveness firewalls and DMZ in terms of

pcsa. We observe that ∆pcsa(T, 1) ≈ ∆pcsa(T, 3), meaning that employing perimeter fire-

wall alone and employing both perimeter firewall and internal firewalls lead to the same security.

This indicates that enforcing internal firewalls will not protect the server applications. However,

∆pcsa(T, 2) = 11.47% when averaged over β, which highlights the security effectiveness of DMZ

37

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5

 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

∆
pc

a(
T,

γ)

β

(a) ∆pca(T, γ)

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 0
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0
 γ = 0
 γ = 1
 γ = 2
 γ = 3
 γ = 4

∆
pc

sa
(T

, γ
)

β

(b) ∆pcsa(T, γ)

Figure 3.7: ∆pca(T, γ) and ∆pcsa(T, γ) with T = 100 and different γ’s.

in protecting server applications. Nevertheless, ∆pcsa(T, 2) ≈ ∆pcsa(T, 4) affirms that security

of server applications is protected by DMZ.

Insight 4. Employing perimeter firewall and DMZ can substantially increase the security of sever

applications.

3.4 Chapter Summary

In this Chapter, we instantiated the proposed framework for quantifying the security effectiveness

of firewalls and DMZs. The framework led to novel and useful insights. For example, when the

applications and OSes have few or too many vulnerabilities, firewalls and DMZ do not have a

significant impact on security; when the OSes are not vulnerable but the applications are, security

effectiveness of firewalls and DMZs decreases as the fraction of vulnerable applications increases.

38

CHAPTER 4: QUANTIFYING SECURITY EFFECTIVENESS OF

COARSE-GRAINED DYNAMIC NETWORK DIVERSITY

4.1 Chapter Introduction

Software monoculture enables the automatic amplification of cyber attack damages because vul-

nerabilities are replicated network-wide or even cyberspace-wide [51, 125]. As a consequence,

a single exploit may allow an attacker to compromise many programs. In order to cope with the

problem, researchers have proposed diversifying program implementations [13,72,166], leading to

the notion of software diversity. There are various flavors of software diversity, such as: N -version

programming (i.e., a program specification has multiple independent implementations [10, 26]);

natural diversity (e.g., multiple browsers incurred by market competition [58]); compiler-based

diversification (i.e. random executables generated from a given source code [35, 46, 61, 66, 73]);

and software runtime environment diversification (e.g., address space layout randomization [14,

41,45,140], instruction set randomization [11,70], system calls randomization [29], and replicated

execution [118]).

It is intuitive that employing software diversity could increase security. For example, the U.S.

Navy developed the RHIMES system [5] to enhance security of shipboard systems, by introducing

diversity to each programmable logic controller. However, real-world software diversity is often

employed in an ad hoc fashion, which can be justified by how different OSes (e.g., Windows vs.

various kinds of Unix) and browsers (e.g., Safari vs. Firefox vs. Chrome) are employed in practice.

One exception is the investigation of employing software diversity to enhance Byzantine Fault-

Tolerance (BFT), namely how to employ software diversity in the replica implementations so that

they do not contain common vulnerabilities [48, 99, 110, 115, 116, 138]. This is important because

the theoretical fault-tolerance guarantee can be ruined otherwise. Another exception is the inves-

tigation of employing software diversity in detecting cyber attacks by leveraging the behavioral

discrepancy between diversified replicas [69, 130, 144]. Despite these studies, some fundamental

39

questions remain open, such as: How should software diversity be employed in practice to amplify,

if not maximize, security?

The preceding question leads to the notion of network diversity, which deals with the employ-

ment of diversified program implementations in network-wide software stacks [50, 51, 104, 125,

166]. A simpler version of the notion may be called static diversity, where diversified implemen-

tations are employed once and for all (i.e., unchanged after initial employment). There are studies

on optimizing static diversity via some flavor of graph coloring algorithm; by treating colors as

diversified implementations, the research problem is to minimize defective edges (i.e., adjacent

nodes have the same color or run the same implementation) [15, 49, 50, 62, 104, 160]. There are

also studies on quantifying the effectiveness of static diversity [15, 100, 128, 133, 165].

Despite these studies, there is no systematic understanding on the network-wide effectiveness

of employing software diversity, for multiple reasons. First, most studies use coarse-grained mod-

els (i.e., treating each computer as a unit) and do not consider attack-defense interactions. Second,

it is not clear how to quantify the network-wide cybersecurity effectiveness of employing network

diversity. Third, it is not clear how network diversity should be dynamically employed, leading

to the notion of dynamic diversity. Addressing these problems can deepen our understanding of

software diversity, help decision-makers determine whether or not to invest in software diversity,

and guide practitioners in intelligently employing diversified implementations in real-world cyber

defense operations.

4.1.1 Chapter Contributions

This Chapter makes three contributions. First, we propose a framework for modeling and

quantifying the network-wide cybersecurity of enforcing network diversity. The framework distin-

guishes applications and operating systems, which allows us to accommodate privilege escalation.

The framework considers the time dimension, which allows us to investigate dynamic diversity;

that is, the employment of diversified implementations in the network evolves over time.

Second, we propose a suite of metrics to quantify the network-wide effectiveness of employing

40

diversity, including: (i) time-to-succeed, which measures how long it takes an attacker to break

a defender’s goal (if possible); (ii) attacker slow-down, which measures the extent an attacker is

slowed down by network diversity; (iii) attack worst damage, which measures the damage an at-

tacker can cause in the worst case; (iv) attack extra cost, which measures the extra investment the

defense imposes on an attacker in order to break the defender’s goal; (v) vulnerability tolerance,

which measures the upper bound of vulnerabilities that can be tolerated when achieving the de-

fender’s goal; (vi) average operational cost, which measures the average fraction of programs that

re-deploy dynamic diversity. These metrics may be of independent value.

Third, we demonstrate the usefulness of the framework and metrics by presenting a multi-

agent simulation study with multiple network diversity strategies: monoculture (the baseline with

no diversity), static diversity (for comparison purposes), proactive (periodically re-diversifying

network-wide software stacks), reactive-adaptive (re-diversifying the network stacks in response

to detected attacks), and hybrid (of the last two). According to the simulation study, we draw a

number of insights, including: (i) In terms of attacker slow-down, reactive-adaptive diversity is the

most effective strategy and the initial diversity configuration matters. (ii) In order to reduce the at-

tack worst damage, different diversity strategies should be used in different parameter regimes. (iii)

Reactive-adaptive diversity leads to a higher vulnerability-tolerance than proactive diversity does.

(iv) Proactive diversity improves security only when dynamic diversity is widely re-employed at

a high frequency, which however incurs a high operational cost. (v) The more the diversified im-

plementations, the higher the attacker slow-down, the higher the attack extra cost, and the higher

the vulnerability tolerance. This is especially true for reactive-adaptive diversity. Note that these

findings may not be universally true because they are derived from the parameter settings used in

the simulation study.

4.1.2 Related Work

Prior studies in software diversity. Prior studies mainly aim at obtaining diversified, ideally

independent, implementations of a program specification [13]. There is a body of literature on

41

software diversity (e.g., [11,14,26,35,45,46,61,70,73,140]). However, the effectiveness of these

building-block techniques is not well understood. For example, one study shows that independent

software implementation does not lead to independent vulnerabilities because programmers tend to

make the same mistakes [71]. Other studies show positive results, such as: the same vulnerabilities

in different software may demand different exploits [54]; few vulnerabilities simultaneously appear

in different OSes [57]. In contrast, the effectiveness of run-time diversity is better understood: (i)

address space layout with 32-bit randomization can be compromised by brute-forcing [120]; (ii)

address space layout with higher entropy can be compromised by side-channel attacks [37,42,117,

126]; (iii) address space layout randomization is vulnerable because of modern cache architectures

[53]; (iv) fine-grained address space layout randomization is subject to just-in-time code reuse

attacks [123]; and (v) instruction set randomization is subject to brute-forcing attacks [124, 137].

The preceding studies consider standalone software diversification techniques. In contrast,

we investigate the effectiveness of software diversification techniques from a network standpoint.

Since we consider diversifying network-wide software stacks, multiple diversification techniques

can be used together. This is reminiscent of the notion of N -variant systems [34], which however

do not quantify the network-wide effectiveness dynamic diversity.

Prior studies in network diversity. Network diversity has been investigated in some contexts [50,

51, 104, 125, 166]. There are proposals on measuring static network diversity via (i) the entropy of

the distribution of software vulnerability in a network [100] and (ii) the diversity index of the shared

vulnerabilities between different software implementations in a network [128]. There are attempts

at optimizing static diversity by using some flavor of graph coloring algorithm (i.e., treating a

diversified implementation as a color and a network as a graph) and minimizing defective edges

(i.e., adjacent nodes have the same color or run the same software implementation) [15, 49, 50, 62,

104, 160].

The closely related prior studies are [133, 165], which measure network diversity via resource

richness and attack effort. Our study is different as follows: (i) they investigate how to quantify

diversity, whereas we study how to employ dynamic diversity; (ii) they do not consider attack-

42

defense interactions, whereas we explicitly model attack-defense interactions; (iii) we quantify the

network-wide effectiveness of dynamic diversity, which is not studied by them.

Prior studies related to Moving-Target Defense (MTD). Proactive diversity is one form of MTD,

which includes other kinds of proactive defense techniques (e.g., proactively changing IP addresses

or port numbers) [31]. Quantifying the security effectiveness of MTD in the broader context is

beyond the scope of the present paper (see, e.g., [56]). While our finding that reactive-adaptive is

more effective than proactive diversity (i.e., MTD when applied to diversity) may sound counter-

intuitive at a first glance, it can be understood as follows: MTD (i.e., proactive diversity in this

case) can be employed when the defender does not know the situation information of the network

(e.g., which and how many nodes are compromised); in contrast, adaptive diversity can leverage the

situational information to adaptively employ diversity, leading to potentially higher effectiveness.

In addition, our simulation study focuses on dynamic diversity against malware-like attacks after

the attacker establishes footholds at some compromised computers in a network. This means that

the simulation study does not consider earlier stages of cyber attacks, such as reconnaissance. Our

findings do not contradict the usefulness of MTD in defending against such earlier-stage attack

activities (e.g., MTD can effectively disrupt attacker’s reconnaissance processes [19, 63, 67, 90]).

Prior studies related to whole-network security analysis. We analyze the security effectiveness

of dynamic diversity from a whole-network perspective. There are studies in this perspective, but

tackling different problems and using different approaches. The attack graph approach studies

how an attacker may exploit multiple vulnerabilities to achieve a certain goal and how to harden a

network (see, e.g., [7, 8, 28, 60, 109, 114, 121, 134, 164]). This approach is combinatorial in nature

and does not consider the time dimension [148, 149, 152]. Another approach is the cybersecurity

dynamics framework [148,149,152], which explicitly models attack-defense interactions over time

and includes a rich family of models and results (e.g., [17, 56, 79, 86, 89, 146, 150, 151, 156, 159,

167, 168]). These studies aim at analytical results while making simplifying assumptions, such

as the independence assumption between attacks. In order to eliminate such assumptions, initial

efforts have been made in both theoretical studies [36, 146, 147] and empirical studies [23, 24].

43

Our framework does not make the independence assumption, while characterizing the transient

behaviors (i.e., the dynamics before converging to an equilibrium); whereas, analytical models

so far can only offer asymptotic results (i.e., t → ∞ or when the dynamics converges to the

equilibrium). Last but not the least, our framework goes much beyond [24] by characterizing (e.g.)

dynamic attack-defense interactions and decision-making.

4.1.3 Chapter Organization

The rest of this Chapter is organized as follows. Section 4.2 instantiates the proposed frame-

work and proposes a set of security metrics. Section 4.3 describes our simulation experiments and

insights drawn from our experimental results. Section 4.4 concludes the work.

4.2 Instantiating the Framework to Quantify Security Effectiveness of Coarse-

Grained Dynamic Network Diversity

Consider a network, where each node represents a computer. Each computer has a software stack,

running an operating system (OS) in the kernel space and some application(s) in the user space.

Each program, OS and application alike, may have diversified implementations (e.g., Safari vs.

Firefox vs. Chrome for browser). These diversified implementations may be obtained by using

some of the diversification methods mentioned above (e.g., N -version programming or natural

diversity via market competition). Each program may or may not be vulnerable.

Intuition of Dynamic Network Diversity. Given diversified implementations of programs, the

aforementioned notion of static network diversity is to employ diversified programs in the com-

puters’ software stacks, where the employment (or configuration) will not change during the time

horizon of interest. We initiate the aforementioned dynamic network diversity, which aims to dy-

namically employ diversified programs at the computers’ software stacks, where the employment

(or configuration) does change during the time horizon of interest.

Figure 4.1 illustrates the idea via a network of 5 computers, denoted by 1 ≤ i ≤ 5. The time

horizon is t = 0, . . . , 5. Each computer runs an OS, and we use osi to represent the OS running in

44

computer i. There are two applications, denoted by APPj for 1 ≤ j ≤ 2 (e.g., APP1 is browser

and APP2 is email). Computers 1, 4 and 5 run both applications; computer 2 runs APP2; computer

3 runs APP1. We use appi,j to represent the application APPj running in computer i. (i) There

are three implementations of OS (e.g., Windows vs. Linux vs. macOS), which are respectively

indicated by three colors. For example, at time t = 0, 1, 2, computers 1 and 4 run the same OS,

causing os1 and os4 to have the same color; computers 2 and 5 run another OS, causing os2 and

os5 to have another color; computer 3 runs yet another OS, causing os3 to have a different color.

(ii) There are three implementations of APP1 (e.g., Safari vs. Firefox vs. Chrome), which are

respectively indicated by three colors. For example, at time t = 0, 1, 2, computers 1 and 5 run

the same implementation of APP1, causing app1,1 and app5,1 to have the same color; computers 3

and 4 run two other implementations of APP1, causing app3,1 and app4,1 to have different colors;

computer 2 does not run APP1. (iii) There are three implementations of APP2 (e.g., Outlook vs.

Thunderbird vs. eM Client), which are respectively indicated by three colors. For example, at time

t = 0, 1, 2, computers 4 and 5 run the same implementation of APP2, causing app4,2 and app5,2 to

have the same color; computers 1 and 2 run two other implementations of APP2, causing app1,2

and app2,2 to have different colors; computer 3 does not run APP2.

app4,2

app4,1

app1,2

app2,2

app1,1

app3,1
app5,1

os1

app5,2

time0 1 2 3 4 5

APP1

APP2

OS
os2

os3

os4

os5

app4,2

app4,1

app1,2

app2,2

app1,1

app3,1
app5,1

os1

app5,2

APP1

APP2

OS
os2

os3

os4

os5

Figure 4.1: Illustration of dynamic diversity in a network of 5 computers (1 ≤ i ≤ 5). The time
horizon shown is t = 0, 1, . . . , 5.

Figure 4.1 illustrates dynamic diversity as follows. At time t = 0, the network-wide diversity is

configured to run a certain combination of specific implementations of OS and applications as in-

45

dicated by colors. The solid arrow at t = 0 indicates that a new (i.e., initial) diversity configuration

is employed. This configuration remains unchanged for t = 1, 2, as indicated by dashed arrows at

t = 1, 2. At time t = 3, the network-wide diversity is re-configured to run another combination of

the diversified implementations of OS and applications. The solid arrow at t = 3 indicates this new

employment. The configuration remains unchanged for t = 4, 5, as indicated by dashed arrows at

t = 4, 5.

Attacker’s orientation of network situation

(ℱ𝒜,t)

(𝛴𝒜,𝑡= (𝐺𝒜,𝑡 , 𝐶𝒜,𝑡 , Φ𝒜,𝑡 , 𝑆𝒜,𝑡))

Networked systemAttacker’s observation via agents

(𝛤𝒜)

(𝛥𝒜)

Attacker’s decision-making

Attack action via agents

Attacker’s
profile

Goal

Strategy

Capability

(𝛺𝒜,𝑡)

Communication
graph （𝐺𝑡）

Network diversity
configuration

Cybersecurity
state(𝑆𝑡)

(𝐶𝑡)

(Φ𝑡)Software
vulnerabilities

Defender’s orientation of network situation

(ℱ𝒟,t)

(𝛴𝒟,𝑡= (𝐺𝒟,𝑡, 𝐶𝒟,𝑡 , Φ𝒟,𝑡, 𝑆𝒟,𝑡))

Defender’s observation via agents

Defender’s decision-making

Defense action via agents

(𝛤𝒟)

(𝛥𝒟)

Defender’s
profile

Goal

Strategy

Capability

(𝛺𝒟,𝑡)

Figure 4.2: The COODAL framework for characterizing the effectiveness of dynamic network
diversity.

Framework Overview. Figure 4.2 highlights the Cyber Observation-Orientation-Decision-Action

Loop (COODAL) framework for describing attack-defense interactions in a network. COODAL

adapts the military operation concept of OODA Loop [16] to cyberspace. At a high level, the

network is abstracted as a communication graph. Both attacker and defender have their own Ob-

servation (collecting data), Orientation (analyzing the collected data while leveraging relevant in-

telligence or information), Decision (determining what to do), and Action (executing the decision).

We consider a discrete-time model with a finite time horizon t = 0, 1, . . . , T , where T is the de-

fender’s mission lifetime (i.e., certain security requirements must be satisfied in order to achieve

mission assurance in time interval [0, T]). For simplicity, we assume an attack or defense action

takes effect instantly (if effective). When desired, this assumption can be eliminated by explicitly

modeling the delay for an action to take effect (e.g., the framework can be extended to accommo-

date that an attack or defense action occurs at time t and takes effect at t+ 1).

We stress that the framework does not make restrictive assumptions. For example, we do not

make any restriction on how vulnerabilities may be distributed among the diversified implemen-

46

tations by equally accommodating the scenarios where diversified implementations may or may

not have common vulnerabilities. When the attacker has an exploit against a vulnerability that is

common to multiple programs, the attacker can compromise all of these vulnerable programs. A

successful attack against an OS implies a successful attack against the applications running on top

of the OS; a successful attack against an application paves a way for the attacker to attack the OS

beneath the application (e.g., privilege escalation).

4.2.1 Representation of Enterprise Networks

Representation of computers’ software stacks. A network (e.g., enterprise or mission network)

consists of n interconnected computers or devices. Each computer runs a software stack, which

has two layers: application and operating system (OS). We treat any software running in the user

space as application program. By contrast, an OS runs in the kernel space. Consistent with the

notations used above, we use APP to denote the universe of application programs. As mentioned

above, computer i runs one or multiple applications, denoted by appi,j , where 1 ≤ i ≤ n, j is the

index of the application, and appi,j ∈ APP. We use OS to denote the universe of OSes, and use

osi to denote the specific OS running in computer i, where osi ∈ OS. Let ~ denote the number of

different programs running in the network.

Representation of communications. We explicitly model the communications between appli-

cations because they can be leveraged by the attacker to wage attacks. There are two types of

communications: intra-computer and inter-computer [23]. Intra-computer communications are

conducted by the programs running in a computer and can be represented as edges in the ter-

minology of Graph Theory. For example, Figure 4.1 shows that the two applications running in

computer 1 (i.e., app1,1 and app1,2) are designed to communicate with each other, and that both

app1,1 and app1,2 can communicate with os1 (e.g., for making system calls). Inter-computer com-

munications are conducted by applications running in different computers and can be represented

as edges. Note that OSes may not communicate with each other. We distinguish intra-computer

and inter-computer communications for two reasons: (i) they are often leveraged by the attacker

47

A, D attacker A and defender D
n, i, j n is the number of computers in a network, appi,j is the j-th application running in computer

i ∈ [1, n]

`, z ` is the number of phases of A’s strategy, z ∈ [1, `]

~, k ~ is the number of different programs, k ∈ [1, ~]

Xk Xk is the number of diversified implementations of program k

Qk software quality of diversified implementations of the k-th program (functionality), Qk ∈ [0, 1]
interpreted as probability of containing vulnerability

G G = (V,E) is the communication graph of a network (rather than the network’s physical topol-
ogy), where v ∈ V represents a program (application or operating system)

Ct Ct : V → SW is the network diversity configuration at time t
φt φt : Ct(V) → 2VUL is the mapping from diversified programs to the vulnerabilities present in

them at time t. Φt = (φt(Ct(v)))v∈V is the vulnerabilities in the network.
sv,t si,t ∈ {0, 1, 2} is the cybersecurity state of node (i.e., program running at) v ∈ V at time t (0:

vulnerable; 1: compromised; 2: invulnerable). Vector St = (sv,t)v∈V
si,t si,t ∈ {0, 1, 2} is the cybersecurity state of computer i at time t, similarly defined as sv,t. Vector

S′t = (si,t)i∈[1,n]
Σt Σt = (G,Ct,Φt, St) is the cybersecurity situation of a network at time t
ΣA,t ΣA,t = (GA,t, CA,t,ΦA,t, SA,t) is A’s perception of the target network Σt at time t
ΩA,t ΩA,t = (ωv,A,t)v∈VA,t

is A’s goal at time t at the program level, where ωv,A,t ∈ {⊥, 1}; Ω′A,t =
(ωi,A,t)i∈[1,n] is A’s goal at time t at the computer level, where ω′i,A,t ∈ {⊥, 1}

ΓA ΓA = {γA,1, . . . , γA,`} is attacker’s strategy of ` phases
∆A ∆A = (∆A,z)z∈[1,`] is an attacker’s capability where ∆A,z = {ψA,z,1, . . . , ψA,z,mz} is the ex-

ploits that are applicable and available to the attacker at phase z
FA,t FA,t is the attacker’s decision-making algorithm to make an attack plan ΛA = (λA,1, . . . , λA,`)

at time t, where λA,z ∈ ∆A,z for 1 ≤ z ≤ `
ΣD,t ΣD,t = (GD, CD,t,ΦD,t, SD,t) is D’s perception of Σt at time t
ΩD,t ΩD,t = (ωv,D,t)v∈V is D’s goal at time t at the program level, where ωv,D,t ∈ [0, 1]; Ω′D,t =

(ωi,D,t)i∈[1,n] is D’s goal at time t at the computer level, where ωi,D,t ∈ [0, 1]

ΓD ΓD = {γD,1, . . . , γD,} is defender’s strategy
ηD,1 ηD,1 represents the proportion of nodes in V employing diversified implementations
ηD,2 ηD,2 represents the frequency at which the diversified implementations will be dynamically re-

employed
ηD,3 ηD,3 represents the condition under which diversified implementations are re-employed
∆D ∆D = (∆D,k)k∈[1,~] is defender’s capability, where ∆D,k = {δD,k,1, . . . , δD,k,Xk

} is a set of Xk

diversified implementations of program k;
FD,t the decision-making algorithm to make a defense plan ΛD,t = (δD,t(v))v∈V at time t
τ the compromise probability of computer i ∈ [1, n] at time t ∈ [0, T] that can be tolerated by D
TTS TTS(A,D) = min{t : cc(t) > τ} measures how long it takes for attacker A to break defender

D’s mission goal τ
ASD ASDD,q = TTS(A,Dq) − TTS(A,D1) measures the extent at which A is slowed down by

defense strategy γD,q
AWD AWDG,~,X,Q(A,D, T) = max{cc(t) : t ≤ T} measures attack worst damage during t ∈ [0, T]

AEC AECD,q = AI(γD,q)−AI(γD,1) measures the number of extra exploitsA needs to obtain to make
AWDG,~,X,Q(A,Dq, T) > τ against defense strategy γD,q

VT VTD,q = max{Q : AWDG,~,X,Q(A,Dq, T)≤τ} captures the upper bound of tolerable vulnera-
bilities such that D can still achieve its mission goal τ in lifetime [0, T]

AOC AOCD,q(T) =
∑T

t=1OCD,q(t)/T is the average operational cost to achieve the defender’s goal;
AOCmax

D,q = max{AOCD,q(T) : AWDG,~,X,Q(A,Dq, T) ≤ τ} and AOCmin
D,q = min{AOCD,q(T) :

AWDG,~,X,Q(A,Dq, T) ≤ τ} are maximum and minimum AOCD,q(T), respectively.

Table 4.1: Summary of key notations used for quantifying security effectiveness of dynamic net-
work diversity. 48

for different purposes — the former for privilege escalation and the latter for lateral movement

between computers; and (ii) they are defended by different security mechanisms — the former

is defended by host-based mechanisms (e.g., intrusion prevention) and the latter is defended by

network-based mechanisms (e.g., firewall).

Formalizing the preceding discussion, we naturally obtain the notion of communication graph

G = (V,E), where each vertex or node v ∈ V represents (and runs) a program and each edge

(u, v) ∈ E represents that a pair of nodes are permitted to communicate with each other. Note that

a computer is represented by a set of nodes in G because it runs a set of programs. Since programs

run at nodes in G, we use programs and nodes interchangeably to make succinct statements. We

use the term edges in the standard way to indicate undirected graphs; a communication graph can

be directed in principle, which is however rare in practice. In the example illustrated in Figure 4.1,

where have |V | = 13 (i.e., 4 nodes running APP1, 4 nodes running APP2, and 5 nodes running

OS), and the edge set E is as illustrated.

We stress that communication graphG = (V,E) is different from a networking-induced graph,

for two reasons. First, a vertex or node in a communication graph represents a program running

in a computer and each edge represents the communication between two programs. In contrast,

a node in a networking-induced graph often represents a computer, which can run multiple pro-

grams. Second, a communication graph can encode access control policies, which may regulate

which programs are (not) allowed to communicate with which other programs running in the same

computer or different computers. This means that a communication graph may not be a com-

plete graph because some programs may only be allowed to communicate with some of the others.

Whereas, a networking-induced graph cannot encode access control policies and would be a com-

plete graph because any computer can communicate with any other computer as long as they are

routable.

In this paper we assume a communication graph G = (V,E) is time-independent, meaning

that the applications running in a computer are fixed. This means that the applications running in a

computer do not change, but their specific implementations may change over time. This is plausible

49

because we focus on quantifying the effectiveness of dynamic network diversity. Nevertheless,

G = (V,E) can be extended to time-dependent Gt = (Vt, Et) when desired.

Representation of network diversity configuration. Let SW denote the set of diversified im-

plementations of the ~ programs running in the network, including applications and OSes. The

dynamic network diversity configuration at time t refers to the mapping from the set of programs

to their specific implementations. This mapping can be described by a function Ct : V → SW

such that Ct(v) is a specific implementation of the program running at node v ∈ V at time t.

For example, Figure 4.1 shows that there are 3 different programs (i.e., APP1, APP2, OS); each

program has 3 diversified implementations (indicated by 3 different colors) and thus |SW| = 9,

where computer 1 runs a specific implementation of each of the three programs at t ∈ [0, 2]. Note

that the preceding representation is general enough to accommodate the static network diversity,

which corresponds to C0 = C1 = . . . = CT , and the monolithic software stack, which corresponds

to each program having exactly one implementation (i.e., |SW| equals the number of different

programs and C0 = C1 = . . . = CT).

Representation of network-wide cybersecurity state and situation. Cybersecurity state and

situation can be defined at the program of v ∈ V and at the computer level. The former is suitable

for modeling and simulation purposes, and the latter is more suitable for cyber defense operation

and management purposes. So, we consider both.

At the program level, we consider a communication graph G = (V,E), which abstracts a

network as described above. We use sv,t ∈ {0, 1, 2} to denote the state of node v ∈ V at time t:

sv,t = 0 means v (i.e., the program running at v) is vulnerable but not compromised, namely that v

contains a vulnerability but the vulnerability is not exploited by the attacker and the underlying

OS is not compromised; sv,t = 1 means v is compromised either because its vulnerability is

exploited or because the underlying OS is compromised; and sv,t = 2 means v is invulnerable

(i.e., containing no vulnerabilities) and the underlying OS is not compromised. The program-level

network-wide cybersecurity state at time t is represented by vector St = (sv,t)v∈V .

At the computer level, we say computer i is vulnerable (or si,t = 0) if any program run-

50

ning in the computer is vulnerable, compromised (or si,t = 1) if any program running in the

computer is compromised, and invulnerable (or si,t=2) if all programs running in the computer

are invulnerable. Similarly, we can define computer-level network-wide cybersecurity state at

time t as S ′t = (si,t)i∈[1,n], where S ′t can be derived from G and St. We further define the

vector ((vc(t), cc(t), ic(t))) to succinctly describe the computer-level network-wide cybersecu-

rity effect at time t, where vc(t) = |{i : si,t = 0}|/n is the fraction of vulnerable computers,

cc(t) = |{i : si,t = 1}|/n is the fraction of compromised computers, and ic(t) = |{i : si,t = 2}|/n

is the fraction of invulnerable computers. Note that cc(t) + vc(t) + ic(t) = 1.

The network-wide cybersecurity situation can be described by Σt = (G,Ct,Φt, St), or a tuple

of the communication graph, the network diversity configuration, the set of vulnerabilities asso-

ciated with each implementation, and the network-wide cybersecurity state. Note that we do not

mention S ′t because it can be derived from St.

4.2.2 Representation of Vulnerabilities

The software running in a computer, application and OS alike, may contain vulnerabilities. We use

VUL to denote the universe of software vulnerabilities that may be present in the software stacks

running in the computers of the network in question. Since vulnerabilities are associated with the

nodes in V , we use function φt : Ct(V) → 2VUL to describe the set of vulnerabilities that are

present in the implementations of application and OS programs running in the computers, where

φt(Ct(v)) = ∅ means the implementation running at node v is not vulnerable. We use vector Φt =

(φt(Ct(v)))v∈V to denote the ground-truth vulnerabilities that are present in the software running

in computers at time t. Note that this ground-truth vulnerability set may or may not be known

to the attacker or defender, and that defining φt : Ct(V) → 2VUL is equivalent to defining it as a

function from the software set SW to 2VUL. We choose the former because it simplifies subsequent

discussion (in regards to dynamic network diversity). Let Qk ∈ [0, 1], 1 ≤ k ≤ ~, denote the

quality of program, which is measured by the ratio of the number of vulnerable implementations

to the total number of diversified implementations of program k. The parameter Qk, which is

51

interpreted as the probability that program k is vulnerable, would depend on the technologies that

are employed to reduce vulnerabilities in the course of software development (e.g., vulnerability

detection [80–82, 84, 169]). The smaller the Qk, the higher the diversity quality of program k.

4.2.3 Representation of Attacks

We model an attacker A (i.e., threat model) with five attributes: knowledge (what A knows about

a network), goal (what A attempts to achieve), strategy (what strategy A uses), capability (what

exploits A possesses), and decision-making (i.e., what decision-making algorithms A uses). Intu-

itively, A with a certain knowledge attempts to achieve a goal by leveraging some capabilities to

compromise some nodes or computers according to some strategies.

Representation of attacker’s knowledge. We define attacker A’s knowledge as vector ΣA =

(ΣA,t)t∈[0,T] such that ΣA,t = (GA,t, CA,t,ΦA,t, SA,t) is A’s perception of the target network Σt =

(G,Ct,Φt, St) at time t, where GA,t = (VA,t, EA,t) ⊆ G is the attacker’s perception of G, CA,t is

the attacker’s perception of Ct, ΦA,t is the attacker’s perception of Φt, and SA,t is the attacker’s

perception of St. Note that SA,t = St because the attacker knows which programs are compromised

by the attacker itself. Note also that the notion of initial compromise can be modeled as part of the

attacker’s knowledge at time t = 0, because it describes which nodes v ∈ V are compromised at

t = 0. We use IniComp = {v ∈ V : sv,0 = 1} to denote the set of programs that are compromised

at t = 0.

Representation of attacker’s goal. We define attacker A’s goal as vector ΩA = (ΩA,t)t∈[0,T]

where vector ΩA,t = (ωv,A,t)v∈VA,t
is A’s goal at time t, where ωv,A,t ∈ {⊥, 1}, ωv,A,t = ⊥ means

that A does not care about the state of v ∈ VA,t at time t, ωv,A,t = 1 means A attempts to make

v ∈ V compromised at time t. Since Ω′A,t = (ωi,A,t)i∈[1,n] can be derived from ΩA,t, in what

follows we do not have to mention Ω′A,t explicitly. This representation is flexible because it can

accommodate intuitive attack goals, such as: (i) attempting to compromise a fixed set of nodes or

computers at time t; (ii) attempting to compromise as many nodes or computers as possible at time

t; and (iii) attempting to cumulatively compromise as many nodes or computers as possible at time

52

t.

Representation of attacker’s strategy. Inspired by the state-of-the-art industrial characterization

of sophisticated cyber attacks, such as the Cyber Kill Chain [65] and Mitre’s ATT&CK [?], we

propose abstracting them into attacker’s strategy. Since strategy is often fixed for t ∈ [0, T], we

specify attacker A’s strategy via ` ≥ 1 phases, denoted by ΓA = {γA,1, . . . , γA,`}. For example,

we have ` = 7 for the Cyber Kill Chain and ` = 12 for Mitre’s ATT&CK version 7. Since there are

different kinds of strategies, we will demonstrate how to use a specific strategy in our case study.

Representation of attacker’s capability. Given an `-phase strategy ΓA, attackerA’s capability at

phase z, where z ∈ [1, `], is defined as a set ofmz exploits applicable at phase z and available toA,

denoted by ∆A,z = {ψA,z,1, . . . , ψA,z,mz}. We define A’s capability as vector ∆A = (∆A,z)z∈[1,`].

Since A’s capability depends on exploits, we define A’s investment as AI =
∑`

z=1

∑mz

q=1 costA,z,q,

where costA,z,q is the cost to obtain the q-th exploit that is applicable at phase z.

Representation of attacker’s decision-making. At time t, attacker A uses a decision-making

algorithm FA,t to make an attack plan, which specifies the utilization of some of A’s capabilities,

denoted by ΛA,t = (λA,1, . . . , λA,`) where λA,z ∈ ∆A,z for 1 ≤ z ≤ `. This can be denoted by

λA,z ← FA,t(ΣA,t,ΩA,t,ΓA,∆A,z), (4.1)

where ΣA,t = (GA,t, CA,t,ΦA,t, SA,t) is A’s knowledge at time t as described above, ΩA,t is A’s

goal at time t, ΓA is A’s strategy, and ∆A,z is A’s capability at phase z of the attack strategy. Note

the Eq. (4.1) can be extended to consider multiple exploits (rather than a single exploit λA,z) that

may be used in an appropriate manner (e.g., sequential).

Putting the description together, we denote attackerA = (At)t∈[0,T] withAt = (ΣA,t,ΩA,t,ΓA,

∆A,FA,t).

53

4.2.4 Representation of Defenses

Similar to the attacker (or threat) model, we describe a defender D via five attributes: knowledge

(whatD knows), goal (whatD aims to achieve), strategy, capability (what tools D possesses), and

decision-making (what algorithms D uses).

Representation of defender’s knowledge. We define defender D’s knowledge as vector ΣD =

(ΣD,t)t∈[0,T] such that ΣD,t = (GD, CD,t,ΦD,t, SD,t) is D’s perception of the ground-truth situation

Σt = (G,Ct,Φt, St) at time t. In the case of full knowledge, we have ΣD,t = Σt, meaning the

defender knows everything about the ground-truth situation. In the more realistic case of partial

knowledge, the defender only knows: (i) the communication graph G, namely GD = G because

the network is managed by the defender; (ii) the network configuration Ct, namely CD,t = Ct

because the defender decides which nodes run which specific implementations; (iii) some infor-

mation about the ground-truth vulnerabilities associated with the programs, namely ΦD,t ⊆ Φt

because the defender may not know the 0-day ones that are known to the attacker; and (iv) some

noisy information about the network’s ground-truth cybersecurity state St because of the false-

positives and/or false-negatives in measuring or inferring cybersecurity states.

Representation of defender’s goal. Corresponding to the program-level vs. computer-level dis-

tinction, D’s goal can be defined at two levels. At the program level of v ∈ V , we define D’s goal

as vector ΩD = (ΩD,t)t∈[0,T] such that ΩD,t = (ωv,D,t)v∈V isD’s goal at time t, where ωv,D,t ∈ [0, 1]

is the tolerable probability that program running at v ∈ V is compromised at time t. For example,

ωv,D,t = 0 means that a successful attack against v cannot be tolerated; ωv,D,t = 0.5 can be inter-

preted as that compromise of v for at most 50% of the time can be tolerated. At the computer level,

we define D’s goal as vector Ω′D = (Ω′D,t)t∈[0,T] such that Ω′D,t = (ωi,D,t)i∈[1,n] is D’s goal at time

t, where ωi,D,t ∈ [0, 1] is the tolerable probability that computer i is compromised at time t. One

computer-level goal of particular interest is: ωi,D,t≤1/3 for i ∈ [1, n] and t ∈ [0, T]; it describes

cyber defense using Byzantine fault-tolerance techniques to tolerate the compromise of a certain

threshold of computers [91]. Since Ω′D can be derived from ΩD, we do not have to mention Ω′D

except when we discuss computer-level effectiveness.

54

Representation of defender’s strategy. We specify defenderD’s strategies in employing network

diversity as a set ΓD = {γD,1, . . . , γD,}. For example, γD,1 represents monoculture software stacks

(i.e., the baseline strategy), γD,2 represents static diversity, γD,3 represents proactive diversity with

fixed intervals, γD,4 represents reactive-adaptive diversity where the employment is triggered by

security alerts, and γD,5 represents hybrid diversity (i.e., a combination of proactive diversity and

reactive-adaptive diversity). A strategy can be accompanied by some of the following parame-

ters. (i) the proportion of nodes in V (re-)employing diversified implementations (e.g., all or some

nodes), denoted by ηD,1; (ii) the frequency at which the diversified implementations will be dy-

namically re-employed at the nodes, denoted by ηD,2; (iii) the condition under which diversified

implementations are re-employed, denoted by ηD,3. As an example showing that not every param-

eter is relevant to every strategy, we note that the preceding (ii) and (iii) are not relevant to the

static diversity strategy; this can be indicated by setting ηD,2 = NULL and ηD,3 = NULL.

Representation of defender’s capability. We define defender D’s capability as the diversified

implementations that are available to D. Recall that ~ different programs running in the network

(including both applications and operation systems) and each program may have diversified imple-

mentations. D’s capability with respect to program k, where 1 ≤ k ≤ ~, is a set of Xk diversified

implementations, denoted by ∆D,k = {δD,k,1, . . . , δD,k,Xk
}. We define D’s capability as the vec-

tor of diversified implementations that are available to D, denoted by ∆D = (∆D,k)k∈[1,~]. Since

D’s capability depends on the diversified implementations, we define the defender’s investment as

DI =
∑~

k=1

∑Xk

w=1 costD,k,w, where costD,k,w is the cost for obtaining the w-th diversified imple-

mentation of program k.

Representation of defender’s decision-making. At time t, D uses decision-making algorithm

FD,t to make a defense plan ΛD,t = (δD,t(v))v∈V , which specifies how to employ the diversified

implementations of the ~ programs at nodes v ∈ V at time t. Formally, ΛD,t is the output of the

defender’s decision-making algorithm FD,t on a number of inputs, denoted by

ΛD,t ← FD,t(ΣD,t,ΩD,t,ΓD,∆D), (4.2)

55

where ΣD,t is the defender’s perception of the ground-truth situation Σt = (G,Ct,Φt, St) at time t,

ΩD,t is the defender’s goal, ΓD is defender’s strategy as described above, and ∆D is the defender’s

capability.

Putting the description together, we denote defenderD = (Dt)t∈[0,T] withDt = (ΣD,t,ΩD,t,ΓD,

∆D,FD,t).

4.2.5 Metrics for Measuring the Cybersecurity State of an Enterprise Network

Measuring local effect of dynamic network diversity at the node level. At any point in time,

a program (i.e., node v ∈ V) is in one of the following three states: vulnerable, meaning that

the program contains a vulnerability but the vulnerability has not been exploited by the attacker;

invulnerable, meaning that the program contains no vulnerability; and compromised, either because

the program contains a vulnerability that has been exploited, or because the underlying OS is

compromised (causing any application program running on top of it to be compromised, no matter

whether the program contains vulnerability or not).

Invulnerable
app/os

Compromised
app/os

time

0 1 2

3

4 5

6

7 8

Invulnerable
os

Compromised
os

Vulnerable
os

Invulnerable
app

Compromised
app

Vulnerable
app

Vulnerable
app/os

Figure 4.3: Modeling the local effect of dynamic network diversity at the program level (i.e.,
program running at v ∈ V).

Figure 4.3 highlights the effect of employing dynamic diversity at the program level. Suppose

at time t = 3, 6 dynamic diversity is employed such that a different implementation of a program

(i.e., application or OS) is employed at time t to replace the implementation employed at time

56

t−1. The employment of dynamic diversity at time t leads to one of the following state transitions

(see upper half of Figure 4.3): (i) a vulnerable program is replaced with another vulnerable or an

invulnerable program of the same functionality; (ii) an invulnerable program is replaced with a

vulnerable or another invulnerable program; (iii) a compromised program is replaced with a vul-

nerable or invulnerable program. However, a vulnerable or invulnerable program is never replaced

with a compromised program because a successful attack only occurs to a vulnerable program that

has been employed and exploited (as diversified implementations are stored in a secure environ-

ment).

At any other point in time than the employment of dynamic diversity (e.g., t ∈ {1, 2, 4, 5, 7, 8}

as shown in Figure 4.3), the security state transition of application programs is different from that

of OSes. For applications, the state transitions are: (i) a vulnerable application program stays vul-

nerable or become compromised, either because its vulnerability is exploited or the underlying OS

is compromised; (ii) a compromised application program stays in the compromised state because

we focus on the defense based on dynamic diversity, without considering reactive defense that may

detect and clean up the compromised application programs; (iii) an invulnerable application pro-

gram stays invulnerable or becomes compromised because the underlying OS is compromised. For

OSes, the state transitions are: (i) a vulnerable OS stays vulnerable or become compromised be-

cause its vulnerability is exploited; (ii) a compromised OS stays in the compromised state because

we do not consider reactive defense; (iii) an invulnerable OS stays invulnerable.

Measuring the global effect of dynamic network diversity at the computer level. We quantify

the global effect at the computer level via the following metrics.

Definition 1 (time-to-succeed or TTS). This metric measures how long it takes attacker A to

break defender D’s goal specified by a program-level vector ΩD,t = (ωv,D,t)v∈V or computer-level

vector Ω′D,t = (ωi,D,t)i∈[1,n], where t ∈ [0, T], and ωv,D,t ∈ [0, 1] (ωi,D,t ∈ [0, 1]) is the compromise

probability of program v (computer i) at time t that can be tolerated. As mentioned above, a

defense goal of particular interest is ωi,D,t≤1/3 for computers i ∈ [1, n] at any time t ∈ [0, T]

because such compromises can be tolerated by Byzantine fault-tolerant techniques [91]. Formally,

57

we define TTS(A,D) = min{t : cc(t) > τ}, where cc(t) is the fraction of compromised computers

(i.e., attack damage) at time t.

The time-to-succeed metric is reminiscent of the well-known mean-time-to-compromise met-

ric. However, the former is defined as a random variable with respect to a specific goal (e.g.,

breaking defender’s goal), where randomness is rooted in different attack strategies, capabilities

and decision-makings algorithms. In contrast, the latter is defined as a number (or the mean value

of a random variable).

Definition 2 (attacker slow-down or ASD). Consider attacker A (i.e., a fixed threat model) that

attempts to break defender D’s goal Ω′D = (Ω′D,t)t∈[0,T], where Ω′D,t = (ωi,D,t)i∈[1,n] and, for

concreteness, ωi,D,t≤τ is the tolerable compromise probability for every computer i ∈ [1, n]

and t ∈ [0, T], while recalling that τ = 1/3 corresponds to assuring the assumption that is

needed by Byzantine fault-tolerant techniques [91]. We define attacker slow-down as ASDD,q =

TTS(A,Dq)− TTS(A,D1), to measure the extent at which A is slowed down by the employment

of network diversity defense strategy γD,q (denoted by Dq), where 2 ≤ q ≤ 5 in this study, when

compared with the baseline strategy γD,1 of monoculture software stacks (denoted by D1).

Definition 3 (attack worst damage or AWD). This metric measures how much damage an attacker

A can cause in the worst case during t ∈ [0, T], namely the maximum fraction of compromised

computers at any time t ∈ [0, T]. Formally, we define attack worst damage as AWDG,~,X,Q(A,D, T) =

max{cc(t) : t ≤ T} where G, ~, X,Q are defined above.

Definition 4 (attack extra cost or AEC). Consider attackerA (i.e., a fixed threat model) attempting

to break defender D’s goal Ω′D = (Ω′D,t)t∈[0,T], where Ω′D,t = (ωi,D,t)i∈[1,n] and, for concreteness,

ωi,D,t≤τ is the tolerable compromise probability for computer i ∈ [1, n] and t ∈ [0, T]. We define

attack extra cost (AEC) metric, AECD,q = AI(γD,q) − AI(γD,1), to measure the number of extra

exploits A needs to obtain (i.e., extra investment) such that AWDG,~,X,Q(A,Dq, T) > τ when D

employs strategy γD,q (i.e., AI(γD,q)) than the baseline strategy of employing monoculture software

stacks (i.e., AI(γD,1)).

58

Inspired by the notion of fault-tolerance, we define a vulnerability-tolerance metric to capture

the upper bound of vulnerabilities in the network that can be tolerated by the defenderD in achiev-

ing its goal ΩD. The importance of this metric can be seen as follows. (i) When each computer is

vulnerable with probability at least 1/3 + ε for some ε, the attacker able to compromise all of them

can render Byzantine fault-tolerance techniques useless. (ii) When dynamic network diversity is

employed, the attacker may only be able to compromise 1/3 of the computers because the diversity

configuration may have changed before the attacker compromises all of the vulnerable computers.

Intuitively, the larger the ε, the higher the vulnerability tolerance.

Definition 5 (vulnerability-tolerance or VT). Consider defender goal ωi,D,t≤τ for every computer

i ∈ [1, n] and each time t ∈ [0, T] and a fixed diversification quality Q ∈ [0, 1] for diversified

implementation (when applying the same quality-enhancement techniques), we define VTD,q =

max{Q : AWDG,~,X,Q(A,Dq, T)≤τ} with AWDG,~,X,Q(A,Dq, T) specified in Definition 3.

Definition 6 (average operational cost or AOC). We define the operational cost incurred by de-

fender’s strategy γD,q at time t, denoted by OCD,q(t) ∈ [0, 1], as the fraction of programs that

are replaced at time t, where 2 ≤ q ≤ 5. We define the average operational cost up to time T

as AOCD,q(T) =
∑T

t=1OCD,q(t)/T , which refers to the average fraction of programs that are

re-installed at each time t ∈ [1, T]. Intuitively, the larger the AOCD,q(T), the higher the opera-

tional cost. Given a defender’s goal ωi,D,t ≤ τ for computer i ∈ [1, n] and t ∈ [0, T], we define

AOCmax
D,q = max{AOCD,q(T) : AWDG,~,X,Q(A,Dq, T) ≤ τ} and AOCmin

D,q = min{AOCD,q(T) :

AWDG,~,X,Q(A,Dq, T) ≤ τ} as the maximum and minimum average operational cost to meet the

defender’s goal, respectively.

Figure 4.4 illustrates the relationship between the metrics. The effectiveness metrics TTS,

ASD, AWD, AEC and VT depend on the attacker’s goal in τ , mission lifetime T , and attack dam-

age cc(t). The cc(t) depends on the attack investment AI, the defense investment DI, and the de-

fender’s operational cost AOC. The attack investment AI depends on the number of attack phases

(`), the number of exploits applicable at each phase (mz), and the cost to obtain exploits (costA,z,q).

59

attacker
slow-down (ASD)

Vulnerability
tolerance (VT)

attack
extra cost (AEC)

time-to-
succeed (TTS)

attack worst
damage (AWD)

attack
damage (cc(t))

average operational
cost (AOC)

Re-employment
frequency(η𝒟,2)

attack
investment (AI)

cost𝒜, z, q

Tolerable compromise
probability (τ)

Re-employment
proportion(η𝒟,1)

Mission
lifetime (T)

Cybersecurity effectiveness metrics

Attacker investment metrics Defender operational cost metrics

attack
phases (l)

exploits
(mz)

Defense
investment (DI)

programs
(h)(h)

cost 𝒟, k, w

Defender investment metrics

diversified
implementations

(Xk)

Figure 4.4: Illustration of the relationships between the metrics, where “X → Y ” means X is a
factor in determining Y .

The defense investment depends on the number of programs (~), the number of diversified imple-

mentations of each program (Xk), and the cost to obtain each implementation (costD,k,w). The

defender’s average operational cost AOC depends on the proportion ηD,1 and frequency ηD,2 of

re-employment.

4.3 Simulation Experiments and Results

In order to characterize the effectiveness of dynamic network diversity, we propose investigating

the following RQs by simulations, where RQ1-RQ3 correspond to defender’s gains, RQ4-RQ5

corresponds to defender’s cost.

• RQ1: To what extent can dynamic network diversity slow down the attacker?

• RQ2: How much extra cost can dynamic network diversity impose on the attacker?

• RQ3: To what extent can dynamic network diversity increase the defender’s vulnerability

tolerance?

60

• RQ4: To what extent can dynamic network diversity increase the defender’s average opera-

tional cost?

• RQ5: Is it true that the more diversified implementations the better?

4.3.1 Simulation Setting and Methodology

The preceding framework is meant to be as realistic as we can be. This means that it does not

make strong assumptions that would warrant analytical treatment. This explains why we pursue

simulation-based empirical study to answer the RQs. We adopt agent-based simulation because

agents can conduct activities concurrently, which can mimic real-world attack-defense interaction

better than sequential simulation. We implement the agent-based simulation via multithreading,

where each active local agent, attack and defense alike, is instantiated as one thread such that mul-

tiple events can take place concurrently. The simulation experiment is conducted on a computer

with 32-CPU and 128GB RAM in the Python environment. In order to accommodate the random-

ness in the simulation experiment, we conduct 500 simulation runs for each experiment and take

their average as the result. In the discrete-time models, all events occur at discrete points in time.

In our experiment, we make every attack or defense activity take effect instantly, which can be

extended to accommodate any delays if desired.

Simulating an Enterprise Network System

Figure 4.5 illustrates our agent-based simulation of attack-defense experiments. We use a master-

agent architecture, where two master agents are responsible for scheduling attacks and defenses,

respectively. Each simulated host runs a local defense agent by default, which receives instruc-

tion from the defense master server. Once a computer is compromised, a local attack agent is

instantiated on the compromised computer to receive instructions from the attack master server.

When the employment of dynamic network diversity is conducted manually, the defense agent can

be compromised and re-installed from a clean version when the computer is compromised; when

the re-employment process is automatic, the defense agent must not be compromised (even if the

61

computer is compromised) so as to assure the re-employment of diversified program implemen-

tations. The master attack server updates its knowledge ΣA,t based on the information received

from the attack agents and makes decisions correspondingly. The master defense server updates

its knowledge ΣD,t in a similar fashion.

Communication network
(attacker’s view)

𝐺𝒜,𝑡

Communication network
(defender’s view)

𝐺𝒟,𝑡

…

Attacker

Defender

Attack local agent

Defense local agent

Software programs

Control flow

Host1 Host2 Host3 Hostn-2 Hostn-1 Hostn
Attack master server

Defense master server

Figure 4.5: Illustration of our agent-based simulation of attack-defense experiments.

Simulating computers’ software stack and communications. In order to make the communica-

tion graph G = (V,E) as realistic as possible, we adopt two real-world social networks in Twitter

and Friendfeed (which is a social media aggregator) [92], where the former has 5,702 users and

the latter has 5,540 users. Together, there are 6,325 users because many users use both Twitter

and Friendfeed. We construct the communication graph as follows: a Twitter user corresponds

to a Twitter client program and a Friendfeed user corresponds to a Friendfeed client program. A

user of Twitter and Friendfeed runs both client programs (i.e., the user’s computer is represented

as three nodes in the communication graph: one OS and two applications). An edge between

two users in the social network means that they communicate with each other using the social

network client program. Therefore, the communication graph accommodates the relationships in

both social networks.

Simulating network diversity configuration. Since there are many ways to configure network

diversity and the notion of an optimal algorithm is elusive (e.g., the algorithms for generating

configuration Ct for t > 0 can be different from the one for generating configuration C0), we will

consider multiple algorithms and empirically contrast them. In contrast, monoculture software

stack is trivial to configure because each program has exactly one implementation.

62

Simulating Software Vulnerabilities

In order to simulate vulnerabilities contained in the diversified program implementations, namely

Φt, we assume that each diversified program has the same diversity quality, namely Q1 = Q2 =

. . . = Q~ = Q, and each implementation of a program is equally vulnerable with a certain prob-

ability; this is a somewhat simplifying assumption but is reasonable in the sense that the same

vulnerability prevention and detection techniques may be equally applicable to all implementa-

tions. Since there are studies showing that different implementations often do not have the same

vulnerability [47,54], we assume that the vulnerabilities are distinct in the sense that each requiring

a different exploit.

Simulating Attacks

Simulating attacker’s knowledge. For describing attacker’s knowledge at time t = 0, we assume

that the attacker already compromised some vulnerable programs running at some nodes v ∈ V ,

namely the initial compromise denoted by IniComp. This is reasonable because initial compromise

typically follows reconnaissance or is waged by an insider threat, which is orthogonal to the main

purpose of the present study. As attack proceeds, the attacker can increase its knowledge by learn-

ing more information about the communication graph G = (V,E), and the programs running at

the other nodes v ∈ V that may not be known to the attacker at time t = 0. We assume the attacker

knows the vulnerabilities associated with the diversified programs.

Simulating attacker’s goal. For describing attacker’s goal ΩA,t, we assume the attacker wants to

cumulatively compromise as many programs as possible till time t = T . That means ωv,A,T = 1

for v ∈ VA,t, where t ∈ [0, T].

Simulating attacker’s strategy. The framework aims to accommodate many attack strategies. In

order to make our simulation experiment concrete, we adopt MITRE’s ATT&CK [?] because it is

widely used. The attack tactics in ATT&CK can be naturally mapped to the attack phases in our

framework. In terms of attacker’s strategy ΓA, we focus on the following phases: (i) installation,

which corresponds to γA,1 in the framework and installing attack agents in compromised computers

63

(this phase is called command-and-control in ATT&CK); (ii) discovery, which corresponds to γA,2

in the framework and allows the attacker to concurrently explore the other programs running at the

nodes in the other computers of the network; (iii) privilege escalation, which corresponds to γA,3 in

the framework and occurs when the attacker gains the root privilege in the compromised computer;

(iv) lateral movement, which corresponds to γA,4 in the framework and allows the attacker or its

malware to exploit the vulnerabilities in the a remote software stack; and (v) causing damages,

which corresponds to γA,5 and allows the attacker to causes damages to a compromised computer

(this phase accommodates the tactics of collection, exfiltration, and impact in ATT&CK).

Simulating attacker’s capability. In order to describe attacker’s capability ∆A, we adopt ATT&CK

attack procedures (i.e., attacks) as exploits. We assume the attacker possesses the following ex-

ploits: (i) an exploit for achieving remote access, denoted by ψA,1,1; (ii) an exploit for achieving

remote system discovery or obtaining information about the software running in other computers,

denoted by ψA,2,1; (iii) an exploit for discovering system information or getting detailed informa-

tion about a compromised computer, denoted by ψA,2,2; (iv) a set of exploits for escalating privilege

or compromising a vulnerable OS from a compromised application running on top of it, denoted

by {ψA,3,1, . . . , ψA,3,m3}; (iv) a set of exploits for remote exploitation capability or compromising

a remote, vulnerable computer for lateral movement purposes, denoted by {ψA,4,1, . . . , ψA,4,m4};

and (v) an exploit causes some damages (e.g., collecting sensitive data from the compromised

software), denoted by ψA,5,1. For our purposes, it suffices to assume costA,z,q = 1 for 1 ≤ z ≤ `,

1 ≤ q ≤ mz, meaning that each exploit incurs the same cost to the attacker (e.g., purchasing or

developing an exploit). Future studies can extend this basic scenario to actual cost that may be

incurred to the attacker.

(𝛾𝒜,5)
Discovery
(𝛾𝒜,2)

Lateral
Movement

(𝛾𝒜,3)

Privilege
Escalation

(𝛾𝒜,4)
Installation
(𝛾𝒜,1)

Causing
Damages

Figure 4.6: Attacker A’s 5-phase strategy (i.e., γA,1, . . . , γA,5) and possible decisions (i.e., the
arrows), which are adopted from ATT&CK’s attack simulator called CALDERA [9].

Simulating attacker’s decision-making. In order to simulate the attacker’s decision-making func-

64

tion FA, we adopt the decision-making component of ATT&CK that is used by ATT&CK’s sub-

system known as CALDERA [9]. Figure 4.6 shows how attacks proceed according to the 5-phase

strategy mentioned above: install remote access tools at compromised computers; discover local

and remote targets; compromise vulnerable OS via privilege escalation (if applicable); compro-

mise remote computers for lateral movement (if applicable); conduct malicious activities; and

repeat these processes. Basically, the decision-making algorithm outputs the next exploit that is

to be executed, as follows: (i) if the next phase is γA,1 or γA,5, the attacker will use exploit ψA,1,1

or ψA,5,1 because it only possesses one exploit at each phase; (ii) if the next phase is γA,2, the at-

tacker will use exploits ψA,2,1 and ψA,2,2 simultaneously, where ψA,2,1 targets one or more remote

computers and ψA,2,2 targets the compromised local computer; (iii) if the next phase is γA,3, the

attacker will select one exploit from the set {ψA,3,1, . . . , ψA,3,m3} according to the vulnerability

information discovered in phase γA,2; (iv) if the next phase is γA,4, the attacker will select one

exploit from the set {ψA,4,1, . . . , ψA,4,m4} according to the vulnerability information discovered in

phase γA,2.

Simulating Defenses

Simulating defender’s knowledge. As described in the framework, the defender naturally knows,

as a part of its knowledge ΣD,t, the communication graph G (i.e., GD = G) and the network config-

urationCt (i.e., CD,t = Ct) for any past and present time t. At time t = 0, we set that the defender’s

perception of the cybersecurity state S0 as SD,0 = (0, 0, . . . , 0)|V | because the attack-detection tool

(if applicable) may start to run at t = 0. The defender does not know the information about the

vulnerabilities because we allow zero-day vulnerabilities, meaning that ĜD,0 = ∅. Putting these

together, the defender’s initial knowledge is ΣD,0 = (GD, CD,0SD,0, ĜD,0).

Simulating defender’s goal. For describing a defender’s goal ΩD,t, we assume the defender aims

to keep the compromise rate at any time t ≤ T under a certain threshold τD. That is, we have

ωi,D,t = τD for i ∈ [1, n] and t ∈ [0, T] on average, where the average is over the 500 simulation

runs of each experiment.

65

Simulating defender’s strategy. We consider the following 5 defense strategies ΓD, (i) mono-

culture software stacks, denoted by γD,1, which corresponds to ηD,1 = NULL, ηD,2 = NULL,

ηD,3 = NULL. (ii) Static diversity, denoted by γD,2, which corresponds to ηD,1 = V , ηD,2 = NULL,

ηD,3 = NULL. (iii) Proactive diversity, denoted by γD,3, which corresponds to ηD,1 6= NULL,

ηD,2 6= NULL, ηD,3 = NULL. (iv) Reactive-adaptive diversity, denoted by γD,4, which corresponds

to ηD,2 = NULL, ηD,3 6= NULL, because dynamic network diversification is triggered by some se-

curity events, which may come from an intrusion detection system or the observed network-wide

cybersecurity state SD,t. Since such reactive intelligence is often noisy in practice, we incorporate

false-negative rate (FNR) and false-positive rate (FPR) into such intelligence. When such intel-

ligence is provided by an employed attack detection system, we assume that the attack detection

system cannot be compromised in the present study. (iv) Hybrid diversity, denoted by γD,5, which

combines the aforementioned proactive diversity and reactive-adaptive diversity and corresponds

to ηD,2 6= NULL, ηD,3 6= NULL. In this case, dynamic network diversity is triggered periodically or

by security events.

Simulating defender’s capability. For simplicity, we assume that defender’s capability ∆D in-

cludes: (i) the same number of diversified implementations for each program (for simplicity),

namely X1 = X2 = . . . = X~ = X; and (ii) costD,k,w = 1 for 1 ≤ k ≤ ~ and 1 ≤ w ≤ Xk,

meaning that each diversified implementation incurs the same cost to the defender. These simpli-

fying assumptions, while arguably reasonable when diversification is an automated process, need

to be extended to consider more general cases. It is worth mentioning that different versions of

a program should not be counted as diversified implementations because they would have many

vulnerabilities in common.

Simulating defender’s decision-making. For describing defender’s decision-making function

FD,t, we first consider FD,0 at time t = 0, which outputs the initial network diversity configura-

tion C0. We consider three decision-making algorithms for FD,0 at time t = 0: (i) the baseline

random coloring algorithm, which assigns a random implementation of the program in question

to run at node v; (ii) the color flipping algorithm [104], which uses the random coloring algorithm

66

mentioned above as a starting point and then iteratively let nodes change their colors to reduce the

number of defective edges (i.e., the edges with two end nodes having the same color or running the

same implementation of a software); (iii) a new algorithm we propose, which leverages the degrees

of the nodes to assign software implementations to nodes v ∈ V , by giving the large-degree nodes

a high priority in running diversified programs. Our algorithm is different from the color flipping

algorithm mentioned above because we prioritize large-degree nodes in the initial assignment.

For describing defender’s decision-making function FD,t for t > 0, we consider FD,1 = . . . =

FD,T = NULL for defense strategy γD,2 because the software deployment stays unchanged over

time in the case of static network diversity. For dynamic diversity γD,q where 3 ≤ q ≤ 5, we

consider a simple random decision-making function FD,t for t ∈ [1, T], namely that the defender

randomly selects diversified implementations to replace the currently-employed implementations

at some or all of the nodes v ∈ V according to defender’s strategy. More sophisticated decision-

making functions are left for future studies.

Simulating Local Effect and Quantifying Global Effect of Dynamic Network Diversity

We simulate the local effect of dynamic network diversity at each node v ∈ V as described in

Figure 4.3 and the global effect according to the COODAL based attack-defense interactions de-

scribed in Figure 4.2. We collect the network-wide cybersecurity state and situation over time t to

quantitatively answer the RQs.

4.3.2 Simulation Results and Analysis

Our simulation study is centered at measuring the metrics to quantify the security effectiveness of

employing network diversity, and then leveraging these quantitative effectiveness to draw insights.

While the model is general, the simulation study can only consider some specific parameter settings

because it is not feasible to consider all parameter settings. That is, the simulation study only

corresponds to some scenarios of the general model, and the findings drawn from the simulation

study may not be generalized to other parameter settings. Researchers and practitioners can apply

67

Algorithm 1 Diversified software stack assignment
Input: G = (V,E) with n computers, SW, X
Output: C0 : V → SW

1: Y ← number of different types of applications in G
2: Vappj ← {app1,j, . . . , appn,j} where 1 ≤ j ≤ Y
3: Vos ← {os1, . . . , osn}
4: for 1 ≤ j ≤ Y do
5: ORDERING(Vappj)
6: COLORING(Vappj)
7: SWITCHING(Vappj)
8: end for
9: ORDERING(Vos)

10: COLORING(Vos)
11: SWITCHING(Vos)
12: function ORDERING(V ′)
13: Sort V ′ based on their degree in the descending order
14: end function
15: function COLORING(V ′)
16: Label the implementations from 1 to X
17: for v′ ∈ V ′ do
18: fetch an implementation from SW in turn and pre-assign it to node v′

19: if no defective edges linked to v′ then
20: approve the pre-assignment
21: else
22: find out some other implementation that does not lead to local defective edges and

assign it v′

23: if no applicable implementation then
24: choose the implementation that leads to minimum local defective edges, if more

than one candidate exists, choose the implementation that is the same as that of the
adjacent node with the lowest degree

25: end if
26: end if
27: end for
28: end function
29: function SWITCHING(V ′)
30: switch the implementation of v′ ∈ V ′ to another iteratively if that can lead to less defective

edges
31: end function

our model to their specific parameter settings.

68

RQ1: To what extent can dynamic network diversity slow down the attacker?

In order to answer RQ1, we investigate how the attacker slower-down metric ASDD,q depends on

defender’s goal τ with 2 ≤ q ≤ 5. The experimental parameters are: ~ = 3 (3 different pro-

grams running in the network: Twitter, Friendfeed, OS), X = 10 (each program has 10 diversified

implementations), Q = 1 (every diversified implementation is vulnerable), |IniComp| = 10 (10 pro-

grams/nodes are initially compromised), m3 = 5 (the attacker has 5 exploits against OS), m4 = 10

(the attacker has 5 exploits against Twitter and 5 exploits against Friendfeed), and T = 500 (the

simulation stops at t = 500).

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00
2
4
6
8

1 0
1 2
1 4

 R a n d o m c o l o r i n g
 C o l o r f l i p p i n g
 A l g o r i t h m 1

AS
D D

,2

τ

(a) ASDD,2 w/ static diversity

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00
2
4
6
8

1 0
1 2
1 4

 R a n d o m c o l o r i n g
 C o l o r f l i p p i n g
 A l g o r i t h m 1

AS
D D

,3

τ

(b) ASDD,3 w/ proactive diversity

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0

 R a n d o m c o l o r i n g
 C o l o r f l i p p i n g
 A l g o r i t h m 1

AS
D D

,4

τ

(c) ASDD,4 w/ reactive diversity

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0

 R a n d o m c o l o r i n g
 C o l o r f l i p p i n g
 A l g o r i t h m 1

AS
D D

,5

τ

(d) ASDD,5 w/ hybrid diversity

Figure 4.7: Plots of attacker slow-down ASDD,q under different diversity strategies (where reactive
is short for reactive-adaptive) with varying tolerable compromise threshold τ , where 2 ≤ q ≤ 5
and dotted vertical lines indicate τ = 1/3.

Figure 4.7(a) plots attacker slow-down ASDD,2 with respect to defender’s goal τ ∈ [0, 0.5],

where the defender uses static diversity and different decision-making algorithmFD,0 at time t = 0.

We observe: (i) ASDD,2 = 0 when τ ≤ 0.1, meaning that static diversity cannot slow down the

69

attacker when the defender can only tolerate no more than 10% of the nodes being compromised.

(ii) ASDD,2 > 0 when τ ≥ 0.15, meaning that static diversity can slow down the attacker at

an extent that increases with the degree of tolerable compromise. This is reasonable because the

attacker has to do more lateral movements in order to disrupt the defender’s goal. (iii) For a fixed

tolerable compromise threshold τ , the (initial diversity) decision-making algorithm FD,0 matters

and our algorithm slows down the attacker most, with an average slow-down that is almost 2X of

that of the random coloring algorithm, where the average is over the τ ’s.

Figure 4.7(b) plots attacker slow-down ASDD,3 with respect to defender’s goal τ ∈ [0, 0.5],

where the defender uses different decision-making algorithms FD,0 for initial diversity and proac-

tively uses FD,t for t > 0 with parameters ηD,1 = 0.5 and ηD,2 = 0.2 (diversified implementations

are re-deployed at 50% of the nodes every 5 time steps). We make the same observations as that

of ASDD,2. This is reasonable because proactive diversity can replace compromised programs

with secure programs (i.e., benefiting the defender), but can also replace secure programs with

vulnerable ones (i.e., benefiting the attacker).

Figure 4.7(c) plots attacker slow-down ASDD,4 with respect to defender’s goal τ ∈ [0, 0.5],

where the defender uses some decision-making algorithm FD,0 for initial diversity and reactive-

adaptively uses FD,t for t > 0 while assuming parameters FPR = 0.1 and FNR = 0.1 (i.e., the

attack-detection or threat intelligence has a 10% false-positive rate and a 10% false-negative rate).

We make the following observations: (i) ASDD,4 > 0 for τ ∈ (0, 0.5], meaning that reactive-

adaptive diversity can always slow down the attacker at an extent that concavely increases with the

tolerable compromise threshold τ . This is reasonable because the defender can replace a likely-

compromised software with another diversified implementation to benefit the defender. (ii) For a

fixed tolerable compromise threshold τ , the initial diversity algorithm FD,0 matters because our

algorithm slows down the attacker most, with an average of almost 2X slow-down than that of the

the random coloring algorithm.

Figure 4.7(d) plots attacker slow-down ASDD,5 with respect to defender’s goal τ ∈ [0, 0.5],

where the defender uses some decision-making algorithm FD,0 for initial diversity and hybrid (of

70

proactive and reactive-adaptive) decision-making algorithm FD,t for t > 0 with parameters ηD,2

= 0.2, FPR = 0.1 and FNR = 0.1. We observe the same phenomena as in the case of reactive-

adaptive diversity, except that the degree of slow-down incurred by hybrid diversity increases with

the tolerable compromise threshold in a convex (rather than concave) fashion.

By comparing Figures 4.7(a)-4.7(d), we observe that for a fixed (initial diversity) decision-

making algorithm FD,0, we have ASDD,4 > ASDD,5 � ASDD,3 ≈ ASDD,2 for τ ∈ (0, 0.45],

indicating that reactive-adaptive diversity outperforms hybrid diversity, which significantly out-

performs proactive diversity and static diversity. Consider τ = 1/3 as an example, we observe

ASDD,4 = 412, ASDD,5 = 269, ASDD,3 = 10, and ASDD,2 = 10 when using our algorithm as (initial

diversity) decision-making algorithm FD,0. Note that the curves in Fig. 4.7(a) are not smooth be-

cause, under the static diversity strategy, compromised programs are not cleaned up and can attack

others. This also explains why the curves in Fig. 4.7(b) are not smooth, namely that proactive di-

versity always periodically selects random programs for re-employing dynamic diversity, causing

some compromised computers to remain compromised for extended durations and allowing them

to conduct further attacks. In contrast, the curves in Fig. 4.7(c) and Fig. 4.7(d) are smooth because

these two strategies leverage reactive defense systems to identify and replace the compromised

programs timely, which can limit the abrupt spreading of attacks and slow down the attacker. One

reason for the reactive-adaptive strategy to perform better than the hybrid strategy is that the for-

mer can immediately clean up the compromised programs, but the latter waits until a period of

time, which allows the attacker to compromise other vulnerable programs. That is, the difference

is caused by whether there is a gap between when compromised programs are detected and when

compromised programs are cleaned up.

Insight 5. In terms of the attacker slow-down metric, reactive-adaptive diversity is the most effec-

tive strategy and the initial diversity configuration matters.

71

RQ2: How much extra cost can dynamic network diversity impose on the attacker?

In order to answer RQ2, we investigate how the attack extra cost metric AECD,q increases with

defender’s goal τ , where 2 ≤ q ≤ 5. For this purpose, we need to see how attack cost affects the

network-wide cybersecurity state, especially attack worst damage AWDG,~,X,Q(A,Dq, T), where

2 ≤ q ≤ 5. The simulation experiment parameters are: ~ = 3 (i.e., 3 different programs running

in the network: Twitter, Friendfeed, and OS), X = 10 (i.e., each program has 10 diversified

implementations), Q = 1 (i.e., every diversified implementation is vulnerable), |IniComp| = 10

(i.e., 10 programs or nodes are initially compromised), FD,0 is our algorithm for employing initial

diversity, ηD,1 = 0.5 (i.e., diversified implementations are dynamically re-employed at 50% of all

nodes), ηD,2 = 0.2 (i.e., diversified implementations are re-employed every 5 time steps), FPR =

0.1 (i.e., 10% false-positive rate in detecting attacks), FNR = 0.1 (i.e., 10% false-negative rate in

attack detection), T = 500. We assume that the attacker uses the available exploits together, for

the sake of reducing the uncertainty in the outcomes that may be incurred by the orders of exploits

usage.

Figure 4.8(a) plots AWDG,~,X,Q(A,Dq, 500) for 2 ≤ q ≤ 5, with respect to the total number

m3 +m4 of exploits possessed by the attacker, where m3 is the number of exploits that provide the

attacker with privilege escalation capability and m4 is the number of exploits that provide the at-

tacker with lateral movement capability. We observe the following phase-transition phenomenon.

When 0 < m3 +m4 ≤ 12 (i.e., the attacker possessing no more than 40% of the total 30 exploits,

which correspond to all of the 30 vulnerabilities in the diversified implementations), the reactive-

adaptive diversity strategy γD,4 leads to the lowest attack worst damage (i.e., the γD,4 curve); when

12 < m3 + m4 ≤ 21, the hybrid diversity strategy γD,5 leads to the lowest attack worst damage

(i.e., the γD,5 curve); when 21 < m3 + m4 ≤ 30, the proactive diversity strategy γD,3 leads to the

lowest attack worst damage (i.e., the γD,3 curve). This phenomenon can be explained as follows. In

terms of the attack worst damage metric, reactive-adaptive diversity is the most effective strategy

against a less capable attacker because the defender can detect and replace the small number of

compromised programs; proactive diversity is the most effective strategy against a more capable

72

attacker, which compromises a large number of computers and demands periodic enforcement of

dynamic diversity at most, if not all, of the computers.

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

 γ D , 2 γ D , 3
 γD , 4 γ D , 5

AW
D G

,h,X
,Q

(Α
, D

q, 5
00)

m 3 + m 4

(a) AWDG,~,X,Q(A,Dq, 500)

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0

 γ D , 2 γ D , 3
 γ D , 4 γ D , 5

AE
C D

,q

τ

(b) AECD,q

Figure 4.8: Plots of AWDG,~,X,Q(A,Dq, 500) and AECD,q with 2 ≤ q ≤ 5.

From Figure 4.8(a), we can derive the attack extra cost AECD,q with respect to the defender’s

goal τ ∈ [0, 0.5] (i.e., no more than a τ fraction of the nodes are compromised at any time t ∈

[0, T]) where 2 ≤ q ≤ 5, which is plotted in Figure 4.8(b). We make the following observations: (i)

AECD,4 > 0 and AECD,5 > 0 when τ ≥ 0.025, AECD,3 > 0 when τ ≥ 0.05, and AECD,2 > 0 when

τ ≥ 0.075, meaning that employing dynamic network diversity defense strategy can impose attack

extra cost on the attacker at an extent that increases with the degree of tolerable compromises. (ii)

AECD,4 ≥ AECD,5 ≥ AECD,3 ≥ AECD,2 always holds for any τ ∈ (0, 0.5]. Consider τ = 1/3

as an example, we observe AECD,4 = 40% ≥ AECD,5 = 30% ≥ AECD,3 = 30% ≥ AECD,2 =

20%, meaning that reactive-adaptive diversity imposes extra cost on the attacker more than hybrid

diversity, which incurs more than proactive diversity and even more than static diversity.

Insight 6. In order to reduce the attack worst damage, different diversity strategies should be used

in different parameter regimes.

RQ3: To what extent can dynamic network diversity increase the defender’s vulnerability

tolerance?

In order to answer RQ3, we investigate how the vulnerability tolerance metric VTD,q depends on

defender’s goal τ , where 2 ≤ q ≤ 5. Since this dependence would rely on attack worst dam-

73

age AWDG,~,X,Q(A,Dq, T) and the parameters G and ~ are largely determined by the applications

and X is largely determined by what is available, we will investigate the impact of diversification

quality Q. The simulation experiment parameters are: ~ = 3 (3 different programs running in the

network: Twitter, Friendfeed, and OS), X = 20 (each program has 20 diversified implementa-

tions), |IniComp| = 10 (10 programs or nodes are initially compromised), FD,0 is our algorithm

for employing initial diversity, m3 = 0.5×X×Q (the attacker has 50% of the totalX×Q exploits

against the OSes on average),m4 = 0.5×2X×Q (the attacker has 50% of the totalX×Q exploits

against Twitter and 50% of the total X × Q exploits against Friendfeed on average), ηD,1 = 0.5

(diversified implementations are dynamically re-employed at 50% of all nodes), ηD,2 = 0.2 (diver-

sified implementations are re-employed every 5 time steps), FPR = 0.1 (10% false-positive rate in

detecting attacks), FNR = 0.1 (10% false-negative rate in attack detection), and mission lifetime

T = 500.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

 γ D , 2 γ D , 3
 γ D , 4 γ D , 5

AW
D G

,h,X
,Q

(Α
, D

q, 5
00)

Q
(a) AWDG,~,X,Q(A,Dq, 500)

0 . 0 0 0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

VT
D,q

τ

 γ D , 2 γ D , 3
 γ D , 4 γ D , 5

(b) VTD,q

Figure 4.9: Plots of AWDG,~,X,Q(A,Dq, 500) and VTD,q with 2 ≤ q ≤ 5.

Figure 4.9(a) plots AWDG,~,X,Q(A,Dq, 500) with respect to diversity quality Q when the de-

fender employs network diversity defense strategy γD,q, where 2 ≤ q ≤ 5. We observe that

ccD,4 < ccD,5 < ccD,3 < ccD,2 when 0 < Q ≤ 0.95, and ccD,5 < ccD,4 < ccD,3 < ccD,2 when

0.95 ≤ Q ≤ 1. This means that employing dynamic network diversity always leads to higher

security than static diversity regardless of the diversification quality Q. We observe that the attack

worst damage AWDG,~,X,Q(A,Dq, 500) increases when the quality of diversified implementations

drops, where 2 ≤ q ≤ 5. This means that dynamic network diversity leads to an even higher

74

security when the diversity quality is high (i.e., low Q’s).

From Figure 4.9(a), we can derive the vulnerability tolerance VTD,q with respect to the de-

fender’s goal τ ∈ [0, 0.5] where 2 ≤ q ≤ 5, which is plotted in Figure 4.9(b). We observe that

VTD,4 ≥ VTD,5 > VTD,3 ≥ VTD,2 when 0 < τ ≤ 0.475. Consider τ =1/3 as an example, we

observe VTD,4 = 0.8, VTD,5 = 0.75, VTD,3 = 0.6, and VTD,2 = 0.55. This means that given an

attacker that can exploit 50% of the vulnerabilities in the network on average, reactive-adaptive

diversity strategy γD,4 makes the defender tolerate a 0.8−2/3 = 0.14 or 14% extra vulnerabilities,

and hybrid diversity strategy γD,5 make the defender tolerate a 0.75 − 2/3 = 0.09 or 9% extra

vulnerabilities; however, proactive and static diversity strategies cannot achieve this effectiveness.

Insight 7. Reactive-adaptive diversity leads to a higher vulnerability-tolerance than proactive

diversity does.

RQ4: To what extent can dynamic network diversity increase the defender’s average opera-

tional cost?

In order to answer RQ4, we investigate how the average operational cost metric AOCD,q increases

with defender’s goal τ , where 2 ≤ q ≤ 5. For this purpose, we need to know how attack worst

damage AWDG,~,X,Q(A,Dq, T) depends on defense diversity strategies γD,q, where 2 ≤ q ≤ 5.

The simulation experiment parameters are: ~ = 3 (3 different programs running in the network:

Twitter, Friendfeed, OS), X = 10 (each program has 10 diversified implementations), Q = 1 (every

diversified implementation is vulnerable), |IniComp| = 10 (10 programs/nodes are initially com-

promised), FD,0 is our algorithm for employing initial diversity, m3 = 5 (the attacker has 5 exploits

against OS),m4 = 10 (the attacker has 5 exploits against Twitter and 5 exploits against Friendfeed),

and mission lifetime T = 500.

Figure 4.10(a) plots AWDG,~,X,Q(A,D3, 500) with respect to ηD,1 and 1/ηD,2, where ηD,1 is

the the proportion of nodes where diversified programs are dynamically employed and 1/ηD,2 is

the time interval between two consecutive diversity employments. We observe the following: (i)

When ηD,1 = 0.1, proactive diversity always leads to high attack worst damage, even if 1/ηD,2 is

75

0 2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0 2 2 2 4 2 6 2 8 3 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8

AW
D G

,h,X
,Q

(Α
, D

3, 5
00)

1/ηD , 2

 η D , 1 = 0 . 1
 η D , 1 = 0 . 5
 η D , 1 = 0 . 9

(a) AWDG,~,X,Q(A,D3, 500)

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 70 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 η D , 1 = 0 . 1
 η D , 1 = 0 . 5
 η D , 1 = 0 . 9

AO
C mi

n
 D,

3

τ

(b) AOCmin
D,3

Figure 4.10: Plots of AWDG,~,X,Q(A,D3, 500) and AOCmin
D,3.

small (i.e., high-frequency in employment). This means that proactive diversity is useless when

dynamic diversity is employed at a few nodes. (ii) When ηD,1 = 0.5 or 0.9, proactive diversity

can lead to low attack worst damage only when 1/ηD,2 is small. Consider defense goal τ =1/3

as an example, 1/ηD,2 must be no more than 2 when ηD,1 = 0.5 and no more than 5 when ηD,1 =

0.9. This means that proactive diversity is effective only when employed broadly and frequently.

(iii) When ηD,1 = 0.1 and 1/ηD,2 ≥ 2, or when ηD,1 = 0.5 and 1/ηD,2 ≥ 6, or when ηD,1 = 0.9

and 1/ηD,2 ≥ 14, proactive diversity leads to higher attack worst damage than static diversity.

This means that proactive diversity can do more harm than good by making making more nodes

exploitable over time.

Insight 8. Proactive diversity improves security only when employed at most nodes at high fre-

quency.

From Figure 4.10(a), we can derive the minimum average operational cost AOCmin
D,3 with respect

to the defender’s goal τ ∈ [0, 0.7], which is shown in Figure 4.10(b). Consider τ = 1/3 as an

example, the minimum average operational cost is ηD,1 × ηD,2 = 0.5 × 1/2 = 0.25 for ηD,1 =

0.5, and ηD,1 × ηD,2 = 0.9/5 = 0.18 for ηD,1 = 0.9. Note that in the case ηD,1 = 0.1, AOCmin
D,3 is

undefined when τ ∈ [0, 0.55] because the strategy can never prevent the attacker from breaking

the defender’s goal. We further observe that ηD,1 = 0.9 leads to a lower AOCmin
D,3 than ηD,1 = 0.5

when 0 ≤ τ ≤ 0.5, meaning that a higher proportion of dynamic diversity re-employment leads to

a lower average operation cost.

76

Insight 9. When proactive diversity is effective, a higher proportion of dynamic re-employment

leads to a lower operational cost than what is incurred by a higher re-employment frequency.

0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5

AW
D G

,h,X
,Q

(Α
, D

4, 5
00)

F N R

 F P R = 0 . 0 2
 F P R = 0 . 0 6
 F P R = 0 . 1 0

(a) AWDG,~,X,Q(A,D4, 500)

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

τ

 A O C m a x D , 4 : F P R = 0 . 0 2 A O C m i n D , 4 : F P R = 0 . 0 2
 A O C m a x D , 4 : F P R = 0 . 0 6 A O C m i n D , 4 : F P R = 0 . 0 6
 A O C m a x D , 4 : F P R = 0 . 1 0 A O C m i n D , 4 : F P R = 0 . 1 0

(b) AOCD,4

Figure 4.11: Plots of AWDG,~,X,Q(A,D4, 500) and AOCD,4.

Figure 4.11(a) plots AWDG,~,X,Q(A,D4, 500) with respect to FPR (false-positive rate) and FNR

(false-negative rate), where FPR,FNR ∈ [0.02, 0.1]. We observe that a lower FNR and FPR (i.e.,

higher attack-detection capability) leads to a lower attack worst damage, meaning the effective-

ness of reactive-adaptive diversity largely depends on the attack-detection capability. Consider

defender’s mission goal of τ = 1/3 as an example, we observe that reactive-adaptive diversity

can assure the mission when FPR = 0.02 and 0.02 ≤ FNR ≤ 0.1, when FPR = 0.06 and

0.02 ≤ FNR ≤ 0.09, and when FPR = 0.1 and 0.02 ≤ FNR ≤ 0.07. From Figure 4.11(a),

we can derive the AOCmin
D,4 and AOCmax

D,4 for a given FPR with respect to τ ∈ [0, 0.5], which is

plotted in Figure 4.11(b). We make the following observations. (i) For a fixed FPR, AOCmin
D,4 can

be very low and remains stable as τ increases, because AOCmin
D,4 is always achieved when FNR =

0.02. The operational cost is low because a high attack-detection accuracy can detect compromised

computers before they attack the others. (ii) For a fixed FPR, a higher τ often leads to a higher

AOCmax
D,4 , because a higher τ (i.e., higher compromise-tolerance) can be achieved at a lower oper-

ational cost from a diversity-based defense standpoint. (iii) The defender’s operational cost falls

into a wide range as τ increases, meaning that the defender’s operational cost largely depends on

the attack-detection effectiveness.

Figure 4.12(a) plots AWDG,~,X,Q(A,D5, 500) with respect to FPR and FNR, where FPR,FNR ∈

77

0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 0 . 1 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5

AW
D G

,h,X
,Q

(Α
, D

5, 5
00)

F N R

 F P R = 0 . 0 2
 F P R = 0 . 0 6
 F P R = 0 . 1 0

(a) AWDG,~,X,Q(A,D5, 500)

0 . 0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0 0 . 3 5 0 . 4 0 0 . 4 5 0 . 5 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5

τ

 A O C m a x D , 5 : F P R = 0 . 0 2 A O C m i n D , 5 : F P R = 0 . 0 2
 A O C m a x D , 5 : F P R = 0 . 0 6 A O C m i n D , 5 : F P R = 0 . 0 6
 A O C m a x D , 5 : F P R = 0 . 1 0 A O C m i n D , 5 : F P R = 0 . 1 0

(b) AOCD,5

Figure 4.12: Plots of AWDG,~,X,Q(A,D5, 500) and AOCD,5.

[0.02, 0.1] and re-deployment frequency ηD,2 = 0.2. From Figure 4.12(a), we derive AOCmax
D,5 and

AOCmin
D,5, which is plotted in Figure 4.12(b). We observe that the defender’s average operational cost

is small. Consider τ = 1/3 as an example, we observe AOCmin
D,5 = 0.0349 when FPR = 0.02 and

AOCmax
D,5 = 0.2254 when FPR = 0.1, meaning AOCD,5 ∈[0.0349, 0.2254] when FPR ∈ [0.02, 0.1]

and FNR ∈ [0.02, 0.1].

By comparing Figures 4.10(b), 4.11(b), and 4.12(b), we observe that for τ ∈ [0.05, 0.5], we

have AOCD,3 ∈ [0.15, 0.5] when η1 ∈ [0.5, 0.9]; we have AOCD,4 ∈ [0.0071, 0.5948] and AOCD,5 ∈

[0.0349, 0.2566] when FPR ∈ [0.02, 0.1] and FNR ∈ [0.02, 0.1], meaning that reactive-adaptive

diversity incurs an average operational cost falling into a wider range than proactive diversity

and an even wider range than hybrid diversity. We also observe that proactive diversity incurs a

higher operational cost than reactive-adaptive diversity when the defender’s tolerable compromise

threshold τ is small, and the opposite is true when τ is large.

RQ5: Is it true that the more diversified implementations the better?

In order to answer RQ5, we investigate how the attacker slow-down metric ASDD,q, the attack

extra cost metric AECD,q, and the vulnerability tolerance metric VTD,q depend on the number of

diversified implementations X , where 2 ≤ q ≤ 5. The experimental parameters are: ~ = 3 (3

different programs running in the network: Twitter, Friendfeed, and OS), Q = 1 (every diversified

implementation is vulnerable), |IniComp| = 10 (10 programs or nodes are initially compromised),

78

m3 = 1 (the attacker has 1 exploit against OS), m4 = 2 (the attacker has 1 exploit against Twitter

and 1 exploit against Friendfeed), FD,0 is our algorithm for employing initial diversity, ηD,1 =

0.5 (diversified implementations are dynamically re-employed at 50% of all nodes), ηD,2 = 0.2

(diversified implementations are re-employed every 5 time steps), FPR = 0.1 (10% false-positive

rate in detecting attacks), FNR = 0.1 (10% false-negative rate in attack detection), and mission

lifetime T = 500.

1 2 3 4 5 6 7 8 9 1 00
5 0

1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0

AS
D D

,q

X

 γ D , 2 γ D , 3
 γ D , 4 γ D , 5

(a) ASDD,q

1 2 3 4 5 6 7 8 9 1 00

3

6

9

1 2

1 5

AE
C D

,q

X

 γ D , 2 γ D , 3
 γ D , 4 γ D , 5

(b) AECD,q

Figure 4.13: Plots of ASDD,q and AECD,q, where 2 ≤ q ≤ 5.

Figure 4.13(a) plots ASDD,q with respect to X and τ = 0.01, where 2 ≤ q ≤ 5. We take

τ = 0.01 as an example because the attacker possessing one exploit for each program may only

compromise about 1% computers during the mission lifetime T = 500 with X =10. We observe

that ASDD,4 increases rapidly with X , followed by ASDD,5, while ASDD,3 and ASDD,2 increases

slowly with X (e.g., ASDD,3 = ASDD,2 = 2 when X =2 and ASDD,3 = ASDD,2 = 14 when X = 10).

When X = 10, reactive-adaptive diversity slows down the attacker most.

Figure 4.13(b) plots AECD,q with respect to X and τ = 1/3, where 2 ≤ q ≤ 5. We observe

that AECD,q shows an upward trend as X increases for q = 2, 3, 4, 5, meaning that the more

diversified implementations, the higher the attack extra cost for disrupting the defender’s mission

goal (i.e., no more than a τ fraction of computers are compromised at any time t ∈ [0, T]). In

addition, we observe AECD,4 ≥ AECD,5 ≥ AECD,3 ≥ AECD,2 for any X ∈ [1, 10], meaning

that reactive-adaptive diversity benefits most from more diversified implementations, followed by

hybrid diversity, proactive diversity and static diversity.

79

In order to characterize the impact of the number of diversified implementations on the vul-

nerability tolerance VTD,q where 2 ≤ q ≤ 5, we observe VTD,q = 0 when X = 1, 2 and τ =1/3.

This is reasonable because the attacker having one exploit for each program can easily break the

defender’s goal when the total number of diversified implementations is no more than 2. In con-

trast, given τ =1/3, we have VTD,q = 1 when X ≥ 3, where 2 ≤ q ≤ 5, because Figure 4.13(b)

shows that an attacker having one exploit for each program will never compromise 1/3 computers

when X ≥ 3; this is true even if all of the diversified implementations are vulnerable. This means

that when the attacker has a limited capability, a substantially higher vulnerability rate (than τ) can

effectively be tolerated until the number of diversified implementations reaches a certain amount.

Insight 10. The more diversified implementations with a similar quality, the higher the attacker

slow-down, the attack extra cost, and the vulnerability tolerance.

4.4 Chapter Summary

In this Chapter, we instantiated the proposed framework for quantifying the cybersecurity effec-

tiveness of enforcing dynamic network diversity, including a suite of security metrics for measur-

ing attacker’s cost (incurred by obtaining exploits) and defender’s operational cost (incurred by

re-employing network diversity). We conducted simulation experiments to measure these metrics

with respect to a number of dynamic diversity strategies and drew insights from the experimental

results.

80

CHAPTER 5: QUANTIFYING SECURITY EFFECTIVENESS OF

FINE-GRAINED STATIC NETWORK DIVERSITY

5.1 Chapter Introduction

Software monoculture automatically amplifies the damage of cyber attacks because a single vul-

nerability in the software stack can cause the compromise of all of the computers running the same

vulnerable software [51, 125], where software stack includes the application, library, and operat-

ing system layers. To cope with the problem, researchers have proposed the idea of diversifying

the software stack [166]. Network diversity means the software stack is diversified in a computer

network.

Software diversity can be achieved by two approaches: natural diversity and artificial diver-

sity. Natural diversity often emerges from market competition, as witnessed by the presence of

different vendors for the same functionality, such as Windows versus Linux for operating sys-

tems, or Chrome versus Firefox versus Internet Explorer for browsers. Artificial diversity refers

to the different versions of a functionality that are independently implemented, such as N-version

programming [10]. The concept of artificial diversity was originally introduced to enhance soft-

ware reliability, but nowadays it has been adopted for achieving security purposes. This intuitive

assumption seems reasonable because independent implementations of a functionality are highly

unlikely to contain the same vulnerabilities.

The rule of thumb is that network diversity improves security when compared with the mono-

culture software stack. However, this perception has not been quantitatively validated with a sci-

entific basis, which is necessary for justifying both the cost of artificial software diversity and the

effectiveness of network diversity. In this work, we take a first step towards ultimately tackling this

problem.

81

5.1.1 Chapter Contributions

This Chapter makes the following contributions.

First, we quantify the security effectiveness of network diversity from a whole-network per-

spective, namely viewing a network as a whole. We propose a framework for modeling attack-

defense interactions in a network based on a graph-theoretic model, in which a node represents

a software component or function, and an arc represents a certain relation between them and has

security consequences. The framework is fine-grained because it treats individual applications,

library functions, and operating system kernel functions as “atomic” entities. This granularity al-

lows us to realistically model cyber attacks in a flexible manner. Moreover, the framework includes

a suite of security metrics that can measure the attacker’s effort, the defender’s effort, and the se-

curity effectiveness of network diversity. To the best of our knowledge, this is the first framework

geared towards quantifying the security effectiveness of network diversity.

Second, we conduct systematic simulations to quantify the security effectiveness of network

diversity. The findings include (and will be elaborated in Section 5.3):

• Diversity does not necessarily always improve security from a whole-network perspective,

because the security effectiveness of network diversity largely depends on the security qual-

ity of the diversified implementations.

• The independence assumption of vulnerabilities in the diversified implementations does

cause an overestimate of security effectiveness in terms of the attacker’s effort.

• Given a fixed attack capability, increasing diversity effort can lead to a higher security as

long as there are always some vulnerabilities that cannot be exploited by the attacker.

• When diversity can improve security, enforcing diversity at multiple layers leads to higher

security than enforcing diversity at a single layer.

• Two most effective defense strategies are (i) reducing software vulnerabilities or preventing

attackers from obtaining exploits, and (ii) enforcing tight access control in host-based intru-

82

sion prevention systems (e.g., any function calls or communications that are not explicitly

authorized are blocked).

5.1.2 Related Work

Software diversity has been advocated for security purposes [51, 125, 166]. The most closely

related prior work is perhaps [104], which investigates how to configure diversified software im-

plementations on computers. Their goal is to minimize the number of neighboring nodes that

have the same software implementation, and/or maximize the number of subnetworks that run

the same software. This means that [104] is algorithmic in nature. In contrast, we use the Cy-

bersecurity Dynamics framework [152] to model and analyze the security effectiveness of en-

forcing network diversity. When compared with [104], our work can be characterized as fol-

lows: (i) we quantify the security effectiveness of enforcing network diversity, leading to in-

sights that are not known until now; (ii) our model is fine-grained. Indeed, our model is finer

grained than the numerous models in the Cybersecurity Dynamics framework (see, for exam-

ple, [17, 22–24, 56, 79, 86, 89, 146, 148–152, 156, 159, 167, 168]). This is because we explicitly

model the caller-callee dependence relation between software components.

The idea of software diversity, especially N-version programming [10, 26], was originally pro-

posed to enhance fault tolerance under the assumption that software faults occur independently

and randomly. Unfortunately, this assumption may not hold in general because programmers may

make the same mistakes [40, 71], and because attacks are specifically geared towards software

vulnerabilities (i.e., attacks are neither independent nor random). This means that the security

value of enforcing software diversity must be re-examined in realistic threat models. To the best

of our knowledge, the present study is the first effort aiming at systematically quantifying and

characterizing the security effectiveness of software diversity without making the independence

assumption between multiple implementations of the same software program. Indeed, we show

that, in contrast to its fault-tolerance effectiveness, network diversity does not necessarily improve

security when the diversified implementations possibly have the same security quality as the mono-

83

culture software implementation (i.e., containing the same amount of vulnerabilities). The issue

of dependence in the cybersecurity domain has been investigated in the Cybersecurity Dynamics

framework, including the dependence between random variables [36,146,147] and the dependence

between cybersecurity time series data (instantiating stochastic processes) [108, 143]. Indeed, de-

pendence has been listed as one of the technical barriers that need to be adequately tackled for

modeling and quantifying cybersecurity from a holistic perspective [152].

Another specific method for achieving diversity is to use compiler techniques [35, 46, 61, 73].

In principle, the resulting diversified versions can be treated the same as the N-version program-

ming. Moreover, our framework can accommodate a wide range of scenarios, from independence

to dependence. We refer to [72] for an outstanding systematization of knowledge in this diversifi-

cation approach. There are also proposals for runtime diversity, including address space random-

ization [14,41,45,140], instruction set randomization [11,70], and randomizing system calls [29].

Effectiveness and weakness of these techniques have been analyzed in [117, 120, 124] from a

building-block perspective rather than from the perspective of looking at a network as a whole.

Because these diversity techniques are complementary to software diversity, which is the focus of

the present work, the present framework may be extended to investigate the security effectiveness

of these techniques as well. Moreover, researchers have proposed the notion of N-variant systems

to achieve higher assurance in detecting attacks [34, 59, 71].

Quantifying security is related to security metrics, for which there are three recent surveys

[103, 106, 112] and some recent advancements are [23, 39]. It is worth mentioning that our graph-

theoretic framework is different from the framework of Attack Graphs [7, 8, 28, 60, 109, 114, 121,

134, 164], because the former models the dynamics (i.e., time-dependent) and the latter is combi-

natorial in nature (i.e., time-independent).

5.1.3 Chapter Organization

The rest of the Chapter is organized as follows. Section 5.2 presents the proposed framework.

Section 5.3 describes our simulation experiments and insights drawn from our experimental results.

84

Section 5.4 concludes the work.

5.2 Instantiating the Framework to Quantify Security Effectiveness of Fine-

Grained Static Network Diversity

In order to quantify the security effectiveness of static network diversity, we propose a security

quantification framework, specifying: (i) how to represent an enterprise network; (ii) how to rep-

resent software vulnerabilities in the network; (iii) how to represent attacks; (iv) how to represent

static network diversity and other defenses; (v) how to define security metrics for computing the

security effectiveness of static network diversity. In the following sections, we elaborate the key

components of the security quantification framework. Table 1 summarizes the key notations.

5.2.1 Representation of Enterprise Networks

A network is represented by software stacks, computers, inter-computer communication relations,

and internal-external communication relations.

Representation of Software Stacks

In order to represent the software stacks of computers in a network, we first identify a granularity,

namely the “atomic” unit (e.g., treating a computer vs. a software component as an atomic object).

For quantifying the security effectiveness of network diversity, treating each computer as an atomic

unit is too coarse-grained. Instead, we consider three types of software running on a computer: ap-

plications, including the library functions defined by the applications; libraries, including standard

library functions and non-standard library functions (e.g., system or third-party ones); operating

system running in the kernel space.

Representation of applications. There are many kinds of applications, including client (e.g.,

browsers and email clients), server (e.g., web server, email server), peer-to-peer (P2P), and stand-

alone (e.g., word processor). An application may include some library functions defined by the

application developer. We treat each application as an atomic object, because (i) application is a

85

application APP is the universe of applications; η : APP → {0, 1, 2} indicates the type of
an application (client vs. server vs. other); appi,z ∈ APP is the z-th application
running on computer i

library LIB is the universe of libraries; libi,j ∈ LIB is the j-th library running on com-
puter i; fi,j,z ∈ libi,j is the z-th library function in libi,j

os OS is the universe of operating systems; osi ∈ OS is the operating system
running on computer i; ki,z ∈ osi is the z-th operating system function in osi

Gi Gi = (Vi, Ei) represents a computer; Vi = Vi,app ∪ Vi,lib ∪ Vi,os; Ei = Ei,a ∪
Ei,l ∪ Ei,al ∪ Ei,lk ∪ Ei,ak ∪ Ei,kk

G = (V,E) G represents a network of n computers, where V = V1 ∪ . . . ∪ Vn and E =
E1 ∪ . . . ∪ En ∪ E0 ∪ E∗

diversity Y (N) is the universe of diversified implementations of Y ∈ {APP, LIB,OS};
NZ represents the number of independent implementations of Z

vulnerability B is the universe of software vulnerabilities; φ(v) ⊆ B is the set of vulner-
abilities a node v ∈ V contains; zd(vul) indicates whether vul ∈ B is known
(‘0’) or zero-day (‘1’); loc(vul) indicates whether vul can be exploited remotely
(‘1’) or not (’0’); priv(vul) indicates whether the exploitation of vul causes the
attacker to obtain the root privilege (‘1’) or not (’0’); ψ(v) for v ∈ Vi indi-
cates whether the user of computer i is (‘1’) or is not (’0’) vulnerable to social
engineering attacks

γ γ ∈ [0, 1] is the failure probability of network-based intrusion prevention
mechanism; γ(app1,app2) ∈ [0, 1] is the failure probability in blocking attacks
from app1 to app2; γ(∗,app) ∈ [0, 1] is the failure probability in blocking in-
bound attacks

α α(v) ∈ [0, 1] is the failure probability that a social engineering attack against v
is not blocked

state(v, t) The probability v ∈ V(app) ∪ V(os) is compromised at time t
exploit X is the set of exploits available to the attacker; ρ(x, vul) is the probability that

x ∈ X can exploit vulnerability vul ∈ B; ω is fraction of initially compro-
mised targets; cap = |vul ∈ B : ∃x ∈ X, ρ(x, vul = 1)|/|B| is the fraction of
software vulnerabilities that can be exploited by the attacker

metrics M = {mi} is a set of security metrics
simulation ζ(v) is the probability that a software running at v ∈ V or simply v ∈ V is

vulnerable; ϑ(vul) is the probability vul ∈ B is remotely exploitable; τ(vul) is
the probability that vul ∈ B is zero-day

Table 5.1: Summary of key notations used for quantifying security effectiveness of static network
diversity.

86

natural unit of diversified implementation; (ii) an application is a privilege entity, meaning that if

any part of an application is compromised, the entire application is compromised; (iii) an applica-

tion can be an entry-point for an attacker to remotely penetrate into a computer (e.g., remote code

execution); and (iv) attack damages are caused by the invocation of system calls (i.e., syscalls)

made by applications.

Let APP denote the universe of applications. For computer i in a network, we denote by appi,z

the z-th application running on the computer, where appi,z ∈ APP. We distinguish applications by

defining the following mathematical function:

η : APP→ {0, 1, 2} (5.1)

such that

η(app) =

0 app ∈ APP is a client app

1 app ∈ APP is an Internet-facing server app

2 app ∈ APP is an internal server app

This classification is plausible because each class may be subject to different attacks. For example,

client applications (e.g., browsers and email clients) may be vulnerable to social engineering at-

tacks, but the others may not be. An external attacker may directly compromise an Internet-facing

server, but not an internal server unless the attacker already penetrated into the network.

Representation of libraries. We treat each library function as an atomic object because of the

following: (i) if a library function has a vulnerability, then an application that invokes this function

is compromised when the vulnerability is exploited; and (ii) we need to distinguish the library

functions that make system calls from those which do not. This is important because a library

function that makes system calls can be leveraged to exploit a vulnerability in the operating system,

but a library function that does not make any system call cannot be leveraged to exploit a vulnerable

operating system. Let LIB denote the universe of libraries. For computer i in a network, we denote

by libi,j the j-th library running on the computer, and by fi,j,z the z-th library function in libi,j ,

87

where libi,j ∈ LIB and fi,j,z ∈ libi,j .

Representation of operating systems. Similar to the treatment of library functions, we treat each

OS function as an atomic object. This is because an OS function may have a vulnerability, but

the vulnerability can be exploited only when the OS function is syscalled. That is, we should

differentiate the OS functions that are syscalled from those which are not. Let OS denote the

universe of operating systems. For computer i in a network, we denote by osi the operating system

running on the computer and denote by ki,z the z-th operating system function in osi, where osi ∈

OS and ki,z ∈ osi.

Representation of Computers

Fig. 5.1 shows a toy example of a computer, running three applications denoted by appi,1, appi,2

and appi,3. Let Vi,app denote the set of application running on computer i, and be defined by:

Vi,app = {appi,1, appi,2, appi,3}. (5.2)

There are three libraries, each of which is composed of multiple functions. For example, library

libi,1 consists of functions fi,1,1, fi,1,2, fi,1,3, and thus denoted by libi,1 = {fi,1,1, fi,1,2, fi,1,3}. Let

Vi,lib denote the library functions running on computer i, which is defined by:

Vi,lib = libi,1 ∪ libi,2 ∪ libi,3

= {fi,1,1, fi,1,2, fi,1,3, fi,2,1, fi,2,2, fi,3,1, fi,3,2}. (5.3)

The operating system, osi, has ten kernel functions, meaning

osi = {ki,1, ki,2, ki,3, ki,4, ki,5, ki,6, ki,7, ki,8, ki,9, ki,10}.

88

Since operating system functions run at the same privilege level, we use Vi,os to denote the operat-

ing system functions of computer i, and Vi,os is given by:

Vi,os = osi = {ki,1, ki,2, ki,3, . . . , ki,10}. (5.4)

,

Vi,a

f1,1,i f1,2,i f1,3,i

k1,i k2,i k3,i d1,1,i d1,2,i

f2,1,i f2,2,i f3,1,i f3,2,i

k4,i

lib1,i lib2,i lib3,i

app1,i app2,i app3,i

Vi,l

Vi,k kerneli driver1,i

Computer i

k5,i

Figure 5.1: A graph-theoretic representation of computer i (or the i-th computer), denoted by
Gi = (Vi, Ei).

We further consider the dependence relations between the atomic objects, namely the caller-

callee relation. For example, an application may make a syscall directly or indirectly (i.e., an

application calls a library function which further makes a syscall). The dependence relation should

be accommodated because a vulnerability in a callee can be exploited by a caller. Fig. 5.1 illustrates

the following dependence and communication relations. Correspondingly, we model computer i

as a graph Gi = (Vi, Ei), where Vi is the node set and Ei is the arc set (meaning that the graph is

directed in general). Vi is denoted by:

Vi = Vi,app ∪ Vi,lib ∪ Vi,os, (5.5)

where Vi,app, Vi,lib, and Vi,os are respectively given by Eqs. (5.2), (5.3), (5.4). The arc set is denoted

by:

Ei = Ei,al ∪ Ei,ll ∪ Ei,lk ∪ Ei,ak ∪ Ei,kk (5.6)

89

describes the following relations:

• Ei,al represents the dependence relation between applications and the library functions. For

example, in Fig. 5.1 we have Ei,al = {(appi,1, fi,1,1), (appi,1, fi,1,2), (appi,2, fi,1,2), (appi,2,

fi,2,2), (appi,3, fi,3,1), (appi,3, fi,3,2)}.

• Ei,ll represents the dependence relation between library functions. For example, in Fig. 5.1,

we have Ei,l = {(fi,3,1, fi,2,2)} because fi,3,1 calls fi,2,2.

• Ei,lk represents the dependence relation between the library functions and the operating sys-

tem functions. For example, in Fig. 5.1 we have Ei,lk = {(fi,1,2, ki,1), (fi,2,2, ki,5)}.

• Ei,ak represents the dependence relation between applications and the operating system func-

tions. For example, in Fig. 5.1, we have Ei,ak = {(appi,2, ki,3)}.

• Ei,kk represents the dependence relation between the operating system functions. For exam-

ple, in Fig. 5.1 we have Ei,kd = {(ki,4, ki,1), (ki,8, ki,10)}.

Putting the preceding discussion together, we obtain the representation of computer i as a graph

Gi = (Vi, Ei) (5.7)

where Vi and Ei are respectively defined in Eqs. (5.5) and (5.6).

Representation of Inter-Computer Communication Relations Within a Network

Fig. 5.2 illustrates a toy network of computer i and computer j, which are respectively described

by graphs Gi = (Vi, Ei) and Gj = (Vj, Ej). The inter-computer communication relation describes

which applications running on one computer are designed to communicate with which other appli-

cations running on another computer. We formally use arc set E0 to represent the inter-computer

communication relation between applications on computer i and applications on computer j, where

E0 ⊆ {Vi,app × Vj,app} ∪ {Vj,app × Vi,app}, (5.8)

90

where 1 ≤ i, j ≤ n for a network of n computers and i 6= j. In Fig. 5.2, appi,2 running on

computer i is allowed to communicate with appj,1 running on computer j (e.g., browser to web

server). Therefore, we have E0 = {(appi,2, appj,1)}. Note that e = (app1, app2) ∈ E0 does not

necessarily correspond to a physical network link, be it wired or wireless. Instead, e ∈ E0 often

corresponds to a communication path.

f1,1,i

lib1,i

app1,i app3,i

Vi,k driver1,i

Computer i

app2,i

f1,2,i f1,3,i f2,1,i f2,2,i f3,1,i f3,2,i

k1,i k2,i k3,i k4,i d1,1,i d1,2,i

kerneli

lib2,i lib3,i

Vi,a

Vi,l

f4,1,j

lib4,j

app4,j app3,j

Computer j

app5,j

f4,2,j f5,1,j f2,1,j f2,2,j f3,1,j f3,2,j

lib2,j lib3,j

Vj,a

Vj,l

k5,i

lib5,j

driver1,j

k1,j k2,j k3,j k4,j d1,1,j d1,2,j

kernelj

k5,j

Vj,k

Figure 5.2: Illustration of the communication relation with E0 = {(appi,2, appj,1)}.

We accommodate the communication relation because compromised computers are often used

as “stepping stones” to attack other computers. For example, (appi,2, appj,1) ∈ E0 means that the

compromise of appi,2 may cause the compromise of appj,1 when appj,1 has a vulnerability that can

be exploited remotely. In order to distinguish between two kinds of attacks that can be waged over

e ∈ E0, we partition E0 into E00 and E01 such that E0 = E00 ∪ E01, where E00 represents the

attacks against clients (including peers in peer-to-peer application), and E01 represents the attacks

against servers. More specifically, we have:

• (appi,x, appj,y) ∈ E00 corresponding to computers i and j in the network: This set represents

attacks that can be launched from a server or client or peer application, say appj,y, against a

vulnerable client application say appi,x with η(appi,x) = 0.

• E01 = E0 \E00: Any inter-computer communication other than what are accommodated by

E00.

91

Representation of Internal-External Communication Relations

A network is often a part of the Internet. This means that the computers in a network may commu-

nicate with the computers outside the network. Therefore, we model the following two relations.

One is the internal-to-external communication relation. A computer, say Vi, communicates with

computers outside the network. This is done by some application running on Vi, say appi,1. We

use arc set E∗,io = {(appi,1, ∗)} to describe such internal-to-external communications, where the

wildcat “∗” means any computer that resides outside of the network. The other is the external-to-

internal communication relation. A computer, typically a server say Vj , is outfacing, meaning that

a server application, say appj,1, can be accessed from any computer outside the network. We use

an arc set E∗,oi = {(∗, appj,1)} to describe such external-to-internal communications, where the

wildcat “∗” means that any computer outside the network can communicate with appj,1. Corre-

spondingly, we define E∗ as:

E∗ = E∗,io ∪ E∗,oi. (5.9)

Modeling E∗ is important because it is related to initial compromise, which deals with how an

attacker penetrates into a network. For example, E∗,io can be leveraged to wage social engineering

attacks (e.g., spearfishing) and E∗,oi can be leveraged to compromise an outfacing server.

Representation of Networks

Putting together what we have discussed, a network of n computers is represented by G = (V,E),

where

V = V1 ∪ . . . ∪ Vn and E = E1 ∪ . . . ∪ En ∪ E0 ∪ E∗, (5.10)

where Gi = (Vi, Ei) is given by Eq. (5.7) and represents computer i, E0 is given by Eq. (5.8) and

represents the inter-computer communication relations between computers in the network, and E∗

is given by Eq. (5.9) and represents the internal-external communication relations.

For ease of reference, we will use V(app), V(lib) and V(os) to respectively denote the set of appli-

92

cations, libraries and operating systems running in the computers of a network, namely

V(app) = V1,app ∪ . . . ∪ Vn,app, (5.11)

V(lib) = V1,lib ∪ . . . ∪ Vn,lib, (5.12)

V(os) = V1,os ∪ . . . ∪ Vn,os. (5.13)

We will use v ∈ V to indicate an arbitrary node v.

5.2.2 Representation of Vulnerabilities

Let B denote the set of vulnerabilities that exist in the network comprising n computers. We

represent the intrinsic characteristics of each vulnerability vul ∈ B by five attributes. The first three

attributes involves in the exploitation of a vulnerability, meaning the ease and technical means by

which the vulnerability can be exploited. They are defined following the common vulnerability

scoring system (CVSS) [96] but a bit simplified. The fourth attribute focuses on the reachability of

a vulnerability, meaning whether there exists function paths through which an attacker can reach

the vulnerability. The last attribute considers the impact of a vulnerability, meaning the direct

consequence of a successful exploit of the vulnerability.

• loc: This attribute describes whether vul can be exploited remotely or not. We define pred-

icate loc such that loc(vul) = 0 means vul cannot be exploited remotely, and loc(vul) = 1

otherwise.

• AC: This attribute describes how difficult it is to exploit vul. We define predicate AC such

that AC(vul) = 0 means high attack complexity (we consider such attack as impossible for

simplicity), and AC(vul) = 1 means low or medium attack complexity.

• auth: This attribute describes the type of authentication required before exploiting vul. We

define predicate auth such that auth(vul) = 0 means vul can be exploited without any au-

thentication, and auth(vul) = 1 otherwise.

93

• rch: This attribute describes the reachability of vul. We use predicate exp such that rch(vul) =

0 means the function containing vul is not in the attack surface of the targeted computer, and

rch(vul)=1 means otherwise.

• priv: This attribute describes the access privileges an attacker can obtain by exploiting vul.

We use predicate priv such that priv(vul) = 0 means an exploitation of vul does not give the

attacker the root privilege, and priv(vul) = 1 means otherwise.

These attributes allow us to accommodate attacks, such as remote-2-user attacks [38, 52, 111]

that exploit vul with loc(vul) = 1, AC(vul) = 1, rch(vul)=1 and priv(vul) = 0, remote-2-root attacks

[68, 111, 121] that exploit vul with loc(vul) = 1, AC(vul) = 1, rch(vul)=1 and priv(vul) = 1, and

user-2-root attacks [52, 111, 127] that exploits vul with loc(vul) = 1, AC(auth) = 1, AC(vul) = 1,

rch(vul)=1 and priv(vul) = 1. We admit that the present model does not accommodate all attacks

(e.g., side-channel attacks), which will need to be accommodated in future work.

5.2.3 Representation of Attacks

We describe attacks by distinguishing the exploits that are available to an attacker, and the strategies

prescribing how the exploits will be used collectively. To describe the attack strategies, we define

a predicate, state(v, t), for v ∈ V(app) ∪ V(os) such that state(v, t) = 0 means v is not compromised

at time t while state(v, t) = 1 means v is compromised at time t. Note that application v ∈ V(app)

can be compromised because a software vulnerability in the application or in the library function

it calls is exploited, or because the underlying operating system is compromised. Note that the

predicate state(v, t) is not defined for v ∈ V(lib) because library functions are loaded into the

program space of an application at runtime. Now we discuss how ‘exploits’ and ‘attack strategies’

are represented in the proposed framework as below.

94

 Reconnaissance Weaponization Initial
compromise

Privilege
escalation

Lateral
movement

Figure 5.3: The proposed attack lifecycle model inspired by [65, 95].

Representation of Attack Capabilities

Let X denote the set of exploits available to the attacker. We define the following mathematical

function:

ρ : X ×B → [0, 1] (5.14)

such that ρ(x, vul) is the success probability when applying exploit x ∈ X against vulnerability

vul ∈ B. For simplicity, we only consider ρ(x, vul) = 0 or ρ(x, vul) = 1.

Representation of Attack Strategies

We represent attack strategies according to the attack lifecycle model highlighted in Fig. 5.3. This

flexible model is adapted from the Cyber Kill Chain [65] and the Attack Life Cycle [95]. The

model has seven phases: reconnaissance, weaponization, initial compromise, escalate privileges,

lateral movement, persistence, and completion. These phases are elaborated below.

Phase 1: Reconnaissance. An attacker uses reconnaissance to collect information about a target

network by identifying vulnerabilities the attacker can possibly exploit. In a given network G =

(V,E), we associate each node v ∈ V with the following data structure to represent its vulnerability

information: the type η(v) of the application running at v ∈ V(app), namely client or server; a set

φ(v) of software vulnerability v ∈ V contains; and human factor vulnerability ψ(v) of v ∈ V .

Moreover, for each vulnerability vul ∈ φ(v), the attacker further knows that its attributes include

the following: (i) zd(vul), whether the vulnerability is zero-day or not; (ii) loc(vul), whether the

vulnerability can be remotely exploited or not; and (iii) priv(v), whether the exploitation of a

vulnerability can cause a privilege escalation or not.

Phase 2: Weaponization. Given G = (V,E), an outcome of the reconnaissance step, and an

attacker’s set of exploits X , the attacker now selects some nodes v ∈ Vi for initial compromise.

95

For this purpose, the attacker needs to annotate the vulnerabilities that can be exploited by its

exploits. There are two cases.

In the case that v ∈ Vi is client application app ∈ APP(N) running on computer i, meaning

η(v) = η(app) = 0 and (app, ∗) ∈ E∗,io, the attacker can exploit social-engineering attacks to

compromise v under one of the following two conditions: (i) app contains a software vulnerability,

namely ∃vul ∈ φ(v) = φ(app), or (ii) the app contains no vulnerability but a library function or

operating system function that is called by the app contains a software vulnerability (i.e., there

existing an access path from a secure app to a vulnerable library function or operating system

function).

To be specific, the client application app is considered by the attacker as a candidate for initial

compromise only when the following condition holds:

(∃vul ∈ φ(v),∃x ∈ X : ψ(v) = 1 ∧ ρ(x, vul) = 1) ∨

(∃vul ∈ φ(u),∃x ∈ X : (u ∈ Vi,lib ∪ Vi,os) ∧ (v ∈ Vi,app) ∧ (5.15)

dep_path(v, u) ∧ ψ(u) = 1 ∧ ρ(x, vul) = 1).

The set of client applications that can be leveraged to penetrate into a network is:

Weapon0 = {v ∈ Vi,app : η(v) = 0 ∧ condition (5.15) holds}.

In the case that v ∈ Vi,app is a server application app ∈ APP(N) running on outfacing computer

i, meaning η(v) = η(app) = 1 and (∗, app) ∈ E∗,io, we assume that the user of the server is not

vulnerable to social engineering attacks as discussed above, meaning ψ(v) = ψ(app) = 0. Then,

server application app can be compromised under one of the following two conditions: (i) app

contains a remotely-exploitable software vulnerability, namely ∃vul ∈ φ(v), where φ(v) = φ(app),

such that loc(vul) = 1; or (ii) there is a library function or operating system function that is called

by v (i.e., the app) and that contains a remotely exploitable vulnerability.

More precisely, a server application app is considered by the attacker as a candidate for initial

96

compromise only when the following condition holds:

(∃vul ∈ φ(v),∃x ∈ X : loc(vul) = 1 ∧ ρ(x, vul) = 1) ∨

(∃vul ∈ φ(u),∃x ∈ X : (u ∈ Vi,lib ∪ Vi,os) ∧ (v ∈ Vi,app) ∧ (5.16)

dep_path(v, u) ∧ loc(vul) = 1 ∧ ρ(x, vul) = 1.

The set of server applications that can be leveraged to penetrate into a network is:

Weapon1 = {v ∈ Vi,app : η(v) = 1 ∧ condition (5.16) holds}.

Summarizing the above, the set of applications that can be leveraged to penetrate into the network

is defined by:

Weapon = Weapon0 ∪Weapon1. (5.17)

Phase 3: Initial compromise. Having determined Weapon according to Eq. (5.17), the attacker

will select a subset of them to penetrate into the network, according to some attack tactics. In this

paper, we consider the following tactics to reduce the chances that the attack is detected by the

defender:

1. If the attacker can compromise the operating system by exploiting a vulnerability in v ∈ Vi,os,

the attacker will choose to do so, even if the attacker can compromise some application be-

longing to Vi,app. This is because compromising the operating system causes the compromise

of every v ∈ Vi,app ∪ Vi,os automatically. This tactic prevents the attacker from launching

redundant attacks, and therefore possibly reduces the chance of its attacks being detected.

2. If the attacker cannot compromise the operating system on computer i, the attacker will

compromise all of the applications on computer i that can be compromised, which is defined

by:

{v ∈ Vi,app : v ∈ Weapon ∧ (∃x ∈ X, ∃vul ∈ φ(v) : ρ(x, v) = 1). (5.18)

97

Other tactics may be possible (e.g., the attacker may compromise some applications, de-

pending on its objective). These attack tactics will guide the attacker to select a subset of

nodes for initial compromise, denoted by:

IniComp = {v ∈ Weapon : attacker selects v to attack}.

Phase 4: Privilege escalation. We assume the attacker wants to get the root privilege whenever

possible. Suppose the attacker only has obtained the user privilege at a computer, meaning that

the attacker has compromised some v ∈ Vi,app but not v ∈ Vi,os. In order to escalate to the root

privilege, there are two cases, depending on the preventive defense policy is tight or loose.

In the case of tight policies, a whitelist-like mechanism is used to record the legitimate ap-

plications as well as the operating system functions they are authorized to call. Unless the host-

based intrusion prevention system is compromised (i.e., the operating system is compromised),

the attacker with a user privilege (by compromising an application) can neither run an arbitrary

malicious program nor make any calls to unauthorized operating system functions even if the latter

vulnerable. That is, a privilege escalation occurs under the following condition:

∃v ∈ Vi,app,∃u ∈ Vi,os,∃vul ∈ φ(u),∃x ∈ X :

state(v, t) = 1 ∧ dep_path(v, u) ∧ ρ(x, vul) = 1.

In the case of loose policies, there is no whitelist-like mechanism. This means that an attacker

with a user privilege (by compromising an application) can run an arbitrary malicious program or

make calls to any vulnerable operating system functions to compromise them. That is, a privilege

escalation occurs under the following condition:

∃v ∈ Vi,app,∃u ∈ Vi,os,∃vul ∈ φ(u),∃x ∈ X :

state(v, t) = 1 ∧ ρ(x, vul) = 1.

98

Phase 5: Lateral movement. Suppose the attacker has compromised computer i, denoted by

state(v, t) = 1. Lateral movement means that the attacker attempts to compromise other computers

in the network. There are two cases, depending on whether the network-based preventive defense

is tight or loose.

In the case the network-based preventive defense is tight, communication over (v, u) /∈ E0

is blocked and therefore cannot be abused to wage attacks unless the enforcement mechanism or

reference monitor is compromised (e.g., firewall). This forces the attacker to use an existing inter-

computer communication relation e ∈ E01 to attempt to attack another computer. Formally, a

lateral movement from a compromised computer i to vulnerable computer j can happen under one

of the following two conditions:

(∃u ∈ Vj,app,∃vul ∈ φ(u),∃x ∈ X : state(v, t) = 1∧

state(u, t) = 0 ∧ (v, u) ∈ E0 ∧ ρ(x, vul) = 1 ∧ loc(vul) = 1) (5.19)

∨(∃u ∈ Vj,app, ∃w ∈ Vj,lib ∪ Vj,os,∃vul ∈ φ(w), ∃x ∈ X :

(state(v, t) = 1) ∧ (state(w, t) = 0) ∧ (v, u) ∈ E0∧

dep_path(u,w) ∧ ρ(x, vul) = 1 ∧ loc(vul) = 1). (5.20)

The first condition, Eq. (5.19), says a vulnerable application on computer j can be exploited

from a compromised application on computer i. The second condition, Eq. (5.20), says a vul-

nerable library or operating system function on computer j can be exploited from a compromised

application on computer i.

In the case the network-based preventive defense is loose, communication over (v, u) /∈ E0 is

not blocked by any enforcement mechanism or reference monitor and therefore can be leveraged

to launch attacks. Formally, a lateral movement from a compromised computer i to a vulnerable

99

computer j can happen under one of the following two conditions:

(∃u ∈ Vj,app,∃vul ∈ φ(u),∃x ∈ X : state(v, t) = 1 ∧

state(u, t) = 0 ∧ ρ(x, vul) = 1 ∧ loc(vul) = 1) (5.21)

∨(∃u ∈ Vj,app,∃w ∈ Vj,lib ∪ Vj,os,∃vul ∈ φ(w), ∃x ∈ X :

state(v, t) = 1 ∧ state(w, t) = 0 ∧

dep_path(u,w) ∈ Ej ∧ ρ(x, vul) = 1 ∧ loc(vul) = 1). (5.22)

Note that Eqs. (5.21) and (5.22) are respectively the same as Eqs. (5.19) and (5.20), except that

there is no requirement for (v, u) ∈ E0 because the network-based preventive defense is loose.

5.2.4 Representation of Defenses

Representation of Static Network Diversity

A well-known approach to diversifying software is called N-version programming [10], mean-

ing that a software has multiple independent implementations that are unlikely to have the same

software bugs or vulnerabilities. Corresponding to the representation of software stacks, we let

APP(N) denote the universe of diversified implementations of the applications, where superscript

(N) indicates N-version programming. For application app ∈ APP, there is a set of independent

implementations, denoted by app(N), where |app(N)| ≥ 1. Note that |app(N)| = 1 means that there

is no diversity for this application. Similarly, we let LIB(N) denote the universe of diversified im-

plementations of the libraries, where a library lib ∈ LIB has a set of independent implementations,

denoted by lib(N), with |lib(N)| ≥ 1. Let OS(N) denote the universe of diversified implementations

of the operating systems, where an operating system os ∈ OS has a set of independent implemen-

tations, denoted by os(N), with |os(N)| ≥ 1.

Static network diversity is to diversify the software stacks of computers in networks. Consider

network G = (V,E) of n computers, as defined in Eq. (5.10). The software stack configuration of

computer i is an assignment of specific implementations of applications, libraries, and operating

100

system to run in computer i. For this purpose, we define a tuple of mathematical functions:

C = (C(app), C(lib), C(os)), (5.23)

where C(app) : V(app) → APP(N) assigns a specific implementation of application appi,j ∈ APP(N)

to run at node v ∈ V(app), C(lib) : V(lib) → LIB(N) assigns a specific implementation of library

libi,j ∈ LIB(N) to run at node v ∈ V(lib), and C(os) : V(os) → OS(N) assigns a specific implementa-

tion of operating system osi ∈ OS(N) to run at node v ∈ V(os).

Representation of Other Defenses

In this work, we only consider host-based defenses that prevent attacks from succeeding, including

Host-based Intrusion Prevention System (HIPS) and patching. Since there are many defense mech-

anisms that might not be feasible to model individually, we simply model their effect. Note that the

term effect is different from the term effectiveness as follows: effect includes changes introduced

by a defense mechanism (e.g., cost, performance, and/or security changes), but effectiveness is lim-

ited in a positive aspect of influence (e.g., enhanced security). We consider two types of preventive

defenses, tight and loose, in the contexts of network-based and computer-based defenses.

For network-based preventive defenses, a tight policy is mainly related to the enforcement of a

whitelist, such that any communication attempts that are not specified by E0 ∪ E∗ will be blocked

because these communications are not deemed as necessary by the applications. In contrast, a

loose policy does not block the traffic not complying to E0 ∪ E∗. For example, we can consider

the following:

• Consider communication link e = (app1, app2), where app1, app2 ∈ APP(N) run on two

different computers. If the preventive defense is tight, e /∈ E0 means the traffic over e is

blocked; otherwise, the traffic is further examined by a network-based intrusion prevention

mechanism, which fails to detect an attack launched from app1 to app2 with a probability,

denoted by γ(app1,app2) ∈ [0, 1]. For simplicity, we assume that these probabilities are arc-

101

independent, meaning γ = γ(app1,app2) for any app1, app2 ∈ APP(N); this corresponds to the

case that the defender deploys the same network-based intrusion prevention system network-

wide.

• Consider communication link e = (∗, app) ∈ E∗,oi, where app ∈ APP(N) and η(app) = 1.

We associate e with a parameter γ(∗,app) ∈ [0, 1], which describes the probability that an

inbound attack is not detected or blocked. For simplicity, we assume that these probabilities

are arc-independent, meaning γ = γ(∗,app) for any app ∈ APP(N); this corresponds to the

case that the same network-based intrusion detection system is used in the entire network.

For computer-based or host-based preventive defenses, a tight policy is essentially the enforce-

ment of a whitelist, including the applications authorized to run on a computer and the list of

operating system functions these applications are authorized to call. As a result, the compromise

of an application does not necessarily mean the attacker can abuse the compromised application

to make calls to unauthorized, but vulnerable operating system functions. Moreover, the attacker

cannot run a malicious application provided by itself. In contrast, a loose policy does not have

such a whitelist. As a consequence, the compromise of an application allows the attacker to abuse

the compromised application to make calls to any vulnerable operating system functions (e.g.,

privilege escalation). Moreover, the attacker can run any malicious application provided by itself.

In order to model computer-based or host-based preventive defenses against social engineering

attacks that may be waged over e ∈ E00 ∪ E∗,io, we associate each node of the following set

{v ∈ V(app) : η(v) = 0 ∧ ((v, ∗) ∈ E∗,io ∨ (v, u) ∈ E00)}, (5.24)

with parameter αapp ∈ [0, 1] to describe the probability that a social engineering attack against v

is not detected or blocked. Note that all of the applications running on computer i have the same

parameter αi. For simplicity, we may assume the same α applies to all nodes belonging to the set

of Eq. (5.24).

102

5.2.5 Metrics for Measuring the Cybersecurity State of an Enterprise Network

We further define security metrics to measure defender’s effort, attacker’s effort, and security ef-

fectiveness.

Defender’s Effort

Defender’s effort can be measured by the following metrics:

• Diversity parameter (N): This represents the number of implementations, N , each soft-

ware has. Note that it is straightforward to extend this uniform parameter N into a vector

(N(app), N(lib), N(os)) to accommodate that different software has different numbers of im-

plementations.

• Preventive defense effort: This metric has two categories, tight vs. loose, where tight means

the defender needs to make extra effort in figuring out which applications have to com-

municate with which other applications and which applications can call which libraries or

syscalls. On the other hand, loose does not require any extra effort.

Attacker’s Effort

Attacker’s effort can be measured by the following metrics:

• Initial compromise effort: It refers to the fraction ω of initial compromises the attacker

makes, denoted by ω × |Weapon|.

• Fraction cap of vulnerabilities: This indicates the fraction of vulnerabilities that can be

exploited by the attacker, denoted by cap = |X|/|B|.

103

Security Effectiveness

The attack consequence is represented by the predicate of state(v) of v ∈ V . We can define the

state of an operating system as

state(osi) =

 1 ∃v ∈ osi s.t. state(v) = 1

0 otherwise

Moreover, we have

∀appi,j ∈ Vi,app : state(osi) = 1 =⇒ state(appi,j) = 1.

Security effectiveness can be measured by two time-dependent metrics: percentage of com-

promised applications (pca) and percentage of compromised operating systems (pcos) at time t,

namely

pca(t) = |{v ∈ V(app) : state(v, t) = 1}|/|V(app)|, (5.25)

pcos(t) = |{v ∈ V(os) : state(v, t) = 1}|/|V(os)|. (5.26)

while noting that we do not consider the state of libraries.

5.3 Simulation Experiments and Results

In this section, we use simulations to answer the following Research Questions (RQ):

• RQ1: Does natural diversity always lead to higher security? If not, when?

• RQ2: Does artificial diversity always lead to higher security? If not, when?

• RQ3: Does the use of natural and artificial diversity together always lead to higher security?

If not, when?

• RQ4: What are the most effective defense strategies in the presence of network diversity?

104

5.3.1 Simulation Setting and Methodology

Simulating an Enterprise Network System

Fig. 5.4 is an example network, from which G = (V,E) will be derived for the simulation study.

The network has a DMZ (DeMilitarized Zone) consisting of a web server and an email server, a

database zone with a database server, and 10 subnets with each having 200 hosts. In total, the

network has 2,003 computers.

Web Server
Mail Server

DMZ Internet

Attacker

SQL Server

IPS

IDS

Database

Firewall 1 Firewall 2

…

Subnet10

Subnet1

… NIPS

NIPS

Figure 5.4: Example network used for the simulation study.

For the application layer, suppose each of the three servers only runs one application (i.e.,

web server, email server, and database, respectively). Suppose each computer in a subnet runs 4

applications, namely APP = {browser, email client, P2P, word processor}, except for the experi-

ment aiming to characterize the impact of the number of applications running on a computer. For

the operating system layer, suppose there are two operating systems, namely OS = {OS1,OS2},

where OS1 offers 350 syscalls (reflecting Linux [1]) and OS2 offers 1,200 syscalls (reflecting Win-

dows [2]). For the library layer, suppose there are 10 libraries for OS1, including the standard

library with 2,000 functions (2,000 is the number of standard libc functions in Linux [4]) and the

9 other libraries with each having 200 functions. Suppose there are 20 libraries for OS2, includ-

ing the standard library with 5,000 functions (5,000 is an approximation of the standard library

functions in Windows [97]) and the 19 other libraries with each having 300 functions.

For the dependence relation in a computer, namely Ei = Ei,al ∪Ei,ll ∪Ei,lk ∪Ei,ak ∪Ei,kk, we

105

note thatEi depends on the specific software stack diversity configuration. We observe (i) precisely

obtaining the Ei of a given computer requires a substantial effort, and (ii) the representativeness

of the given computer is always debatable. These observations suggest us to make the following

simplifying assumptions.

• For Ei,al, we assume (i) the standard library is always called by each application, but each of

the other libraries is called by each application with a 50% probability; and (ii), if a library

is called by an application, each function of the library is called by the application with a

probability of 5%.

• For Ei,ll, we assume each standard library function is called by each function in the other

libraries with a probability of 5%.

• For Ei,lk, we assume each operating system function is called by each standard library func-

tion with a probability of 5% and is called by each function in the other libraries with a

probability of 1%.

• We set Ei,ak = ∅ because most applications will make syscalls through some libraries, rather

than making syscalls directly.

• For Ei,kk, we assume that each operating system function is called by other operating system

functions with a probability of 5%.

For the inter-computer communication relation E0, we make the following assumptions: a browser

is allowed to communicate with the web server in the DMZ; an email client can connect to the

email server in the DMZ to retrieve and send emails; the web server needs to communicate with

the SQL server; the email clients need to communicate with each other in the enterprise network

(i.e., sending emails to, and receiving emails from, each other); a P2P application needs to com-

municate with the other P2P applications within the same sub-network; any computer in subnet 1

can communicate with any computer in subnet 3, and any computer in subnet 2 can communicate

with subnet 8; any inter-computer communication not specified above is not allowed (i.e., blocked

when tight preventive defense is enforced).

106

For the internal-external communication relation E∗, we assume that a browser can access

the web server outside of the network, the computers can exchange emails with the outside of

the network, the P2P applications need to communicate with their peers outside of the enterprise

network, the word processors can open text files received from the external network, and Internet-

facing servers (i.e., web server, email server) can be accessed by external computers.

Simulating Vulnerabilities

For each software belonging to APP(N) ∪ LIB(N) ∪OS(N), we use parameter ζ ∈ [0, 1] to represent

the probability that the software contains a vulnerability and is therefore vulnerable. For a software

belonging to LIB(N) ∪ OS(N), the vulnerability is located at one of its functions that is chosen

uniformly at random, while noting that this matter is not relevant for APP(N) because an application

is treated as a whole. The attributes of vulnerability vul ∈ B is determined as follows. If vul is

in a operating system function, then priv(vul)=1; otherwise, priv(vul)=0. We use parameter ϑ(vul)

to represent the probability that vul can be exploited remotely, namely Pr(loc(vul) = 1). We use

parameter τ(vul) to represent the probability that vul is zero-day, namely Pr(zd(vul) = 1).

For human factor vulnerabilities, we assume that any client computer i is subject to social-

engineering attacks, because it may get compromised when accessing a malicious web server or

when attacked by spearfishing, namely ψ(v) = 1 for v ∈ Vi.

Simulating Attacks

We consider an attacker outside of the network attempting to penetrate into the network and com-

promise as many computers as possible. Attacks proceed according to the strategy described in

Fig. 5.3. All of the applications associated with E∗ can be initial compromise targets. Moreover, a

compromised P2P client or email client may send a malicious message to another client to exploit

the latter’s vulnerability (if any). A word processor can be exploited to spread attacks by formulat-

ing malicious payload that will be sent through either the email or the P2P application. For a given

software stack diversity configuration C = (C(app), C(lib), C(os)) of the software stacks, we use

107

parameter cap to represent the fraction of vulnerabilities the attacker can exploit, where cap = 1

means the attacker can exploit every vulnerability. We use parameter ω to represent the fraction of

initial compromise targets, where ω = 1 means the attacker will initially compromise every node

that is vulnerable.

Simulating Defenses

Simulating static network diversity. For simplicity, we assume that every software has the same

number N of independent implementations. Given N independent implementations, the tuple of

configuration functions C = (C(app), C(lib), C(os)) assign a specific implementation of an applica-

tion, library, or operating system to run at the corresponding layer of a computer. We will consider

5 kinds of configurations that will be compared against each other: (i) C0: N = 1 (i.e., the mono-

culture case); (ii) C1: The application, library, and operating system layers are also diversified with

N implementations; (iii) C2: The application layer is diversified with N implementations, but the

other layers are monoculture; (iv) C3: The library layer is diversified with N implementations, but

the other layers are monoculture; and (v) C4: The operating system layer is diversified with N

implementations, but the other layers are monoculture.

Simulating other defenses. As shown in Fig. 5.4, the network uses Firewall 1 to separate the

Internet from the network, uses Firewall 2 to separate the subnets from each other, and uses a

NIPS to protect each subnet. We further assume that each computer runs a HIPS, which has a

success probability 1 − α in detecting and blocking social-engineering attacks against computer

i that (i.e., its user) has a human factor vulnerability, namely ψ(v) = 1 for v ∈ Vi as mentioned

above. For the web server and the email server in the DMZ, ports other than the specific service

ports are all disabled. Firewall 2 allows the web server in the DMZ to communicate with the

database server in the database zone, but block any other traffic from the DMZ to the other part of

the network.

108

Simulation Algorithm

Algorithm 2 describes the simulation algorithm, which proceeds according to the attack strategy

mentioned above. The input includesG = (V,E), the software stack diversity configuration C, the

attacker’s capabilities, the description of vulnerabilities B, and the description of defense D. The

simulation results are presented in the pca and pcos metrics and are averaged over 100 simulation

runs.

Algorithm 2 Simulation algorithm.

Input: G = (V,E) with η(v); A = (X, ζ, ω, cap); APP(N), LIB(N), OS(N); B with
ζ(vul), ϑ(vul), τ(vul) for vul ∈ B; C; D = (α, γ,HIPS,NIPS) with HIPS,NIPS∈ {tight, loose}; T
Output: state(v, t) for v ∈ V and t = 1, . . . , T

1: Configure software stacks according to C
2: Assign model parameters α to v, γ to e ∈ E, HIPS to Vi ∈ V , NIPS to e ∈ E
3: Simulate reconnaissance
4: Compute Weapon according to Eq. (5.17)
5: Select IniComp based on Weapon and ω
6: for v ∈ V do
7: state(v, 0) = 0
8: end for
9: for v ∈ IniComp do

10: Simulate initial compromise
11: if v is compromised then
12: state(v, 1) = 1
13: end if
14: end for
15: for t ∈ {2, . . . , T} do
16: for each app ∈ V(app) with state(v, t− 1) = 1 do
17: Simulate privilege escalation and lateral movement
18: end for
19: end for
20: Return state(v, t) for v ∈ V and t = 1, . . . , T

109

5.3.2 Simulation Results and Analysis

RQ1: Does natural diversity always lead to higher security? If not, when?

We consider natural diversity at both the application layer and the operating system layer, meaning

N = 1 for every application and operating system. Moreover, we have N = 1 for every library.

First, we measure the security effectiveness of application-layer natural diversity by consider-

ing two browsers: browser1 and browser2 (as a simplified setting). We consider three scenarios: (i)

each computer runs browser1; (ii) each computer runs browser2; (iii) the “hybrid” case in which

each computer runs either browser1 or browser2 with probability 0.5. The other parameters are:

the operating system is OS1, γ = 0.2 (failure probability of NIPS), α = 0.2 (failure probability of

HIPS), ϑ(vul) = 0.8 (the probability that vul can be exploited remotely), τ(vul) = 0.05 (the prob-

ability that vul is zero-day), ζ(v) = 0.2 for v ∈ V − {browser1, browser2} (the probability that the

software running on node v is vulnerable), cap = 1 (the worst-case scenario that the attacker has

exploit for every vulnerability), ω = 0.2 (20% of the nodes in Weapon are initially compromised),

NIPS = tight, and HIPS = tight.

0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5

 p c a : b r o w s e r 1 p c o s : b r o w s e r 1
 p c a : h y b r i d p c o s : h y b r i d
 p c a : b r o w s e r 2 p c o s : b r o w s e r 2

t

(a) Browser natural diversity

0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5

 p c a : O S 2 p c o s : O S 2
 p c a : h y b r i d p c o s : h y b r i d
 p c a : O S 1 p c o s : O S 1

t

(b) OS natural diversity

Figure 5.5: Plots of pca(t) and pcos(t) with natural diversity.

Fig. 5.5(a) plots pca(t) and pcos(t) with browser natural diversity, with ζ(browser1) = 0.4

(the probability that browser1 is vulnerable) and ζ(browser2) = 0.2 (the probability that browser2

is vulnerable). We observe that a higher (lower) browser vulnerability probability ζ leads to a

110

higher (lower) pca(t), and the hybrid of them leads to a pca(t) somewhere in-between them. On

the other hand, pcos(t) is not affected because the underlying operating system is the same. In

addition, the percentage of compromised applications, namely pca(100), is always greater than

the application vulnerable probability 0.2. This is beause an application can be compromised

by exploiting a vulnerability in the application, by exploiting a vulnerability in the libraries the

application invokes, or by compromising the operating system underlying it. On the other hand,

the percentage of compromised operating systems, pcos(100), is always lower than the operating

system vulnerable probability 0.2. This is because some vulnerabilities cannot be reached, and

therefore cannot be exploited, by the attacker; this can happen when the HIPS enforces the tight

policy.

Second, we measure security effectiveness of operating system-layer natural diversity by con-

sidering the case of two operating systems: OS1 and OS2 (as a simplified setting to demonstrate

the competition between various versions of Unix and Windows). We consider three scenarios:

(i) every computer runs OS1; (ii) every computer runs OS2; (iii) the “hybrid” case in where every

computer runs either OS1 or OS2 with probability 0.5. The other parameters are: browser being

the browser1 mentioned above, software stack diversity configuration C1 with N = 1 (which is

equivalent to C0 with two operating systems), γ = 0.2, α = 0.2, ϑ(vul) = 0.8, τ(vul) = 0.05,

ζ(v) = 0.2 for v ∈ V − {OS1,OS2}, cap = 1, NIPS= tight, and HIPS= tight.

Fig. 5.5(b) plots pca(t) and pcos(t) with operating system natural diversity, with ζ(OS1) = 0.2

(the probability that OS1 is vulnerable) and ζ(OS2) = 0.4 (the probability that OS2 is vulnerable).

We observe that a higher (lower) operating system vulnerability probability ζ leads to a higher

(lower) pcos(t), and the hybrid of them leads to a pcos(t) somewhere in between them. When

compared with the browser vulnerability probability, the operating system vulnerability probabil-

ity has a more significant impact on pca(t) because a compromised operating system causes the

compromise of any application running on a computer.

Summarizing the preceding discussion, we observe that when market competition leads to

the emergence of a lower quality of software, security is degraded. For example, the emergence

111

and deployment of OS2 with ζ = 0.4 causes pca(100) increases from 0.3694 to 0.4508 in the

hybrid case, meaning a 22.04% security degradation. However, if market competition leads to

higher quality of software, security can be improved. For example, the emergence and deployment

of browser2 with ζ = 0.2 causes pca(100) decreases from 0.4076 to 0.3893 in the hybrid case,

meaning a 4.49% security improvement.

Insight 11. Natural diversity can lead to higher security as long as the diversified software imple-

mentations have a higher security quality (i.e., containing fewer software vulnerabilities); other-

wise, natural diversity can lead to lower security.

RQ2: Does artificial diversity always lead to higher security? If not, when?

In order to answer RQ2, we investigate a range of related sub-questions, including the impact of the

dependence of vulnerabilities between diversified implementations. Studies [40, 71] have showed

that the independence assumption in N-version programming is questionable because program-

mers tend to make the same mistakes (for example, incorrect treatment of boundary conditions).

Therefore, we need to accommodate dependence between vulnerabilities. In order to describe

dependence, we define the following vulnerability correlation metric.

Definition 7 (vulnerability correlation metric). Let M denote the number of independent vulner-

abilities in the N implementations of a software program, where each vulnerability requires a

different exploit. The vulnerability correlation metric, denoted by cor, is defined cor = 1−M/N ,

where cor = 0 corresponds to the extreme case that all of the N vulnerabilities are independent

(i.e., requiring N exploits), and cor = (N − 1)/N corresponds to the other extreme case that all

of the N vulnerabilities can be exploited by a single exploit.

Note that Definition 7 implicitly assumes that each software program has at most one vulner-

ability. While this may be true in many cases, the definition can be extended to accommodate the

more general case of a software program contains multiple vulnerabilities.

Impact of vulnerability correlation cor on attacker effort. In order to see the effect of vul-

nerability correlation cor, we conduct an experiment with N = 10 (i.e., each software has 10

112

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0

 ζ = 0 . 3
 ζ = 0 . 2
 ζ = 0 . 1

|X|

c o r
(a) |X| vs. cor

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0

|X|

ζ

 c o r = 0
 c o r = 0 . 3
 c o r = 0 . 6
 c o r = 0 . 9

(b) |X| vs. ζ

Figure 5.6: Plots of attacker’s effort |X| with respect to fixed ζ and cor.

implementations), the operating system is OS1, and a fixed ζ (the probability that a software is

vulnerable).

Fig. 5.6(a) shows that for a fixed ζ , |X| (the number of exploits the attacker needs to obtain in

order to compromise all of the vulnerable software) decreases as cor increases. Moreover, the de-

crease in |X| is nonlinear, and gets faster with a larger cor. This confirms that dependence between

vulnerabilities will reduce the security effectiveness of network diversity in terms of the attacker’s

effort. Furthermore, a higher software vulnerability probability ζ leads to a more substantial re-

duction of the attacker’s effort |X| when cor increases, implying that the attacker will benefit even

more when the diversified implementations contain more vulnerabilities that are “correlated” with

each other (i.e., lower quality). In terms of the attacker’s effort with respect to a fixed vulnerability

correlation cor, Fig. 5.6(b) shows that the attacker’s effort |X| grows with the software vulnera-

bility probability ζ (indicating an increasing number of vulnerabilities). However, the growth is

nonlinear except in the case of cor = 0 (i.e., the vulnerabilities are independent of each other).

The stronger the vulnerability correlation (e.g., cor = 0.9), the slower the increase to the attacker’s

effort.

Insight 12. The independence assumption of vulnerabilities in diversified implementations does

cause an overestimate of the security effectiveness of enforcing network diversity in terms of the

113

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 . 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0

c a p

 p c a : c o r = 0
 p c a : c o r = 0 . 5
 p c o s : c o r = 0
 p c o s : c o r = 0 . 5

Figure 5.7: Plots of pca(100) and pcos(100).

attacker’s effort. The lower the security quality of the diversified implementations, the higher the

benefit to the attacker, and the less useful the artificial diversity.

Impact of vulnerability correlation cor on pca and pcos. Fig. 5.7 plots pca(100) and pcos(100)

with the increase of attacker capability cap (the fraction of vulnerabilities for which the attacker

has exploits). For a fixed vulnerability probability ζ = 0.2, we compare the security consequence

of cor = 0 and cor = 0.5. The result shows that pca(100) with respect to cor = 0 and pca(100)

with respect to cor = 0.5 are almost the same when cap = 1 (the attacker having exploit for every

vulnerability). The same phenomenon is exhibited by pcos(100) with respect to cor = 0 and by

pcos(100) with respect to cor = 0.5. This means that vulnerability correlation cor has no effect

on the security of the network against a powerful attacker because the attacker can exploit any

vulnerability. On the other hand, cor = 0.5 can lead to substantially higher damage in terms of pca

and pcos when compared with the case of independent vulnerabilities cor = 0.

Insight 13. The independence assumption of vulnerabilities in diversified implementations does

not cause an overestimate of the security effectiveness of enforcing network diversity in terms of

metrics pca and pcos.

When does artificial diversify lead to higher security? We have observed that when the attacker

can exploit any vulnerability, the vulnerability correlation cor has no effect on the security with

regard to pca and pcos. Therefore, we need to know when artificial diversity is useful. In order to

114

answer this question, we consider cor = 0 as a representative example scenario. We focus on C0

and C1 because C0 in a sense reflects the state-of-the-art and C1 reflects the ideal case. The other

parameters are: APP = {browser, email client, P2P, word processor}, operating system is OS1,

N = 10, γ = 0.2, α = 0.2, ϑ(vul) = 0.8, τ(vul) = 0.05, ω = 0.2, NIPS= tight, HIPS= tight.

Fig. 5.8 plots pca and pcos with respect to attacker capability cap (the fraction of vulnerabilities

that can be exploited by the attacker) and time. Figs. 5.8(a) and 5.8(c) show that monoculture, C0,

can lead to sudden “jumps” in terms of compromised applications and operating systems, namely

that a single vulnerability can cause the compromise of many software. However, Figs. 5.8(b)

and 5.8(d) show that the enforcement of network diversity, C1, does not suffer from this problem.

This shows that diversity can make the damage increases smoothly rather than abruptly, or make

security degrades gradually rather than abruptly, with respect to increasing attack capabilities.

Suppose ζ is fixed, meaning that the security quality of independent implementations (in terms

of their probabilities of being vulnerable) is the same. Suppose the attacker capability of the

attacker cap, namely the number of exploits the attacker has, is proportional to the number of

vulnerabilities. Figs. 5.8(a) and 5.8(b) show that pca(100) with respect to C0 and pca(100) with

respect to C1 are almost the same, meaning that enforcing software diversity does not lead to better

security. This is because increasing N also increasing N × ζ × cap proportionally for fixed ζ and

cap. This example highlights when diversity neither increases nor decreases security.

By comparing Figs. 5.8(a) and 5.8(f), we observe that diversity indeed leads to higher secu-

rity when the diversified software have fewer vulnerabilities than the monoculture case. Indeed,

the security resulting from diversity is almost proportional to the improvement in software secu-

rity quality, namely the improvement in terms of reducing ζ (the probability that a software is

vulnerable) from 0.2 to 0.1. This example highlights when diversity leads to higher security.

When comparing Figs. 5.8(b) and 5.8(e), we observe that diversity actually can lead to lower

security when the security quality of diversified implementations is poor. Indeed, the security

resulting from using diversified low-quality software is almost proportional to the security qual-

ity of the software. For example, considering cap = 1 and pca(100), the damage of using low-

115

0
1

100

0.2

pc
a

80
cap

0.5 60

t

0.4

40
200

(a) Configuration C0, ζ = 0.2

0
1

100

0.2

pc
a

80
cap

0.5 60

t

0.4

40
200

(b) Configuration C1, ζ = 0.2

0
1

100

0.2

pc
os

80
cap

0.5 60
t

0.4

40
200

(c) Configuration C0, ζ = 0.2

0
1

100

0.2

pc
os

80
cap

0.5 60

t

0.4

40
200

(d) Configuration C1, ζ = 0.2

0
1

100

0.2

pc
a

80
cap

0.5 60

t

0.4

40
200

(e) Configuration C0, ζ = 0.1

0
1

100

0.2

pc
a

80
cap

0.5 60

t

0.4

40
200

(f) Configuration C1, ζ = 0.1

Figure 5.8: Plots of pca and pcos highlighting the smooth, rather than abrupt, decreases in security
with increasing attacker capabilities.

116

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 00 . 0

0 . 1

0 . 2

0 . 3

0 . 4
 p c a
 p c o s

N
1

Figure 5.9: pca(100) and pcos(100).

quality diversified software (ζ = 0.2) is 1.5 times of the damage of using high-quality monoculture

(ζ = 0.1). This highlights that diversity actually can lead to lower security when the diversified im-

plementations are actually more vulnerable; this is possible because independently implementing

multiple versions would incur a higher cost.

Insight 14. Network diversity can lead to gradually (rather than abruptly) increasing damages

when the attacker gets more powerful. However, the security effectiveness of network diversity

largely depends on the security quality of the diversified implementations, meaning that diversity

can increase, make no difference, or decrease security, depending on the relative quality between

the diversified implementations and the monoculture implementation.

Is the resulting security linear to the degree of diversity N when attack capability is fixed?

Suppose the attacker has a fixed number of exploits, say |X| = 2 for each software. Because

enforcing diversity at all layers (C1) may lead to a higher security, we now investigate the effect

of N . The parameters are: γ = 0.2, α = 0.2, ϑ(vul) = 0.8, τ(vul) = 0.05, ζ = 0.2, cap = 0.2,

ω = 0.2, NIPS= tight, HIPS= tight, and t = 100. Fig. 5.9 plots pca(100) and pcos(100) with

varying N . We observe that when N ≤ 10, increasing N does not lead to any significantly

better security in terms of the two metrics, because in this case each software has no more than

0.2× 10 = 2 vulnerabilities among all of the implementations, which can all be exploited. When

N > 10, increasing N does lead to better security because the attacker has only 2 exploits or

117

exploit 2 vulnerabilities, even though there are, for example when N = 100, 0.2 × 100 = 20

vulnerabilities in the diversified implementations. We further observe that security effectiveness,

namely 1 − pca(100) and 1 − pcos(100), increases faster when N ∈ [20, 60] than N ∈ [60, 100].

This manifests a kind of “diminishing return.” Therefore, we have:

Insight 15. Given a fixed attack capability, increasingN (diversity effort) leads to a higher security

only when some vulnerabilities cannot be exploited by the attacker. Moreover, there appears to be

a “diminishing return” in security effectiveness, highlighting the importance of considering cost-

effectiveness in achieving network diversity.

RQ3: How to prioritize static network diversity at the layers when diversity indeed improves

security?

Recall that configuration C0 means monoculture, C1 means enforcing diversity at all three lay-

ers, and C2, C3, C4 respectively means enforcing diversity at the application, library, and operat-

ing system layer. In order to compare their effectiveness, we consider the following parameters:

APP = {browser, email client, P2P, word processor}, operating system is OS1, N = 10 (in the

case of C1, . . . , C4), γ = 0.2, α = 0.2, ϑ(vul) = 0.8, τ(vul) = 0.05, ζ(v) = 0.2 for v not enforcing

diversity, ζ(v) = 0.1 for v enforcing diversity, cap = 1.0, ω = 0.2, NIPS = tight, and HIPS =

tight.

Fig. 5.10 plots pca(t) and pcos(t) with different software stack configurations. We observe

that for the same configuration and parameters, pca(t) > pcos(t) for any t, meaning that there

are more compromised applications than compromised operating systems. Moreover, we observe

that both metrics pca(t) and pcos(t) show C0 ≺ C3 ≺ C2 ≺ C4 ≺ C1, where Ca ≺ Cb means

configuration Cb leads to a higher security than Ca. For example, pca(100) for C0 is 1.64 times of

pca(100) for C1, meaning that enforcing diversity at all three layers can reduce 39% of the damage

when compared with the case of monoculture. This leads to:

Insight 16. When diversity can improve security, enforcing diversity at multiple layers leads to

higher security than enforcing diversity at a single layer. Enforcing diversity at the operating

118

0 2 0 4 0 6 0 8 0 1 0 00 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5

 C 0 C 4
 C 3 C 1
 C 2

pc
a

t
(a) pca(t)

0 2 0 4 0 6 0 8 0 1 0 00 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

 C 0 C 4
 C 3 C 1
 C 2

pc
os

t
(b) pcos(t)

Figure 5.10: pca(t) and pcos(t).

system layer leads to higher security than enforcing diversity at the application layer, which leads

to higher security than enforcing diversity at the library layer.

RQ4: Does the use of natural and artificial diversity together always lead to higher security?

If not, when?

In order to evaluate the security effectiveness of hybrid (i.e., natural and artificial) diversity, we

consider a computer runs either OS1 or OS2. Suppose OS1 is diversified into NOS1 implementa-

tions and OS2 is diversified into NOS2 implementations. We consider three cases: (i) NOS1 = 0 and

NOS2 = 1, meaning that all the computers run a monoculture operating system OS2; (ii) NOS1 = 1

and NOS2 = 1, meaning that each computer runs either OS1 or OS2 with probability 0.5, which

corresponds to natural diversity; (iii) NOS1 = 10 and NOS2 = 10, meaning that each computer runs

either OS1 or OS2 with probability 0.5, but both OS1 and OS2 have 10 independent implementa-

tions to choose, which corresponds to using hybrid (i.e., natural and artificial) diversity. The other

parameters are: APP = {browser, email client, P2P, word processor}, C1 (every layer is artifi-

cially diversified), γ = 0.2 (the probability that attacks are not blocked by NIPS), α = 0.2 (the

probability that attacks that are not blocked by HIPS), ϑ(vul) = 0.8 (the probability that a vulner-

ability can be exploited remotely), τ(vul) = 0.05 (the probability that a vulnerability is zero-day),

ζ(OS2) = 0.4, ζ(OS1) = 0.2, ζ(v) = 0.2 for v ∈ V − {OS1,OS2}, cap = 1 (the attacker can

119

0 5 1 0 1 5 2 0 2 50 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5
0 . 2 0
0 . 2 5
0 . 3 0
0 . 3 5
0 . 4 0
0 . 4 5
0 . 5 0
0 . 5 5
0 . 6 0

p c o s (1 0 , 1 0)

p c o s (0 , 1)

p c o s (1 , 1)

p c a (1 0 , 1 0)p c a (1 , 1)

| X |

p c a (0 , 1)

Figure 5.11: Plot of pca(100) and pcos(100) with respect to (NOS1 , NOS2).

exploit every vulnerability, which corresponds to the worst-case scenario), ω = 0.2 (20% of the

nodes of Weapon are initially compromised), NIPS= tight, and HIPS= tight.

Fig. 5.11 plots pca(100) and pcos(100) with respect to (NOS1 , NOS2). First, when compar-

ing pca(0, 1) and pca(1, 1), we observe that natural diversity can lead to higher security once a

higher quality of software is introduced, but the attacker’s effort (the number of exploits |X|) to

compromise all of the vulnerable softwares remains the same. Second, by comparing pca(1, 1)

and pca(10, 10), we observe that artificial diversity has no impact on security against a powerful

attacker, but the attacker needs to pay almost 10 times the effort (or cost) to obtain exploits. On the

other hand, if the attacker’s number of exploits, |X|, is fixed, artificial diversity can lead to a higher

security. Third, by comparing pca(0, 1) and pca(10, 10), we observe that a comprehensive natural

and artificial diversity not only can lead to a higher security, but also can substantially enhance

the attacker’s effort if diversified software implementations have higher security quality (i.e., less

vulnerable). The same observations can be drawn from pcos(100). This leads to:

Insight 17. It is beneficial to use both natural and artificial diversity (or “diversifying the diversity

methods”), assuming that the diversified implementations have at least the same quality.

120

RQ5: What are the most effective defense strategies in the presence of network diversity?

As mentioned above, an important research goal is to obtain Eq. (2.1), namelymi = Fi(G,A,B,C,D).

Due to the lack of real data, we use, as a first step, linear regression to extract Eq. (2.1) from the

simulation data with respect to t = 100 (i.e., the empirical steady state) and both natural and ar-

tificial diversities. As a result, we can quantify the influence of each factor on pca and pcos and

prioritize the factors that should be paid most attention in improving security.

For regression, we use the 14 explanatory variables x1, . . . , x14 that are listed and explained

in Table 5.2, except for x5 which is determined as follows: C0, C1, C2, C3, C4 respectively corre-

sponds to x5 = 5, 1, 3, 4, 2. This can be justified by the decreasing order of pcos(100) as shown

in Fig. 5.10b, namely C0, C3, C2, C4, C1. For the explanatory variables that are not defined over

[0, 1], we first standardize them into [0, 1]. The data consists of 568 rows of these variables as

well as the corresponding pca(100) and pcos(100). Because 7 (out of the 14) variables are highly

correlated with each other (e.g., the Pearson correlation coefficient between x5 and x9 is -0.3148,

the coefficient between x6 and x10 is 0.4034, the coefficient between x14 and x8 is -0.45) and the

amount of data is relatively small when compared with the number of variables (i.e., 14), we use

the partial least squares method [129] to estimate the regression coefficients. Since it should be

the case that pca(100) = pcos(100) = 0 when x1 = . . . = x14 = 0, the regression results are:

pca =
14∑
i=1

aixi and pcos =
14∑
i=1

bixi, (5.27)

where the ai’s and bi’s are respectively given in the 3rd and 4th column of Table 5.2. The cumula-

tive R-square of pca(100) and pcos(100) in the fitted models is respectively 0.78 and 0.75, which

means that the model fitting is accurate.

Table 5.2 shows the following. On one hand, the factors that have a significant influence on pca

are x4, x6, x7, x9, x10. The most significant factor is x9, namely the fraction of vulnerabilities that

can be exploited by the attacker. This suggests that the most significant strategy is to reduce the

fraction of vulnerabilities that can be exploited by the attacker. On the other hand, the factors that

121

parameter meaning
pca pcos
ai bi

x1 fraction of OS1 in network -0.075043802 -0.087834035
x2 # apps running on a computer 0.088057385 0.101100359
x3 fraction of browser2 in network 0.030891731 0.021767401
x4 N -0.135383668 -0.132484815
x5 (see text) 0.052477615 0.06748185
x6 ζ ∈ [0, 1] 0.134057115 0.191437005
x7 ϑ ∈ [0, 1] 0.329776965 0.195279456
x8 τ ∈ [0, 1] 0.034082221 -0.011789502
x9 cap ∈ [0, 1] 0.730355334 0.593032
x10 ω ∈ [0, 1] 0.170030442 0.087308213
x11 α ∈ [0, 1] 0.050954156 0.05991876
x12 γ ∈ [0, 1] 0.0001 0.0001
x13 NIPS=1 (i.e., tight) -0.049658855 - 0.035677035
x14 HIPS=1 (i.e., tight) -0.037981485 -0.310823305

Table 5.2: Description of the explanatory variables and the dependent variables pca and pcos.

have a significant influence on pcos are x2, x4, x6, x7, x9, x14. The most significant factor is x14,

namely the tightness of HIPS. This suggests that the most significant strategy to improve operating

system-layer security is to enforce tight HIPS, namely to preventing unauthorized applications,

even if compromised, from waging privilege escalation attacks.

Insight 18. The most significant defense strategy is to reduce software vulnerabilities. The second

most significant defense strategy is to enforce tight HIPS.

5.4 Chapter Summary

In this Chapter, we proposed a fine-grained theoretical framework to model network diversity, in-

cluding a suite of security metrics for measuring attacker’s effort, defender’s effort, and security

effectiveness of network diversity. We considered both natural and artificial diversities. We con-

ducted simulation experiments to measure these metrics and draw insights from the experimental

results. We characterized the conditions under which software diversity can lead to higher or lower

security, or make no difference.

122

CHAPTER 6: CONCLUSION

6.1 Summary of the Dissertation

This PhD Dissertation makes a significant step towards quantifying cybersecurity from a holistic

perspective, by following the Cybersecurity Dynamics approach and focusing on specific cyber de-

fense mechanisms. In order to achieve the research goals, we propose a systematic time-dependent

framework to model cyber attack-defense interactions from a whole-network perspective. The

framework contains a suite of security metrics for measuring the effectiveness of cyber attacks

and defenses. To demonstrate the usefulness of the proposed framework, we investigate three ap-

plication scenarios: quantifying the security effectiveness of firewalls and DMZ, quantifying the

security effectiveness of dynamic network diversity, and quantifying the security effectiveness of

static network diversity. We design and implement simulations to mimic real-world attack-defense

interactions. We draw a number of insights into the security effectiveness of these defense mecha-

nisms and architecture.

In terms of the security effectiveness of firewalls and DMZ, the study leads to the following

insights:

• When operating systems are not vulnerable, the security effectiveness of a fixed combination

of firewall and DMZ decreases as the fraction of vulnerable applications increases.

• Firewall and DMZ are not effective when few or most computers are vulnerable.

• Employing the perimeter firewall lone has a little security impact, but a comprehensive use

of firewall and DMZ can substantially increases security.

• Employing perimeter firewall and DMZ can substantially increase the security of sever ap-

plications.

In terms of the security effectiveness of dynamic network diversity, the study leads to the

following insights:

123

• In terms of attacker slow-down, reactive-adaptive diversity is the most effective strategy and

the initial diversity configuration matters.

• In order to reduce the attack worst damage, different diversity strategies should be used in

different parameter regimes.

• Reactive-adaptive diversity leads to a higher vulnerability-tolerance than proactive diversity

does.

• Proactive diversity improves security only when dynamic diversity is widely re-employed at

a high frequency, which however incurs a high operational cost.

In terms of the security effectiveness of static network diversity, the study leads to the following

insights:

• Static network diversity does not necessarily always improve security from a whole-network

perspective, because the security effectiveness of network diversity largely depends on the

security quality of the diversified implementations.

• The independence assumption of vulnerabilities in the diversified implementations does

cause an overestimate of security effectiveness in terms of the attacker’s effort.

• Given a fixed attack capability, increasing diversity effort can lead to a higher security as

long as there are always some vulnerabilities that cannot be exploited by the attacker.

• When diversity can improve security, enforcing diversity at multiple layers leads to higher

security than enforcing diversity at a single layer.

6.2 Future Research Directions

6.2.1 Future Research Related to Quantifying Security Effectiveness of Firewalls and DMZs

We identify the following limitations of the study described in Chapter 3. These limitations need

to be addressed in future investigations. First, it is important to extend the simulation study to

124

consider broader parameter regimes (e.g., the case of running multiple kinds of OS in enterprise

networks). Second, it is important to conduct case study to derive the structure G = (V,E) of

real-world enterprise networks. Third, It is important to validate the proposed framework using

real-world datasets. Fourth, it is important to examine more hostile scenarios in which firewalls

can be compromised.

6.2.2 Future Research Related to Quantifying Security Effectiveness of Coarse-Grained

Dynamic Network Diversity

We identify the following limitations of the study described in Chapter 4. These limitations need

to be addressed in future investigations.

First, the framework has two limitations. (i) We assume G is fixed. This implicitly assumes the

network defense tools are not compromised because a successful attack against a defense tool can

effectively change G. While this is reasonable for missions with a short lifetime T , it is interesting

to accommodate dynamic Gt for missions of long lifetime T and the case that the network defense

tools can be compromised, as outlined in [148, 149, 152]. (ii) We assume that the attacker selects

one tool to use at each phase of an attack strategy. This can be extended to using multiple tools in

a sequential manner.

Second, the simulation study has some limitations. (i) We only consider simple decision-

making algorithms, which are sufficient for demonstrating the usefulness of the framework but

need to accommodate more sophisticated decision-making algorithms. (ii) We use some “syn-

thetic” and simplifying scenarios owing to the lack of real data, meaning that the findings may not

be generalized to other scenarios. Specifically, the assumption that each attack phase takes place at

one time step may limit the validity of Insight 5; the assumption that each exploit incurs the same

cost to the attacker may limit the validity of Insight 6; the assumption that each implementation of

a program is equally vulnerable may limit the validity of Insight 7; the independence assumption

that different implementations do not have common vulnerabilities holds in some settings [47, 54]

but may not hold in general. In order to see the potential impact of these assumptions, we con-

125

duct additional experiments where different implementations can contain common vulnerabilities.

While omitting the experimental details owing to space limit, they do show that the independence

assumption does cause overestimates of the effectiveness of employing network diversity. This

resonates the results of earlier theoretical studies [36, 146, 147].

6.2.3 Future Research Related to Quantifying Security Effectiveness of Fine-Grained Static

Network Diversity

We identify the following limitations of the study described in Chapter 5. These limitations need

to be addressed in future investigations. First, the framework does not consider insider threats.

Second, the framework focuses mainly on preventive defenses. Future research will include the in-

vestigation of a broader spectrum of defense mechanisms including reactive and adaptive defenses.

Third, the simulation study assumes that firewalls cannot be compromised. This assumption can be

eliminated, by accommodating the consequence of compromised firewalls (e.g., the network-based

tight preventive defense enforced by a compromised firewall needs to become a loose preventive

defense). Nevertheless, we already considered the security effectiveness of network-based loose

preventive defense, which corresponds to the worst-case scenario in which all of the firewalls are

compromised. It is worth mentioning that this issue is already resolved for host-based preventive

defense, which is enforced by an operating system, because the compromise of an operating sys-

tem already causes the compromise of the entire computer. Fourth, the G = (V,E) used in the

simulation study is heuristically generated, rather than derived from real-world network software

stacks.

6.2.4 Future Research Towards the Ultimate Goal

The present Dissertation focuses on some small components in the Cybersecurity Dynamics frame-

work mentioned in Chapter 2, namely quantifying security effectiveness of cyber defenses in some

relatively general, but not general enough, settings. There are tons of Open Problems that yet to

be tackled, such as tackling the challenges of cybersecurity metrics and quantification as described

126

in [32, 76, 106, 154] and overcoming the technical barriers as described in [148, 149, 152, 153].

Another important research direction is to quantify the attack capabilities of sophisticated cyber

attacks, such as adversarial malicious websites [141, 142] and adversarial malware examples [18,

25, 74, 75, 78, 135, 158].

Yet another important problem is to leverage the high-fidelity simulation framework presented

in this Dissertation to generate realistic datasets for various cybersecurity research purposes. One

particularly important scenario is to leverage such data to achieve cyber threats forecasting, which

has been somewhat systematically investigated in a sequence of studies [27, 43, 44, 107, 108, 143,

145, 161–163] but much more research needs to be done.

I hope the present study will inspire many more PhD Dissertations in the near future.

127

BIBLIOGRAPHY

[1] https://syscalls.kernelgrok.com/.

[2] http://j00ru.vexillium.org/syscalls/nt/64/.

[3] Att&ck matrix for enterprise. https://attack.mitre.org/.

[4] The c library. https://www.gnu.org/software/libc/manual/html_node/

Function-Index.html/.

[5] A new defense for navy ships: Protection from cyber attacks. https:

//www.onr.navy.mil/en/Media-Center/Press-Releases/2015/

RHIMES-Cyber-Attack-Protection.aspx.

[6] Ehab Al-Shaer, Hazem Hamed, Raouf Boutaba, and Masum Hasan. Conflict classification

and analysis of distributed firewall policies. IEEE journal on selected areas in communica-

tions, 23(10):2069–2084, 2005.

[7] Massimiliano Albanese, Sushil Jajodia, and Steven Noel. Time-efficient and cost-effective

network hardening using attack graphs. In IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN 2012), pages 1–12. IEEE, 2012.

[8] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network

vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer and Com-

munications Security, pages 217–224, 2002.

[9] Andy Applebaum, Doug Miller, Blake Strom, Chris Korban, and Ross Wolf. Intelligent,

automated red team emulation. In Proceedings of the 32nd Annual Conference on Computer

Security Applications, pages 363–373, 2016.

[10] Algirdas Avizienis. The n-version approach to fault-tolerant software. IEEE Transactions

on software engineering, (12):1491–1501, 1985.

128

https://syscalls.kernelgrok.com/
http://j00ru.vexillium.org/syscalls/nt/64/
https://attack.mitre.org/
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html/
https://www.gnu.org/software/libc/manual/html_node/Function-Index.html/
https://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/RHIMES-Cyber-Attack-Protection.aspx
https://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/RHIMES-Cyber-Attack-Protection.aspx
https://www.onr.navy.mil/en/Media-Center/Press-Releases/2015/RHIMES-Cyber-Attack-Protection.aspx

[11] Elena Gabriela Barrantes, David H Ackley, Trek S Palmer, Darko Stefanovic, and Dino Dai

Zovi. Randomized instruction set emulation to disrupt binary code injection attacks. In

Proceedings of the 10th ACM conference on Computer and communications security, pages

281–289. ACM, 2003.

[12] Matthew P Barrett. Framework for improving critical infrastructure cybersecurity. National

Institute of Standards and Technology, Gaithersburg, MD, USA, Tech. Rep, 2018.

[13] Benoit Baudry and Martin Monperrus. The multiple facets of software diversity: Recent

developments in year 2000 and beyond. ACM Computing Surveys (CSUR), 48(1):1–26,

2015.

[14] Sandeep Bhatkar, Daniel C DuVarney, and Ron Sekar. Address obfuscation: An efficient ap-

proach to combat a broad range of memory error exploits. In USENIX Security Symposium,

volume 12, pages 291–301, 2003.

[15] Daniel Borbor, Lingyu Wang, Sushil Jajodia, and Anoop Singhal. Diversifying network

services under cost constraints for better resilience against unknown attacks. In IFIP Annual

Conference on Data and Applications Security and Privacy, pages 295–312. Springer, 2016.

[16] John Boyd. The essence of winning and losing, 28 June 1995.

[17] Hasan Cam. Controllability and Observability of Risk and Resilience in Cyber-Physical

Cloud Systems, pages 325–343. Springer New York, New York, NY, 2014.

[18] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In IEEE

Symposium on Security and Privacy, pages 39–57, 2017.

[19] T. Carroll, M. Crouse, E. Fulp, and K. Berenhaut. Analysis of network address shuffling as

a moving target defense. In Proc. ICC’14, pages 701–706. IEEE, 2014.

[20] D. Chakrabarti, Y. Wang, C. Wang, J. Leskovec, and C. Faloutsos. Epidemic thresholds in

real networks. ACM Trans. Inf. Syst. Secur., 10(4):1–26, 2008.

129

[21] Geoff Chappell. kernel-mode windows. https://www.geoffchappell.com/

studies/windows/km/index.htm?tx=10.

[22] Huashan Chen, Hasan Cam, and Shouhuai Xu. Quantifying cybersecurity effectiveness

of dynamic network diversity. IEEE Transactions on Dependable and Secure Computing,

2021.

[23] Huashan Chen, Jin-Hee Cho, and Shouhuai Xu. Quantifying the security effectiveness of

firewalls and dmzs. In Proceedings of the 5th Annual Symposium and Bootcamp on Hot

Topics in the Science of Security, pages 1–11, 2018.

[24] Huashan Chen, Jin-Hee Cho, and Shouhuai Xu. Quantifying the security effectiveness of

network diversity: poster. In Proceedings of the 5th Annual Symposium and Bootcamp on

Hot Topics in the Science of Security, HoTSoS 2018, Raleigh, North Carolina, USA, April

10-11, 2018, page 24:1. ACM, 2018.

[25] L. Chen, S. Hou, Y. Ye, and S. Xu. Droideye: Fortifying security of learning-based classifier

against adversarial android malware attacks. In Proc. 2018 IEEE/ACM ASONAM, pages

782–789, 2018.

[26] Liming Chen. N-version programming: A fault-tolerant approach to reliability of software

operation. In Proc. International Symposium on Fault Tolerant Computing, pages 3–9, 1978.

[27] Y. Chen, Z. Huang, S. Xu, and Y. Lai. Spatiotemporal patterns and predictability of cyber-

attacks. PLoS One, 10(5):e0124472, 05 2015.

[28] Yi Cheng, Julia Deng, Jason Li, ScottA. DeLoach, Anoop Singhal, and Xinming Ou. Met-

rics of security. In Cyber Defense and Situational Awareness, volume 62, pages 263–295.

2014.

[29] Monica Chew and Dawn Song. Mitigating buffer overflows by operating system random-

ization. 2002.

130

https://www.geoffchappell.com/studies/windows/km/index.htm?tx=10
https://www.geoffchappell.com/studies/windows/km/index.htm?tx=10

[30] J. Cho, P. Hurley, and S. Xu. Metrics and measurement of trustworthy systems. In Proc.

IEEE MILCOM, 2016.

[31] Jin-Hee Cho, Dilli P Sharma, Hooman Alavizadeh, Seunghyun Yoon, Noam Ben-Asher,

Terrence J Moore, Dong Seong Kim, Hyuk Lim, and Frederica F Nelson. Toward proactive,

adaptive defense: A survey on moving target defense. IEEE Communications Surveys &

Tutorials, 22(1):709–745, 2020.

[32] Jin-Hee Cho, Shouhuai Xu, Patrick M. Hurley, Matthew Mackay, Trevor Benjamin, and

Mark Beaumont. Stram: Measuring the trustworthiness of computer-based systems. ACM

Comput. Surv., 51(6):128:1–128:47, 2019.

[33] INFOSEC Research Council. Hard problem list. http://www.infosec-research.

org/docs_public/20051130-IRC-HPL-FINAL.pdf, 2007.

[34] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei Hu, Jack Davidson,

John Knight, Anh Nguyen-Tuong, and Jason Hiser. N-variant systems: A secretless frame-

work for security through diversity. In USENIX Security Symposium, pages 105–120, 2006.

[35] Stephen Crane, Andrei Homescu, Stefan Brunthaler, Per Larsen, and Michael Franz.

Thwarting cache side-channel attacks through dynamic software diversity. In 22nd Annual

Network and Distributed System Security Symposium, NDSS 2015, 2015.

[36] Gaofeng Da, Maochao Xu, and Shouhuai Xu. A new approach to modeling and analyzing

security of networked systems. In Proceedings of the 2014 Symposium and Bootcamp on

the Science of Security, pages 1–12, 2014.

[37] Lucas Davi, Christopher Liebchen, Ahmad-Reza Sadeghi, Kevin Z Snow, and Fabian Mon-

rose. Isomeron: Code randomization resilient to (just-in-time) return-oriented program-

ming. In NDSS, 2015.

[38] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley. Optimal security hard-

ening using multi-objective optimization on attack tree models of networks. In Proceedings

131

http://www.infosec-research.org/docs_public/20051130-IRC-HPL-FINAL.pdf
http://www.infosec-research.org/docs_public/20051130-IRC-HPL-FINAL.pdf

of the 14th ACM conference on Computer and communications security, pages 204–213.

ACM, 2007.

[39] P. Du, Z. Sun, H. Chen, J. H. Cho, and S. Xu. Statistical estimation of malware detection

metrics in the absence of ground truth. IEEE Transactions on Information Forensics and

Security, 13(12):2965–2980, 2018.

[40] Dave E Eckhardt, Alper K. Caglayan, John C. Knight, Larry D. Lee, David F. McAllister,

Mladen A. Vouk, and John P. J. Kelly. An experimental evaluation of software redundancy as

a strategy for improving reliability. IEEE Transactions on software engineering, 17(7):692–

702, 1991.

[41] Hiroaki Etoh. Gcc extentions for protecting applications from stack-smashing attacks.

http://www. research. ibm. com/trl/projects/security/ssp/, 2000.

[42] Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany Tang, Howard

Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed Okhravi. Missing the point

(er): On the effectiveness of code pointer integrity. In 2015 IEEE Symposium on Security

and Privacy, pages 781–796. IEEE, 2015.

[43] X. Fang, M. Xu, S. Xu, and P. Zhao. A deep learning framework for predicting cyber attacks

rates. EURASIP J. Information Security, 2019:5, 2019.

[44] Zijian Fang, Peng Zhao, Maochao Xu, Shouhuai Xu, Taizhong Hu, and Xing Fang. Statisti-

cal modeling of computer malware propagation dynamics in cyberspace. Journal of Applied

Statistics, pages 1–26, 2020.

[45] Stephanie Forrest, Anil Somayaji, and David H Ackley. Building diverse computer systems.

In Operating Systems, 1997., The Sixth Workshop on Hot Topics in, pages 67–72. IEEE,

1997.

132

[46] Michael Franz. From fine grained code diversity to JIT-ROP to execute-only memory: The

cat and mouse game between attackers and defenders continues. In Proceedings of the

Second ACM Workshop on Moving Target Defense, MTD 2015, page 1, 2015.

[47] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro. Os diversity for intrusion

tolerance: Myth or reality? In Proc. IEEE/IFIP DSN, pages 383–394, 2011.

[48] M. Garcia, A. Bessani, and N. Neves. Lazarus: Automatic management of diversity in bft

systems. In Proc. Middleware, pages 241–254, 2019.

[49] Miguel Garcia, Alysson Bessani, Ilir Gashi, Nuno Neves, and Rafael Obelheiro. Analysis

of operating system diversity for intrusion tolerance. Softw. Pract. Exper., 44(6):735–770,

June 2014.

[50] Richard Garcia-Lebron, David J Myers, Shouhuai Xu, and Jie Sun. Node diversification in

complex networks by decentralized colouring. Journal of Complex Networks, 7(4):554–563,

2019.

[51] Daniel Geer, Rebecca Bace, Peter Gutmann, Perry Metzger, Charles P. Pfleeger, John S.

Quarterman, and Bruce Schneier. Cyberinsecurity: The cost of monopoly. http:

//cryptome.org/cyberinsecurity.htm, 27 September 2003.

[52] Anup K Ghosh, Aaron Schwartzbard, and Michael Schatz. Learning program behavior pro-

files for intrusion detection. In Workshop on Intrusion Detection and Network Monitoring,

volume 51462, pages 1–13, 1999.

[53] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. Aslr on the

line: Practical cache attacks on the mmu. In NDSS, volume 17, page 13, 2017.

[54] Jin Han, Debin Gao, and Robert H Deng. On the effectiveness of software diversity: A

systematic study on real-world vulnerabilities. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, pages 127–146. Springer, 2009.

133

http://cryptome.org/cyberinsecurity.htm
http://cryptome.org/cyberinsecurity.htm

[55] Y. Han, W. Lu, and S. Xu. Preventive and reactive cyber defense dynamics with ergodic

time-dependent parameters is globally attractive. IEEE TNSE, 8(3):2517–2532, 2021.

[56] Yujuan Han, Wenlian Lu, and Shouhuai Xu. Characterizing the power of moving target

defense via cyber epidemic dynamics. In Proceedings of the 2014 Symposium and Bootcamp

on the Science of Security, pages 1–12, 2014.

[57] Miguel Garcia Tavares Henriques. Diverse intrusion-tolerant systems. 2019.

[58] Matti A Hiltunen, Richard D Schlichting, Carlos A Ugarte, and Gary T Wong. Survivability

through customization and adaptability: The cactus approach. In Proceedings DARPA In-

formation Survivability Conference and Exposition. DISCEX’00, volume 1, pages 294–307.

IEEE, 2000.

[59] David A Holland, Ada T Lim, and Margo I Seltzer. An architecture a day keeps the hacker

away. ACM SIGARCH Computer Architecture News, 33(1):34–41, 2005.

[60] John Homer, Su Zhang, Xinming Ou, David Schmidt, Yanhui Du, S Raj Rajagopalan,

and Anoop Singhal. Aggregating vulnerability metrics in enterprise networks using attack

graphs. Journal of Computer Security, 21(4):561–597, 2013.

[61] Andrei Homescu, Todd Jackson, Stephen Crane, Stefan Brunthaler, Per Larsen, and Michael

Franz. Large-scale automated software diversity - program evolution redux. IEEE Trans.

Dependable Sec. Comput., 14(2):158–171, 2017.

[62] Chu Huang, Sencun Zhu, and Robert Erbacher. Toward software diversity in heterogeneous

networked systems. In IFIP Annual Conference on Data and Applications Security and

Privacy, pages 114–129. Springer, 2014.

[63] Y. Huang and A. Ghosh. Introducing diversity and uncertainty to create moving attack

surfaces for web services. In Moving target defense, pages 131–151. Springer, 2011.

134

[64] Ray Hunt. Internet/intranet firewall security-policy, architecture and transaction services.

Computer Communications, 21(13):1107–1123, 1998.

[65] Eric M Hutchins, Michael J Cloppert, and Rohan M Amin. Intelligence-driven computer

network defense informed by analysis of adversary campaigns and intrusion kill chains.

Leading Issues in Information Warfare & Security Research, 1(1):80, 2011.

[66] Todd Jackson, Babak Salamat, Andrei Homescu, Karthikeyan Manivannan, Gregor Wagner,

Andreas Gal, Stefan Brunthaler, Christian Wimmer, and Michael Franz. Compiler-generated

software diversity. In Moving Target Defense, pages 77–98. Springer, 2011.

[67] J. Jafarian, E. Al-Shaer, and Q. Duan. An effective address mutation approach for disrupting

reconnaissance attacks. IEEE TIFS, 10(12):2562–2577, 2015.

[68] Somesh Jha, Oleg Sheyner, and Jeannette Wing. Two formal analyses of attack graphs. In

Proceedings 15th IEEE Computer Security Foundations Workshop. CSFW-15, pages 49–63.

IEEE, 2002.

[69] J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt, R. Maglich, and J. Rowe. Learning

unknown attacksâa start. In Proc. RAID, pages 158–176. Springer, 2002.

[70] Gaurav S Kc, Angelos D Keromytis, and Vassilis Prevelakis. Countering code-injection

attacks with instruction-set randomization. In Proceedings of the 10th ACM conference on

Computer and communications security, pages 272–280. ACM, 2003.

[71] John C Knight and Nancy G Leveson. An experimental evaluation of the assumption of

independence in multiversion programming. IEEE Transactions on software engineering,

(1):96–109, 1986.

[72] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz. Sok: Automated software diversity. In

IEEE S& P, pages 276–291, 2014.

135

[73] Per Larsen, Stefan Brunthaler, and Michael Franz. Security through diversity: Are we there

yet? IEEE Security & Privacy, 12(2):28–35, 2014.

[74] D. Li, Q. Li, Y. Ye, and S. Xu. Enhancing robustness of deep neural networks against

adversarial malware samples: Principles, framework, and aics’2019 challenge. In AAAI-

2019 Workshop on Artificial Intelligence for Cyber Security (AICS’2019).

[75] D. Li, Q. Li, Y. Ye, and S. Xu. A frameowrk for enhancing deep neural networks against

adversarial malware examples. IEEE Transactions on Network Science and Engineering

(TNSE), 8:736–750, 2021.

[76] D. Li, Q. Li, Y. Ye, and S. Xu. Sok: Arms race in adversarial malware detection. Accepted

to ACM Computing Survey, 2021.

[77] D. Li, T. Qiu, S. Chen, Q. Li, and S. Xu. Can we leverage predictive uncertainty to detect

dataset shift and adversarial examples in android malware detection? In The 2021 Annual

Computer Security Application Conference (ACSAC), 2021.

[78] Deqiang Li, Ramesh Baral, Tao Li, Han Wang, Qianmu Li, and Shouhuai Xu. Hashtran-dnn:

A framework for enhancing robustness of deep neural networks against adversarial malware

samples. arXiv preprint arXiv:1809.06498, 2018.

[79] Xiaohu Li, Paul Parker, and Shouhuai Xu. A stochastic model for quantitative security

analyses of networked systems. IEEE Transactions on Dependable and Secure Computing,

8(1):28–43, 2011.

[80] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin. Vuldeelocator: A deep learning-based

fine-grained vulnerability detector. IEEE TDSC, 2021.

[81] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu. Vulpecker: an automated vulnerability

detection system based on code similarity analysis. In Pro. ACSAC’16, pages 201–213,

2016.

136

[82] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang. Sysevr: A framework

for using deep learning to detect software vulnerabilities. IEEE Transactions on Dependable

and Secure Computing (accepted for publication), 2021.

[83] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Zhang, Z. Chen, and D. Li. Vuldeelocator: A

deep learning-based system for detecting and locating software vulnerabilities. IEEE TDSC

(accepted for publication), 2021.

[84] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong. Vuldeepecker: A deep

learning-based system for vulnerability detection. In Proc. NDSS’18, 2018.

[85] Zhen Li, Jing Tang, Deqing Zou, Qian Chen, Shouhuai Xu, Chao Zhang, Yichen Li, and Hai

Jin. Robustness of deep learning-based vulnerability detectors: Attack anddefense. under

review, 2021.

[86] Zongzong Lin, Wenlian Lu, and Shouhuai Xu. Unified preventive and reactive cyber defense

dynamics is still globally convergent. IEEE/ACM Trans. Netw., 27(3):1098–1111, 2019.

[87] Bev Littlewood, Sarah Brocklehurst, Norman Fenton, Peter Mellor, Stella Page, David

Wright, John Dobson, John McDermid, and Dieter Gollmann. Towards operational mea-

sures of computer security. Journal of computer security, 2(2-3):211–229, 1993.

[88] WT Lord Kelvin. Electrical units of measurement. Nature, 28(708):91–92, 1883.

[89] Wenlian Lu, Shouhuai Xu, and Xinlei Yi. Optimizing active cyber defense dynamics. In

Proceedings of the 4th International Conference on Decision and Game Theory for Security

(GameSec’13), pages 206–225, 2013.

[90] Y. Luo, B. Wang, and G. Cai. Effectiveness of port hopping as a moving target defense. In

Proc. ICCST, pages 7–10. IEEE, 2014.

[91] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

137

[92] Matteo Magnani and Luca Rossi. The ML-Model for Multi-layer Social Networks. In

ASONAM, pages 5–12. IEEE Computer Society, 2011.

[93] Mateusz. Windows win32k.sys system call table. http://j00ru.vexillium.org/

syscalls/win32k/32/.

[94] Alain Mayer, Avishai Wool, and Elisha Ziskind. Fang: A firewall analysis engine. In

Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium on, pages 177–

187. IEEE, 2000.

[95] Dan McWhorter. Apt1: exposing one of china’s cyber espionage units. Mandiant. com, 18,

2013.

[96] Peter Mell, Karen Scarfone, and Sasha Romanosky. Common vulnerability scoring system.

IEEE Security & Privacy, 4(6):85–89, 2006.

[97] Microsoft. Msdn library. https://msdn.microsoft.com/en-us/library/

ms310241/.

[98] J. Mireles, E. Ficke, J. Cho, P. Hurley, and S. Xu. Metrics towards measuring cyber agility.

IEEE T-IFS, 14(12):3217–3232, 2019.

[99] H. Moniz, N. Neves, M. Correia, and P. Verissimo. Ritas: Services for randomized intrusion

tolerance. IEEE TDSC, 8(1):122–136, 2008.

[100] Saran Neti, Anil Somayaji, and Michael E Locasto. Software diversity: Security, entropy

and game theory. In HotSec, 2012.

[101] David Nicol, Bill Sanders, Jonathan Katz, Bill Scherlis, Tudor Dumitra, Laurie Williams,

and Munindar P. Singh. The science of security 5 hard problems (august 2015). http:

//cps-vo.org/node/21590.

[102] David M. Nicol, William H. Sanders, and Kishor S. Trivedi. Model-based evaluation: From

dependability to security. IEEE Trans. Dependable Sec. Comput., 1(1):48–65, 2004.

138

http://j00ru.vexillium.org/syscalls/win32k/32/
http://j00ru.vexillium.org/syscalls/win32k/32/
https://msdn.microsoft.com/en-us/library/ms310241/
https://msdn.microsoft.com/en-us/library/ms310241/
http://cps-vo.org/node/21590
http://cps-vo.org/node/21590

[103] Steven Noel and Sushil Jajodia. A Suite of Metrics for Network Attack Graph Analytics,

pages 141–176. Springer International Publishing, Cham, 2017.

[104] Adam J. O’Donnell and Harish Sethu. On achieving software diversity for improved net-

work security using distributed coloring algorithms. In Proceedings of the 11th ACM Con-

ference on Computer and Communications Security (CCS’04), pages 121–131, 2004.

[105] The Forum of Incident Response and Security Teams FIRST. The common vulnerability

scoring system (CVSS), June 2015.

[106] Marcus Pendleton, Richard Garcia-Lebron, Jin-Hee Cho, and Shouhuai Xu. A survey on

systems security metrics. ACM Computing Surveys (CSUR), 49(4):62, 2017.

[107] Chen Peng, Maochao Xu, Shouhuai Xu, and Taizhong Hu. Modeling and predicting extreme

cyber attack rates via marked point processes. Journal of Applied Statistics, 44(14):2534–

2563, 2017.

[108] Chen Peng, Maochao Xu, Shouhuai Xu, and Taizhong Hu. Modeling multivariate cyberse-

curity risks. Journal of Applied Statistics, 0(0):1–23, 2018.

[109] Cynthia Phillips and Laura Painton Swiler. A graph-based system for network-vulnerability

analysis. In Proceedings of the 1998 workshop on New security paradigms, pages 71–79,

1998.

[110] M. Platania, D. Obenshain, T. Tantillo, R. Sharma, and Y. Amir. Towards a practical surviv-

able intrusion tolerant replication system. In Proc. IEEE SRDS, pages 242–252, 2014.

[111] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic security risk management

using bayesian attack graphs. IEEE Transactions on Dependable and Secure Computing,

9(1):61–74, 2012.

139

[112] A. Ramos, M. Lazar, R. H. Filho, and J. J. P. C. Rodrigues. Model-based quantitative

network security metrics: A survey. IEEE Communications Surveys Tutorials, 19(4):2704–

2734, 2017.

[113] Alex Ramos, Marcella Lazar, Raimir Holanda Filho, and Joel JPC Rodrigues. Model-based

quantitative network security metrics: A survey. IEEE Communications Surveys & Tutori-

als, 19(4):2704–2734, 2017.

[114] Ronald W Ritchey and Paul Ammann. Using model checking to analyze network vulnera-

bilities. In Proceeding 2000 IEEE Symposium on Security and Privacy. S&P 2000, pages

156–165. IEEE, 2000.

[115] R. Rodrigues, M. Castro, and B. Liskov. Base: Using abstraction to improve fault tolerance.

ACM SIGOPS Operating Systems Review, 35(5):15–28, 2001.

[116] Tom Roeder and Fred B Schneider. Proactive obfuscation. ACM Transactions on Computer

Systems (TOCS), 28(2):1–54, 2010.

[117] Robert Rudd, Richard Skowyra, David Bigelow, Veer Dedhia, Thomas Hobson, Stephen

Crane, Christopher Liebchen, Per Larsen, Lucas Davi, Michael Franz, Ahmad-Reza

Sadeghi, and Hamed Okhravi. Address oblivious code reuse: On the effectiveness of leak-

age resilient diversity. In 24th Annual Network and Distributed System Security Symposium,

NDSS 2017, 2017.

[118] Babak Salamat, Todd Jackson, Gregor Wagner, Christian Wimmer, and Michael Franz. Run-

time defense against code injection attacks using replicated execution. IEEE Transactions

on Dependable and Secure Computing, 8(4):588–601, 2011.

[119] National Science and Technology Council. Trustworthy cyberspace: Strate-

gic plan for the federal cybersecurity research and development program.

https://www.nitrd.gov/SUBCOMMITTEE/csia/Fed_Cybersecurity_

RD_Strategic_Plan_2011.pdf, 2011.

140

https://www.nitrd.gov/SUBCOMMITTEE/csia/Fed_Cybersecurity_RD_Strategic_Plan_2011.pdf
https://www.nitrd.gov/SUBCOMMITTEE/csia/Fed_Cybersecurity_RD_Strategic_Plan_2011.pdf

[120] H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh. On the effectiveness

of address-space randomization. In Proc. CCS’2004, pages 298–307, 2004.

[121] Oleg Sheyner, Joshua Haines, Somesh Jha, Richard Lippmann, and Jeannette M Wing. Au-

tomated generation and analysis of attack graphs. In Proceedings 2002 IEEE Symposium

on Security and Privacy, pages 273–284. IEEE, 2002.

[122] Deb Shinder. Solutionbase: Strengthen network defenses by us-

ing a dmz. https://www.techrepublic.com/article/

solutionbase-strengthen-network-defenses-by-using-a-dmz/.

[123] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher Liebchen,

and Ahmad-Reza Sadeghi. Just-in-time code reuse: On the effectiveness of fine-grained

address space layout randomization. In 2013 IEEE Symposium on Security and Privacy,

pages 574–588. IEEE, 2013.

[124] Ana Nora Sovarel, David Evans, and Nathanael Paul. Where’s the feeb? the effectiveness

of instruction set randomization. In USENIX Security Symposium, 2005.

[125] Mark Stamp. Risks of monoculture. Commun. ACM, 47(3):120–, March 2004.

[126] Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund, and

Thomas Walter. Breaking the memory secrecy assumption. In Proceedings of the Second

European Workshop on System Security, pages 1–8, 2009.

[127] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A Ghorbani. A detailed analysis of

the kdd cup 99 data set. In Computational Intelligence for Security and Defense Applica-

tions, 2009. CISDA 2009. IEEE Symposium on, pages 1–6. IEEE, 2009.

[128] Orcun Temizkan, Sungjune Park, and Cem Saydam. Software diversity for improved net-

work security: optimal distribution of software-based shared vulnerabilities. Information

Systems Research, 28(4):828–849, 2017.

141

https://www.techrepublic.com/article/solutionbase-strengthen-network-defenses-by-using-a-dmz/
https://www.techrepublic.com/article/solutionbase-strengthen-network-defenses-by-using-a-dmz/

[129] Randall D Tobias et al. An introduction to partial least squares regression. In Proceedings

of the twentieth annual SAS users group international conference, pages 1250–1257. SAS

Institute Cary, NC, 1995.

[130] E. Totel, F. Majorczyk, and L. Me. Cots diversity based intrusion detection and application

to web servers. In Proc. RAID, pages 43–62. Springer, 2005.

[131] L. Wang, S. Jajodia, and A. Singhal. Network Security Metrics. Springer, 2017.

[132] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel. k-zero day safety: A network

security metric for measuring the risk of unknown vulnerabilities. IEEE TDSC, 11(1):30–

44, 2014.

[133] Lingyu Wang, Mengyuan Zhang, Sushil Jajodia, Anoop Singhal, and Massimiliano Al-

banese. Modeling network diversity for evaluating the robustness of networks against zero-

day attacks. In European Symposium on Research in Computer Security, pages 494–511.

Springer, 2014.

[134] Lingyu Wang, Mengyuan Zhang, and Anoop Singhal. Network security metrics: from

known vulnerabilities to zero day attacks. In From Database to Cyber Security, pages 450–

469. Springer, 2018.

[135] Q. Wang, W. Guo, K. Zhang, A. Ororbia II, X. Xing, X. Liu, and C. Giles. Adversary

resistant deep neural networks with an application to malware detection. In ACM KDD,

pages 1145–1153, 2017.

[136] Y. Wang, D. Chakrabarti, C. Wang, and C. Faloutsos. Epidemic spreading in real networks:

An eigenvalue viewpoint. In Proc. of the 22nd IEEE Symposium on Reliable Distributed

Systems (SRDS’03), pages 25–34, 2003.

[137] Yoav Weiss and Elena Gabriela Barrantes. Known/chosen key attacks against software

instruction set randomization. In 2006 22nd Annual Computer Security Applications Con-

ference (ACSAC’06), pages 349–360. IEEE, 2006.

142

[138] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet. Zz and the art of practical

bft execution. In Proceedings of the sixth conference on Computer systems, pages 123–138,

2011.

[139] Avishai Wool. A quantitative study of firewall configuration errors. Computer, 37(6):62–67,

2004.

[140] Jun Xu, Zbigniew Kalbarczyk, and Ravishankar K Iyer. Transparent runtime randomiza-

tion for security. In Reliable Distributed Systems, 2003. Proceedings. 22nd International

Symposium on, pages 260–269. IEEE, 2003.

[141] L. Xu, Z. Zhan, S. Xu, and K. Ye. Cross-layer detection of malicious websites. In ACM

CODASPY, pages 141–152, 2013.

[142] L. Xu, Z. Zhan, S. Xu, and K. Ye. An evasion and counter-evasion study in malicious

websites detection. In IEEE CNS, pages 265–273, 2014.

[143] M. Xu, L. Hua, and S. Xu. A vine copula model for predicting the effectiveness of cyber

defense early-warning. Technometrics, 59(4):508–520, 2017.

[144] M. Xu and T. Kim. Platpal: Detecting malicious documents with platform diversity. In

Proc. USENIXSecurity, pages 271–287, 2017.

[145] M. Xu, K. M. Schweitzer, R. M. Bateman, and S. Xu. Modeling and predicting cyber

hacking breaches. IEEE T-IFS, 13(11):2856–2871, 2018.

[146] M. Xu and S. Xu. An extended stochastic model for quantitative security analysis of net-

worked systems. Internet Mathematics, 8(3):288–320, 2012.

[147] Maochao Xu, Gaofeng Da, and Shouhuai Xu. Cyber epidemic models with dependences.

Internet Mathematics, 11(1):62–92, 2015.

[148] S. Xu. Cybersecurity dynamics: A foundation for the science of cybersecurity. In Proactive

and Dynamic Network Defense, pages 1–31. 2019.

143

[149] S. Xu. The cybersecurity dynamics way of thinking and landscape. In ACM Workshop on

Moving Target Defense, 2020.

[150] S. Xu, W. Lu, L. Xu, and Z. Zhan. Adaptive epidemic dynamics in networks: Thresholds

and control. ACM TAAS, 8(4), 2014.

[151] S. Xu, W. Lu, and Z. Zhan. A stochastic model of multivirus dynamics. IEEE Transactions

on Dependable and Secure Computing, 9(1):30–45, 2012.

[152] Shouhuai Xu. Cybersecurity dynamics. In Proc. HotSoS’14, pages 14:1–14:2, 2014.

[153] Shouhuai Xu. Emergent behavior in cybersecurity. In Proceedings of the 2014 Symposium

on the Science of Security (HotSoS’14), pages 13:1–13:2, 2014.

[154] Shouhuai Xu. SARR: A cybersecurity metrics and quantification framework (keynote).

In Wenlian Lu, Kun Sun, Moti Yung, and Feng Liu, editors, Science of Cyber Security -

Third International Conference (SciSec’2021), volume 13005 of Lecture Notes in Computer

Science, pages 3–17. Springer, 2021.

[155] Shouhuai Xu, Wenlian Lu, and Hualun Li. A stochastic model of active cyber defense

dynamics. Internet Mathematics, 11(1):23–61, 2015.

[156] Shouhuai Xu, Wenlian Lu, and Li Xu. Push- and pull-based epidemic spreading in networks:

Thresholds and deeper insights. ACM Transactions on Autonomous and Adaptive Systems

(ACM TAAS), 7(3):32, 2012.

[157] Shouhuai Xu and Kishor Trivedi. Us nsf satc 2019 pi meeting breakout group report briefing:

Cybersecurity metrics: Why is it so hard?, 2019.

[158] W. Xu, Y. Qi, and D. Evans. Automatically evading classifiers: A case study on pdf malware

classifiers. In NDSS, January 2016.

[159] L. Yang, X. Yang, and Y. Tang. A bi-virus competing spreading model with generic infection

rates. IEEE Trans. Netw. Sci. Eng., 5(1):2–13, 2018.

144

[160] Yi Yang, Sencun Zhu, and Guohong Cao. Improving sensor network immunity under worm

attacks: a software diversity approach. In Proceedings of the 9th ACM international sympo-

sium on Mobile ad hoc networking and computing, pages 149–158, 2008.

[161] Z. Zhan, M. Xu, and S. Xu. Characterizing honeypot-captured cyber attacks: Statistical

framework and case study. IEEE T-IFS, 8(11), 2013.

[162] Z. Zhan, M. Xu, and S. Xu. A characterization of cybersecurity posture from network

telescope data. In Proc. InTrust, pages 105–126, 2014.

[163] Zhenxin Zhan, Maochao Xu, and Shouhuai Xu. Predicting cyber attack rates with extreme

values. IEEE T-IFS, 10(8):1666–1677, 2015.

[164] Mengyuan Zhang, Lingyu Wang, Sushil Jajodia, and Anoop Singhal. Network attack sur-

face: Lifting the concept of attack surface to the network level for evaluating networks’

resilience against zero-day attacks. IEEE Transactions on Dependable and Secure Comput-

ing, 2018.

[165] Mengyuan Zhang, Lingyu Wang, Sushil Jajodia, Anoop Singhal, and Massimiliano Al-

banese. Network diversity: a security metric for evaluating the resilience of networks against

zero-day attacks. IEEE Transactions on Information Forensics and Security, 11(5):1071–

1086, 2016.

[166] Yongguang Zhang, Harrick Vin, Lorenzo Alvisi, Wenke Lee, and Son K Dao. Heteroge-

neous networking: a new survivability paradigm. In Proceedings of the 2001 workshop on

New security paradigms, pages 33–39, 2001.

[167] Ren Zheng, Wenlian Lu, and Shouhuai Xu. Active cyber defense dynamics exhibiting rich

phenomena. In Proceedings of the 2015 Symposium and Bootcamp on the Science of Secu-

rity, pages 1–12, 2015.

[168] Ren Zheng, Wenlian Lu, and Shouhuai Xu. Preventive and reactive cyber defense dynamics

is globally stable. IEEE Trans. Network Science and Engineering, 5(2):156–170, 2018.

145

[169] Deqing Zou, Sujuan Wang, Shouhuai Xu, Zhen Li, and Hai Jin. µvuldeepecker: A deep

learning-based system for multiclass vulnerability detection. IEEE Transactions on De-

pendable and Secure Computing, pages 1–1, 01 2019.

[170] Deqing Zou, Yawei Zhu, Shouhuai Xu, Zhen Li, Hai Jin, and Hengkai Ye. Interpreting deep

learning-based vulnerability detector predictions based on heuristic searching. ACM Trans.

Softw. Eng. Methodol., 30(2), March 2021.

146

VITA

Huashan Chen was born in Jiangsu, China. He received the B.S. degree from Shandong Univer-

sity in 2012 and received the M.S. degree from the Institute of Information Engineering, Chinese

Academy of Sciences, in 2016. He joined the Department of Computer Science at the University

of Texas at San Antonio since 2017. His primary research interests are in cybersecurity, especially

security metrics and moving target defense.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28776845

2021

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Chapter 1: Introduction
	Background and Research Motivation
	Research Focus of the Present Dissertation
	Dissertation Overview
	A General Framework (Chapter 2)
	Quantifying Security Effectiveness of Firewalls and DMZs (Chapter 3)
	Quantifying Security Effectiveness of Network Diversity (Chapters 4-5)

	Dissertation Organization

	Chapter 2: A High-Fidelity Simulation Framework
	Chapter Introduction
	Representations
	Representation of Networked Systems
	Representation of Vulnerabilities
	Representation of Attacks
	Representation of Defenses
	Representation of Cybersecurity State

	Chapter Summary

	Chapter 3: Quantifying Security Effectiveness of Firewalls and DMZs
	Chapter Introduction
	Chapter Contributions
	Related Work
	Chapter Organization

	Instantiating the Framework to Quantify Security Effectiveness of Firewalls and DMZs
	Representation of Enterprise Networks
	Representation of Vulnerabilities
	Representation of Attacks
	Representation of Defenses
	Metrics for Measuring the Cybersecurity State of an Enterprise Network

	Simulation Experiments and Results
	Simulation Setting and Methodology
	Simulation Results and Analysis

	Chapter Summary

	Chapter 4: Quantifying Security Effectiveness of Coarse-Grained Dynamic Network Diversity
	Chapter Introduction
	Chapter Contributions
	Related Work
	Chapter Organization

	Instantiating the Framework to Quantify Security Effectiveness of Coarse-Grained Dynamic Network Diversity
	Representation of Enterprise Networks
	Representation of Vulnerabilities
	Representation of Attacks
	Representation of Defenses
	Metrics for Measuring the Cybersecurity State of an Enterprise Network

	Simulation Experiments and Results
	Simulation Setting and Methodology
	Simulation Results and Analysis

	Chapter Summary

	Chapter 5: Quantifying Security Effectiveness of Fine-Grained Static Network Diversity
	Chapter Introduction
	Chapter Contributions
	Related Work
	Chapter Organization

	Instantiating the Framework to Quantify Security Effectiveness of Fine-Grained Static Network Diversity
	Representation of Enterprise Networks
	Representation of Vulnerabilities
	Representation of Attacks
	Representation of Defenses
	Metrics for Measuring the Cybersecurity State of an Enterprise Network

	Simulation Experiments and Results
	Simulation Setting and Methodology
	Simulation Results and Analysis

	Chapter Summary

	Chapter 6: Conclusion
	Summary of the Dissertation
	Future Research Directions
	Future Research Related to Quantifying Security Effectiveness of Firewalls and DMZs
	Future Research Related to Quantifying Security Effectiveness of Coarse-Grained Dynamic Network Diversity
	Future Research Related to Quantifying Security Effectiveness of Fine-Grained Static Network Diversity
	Future Research Towards the Ultimate Goal

	Bibliography
	Vita

