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Modern computing systems and web applications often interact or provide services to entities

without knowing their type, i.e., it could be interacting with an honest entity wanting a genuine

good response from it, or it could be interacting with a malicious entity wanting to compromise

it by launching security and privacy attacks against it. Hence, designing and modeling effective

defense mechanisms for such systems is a non-trivial task. The problem is even more difficult

against a strategic adversary who repeatedly interacts with the target system by imitating an honest

end-user/entity to infer as much information as possible, then stealthily and strategically attacking

it at the appropriate opportunity. In such an interaction scenario, on the one hand, the system’s goal

is to strategically block the malicious entities without significantly impacting the quality of service

provided to the honest entities. On the other hand, a malicious entity’s objective is to stealthily

compromise the target system as quickly as possible without being detected and in the most cost-

efficient manner. This dissertation plans to study this classical trade-off in modern computing

services and web applications by focusing on three unique use-cases of such applications/services

that present this conundrum. In the first use-case, we consider the scenario of a mobile operat-

ing system attempting to regulate access to zero-permission or permission-less sensors such as

accelerometers, gyroscopes, and ambient light sensors. These sensors are critical for all mobile

applications, but malicious applications can misuse data from them to infer private information

about users. So the mobile system must strategically decide under what conditions to share data

from these sensors without knowing the type (malicious or honest) of a mobile application re-

questing the data. In the first research thrust of this dissertation, we address the above trade-off

iv



by modeling the strategic interactions between mobile applications and a defense mechanism (or a

mobile system) using a two-player discrete-time, imperfect information game called the Signaling

game. The second use-case that we consider comprises of a black-box machine learning model

that provides a label to each query sent by an end-user and an explanation (or attribution) for that

label. Such explanations/attributions can be very useful for honest users in understanding model

decisions. However, malicious users can misuse repeated explanations to reveal private model

information such as parameters and training data. So the model must strategically decide under

what conditions to stop sharing explanations with end users without knowing their type (malicious

or honest). In the second research thrust, we address this trade-off by modeling the dynamics of

explanation variance generated by a system (comprising of an ML model and the corresponding

explanation technique) for predictions/labels related to queries sent by end-users. Specifically,

we model the interactions between an end-user and the system, where the variance of the expla-

nations generated by the system evolve according to a stochastic differential equation (SDE), as

a two-player continuous-time Signaling Game. Such a modeling and analysis exercise helps us

determine the optimal explanation variance threshold for an attacker to launch explanation-based

threshold attacks against the system. The third use-case that we consider is a federated learning

scenario, where multiple clients (malicious or honest) cooperatively learn a global system model

(computed by some server) in a distributed or decentralized fashion. In such a distributed learn-

ing scenario, malicious clients want to cheat the server (computing the global model) by stealthily

sending false/incorrect updates, while the server wants to detect such malicious updates in a timely

fashion so that it does not corrupt the global model. In the third research thrust, we address this

trade-off by designing a Bayesian defense mechanism on the server-side. Specifically, we employ

concepts from non-parametric Bayesian modeling to compute a probabilistic measure that can be

leveraged in the detection phase (of the malicious updates) with the aim to decouple it from the

local clients’ training strategies such as data distribution, attack strategy of the malicious clients or

the number of clients selected in a federated learning training round.
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CHAPTER 1: INTRODUCTION

Modeling and designing effective defense mechanisms for modern computing services and ap-

plications is often non-trivial because of an adversary that repeatedly interacts with the service

provider and strategically hides its actions within the actions of honest users of the service. More-

over, the service/application provider is unaware of the type of user it interacts with. It could be

interacting with a malicious user who can perfectly imitate an honest user, whose eventual goal is

to attack the provider stealthily, or it could be interacting with an honest user who is requesting a

legitimate service from the provider. In other words, the application or service provider operates

with imperfect information about the type of user that interacts with it. In such an interaction

scenario, on the one hand, the service provider would like to strategically serve the honest users

while preventing malicious users from achieving their goal of compromising it. On the other hand,

the malicious user or adversary wants to compromise the target system as efficiently as possi-

ble (in terms of cost and time). This dissertation plans to study this classical trade-off between

a service/application provider and a malicious user interacting with it by considering three spe-

cific application use-cases of such interactions as shown in Figure 1.1. Each use case highlights a

different nature/perspective of the interaction, which presents a unique research challenge that is

addressed in this dissertation.

1.1 Analyzing Defense Strategies Against Mobile Information Leakages: A

Game-Theoretic Approach.

In this case, we consider a mobile system that provides mobile applications access to on-board

zero-permission sensors. Zero-permission sensors are critical sensors on mobile systems (e.g., ac-

celerometers, gyroscopes, and ambient light sensors) that do not require explicit user- or system-

defined permissions for applications to access them. Research literature has already shown how

data sampled from these sensors can maliciously employ inference attacks against sensitive in-

formation such as user keystrokes, activities, and locations [76, 156, 179, 251, 262, 269, 285, 286,

1
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Figure 1.1: Interactions between the System and the End Clients.

288, 302, 306, 350, 355]. So, the research question here is how a mobile operating system can

strategically protect against a malicious application that could attempt to misuse the data sampled

from zero-permission sensors, while simultaneously continuing to serve the honest applications

optimally. The mobile system has incomplete information about the type of application it inter-

acts with because applications with both honest and malicious intent can request data from zero-

permission sensors. We answer the above question using game theory. Specifically, we model the

strategic interactions between mobile applications and a defense mechanism using a two-player,

imperfect information game, called the Signaling game. Using this game model, we derive equi-

libria strategies (specifically, Perfect Bayesian Nash Equilibrium) for both the mobile system and

the interacting applications. These equilibrium strategies denote the mutual best responses of the

interacting entities in this imperfect information environment. We further perform numerical sim-

ulations to evaluate how the game evolves under different game parameters in both single-stage

and repeated scenarios.

2



1.2 How much Explanation is Enough? Towards a Game-theoretic Under-

standing of Explanations of ML Models.

In this case, we consider a classification system, comprising of a black-box machine learning

model and an explanation method, that provides a label and its explanation in response to a query

sent by an end-user. Providing explanations increases the plausibility of the predictions generated

by the model. However, it also provides an attack vector for an adversary who can craft malicious

inputs and feed them to the system to compromise it. The research literature has already shown

the feasibility of privacy threats in the form of membership inference and other adversarial attacks

arising from model explanations. Our focus here is in the former direction, specifically on one fun-

damental adversarial attack called the Explanation-based Membership Inference Attack (or MIA),

where an adversary attempts to determine whether a data-point belongs to the training dataset by

leveraging the variance threshold of the gradient-based explanations. However, it is not trivial to

compute a variance threshold, especially in a repeated interaction scenario. Despite the intuition

that the length and the pattern of repeated interactions with a black-box model and the relevant

explanations may significantly impact the leakage of private information from the model, there

have been no prior efforts to understand this phenomenon formally. Hence, the research questions

that arise in this scenario are: How long should an adversary interact with the target model to com-

promise the system? Can the target model detect such malicious interactions in a timely fashion

to prevent membership inference? and, How can the target model strategically serve both honest

and malicious users in such a setting? We answer the above questions by formally modeling the

dynamics of explanation variance generated by a system (comprising of an ML model and the

corresponding explanation technique) for predictions/labels related to queries sent by end-users.

Specifically, we model the interactions between an end-user and the system, where the variance

of the explanations generated by the system evolve according to a stochastic differential equation

(SDE), as a two-player continuous-time Signaling Game. Next, we characterize the Markov Per-

fect Equilibrium of this stochastic game and further prove the existence and uniqueness of Markov

3



Perfect Equilibrium by using concepts from stochastic calculus and the study of ordinary differen-

tial equations. We also conduct extensive numerical analysis for four gradient-based explanation

methods, namely, Integrated Gradients, Gradient*Input, ε-LRP, and Guided Backpropagation, to

determine how the game evolves and the MIA accuracy for an attacker in these scenarios.

1.3 Designing defense mechanisms against backdoors in Federated Learn-

ing.

In this case, we consider the Federated learning (FL) use-case. FL enables multiple decentralized

clients (malicious or honest) to cooperatively learn a global model/function. The research litera-

ture has already shown that FL is prone to adversarial attacks as the malicious client (or clients)

can insert backdoors into the global server model during the training process, which can result

in poor test performance of the global model on all or some subsets of predictive tasks. Back-

door attacks aim to corrupt the global server model by injecting malicious data points (adversarial

triggers) into it during the training process,thus forcing a classifier to misclassify on some data

points during the test time. Accordingly, many defense mechanisms have also been introduced

in the literature to defend against malicious clients (or clients) who can corrupt the global model

by inserting backdoors. However, FL systems are still not robust enough against backdoor at-

tacks as developed defense mechanisms work only under specific conditions. For example, some

defense mechanisms do not work when multiple diverse backdoors are simultaneously inserted

by a malicious client (or clients). Also, other defense mechanisms clip weights and add noise to

negate the effect of malicious model updates, thus reducing the benign performance of the global

server model. Therefore, the overarching research question is: How to design a defense mecha-

nism that can effectively defend the trained model against any malicious client (or clients) trying

to insert backdoors into the global model? In addition, the proposed defense mechanism should

detect backdoors, both when inserted in a single training round or during multiple training rounds.

In this work, we take a completely different approach and present BayBFed, a novel framework

against backdoor attacks in FL that utilizes Bayesian non-parametric (BNP) modeling techniques.
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It functions in two steps. First, it computes an (alternate) probabilistic measure over the clients’

weights to keep track of their deviations. Second, a detection algorithm leverages this probabilistic

measure to decouple itself from the aforementioned assumptions (as it does not have to administer

the client weights directly). Specifically, we utilize two BNP extensions: (i) a Hierarchical Beta-

Bernoulli process to draw a probabilistic measure given the clients’ weights, and (ii) an adaptation

of the Chinese Restaurant Process (CRP), which we call CRP-Jensen, which is a clustering algo-

rithm that can leverage the above computed probabilistic measure to detect and filter out malicious

updates in FL. We extensively evaluate our BNP-inspired defense approach on five popular bench-

mark datasets: CIFAR10, Reddit, IoT intrusion detection, FMNIST, and MNIST, and show that

the designed defense can effectively eliminate malicious updates without deteriorating the benign

performance of the model.
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CHAPTER 2: ANALYZING DEFENSE STRATEGIES AGAINST

MOBILE INFORMATION LEAKAGES: A GAME-THEORETIC

APPROACH.

*This chapter has previously appeared in Conference Decision and Game Theory for Security
(GameSec 2019) and was published as Lecture Notes in Computer Science(), vol 11836. Springer,
Cham. It was co-authored by Murtuza Jadliwala, Anindya Maiti, and Mohammad Hossein Man-
shaei, and has been reproduced here with minor revisions.

2.1 Introduction

Modern mobile and wearable devices, equipped with state-of-the-art sensing and communica-

tion capabilities, enable a variety of novel context-based applications such as social network-

ing, activity tracking, wellness monitoring and home automation. The presence of a diverse

set of on-board sensors, however, also provide an additional attack surface to applications in-

tending to infer personal user information in an unauthorized fashion. In order to thwart such

privacy threats, most modern mobile operating systems (including, Android and iOS) have in-

troduced stringent access controls on front-end or user-accessible sensors, such as microphone,

camera and GPS. As a result, the focus of adversarial applications has now shifted to employ-

ing on-board sensors that are not guarded by strong user or system-defined access control poli-

cies. Examples of such back-end or user-inaccessible sensors include accelerometer, gyroscope,

power meter and ambient light sensor, and we refer to these as zero-permission sensors. As all

installed applications have access to them by default, and that they cannot be actively disen-

gaged by users on an application-specific basis, these zero-permission sensors pose a significant

privacy threat to mobile device users, as it has been extensively studied in the security litera-

ture [76, 139, 156, 179, 251, 260–262, 269, 285, 286, 288, 302, 306, 318, 350, 355, 405, 407].

At the same time, development of efficient and effective protection mechanisms against such

privacy threats is still an open problem [77]. One of the main reasons why zero-permission sensors

have limited or no access control policies associated with them is because they are required by
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a majority of applications (accessed by means of a common set of libraries or APIs) primarily

for efficient and user-friendly operation on the device’s small and constrained form factor and

display. For instance, gyroscope data is used by applications to re-position front-ends (or GUIs)

depending device orientation, while an ambient light sensor is used to update on-screen brightness.

Thus, a straightforward approach of completely blocking access or reducing the frequency at which

applications can sample data from these sensors is not feasible, as it will significantly impact

their usability. Alternatively, having a static access control policy for each application is also not

practical as it will become increasingly complex for users to manage these policies. Moreover,

such an approach will not protect against applications that gain legitimate access to these sensors

(based on such static policies). Given that all applications (with malicious intentions or not) can

request access to these sensors without violating any system security policy, an important challenge

for a defense mechanism is to differentiate between authentic sensor access requests and requests

that could be potentially misused.

In order to begin addressing this long-standing open problem, we take a clean-slate approach

by first formally (albeit, realistically) modeling the strategic interactions between (honest or poten-

tially malicious) mobile applications and an on-board defense mechanism that cannot differentiate

between their (sensor access) requests. We employ game-theory as a vehicle for modeling and

analyzing these interactions. Specifically, we model the following scenario. A defense mechanism

on a mobile operating system receives requests to access zero-permission sensors from two dif-

ferent types of applications: honest and malicious. Each of these applications could send either a

normal or a suspicious request for access to on-board zero-permission sensors. A request could be

classified as suspicious or normal (non-suspicious) based on the context, frequency or amount of

requested sensor data. Although honest applications would typically make normal requests, they

could also make suspicious requests depending on application- or context-specific operations and

requirements to improve overall application performance and usability. The goal of malicious ap-

plications, on the other hand, is to successfully infer private user data from these requests. Normal

requests would give them some (probably, not enough) data to carry out these privacy threats, how-
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ever, suspicious requests could give them additional critical data either to amplify or increase the

success probability of their attacks. The defense mechanism, on receiving the request, has one of

the following two potential responses: (i) accept the request and release the requested sensor data,

or (ii) block the request preventing any data being released to the requesting application. It should

be noted that the defense mechanism does not know the type of the application (i.e., honest or ma-

licious) sending a particular request (i.e., suspicious or non-suspicious), as all mobile applications

can currently request zero-permission sensor data without raising a flag or violating any policy. In

other words, the defense mechanism has imperfect information on the type of application sending

the request. The requesting application, on the other hand, has perfect information about its type

and potential strategies of the defense mechanism. Given this scenario, the following are the main

technical contributions of this paper:

1. We first formally model the strategic interactions between mobile applications and a de-

fense mechanism (outlined above) using a two-player, imperfect-information game, called

the signaling game [95]. We refer to it as the Sensor Access Signaling Game.

2. Next, we solve the Sensor Access Signaling Game by deriving both the pure- and mixed-

strategy Perfect Bayesian Nash Equilibria (PBNE) strategy profiles possible in the game.

3. Finally, by means of numerical simulations, we examine how the obtained game solutions

or equilibria evolve with respect to different system (or game) parameters in both the single-

stage and repeated (more practical) scenarios.

Our game-theoretic model, and the related preliminary results, is the first clean-slate attempt to

formally model the problem of protecting zero-permission sensors on mobile platforms against

privacy threats from strategic applications and adversaries (with unrestricted access to it). Our hope

is that this model will act as a good starting point for designing efficient, effective and incentive-

compatible strategies for protecting against such threats.
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2.2 System Model

System Model. Our system (Figure 2.1) comprises of two key entities residing on a user’s (mobile)

device. The first is applications (APP) that utilize, and thus, need access to, data from zero-

permission sensors. We consider two types of applications: Honest (HA) and Malicious (MA).

Honest applications provide some useful service to the end-user with the help of zero-permission

sensor data, while malicious applications would like to infer personal/private information about

the user in the guise of offering some useful service. Both honest and malicious applications can

request sensor data in a manner which may look normal/non-suspicious or suspicious (details next),

regardless of their intentions or use-cases. The second entity is a sensor access regulator, which

we refer to as the Defense Mechanism (DM). All sensor access requests (by all applications) must

pass through and processed by the DM. The ideal functionality that the DM would like to achieve

is to block sensor requests coming from MAs, while allowing requests from HAs. As noted earlier,

the DM itself does not know the type (i.e., honest or malicious) of application requesting sensor

access - otherwise the job of the DM is trivial. This is also a practical assumption as currently all

applications can access these sensors without violating any system/user-defined policy (to clarify,

there is currently no way to set access control policies for zero-permission sensors on most mobile

platforms). As the DM has no way of certainly knowing an application’s true intentions (and thus,

its type), it must rely on the received request (suspicious or non-suspicious, as described next)

and its belief about the requesting application’s type to determine whether it poses a threat to user

privacy or not.

Suspicious and Non-Suspicious Requests. Zero-permission sensor access requests by the appli-

cations (to the DM) can be classified as either suspicious (S) or non-suspicious (NS). Such a

classification (generally, system-defined) can be accomplished using contextual information avail-

able to both the applications and the defense mechanism, such as, frequency, time, sampling rate,

and relevance (according to the advertised type of service offered by the application) of these re-

quests. Although there are several efforts in the literature in the direction of determining sensor

over-privileges in mobile platforms [138,178], we abstract away this detail to keep our model gen-
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Figure 2.1: System Model

eral. We, however, assume that malicious applications are able to masquerade themselves perfectly

as honest applications (in terms of the issued sensor requests), which is easy to accomplish when

the target of these applications is zero-permission sensors.

Other System Parameters. The strategic interactions between the (honest or malicious) APP and

DM can be characterized using several system parameters which we summarize in Table 2.1. In

addition to identifying these parameters, we also establish the relationship between these parame-

ters by considering realistic network and system constraints as discussed next. For example, if the

cost of an application processing a successful S request (i.e., cS) or NS request (i.e., cNS) is ex-

pressed in terms of the CPU utilization (of the application), then it is clear that cS ≥ cNS because

suspicious requests would usually solicit fine-grained (high sampling rate) sensor data compared to

non-suspicious requests, thus requiring more processing time. By a similar rationale, ψS ≥ ψNS ,

where ψS and ψNS are the costs to a DM (or the system) for processing a S or NS request, re-

spectively. Now, the cost to the HA in terms of loss in usability when its request is blocked by DM

(i.e., γ) and benefit for the HA in terms of gain in usability when its request is allowed by the DM

(i.e., σ ) are inversely proportional (γ ∝ 1/σ ). Similarly, benefit to the MA when it’s request is al-
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Figure 2.2: Extensive form of the Sensor Access Signaling Game GD.

lowed by DM (α) can be expressed in terms of monetary gains. An acute example would be if MA

is able to successfully infer user’s banking credentials using sensor data [251, 261, 350, 405], and

uses it for theft. A more clement example of monetary gain could be through selling contextual

data (inferred from sensor data) to advertising companies, without user’s consent. Accordingly,

MA is set back with a proportional cost (τ) if its request is rejected by DM, i.e., α ∝ τ . On the

other hand, DM’s cost of allowing a MA’s request (φ ) versus benefit to the DM for blocking MA’s

request (β ) are also inversely proportional (φ ∝ 1/β ). DM’s cost of allowing a MA’s request is

essentially borne by the user, but since the DM is working in the best interest of the user, we com-

bine their costs and benefits. Consequently, in case DM blocks an HA’s request, it incurs a cost (κ)

representing loss of utility/usability for the user. Lastly, we also capture the difference in benefits

for MA and HA, in case they send out a S versus NS request, as u and v, respectively. In essence,

u denotes the gain in benefit due to MA’s better inference accuracy caused by sensor data obtained

from S, and v denotes the improvement of HA’s utility/usability due to sensor data obtained from

S. We also assume that these different (discrete) costs and benefits are appropriately scaled and

normalized such that their absolute values lie in the same range of real values. Next, we outline

the signaling game formulation to capture the strategic interaction between the mobile applications
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Table 2.1: System entities and parameters.

Symbol Definition
DM Defense Mechanism
HA Honest Application
MA Malicious Application
θ Probability that Nature selects MA
S Suspicious sensor request

NS Non-suspicious sensor request
q Belief probability of the DM that the requester is of type MA on receiving a S request
p Belief probability of the DM that the requester is of type MA on receiving a NS request
B DM response to block a sender request
A DM response to allow a sender request

cS Cost of an application processing a successful S request
cNS Cost of an application processing a successful NS request

γ Cost to the HA when its request is blocked by DM
ψS Cost of a DM processing a S request

ψNS Cost of a DM processing a NS request
φ Cost to the DM when MA’s request is allowed
τ Cost to the MA when its request is blocked by the DM
κ Cost to the DM when HA’s request is blocked
α Benefit to the MA when its request is allowed by the DM
β Benefit to the DM for blocking MA’s request
σ Benefit to the HA when its request is allowed by the DM
u Benefit difference to MA for sending S instead of NS
v Benefit difference to HA for sending S instead of NS
m probability with which MA plays the S strategy
n probability with which HA plays the S strategy
x probability with which DM plays the B strategy on receiving a NS request
y probability with which DM plays the B strategy on receiving a S request

(requesting zero-permission sensor access) and the defense mechanism (attempting to regulating

these requests).

Game Model. A classical signaling game [95] is a sequential two-player incomplete information

game in which Nature starts the game by choosing the type of the first player or player 1. Player

1 is the more informed out of the two players since it knows the choice of Nature and can send

signals to the less informed player, i.e., player 2. Player 2 is uncertain about the type of player 1,

and must decide its strategic response solely based on the signal received from player 1. In other

words, player 2 must decide its best response to player 1’s signal without any knowledge about the

type of player 1. Both players receive some utility (payoff) depending on the signal, type of player

1 and the response by player 2 (to player 1’s signal). Both the players are assumed to be rational

and are interested in solely maximizing their individual payoffs.

Given the above generic description of the signaling game, let us briefly describe how our
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zero-permission sensor access scenario naturally lends itself as a single-stage signaling game. We

refer to this game as the Sensor Access Signaling Game and is formally represented as GD =

⟨P,T,S,A,U,θ ,(p,q)⟩, where P is the set of players, T is the set of player 1 types, S is the

set of player 1 signals, A is the set of player 2 actions, U is the payoff/utility function, θ is the

Nature’s probability distribution function, and (p,q) are player 2’s belief functions about player

1’s type. Each sensor access request by an application can be modeled as a single stage of the

above signaling game. In each such stage, P contains two players, i.e., APP which is player 1

and the DM which is player 2. As there are two types of applications (or player 1), i.e., honest

(HA) and malicious (MA), T ≡ {HA,MA}. As applications can send two types of signals (or

requests), i.e., suspicious (S) and non-suspicious (NS), S ≡ {S,NS}. As the DM (or player

2) takes two types of actions depending on the received signal from player 1, i.e., Allow (A)

or Block (B), A ≡ {A,B}. The utility function U : T× S×A → (R,R) assigns a real-valued

payoff to each player (at the end of the stage) based on the benefit received and the cost borne

by each player, and is outlined in the extensive form of the game depicted in Figure 2.2. The

first utility in the pair is the APP’s utility denoted as UAPP, while the second utility in the pair is

the DM’s utility denoted as UDM. Lastly, let ΓAPP = {µAPP|∀ti ∈ T,∑λ∈S µAPP(λ |ti) = 1;∀ti ∈ T}

and ΓDM = {µDM|∀λ ∈ S,∑a∈A µDM(a|λ ) = 1;∀λ ∈ S} be the strategy spaces for APP and DM,

respectively. A strategy µAPP for the APP and µDM for the DM can be either pure or mixed, as

identified by parameters m, n, y and x in Figure 2.2. For pure strategies m,n,y,x ∈ {0,1}, while

for mixed strategies 0 < m,n,y,x < 1. Moreover, let us represent each of the DM’s belief functions

by conditional (posterior) probability distributions as q = Pr(MA|S) and p = Pr(MA|NS), which

also imply that 1−q = Pr(HA|S) and 1− p = Pr(HA|NS).

Now, let’s characterize the set of equilibrium strategies in GD, i.e., a set of strategy pairs that

are mutual best responses to each other and no player has any incentive to move away from their

strategy in that pair. In order to determine mutual best responses, we need to evaluate the actions

(or strategies) of each player at each information set of the game. APP’s information set comprises

of a single decision point (i.e., to select a signal λ ∈ {S,NS}) after Nature makes its selection of
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