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Deep learning is transforming businesses with innovative technology in crucial industries
such as manufacturing, transportation and healthcare. One example is medical imaging algorithms
that are capable of diagnosing disease at a human expert level. Nevertheless, medical image deep
learning models typically require large-scale image datasets and architectures to train state-of-the-
art deep neural networks (DNNs). However, many raw image datasets contain sensitive identity
feature information that prohibit entities from disclosing data due to privacy regulations. Addi-
tionally, large state-of-the-art DNNs are highly over-parameterized for medical image analysis.
Consequently, medical image deep learning models are extremely vulnerable to adversarial at-
tacks—imperceptibly perturbed input resulting in an incorrect model prediction. There are many
security and privacy challenges that arise when developing DNNs for highly regulated industries
such as healthcare. This work focuses on two major concerns that hinder the advancement of deep
learning technology in crucial industries. First, data privacy during model development. Second,

model robustness against adversarial attacks during model deployment.

This research develops learnable image transformation schemes. This topic is examined
by investigating two image transformation schemes using convolutional autoencoder (CAE) latent
representation and vision transformer (ViT) embeddings for privacy enhanced image classifica-
tion. Additionally, this work includes an autoencoder-based image anonymization scheme that
obfuscates visual image features while retaining useful attribute information required for model

utility. The proposed anonymization method also enhances privacy by generating encoded images

Vi



that exclude sensitive identity feature information. Finally, this work develops an approach for
adversarially robust deep learning model selection which includes an analysis on the role of deep

learning model complexity in adversarial robustness for medical images.
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CHAPTER 1: INTRODUCTION & MOTIVATION

Deep learning has achieved state-of-the-art performance in a variety of image classification tasks
from natural image classification [82] to medical image analysis [77]. In particular, deep learning
has progressively enabled faster and more accurate disease detection through the utilization of
deep neural networks (DNNs) [77], which are multiple layers of interconnected nodes that learn
through forward and backward propagation [27]. The development of medical imaging disease
detection algorithms typically require large-scale image datasets and large state-of-the-art DNN

architectures.

However, many raw image datasets contain sensitive identity feature information that
prohibit entities from disclosing data due to privacy regulations such as Health Insurance Portabil-
ity and Accountability Act, better known as "HIPAA" protect sensitive data from being released
to the public. As a result, many deep learning practitioners are obliged to develop DNNs using
limited datasets—TIimited set of identifiable patient information that the HIPAA Privacy Rule per-
mits covered entities to share with certain entities for research purposes, public health or health
care operations [85]]. However, deep learning algorithms require large amounts of training data to

generalize well in practice.

Additionally, training large deep learning architectures with large-scale image datasets
requires expensive computational resources that many businesses simply cannot afford. As a re-
sult, cloud-based services have become an extremely popular option for data owners to outsource
large computationally expensive deep learning tasks due to flexibility and cost saving [5]. Cloud
providers offer a full range of services including storage, servers, virtual desktops, full applications
and development platforms. Many organizations have access to large amounts of data but very lim-
ited computational resources and storage which prevent them from performing feature extraction

tasks locally. Therefore, a large amount of data owners have opted for cloud services to allocate



resources as needed for the given task at hand [111]. Typically, an entity will send its raw data
such as images to a machine learning as a service (MLaaS) provider for the purpose of develop-
ing a deep learning algorithm directly using the raw images. However, image data may contain

sensitive information that the data owner wishes keep private while preserving model utility.

There are several privacy risks that accompany the disclosure of raw image data contain-
ing sensitive information. Raw images consist of features that are useful for a specific classification
task such as classifying facial attributes which may include if an individual is smiling or wearing
glasses, etc. On the other hand, raw images may also include additional feature information that is
not useful for the specific classification task such as gender or age which could be used to reveal the
identity of an individual. For example, previous work [[104]] has shown that person identification
can be accomplished with as little as a human ear, so given a dataset of raw human faces an attacker
could gain access to a victims personal identity by simply possessing an image of the human ear.
Furthermore, [71]] demonstrated that DNNs could be trained to recover patient identity from chest
X-ray data by identifying if two frontal chest X-ray images belong to the same individual even if
they were taken years apart. Attackers could potentially leak patient information or analyze the
identified images to gain access to additional sensitive information. Consequently, this work aims
to increase the privacy and security of sensitive data by transforming the original images such that

sensitive information is excluded from encoded versions while maintaining classification accuracy.

One of the biggest challenges in accessing remote computing resources is keeping users
and their data safe while working remotely. Data loss is the destruction of important or private
information which is a major problem for users that are accessing external resources, it can be
caused by theft, human error, viruses, malware, or power failures. Another challenge is data leak-
age which is the unauthorized transmission of data from within an organization to an external
destination. This can be caused by a malicious insider, physical exposure, electronic communica-
tion or accidental leakage. Account hijacking is another security challenge which happens when

cyber-criminals obtain login information to gain access to sensitive information stored on external



resources. There are also insider threats and insecure APIs that external resource providers must

secure.

Cloud based attacks on deep learning models are another realm of challenges such as
data poisoning attacks where an adversary pollutes training data to control model behavior. Model
extraction attacks where the adversary queries a model on the cloud and uses the prediction to steal
the models functionality. Model inversion attacks where an adversary tries to learn the training
data by querying a model on the cloud. Adversarial attacks where an adversary adds imperceptible
perturbation to data for the purpose of fooling a deep learning model. There are many security and
privacy risks associated with accessing and utilizing external or cloud based resources. The first

part of this work focuses on data privacy concerns when developing deep learning models.

Several visual information protection methods have been proposed to preserve privacy
of image data such as pixelation, blurring and P3 [65]. Visual information protection methods
encrypt data such that visible feature information of an image is concealed while making sure that
the transformed version remains useful for classification [96]], [92], [90], [91]], [15]]. However, these
methods are prone to reconstruction attacks and do not exclude identity feature information from
the encoded version of the original image. This research develops learnable image transformation
schemes which obfuscate visual image features while preserving information required for deep
learning classification model development. Additionally, this research develops an anonymization
scheme that not only transforms the image such that it is longer recognizable to humans but it also

excludes specific sensitive feature information from the encoded data.

One of the major challenges in developing algorithms to anonymize sensitive image data
is known as the trade-off between privacy and utility [79], [56], [110]. The goal is to anonymize
image data such that an attacker could not learn any sensitive identity feature information while
authorized users could perform useful statistics. Eliminating the entire dataset provides perfect
privacy but this is not useful. On the other hand, publishing raw unaltered data is statistically

useful but may be detrimental to the privacy of sensitive data. This work proposes to publish



transformed versions of the original data that maintain model utility by retaining useful attribute
features that are beneficial for classification while increasing privacy by removing sensitive identity

features from the data.

Additionally, [95]] showed that DNNs were vulnerable to adversarial attacks—manipulation
of input data with imperceptible perturbation resulting in an incorrect model prediction. This is
commonly referred to as an adversarial example. The goal of such an attack is to deceive the model
into generating an incorrect output for a given input data point. This discovery has exposed a major
weakness in DNNs. Furthermore, large state-of-the-art DNNs are highly over-parameterized for
medical image analysis. Consequently, medical image deep learning models are extremely vulner-
able to adversarial attacks. As a result, the reliability of DNNs has raised uncertainty as to whether

they are safe and reliable in the physical world, especially in the medical domain.

Recent works have began investigating the domain of adversarial attacks on DNN models
trained with medical images, these works suggest that medical DNNs are easier to attack than net-
works trained with natural images such as cifar10 and ImageNet. [26] confirms that medical DNN's
are vulnerable to adversarial attacks and explains the motivation behind attacking such networks.
This finding has motivated others to explore the extent to which medical DNNs are vulnerable to
adversarial attacks. Further analysis by [58] discovered that medical DNNs are more vulnerable
to adversarial attacks than DNNs trained with natural images, that is, adversarial attacks can suc-
ceed more easily on medical images using less perturbation than natural images. [58|] claimed that
this level of vulnerability inherent in medical images could be potentially due to the biological
textures in medical images that may lead to high gradient regions that are sensitive to small pertur-
bations. The utilization of overparameterized state of the art networks in the training process may
also contribute to a sharp loss landscape for medical images. [76] analyzed the performance be-
tween models trained with state of the art architectures designed for ImageNet and smaller, simpler
convolutional architectures for medical images, they found that the latter perform comparably to

standard ImageNet models. This indicates that ImageNet performance is not predictive of medical



image performance.

Medical DNN models are particularly vulnerable to adversarial attacks due to the usage
of over-parameterized networks on simple classification tasks [58]]. It is common practice for prac-
titioners to employ large state-of-the-art networks that were originally designed for natural images
such as cifar10 [S1]] and ImageNet [82] on various classification tasks without assessing the adver-
sarial robustness of the model—measure of the degree to which a DNN model can withstand an
attack on the integrity and reliability of the network. The same is true for deep learning models
utilized in realistic clinical settings. This convention exponentially increases the level of vulnera-
bility found in medical DNN models. According to [62], model capacity is a crucial component of
adversarial robustness for natural images—images captured in a natural setting, but there is a lack
of documentation on the evaluation of adversarial robustness for medical diagnostic models with
respect to model complexity. One way to overcome this problem is to evaluate model performance

as attack strength increases and complexity is modified.

The features learned from medical images consist of simple biological textures that do
not require large complex networks for feature extraction. Smaller,simpler networks can achieve
comparable performance to state-of-the-art architectures on unperturbed data while producing
models with greater robustness. This is also the case for cifar10. The mnist dataset exhibits similar
performance and robustness across several architectural complexities. The goal of this study is to

analyze model and data complexity for robust design in an adversarial setting.

An attacker could produce an adversarial example to generate the incorrect classification
of a disease. This is a major problem that could result in a misdiagnosis. For example, an attack
deployed against a skin cancer detection system could generate a benign output even if the orig-
inal lesion was indeed malignant. An attack on natural images would not likely cause significant
damage as opposed to an attack on medical images which could potentially cause major harm. In
addition, attackers could be motivated by monetary gain through insurance fraud. For example,

an attacker could submit fraudulent claims for related procedure charges with perturbed medical



images.

Nevertheless, data privacy and adversarial robustness of DNN models remain ongoing
challenges in the development and deployment of security and privacy enhanced deep learning.
This goal of this research is to develop learnable image transformation schemes using using con-
volutional autoencoder (CAE) and vision transformer (ViT) [22] to enable privacy enhanced im-
age classification. Additionally, this work introduces a learnable image transformation scheme
that enables image anonymization by the removal of identity feature information while preserving
attribute features that are useful for model utility. The next goal of this research is to develop an
approach for adversarially robust deep learning model selection. The aim of this research is to
design robust networks that will mitigate adversarial attacks on medical diagnostic models. This
study evaluates the adversarial robustness of DNN models trained with unperturbed image data

and examines the relationship to model complexity.

1.1 Problem Statement

Deep learning models typically require large-scale image datasets and architectures to train state-
of-the- art DNNs. However, many raw image datasets contain sensitive identity feature information
that prohibit entities from disclosing data due to privacy regulations. Additionally, large state-
of-the-art DNNs are highly over-parameterized for image classification in many highly regulated
industries such as healthcare e.g., medical image analysis. Consequently, medical image deep
learning models are extremely vulnerable to adversarial attacks. The advancement of deep learning
technology is significantly hindered in highly regulated industries such as banking, healthcare, and

insurance due to data privacy concerns and adversarial attack susceptibility.



1.2 Summary of Contributions

The contributions of this work are:

* Developed learnable image transformation schemes using convolutional autoencoder and

vision transformer.

 Evaluate the robustness of CAE latent representation and ViT embedding image transforma-

tion schemes for privacy enhanced image classification.

* Demonstrate CAE latent representation and ViT embedding encoding schemes are robust to

reconstruction attacks while preserving model utility.

* Developed an autoencoder-based image anonymization method for privacy enhanced deep

learning.
* Increase privacy of image identity feature information while maintaining model utility.
* Developed an approach for adversarially robust deep learning model selection.

* Consider a set of medical image DL models that exhibit similar performances for a given
task. These models are trained in the usual manner but are not trained to defend against
adversarial attacks. This work demonstrate that, among those models, simpler models of
reduced complexity show a greater level of robustness against adversarial attacks than larger

models that often tend to be used in medical applications.

1.3 Organization of Dissertation

The remainder of the manuscript is organized as follows: Chapter 2 discusses related works in

data privacy, image encoding and adversarial attacks in deep neural networks. A literature review



is included that compares many relevant works in the fields that were worked on in this disserta-
tion. Chapter 3 outlines the methodology including CAE and ViT image encoding schemes and
deep learning model complexity for adversarial robustness. Chapter 4 describes the evaluation
procedure with dataset and model details. Chapter 5 describes the evaluation results. Chapter 6

summarizes and concludes the manuscript.



CHAPTER 2: BACKGROUND & LITERATURE REVIEW

The following section provides an overview of security and privacy in machine learning and funda-
mental first-order adversarial attacks and defenses on Deep Neural Networks. This section presents
notable security methods and attacks in machine learning, image encoding and works in disease
diagnostics using convolutional neural networks (CNNs). In addition, this section reviews some
of the pioneering works of adversarial attacks in the medical imaging diagnostic domain. Further-
more, this section explores the relationship between model complexity and robustness for medical

images natural images.

2.1 Security and Privacy in Machine Learning

Privacy protection in machine learning typically address the privacy of a model’s input, the privacy
of the model, or the privacy of the model’s output. Several privacy preserving techniques have been
proposed in the literature, some of which utilize secure multi-party computation, homomorphic

encryption, federated learning, visual image protection and learnable image encryption.

2.1.1 Secure Multi-party Computation

Secure multi-party computation is a set of cryptographic protocols that allow multiple parties to
evaluate a function to perform computation over each parties private data such that only the result
of the computation is released among participants while all other information is kept private [[108].
Secure multi-party computation methods have been applied in machine learning among multiple
parties by computing model parameters using gradient descent optimization without revealing any
information beyond the computed outcome [[14]], [67]], [101]], [69]. The investigated methods do

not require multiple parties to perform gradient descent individually but instead allows all users to



anonymize private data individually and share the transformed images.

2.1.2 Homomorphic Encryption

Homomorphic encryption is a type of encryption that allows multiple parties to perform compu-
tations on its encrypted data without having access to the original data. It provides strong privacy
but is computationally expensive requiring significant overhead to train machine learning mod-
els [4]], [101], [17], [29], [47], [68]]. The investigated encoding schemes do not require expensive

encryption operations or specialized primitives for the training process.

2.1.3 Federated Learning

Federated learning allows multiple parties to train a machine learning model without sharing data
[55], [9]], [[112]. For example, in centralized federated learning a central server sends a model to
multiple parties to train locally using their own data, then each participant sends it’s own model
update back to the central server to update the global model which is again sent to each party to
obtain the optimal model without access to the local data by iterating through this process [49].
Essentially, federated learning builds protection into the model. Nevertheless, federated learning
suffers from the privacy-utility trade-off [44]]. The investigated encoding schemes enable entities to

share encoded data which do not reveal sensitive feature information and maintain model accuracy.

2.1.4 Visual Image Protection

Visual image protection methods transform original images to unrecognizable versions of the im-

age while maintaining the ability to perform useful statistics. A few examples of visual image pro-

tection methods are pixelation, blurring, P3 [65]], InstaHide [36] and NueraCrypt [107] which aim

at preserving privacy and utility—a model trained on an encoded dataset should be approximately
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as accurate as a model trained on the original dataset [11], [81]]. InstaHide mixes multiple images
together with a linear pixel blend and randomly flips the pixel signs. NeuraCrypt encodes data
instances through a neural network with random weights and adds position embeddings to keep
track of image structure then shuffles the modified output in blocks of pixels. The investigated en-
coding schemes remove the unnecessary complexity of NeuraCrypt’s positional embeddings and

permutations while maintaining privacy and utility.

2.1.5 Learnable Image Encryption

Learnable image encryption methods encrypt images such that the encoded versions are useful for
classification [96]], [92]], [90], [91]], [15]. However, in some cases network adjustments are required
to process learnable image encryptions such as blockwise adaptation [96]. The investigated meth-
ods do not require any special modifications to the network and exclude identity information from
the obfuscated samples while maintaining usability for classification. The proposed autoencoder-
based image anonymization scheme is most closely related to [63] which removes user identity
information from mobile sensor data while training a network to classify user activities. In this
study, an autoencoder-based deep learning model is developed using image attribute features while

removing image identity features.

2.2 Adversarial Attacks on Deep Neural Networks

An adversarial attack on deep neural networks is performed by generating a perturbation that is
combined with the original input data sample. This is commonly referred to as an adversarial
example. Itis accomplished by manipulating the model’s input data with the intention of producing

an incorrect output.
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2.2.1 L-BFGS Attack

[95]] discovered that deep neural networks were vulnerable to adversarial attacks. The attack
method implemented in [95] was the L-BFGS attack which utilized a linesearch optimization tech-

nique. However, the attack was considered computationally expensive.

2.2.2 Fast Gradient Sign Method

As aresult, [28]] introduced the Fast Gradient Sign Method (FGSM) attack, which is an untargeted
single step max norm constrained attack method. The FGSM attack method generates adversarial
examples by calculating the sign of the gradient of the loss with respect to the input data and
constrains the amount of perturbation that can be added to each pixel of the original image with
a max norm. The goal is to apply an imperceptible perturbation to the image that will result in a

misclassification of the DNN model.

2.2.3 Basic Iterative Method

Later, [52] extended this work to an untargeted multi-step attack called the Basic Iterative Method
and a targeted multi-step attack called the Iterative Least Likely Method. Both versions of the
attack iterate through the previous FGSM process multiple times using a step size which acts as
an epsilon for each iteration to find the optimal perturbation instead of adding the perturbation
generated after single iteration. The Iterative Least Likely Method is a targeted attack that utilizes
the argmin function to generate the label with the lowest probability of being the correctly predicted

label to generate an adversarial example.

12



2.2.4 One-Step Target Class Method

The original single-step untargeted FGSM attack was later extended to a targeted attack in [53],
which utilized a random label that was not likely to be equal to the true class or the least likely

label to generate adversarial examples.

2.2.5 Projected Gradient Descent Method

The Projected Gradient Decent Attack Method (PGD) introduced by [62] is an extension of the
BIM method that includes random restart from within the L-Infinity ball to generate the optimal
perturbation. Random restart refers to the random location from within the L-Infinity ball where
the FGSM process is initiated for each iteration on the original data point. The L-Infinity ball is
generated with the max norm constraining epsilon as the radius value around an individual data
point, this forms a maximum perturbation limiting boundary around the data point, if the data point
is already randomly located near the upper bound and the step size is greater than the distance to

the boundary then the perturbation is clipped to the edge of the boundary.

2.3 Model Complexity and Sensitivity

Resnets [32] were proposed to solve the vanishing gradient problem for very deep networks by
adding skip connections to outperform shallow models. Although, skip connections in Resnet-
like neural networks allow easy generation of highly transferable adversarial examples [103[]. In
fact, stronger adversarial examples were crafted by using gradients more from skip the connections
rather than the residual modules. The more skip connections in a network the more transferable the
attack. [[103]] investigates how skip connections affect the adversarial strength of attacks crafted on
the network. identify one such weakness about the skip connections used by many state-of-the- art

DNN:Ss. the success rate drops more drastically whenever using gradients from a residual module
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instead of the skip connection. This implies that gradients from the skip connections are more
vulnerable (high success rate). Although these techniques are effective, they (as well as white-box
methods) all treat the entire network (either the target model or the surrogate model) as a single
component while ignore its inner architectural characteristics. The question of whether or not the
DNN architecture itself can expose more transferability of adversarial attacks is an unexplored
problem. If more gradients from the skip connections were used for an attack then the attack
would be stronger and the model would experience greater degradation in performance. Could
it be possible that input data features could contribute/impact the amount of gradients that flow
through skip connections. identify a surprising security weakness of skip connections. Use of skip
con- nections allows easier generation of highly transferable adversarial examples. Specifically, in
ResNet-like (with skip connections) neural networks, gradients can backpropagate through either
skip connections or residual modules. We find that using more gradients from the skip connec-
tions rather than the residual mod- ules according to a decay factor, allows one to craft adversarial
examples with high transferability. Our findings not only motivate new research into the architec-
tural vul- nerability of DNNs, but also open up further challenges for the design of secure DNN
architectures. While different layers of a neural network learn different "levels" of features, skip
connections can help preserve low-level features and avoid performance degradation when adding
more layers. dependent on the amount of skip connections and the gradient flow through skip

connections for the attack.

2.3.1 Sensitivity and Generalization in Neural Networks

This paper investigated the relationship between complexity and generalization by utilizing two
metrics of complexity that focus on model sensitivity to input perturbations [70]. These metrics
are the Jacobian norm and the number of transition. The input-output Jacobian of a trained model
measures the sensitivity of the network to input perturbations by calculating the partial derivative

of each element in the output probability vector (model prediction) with respect to the each element
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in the input data (each pixel in an image). The Frobenius norm of the input-output Jacobian was
utilized to estimate the sensitivity of functions. The sensitivity metric was utilized to study the
behavior of models on and off the training data manifold. The authors found that sensitivity to
perturbations correlates with generalization, i.e. as sensitivity increases the generalization gap (the
difference between the train and test accuracy on all train and test data) also increases. The number
of transitions was obtained by capturing the number of linear regions that a network splits the
input space into. The Jacobian norm was utilized to measure the sensitivity of the linear regions.
They found that trained models were more robust to perturbations that were in the vicinity of the
training data manifold whose distance was found by the Jacobian norm. The authors claim that
large neural networks often produce greater generalization as opposed to classical measures which
is at odds with Occamas razor. They claim that the input and function (model) should both be
considered when evaluating complexity. The authors argue that Occamas razor does not apply to

neural networks since the best generalization can be obtained by much larger models.

2.4 Defense Methods for Adversarial Attacks on Deep Neural Networks

2.5 Adversarially Robust Methods for Deep Neural Networks

There are several defense techniques that have been proposed in the literature that attempt to pro-
duce greater robustness against adversarial attacks. Defending against adversarial attacks is an
ongoing research effort. Here we review some notable works in defense methods that are readily

available today.

2.5.1 Defensive Distillation

Distillation is a training procedure that utilizes knowledge transferred from large DNNs to models

of reduced complexity without sacrificing performance [6] [34]]. Specifically, distillation utilizes
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the output vector probabilities of a previously trained model as the new label set to train a second
model with the same data samples as the initial network on a smaller architecture. The probability
vector values are amplified with a distillation temperature parameter for both models. Distillation
allows the model to learn additional information about each training sample by leveraging the

relationship of each label’s probability in the initial model’s output probability vector.

Defensive distillation is a technique to defend against adversarial attacks by utilizing the
previously discussed distillation procedure with the exception of training the second distilled model
with the same architecture as the initial network [73]]. Recall that the original distillation process
trains a second model with an architecture of lower capacity to reduce the computational com-
plexity, whereas defensive distillation is not attempting to reduce computational complexity but
to improve the robustness of the network to adversarial attacks. The intuition behind this method
is as follows, training a model with probability vectors helps to prevent the model from fitting to
tightly around the data, it contributes to a better generalization around the training points [73].
Model parameters are updated based on the additional knowledge gained from the relationship be-
tween classes in the probability vector and ultimately this decreases the amplitude of adversarial

gradients.

2.5.2 FGSM Adpversarial Training

Adversarial training is another defense technique that is utilized to resist adversarial attacks against
deep neural networks by including adversarial perturbations in the training process. There are var-
ious forms of adversarial training but the main goal of this type of defense mechanism is to expose
the network to adversarial perturbations and produce a robust model that is resistant to adversar-
ial examples. [28] introduced adversarial training using the FGSM method to produce adversarial
examples and include them in the training process to expose the network to the adversarial ex-
amples. This method trains a model using an adversarial objective function based on the FGSM

attack method, this objective function is derived by obtaining 0.5% of the loss on the clean data and
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0.5% loss from the adversarial data. This method was one of the forerunners in defenses against

adversarial attacks.

2.5.3 PGD Adversarial Training

The projected gradient descent variant of adversarial training optimizes the saddle point (min-
max) problem to produce robustness against a wide range of attacks [62].This is accomplished by
first solving the inner maximization problem which is to maximize the loss with an adversarial
perturbation from a set of allowed perturbations, in other words this describes the problem of
generating an optimal perturbation that will result in the largest error of the model. Subsequently,
the outer minimization problem is solved by finding model parameters that minimize the loss of
the model trained on perturbed samples. Intuitively, this allows the model to prepare for the worst
case perturbation within the L-infinity ball and resist the attack. The L-infinity ball can be seen as
a space surrounding an individual data point that is specified by the max norm constraining factor
referred to as epsilon which describes the magnitude of the perturbation. The radius from the data
point is normally chosen as epsilon, thus an adversarially trained model should be able to withstand
an attack from any perturbation that is generated within the ball. Solving the min-max optimization
problem provides a guarantee that if an attacker is able to produce an adversarial example then it
will not successfully fool the model. Thus if the adversarial loss is low for all perturbations then

this means that generating adversarial examples should not be possible [|62].

2.5.4 Self-Supervised Learning for Adversarially Robust Networks

Self-supervised learning is a method that is used to train a model for a supervised learning task with

unlabeled data. Self-supervision was implemented as an alternative approach to transfer learning

in [3]. Specifically, a model was trained using self-supervised learning on a large unlabeled dataset.

The pre-trained lower layers were utilized for another learning task. This initializes a second model
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with the weights of the lower layers of the pre-trained self-supervised network, then replaces and
fine tunes the top layers for the new learning task with much less labeled data. The benefit is that
the second model is a able to train with a much smaller dataset. They claimed that self-supervised
learning produced models with greater performance and robustness to adversarial attacks than
transfer learning on lower amounts of labeled data. Adversarial training with the self-supervised

model offered greater robustness.

2.6 Medical DNNs in Adversarial Settings

Recent works have began investigating the domain of adversarial attacks on DNN models trained
with medical images, these works suggest that medical DNNs are easier to attack than networks
trained with natural images such as cifar10 and ImageNet. [26] confirms that medical DNNs are
vulnerable to adversarial attacks and explains the motivation behind attacking such networks. This
finding has motivated others to explore the extent to which medical DNNs are vulnerable to ad-
versarial attacks. Further analysis by [58]] discovered that medical DNNs are more vulnerable to
adversarial attacks than DNNs trained with natural images, that is, adversarial attacks can suc-
ceed more easily on medical images using less perturbation than natural images. [58] claimed that
this level of vulnerability inherent in medical images could be potentially due to the biological
textures in medical images that may lead to high gradient regions that are sensitive to small pertur-
bations. The utilization of overparameterized state of the art networks in the training process may
also contribute to a sharp loss landscape for medical images. [76] analyzed the performance be-
tween models trained with state of the art architectures designed for ImageNet and smaller, simpler
convolutional architectures for medical images, they found that the latter perform comparably to
standard ImageNet models. This indicates that ImageNet performance is not predictive of medical

image performance.

Medical DNN models are particularly vulnerable to adversarial attacks due to the usage

of over-parameterized networks on simple classification tasks [58]. It is common practice for prac-
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titioners to employ large state-of-the-art networks that were originally designed for natural images
such as cifar10 [51]] and ImageNet [82] on various classification tasks without assessing the adver-
sarial robustness of the model—measure of the degree to which a DNN model can withstand an
attack on the integrity and reliability of the network. The same is true for deep learning models
utilized in realistic clinical settings. This convention exponentially increases the level of vulnera-
bility found in medical DNN models. According to [62]], model capacity is a crucial component of
adversarial robustness for natural images—images captured in a natural setting, but there is a lack
of documentation on the evaluation of adversarial robustness for medical diagnostic models with
respect to model complexity. One way to overcome this problem is to evaluate model performance

as attack strength increases and complexity is modified.

The features learned from medical images consist of simple biological textures that do
not require large complex networks for feature extraction. Smaller,simpler networks can achieve
comparable performance to state-of-the-art architectures on unperturbed data while producing
models with greater robustness. This is also the case for cifar10. The mnist dataset exhibits similar
performance and robustness across several architectural complexities. The goal of this study is to

analyze model and data complexity for robust design in an adversarial setting.

An attacker could produce an adversarial example to generate the incorrect classification
of a disease. This is a major problem that could result in a misdiagnosis. For example, an attack
deployed against a skin cancer detection system could generate a benign output even if the orig-
inal lesion was indeed malignant. An attack on natural images would not likely cause significant
damage as opposed to an attack on medical images which could potentially cause major harm. In
addition, attackers could be motivated by monetary gain through insurance fraud. For example,
an attacker could submit fraudulent claims for related procedure charges with perturbed medical

images.

One of the goals of this research is to design robust networks that will mitigate adver-

sarial attacks on medical diagnostic models. Consequently, this study evaluates the adversarial
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robustness of DNN models trained with unperturbed image data and examines the relationship to

model complexity.

2.7 Generating Adversarial Examples

This section discusses the adversarial attack methods utilized to generate adversarial examples.
The attack methods include the Fast Gradient Sign Method, One-Step Target Class Method, Ba-
sic Iterative Method, Iterative Least Likely Class method and Projected Gradient Descent attack

Method.

2.7.1 Fast Gradient Sign Method

The Fast Gradient Sign Method (FGSM) introduced by [28]] is a fast and simple way to generate
adversarial examples. It is a max norm constrained attack that solves for the perturbation that
maximizes the cost function. The max norm constraining factor limits the amount of change to an

input image from the original pixel values. This method is a single step attack which attempts to

solve for the optimal perturbation in a single iteration of back propagation.

XY = X + esign(VxJ(X, Virue)) (2.1)
2.7.2  One-Step Target Class Methods
The One-Step Target Class Methods are an extension of FGSM that maximize the probability of a

specific target label not likely to be the true label for a given input sample. The goal is to solve for

a perturbation that minimizes the cost function for the true label and the target label [53]].
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Xadv =X- €Sign(vXJ(X7ytarget)) (22)
2.7.3 Basic Iterative Class Method
The Basic Iterative Method (BIM) is an extension of the FGSM attack. It performs FGSM for

multiple iterations utilizing a step size alpha («) to constrain the maximum allowed perturbation

for each iteration [52].

Xo™ =X, X = Clipx (X3 + asign(VxJ (X5, Yirue)) (2.3)
2.7.4 Iterative Least Likely Class Method

The Iterative Least Likely Method utilizes the least likely predicted class of a trained network for

a given data sample [52].

YL = arg myln{p(y]X)} (2.4)
2.7.5 Project Gradient Descent Method

Projected Gradient Descent Method (PGD) is one of the strongest first-order attack methods which
is an extension of FGSM. It iteratively attempts to produce an optimal perturbation from a random
point within an L-Infinity ball. An epsilon value is utilized as the radius from the original data
sample to produce the L-Infinity ball [62]. The PGD attack method is the inner maximization

portion of the saddle point optimization problem in [62].
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X = T[(X" + asign(VxJ (0, X, y))) (2.5)

X+s

2.8 Threat Model

Threat modeling is a very important concept since it will determine the approach that the attacker
will take when generating adversarial examples. It establishes the attackers knowledge regarding

the training data, architecture and model parameters.
2.8.1 White-Box

Here the attacker is assumed to have perfect knowledge, that is, the attacker knows everything
about the targeted system. The attacker has full knowledge of the target model’s architecture and
parameters. The perfect knowledge threat model allows security practitioners to perform a worst-

case evaluation of the deep learning model.
2.8.2 Gray-Box

The attacker has limited knowledge of the target model. For example, the attacker may not know
the exact training data but they may know the type of data utilized at test time. The attacker may
also know the type of learning algorithm and architecture type but they do not know the model

parameters.
2.8.3 Black-Box

The attacker has zero knowledge of the training data, architecture or model parameters. In this

case the attacker is still able approximate the decision boundary of the target model by querying
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the model and receiving feedback regarding the model’s output.
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CHAPTER 3: LEARNABLE IMAGE TRANSFORMATIONS

The utilization of deep learning image classification models has risen in the past several years,
especially in highly regulated industries such as healthcare. Although, the development of state-
of-the-art DNNs often requires large-scale image datasets. Nevertheless, data privacy concerns

significantly hinder the advancement of deep learning technology.

Typically, data owners will either train deep learning models locally which means that
computing resources can be accessed without a network or remotely which are computing re-
sources that can be accessed through a network. Developing DNNs for image classification re-
quires expensive powerful high-end hardware, including GPUs (graphical processing units). As a

result, many businesses are switching to remote cloud-based options for DNN training.

Cloud-based services have become an extremely popular option for data owners to out-
source large computationally expensive deep learning tasks due to flexibility and cost saving [5]].
Cloud providers offer a full range of services including storage, servers, virtual desktops, full ap-
plications and development platforms. Many organizations have access to large amounts of data
but very limited computational resources and storage which prevent them from performing feature
extraction tasks locally. Therefore, a large amount of data owners have opted for cloud services to
allocate resources as needed for the given task at hand [111]]. Typically, an entity will send its raw
data such as images and corresponding labels to a machine learning as a service (MLaaS) provider

for the purpose of developing a deep learning algorithm directly using the raw images.

However, there are many privacy risks involved with uploading raw image datasets to
MLaaS providers. Raw images may include sensitive feature information that data owners wish to
keep private. They are susceptible to a wide range of attacks such as identity theft, disease misdi-
agnoses and insurance fraud [[104], [71]], [59]]. For example, in Figure [3.1|the data owner wishes to

upload face images and attribute labels such as smiling, attractive and beard to an MLaaS service
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Figure 3.1: The data owner uploads raw image dataset to MLaaS provider for the purpose of
developing a deep learning algorithm directly using raw images. Adversary wishes to extract
identity features.

provider to train a DNN model while an adversary wishes to extract identity label information

such as gender. The adversary could use raw face images to learn person identity features and gain

access to private information.

Several visual information protection methods have been proposed to preserve privacy
of image data such as pixelation, blurring and P3 [65]. Visual information protection methods
encrypt data such that visible feature information of an image is concealed while making sure that
the transformed version remains useful for classification [96]], [92], [90], [91]], [[15]]. Nevertheless,
one of the major challenges in developing algorithms to encode sensitive image data is known

as the trade-off between privacy and utility [[79]], [56]], [110]. Additionally, these methods are
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prone to reconstruction attacks and do not exclude identity feature information from the encoded
version of the original image. This research develops learnable image transformation schemes
that are robust to reconstruction attacks and exclude identity feature information. Learnable image
transformations obfuscate visual image features while preserving information required for deep

learning classification model development.

3.1 Evaluating Robustness of CAE and ViT Image Encoding for Privacy

Enhanced Image Classification

* The material presented in this section is currently being reviewed to appear in the proceedings
of the 10th European Conference On Service-Oriented And Cloud Computing (ESOCC 2023) in
the article, "Evaluating Robustness of CAE and ViT Image Encoding for Privacy Enhanced Image

Classification", co-authored with Ram Krishnan, Ph.D. and Yufei Huang, Ph.D.

This research investigates two image transformation schemes using CAE latent represen-
tation and ViT embeddings to enhance privacy of sensitive image data. The CAE latent representa-
tion is a compressed version of the original input data that captures important feature information
relevant to image classification. Additionally, the ViT embedding consists of linear patch transfor-
mations with position embeddings. In both cases, the transformations are optimized to inherently
reduce the feature space without any modifications to the network. Therefore, this work evaluates

the robustness of CAE and ViT image transformation schemes against reconstruction attacks.

3.1.1 CAE and ViT Image Encoding Formulation

Let X be the set of all possible samples in the data domain, X, C A is the data owner’s private

subset and Y, is the corresponding label set. The data owner encodes {z,, }Y., where z,, € X,,

using a private encoding function z, = F,(z,). The data owner’s private samples are generated
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Figure 3.2: The data owner transforms private dataset X 4 using a private encoding function and
transmits the encoded data Z 4 and corresponding label Y4 to a cloud service provider. The attacker
attempts to reconstruct the X 4 using only {Z4, Y4 }.

according to the probability distribution z, ~ pgaa(z,). Next, the data owner shares the encoded
set {2,, } ¥, and corresponding class labels {y,, }¥., where y,, € Y, with a third party cloud service
provider to train a deeep learning classification model using the encoded samples without revealing
sensitive data features. Afterward, the pre-trained network can be used to predict the class label
given the encoded samples. This work aims to transform image data such that model utility is
preserved while image reconstruction quality degrades. On the other hand, the attacker’s objective
is to learn a mapping function between the attacker’s encoded set Z, and the data owner’s encoded
set Z, given that the attacker only has access to {Z,, Y,} as depicted in Figure [3.2] This study
assumes that an attacker is able to construct a dataset X;, C X and Y, the corresponding label
set that follows the probability distribution of the data owner’s private subset z, ~ Pyara(z4). It
is reasonable to assume that a dataset of similar probability distribution is available in practice
e.g. suppose that the data domain is Chest X-ray images, then it is straightforward for an attacker
to collect images from a publicly available Chest X-ray dataset. Also, this study assumes that
the attacker has access to his own encoding function which is used to transform the constructed

dataset, z, = Fy(xy).
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3.1.2 CAE and ViT Image Encoding Datasets

This research performs experiments using three publicly available datasets Chest X-ray [46]], Fash-
ion Mnist [21] and Cifar-10. The Chest X-ray dataset consists of 5,863 grayscale chest radiograph
images of size 224x224 used to diagnose thorax disease. It includes two classes, where each image
is labeled as "Pneumonia" or "Normal". The Fashion Mnist dataset consists of 60,000 train images
and 10,000 test images. It includes grayscale fashion images of size 28x28 and associated label
from 10 classes. The Cifar-10 dataset consists of 60,000 32x32 color images with 10 classes each
having 6000 images. train images and 10,000 test images. It includes 50,000 train images and

10,000 test images.

3.1.3 CAE Network Architecture

The CAE encoder network used to encode Chest X-ray dataset consists of three convolution layers
with 32, 64 and 128 filters, respectively. The model input size is 224 x224. The CAE encoder
network used to encode Fashion Mnist and Cifar-10 datasets consists of two convolution layers
with 64 and 128 filters, respectively. The model input size is 28 x28 and 32 x32 for Fashion Mnist
and Cifar-10, respectively. The kernel size is 3x3 with a stride of 2 and a latent space of 128. Each
convolution layer consists of a leaky relu activation function with alpha 0.2 followed by a batch
normalization layer. The decoder network used to reconstruct Chest X-ray datatset consists of three
transposed convolution layers with 128, 64 and 32 filters, respectively. The decoder network used
to reconstruct Fashion Mnist and Cifar-10 consists of two transposed convolution layers with 128
and 64 filters, respectively. The kernel size is 3x3 with a stride of 2 and output size of 224 x224,
28x28 and 32x32 for Chest X-ray, Fashion Mnist, and Cifar-10 datasets, respectively. Each
transposed convolution layer consists of a leaky relu activation function with alpha 0.2 followed

by a batch normalization layer.
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3.1.4 ViT Network Architecture

The ViT network used to encode all datasets consists of 8 transformer blocks and 6 attention
heads. The hidden size is 1024 for Chest X-ray and 128 for Fashion Mnist and Cifar-10 datasets.
The multi-layer perceptron (MLP) size is 2048 for Chest X-ray and 128 for Fashion Mnist and
Cifar-10 datasets. There are 49 patches with size 3232 for Chest X-ray. The Fashion Mnist and
Cifar-10 datasets were resized to 48 x48, thus there are 8 patches with size 6 x6. In our evaluation,
we use masked autoencoder (MAE) network [31]] for ViT image reconstruction. MAE consists of
a transformer based encoder and decoder network. We use a masking ratio of 75% with random
sampling. The hidden size is 512 for Chest X-ray and 64 for Fashion Mnist and Cifar-10 datasets.
The output size is 224 x224 for Chest X-ray and 48 x48 for Fashion Mnist and Cifar-10 datasets.

3.1.5 Encoded Image Classification Model Architecture

The CAE encoded image classification model consists of three fully connected layers (64, 16
and 2 hidden units) for Chest X-ray and (64, 16 and 10 hidden units) Fashion Mnist and Cifar-
10 datasets. The ViT encoded image classification model follows the previously mentioned ViT

network architecture for each respective dataset.

3.1.6 CAE Encoded Image Training Procedure

The CAE network is pre-trained using a dataset that follows the data owner’s distribution. The
mean squared error loss function is used to pre-train CAE with a batch size of 32 for 100 epochs.
Afterward, the encoder network is used to transform image data into encoded samples i.e. the en-
coder latent representation. Next, a classification model is trained using the CAE encoded images
as depicted in Figure [3.3] The network is trained using categorical crossentropy loss function and

a batch size of 128 for 100 epochs. The network input is a 1D vector encoding of size 128. All
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Figure 3.3: Privacy enhanced image classification using CAE encoding scheme. First, the CAE
network is pre-trained using xj, ~ Pgata(z,). Then, the DNN latent space classifier is trained using
the latent representation and corresponding class labels.

training was completed using the Adam optimizer and tesla v100 graphical processing unit.

3.1.7 ViT Encoded Image Training Procedure

In the ViT experiments, the cross-entropy loss function is used to pre-train ViT with a batch size
of 32 for 25 epochs. Afterward, the linear projection layer is used to generate patch embeddings
which are added with position embeddings. Then, an embedding classifier is trained using a ran-
domly initialized ViT network as depicted in Figure All training was completed using the

Adam optimizer and tesla v100 graphical processing unit.
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Figure 3.4: Privacy enhanced image classification using ViT encoding scheme (image was adapted
from [22]). First, the ViT network is pre-trained using = ~ pgata(Z4). Then, the ViT embedding
classifier is trained using the projection layer embedding space and corresponding class labels.

3.2 Autoencoder-Based Image Anonymization Scheme for Privacy Enhanced

Deep Learning

* The material presented in this section previously appeared in the proceedings of the 37th An-
nual IFIP WG 11.3 Conference on Data and Applications Security and Privacy (DBSec’23) in
the article, "An Autoencoder-Based Image Anonymization Scheme for Privacy Enhanced Deep

Learning", co-authored with Ram Krishnan, Ph.D.

Next, the goal of this research is to anonymize image data such that an attacker could
not learn any sensitive identity feature information while authorized users could perform useful
statistics. Eliminating the entire dataset provides perfect privacy but this is not useful. On the other
hand, publishing raw unaltered data is statistically useful but may be detrimental to the privacy

of sensitive data. This work proposes to publish transformed versions of the original data that
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Image Anonymizer

Figure 3.5: Image anonymization overview.

maintain model utility by retaining useful attribute features that are beneficial for classification
while increasing privacy by removing sensitive identity features from the data. An overview of the
image anonymization process is depicted in Figure [3.5] This research introduces an image data
anonymization scheme using a deep learning approach to increase data privacy while maintaining
model utility. Specifically, a multi-output deep learning model is trained to increase classification
accuracy of identity feature information and image attributes. Then the anonymization network
is trained which consists of a convolutional autoencoder attached to the input of a pre-trained
multi-output classifier to generate obfuscated versions of the original images. The encoded images

exclude identity feature information and preserve attribute features that are useful for classification.

The aim is to transform image data such that all visual feature information is unrecog-
nizable to humans as depicted in Figure [3.6] but remains useful for classification. Additionally,
the aim is to remove identity feature information from the transformed images while preserving
attribute features. This method enables entities to share encoded versions of the original data that
exclude sensitive feature information while maintaining model utility. This work considers identity
features that can be collected from an image as sensitive data. On the other hand, this work consid-
ers attribute features in a given image as non-sensitive data. The objective is to preserve attribute
features in the transformed images while removing sensitive identity features. Additionally, the
objective is to maintain similar attribute classification performance on the transformed images as

the original images.

32



(a) Original images

(b) Anonymized Images

Figure 3.6: Examples of anonymized images from Celeba dataset using the proposed scheme.The
bottom row are the corresponding anonymized images of the top row.

3.2.1 Image Anonymization Formulation

Let X be the set of all possible 8-bit images in the data domain, X, C X is the data owner’s private
subset and Y,, is the corresponding label set. Given the private image dataset {x,, }Y, where z,, €
X,, the data owner encodes all images using a private image anonymization function z, = E(z,)
and shares the encoded set {z,,}~ , and corresponding attribute labels {y,, }¥, where y,, € Y,
with a third party cloud service provider without revealing sensitive identity feature information.
The proposed image anonymization function is similar to but instead of anonymizing mobile
sensor data this work develops an encoding function to anonymize image data. The proposed
method consists of a multi-output classifier to distinguish between attribute and identity features.
In addition, the network consists of an autoencoder to anonymize images. The objective of training
the network is to obtain the image anonymizer £* which transforms raw images into anonymized

images.

In the multi-output classification model training phase, a resnet50 model is trained to
classify identity features and attribute features using the same input images {z,,}X, with their
respective class labels. The objective function for the multi-output classification model has two
loss terms: identity loss for classifying identity features; and attribute loss for classifying attribute
features. The aim is to classify identity features and attribute features of a given image with high

classification accuracy for the multi-output network. After training, the multi-output classification
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model is used to develop the anonymization network for the purpose of transforming original
images into anonymized images. The anonymization objective function also contains two loss
terms: identity suppression loss for removing identity features; and attribute preservation loss for
preserving attribute features. The aim is to degrade the identity feature classification accuracy

while preserving the attribute feature classification accuracy.

3.2.2 Multi-output Classification Loss Function

The multi-output network is trained using a multi-objective loss function for image classification
which consists of an identity and attribute loss function. The identity loss is used to minimize the
error between the true identity and identity classifier’s predicted identity. The attribute loss is used
to minimize the error between the true attribute and the attribute classifier’s predicted attribute.
The aim is to classify identity features and attribute features with high classification accuracy.

3.2.3 Identity Loss

The identity loss function L; uses cross-entropy to measure the performance of identity classifier

I(-) which is trained to classify image identity features.

N
1
Li(I,X)Y) = _N; log(1 (3.1

where z; is the i’ image and Y] is the corresponding ground truth identity label. I(x;) is

the identity classifier’s predicted output for the 7*" image.
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3.2.4 Attribute Loss

The attribute loss function L, uses categorical cross-entropy to measure the performance of the

attribute classifier A(-) which is trained to classify image attribute features.

Lu(AT,X) = 3" Tilog(A(x) (3.2)

where 7; is the ground truth N-dimensional one hot encoded vector attribute label for the

it" image and A(z;) is the attribute classification function predicted softmax output which is an

N-dimensional vector consisting of the attribute label probabilities for the i*" image.
3.2.5 Multi-output Classification Objective

The multi-output classification objective is:

L(I7 A) = La(A7T7 X) + Lz<17 X7 Y) (33)

The aim is to solve:

I"JA* =1 4 L(1, A) (3.4)
3.2.6 Image Anonymization Loss Function
The image anonymization network is trained using a multi-objective loss function for image classi-

fication which consists of an identity suppression and attribute preservation loss function. The aim

is to remove identity features while preserving attribute features that are useful for classification.
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3.2.7 Identity Suppression Loss

The identity suppression loss function L, uses mean squared error to remove identity feature in-

formation from sensitive data.

* 1 a *

where F is the anonymization function and [* is a pre-trained identity classification
function. ¢ is a positive value between 0-1. This work maximizes the difference between the
predicted identity label and the true identity label by minimizing the mean squared error between
¢ and the predicted identity label given the i"* encoded image. The anonymization network is

penalized if the transformed image contains identity feature information.
3.2.8 Attribute Preservation Loss

The attribute preservation loss function L, uses categorical cross-entropy to preserve attribute fea-

ture information.

LA, B) = 5 S Tlog(A4°(E(x.)) (3.6)

where A* is the pre-trained attribute classification function. The aim is to minimize the
preservation loss given the i*" encoded image. This work minimizes the difference between the
predicted attribute label and the true attribute label by minimizing the crossentropy between 7; and

the predicted attribute label.
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3.2.9 Image Anonymization Objective

The image anonymization objective is:

L(E, T, A", E) = M L,(A*, E) + M Ly(&, 1", E) (3.7)

where the regularization parameters \; and \, are positive values that regulate the trade-

off between privacy and utility.

The aim 1is to solve:

E* = arnginL(ﬁ, I, A" F) (3.8)

The anonymization function E* generates encoded images that retain useful attribute
features by penalizing the autoencoder network using crossentropy if the output does not contain
attribute features. In addition, the autoencoder network is penalized using mean squared error if
the output contains identity features. Thus the objective is used to preserve attribute features by

applying L, while removing identity features by applying L.
3.2.10 Image Anonymization Datasets

In this work, the publicly available CelebA [57]] and Cifar-100 [?] image datasets are used to
develop anonymization networks. The CelebA dataset is a large-scale face attribute dataset that
consists of approximately 200K celebrity face images. It includes gender and 40 attributes per
image with a variety of poses and backgrounds. However, in the experiments, this work selects
images of 4 mutually exclusive attribute labels consisting of pale skin, smiling, eye glasses and

wearing hat. Increasing the number of attributes significantly reduces the amount images per class.
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Consequently, 10K images are included per attribute label. The goal is to train the anonymization
network to generate encoded images that include attribute label features while removing gender
label features. The Cifar-100 dataset consists of 60,000 32x32 color images. It consists of 100
classes containing 600 images each which are referred to as the fine label set. It is also available
with 20 superclasses containing 3,000 images each which are referred to as the coarse label set.
This work considers the fine label set to be private. Thus, the aim is to remove image features
associated with the fine label set. The goal is to train the anonymization network to generate

encoded images that include coarse label feature while removing fine label features.

3.2.11 Anonymization Network Architecture

The anonymization network architecture depicted in Figure consists of two parts: a multi-
output Resnet50 for image classification and a standard convolutional autoencoder (CAE) for
image transformation. Resnets are large state-of-the-art DL architectures that consist of several
blocks of residual modules and skip connections [33|]. The multi-output architecture consists of
one resnet50 feature extraction network with two separate classifiers at the output. The CAE en-
coder network consists of three convolution layers with 32, 64 and 128 filters, respectively. The
kernel size is 3x3 with a stride of 2 and a latent space of 128. Each convolution layer consists
of a leaky relu activation function with alpha 0.2 followed by a batch normalization layer. The
decoder network consists of three transposed convolution layers with 128, 64 and 32 filters, re-
spectively. The kernel size is 3x3 with a stride of 2 and output size of 224x224x3. Each transposed
convolution layer consists of a leaky relu activation function with alpha 0.2 followed by a batch

normalization layer.
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Figure 3.7: Proposed anonymization model architecture.

3.2.12 Multi-output Classification Model Training Procedure

The training procedure consists of a feature extraction phase for classification and an identity re-
moval phase for anonymization. In the feature extraction phase the multi-output resnet50 model is
trained from randomly initialized parameters for two different classification tasks given the same
images. One classifier is trained to predict the gender identity for a given image using binary
crossentropy loss function for the CelebA dataset. In the Cifar-100 experiments the identity clas-
sifier is trained using the fine label set which includes 100 classes. Simultaneously, a second
classifier is trained to predict the attribute of the same image using categorical crossentropy loss
function. In the Cifar-100 experiments the attribute classifier is trained using the coarse label set
which includes 20 classes. The coarse label set is the superclass of the fine label set, e.g., the fish
label is the superclass of aquarium fish, flatfish, ray, shark, trout. The aim is to classify fine label

features and coarse label features for a given image set.

The network was trained using the adam optimizer with a batch size of 128. Check points
were used to save the model with the highest validation accuracy during the training procedure.
All images were resized to 224 X224 and normalized between 0 and 1. The dataset was randomly
shuffled and split to generate the train, test and validation set. Minor data augmentation was applied
during training using keras image data generator which include zoom range 0.2 and horizontal flip.

All training was completed using a tesla v100 graphical processing unit.
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3.2.13 Anonymization Model Training Procedure

In the identity removal phase the CAE parameters are randomly initialized and its output is attached
to the previously trained multi-output resnet50 classification model input. The resnet50 classifier
model parameters frozen to ensure that the weights do not change during CAE training for the iden-
tity removal phase. During training the aim is to learn a CAE that retains useful attribute feature
information to reconstruct an unrecognizable version of the original image for classification while
removing the identity feature information. The identity classifier is optimized to remove identity
feature information with a modified version of the mean squared error loss function. The attribute
classifier is trained with the categorical crossentropy loss function to ensure that the anonymized

images retain attribute feature information.

The network was trained using the adam optimizer with a batch size of 128. Check points
were used to save the model with the highest validation accuracy during the training procedure.
All images were resized to 224 x224 and normalized between 0 and 1. The dataset was randomly
shuffled and split to generate the train, test and validation set. Minor data augmentation was applied
during training using keras image data generator which include zoom range 0.2 and horizontal flip.

All training was completed using a tesla v100 graphical processing unit.
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CHAPTER 4: ADVERSARIALLY ROBUST DEEP LEARNING MODEL

SELECTION

The utilization of deep learning image classification models has risen in the past several years,
especially in highly regulated industries such as healthcare. Although, the development of state-of-
the-art DNNs often requires large complex deep learning architectures. Nevertheless, deep learning
model complexity susceptibility to adversarial attacks significantly hinder the advancement of deep

learning technology.

On the other hand, after the data is securely uploaded to an MLaaS provider for DNN
model training, the next step is to design a network architecture for optimal performance. Typically,
large state-of-the-art DNNs are used for training without considering the role that model complex-
ity has on the network’s vulnerability to attacks such as adversarial attacks which are discussed
in detail in the literature review. Next, the model is trained using the dataset and architecture to
obtain high classification performance. Finally, the trained network is deployed without assessing

the model’s susceptibility to adversarial attacks.

* The material presented next previously appeared in the proceedings of the International
Conference on Intelligent Biology and Medicine (ICIBM 2021) in the article, "On the role of deep
learning model complexity in adversarial robustness for medical images", co-authored with Tapsya

Nayak, Ph.D., et al.

It is now well known that deep neural networks are vulnerable to adversarial attacks. As
a result, many applications that depend on DNNs may be targeted by an attack which could have
serious consequences, especially for safety critical industries such as healthcare. The healthcare
domain has incorporated applications that utilize deep neural networks for the purpose of classify-
ing disease but these models pose a security threat in that they are highly vulnerable to adversarial

attacks. For example, an attacker might add imperceptible noise to a medical image in order to
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cause a DNN-based medical diagnostic tool to misdiagnose disease. The lack of documentation on
the adversarial robustness of medical DNN models has hindered the development and deployment
of secure models in healthcare. One way to overcome this problem is to evaluate model complexity
with respect to adversarial robustness. Medical images tend to focus on objects of interest consist-
ing of various biological textures (spread of tiny features of various patterns) that do not require
overparameterized networks for feature extraction. This work investigates how architecture size

and complexity affects the robustness of DNN models trained on medical and natural images.

4.1 The Role Of Deep Learning Model Complexity In Adversarial Robust-

ness For Medical Images

Next, this research evaluates the role of deep learning model complexity in adversarial robustness
after training data has been securely uploaded to MLaaS providers for model development. Typ-
ically, large state-of-the-art DNNs are used for training without considering the role that model
complexity has on the network’s susceptibility to adversarial attacks. Instead, deep learning mod-
els are normally trained using large datasets and architectures to obtain high classification per-
formance. After training, the network is deployed without assessing the model’s susceptibility to

adversarial attacks.

* The material presented in this section previously appeared in the proceedings of the
International Conference on Intelligent Biology and Medicine (ICIBM 2021) in the article, "On the
role of deep learning model complexity in adversarial robustness for medical images", co-authored

with Tapsya Nayak, Ph.D., et al.

Deep learning has achieved state-of-the-art performance in a variety of image classifica-
tion tasks from natural image classification [82]] to medical image analysis [77]]. However, deep
learning models are vulnerable to adversarial attacks—imperceptible input perturbations utilized

to produce an incorrect model prediction [95]. This inherent weakness in deep learning poses a
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major security threat to medical deep learning models in that an attacker has the ability to alter the

networks output. In fact, medicine may be uniquely susceptible to adversarial attacks [26].

Several defense techniques have been proposed to reduce model sensitivity to adversar-
ial examples which include detection methods [106], defensive distillation [73]], ensemble meth-
ods [97]] and adversarial training [|62]]. Adversarial training is considered one of the most effective
defense techniques. It minimizes the cost of a network trained on adversarial perturbations that
maximize network error but suffers from performance degradation on unperturbed data [62]]. Nev-
ertheless, attaining adversarial robustness of deep neural networks remains an ongoing research

effort.

Deep learning has been extensively utilized in the medical domain. Several deep learn-
ing based medical devices and algorithms in healthcare have been approved by the FDA to assist
in diagnosing disease such as HealthPNX, Critical Care Suite & SubtleMR [8]]. In fact, deep
learning models have achieved remarkable performance for chest x-ray [77], dermoscopy [24] and
retinal fundus classification [30]. However, medical image based deep learning models are also
vulnerable to adversarial attacks [26]]. Adversarial attacks against healthcare systems could inter-
fere with proper medical diagnosis and potentially cause misdiagnosis by imperceptibly altering
medical imaging that serve as input to DL based medical devices and algorithms in healthcare.
These modifications may result in erroneous medical treatment and fraudulent billing to healthcare
insurance providers [26]. Patient treatment plans can be changed by attacking Electronic Health
Records (EHR), which is the digital version of patient medical records [2]. Attackers can produce
adversarial examples to generate a specific disease prediction from medical image deep learning
models. In fact, universal adversarial perturbations can achieve misdiagnosis at a very low cost
and high success rate [35]]. Furthermore, medical image deep learning models are more vulnerable
to adversarial attacks than natural image DNN:Ss, i.e., adversarial attacks can succeed more easily

on medical images using less perturbation [58].

Generally, in the case of natural images, larger models are considered to be more robust
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against adversarial attacks. In classical machine learning, the principle of Occam’s Razor suggests
choosing simpler models as they are expected to generalize better; however, larger ImageNet archi-
tectures often produce state-of-the-art performance in natural image classification [70]]. As aresult,
Occam’s Razor may not be a reliable heuristic for deep learning model selection in an adversarial
setting. In fact, capacity is crucial for adversarial robustness [62], i.e., as capacity increases, natural
image DL models become more resistant to adversarial attacks. Nevertheless, there is a trade-off
between adversarial robustness and clean accuracy for natural image deep learning models [94].
However, the relationship between adversarial robustness and model complexity for medical image

DL models has not been carefully studied.

Deep learning models deployed in realistic clinical settings often employ large deep
learning architectures such as Resnet [32] for medical image classifications. However, these large
Resnet trained on medical images do not significantly exhibit greater performance than smaller
models [76]]. Instead, smaller, simpler models provide comparable performance to large overly
complex networks for unperturbed medical images. In fact, model complexity may have con-
tributed to the high vulnerability of medical image deep learning models [58]]. This was primarily
attributed to a sharp loss landscape that was hypothesized to be the result of a highly complex
network for a simple classification task. Instead, this work provides evidence that shows how
model complexity influences adversarial robustness through decision boundary visualizations and
saliency maps—image representation highlighting attention regions that influence a model’s output
the most [88]. A recent study [35]] found that model architecture did not play a significant role in
adversarial robustness for medical image deep learning models against universal adversarial pertur-
bations. However, they only evaluate performance on state-of-the-art deep learning architectures,

which are considered to be over-parameterized for medical image classification.

This work investigate whether simpler deep learning models of reduced complexity can
produce comparable or improved robustness to state-of-the-art large networks for medical image

classification. With this in mind, this research strives to understand "How does model complexity
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impact adversarial robustness for medical image DL models"? "Could models of reduced complex-
ity offer greater robustness for medical image DL models"?. To this end, this work investigates the
role of model complexity in adversarial robustness for standard and adversarially trained medical

image deep learning models.

Deep learning models are highly vulnerable to adversarial attacks for medical image
classification. An adversary could modify the input data in imperceptible ways such that a model
could be tricked to predict, say, an image that actually exhibits malignant tumor to a prediction
that it is benign. However, adversarial robustness of deep learning models for medical images is
not adequately studied. Deep learning in medicine is inundated with models of various complex-

ity—particularly, very large models.

4.2 Medical Datasets

This research utilizes publicly available datasets to train all models. The medical datasets utilized
in the experiments were Chest X-Ray, Dermoscopy and Optical Coherence Tomography (OCT).
All models were trained with images of pneumonia class label or normal class label for the chest
x-ray classification task. For the dermoscopy classification task all models were trained on images
with label melanoma or not-melanoma, this work considers any non melanoma labeled image to be
part of the not-melanoma class. The Optical Coherence Tomography (OCT) dataset was comprised

of four classes consisting of CNV, DME, DRUSEN, NORMAL.

The chest xray dataset is publicly available on Kaggle [45], it consists of grayscale chest
radiograph images used to diagnose thorax disease. It contains 5,863 chest radiographs with two

classes.

The melanoma dataset is also publicly available on kaggle [83]]. It contains 17.8K color
images of skin lesions used to diagnose melanoma skin cancer. The data augmentation process

from [80] was utilized for melanoma images.
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The Optical Coherence Tomography dataset is publicly available at on kaggle [45],
it consists of 84,495 grayscale images with four classes—choroidal neovascularization (CNV),
drusen, diabetic macular edema (DME) or normal. Optical coherence tomography is a non-invasive
imaging test that uses light waves to take cross-section pictures of the retina to assist in diagnosing

retina disease and disorders in the optic nerve.

4.3 Model Complexity Network Architectures

The following experiments utilize a family of four Resnet architectures and a standard five layer
Convolutional Neural Network (CNN) architecture for training all models. For experiments using
the Resnet architecture, all models were initially trained with a publicly available Resnet50 archi-
tecture [[16], which is a standard ImageNet architecture designed for images of natural scenery.
Subsequently, the amount of layers were gradually reduced to produce three additional architec-
tures which include Resnet32, Resnet20 and Resnet8. The CBR-LargeT architecture in [76] was
utilized to produce the standard five layer CNN architecture. It consists of five convolutional lay-
ers, initially each layer is comprised of 32 filters and a 7x7 kernel size. The amount of filters are
doubled at each convolutional layer while the kernel size remains constant for all layers. All con-
volutional layers were followed by batch normalization, relu activation and a max pooling layer

with 3x3 window and 2x2 stride.

The complexity of a model can be altered through various methods such as increasing
or decreasing the amount of layers, filters or kernel size in a network. The following experiments
specifically reduce the amount of layers within the Resnet architecture, which was followed by a
reduction in layer, filter and kernel size for the standard CNN architectures. [76] found that DNNs
trained on medical images did not benefit much from utilizing large standard ImageNet architec-
tures for training. Model capacity was reduced to assess adversarial robustness in an adversarial
setting. The following experiments evaluate model complexity for adversarial robustness of medi-

cal and natural images.
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4.4 Standard Training Procedure

All models were trained from random initialization of model parameters. [[76] found that initiating
the training process from pretrained ImageNet weights (transfer learning) did not significantly in-
crease the performance of models trained with medical images. All models were trained using the
Adam optimizer with a batch size of 32, learning rate scheduler and reduce learning rate on plateau.
Checkpoints were utilized to store the model with the highest validation accuracy during the train-
ing procedure. All medical images were resized to 224x224 and all data was normalized between
0-1. Mnist was resized to 32X32 for compatibility with the resnet architecture. Each dataset was
randomly shuffled and split using a random seed for reproducibility. The aforementioned training
procedure was performed for a total of ten instances for each dataset and architecture to assess
the average performance of all models across multiple subsets of the training data for a given

architecture.

4.5 Generating Adversarial Examples

The attack methods deployed against the medical DNN models included the Fast Gradient Sign
Method (FGSM) [28] and the Projected Gradient Descent (PGD) method [62]] using the least likely
class method for the target label. The magnitude of the perturbation was increased by utilizing a
range of epsilon values where € € [0.01, 10] for each set of attacks. The € value was extended up to
30 for the mnist dataset. FGSM is a single step max norm constrained attack that utilizes an epsilon
value to restrict the amount of change or perturbation allowed in each pixel from the original pixel
values in the input data. The PGD attacks utilized 20 iterations of back propagation updates to the
input pixel values starting from a random initialization point within the L-Infinity ball to obtain the
optimal perturbation with a step size of o = (¢ * 0.1) for each attack and corresponding epsilon.
The experiments were implemented in a targeted white-box attack setting as the source architecture

and model parameters were known and utilized to generate adversarial examples.
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4.6 Standard Training Experimental Setup

The experimental procedure consisted of training a DNN model with each of the previously speci-
fied architectures and datasets. Each dataset was combined, shuffled and randomly split to generate
the train, test and validation set. The data selection process was repeated ten times for each archi-
tecture size. A single round of experiments consisted of training a model for each data split. This
is equivalent to ten trained models for CBR-LargeT, resnet8, resnet20, resnet32 and resnet50, to-
taling 50 models for each dataset. For cifar10 and mnist datasets we replace CBR-LargeT with a
standard 6 layer CNN architecture for compatibility reason. Adversarial examples were generated
with a subset of the test data which the model was not previously exposed to during training and
validation. Approximately, one hundred and fifty data samples were randomly selected from each
class of the test set to generate adversarial examples. Data sample replacement was not utilized

during the selection process.

Adversarial attacks were deployed on each model and the performance was assessed as
model complexity was reduced by obtaining the average accuracy and standard deviation for all
models trained on the same dataset and architecture. For example, the melanoma dataset was
randomly shuffled and split ten times and for each data split we train a model using the resnet8
architecture which will result in ten trained models. This procedure was repeated for each dataset
and architecture. The magnitude of the attack strength is limited by the max norm epsilon. As the
epsilon value increases the amount of perturbation also increases which results in a higher amount
of change to each pixel in an image. The model complexity of each network was reduced to model
complexity as the attack strength was increased. The FGSM and PGD attacks were implemented

using the Cleverhans library [72].

The medical datasets contain a small amount of classes so we investigate whether the
number of classes contributed to our findings on medical DNNs. The robustness experiments

were replicated on the cifar10 and mnist datasets while also reducing the number of classes down
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equivalently to the medical datasets which have 2 classes for x-ray and melanoma and 4 classes for
OCT dataset. It is typical for medical datasets to contain far less classes than natural image dataset

and far less data samples.
Adversarial Training Procedure

Adversarial training was first introduced in 2015 [28]], wherein they included adversarial examples
into the training procedure to generate robust models. However, these trained models were still
vulnerable as model robustness is directly related to the strength of adversarial samples being used
during training. To address this in 2017, a new adversarial training algorithm that uses multi-
step based PGD adversaries was proposed [[62]]. This achieves state-of-art robustness against L-
infinity attacks on MNIST and CIFAR-10 dataset. A min-max formulation was used in training

DL models [[62]]:

min p(0), where p(0) =Eq,p max L0,z + 6, Yarget) (4.1)
S

where miny p(6) represents the classification task, [E represents the empirical loss on the

T,Ytarget)
sample distribution p ,,,..,- The above saddle-point formulation is a composition of inner max-
imization and outer minimization problem. The former aims to find an adversarial version of
x, using equation (4.I)), to provide high adversarial loss, while the latter attempts to find model
parameters ¢ to minimize the empirical classification loss. A previous study [62] found that ro-
bustness against PGD adversary provides robustness against all first-order adversaries and deep
learning models with larger capacity can fit adversarial samples better. Motivated by the model
performance using equation (4.1)) on computer vision datasets, this study aims to evaluate the

performance of medical deep learning models using equation (4.1I) against adversarial and clean

samples across different model capacities.

In this study, ResNet architectures of varying capacities - 8, 20, 32, 50 layers were trained
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to generate adversarial trained models. The final layer for all the models were softmax with two
neurons for Chest X-ray and Dermoscopy datasets, and four neurons for the OCT dataset. The
networks were trained against adversarial perturbations that are max norm bounded. Each model
was trained using initial weights from standard training of its counterpart network capacity, with
learning rate of 0.001 and trained until the loss of the network would not further reduce or increase
accuracy. To generate attacks during adversarial training, € was set to 3/255, 1/255 and 10/255,
with the step size set to ¢/10 and perturbation steps of 7, 5 & 5 for Chest X-ray, Dermoscopy &

OCT datasets, respectively.
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CHAPTER 5: EVALUATION PROCESS

This section describes the evaluation process of the CAE and ViT image encoding schemes for
image reconstruction robustness. Also, included is the image anonymization evaluation for privacy
enhanced image classification. Lastly, included is the evaluation on the role of deep learning model

complexity in adversarial robustness for image data.

5.1 CAE and ViT Image Encoding Evaluation

* The material presented in this section is currently being reviewed to appear in the proceedings
of the 10th European Conference On Service-Oriented And Cloud Computing (ESOCC 2023) in
the article, "Evaluating Robustness of CAE and ViT Image Encoding for Privacy Enhanced Image

Classification", co-authored with Ram Krishnan, Ph.D. and Yufei Huang, Ph.D.

First, this study evaluates the performance of the CAE and ViT encoded image classi-
fication models. Second, this study evaluates the robustness of CAE and ViT encoding schemes
against four reconstruction attack methods which are refer to as Public Encoder Attack, Query
Encoder Attack, Image Subset Attack and Cycle GAN Attack. In the experiments, two baseline
reconstruction attacks are performed to assess the attackers ability to reconstruct original images
given the assumption that the original encoding function is accessible. Also, this work assesses
the attacker’s ability to reconstruct original images given the assumption that a subset of original
image-encoding pairs are available. Finally, this work assesses the attacker’s ability to reconstruct
original images given the assumption that only the encoded images and corresponding labels are

available.
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5.1.1 Encoded Image Classification Model Performance

This work evaluates the effectiveness of convolutional autoencoder (CAE) latent representation and
vision transformer (ViT) [22]] embeddings to preserve model utility using classification accuracy

and robustness against reconstruction attacks using structural similarity index measure (SSIM).

First, we train the DNN latent space classifier and ViT embedding classifier using the
data owner’s encoded set {z,, }, and corresponding class labels {1, } . Then, we evaluate the
performance of each network using a test dataset of encoded images that were held out of the
training process. The classification accuracy of the DNN latent space classifier shown in row 1
of Table @ 18 91.43%, 89.94% and 92.67% for Fasion Mnist, Cifar-10 and Chest X-ray datasets,
respectively. The classification accuracy of the ViT embedding classifier shown in row 2 of Table
is 87.32%, 86.01% and 91.98% for Fasion Mnist, Cifar-10 and Chest X-ray datasets, respec-
tively. We obtain high classification accuracy on encoded images using our DNN latent space
classifier and ViT embedding classifier. This result demonstrates that model utility remains high

using encoded datasets.

5.1.2 CAE Public/Query Encoder Attack

This study evaluates the robustness of CAE and ViT based image transformation schemes against
attacks that aim to reconstruct original images given the strong assumption that an attacker has
full access to the data owner’s original encoding function. In the CAE experiments, the attacker
concatenates a randomly initialized decoder model Pg to the data owner’s original encoder. Then
the attacker generates encoded data samples by using his constructed dataset as input to the data
owner’s original encoder. Finally, Pp is optimized by updating the model parameters based on
the gradients of the mean squared error loss between the attacker’s constructed dataset and the de-
coder’s predicted output given the corresponding encoded samples i.e. &, = Pg(F 4(x)). During

training, the data owner’s original encoder weights are frozen. Afterwards, the decoder is used to
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reconstruct the data owner’s encoded dataset. Similarly, this work considers the scenario where an
attacker only has access to query the data owner’s original encoder network i.e., Query Encoder
Attack. In this case, the CAE decoder is trained by minimizing the error between the queried output

and the ground truth image.

5.1.3 ViT Public/Query Encoder Attack

In the ViT experiments, the attacker generates encoded samples using linear projection layer. Then,
tokens are generated by adding position embeddings to the linear projection and shuffled to per-
form masking i.e. randomly remove tokens. The MAE encoder network is applied to the randomly
selected visible tokens for training. The masked tokens are then concatenated to the MAE encoder
output and unshuffled. Then, position embeddings are added and applied to the decoder’s linear
projection layer to train the decoder using all masked and visible patches. The goal of MAE is to
reconstruct the masked patches in the pixel space. To do this, the mean squared error loss is com-
puting between reconstructed and original images on the masked patches only. Afterwards, the
data owner’s ViT encoded images are applied to the MAE network for image reconstruction. Sim-
ilarly, in the query encoder ViT experiments, the attacker generates encoded samples by querying
the projection layer given the constructed dataset. Afterwards, the MAE network is trained using

the previously mentioned procedure.

5.1.4 Minimal Data Subset Attack

Next, this study evaluates the robustness of CAE and ViT encoding schemes against minimal data
subset attacks where the adversary gains access to a subset of the data owner’s original dataset with
the goal of training a deep learning model to reconstruct original images given encoded images.
The attack was performed by incrementally updating the model parameters using a single image-

encoding pair from the data owner’s original dataset { X 4, Z 4} and then gradually including more
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image-encoding pairs in the training process until SSIM saturates. The model parameters are
updated by minimizing the mean squared error between original images and reconstructed images
given the encoded samples. After each training step, the image similarity of the data owner’s

original images and the reconstructed images are measured using SSIM.

5.1.5 CAE Minimal Data Subset Attack

In the CAE experiments, this study considers the scenario where an attacker trains a randomly
initialized (RI) decoder network using a subset of the data owner’s original image-encoding pair.
Also, this study considers the scenario where the attacker first pre-trains a decoder model using
his constructed dataset X g and then fine-tunes the decoder (FT) using a subset of the data owner’s

original image-encoding pair.

5.1.6 ViT Minimal Data Subset Attack

In the ViT experiments, this study considers the scenario where an attacker trains a randomly
initialized MAE network using a subset of the original image-encoding pairs. Also, this study
considers the scenario where an attacker first pre-trains an MAE network using the constructed
dataset and then fine-tunes the network using the subset of original image-encoding pairs. Similar
to previous experiments the network parameters are learned using the mean squared error loss.

Afterwards, the CAE and MAE decoders are used to reconstruct the data owner’s encoded dataset.

5.1.7 Reconstruction Cycle GAN Attack

Next, this study considers the scenario where an attacker attempts to reconstruct the data owner’s

original dataset by estimating the encoding function using a Cycle Gan based approach. Cycle

GANSs are normally used to learn a mapping function from one data domain to another [113]]. In
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Figure 5.1: Cycle GAN reconstruction attack diagram. Where Zp is the adversaries encoded
dataset and 74 is the data owner encoded set. Generator G 4 translates the adversaries encoded set
into the data owners encoded set domain. Generator GG g translates the data owner’s encoded set
into the adversaries encoded set domain. Discriminator Dy distinguishes between true adversary
encoded images and fake adversary encoded images. Discriminator D 4 distinguishes between true
data owner encoded images and fake data owner encoded images. Decoder Pp reconstructs the
adversaries encoded images.

this work, the goal is to learn a mapping function between the data owner’s encoded set and the

attacker’s encoded set. This work assumes an attacker only has access to the encoded dataset and

corresponding labels.

In this work, the reconstruction Cycle GAN attack network consists of two generators
(G 4,Gp), two discriminators (D4, D) and a pre-trained decoder (Pg). The attacker’s encoded
dataset is generated using pre-trained encoding function Zp = Ep(Xpg). Generator G4 is used
to translate encoded images from the attacker’s domain to the data owner’s domain and generator
G'p is used to translate encoded images from the data owner’s domain to the attacker’s domain.
Discriminator D 4 is used to distinguish between the data owner’s real and fake encoded samples
and discriminator Dp is used to distinguish between the attacker’s real and fake encoded samples.

The pre-trained decoder Pg is used to reconstruct the attacker’s dataset given the encoded set as

depicted in Figure
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5.1.8 Reconstruction Cycle GAN Adversarial Loss

In this work, the adversarial loss term is computed using generator G 4, generator (7 g, discriminator
D 4 and discriminator Dp. Discriminator D 4 is a binary classifier used to distinguish between the
data owner’s real encoded set Z 4 and the generated encoded 7. First, generator GG 4 is used as a
mapping function from the attacker’s encoded image domain to the data owner’s encoded image
domain 7y = G4(Zp). Generator G4 wishes to minimize the probability of Z’, being classified
as a generated data sample by discriminator D4 while D, aims to maximize the probability of
the real encoded datatset Z 4 being classified as real encodings and generated encodings Z’, being
classified as fake encodings. The attacker learns a generator G4 that translates encoded samples

Z g into the data owner’s domain.

Discriminator Dp is a binary classifier used to distinguish between real and generated
attacker encodings. This study simulates the process of the data owner generating the attacker’s
encoded images to obtain Zj using generator G given the data owner’s encoded set as input
to generator G, i.e. Z;; = Gp(Z4). Generator Gp wishes to minimize the probability of Zj
being classified as a generated encodings by discriminator Dp while D aims to maximize the
probability of true encodings Zp being classified as a true encodings and generated encodings Zj
being classified as fake encodings. The simulated data owner learns a generator that translates her

encoded set into the attacker’s domain.

The full adversarial loss consists of a loss term from generators (G4, Gg) and discrimi-

nators (D4, D). The following equations describe the adversarial loss term.

LGAN(GA7 DAJ ZB7 ZA) = Eza"’pa(za) [log DA(ZGI)]

HEz oy () [108(1 = Da(Ga(2)))]

5.1

where G 4 tries to generate encodings G 4(z;) that are similar to the data owner’s encoded
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images z,, while D 4 distinguishes between real data owner encodings 2, and generated data owner
encodings G 4(z,). G4 minimizes the objective while D4 maximizes the objective, ming, maxp,

Laan(Ga,Da, Zp, Z4).

Laan(Gg,Dp, Za, Zp) = K., p,(z)[l0g Dp(2)] 5.2)

—‘I_EZaNpa(Za) [log(l - DB(GB<ZCL)))]

where G'p tries to generate encodings G'z(z,) that are similar to the attacker’s encodings
2y, while D distinguishes between the attacker’s real encodings and generated G 5(z,) encodings.

G p minimizes the objective while D5 maximizes the objective, ming, maxp, Laan(Gp, Dp, Za, Z5).

5.1.9 Reconstruction Cycle GAN Cycle Consistency Loss

The cycle consistency loss term is computed using generator G4 and generator G . First, the
attacker translates his encoded set Zp into the data owner’s domain using generator G 4. Then
the encoding is translated back into the attacker’s data domain using generator G. Second, the
simulated data owner translates her encoded set Z 4 into the attacker’s domain using generator G .
Then the encoded set is translated back into data owner’s domain using generator G 4. The mean

absolute error between the original encoded set and the cycled encoded set are computed.

The computed cycle consistency loss values for the cycled encoded data are summed

together below.
Leye(Ga, Gp) = Euppy (o) [[|GB(Gal20)) — 2][1]

+E2a~pa(za) H |GA(GB<Z¢1)) — Za| |1]

(5.3)

GB(Ga(zp)) is the attacker’s cycled encoding and G 4 (G (z,)) is the data owner’s cycled
encoding. The error between the cycled encoding and real encoding is minimized and combined

to compute the total cycle consistency loss.
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Next, the attacker reconstructs his original image dataset from the encoded set using
his pre-trained decoder Xj; = Pg(Zp). Then a distorted version of the attacker’s original image
dataset is reconstructed from his cycled encoded set X}, = Pg(G(G4(Z5))). The mean absolute
error between the reconstructed image dataset X and the reconstructed distorted version of the

image dataset X 3 is computed.

The reconstruction loss L, minimizes the error between the reconstructed dataset given
the attacker’s encoded set and the reconstructed dataset given the attacker’s cycled encoded set as

described below.

LT‘(PBaGBaGA) = (5 4)

E.pmpy(2) [[|1PB(GB(Ga(21))) — Pr(20)]1]

where Pp is the attacker’s pre-trained decoder. Decoder Pg is fine-tuned by minimizing
||Ps(Gr(Ga((Z5)))— Ps(Zp)||1 to ensure that the reconstructed cycled encodings remain similar

to the reconstructed encodings.
5.1.10 Reconstruction Cycle GAN Attack Full Objective
All of the previously discussed loss terms are summed together for the full objective. The full

objective for the attack consists of an adversarial loss term, cycle consistency loss term and recon-

struction loss term.

58



The full objective is:

L(Ga,Gp,Dp,Da, Pg) = Laan(Ga, Da, Zy, Z,)

+LGAN(G37 D37 Za7 Zb)
(5.5
+)\1Lcyc(GAa GB)

+Xo L, (Pp,Gp,Ga)

where A controls the importance of each objective. In the experiments, A\; = 10 and
A2 = 10. This study solves the following optimization problem:
Gjlv E? P é =

(5.6)
arg min  max L(Ga,Gpg,Dpg,Da, Pg)

Ga,GB,Pp Da,Dp

5.2 Image Anonymization Evaluation

* The material presented in this section previously appeared in the proceedings of the 37th An-
nual IFIP WG 11.3 Conference on Data and Applications Security and Privacy (DBSec’23) in
the article, "An Autoencoder-Based Image Anonymization Scheme for Privacy Enhanced Deep

Learning", co-authored with Ram Krishnan, Ph.D.

5.2.1 Evaluating the Privacy/Utility Trade-off

The anonymization network is trained using the proposed method and afterward this study exam-
ines the trade-off between privacy and utility, i.e. we measure the change in identity and attribute
classification accuracy. First, the original images are transformed using the proposed anonymiza-
tion method. Second, the identity and attribute classification accuracy of original images and the

transformed images are compared. To quantify the trade-off between privacy and utility this study
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measures the difference in identity and attribute classification accuracy for the anonymized dataset

compared to original dataset.

5.2.2 Image Anonymization Evaluation with Classifier Transfer Attack

This study evaluates the robustness of the autoencoder-based image anonymization approach against
attacks that aim to learn an identity feature classifier and transfer it onto the data owners encoded
set for classification. This study conducts experiments on CelebA and Cifar-100 datasets using
gender and coarse labels, respectively. This study assumes that the attacker is able to construct a
dataset that follows a similar probability distribution as the data owner’s original dataset and cor-
responding labels. First, the attacker trains his own identity classifier using the constructed dataset
to achieve high classification accuracy. Then he attempts to classify the data owners encoded set

using his pre-trained identity classifier. An overview of the classifier transfer attack is depicted in

Figure

The performance of the attacker’s pre-trained identity classifier is evaluated using the
data owner’s encoded set. The goal of the attack is to classify identity features given the data

owner’s encoded dataset.

5.2.3 Image Anonymization Evaluation with Encoding Transfer Attack

This study also considers the scenario where the attacker aims to learn a representation of the
data owner’s encoded set to classify identity features. Again, this study assumes the attacker
constructs a dataset that follows a similar distribution as the data owner’s original dataset and
corresponding labels. First, the attacker trains a multi-output classification model for identity
and attribute features similar to the proposed method. Then a randomly initialized autoencoder is
trained to generate encoded samples such that identity and attribute information are both preserved.

This is accomplished by freezing the weights of the pre-trained identity and attribute classifier
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and updating the autoencoder parameters based on the gradients of the classification loss. The
attacker’s modified anonymization network is trained to maintain high classification accuracy for

both the identity and attribute classifiers. The encoding transfer attack is depicted in Figure[5.3]

Finally, the effectiveness of the proposed method evaluated against encoding transfer
attacks by assessing the performance of the data owner’s identity classifier given the attacker’s
generated encoded set. The goal of the attack is to generate encoded images that include exploitable
identity features. The data owner’s identity classifier is used to verify if identity features are present

in the attackers encoded set.
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Figure 5.2: Classifier transfer attack diagram. Where X', is the data owner’s encoded dataset
and Xp, Yp are the attackers raw image dataset and identity labels which follows the probability
distribution of the data owner’s original dataset. /g is the attacker’s identity classifier. The attacker
trains /5 with Xp, Y5 and uses the classifier to predict the identity label of the data owner’s

encoded dataset.
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Figure 5.3: Encoding transfer attack diagram. Where X is the attacker’s dataset which follows
the probability distribution of the data owner’s original dataset. X7 is the attacker’s encoded
dataset which consists of attribute features and identity features. The data owners identity classifier
is used to predict the identity label of the attacker’s encoded dataset to verify if X; captures the

data owner’s identity features.
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5.3 Adversarial Robustness Evaluation

* The material presented in this section previously appeared in the proceedings of the International
Conference on Intelligent Biology and Medicine (ICIBM 2021) in the article, "On the role of deep
learning model complexity in adversarial robustness for medical images", co-authored with Tapsya

Nayak, Ph.D., et al.

5.3.1 Adversarial Robustness & Model Complexity

DNN models of sufficient complexity were developed to achieve low train and test error as shown
in Figure [5.4] Adversarial examples were crafted for each of the trained DNNs and model perfor-
mance was assessed by obtaining the average accuracy for each experiment. The performance of
each network was evaluated as model complexity was reduced and the magnitude of perturbation

increased as depicted in Figure[5.5]

5.3.2 Adversarial Attack Evaluation

The performance curves include results for both FGSM and PGD attacks but more emphasis will
be placed on results for PGD attacks since it is stronger variant. This study considers a model to
be more robust to an adversarial attack if the amount of perturbation that is required to degrade the
model’s performance is greater than other networks. Attacks were launched on each model with
a gradually increasing perturbation to assess the degradation performance incurred for the system
under attack. This study considers networks to be less robust if less perturbation is required to
degrade the model’s performance. The networks that required a higher degree of perturbation to

confidently change the model’s output prediction were considered more robust.

The medical datasets contain a small amount of classes so this study investigates whether

the number of classes contributes to the findings on medical DNNs. In doing so, this study repli-
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Figure 5.4: Set of optimal models with sufficient complexity for generalization. The set of optimal
models must achieve low train and test error.

cates experiments using cifar10 and mnist datasets while also reducing the number of classes down
equivalently to the medical datasets which have 2 classes for x-ray and melanoma and 4 classes for
OCT dataset. It is typical for medical datasets to contain far less classes than natural image dataset

and far less data samples.
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Figure 5.5: Adversarial robustness for a given set of optimal models of sufficient complexity. Ad-
versarial examples are generated and all optimal models are attacked with increasing perturbation
magnitude until model performance degrades.
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CHAPTER 6: EXPERIMENTAL RESULTS

6.1 CAE and ViT Image Encoding Results

* The material presented in this section is currently being reviewed to appear in the proceedings
of the 10th European Conference On Service-Oriented And Cloud Computing (ESOCC 2023) in
the article, "Evaluating Robustness of CAE and ViT Image Encoding for Privacy Enhanced Image

Classification", co-authored with Ram Krishnan, Ph.D. and Yufei Huang, Ph.D.

The CAE and ViT encoding schemes enhance the privacy of sensitive image data while

preserving classification accuracy using Fashion Mnist, Cifar-10 and Chest X-ray datasets.

6.1.1 Encoded Image Classification Model Performance

First, the DNN latent space classifier and ViT embedding classifier are trained using the data
owner’s encoded set {z,,}~ , and corresponding class labels {y,, }¥,. Then, this study evaluates
the performance of each network using a test dataset of encoded images that were held out of the
training process. The classification accuracy of the DNN latent space classifier shown in row 1
of Table 18 91.43%, 89.94% and 92.67% for Fasion Mnist, Cifar-10 and Chest X-ray datasets,
respectively. The classification accuracy of the ViT embedding classifier shown in row 2 of Table
[6.4]is 87.32%, 86.01% and 91.98% for Fasion Mnist, Cifar-10 and Chest X-ray datasets, respec-
tively. High classification accuracy is obtained on encoded images using the DNN latent space
classifier and ViT embedding classifier. This result demonstrates that model utility remains high

using encoded datasets.
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Table 6.1: Privacy enhanced image classification accuracy. Model utility is preserved for DNN
and ViT classifiers trained using encoded datasets.

Classification Acc.%

Privacy Enhanced Classifier ~ Fashion Mnist Cifar-10 Chest X-ray

Latent Space Classifier (DNN) 91.43 89.94 92.67
Embedding Classifier (ViT) 87.32 86.01 91.98

6.1.2 Public/Query Encoder Attack Results

The performance of the public and query encoder attack are evaluated using structural similarity
index measure (SSIM). The SSIM values that are closer to 1 indicate that the reconstructed images
are similar to the original images and values closer to 0 indicate that reconstructed images are poor
quality compared to original images. The public encoder attack SSIM scores for CAE and ViT
image reconstruction are shown in row 1 of Table [6.5]and Table [6.3] respectively. The CAE pub-
lic encoder attack SSIM scores for Fashion Mnist, Cifar-10 and Chest X-ray datasets are 0.9385,
0.9012 and 0.9157, respectively. The ViT public encoder attack SSIM scores for Fashion Mnist,
Cifar-10 and Chest X-ray datasets are 0.1968, 0.3598 and 0.2413, respectively. The query encoder
attack SSIM scores for CAE and ViT image reconstruction are shown in row 2 of Table[6.5]and Ta-
ble [6.3] respectively. The CAE query encoder attack SSIM scores for Fashion Mnist, Cifar-10 and
Chest X-ray datasets are 0.9258, 0.9127 and 0.9036, respectively. The ViT query encoder attack
SSIM scores for Fashion Mnist, Cifar-10 and Chest X-ray datasets are 0.1966, 0.3587 and 0.2474,
respectively. The high quality CAE image reconstruction is due to the attacker’s accessibility to
the data owner’s original encoding function. The low ViT SSIM score indicates poor image re-
construction quality. The public and query encoder attacks are a baseline attack methods with the

strong assumption that an attacker has access to the data owner’s original encoding function.
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Table 6.2: CAE image reconstruction attack SSIM results. SSIM scores near 1 indicate high
quality image reconstruction whereas scores closer to 0 indicate poor quality imge reconstruction.

CAE SSIM Score
Attack Method Attacker’s Knowledge Fashion Mnist Cifar-10 Chest X-ray
Public Encoder Es,Za,Ya 0.9385 0.9012 0.9157
Query Encoder Eq,Za,Ya 0.9258 0.9127 0.9036
Min. Data Subset (FT) Xa,Za,Ya 0.8871 0.8726 0.8533
Min. Data Subset (RI) X, Za,Ya 0.8580 0.8692 0.8369
Cycle GAN Recon. Za,Ya 0.1984 0.1727 0.1615

6.1.3 Minimal Data Subset Attack Results

This study evaluates the performance of minimal data subset attacks using SSIM. In the results, this
study reports similarity scores as SSIM begins to saturate. The minimal data subset attack SSIM
scores for fine-tuned CAE and ViT image reconstruction are shown in row 3 of Table[6.5]and Table
[6.3] respectively. The fine-tuned CAE SSIM scores for Fashion Mnist, Cifar-10 and Chest X-ray
datasets are 0.8871, 0.8726 and 0.8533, respectively. The fine-tuned ViT SSIM scores for Fashion
Mnist, Cifar-10 and Chest X-ray datasets are 0.2201, 0.3745 and 0.2618, respectively. The minimal
data subset attack SSIM scores for randomly initialized CAE and ViT image reconstruction are
shown in row 4 of Table[6.5]and table[6.3] respectively. The randomly initialized CAE SSIM scores
for Fashion Mnist, Cifar-10 and Chest X-ray datasets are 0.8580, 0.8692 and 0.8369, respectively.
The randomly initialized ViT SSIM scores for Fashion Mnist, Cifar-10 and Chest X-ray datasets
are 0.2295, 0.3778 and 0.2601, respectively. The CAE SSIM scores are indicative of high quality
image reconstruction which are the result of the attacker’s ability to access a subset of the original
image-encoding pairs. This result informs that only a fraction of the data owner’s original image-
encoding pairs are required to reconstruct X4 given Z,4. The ViT SSIM scores are indicative of

low quality image reconstruction.
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Table 6.3: ViT image reconstruction attack SSIM results. SSIM scores near 1 indicate high quality
image reconstruction whereas scores closer to 0 indicate poor quality imge reconstruction.

ViT SSIM Score
Attack Method Attacker’s Knowledge Fashion Mnist Cifar-10 Chest X-ray
Public Encoder Ey, Z4, YA 0.1968 0.3598 0.2413
Query Encoder EA,Z4, Yy 0.1966 0.3587 0.2474
Min. Data Subset (FT) Xa,Za,Ya 0.2201 0.3745 0.2618
Min. Data Subset (RI) X, Za,Ya 0.2295 0.3778 0.2601
Cycle GAN Recon. Za,Ya 0.1197 0.1352 0.1092

6.1.4 Reconstruction Cycle GAN Attack Results

This work demonstrates an attacker’s ability to reconstruct the data owner’s original image dataset
using the reconstruction Cycle GAN attack method. As previously mentioned, the attacker’s pre-
trained decoder is fine-tuned by minimizing the error between the reconstructed dataset given his
encoded set i.e., Pg(Z) and the reconstructed dataset given the cycled version of his encoded set
i.e., Pg(Gp(Ga(Zg))). Decoder P}, was optimized to reconstruct the attacker’s image data using
cycled encoded samples. The reconstructed images are expected to consist of inherent features
from the data owner’s domain as Cycle GAN learns a mapping from one domain to another. Thus,
the data owner’s encoded set is translated to the attacker’s domain G 5(Z 4) to reconstruct the trans-
lated encoding using decoder P}, i.e., P (Gp(Z4)). The SSIM score between the reconstructed
images and the original images are shown in row 5 of Table [6.5] and Table [6.3| for CAE and ViT,
respectively. The SSIM scores report using X 4 and P;;(Gp(Z4)) for Fashion Mnist, Cifar-10 and
Chest X-ray datasets. In the reconstruction Cycle GAN experiments, this study demonstrates that
image reconstruction is of poor quality given that an attacker only has access to the encoded set and
corresponding labels. Thus, if an attacker’s knowledge is limited to {Z4, Y4} then reconstructed
images are most dissimilar to the data owner’s original private image dataset when compared to all

other attack methods.
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Table 6.4: Image Classification Accuracy of identity and attribute classifier for CelebA and Cifar-
100 datasets

Identity Acc (%) Attribute Acc (%)
Encryption CelebA Cifar-100 CelebA Cifar-100

Plain Images 95.85 82.96 87.02 88.13
Proposed Scheme  50.33 20.71 85.96 83.45

6.2 Image Anonymization Results

In the results, this study demonstrates that the image anonymization method increases data privacy
while maintaining model utility using CelebA [57] and Cifar-100 [?] datasets. The identity clas-
sification accuracy of anonymized images significantly decreased compared to original images.
Additionally, the attribute classification accuracy of anonymized images is similar to original im-
ages. To quantify the trade-off between privacy and utility the reduction in identity and attribute
classification accuracy for the anonymized dataset compared to original dataset is measured. In
the experiments, this study demonstrates that the proposed image anonymization method enables
us to maintain high image attribute classification accuracy of 85.96% & 83.45% for CelebA and
Cifar-100 datasets, respectively, which is similar to original images. It also enables us to reduce
image identity classification accuracy from 95.85% & 82.96% to 50.33% & 20.71% for CelebA
and Cifar-100 datasets, respectively, as shown in Table [6.4] The identity classification accuracy
of anonymized images significantly decreased compared to original images. Additionally, the at-

tribute classification accuracy of anonymized images is similar to original images.

6.2.1 Classifier and Encoder Transfer Attack Results

The experimental results of the proposed image encoding method against classifier transfer attacks
is assessed using the attackers pre-trained identity classifier. The performance of the attacker’s pre-
trained identity classifier is evaluated using the data owner’s encoded set. The goal of the attack

is to classify identity features given the data owner’s encoded dataset. The experimental results
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Table 6.5: Classifier and encoding transfer attack performance on CelebA and Cifar-100 datasets

Identity Acc (%)
Attack Scheme CelebA Cifar-100

Classifier Transfer  23.49 17.01
Encoding Transfer ~ 25.59 20.58

demonstrate that the proposed method is resistant against classifier transfer attacks as shown in
row 1 of Table [6.5] the classification accuracy is 23.49% and 17.01% for CelabA and Cifar-100,

respectively.

Finally, the effectiveness of the proposed method against encoding transfer attacks is
evaluated by assessing the performance of the data owner’s identity classifier given the attacker’s
generated encoded set. The goal of the attack is to generate encoded images that include exploitable
identity features. The data owner’s identity classifier is used to verify if identity features are present
in the attackers encoded set. The experimental results show that the proposed method is resistant
to encoding transfer attacks as shown in row 2 of Table [6.5] the classification accuracy is poor

25.59% and 20.58% for CelebA and Cifar-100, respectively.

6.3 Adversarial Robustness Results

This research focuses on the magnitude of perturbation that is required to cause the networks to
incorrectly classify a given input sample. The goal of an attacker is to utilize an imperceptible
perturbation to successfully attack the model, as a result, this study bases its results on the least
amount of perturbation that causes the highest drop in accuracy. In Figure [6.1] there is a significant
drop in accuracy for e = 1, 0.1 and 1 for chest x-ray, dermoscopy, and OCT, respectively. Models
with lower complexity demonstrate greater robustness. Tables [0.6]- [6.8] provide the average accu-
racy values for each e that corresponds to the least perturbation with the largest margin between

the least and most robust networks.
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These experiments reveal an inverse relationship between model complexity and adver-
sarial robustness for medical and cifar10 datasets. In particular, this study verifies that reduced
model complexity is crucial for adversarial robustness on medical and natural image DNNs. Med-
ical and natural image DNNs seem to benefit more from less complex networks, in terms of ad-
versarial robustness. In other words, as the level of data complexity increases, the level of model

complexity should decrease for adversarial robustness to be accomplished.

As the perturbation increased the average accuracy decreased for all models when ep-
silon is relatively large. Most importantly, for models trained on medical images and cifarl0 we
observed that as each model was attacked with a range of increasing perturbation sizes and de-

creasing architecture complexity, the adversarial robustness increases for many perturbations.
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Figure 6.1: The average accuracy and standard deviation of adversarial attacks on medical images.
For all medical datasets the models of reduced complexity exhibit greater adversarial robustness,
this is especially true for the PGD attacks. All networks exhibit similar performance on unper-
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Attack | CBR-LargeT | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack 96.43 97.43 97.46 97.41 96.90
FGSM 88.83 24.63 15.13 5.77 9.37
PGD 88.37 15.07 7.10 0.43 0.60
Table 6.6: Chest X-Ray Average Accuracy, € = 1.
Attack CBR-LargeT | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack 96.40 95.53 95.03 95.07 95.20
FGSM 92.80 66.30 49.37 53.23 49.10
PGD 92.63 53.30 38.17 41.83 43.63
Table 6.7: Dermoscopy Average Accuracy, € =0.2.
Attack CBR-LargeT | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack 96.30 95.53 95.03 95.07 95.20
FGSM 88.58 63.85 63.00 67.88 68.65
PGD 77.75 55.85 35.23 37.98 35.98

Table 6.8: OCT Average Accuracy, € = 2.

6.3.1 Cifar10 Model Performance

For the cifar10 experiments there is a similar trend for all versions of the dataset including 10
classes, 4 classes and 2 classes. As previously mentioned study reduces the number of classes to
represent the amount of labels seen in the medical datasets. The original 10 class version of cifar10
exhibits a slight reduction in performance for clean data and negligible perturbations. In this case,
there is a trade off between accuracy and robustness. After the magnitude of perturbation € = 1
the standard CNN model is consistently more robust than any other models. In all other experi-
ments the models of reduced complexity maintained a greater degree of adversarial robustness. In
particular, the standard CNN model of reduced complexity was consistently more robust than all
other models. It is typical for practitioners to utilize very large architectures in the development of

deep learning algorithms in many domains but the following results demonstrate that this practice
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may not always be the most secure route when designing robust networks. In Figure |6.2] there is a
significant drop in accuracy for € = 2 for cifar2, cifar4, and cifar10. Models with lower complexity
demonstrate greater robustness for the cifar10 dataset. Tables [6.9]-[6.11] provide the average accu-
racy values for each e that corresponds to the least perturbation with the largest margin between

the least and most robust networks.
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Figure 6.2: The average accuracy and standard deviation of adversarial attacks on the Cifarl0
datasets. For all versions of the Cifar10 datasets the models of reduced complexity exhibit greater
adversarial robustness, this is especially true for the PGD attacks. Note that there is a small tradeoff
between between accuracy and robustness for cifar10 as the models of lowest complexity generate

slightly lower performance on unperturbed data but offer greater robustness prior to € = 1 for PGD
attack.
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Attack CNNG6 | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack | 99.17 98.77 98.73 98.87 98.53
FGSM 91.60 79.73 78.23 77.4 74.27
PGD 87.30 71.13 62.99 57.73 52.90
Table 6.9: Cifar2 Average Accuracy, € =2
Attack CNNG6 | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack | 97.73 97.10 97.32 97.67 97.87
FGSM 82.57 68.70 75.60 71.92 70.47
PGD 75.98 46.60 42.81 33.48 33.63
Table 6.10: Cifar4 Average Accuracy, € =2
Attack CNNG6 | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack | 89.73 89.56 95.15 95.63 95.75
FGSM 76.43 66.10 69.15 66.73 66.56
PGD 84.03 76.04 68.41 66.96 65.69

Table 6.11: Cifar10 Average Accuracy, € =1

6.3.2 Mnist Model Performance

The mnist dataset results were fairly consistent for most networks providing similar performance
and robustness across all models and datasets with the exception of mnist4 where the networks of
reduced complexity offers greater robustness and similar performance on unperturbed data. One
thing to note is that the mnist dataset requires much more perturbation to degrade model perfor-
mance. This is surprising since previous works have suggested that one possible explanation for
medical datasets being easier to attack (requiring less perturbation to degrade model performance)
is due to the simplicity of the data, if this was the case then the mnist dataset should require sig-
nificantly less perturbation to degrade model performance but the current results demonstrate the
opposite. In Figure[6.3]there is not a significant drop in accuracy for mnist2 and mnist10 but there

is a drop in performance for mnist4 beginning prior to € = 1 . Models with lower complexity do not
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demonstrate greater robustness for mnist2 and mnist10 but they do offer comparable performance
to more complex networks. Tables [6.9]-[6.11] provide the average accuracy values for each e that
corresponds to the least perturbation with the largest margin between the least and most robust

networks.
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Figure 6.3: The average accuracy and standard deviation of adversarial attacks on Mnist datasets.
The adversarial robustness of mnist2 and mnistl0 are mainly constant across all models. The
mnist4 dataset demonstrates greater robustness for the model of reduced complexity while achiev-
ing comparable performance on unperturbed data.
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Attack CNNG6 | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack | 99.67 99.60 99.78 99.63 99.60
FGSM 99.03 94.93 98.63 98.30 98.03
PGD 97.63 90.70 98.13 97.40 97.27
Table 6.12: Mnist2 Average Accuracy, € = 10
Attack CNNG6 | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack | 99.70 99.63 99.67 99.65 99.65
FGSM 97.95 87.13 95.63 93.11 93.47
PGD 93.25 62.47 65.92 47.77 61.23
Table 6.13: Mnist4 Average Accuracy, € = 10
Attack CNNG6 | Resnet-8 | Resnet-20 | Resnet-32 | Resnet-50
No Attack | 99.44 99.07 99.13 99.30 99.11
FGSM 97.40 95.61 98.01 97.61 97.64
PGD 95.16 89.77 97.05 96.99 97.39

Table 6.14: Mnist10 Average Accuracy, e = 10

6.4 Saliency Maps of Adversarial Examples
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Saliency maps provide visualizations of the attention regions that highlight areas on an image
that contribute most to the model’s output. In the experiments, the saliency maps are utilized to
examine how the model’s attention regions change as the magnitude of the perturbation increases.
In the medical datasets saliency visualisations this study shows that most of the time the larger
resnet 50 model tends to focus its attention on portions of the image that are not necessarily related
to the diagnosis of the disease. Whereas, networks of reduced complexity are focused mainly on
the correct region of interest that actually contributes to disease diagnostic. For the natural image

experiments, each of the models attention regions are in close vicinity to one another.

The saliency maps of medical and natural image DNNs are analyzed to gain insight on



the impact of model complexity for adversarial robustness of deep neural networks. The goal is to
expound on how and why models of reduced complexity produce comparable performance to large
complex state of the art networks while maintaining a greater degree of adversarial robustness.
In this study, the saliency maps and decision boundary data distribution are visualized as model

complexity is reduced.

6.4.1 Medical Image Saliency Maps

For the medical image saliency visualizations in Figure models of reduced complexity have
attention regions that are more concentrated on the regions of interest whereas larger more compli-
cated networks have attention regions that are more sporadic. This may indicate that the networks
of greater complexity are not truly learning the correct biological textures and thus it is easier to
attack a model that learned incorrect features. The question is why did the more complex networks
not learn the correct biological textures? Perhaps the complexity of the network is far too great to

correctly learn such complex bio