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The proliferation of smart wearables, such as smartwatches, fitness bands, and smart-glasses,

has witnessed exponential growth in recent years, providing users with diverse capabilities be-

yond those of traditional smartphones. These wearable devices are equipped with a wide array

of on-board sensors, including motion sensors (such as accelerometers and gyroscopes) and user

interaction sensors (e.g., microphones). These sensors convert various physical, biological, and

environmental inputs into measurable electrical signals, enabling applications ranging from simple

step counting and sleep time monitoring to complex tasks such as continuous activity recogni-

tion and on-body authentication. Despite their immense utility, these sensors can be exploited as

private information side-channels, inadvertently exposing users to privacy risks if exploited by ma-

licious entities. To tackle these privacy challenges, this dissertation investigates realistic privacy

attacks through sensory side-channels on wearables and proposes robust defense and mitigation

techniques. Furthermore, it explores secure applications and communication protocols in smart

wearables enabled by these sensors. The first research effort of this dissertation explores a potential

secure application of motion sensors in wrist-wearables as a handwriting-based user authentication

mechanism. It assesses the feasibility and practical deployability of existing authentication tech-

niques that utilize motion sensors on wrist-wearables. The investigation employs data collected

from human subjects in realistic and unconstrained settings, highlighting potential challenges that

hinder widespread adoption of such authentication methods in mainstream mobile applications and

services. The second work in this dissertation explores the possibility of using motion sensors and

embedded vibration motors in wrist-wearables to establish a low bandwidth secure side-channel for
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communication between smartphones and smartwatches, leveraging the human skin as the com-

munication medium. A novel frequency modulation technique is introduced to encode and decode

bits as vibration pulses which are then sensed via the motion sensors, demonstrating the feasibility

of such communication methods. The third work in this dissertation explores the practicality of

handwriting inference using motion sensors in wrist-wearable devices, considering various writing

forms such as pencil and paper, finger, whiteboard, and air-writing. This research work examines

and empirically evaluates existing handwriting inference frameworks with data collected from re-

alistic and natural handwriting settings. Research results from these investigations demonstrate

that due to the highly varying nature of handwriting from person to person, wrist motion sensor-

based inference attacks are unlikely to pose a substantial threat to users of current consumer-grade

smartwatches and fitness bands. The fourth and final research effort in this dissertation investi-

gates the emerging use of motion sensors in smart-headphones and explores the potential risks of

keystroke inference using motion and audio data collected from such upcoming smart wearables.

Specifically, a novel keystroke inference framework is developed, which utilizes both acoustic and

motion data available from modern headphones to infer user keystrokes on external keyboards.

The proposed inference framework is then experimentally evaluated for various keyboard types

under different realistic environmental conditions using custom-built and commercial headphone

hardware. These results highlight the effectiveness and some limitations of the proposed keystroke

inference approach in real-world scenarios, demonstrating the potential privacy risks associated

with sensor-equipped consumer electronics such as headphones. By addressing these four research

directions, this dissertation aims to enhance the security and privacy of wearable devices, mitigate

potential side-channel attacks, and pave the way for future research in secure wearable technology

applications and communication protocols.
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CHAPTER 1: INTRODUCTION

In recent times, the digital landscape has been reshaped by the emergence and adoption of smart

wearables, which include devices such as smartwatches, fitness bands, smart-rings and smart-

glasses. These wearable devices have offered users many capabilities which have been only limited

to smartphones and more recently these capabilities have further advanced even beyond traditional

smartphone features. At the heart of wearable devices’ diverse capabilities lies an extensive array

of on-board sensors, which can be broadly grouped into four categories: (i) motion and orienta-

tion sensors, (ii) health and biometric sensors, (iii) environmental sensors, and (iv) user interaction

sensors. The motion and orientation sensor category encompasses accelerometers, which mea-

sure linear acceleration; gyroscopes, which gauge angular velocity; and magnetometers, which

assess magnetic fields to determine orientation. In the next category, biometric sensors, such as

fingerprint or iris detectors, have traditionally been used for authentication in wearables while re-

cent advancements have introduced more sophisticated health-centric sensors, including heart rate

monitors, ECG (Electrocardiogram) sensors that capture the heart’s electrical activity, and pulse

oximeters that determine blood oxygen saturation levels. Environmental sensors, on the other

hand, comprise the GPS for location tracking, barometers for atmospheric pressure measurement,

and ambient light sensors that evaluate surrounding luminance levels. Lastly, for seamless user-

device interaction, wearables are fitted with microphones, cameras, and proximity sensors (detect

the proximity of external objects). While all these sensors play a pivotal role in applications rang-

ing from basic phone calls to intricate tasks like on-body authentication, they inadvertently open

up potential avenues for privacy breaches. Malicious entities could exploit these sensors as side-

channels to glean private information, presenting a critical challenge to user privacy in the wearable

technology domain. To address the privacy concerns associated with smart wearables, this disser-

tation evaluates the potential risks of privacy breaches via sensory side-channels, with a focus on

motion sensors, especially under practical and realistic usage scenarios and environmental condi-

tions. The findings of this research, sheds light on the likelihood of private data inference attacks
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leveraging motion sensors in smart wearables followed by defense and mitigation techniques to

safeguard from such attacks. Furthermore, this dissertation highlights advancements towards es-

tablishing secure applications and communication protocols in wearables, made possible by these

motion sensors.

The rest of this dissertation is organized as follows. First, an an overview of the work that has

been completed as part of this dissertation is provided. The subsequent four chapters outline the

detailed findings of the completed research work followed by concluding remarks in the end.

1.1 Practical Applications and Communication Protocols for Wearables:

Feasibility of Wrist Motion-Based User Authentication from Handwrit-

ing

The popularity of smart wrist wearable technology (e.g., smartwatches) has rejuvenated the ex-

ploration of dynamic biometric-based authentication techniques that employ sensor data from these

devices. Despite the progress demonstrated by the scientific community, research in this area has

not successfully transitioned to practice, and we are yet to see a mainstream user-authentication

product based on a dynamic biometric such as handwriting/hand gestures captured using com-

mercial wrist wearables. This work undertakes an investigative analysis to further explore why

that is the case. We accomplish this by studying the feasibility and practical deployability of

handwriting-based authentication techniques in the literature that utilize motion sensors on-board

wrist wearables. We conduct this analysis by replicating four state-of-the-art and representative

handwriting-based authentication schemes that employ wrist motion data, in order to test their

viability in realistic hand-writing/gesture scenarios. By using data collected from actual human

subjects in an unconstrained fashion, we comparatively evaluate the performance of these schemes

with well-defined usability and security metrics. Our experimental results show that some of the

tested schemes perform considerably well in practice, and are promising. However, our results

show that they do suffer from several practical user-dependent and technique-specific challenges

that act as roadblocks towards their wide-scale adoption in mainstream applications.
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1.2 Practical Applications and Communication Protocols for Wearables:

Efficient Vibration-Based Communications Over Human Body Using

Motion Sensors

Recent growth in popularity of mobile and wearable devices has re-ignited the need for reli-

able and stealthy communication side-channels to enable applications such as secret/PIN sharing,

co-location proofs and user authentication. Existing short-range wireless radio technology such as

Bluetooth/BLE and NFC, although mature and robust, is prone to eavesdropping, jamming and/or

interference, and is not very useful as a covert communication side-channel. This work designs and

implements SkinSense, a vibration-based communication protocol which uses human body/skin as

a communication medium to create a low-bandwidth and covert communication channel between

user-held mobile and wearable devices. SkinSense employs a novel frequency modulation tech-

nique for encoding bits as vibration pulses and a spectrogram-based approach to decode the sensed

motion data (corresponding to the encoded vibration pulses) to reconstruct the transmitted bits.

SkinSense is comprehensively evaluated for a variety of operational parameters, hardware setups

and communication settings by means of data collected from human subject participants. Results

from these empirical evaluations demonstrate that SkinSense is able to achieve a stable bandwidth

of up to 6.6 bps, with bit error rates below 0.1 in our custom hardware setup, and can be employed

as a practical communication side-channel.

1.3 Sensory Side-Channel Attacks on Wearables: Handwriting Inference

Using Wrist-Based Motion Sensors Revisited

Several recent research efforts have shown that privacy of handwritten information is vulner-

able to inference threats that employ motion sensors commonly found on wrist-wearables (e.g.,

smart watches and fitness bands) as information side-channels. While the adversary model in these

earlier efforts have been reasonable and the proposed inference (or threat) frameworks themselves

are practical and have technical merit, the related empirical evaluations suffer from several signifi-
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cant shortcomings, such as, use of specialized sensor hardware and highly constrained or restrictive

experimental procedures, to name a few. As a result, it is hard to estimate the practical feasibility of

these threats from existing research results in the literature, and thus, the extent to which end-users

must be concerned about the possibility of such attacks in real-life. To answer the above question,

this work replicates some of the well-known wrist motion-based handwriting inference frameworks

in the literature in order to (re)evaluate their success or accuracy in natural, unrestricted handwrit-

ing scenarios and settings by employing commercially available wrist-wearables. The results of

these extensive replication and (re)evaluation studies highlight several characteristics in motion

data corresponding to natural handwriting scenarios, which were either not observed or ignored

by earlier efforts, and contribute to poor inference accuracy of the corresponding frameworks. In

summary, this research observes that accurate and practical handwriting inference using motion

data from consumer-grade wrist-wearables is difficult primarily due to unique and/or inconsistent

handwriting behavior observed in natural writing.

1.4 Sensory Side-Channel Attacks on Wearables: Keystroke Inference Us-

ing Multi-Sensor Data from Headphones

Headphones, traditionally used solely for audio playback, have evolved to include advanced

sensors such as high-definition microphones and accelerometers to enable a variety of new features

and applications. While these sensory enhancements in “smart" headphones significantly improve

the overall user-experience, they also expose them to new security vulnerabilities. In this work,

we explore the feasibility of a novel private data inference risk, namely, inferring user keystrokes

on external keyboards through sensory side-channels on modern headphones. Specifically, we de-

velop a novel keystroke inference framework, called OverHear, which utilizes both acoustic and

motion data available from modern headphones to infer user keystrokes on external keyboards. The

motion (accelerometer) data, while not sufficiently detailed for individual keystroke identification,

aids in clustering key presses by hand position. Concurrently, the acoustic data undergoes analysis

to extract Mel Frequency Cepstral Coefficients (MFCC), aiding in distinguishing between differ-
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ent keystrokes. This information is then applied to machine learning models to predict keystrokes,

with accuracy enhancements provided by dictionary-based word prediction methods. We exper-

imentally evaluate the efficacy of OverHear for various keyboard types under different realistic

environmental conditions using both custom-built and commercial headphone hardware. Our ex-

perimental results show that OverHear was able to achieve a top-5 key prediction accuracy of

around 80% for mechanical keyboards and around 60% for membrane keyboards, with a top-100

word prediction accuracy of over 70% for all keyboard types. These results highlight the effective-

ness and some limitations of the proposed keystroke inference approach in real-world scenarios,

demonstrating the potential privacy risks associated with sensor-equipped consumer electronics

such as headphones.
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CHAPTER 2: PRACTICAL APPLICATIONS AND COMMUNICATION

PROTOCOLS FOR WEARABLES: FEASIBILITY OF WRIST

MOTION-BASED USER AUTHENTICATION

FROM HANDWRITING

*The contents of this chapter and the reported experimental results have previously been published
in the Proceedings of the 14th Conference on Security and Privacy in Wireless and Mobile Net-
works (WiSec, 2021), co-authored by Raveen Wijewickrama, Anindya Maiti and Murtuza Jadliwala
(in that order). The contents of the published manuscript has been reproduced here with revisions.

2.1 Introduction

The popularity of wrist wearables such as smartwatches has soared over the past few years.

In addition to being a fashionable accessory, a large set of integrated on-board sensors enables

wrist wearables to offer a wide-variety of applications besides timekeeping. This includes simple

applications such as step counting and sleep time monitoring, to much more complex tasks such

as continuous activity recognition [174] and personalized health monitoring [76].

More recently, the research community has been strongly pursuing the idea of employing wrist

wearables, and the diverse set of on-board sensors, for (continuous) user identification and au-

thentication tasks [45,46,51,73,74,76,99–101,111,143,165,176,201]. In addition to a rich set of

available sensor modalities, its position on a user’s wrist makes these smart wrist wearables alluring

for user authentication type of tasks, especially those based on dynamic biometrics. This is because

wrists are actively used in carrying out a variety of day-to-day tasks and the associated wrist move-

ments are unique from person to person due to distinct physiological and kinesiological differences.

As a result, an analysis of wrist movements using data from wrist wearable motion sensors (e.g.,

accelerometer and gyroscope) can provide insight into the various user behavior or activity based

authentication modalities. Some recent research efforts in this direction include gait-based authen-

tication [46, 165], authentication based on touch input characteristics [51, 143, 176], gesture-based

authentication [100, 101, 201], and handwriting-based authentication [45, 73, 74, 76, 99, 111].
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This work specifically focuses on handwriting motion-based authentication mechanisms that

are enabled using modern wrist wearable devices equipped with high precision motion sensors.

The presence of unique characteristics in a person’s handwriting along with the presence of unique

wrist movements have made handwriting-based authentication using wrist-wearables, a useful ap-

plication of wrist-wearable technology to investigate. Besides serving as a convenient primary

or secondary (continuous) authentication mechanism for personal use (or for authenticating other

devices), such a handwriting motion-based authentication technique could also serve other use-

ful purposes. State-of-the-art research efforts in the literature [45, 73, 74, 99, 111] that employ

handwriting-related wrist motion for authentication have not only investigated different practi-

cal handwriting scenarios, such as in-air handwriting and writing on a paper using a pen/pencil,

but have also demonstrated compelling performance and accuracy results for successful user au-

thentication using this modality. Furthermore, most of these efforts utilized consumer-grade wrist

wearables, making them practicable and easily adoptable for real-world applications. Despite these

favorable outcomes, research in this area has not successfully transitioned to practice. We are yet

to see a successful mainstream mobile/wrist wearable application for handwriting-based user au-

thentication, either as a primary or a secondary/continuous authentication factor. This begs the

following questions: what is preventing these state-of-the-art handwriting-based authentication

frameworks from being adopted in mainstream mobile applications and services? Is that because

they do not perform well outside of the controlled operating conditions and experimental settings

used in their evaluations? And even if they do perform generally well, is their performance at a

level required for being successful as a robust user authentication scheme in the wild, similar to

other popular (static) biometric-based approaches (e.g., fingerprint)? Answering these questions

is critical for understanding the reasons behind the lack of success and/or adoption of handwriting-

related motion as a modality for user authentication in mainstream mobile and wearable applica-

tions, and for understanding how/if these challenges can be overcome.

Accordingly, we conduct an investigative analysis in this research work to answer the above

feasibility related concerns, and discuss the practicality of handwriting-based authentication using
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wrist wearable motion sensor data. We select four state-of-the-art representative handwriting-based

user authentication frameworks from the literature, and comprehensively analyze all of them using

uncontrolled and unconstrained handwriting data collected from a diverse set of human subject

participants in a variety of realistic writing settings. We select these frameworks due to their vary-

ing, yet representative approaches both in the design of the respective frameworks as well as the

handwriting modalities. Specifically, one of the frameworks utilize carefully engineered features

in both time and frequency domains along with traditional machine learning techniques such as

SVM [73], while another framework only uses a basic set of temporal domain features along with

a Naive Bayes classifier [45]. The third framework does not extract any features, and instead lever-

ages on deep neural networks (DNN) [74]. Lastly, the fourth framework uses frequency domain

features with a Logistic Regression model [99]. An additional insight here is that it is not appropri-

ate to directly compare the evaluation results reported by these research efforts, primarily because

the data for those experiments were collected from different groups of users (human subjects),

under different conditions and setups. For an equitable comparison, we need to evaluate these

schemes with data from the same group of subjects under the same experimental conditions, which

we accomplish in this work. More specifically, comprehensively investigate the performance of

the above mentioned four authentication frameworks against a variety of experimental conditions

and parameters, including, authentication window size, training data size, writing settings (e.g.,

pencil, finger and air writing), robustness under environmental noise, and their ability to perform

in true free-form writing.

2.2 Related Work

User authentication has been an extensively researched topic in the literature, with a diverse

body of contributions. However, here we only outline research efforts related to unique user

movement-based authentication – a form of dynamic biometric – captured by means of motion

sensors on a variety of mobile/wearable devices, as it is more relevant to the proposed work.

A more comprehensive survey on user authentication, which includes other static and dynamic
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modalities and biometrics, can be found in [171, 173].

Authentication techniques that employ motion sensor data from mobile/wearable devices to

construct unique user movement related biometrics have been extensively studied in the research

literature [45,46,51,73,74,76,99–101,111,143,165,176,201]. These efforts have either employed

commercial off-the-shelf (COTS) mobile/wearable devices, including smartphones, smartwatches

and smart rings, or other types of specialized devices (e.g., smart pens and hand gloves) equipped

with motion sensors such as accelerometers and gyroscopes. Some of the early schemes used

unique gestures made by users while holding a smartphone or while wearing a smart wrist wear-

able for user identification and authentication, where the gesture-related hand/wrist motion was

captured by the mobile device’s accelerometer and gyroscope sensors [100,101,201]. Other forms

of contextual body movements such as users’ natural gait (walking) based motion [52, 136], mo-

tion/orientation corresponding to how users hold their phone (in their hand/s) [58, 176], motion

corresponding to how users answer a phone call [146] and fine-grained hand movements such as

taps or typing [33,49] on the phone captured using COTS mobile device motion sensors, have also

been used to design dynamic biometrics for user authentication.

An advantage of employing such modalities (e.g., tapping, typing, etc.) as a biometric is that it

can be used to continuously authenticate users in a real-time fashion. Hand movements observed

during handwriting is another suitable modality for such continuous user authentication, and it has

also received significant attention. We first outline authentication schemes in the literature that

have employed specialized, non-standard motion-capture devices to capture handwriting related

wrist/hand motions. For instance, Bashir et al. [26] proposed an authentication scheme by using a

smart pen device to capture the accelerometer time-series data corresponding to two different types

of handwriting scenarios: (i) writing in the air, and (ii) writing on a paper. In another research,

Lu et al. [111] used a custom glove with built-in motion sensors located on the fingertip to capture

in-air handwriting movements. In addition to the fact that it required a custom data collection

hardware to operate, this scheme only considered writing scenarios in which users wrote a unique

passcode/PIN for every authentication attempt. This severely limits its practicality, especially for
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continuous authentication.

In the direction of handwriting motion based authentication schemes that employ commercially

available wrist wearables, Buriro et al. [34] proposed a framework similar to [111], but by using a

consumer-grade smartwatch instead of a custom glove, and the users sign their name in the air to

authenticate themselves. Huang et al. [82] proposed an authentication scheme using a smartwatch

gyroscope in which they evaluated three gestures written/drawn in the air, namely, a star, a number

eight and a triangle. A significant drawback of their approach is that it has been shown to work

only for a fixed set of hand signs, and it is not evident whether their framework can be extended or

generalized to normal human handwriting or signatures. As before, this limits its applicability in

continuous authentication scenarios.

The following four schemes [45,73,74,99] in the literature attempt to overcome the two major

shortcomings of earlier handwriting motion based authentication schemes: (i) reliance on special-

ized motion sensing hardware, and (ii) employing fixed writing patterns or symbols for authentica-

tion. Given the diverse set of handwriting scenarios and settings considered by these schemes, and

the use of COTS data collection hardware (e.g., smartwatches) instead of specialized hardware,

makes them the most promising candidates for adoption by users in a practical and continuous

handwriting-based user authentication application. This is also the main reason why we shortlist

them as prime candidates for a mainstream continuous authentication application in this category,

and perform a rigorous comparative performance analysis of them in realistic usage settings. More

detailed descriptions for each of them are outlined later in section 2.4.

2.3 Research Goals

We organize our research goal - studying the practical feasibility of state-of-the-art handwriting-

based user authentication schemes that employ motion sensor data from wrist wearables - as a set

of four targeted research questions (RQ1 through RQ4). These questions focus on studying the

performance of these schemes under varying writing styles and modalities, ambient conditions

and written content, and collectively provide a comprehensive performance analysis. We fix the
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experimental setup and evaluation parameters (section 2.5), including the employed performance

metrics, such that it enables us to obtain insightful answers to these questions.

• RQ1 – How does handwriting-based user authentication using wrist motion data perform in

real, unconstrained writing scenarios?

Ideally, an effective user authentication scheme should not place any unreasonable constraints on

how users should write for the scheme to work effectively. Any undue constraints or changes to the

users’ usual writing habits or styles will result in low usability and adoption of the scheme. This

research question aims to investigate the constraints or restrictions a user authentication scheme

(under investigation) places on users’ writing style and how does it perform when those constraints

are dropped and users are allowed to interact with the scheme using their own everyday writing

style. We accomplish this by collecting handwriting-related data in a fully unconstrained setting,

where participants are allowed to write in their usual habit or style. We analyze the performance

of the schemes under investigation using this unconstrained writing data, and also comparatively

evaluate them based on the amount (length) of writing data required for enrollment and authenti-

cation.

• RQ2 – How does handwriting-based user authentication using wrist motion data perform

for different writing modalities?

Depending on a user’s context (time, location, etc.) and the writing instrument they are interacting

with, the activity of writing can assume different modalities, for example, writing on a paper with

a pen, writing on a smart tablet screen using a finger, and gesture writing in the air. Ideally,

an effective authentication scheme should work across multiple writing modalities, otherwise, its

applicability is restricted to a limited set of user-contexts. This also limits the applicability of

the scheme for continuous authentication. Thus, this research question aims to investigate how

the schemes (under investigation) perform for a variety of commonly observed writing modalities.

We accomplish this by collecting data for a variety of writing modalities in a fully unconstrained
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setting, such as, traditional pen/pencil writing on a paper, finger writing on a touchpad screen and

gesture writing, and analyzing the performance of the schemes across these modalities.

• RQ3 – How does handwriting-based user authentication using wrist motion data perform

under different types of ambient noise?

Accelerometers and gyroscopes on modern mobile devices are highly sensitive hardware/software

systems. An advantage of high sensitivity is that these sensors can sample small (imperceptible)

changes in motion, however, a related disadvantage is that the sampled data from these sensors is

easily impacted by ambient noise. An important characteristic of an effective and practical user

authentication scheme is robustness against noisy inputs. A robust (against noise) authentication

system typically produces very low false negatives (i.e., has high recall), resulting in higher usabil-

ity and adoption among users. This research question aims to investigate how the user authentica-

tion schemes (under investigation) perform when the sampled test motion data (or authentication

requests) is noisy. We accomplish this by introducing noise in our collected handwriting related

motion data, and analyzing the performance of each of the four authentication schemes on this

noisy data. For this analysis, we consider different types and sources of noise commonly encoun-

tered during writing, such as writing on a table with a vibrating smartphone and writing while

inside a moving vehicle.

• RQ4 – How does handwriting-based user authentication using wrist motion data perform

under user-dependent, free-form writing?

In RQ1, we analyzed the performance of handwriting motion based user authentication by remov-

ing constraints on how users should write. In the same vein, in this research question, we investi-

gate if constraints or restrictions on what the users write impact the performance of the schemes

under investigation. We accomplish this by evaluating these schemes on free-form handwriting

data collected from participants in a fully unconstrained setting, i.e., motion data corresponding to

handwriting consisting of both upper-case and lower-case letters (and not limited only to specific

words with specific lengths or specific letter cases). The main motivation of not restricting users to
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write a specific text for authentication is that it limits the applicability of the scheme in continuous

authentication scenarios, since continuous authentication is about being able to passively authenti-

cate based on whatever is being written by the user and not asking them to actively authenticate by

writing specific keywords. Further, the handwritten letter/word/text cannot not be equated to a set

password as nothing conceals handwritten text from onlookers, unlike passwords typed on a PC

that are by default concealed on the screen. Ideally, a handwriting-based authentication scheme

should be agnostic of the letter/word/text written at any given instance of the authentication at-

tempt.

2.4 Experimental Setup

In this section, we first outline a system model (fig. 2.1) that generically describes the au-

thentication framework of all the four handwriting-based authentication schemes that we plan to

comparatively evaluate in this work. Following that, we provide specific modeling and imple-

mentation details for each of the four schemes. Then, we provide details of our data collection

procedure and the metrics and benchmarks used in our analysis.

2.4.1 System Model

In any handwriting-based authentication scheme that employs motion data from wrist wear-

ables, users would first go through an enrollment phase in which they supply training data to the

system by performing handwriting tasks while wearing a wrist wearable device on their writing

hand. The motion sensor data collected from the wrist wearable during the enrollment procedure

is then used to build a unique profile for the user, which is later tested against when an authentica-

tion attempt is made. This “unique profile” for each user typically takes the form of a classification

function that is trained using the target user’s data. The raw motion data collected during the enroll-

ment phase is typically first pre-processed to remove/reduce noise and then utilized for the feature

extraction task. The extracted feature set for the authentic user(s) is then used to train a classifica-

tion model, sometimes along with labeled non-authentic user data to prevent over-fitting. As such,
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Figure 2.1: A generic system model for handwriting motion based authentication schemes.

Table 2.1: Overview of the four representative authentication frameworks used in our study.

Description Device Sensors & Frequency Features Techniques

M01 [73]
Handwriting authentication
using paper and pencil as writing tools Android Smartwatch Accelerometer, Gyroscope at 100Hz

Both temporal and frequency
domain features SVM, MLP

M02 [45]
Handwriting authentication
using paper and pencil as writing tools LG G Watch Accelerometer, Gyroscope at 20Hz Only temporal domain features NB, MLP

M03 [74]
Handwriting authentication
using paper and pencil as writing tools LG Urbane 2 Smartwatch Accelerometer at 100Hz

No specific features extracted.

Uses raw sensor data.
DNN

M04 [99]
Signature verification using stylus
tablet as writing tools Microsoft Band Accelerometer, Gyroscope at 62Hz

DTW distance based features
in frequency domain Logistic Regression

the classification model is a binary classifier where it will attempt to classify an authentication at-

tempt as either authentic (valid users who enrolled with the system) or non-authentic (anyone else).

In order to authenticate with the system, an enrolled user is required to perform a handwriting task

which will then be compared with the user’s profile, and an authentication decision is made by the

system based on the output of the trained classification model.

2.4.2 Implementations

We implemented the four representative handwriting-based authentication frameworks (sum-

marized in table 2.1) using Python 3.6, while utilizing scikit-learn [142] and TensorFlow [1] with

Keras for the corresponding machine learning and deep learning-based models employed by those

frameworks. Individual implementation details of each framework’s classification model are de-

scribed next, labeled from M01 to M04. These implementations very closely follow the original

works, and reuse their code whenever available.
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M01 [73]

In this framework, the raw sensor data is first pre-processed by applying a low pass filter to

eliminate outliers. The continuous motion data stream is then divided into smaller windows of

data which are then used for feature extraction across four feature categories. First, each of the

sensor axes x, y and z, along with their magnitudes, constitute as the first feature category. The

second feature category includes Fast Fourier Transform (FFT), Power Spectral Density (PSD),

and squared magnitude or power of FFT coefficients. The third feature category includes Discrete

Cosine Transform (DCT), Discrete Sine Transform (DST), Real-Valued Fast Fourier Transform

(RFFT), eigenvectors and gradients calculated for each of the x, y and z axes. The fourth and

final feature category is pitch and roll [193]. Different statistics such as mean, standard devia-

tion, variance, computed on values in these four feature categories are then combined to create

an intermediate feature vector, which is further normalized and selectively shortened before being

employed in the classification model training/testing tasks, as explained next. The intermediate

feature set comprising of 182 features obtained in this fashion is then normalized and ReliefF [96]

feature selection scheme is applied to select top-30 features from each of the accelerometer and

gyroscope data, resulting in 60 features in the final feature vector. A Support Vector Machine

(SVM) binary classifier is then trained for each user using this final feature vector with GridSearch

based hyper-parameter tuning. The model is trained using a part of the authentic user’s data and

data from half the number of other users in the dataset. In the model testing phase, the remaining

part of the authentic user’s data and the data from the other unseen users are used.

M02 [45]

Instead of a sliding window approach, the M02 approach uses the entire recorded activity

signal for feature extraction. In contrast to M02 [45], which employed short and specific transcrip-

tion tasks during data collection, our common data collection process (outlined in section 2.4.3)

involved long handwriting tasks in which users wrote continuously for few minutes. Thus, we

utilize a sliding window approach to divide the raw signal (obtained during our data collection)
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into multiple smaller windows which are then independently used for feature extraction. For each

window, the mean, standard deviation and average absolute difference for all 3 axes are calculated

and used as features. The peak positive value and the peak negative value are also extracted from

each axis and used as features. The average resultant acceleration, which is the mean of square

root of sum of the squared values of x, y and z axes, is also computed and used as a feature. A

combination of these features results in a vector of 16 features for each sensor type and a final fea-

ture set of 32 features. A Naive Bayes model is then trained and tested in a per-participant fashion,

similar to M01.

M03 [74]

The M03 approach employs a Deep Neural Network (DNN) which is created using two con-

secutive 1D convolutional block layers, followed by a bi-directional LSTM layer for each sensor

axis, which are then concatenated and fed into a fully connected layer. Each of the convolutional

blocks consists of two 1D convolutional layers with 32 and 64 filters, respectively, with a kernel

size of 3 and a “relu” activation followed by a batch normalization layer, a max pooling layer of

size 2 and a dropout layer with a 0.5 dropout rate. The output of each convolutional block (per

axis) is then sent through a bidirectional LSTM layer with 10 neurons. Each of the output from

each axis/convolutional block is then concatenated, sent through another layer of dropout with

a rate of 0.5 before finally being input to a dense or fully connected layer with 2 neurons. The

dense layer consists of 2 neurons which represents the number of classes in the classification prob-

lem along with a softmax activation. The model is fitted using Categorical Cross Entropy loss with

Adam [95] optimizer. As DNNs require large amounts of data to train an effective model, M03 [74]

uses a data augmentation step in which synthetic data is created using the existing data, in order to

increase the training data size. In our experiments, we implement the same data augmentation step

where random windows of data are selected to generate new synthetic data, which is repeated till

the dataset becomes 4 times the size of the original set [186].
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M04 [99]

As the original work in M04 is designed for signature verification, entire motion data corre-

sponding to each signature sample is taken as an input for feature extraction. In order to adapt

it to a handwriting authentication scenario, we extract small windows from the data similar to

the previously described frameworks. The windows are then normalized and transformed into the

frequency domain by Discrete Cosine Transform (DCT). The first 20 DCT coefficients are then

extracted and fed as input into the feature extraction phase. In feature extraction, a set of authentic

user data windows are selected as templates for the authentic user. The remaining authentic user

data was then split into training and testing sets. The training set of an authentic user and half the

number of non-authentic users are selected for model training. For each of the sample windows

in the training set, the DTW score between each window and the authentic user template windows

are computed. The DTW score is calculated individually for each axis of a query sample and the

templates in the template set, the lowest score obtained between a template and a query sample is

then added to the feature vector (the feature vector consists of 6 features, one for each axis of each

of the sensor). The training data created in this fashion is then used to train a Logistic Regression

based classification model.

2.4.3 Data Collection

We recruited a demographically diverse set of 21 participants for data collection in three popu-

lar writing scenarios, namely pencil writing, finger writing and air writing, utilizing seven partici-

pants per scenario. The participants were recruited via advertising flyers around the university and

their ages range between 18 to 30 (σ = 4). The participants were either given a Sony Smartwatch

3 or a LG Watch Urbane to wear on their writing hand (right hand) for the entire experiment. A

Samsung GT-N5110 Android tablet was used to display the writing content. An Android Wear app

which records accelerometer and gyroscope data at 200 Hz from the smartwatch was developed

along with an app for the tablet to display the writing content. In the pencil writing experiment, the

participants were provided with a pencil and paper and a table to write on. They were also given
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a height-adjustable chair, which they could adjust based on their individual/personalized comfort

and writing positions. The finger writing task was carried out in a similar way, except that the

participants were given an area on the screen of the android tablet for the writing task. In the air

writing setting, the participants were given a chair with no obstructions for the free movement of

their writing hand. In all scenarios, the participants were asked to stick to their natural handwriting

styles and pace, and no time limit was given to complete the tasks. The participants were asked to

write the content displayed on the tablet on the corresponding writing surface. For example, if the

tablet displays the word “test”, then a pencil writing participant would write the word “test” on the

paper given to them using a pencil. In each of the writing scenarios, each participant wrote English

alphabets displayed in random order. Each alphabet was written 10 times, totaling to 260 alpha-

bets for lowercase and 260 for uppercase alphabets followed by 40 words. These data collection

procedures were approved by our university’s Institutional Review Board (IRB).

We also evaluate robustness using a setup where the attacker tries to falsely authenticate by

mimicking the handwriting of an authentic user. For this mimicking/impostor attack evaluation,

5 participants (potential victims) were recruited. Their handwritten text of six random Harvard

sentences [155] and a video of their writing (which includes their hand/wrist movements and wrist

positioning) were recorded.

An attacker was then asked to observe the victims’ text and video for practice, i.e. the paper

with the handwritten text of the victim or the screen recording of the text written on the tablet

surface for pencil writing and finger writing scenarios respectively. In addition, the attacker also

carefully watched/observed the video taken of the victim’s handwriting before performing the final

impostor attack. We only considered the finger writing and pencil writing settings for this analysis

because air writing does not produce physically recorded written text that can be reviewed by an

attacker for mimicking purposes.
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2.4.4 Benchmarks and Evaluation Metrics

We comparatively evaluate the authentication frameworks using the widely accepted metric of

Equal Error Rate (EER), which is the point at which the False Rejection Rate (FRR) equals the

False Acceptance Rate (FAR) [61]. FAR is the probability an authentication system incorrectly

authenticates an unauthorized user or impostor as an authorized user. On the other hand, FRR is

the probability that an authentication system incorrectly rejects an authorized user as unauthorized

(failed authentication). These metrics depend on the decision threshold of the classification sys-

tem. A strict decision threshold would imply lower number of false positives, i.e. the probability of

an unauthorized user or impostor getting authenticated is lower, but actual users may get rejected

for slight anomalies in their writing with higher probability. On the other hand, with a relaxed

threshold, there is a higher probability of an unauthorized user or impostor getting authenticated

and the probability of authorized users getting rejected for slight anomalies in their writing would

be lower [110]. This trade-off between FAR and FRR is application specific. A high security

application in which an entry of an unauthorized user is disastrous must require a very low FAR

regardless of the possible inconvenience that authorized users may experience [86]. For report-

ing comparative analysis on the framework performance, we use EER as the primary metric, and

employ the FAR and FRR metrics wherever relevant. In general, a lower EER value is a good

indicator of a balanced and robust authentication framework.

2.5 Performance Evaluation

All the four authentication frameworks are evaluated per participant, by labeling the target par-

ticipant’s data as authentic and all other participants as non-authentic or impostor when training

and testing the models. The overall evaluation results are then averaged across all the target par-

ticipants. We present EER values for comparison between the handwriting-based authentication

schemes, utilizing realistic data collection procedure outlined in section 2.4.3. We conduct our

comparative performance evaluation with respect to varying experimental parameters, as catego-

rized next.
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2.5.1 The Effect of Authentication Window Size

The window size parameter is intuitively the continuous window of time a user needs to write

in order for the authentication framework to effectively perform its functionality. Or in other

words, it is the number of continuous motion sensor data samples of handwriting activity used by

the authentication framework for the classification task. The window size is a vital experimental

parameter because a smaller window may not contain sufficient information for successful authen-

tication, while a larger window size will require a longer time to process and for the authentication

task to complete. If an authentication system requires users to write for long periods of time for

every authentication attempt, it can result in usability issues as well. In our experiments, we test

window sizes ranging from 15 to 60 seconds for both the enrollment and the authentication phases,

and we present the results next.

In the M01 window size analysis shown in fig. 2.2a, we see that while all the window sizes

(15, 30, 45 and 60 seconds) produce a mean EER of less than 0.10, a window size of 60 seconds

performs slightly better (lower EER) for both pencil and finger writing scenarios. In the air writ-

ing scenario, the highest EER is recorded for the 15 second window at 0.16 (σ = 0.17) and the

lowest/best EER is recorded again for the 60 second window which is 0.10 (σ = 0.12). Due to

the additional freedom when writing in the air, we observe that users tend to write larger char-

acters which in turn results in lower number of characters per window. Thus, for the air writing

scenario, a higher window would capture more characters and more discriminative features across

users. Although the difference between the obtained EER values across different window sizes is

insignificant in pencil and finger writing scenarios, in the air writing scenario 60 second windows

have a clear advantage over the other window sizes with the next lower window size of 45 seconds

recording an EER of 0.14. The trends are similar to the results obtained by the authors of M01 at

a mean EER of 0.11, especially in the pencil and finger writing scenarios.

In M02 window analysis (fig. 2.2a) for the pencil writing scenario, we observe that the best

mean EER is 0.12 (σ = 0.08) with a window size of 45 seconds. Although the performance

difference between window sizes 30 and 45 was low, at 60 second windows the performance
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deteriorates to an EER of 0.16. In finger writing scenario, we observe that the best mean EER is

0.11 (σ = 0.05) at 15 second windows, and it can also be seen that the performance worsens with

the size of the window. A possible explanation for the degrading performance at larger window

sizes could be that larger window sizes lead to lower number of training examples, which results

in an underfitted classification model. In the air writing scenario of M02, we observe that the best

mean EER is 0.04 (σ = 0.03) at 60 second windows and 45 second windows is second best at 0.05

(σ = 0.06).

As shown in fig. 2.2a, in all 3 writing scenarios M03 produced the lowest EER values when

a 15 second window size is used compared to other window sizes. Specifically, the resulting

EER values are 0.39 (σ = 0.05) for pencil writing, 0.36 (σ = 0.07) for finger writing and 0.4

(σ = 0.04) for air writing scenarios. In contrast, the experimental results of M03 as reported in the

original publication shows that it was able to achieve slightly better results with a mean EER of

around 0.3 compared to the results we have achieved. One possible reason why the DNN model of

M03 performs better at 15 second windows could be because at a lower window size there would

be more training examples which is advantageous when training a DNN model. In the original

proposal, a voting based multiple window fusion technique is used after the DNN classifier step

to lower the EER to 0.07, but we did not observe significant performance improvement even after

such a multi-window voting mechanism. In M04, the mean EERs across all window sizes for

pencil writing scenario is around 0.4. In the finger writing scenario for M04, the lowest mean EER

for a window size of 30 seconds is around 0.42 (σ = 0.12). Similar to M01 and M02 air writing

scenarios, M04 air writing scenario has the best EER at a window size of 60 seconds which is 0.39

(σ = 0.13).

In summary, M01 performs the best (EER of less than 0.1) across all schemes in 15 seconds

window sizes, while M02 shows the best performance (with an EER of 0.12) for air writing at

the same window size. Thus, from a practical perspective, our results show that M01 is more

desirable due to its comparatively better performance at lower window sizes, especially for the

popular pencil and finger writing scenarios.
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Figure 2.2: Performance based on varying window sizes and train set sizes.

2.5.2 The Effect of Training Set Sizes

We next analyze the effect of training set sizes on the performance of the authentication frame-

works M01-M04. To do so, we test each framework with training set sizes between 20% to 80%

of the total available user (participant) data. However, the total amount of time and training ex-

amples for each user varies due to varying writing speeds. One user may have more characters or

words written during a particular window of time compared to another. This also highlights that

these authentication frameworks may require varying amounts of data during the user enrollment

phase, depending on the targeted accuracy or error-rate thresholds. Requiring larger amounts of

training data to achieve a better performing framework is not very convenient from the end-user

perspective, thus making the mainstream adoption of such schemes difficult. As can be seen from

our experimental results in fig. 2.2b, M01 does not have any significant performance improve-

ment above the training set size threshold of 40% for any of the writing scenarios. Similarly, M02

(fig. 2.2b) also does not have any significant performance improvement above the training set size

threshold of 40% for the pencil writing and finger writing scenarios. However, in the air writing

scenario, a considerable performance improvement (for M02) is observed when the training set

size is set above 40% of the total user data. Specifically, the EER at 40% training set size is 0.19
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(σ = 0.07), and when the training set size is set to 60% it dropped down significantly to 0.06

(σ = 0.04), which further drops to 0.03 (σ = 0.03) when using 80% of the data for training. This

again indicates that due to the extra freedom and the higher time (larger characters) that occurs

during air writing, the framework hugely benefits from a having higher amount of training data

allowing it to generalize well on the test data.

In the evaluation of M03 and M04 (fig. 2.2b), we observe that both these frameworks still pro-

duce mean EERs of over 0.35 across all writing scenarios even with higher training set sizes (The

training set size of 20% is not evaluated for M04 as it had insufficient examples for constructing

both the required template and training sets). Although M03 with its DNN model could benefit

from a larger set of training data, the performance increases observed were minimal, again indi-

cating the need for high training data volumes. The overall poor performance of M04 on the other

hand could be indicative of the fact that the specific features that were used by the scheme did not

generalize well for the continuous handwriting based authentication task.

In summary, framework M01 and M02 perform considerably better at even lower train set sizes

indicating that these frameworks do not require large amounts of training data for successfully

operating as an authentication scheme.

2.5.3 Different Writing Settings

Next, we present a detailed evaluation for each authentication framework in each of the three

writing scenarios (table 2.2).

Pencil writing

In the pencil writing scenario, our experiments with M01, which uses a SVM binary classifier,

demonstrated a mean EER of 0.05 across all participants (σ = 0.03). The lowest EER we observe

for a single participant is 0.01 and the worst EER for a participant is 0.14. Furthermore, 6 out of

7 participants show a mean EER of less than 0.1. M02, with a Naive Bayes classifier, has a mean

EER of 0.15 (σ = 0.10) across all participants for the pencil writing scenario. We also observe

23



that for 5 out of the 7 participants, the EER is below 0.20. The best M02 EER for a participant is

0.02, while the worst is 0.32. For M03, the mean EER across all participants is 0.39 (σ = 0.05).

The lowest recorded EER for a participant is 0.34 and the highest is 0.47. The best mean EER

of framework M04 is 0.40 (σ = 0.09) for a 30 second window. The lowest EER recorded for

a participant in M04 is only 0.34 and the highest is as high as 0.52 in M04. Moreover, only one

participant has an EER below 0.40 in M04. In summary, for the pencil writing scenario, we observe

that M01 produced the lowest EER compared to all other frameworks.

Finger writing

In the finger writing scenario, M01 has the best EER (compared to all other schemes) of 0.08

(σ = 0.09), with 6 out of the 7 participants having less than 0.12. The framework M02 shows

the second best performance with a mean EER of 0.11 (σ = 0.06) and a best EER of 0.03. M03

has a slightly higher mean EER of 0.36 for finger writing, in which two of the participants have

a mean EER of 0.26 while all other participants’ EERs are over 0.40. Lastly, M04 has the worst

performance for finger writing with a mean EER of 0.42 (σ = 0.12) and with only one partici-

pant showing an EER below 0.3. Similar to the pencil writing scenario, M01 produces the best

performance (lowest EER) for finger writing scenario.

Air writing

In the air writing scenario, M01 has a mean EER of 0.10 (σ = 0.12) with only one out of

the 7 participants recording an EER higher than 0.10. The M02 framework demonstrates the best

performance overall out of all the frameworks for air writing with a mean EER of 0.08 (σ = 0.05),

with all except one participant showing an EER of over 0.06. The M03 framework has a mean

EER of 0.4 (σ = 0.08) with only one participant showing an EER of below 0.3, while M04 shows

similar performance with a mean EER of 0.39 (σ = 0.06). In summary, while M01 demonstrates

the best performance (lowest EER) for pencil and finger writing scenarios, M02 has the lowest

EER for the case of air writing.
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2.5.4 The Effect of Sampling Frequency

Even though modern wrist wearables feature highly precise motion sensors, sampling these

sensors at a high rate is an energy intensive operation, which significantly impacts the device’s

battery life, and thus, treated as a critical design factor. Lu et al. [109] demonstrate that higher

sampling frequencies of motion sensor data results in considerably higher battery power consump-

tion. Specifically, they show that a rate of 200 Hz consumes 6.3% (per hour) of the battery power

of the device on average (tested on a Sony Smartwatch 3) and battery power consumption re-

duces when the sampling rate is lowered with only 4.4% (per hour) at a 100 Hz sampling rate

and 2.0% (per hour) at a 50 Hz sampling rate. In other words, handwriting authentication frame-

works that require fine-grained motion data (i.e., sampled at high frequencies) for performing well

could adversely impact the device’s battery charge (i.e., drains it faster) and requiring frequent bat-

tery recharges. This ultimately will adversely impact the usability and adoption of such schemes

by end-users. Thus, in this set of experiments we evaluate how the four authentication frame-

works M01-M04 perform under motion sensor data sampled at different frequencies. Schemes

that perform reasonably well at lower frequencies would obviously be much more energy (battery)

efficient, and preferable by end-users.

Our experiments with M03 and M04 show (fig. 2.3) that lower sampling rates produce compa-

rable performance across all the writing scenarios, i.e., their performance does not vary much with

change in sampling frequencies. But as seen in fig. 2.3, frameworks M01 and M02 produce signif-

icantly worse EERs at lower sampling rates, compared to the original sampling rate of 200 Hz. In

summary, none of the analyzed frameworks produce reasonable levels of EERs at lower sampling

frequencies. This highlights a significant challenge, especially, towards use of these frameworks

in continuous authentication scenarios as it would require periodic sampling of motion sensors,

which will in turn impact battery longevity.
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Table 2.2: Performance summary (measured in EER).

M01 M02 M03 M04
Pencil Writing 0.05 0.15 0.39 0.40
Finger Writing 0.08 0.11 0.36 0.42
Air Writing 0.10 0.08 0.40 0.39

0.0

0.1

0.2

0.3

0.4
M01

0.0

0.2

0.4

M
ea

n 
EE

R

M03

25 50 100 2000.0

0.1

0.2

0.3

M02

25 50 100 2000.0

0.2

0.4

0.6
M04

0.0 0.2 0.4 0.6 0.8 1.0

Sampling Rate (Hz)
0.0

0.2

0.4

0.6

0.8

1.0

Pencil-writing Finger-writing Air-writing
Figure 2.3: Effect of sensor sampling rates on performance.

2.5.5 The Effect of Environmental Noise

Next, we evaluate the impact of environmental noise on the performance of the four authenti-

cation frameworks M01-M04. For this, we separately record a few types of background noises that

users could encounter during each of the writing scenario. We then superimpose this pre-recorded

motion sensor noise over the raw handwriting related motion sensor data obtained from our study

participants, prior to using the data for training and testing of the four authentication frameworks.

For finger writing and pencil writing scenarios, the motion noise is emulated by placing a vibrating

phone on the table (writing surface) at close proximity. For the air writing scenario, the accelerom-

eter noise emulation is obtained from a moving vehicle. After re-performing our experiments with
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Figure 2.4: Effect of environmental noise on performance.

the noisy data, we observe (fig. 2.4) that all frameworks demonstrate a considerable degradation of

performance. We believe that our results are still relatively optimistic as we only introduced one

type of noise for each of the writing scenarios. In practice, there could be a combination of var-

ious additional environmental noises polluting the device’s motion sensor data which will further

worsen the performance of these frameworks.

2.5.6 Convenience vs. Security

We also analyze how adaptable each of these frameworks are in terms of their potential tar-

get application, i.e. whether they are more suited for a high security application or for a high

user-convenience application. High security applications such as access control to government in-

telligence, military applications or other highly sensitive data could tolerate high FRR, but FAR

needs to be kept at a minimum level. Similarly, usability focused applications such as consumer-

grade smartphone unlocking which prioritize user convenience, could allow a slightly higher FAR

as a trade off in achieving a minimal FRR.

From our experiments with M01 (fig. 2.5a) we see that in the case of pencil writing the EER

occurs approximately at 0.5 decision threshold. However, a slight increase in the decision threshold

would result in a sudden increase in the FRR (over 0.2), while the FAR only reduces slightly and

converges around 0.8. This suggests that if a stricter (higher) decision threshold is chosen with high

security in mind, the rate at which unauthorized users may mistakenly gain access decreases only

slightly. However, actual users would suffer considerably as they are likely to fail authentication

approximately 2 or more out of 5 attempts for decision thresholds above 0.5. Although the low
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Figure 2.5: False acceptance rates vs. false rejection rates at different thresholds.

EER of 0.05 suggests that M01 is generally a suitable framework for balancing convenience and

security, it lacks flexibility towards adjusting the decision threshold. The M01 framework in finger

and air writing scenarios show similar characteristics when it comes to the adjustability of the

decision threshold. Moreover, as the EER for these writing scenarios lie at approximately 0.10,

the room for adjustability is further reduced when compared to the pencil writing scenario. As

seen in fig. 2.5b, for all three writing scenarios in M02, the ERR occurs at a decision threshold

below 0.3. When adjusting the decision threshold in the pencil writing scenario (EER=0.15), an

increase of the threshold from 0.3 to 0.5 drops the FAR from 0.09 to 0.04. However, at the same

time, FRR almost doubles from 0.15 to 0.29. A similar pattern was also observed in the finger

writing scenario. Taking a closer look at the air writing scenario in M02, we observe that the

threshold could be made stricter (up to a 0.5 threshold) in trying to achieve a much more secure

system by keeping the FRR under 0.2 and reducing the FAR to less than 0.03. For the M03

framework (fig. 2.5c), adjusting the decision threshold either for security or for convenience would

significantly increase FRR and FAR values resulting in an EER over 0.5. Very similar patterns were

also observed for the M04 framework (fig. 2.5d). This further demonstrates that M03 and M04 are

rather unsuitable for both security and usability oriented applications. In terms of adjustability of

the threshold depending on the use case (security or usability), M02 demonstrates better versatility

across all frameworks and all writing scenarios.
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2.5.7 Comparison with Other Modalities

We next compare the handwriting-based authentication frameworks against other modalities of

biometric authentication. The best mean EER among the four handwriting-based frameworks is

for M01 in pencil writing scenario (0.05) followed by finger writing (0.08). Framework M02 came

in second place with an EER of 0.15 for pencil writing and 0.11 for finger writing. M02 performed

the best among all frameworks in air writing scenario with an EER of 0.08, with M01 following

behind at 0.1. Evidently, these EER values are much higher compared to the mainstream fingerprint

based authentication methods (table 2.3) which can be as low as 0.000022 [54, 202]. On the other

hand, the handwriting-based authentication schemes’ EER values are equitable to that of other

motion sensor based authentication frameworks. Specifically, frameworks based on gait [121] and

gesture [201] have EERs of 0.07 and 0.04, respectively. This is not surprising because, while

modalities such as fingerprint and iris have matured to become reliable first factor authentication

mechanisms, motion based authentication frameworks (including handwriting-based) are primarily

being explored as a means for second factor or continuous authentication.

Table 2.3: EER attained by other authentication modalities.

Biometric EER Used at Mainstream Consumer Level
Fingerprint [54, 202] 0.00022 Yes

Iris [208] 0.006 Yes
Gait Based [121] 0.07 No

Gesture Based [201] 0.04 No

2.5.8 Mimicking Attack

To evaluate the mimicking attack, we look at the False Acceptance Rate (FAR), because a

higher FAR is indicative of a more successful attack. FAR is calculated at the same decision

threshold where the EER occurs. We observe an overall increase in FAR in M01 for both pencil

and finger writing scenarios from < 0.1 to over 0.2 during the attack. For M02 we observe a slight

increase in FAR in pencil writing from 0.09 to 0.11, followed by finger writing from 0.8 to 0.15.

For M03 and M04, in pencil writing scenario, we observe an increase in FAR from 0.33 to 0.40
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and from 0.26 to 0.49, respectively. But for finger writing scenario, both frameworks showed a

decrease in FAR from 0.43 to 0.35 and from 0.66 to 0.37, respectively. In summary, M01 is more

vulnerable to a mimicking attack in both finger and pencil writing scenarios followed by M02,

which shows a relatively lower increase in FAR. While M03 and M04 have higher FARs even in

non-mimicking attack scenarios, we observe that only the pencil writing scenario is affected by the

attack.

2.6 Factors Impacting Performance

In this section, we comprehensively investigate additional factors that could potentially impact

the performance of the authentication frameworks evaluated in this work. We focus on framework-

specific factors, namely, feature selection and its impact on the learning-based classification models

employed by all the four frameworks followed by participant-specific factors, namely, how the

diversity in handwriting styles and techniques impact performance.

2.6.1 Feature Analysis

As all the authentication frameworks that we study in this work employ some type of a su-

pervised learning-based classification function, our first objective is to further investigate which

features (computed from the training data) have the most impact on the framework performance,

and if the performance varies significantly with a change in the feature set. We first evaluate the

M01 framework, which employs both temporal and frequency domain features and ideally uses the

top-30 features out of a total of 182 features calculated for each of the accelerometer and gyroscope

raw data stream. In other words, it uses a total of 60 features (30 computed from the accelerometer

data and 30 from the gyroscope data). We re-tested the M01 framework by reducing (choosing

top-15 instead of top-30 features for each sensor stream) and increasing (choosing top-60 instead

of top-30 features for each sensor stream) the size of the employed feature sets and observing its

effect on the overall performance of the scheme under different writing scenarios.

Our experimental results for this analysis, outlined in fig. 2.6, show that for the pencil and
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air writing scenarios, the mean EERs obtained for the reduced feature set case (top-15 features

for each sensor stream) is quite comparable to the regular case (top-30 features for each sensor

stream), indicating that the framework performs fairly well even when using a lower number of

features. Finger writing scenario was an exception here, where the performance for the reduced

feature set case was slightly worse (mean EER around 0.11) compared to the regular case (mean

EER just under 0.08). However, we observed that, as the size of the feature set increases, the

performance of M01 framework worsens for all three writing scenarios. This indicates that the

number of features originally selected by the M01 framework for the final feature set (i.e., top-30

from each sensor stream) provides the optimal performance.

Among these top-30 features per sensor stream, we observed that close to 50% of the features

were related to general statistics, such as mean, standard deviation and variance of both time and

frequency domain features. However, for all the three writing scenarios for M01, we observed

(across all participants) that only a very few frequency domain features were selected (in the top-

30) during the feature selection step compared to the time domain features. Also, having a larger

intermediate feature set (182 features) allows the model training pipeline to select the best features

for a given participant. We believe that this is also one of the main reasons why M01 performed

well across all writing scenarios and all participants, compared to other schemes.

In contrast to M01, the M02 framework does not include a feature selection step in the process-

ing pipeline, and computes and uses only time domain features for model training and verification.

Thus, for M02, we further investigate for each writing scenario the best set of features and study

their impact on its performance. To this end, we select, top 8, 16 and 24 features out of the total

32 feature set. Our analysis shows that a top-8 feature selection step provides minor performance

improvements (lower EER) across all writing scenarios. We further observed that for the pencil

writing scenario, 6 out of the top-8 features are accelerometer features. This does reflect on the

actual writing scenario since during pencil writing there would only be very minute angular ac-

celerations. In finger writing, we see an equal number of features from both accelerometer and

gyroscope sensors since more wrist movements could be observed during finger writing. Air writ-
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ing shows similar behavior to finger writing with roughly an equal number of features from both

the sensors in the top-8. Even though the M02 framework was designed for the pencil/pen on

paper handwriting scenario, we observed in our evaluations that it performed rather well for the air

writing scenario, compared to the pencil and finger writing scenarios. We believe that this may be

because the features computed in M02 are much more responsive to significant movements of the

wrist (including the arm), which is the case during air writing. To perform better for the pencil and

finger writing scenarios, M02 may need to include a much more carefully computed set of features

that precisely captures the subtle movements of a user’s wrist.

The DNN based classification model for the M03 framework employed the raw accelerometer

data stream, and thus no feature extractions were required/performed. As a result, we were not

able to perform an equitable feature level analysis for M03, similar to what we did for M01 and

M02. However, we believe that a complex DNN-based classification function, such as the one used

in M03, would require large amounts of training data to achieve acceptable levels of performance,

comparable to other frameworks analyzed in this work. This requirement of a collection of a large

training dataset is not feasible during a relatively short enrollment period in practice, and is the

biggest shortcoming of M03.

To recollect, framework M04 was originally proposed for signature verification. Our goal was

to investigate if such a scheme could be adapted for a free-form handwriting based authentication.

Our experimental results and analysis, as presented in section 2.5, show that M04 features are

not well-suited for authentication using motion data corresponding to free-form writing with it

producing EERs around 0.4 across all the writing scenarios. We believe that one of the main

reasons for this is because the written text corresponding to a signature has very little variability,

compared to free-form writing which has a lot of variability (for example, the same letter can be

written in different ways by the same person). Thus, features in M04 which are computed based

on DTW (or similarity) scores between the query or test sample and a set of template (or training)

samples works well for signature based authentication, but do not generalize well for authentication

based on free-form writing.
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Figure 2.6: M01 feature analysis.

2.6.2 Participant Handwriting Specific Factors

As users have different (often, unique) handwriting styles and traits, our second objective is to

further investigate which participant-dependent handwriting factors significantly impact the perfor-

mance of the frameworks under consideration. To this end, we first carefully analyze the inconsis-

tencies or irregularities that could be observed in users’ handwriting traits and styles. We observe

(during our data collection experiments) that there are significant irregularities in handwriting by

the same participant. One key factor that contributed to this irregularity is the number of strokes

a user or participant employs when writing certain characters. For example, most users write the

English uppercase letter ’B’ with 2 strokes, but at times the same user may write it using just one

stroke (for example, when in haste or hurry) resulting in a completely different wrist motion. To

further characterize this irregularity in users’ writing styles/behaviors, we analyze the finger writ-

ing data which we collected using a smart tablet as the writing surface. From this data, we observe

that several users employ varying number of strokes for at least 3 out of the 26 lowercase alphabets

and for at least 5 out of the 26 uppercase alphabets. These character-level inconsistencies or irregu-

larities easily propagate to words and sentences, and thus to any models trained on these prolonged

writing constructs. In summary, handwriting irregularities may adversely impact the performance

of authentication models trained using handwriting-related motion data, and such models may not
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generalize well to the different writing styles by the same user in different contexts.

Another factor that could adversely impact the performance of authentication frameworks em-

ploying handwriting related wrist motions is the positioning of the wrist while writing. During

the authentication enrollment phase, a user may have positioned his/her wrist at a certain stance

with respect to the writing surface, however, during the authentication (or verification) phase, that

stance may be different or may have changed. The stance or positioning of the wrist while writing,

together with the angle of the wrist, could significantly affect the way a user’s wrist moves while

writing, which inadvertently affects the performance of these authentication schemes. Addition-

ally, the tendency of the wrist wearable device striking or coming into contact with the writing

surface while writing (especially, during pencil and finger writing scenarios) could also introduce

significant noise in the captured wrist motion data and affect the authentication performance. These

factors and issues were very commonly observed during our handwriting data collection experi-

ments which were done in a realistic and completely unconstrained setting.

Achieving high performance (or accuracy) when building a classifier for hand-writing mo-

tion based user authentication will require taking into account all these inconsistencies during the

model training phase. But the main question that arises to this end is: how easy or practical it is

to replicate all such instances of inconsistencies (which are highly dependent on external and, at

times, unpredictable factors) during the enrollment/training phase. As an example, in a traditional

fingerprint-based (static) biometric authentication system, users would simply be required to touch

the fingerprint reader with different pre-defined angles/portions of the finger during the enrollment

phase. But, to train a handwriting-based (dynamic) authentication system in a similar fashion, it

will be non-trivial to enumerate all the pre-defined set of scenarios that users must write in during

the enrollment phase. Furthermore, from a user convenience point of view, users may be reluctant

to spend too much time in the enrollment phase. However, in a use case where handwriting-based

authentication is used as a continuous authentication method, the classification models can be con-

tinually updated/improved over time with more user data passively collected during authentication

events. In this way, the difficulty in training the system due to various participant-specific and
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Table 2.4: Summary of results.

RQs Insights Gained

RQ1
Frameworks such as M01 and M02, performed reasonably in terms of usability/practicality under constrained writing,
but required significant proportions of training data which may hinder their adoption as a mainstream authentication scheme.

RQ2 Certain frameworks (especially M01) demonstrated good potential for adaptation across different writing modalities.

RQ3
A degradation of performance was observed in the presence of ambient noise, which suggests that in real-life usage
performance could further degrade raising practicality issues for mainstream adoption.

RQ4
M01 and M02 evaluations suggest that free-form handwriting-based user authentication is achievable with trade-offs
between convenience and security showing potential for mainstream adoption.

environmental factors discussed above can be overcome to a certain degree.

2.7 Discussion & Conclusion

The widespread use of smart devices in activities of everyday life, along with various apps han-

dling users’ private information, has made authentication of these devices/applications essential.

Thus, the need for secure, yet convenient mechanisms for user authentication have become imper-

ative. In this work, we evaluated four state-of-the-art handwriting-based authentication schemes

with the goal of understanding the true potential and practicality of these schemes, followed by

an extensive analysis of possible technical challenges faced by such authentication schemes. We

comparatively analyzed these schemes against vital parameters, such as the writing sample win-

dow sizes, training data sizes, and performance at different sampling rates. Findings related to our

specific research goals are summarized in 2.4. We further discussed how each of these schemes

perform in terms of convenience and security, which is often a trade-off when it comes to authen-

tication mechanisms.

When considering different writing settings, while air writing has shown comparatively better

performance with an EER below 0.05 specifically with scheme M02, the practicality of using air

writing for a continuous authentication scheme is questionable. It is unlikely that air writing being

used as a writing mode for extensive writing tasks, since prolonged air writing could be tiring

for the arm, making it unsuitable as a continuous authentication scheme. Both pencil writing and

finger writing based authentication seem reasonably practical in real life, but finger writing has a

slight advantage since it does not require any other tools such a pencil and paper.

Prior to concluding, we would like to highlight some additional shortcomings of the handwrit-
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ing motion-based authentication frameworks studied in this work. All the authentication frame-

works evaluated in this work employ a binary classification function that needs to be trained using

both authentic and non-authentic user data. Such a trained model cannot be developed purely on

the user-end (e.g., a user’s device), but it has to be developed on some service provider end who

has access to data from multiple users. In other words, when new users want to enroll in such

an authentication framework, they may have to share their personal motion data (corresponding

to their handwriting) with a service provider for building a personalized authentication model for

themselves. This raises significant privacy concerns for the users. Moreover, training the model on

the service provider end is not efficient as any (or all) model updates (e.g., as required in the case of

continuous authentication) would need to be communicated to the provider resulting in significant

communication cost and latency.

Our concluding perspective on handwriting-based authentication is that while its immediate

adoption is uncertain, it can show major improvements in the future as smart wearables come

equipped with more precise and efficient sensors. When that occurs, handwriting-based authenti-

cation can potentially become another mainstream mechanism for user authentication.
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CHAPTER 3: PRACTICAL APPLICATIONS AND COMMUNICATION

PROTOCOLS FOR WEARABLES: EFFICIENT VIBRATION-BASED

COMMUNICATIONS OVER HUMAN BODY

USING MOTION SENSORS

*The contents of this chapter and the reported experimental results have previously been published
in the journal, Internet of Things, Volume 23, 2023, co-authored by Raveen Wijewickrama, Sameer
Anis Dohadwalla, Anindya Maiti, Murtuza Jadliwala and Sashank Narain (in that order). The
contents of the published manuscript has been reproduced here with revisions.

3.1 Introduction

The ubiquity of smart wearables has rapidly increased in the past few years, wherein inex-

pensive devices such as smartwatches, fitness bands, smart-glasses, and smart-shoes provide users

with a variety of additional capabilities beyond that of a smartphone. Apart from a small subset of

these smart wearables which can operate autonomously, the vast majority of smart wearables are

used in conjunction with a paired user-held mobile device such as a smartphone. Currently, this

communication between the mobile device (smartphone) and paired smart wearables is primar-

ily accomplished using short-range wireless radio technology such as Bluetooth/BLE, NFC, and

Wi-Fi. Although these technologies are very mature and enable robust communication between

mobile devices, wireless radio signals are prone to eavesdropping, jamming and/or interference,

resulting in loss of communication or privacy or both. There is a genuine need for reliable and

stealthy non-radio communication side-channels in several use-cases and applications involving

these devices. For instance, a low bandwidth, non-radio based protocol could be used to swiftly

and securely send a short secret code or a PIN from a smartphone to a smart wrist wearable to au-

tomatically initiate and establish a high-bandwidth and secure radio channel, such as Bluetooth or

WiFi. Besides secret sharing, the availability of such an out-of-band communication side-channel

could prove to be convenient and practical for several other security applications such as proof of

device co-location and user authentication. The increasing number of body worn smart devices
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which includes both recreational (e.g., smartwatches, smart-headsets etc.) and medical (e.g., con-

tinuous glucose meters, wearable blood pressure monitors etc.) use cases, the need for such device

co-location proofs becomes further heightened. Especially, since all these devices share a common

platform, i.e., the skin it makes a compelling argument to use the skin itself to transmit signals

among these devices. Some recent proposals on alternate body-area communication channels have

suggested the use of optical [42, 43] and acoustic signals [62, 97] to enable low-bandwidth mes-

sage transfers between mobile devices. Such communication channels, however, are not robust and

often perform poorly in the presence of noise or non-ideal ambient conditions, and are not very

covert (i.e., easily detectable) [158].

Other proposals in this direction have employed vibration motors, often embedded in mobiles

devices to provide haptic feedback to users, as a transmitter [84,114,156,157]. In such techniques,

fine-grained motion sensors such as accelerometers and gyroscopes (also found on most modern

mobile devices) have been adopted as receivers [126]. Hwan et al. [84] were one of the first to

propose the pairing of a vibration motor and an accelerometer to establish a protocol for low-

bandwidth communication between two smartphones kept on the same (hard) surface. Roy et

al. [157] followed up by proposing a scheme, called Ripple, which provided improved bandwidth

and added security. Kim et al. [94] proposed the use of a smartphone as a vibration transmitter for a

custom medical device with an accelerometer implanted under the skin acting as the receiver. Later,

Sen and Kotz [167] proposed the use of a smart ring as a vibration transmitter to communicate with

Internet-of-Things (IoT) devices equipped with accelerometers, however for their scheme to work,

the transmitter (smart ring) needed to be in direct contact with the receiver (IoT device) for reliable

communication.

In this work, we take inspiration from these earlier research efforts to explore the feasibility

of employing vibration motors and accelerometers to build a reliable communication protocol be-

tween two user-held mobile devices (e.g., a smartphone and a wrist wearable), by using the human

body/skin as the underlying physical medium for vibration signal propagation. Given that modern

mobile devices such as smartphones and wearables are always in contact with the human body/skin,
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and that they come pre-equipped with vibration motors and motion sensors, such a communication

technique could be naturally deployed without requiring any special setup/hardware. Also, as the

user’s own body/skin acts as a communication channel, the scheme would be naturally covert and

robust against trivial eavesdropping. As mentioned earlier, we believe that such a vibration-based

communication scheme could be easily extended to a body-area network where any two devices,

in or on a person’s body, could employ it as a covert side-channel for other use-cases such as proof

of co-location (on the person’s body). In addition to being employed for on-body communications,

the same principle could also be used for effecting communication between an on-body device and

an external device, for example, by briefly touching the external device on the body to transmit

data (as vibrations via the skin) to the on-body device(s).

Although vibration-based communication techniques have been proposed before, additional

research and experimentation is required to build a robust (against noise and movements) and

easy-to-deploy communication system that employs vibrations traveling through human skin/body,

which is what this work attempts to accomplish. We attempt to utilize existing vibration based

modulation techniques and adapt them to the transmission via human skin/body which is where

one of our main contributions occur. To this end, the main challenges include identifying how

vibrations can be modulated so that they can effectively propagate via human skin/body, and ef-

ficiently using an accelerometer to sense these vibrations in the presence of volatile body move-

ments. Moreover, inherent anatomical and biomechanical differences between individuals can also

affect the efficiency of the communication channel. Consequently, the main requirements as we

design such a communication technique are: (a) robustness to vibration noise and anatomical dif-

ferences that are inherently present in human body/skin, (b) a sufficient level of data rate suitable

for low-bandwidth communications, and (c) reliable communication under mobility such as while

traveling in a vehicle.

Our key contribution in this research work is the design, implementation and evaluation of a

novel vibration-based communication protocol, called SkinSense, which utilizes human body/skin

as a communication medium in order to create a low-bandwidth and covert communication channel
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between user-held mobile and wearable devices. We demonstrate the feasibility and performance

of SkinSense by employing both a custom hardware setup, which enables the flexibility of being

able to manipulate the different hardware and protocol parameters for a comprehensive evaluation,

and consumer-level devices. By collecting data from a diverse set of human subject participants,

we comprehensively evaluate SkinSense under different/varying operational parameters and com-

munication settings, including, distance between transmitter and receiver, device orientation, am-

bient noise, sampling rate, communication direction and motion sensing hardware (accelerometer

versus gyroscope). In addition to this, we also conduct an in-depth analysis of the impact of the

various SkinSense design parameters on communication performance and error rates, empirically

evaluate its vulnerability to acoustic or Sound of Vibration (SoV) attacks, and study its energy re-

quirements. Lastly, we systematically compare the performance of SkinSense with other efforts in

the literature and conduct a small user-study to gauge the perception and preferences of end users

using such a communication side-channel.

3.2 Background

We now briefly introduce some background information relevant to our proposed communica-

tion protocol.
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Figure 3.1: Architecture of (a) ERM motor and (b) capacitive accelerometer.
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3.2.1 Vibration Motor

A vibration motor is a mechanical device that uses motion from an unbalanced metallic mass to

produce oscillations or vibrations [64]. They are usually found inside most modern mobile devices

such as smartphones and smartwatches to provide haptic feedback or notifications to users. There

are two main types of vibration motors: (i) Eccentric Rotating Mass (ERM) motors, and (ii) Linear

Resonant Actuator (LRA) motors. ERM motors are powered by direct current (DC) and employ

an asymmetric mass (fig. 3.1a) which moves eccentrically when rotated [166]. The amplitude

and frequency of the vibrations can be controlled by varying the input DC voltage, and they both

increase with higher voltages [5, 157]. LRA motors, on the other hand, consist of a magnetic coil

that pushes a mass up and down to create vibrations, enhanced by a spring. LRA is driven by a

precise amount of AC current so as to achieve resonant frequency of the spring, which limits the

vibration motor’s amplitude and frequency within a very narrow band. Huang et al. [83] showed

that ERM motors are better suited for applications requiring complex encoding of the vibration

signal, compared to LRA motors which work well only for simple binary encoding. Therefore, we

employ an ERM-based DC coreless motor in this work.

Motor Control. Pulse Width modulation (or PWM), a technique to reduce the average power

delivered to a load by effectively breaking the input electrical signal into discrete parts, is often

used to control intertial loads such as vibration motors found in most mobile devices [25, 113].

The average value of voltage (and current) supplied to a motor in PWM is regulated by turning the

switch between the power supply and the motor ON and OFF at a fast and variable rate. In other

words, PWM can control the operation of a motor by providing it with a series of electrical pulses

or “ON-OFF” signals. The power to the motor is controlled by varying the width of these pulses,

which in turn, varies the average DC voltage applied to the motor. Ultimately, PWM enables

greater control over the motor without altering the voltage level of the supply voltage, which is

ideal for encoding signals over motor vibrations. We utilize a selected range of PWMs to control

the motor based on the feedback observed via vibration signals captured using motion sensors, as

discussed later in section 3.3.3.
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3.2.2 Accelerometer

Accelerometers are used to measure acceleration or speed changes of a device with respect

to the surrounding environment. Most modern mobile and wearable devices are equipped with

micro-electromagnetic (or MEMS) [56, 187] accelerometers, which enable applications ranging

from simple step counting to complex activity recognition [174]. There are two main types of

MEMS accelerometers in use today: (i) piezoresistive accelerometers, and capacitive accelerome-

ters [63]. Piezoresistive accelerometers consist of a mass attached to a piezoelectric crystal. When

vibrations or movements occur on the accelerometer, while the mass itself remains unchanged,

it makes the crystal either compress or stretch depending on the direction and magnitude of ac-

celeration. Capacitive accelerometers (fig. 3.1b) consist of a proof-of-mass suspended between

two plates, one which is fixed and other which is free to move inside the accelerometer housing.

When vibrations/movements occur on the accelerometer, the distance between the plates change

proportionally to the acceleration, resulting in a change of capacitance [188]. Most modern devices

are equipped with capacitive accelerometers due to their smaller size and ability to measure low-

frequency motion [56]. Accelerometers produce raw measurements along three axes, with gravity

components applied to whichever axis is pointing to the ground. Another type of motion sensor

commonly found in consumer mobile devices is the gyroscope, which in contrast to accelerom-

eters, measures a device’s angular velocity. Later in section 3.4, we comparatively evaluate our

proposed communication protocol using both the accelerometer and gyroscope sensors.

3.2.3 Mechanics of Vibrations

Vibrations are a form of mechanical oscillations, defined as repetitive back and forth movement

of an object between two states or positions about an equilibrium point [150]. There are 2 kinds

of vibrations, free and forced. Free vibrations occur as a result of a brief energy transfer from an

external force on to an object (e.g., one time picking of a guitar string) [150]. In contrast, forced

vibration is a continuous periodic external force applied to an object (e.g., repeatedly pushing a

playground swing). Vibrations can be fully described using two parameters, namely, frequency
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and amplitude. Frequency of vibration describes how fast the vibrating object is moving, while

amplitude is the maximum displacement of the vibrating object in motion, i.e., the strength of the

vibrations. When an object vibrates, its particles are disturbed by the vibrational energy propa-

gating from one point of the object to another, also called the vibration wave (fig. 3.2). How well

these waves propagate through the object (or medium) depends on its molecular structure (such

as density). If an object has tightly packed molecules, it is known to have a higher rigidity (e.g.,

wood or steel). Such objects or mediums are better at transmitting vibration waves making them

travel farther, faster and longer compared to less rigid mediums (e.g., a cushion pillow) [31]. Vi-

bration waves have a characteristic wavelength (γ), which is the distance between two adjacent

crests (highest points) of the wave. When a wave travels from one medium to another, although

the wavelength changes, the frequency remains unchanged [150]. This is defined as v = fγ, where

v is the velocity and f is the frequency of the wave. Thus, the velocity and wavelength of the vi-

bration waves originating from some source and transferring to an object/medium could change

depending on the rigidity of the object.

In this work, we are attempting to leverage vibrations originating from a handheld device such

as a smartphone to design a communication mechanism, where the vibration waves propagate to

the receiver through the skin of the hand (holding the handheld). Previous works on vibration-

based communication schemes have employed objects such as wooden tables as the transmission

medium [157]. These efforts have been able to achieve very high data rates and accuracy, primar-

ily because wood is a good propagation medium for vibration waves due to its high rigidity. In

contrast, human skin absorbs more vibrations due to its lower rigidity, making it less desirable as

a transmission medium for vibration waves [5]. Consequently, designing a vibration-based com-

munication scheme relying on the propagation of the vibration waves through the human skin is

a much more challenging endeavor. Prior studies have shown that the propagation of vibration

waves via the human skin is correlated to the vibration frequency of the source, and that the vi-

bration decay is quicker at low and high frequencies (i.e., vibrations cannot propagate for longer

distances) compared to intermediate frequencies of the source [120, 169]. Since our work consid-
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ers a communication scenario of a handheld device and a wrist wearable, which naturally results in

a certain amount of distance (with distances ranging from 15 cm to 2 cm depending on the motor

placement on the handheld device) between the two devices when worn on the hand, understanding

and analyzing this vibration decay and the effect of vibration frequency was important in designing

an effective communication framework. In order to identify these intermediate frequencies which

would help in designing SkinSense, we do a sine sweep test as explained further in section 3.3.2.

Source of 
External 

Force Transfer of 
Energy

Transfer Medium

Vibration wave 
propagation

Figure 3.2: Vibrational energy propagation from a source to a medium.

Based on the high-level discussion so far on the mechanics of vibrations, we now formally

describe how vibrations created by motors (e.g., ERM motors) can be used to send vibration waves

(or signals) through human skin as a medium. The centrifugal force generated by an ERM motor

is given by:

F = mrω2

where F is the force (in Newtons), m is the mass of the eccentric mass (kg), r is the radius of the

eccentric mass (meters) and ω is the angular velocity (speed of the motor) in rads/sec [150]. As

m and r are physical properties of the motor that cannot be changed, the centrifugal force generated

by the motor can only be changed by manipulating the angular velocity, ω. The vibration frequency

and amplitude in an ERM motor cannot be changed independently and they both increase linearly

based on the voltage provided. ERM motor speeds are proportional to the applied voltage, therefore

amplitude/frequency changes can be done by manipulating the voltage via pulse width modulation

(PWM) as discussed above in section 3.2.1. As clarified earlier, identifying a set of intermediate

frequencies that propagates well from a handheld device to a wrist wearable via human skin as the

medium is the first step in designing an effective communication scheme via skin. To modulate a
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set of frequencies, we rely on a PWM based technique and then use these different frequencies to

encode data in SkinSense as described in detail in section 3.3.

3.3 System

We now present the design and other technical details of SkinSense by first providing an

overview of the system architecture, followed by design details of the communication protocol.

We then present the technical details of the encoding (modulation) and decoding (demodulation)

algorithms followed by an outline of different hardware setups that we employ in the implementa-

tion of SkinSense. Finally, we present details of the human subject data and performance metrics

used in its evaluation.

3.3.1 System Overview

Figure 3.3 shows a high-level overview of SkinSense enabling vibration-based communication

between a handheld device and a wrist wearable by using the user’s hand (specifically, the skin

tissues) as the communication channel. We consider a half-duplex communication channel, i.e., the

handheld device and wrist wearable can both act as a transmitter and receiver, however information

can flow in only one direction at a time. Moreover, we consider that the communicating devices

are located on the same hand, but they do not need to be in physical contact with each other.

The message that needs to be transmitted from the handheld device to the wrist wearable (or vice

versa) is first encoded into a stream of vibration signals by using an encoding (or modulation)

algorithm described in Section 3.3.3. The vibration motor on the transmitting device then emits

these vibration signals, which is carried via the skin tissues of the hand to the receiving device.

The receiving device’s motion sensor records these vibrations and decodes the encoded message

using a decoding algorithm outlined in Section 3.3.3.
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Figure 3.3: SkinSense communication protocol.

3.3.2 Transmitter Design

Our final transmission algorithm was arrived at after many rounds of iterations and prelimi-

nary investigations where we scrutinized on how vibrations travel through the human skin and its

ability to be captured by an accelerometer. As a first step, our goal was to examine the possibility

of identifying/differentiating multiple vibration frequencies for data encoding, which would effec-

tively allow us to significantly increase the bandwidth of our communication protocol (compared

to using only a single frequency encoding scheme). Specifically, we analyzed how vibrations of

different frequencies, after being generated by the motor and traveling via the skin, gets captured

on an accelerometer. Once specific operable frequencies with clear separations were identified, our

next goal was to minimize the vibration times, i.e. the time of a single vibration pulse (ON times)

and the interval between two vibration pulses (OFF times). At the same time, to further increase

the bandwidth and data rate, we also found that time domain data encoding could also be used

in conjunction to frequency-based encoding by reliably determining vibration ON times and OFF

times. The specific details of selecting operating frequencies and time modulation are presented

next.

Identifying the operable frequencies

In order to identify and characterize the range of frequency bands to operate the transmitter

motor in, such that the receiver accelerometer would have a distinct response to the vibration
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signal, we did a sine sweep test [157] by test operating the motor in the range of 20 (low) to 240

(high) PWM values and analyzed the corresponding accelerometer signal at the receiver.

We observed that the frequency response captured by the accelerometer peaks around PWM 60

and fades away starting around PWM 100 (refer fig. 3.4). Based on this observation, we determined

that the motor reaches its resonant frequency at around PWM 60. While a simple ON or OFF binary

encoding mechanism would only require one operational frequency for the motor, this will limit

the amount of data that can be encoded using vibrations. After identifying the operable frequencies

to be in the range of PWM 20-100, we then closely analyzed which specific PWM frequencies to work

with. For the frequency analysis, we closely observed the frequency response of PWMs from 20 up

to 100 in steps of 10. We subsequently found PWMs 20, 30, 60 and 100 to be the ones with minimal

interference with neighboring PWMs, and thus employ them as the final set of PWM parameters in

SkinSense implementation.

10 20 30 40 50 60 70
Time

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

20 30 40 50 60 70 80 90 100

Figure 3.4: Spectrogram of PWMs ranging from 20 to 100.

Time based modulation

We next studied the possibility of minimizing the ON time and OFF time of the vibrations to

further increase the data rate. For that, we analyzed how accurately we can infer the ON time and

OFF time windows of vibrations using the accelerometer signal for a range of ON and OFF time

values. These ON and OFF times are affected by a phenomenon called the ringing effect [157],

where the vibration may remain in the medium for sometime before completely dying down when
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the voltage is cut off to the motor. When choosing OFF times, we need to specifically select

values that accommodate the remnants of the previous vibration pulse such that, the next vibration

pulse is not affected by it to prevent inaccuracies during demodulation. We tested OFF times

in the range of 150-1000 ms and were able to clearly distinguish between OFF time values of

250 ms, 500 ms, 750 ms and 1000 ms. Any values lower than 150 ms proved to be too short,

leading to interference between consecutive vibration pulses. Therefore, without affecting the

overall accuracy, we select 150 ms and 300 ms as the OFF time window values in our algorithm

implementation. After finalizing appropriate OFF time values, we determine ON time window

values, i.e. the amount of time the vibration motor stays on in a single window. Similar to the

OFF time analysis, we tested ON times in the range of 250-1000 ms, followed by ON time values

below 250 ms, however values below 250 ms proved to be too small to be accurately identified

in the accelerometer signal. Thus, without affecting the overall accuracy, we fixed 250 ms and

500 ms as the ON time window values for our implementation. The full hardware setup used for

this analysis is detailed in section 3.3.4. An independent analysis may be required to determine

the optimal parameters for each motor-accelerometer pair since different motor types may have

varying resonant frequencies, and different accelerometer types may have varying sensitivities.

3.3.3 Communication Algorithms

SkinSense employs a PWM based frequency modulation technique for encoding bits as vibration

pulses and a spectrogram based approach to decode the sensed motion data (corresponding to the

vibration pulses) to reconstruct the transmitted bits, as outlined next.

Encoding Algorithm

The transmission algorithm takes as input a sequence of bits to be transmitted and outputs a

sequence of parameters (PWMs, ON times and OFF times) to be passed on to the vibration motor.

The PWMs are a measure of the voltage given to the motor, which in turn controls its frequency.

The ON times signify the time in milliseconds (ms) for which the vibration motor is switched on,
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while the OFF times signify the time in milliseconds between two consecutive vibration pulses. By

modulating these three parameters independently, we are able to transmit the bit string as a series

of vibrations of differing times and frequencies.

SkinSense currently uses four values of PWMs (20, 30, 60, 100), two values of ON times (250

ms, 500 ms) and two values of OFF times (150 ms, 300 ms) for modulation, as described earlier in

section 3.3.2. As a result, we are able to encode log24 = 2 bits using the PWM values and log22 = 1

bit using the ON time and OFF time values, respectively. In order to transmit a bit sequence using

the above setup and set of parameters, we need to partition it into 4-bit long words. Then, we

encode each 4-bit word as follows: The first two bits of the word are encoded using one of the four

PWM values, the third bit using one of the two ON time values and the fourth bit using one of the

two OFF time values. At the end of transmitting message, we append a pilot sequence to improve

accuracy while decoding.

Decoding Algorithm

The decoding algorithm takes as input the raw accelerometer values sensed at the receiver and

outputs the decoded bit sequence. The sequence of steps involved in the decoding algorithm are as

follows:

(1) Spectrogram computation: Raw signal filtering and normalization.

(2) Peak detection: Deriving the encoded parameters.

(3) Symbol separation: Symbol separation to identify the encoded PWM values, ON time values

and OFF time values.

(4) Pilot sequence based mapping and decoding: Decode the message by generating the corre-

sponding bits associated with each PWM values, ON time values and OFF time values.

Spectrogram. The spectrogram of raw accelerometer time-series data samples are first com-

puted in the decoding process. Essentially, a spectrogram is a matrix which depicts the strength of

the accelerometer signal over time at different frequencies (a spectrum of frequencies), i.e., each
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position of the matrix corresponds to a point in frequency and time. In other words, the time-series

data is converted from the time domain to the frequency domain (using FFT with a window size

of 128 samples and an overlap of 124 samples). In order to reduce the effect of noise, we filter

out all frequencies below 40 Hz from the spectrogram. These frequencies fall below our band of

operation and correspond mainly to low frequency noise which may be present in the human hand.

Figure 3.5 shows the frequency spectrum before and after removing this noise. We then perform

mean and variance normalization on the resulting spectrogram in order to eliminate any constant

biases that may be present.
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Figure 3.5: (a) Raw accelerometer signal, spectrogram of the accelerometer signal (b) before
filtering, (c) after filtering to remove noise.

Peak Detection. In order to determine the PWM values used during encoding, we rely on the

fact that the frequency of the vibrations are linked to the PWM. By accurately determining these

frequencies, we can estimate the PWM value. It was observed that for most PWM values, there are

two frequencies where there is a significant amount of energy present. This can be observed in the

Figure 3.4, the two darkest yellow bands for each PWM represent these two frequencies. They rep-

resent the two most prominent overtones of the vibrations passing through the hand (overtones are

any frequencies higher than the lowest frequency present in the signal [32]). Due to the presence

of two prominent overtones, in order to derive the frequency of the vibration at any point in time,

our algorithm detects the two most prominent peaks in the spectrogram and computes the mean

of the frequency of these two overtones to obtain a close estimation of the transmitted frequency.

However, at higher PWMs (e.g., 100), it was noticed that only one overtone contains a majority of

the energy. In order to handle these cases, the algorithm compares the frequencies of two most
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prominent peaks, and only if the second most prominent peak is of the same order of magnitude

as the most prominent one, the mean of the two frequencies is computed. Otherwise, it simply

considers the frequency of the most prominent peak for the frequency estimation.

Algorithm 3.1 Symbol separation algorithm.

Input: y[]
Output: ONTimes[], OFFTimes[], PWMS[]
Initialization: ONTimes ← [], OFFTimes ← [], PWMS ← [], startT imes ←
[], endT imes← [], i← 0
for i <=length(y) do

if (y[i] >= 0 and y[i+ 1], y[i+ 2], y[i+ 3] = 0) then
endT imes.append(i)

if (y[i] >= 0 and y[i− 1], y[i− 2], y[i− 3] = 0) then
startT imes.append(i)

ONTimes[]← endT imes[]− startT imes[]
j ← 0
for j <=length(ONTimes) do

if (ONTimes[j] < 200) then
ONTimes.remove(j)

OFFTimes[] ← startT imes[1 : (length(startT imes) − 1)] − endT imes[0 :
(length(endT imes)− 1)]
k ← 0
for j <=length(ONTimes) do
PWMs[j] = mean(y[startT imes[j] : endT imes[j]])

Symbol Separation. From the previous peak detection process, we obtain a vector (denoted

as y) of the detected frequency for each time window. In time windows without any vibration, the

frequency is set to 0. We then use the following heuristic to separate out the transmitted symbols,

in the form of ON times, OFF times and PWMs. First, the first and last time windows of each

vibration are computed by using the symbol separation algorithm (algorithm 3.1). Then, the ON

times, PWMs and OFF times are computed by using this information. In order to negate any effects

of short-duration impulsive noise, we discard any symbols whose ON times are smaller than 200

ms. We do this filtering because the shortest possible length of a transmitted symbol is 250 ms as

per the ON time values we have chosen for transmission, which implies that ON times smaller than

200 ms are noise.
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Pilot Sequence based Mapping and Decoding. As mentioned earlier, a pilot sequence is

appended to each message to improve accuracy at the time of detection. Due to a variety of

reasons, such as the frequency response of the user’s hand, the precise orientation, tightness of the

watch, and the time taken by the motor to ramp up and ramp down, there could be considerable

variance in the received parameters with every use of the communication system. Hence, we use

this pilot signal during decoding to measure any offsets in the transmitted parameters and adjust

them accordingly. The pilot signals consists of the following sequence of ON times, OFF times and

PWMs, respectively: ON time values: [250,500,250], OFF times values: [150,300], PWM values:

[20,30,60].

These encompass most of the parameters used to transmit information in our system. At the

receiver, this pilot sequence first undergoes the spectrogram based filtering, peak detection based

frequency estimation followed by symbol separation to identify the parameters used in the pilot

sequence. These values obtained are then used as a mapping to decode the actual message. We

start with the pilot sequence, where each value ppiloti in the estimated parameter set PWM e of the

pilot sequence e is mapped to its corresponding value qi from the original parameter set PWM o =

{20, 30, 60}. By using this information, the output of the symbol separation algorithm is then

mapped to their corresponding parameters as follows: For each estimated parameter pmsg
i in the

estimated parameter set PWMmsg for the transmitted message msg, if pmsg
i < mean(ppilotj , ppilotj+1 ),

pmsg
i is mapped to ppilotj , else, pmsg

i is mapped to ppilotj+1 . For example, for PWM values of the pilot

sequence, the symbol separation algorithm may output the following values, 24, 35, 66. Now

since we know that pilot sequence can only have PWM values 20, 30 and 60 and the order of their

occurrence, we map these estimated values to each corresponding PWM value. Then, for the actual

message, if an estimated PWM value is 27, it is mapped to the pilot sequence estimated value of 24

(via the above described method) which corresponds to PWM 20 of the original encoding parameter

value. The same procedure is followed for other parameter sets, ONmsg and OFFmsg. Finally, the

message is decoded by reconstructing 4-bit long words for each PWM, ON and OFF combination

of values obtained from the mapped symbol separation output, i.e., the first 2 bits of a word are
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derived based on the PWM value, while the third and fourth bits are derived using the ON time and

OFF time value, respectively.

A sample PIN transmission. Figure 3.6 instantiates the aforementioned algorithms of Skin-

Sense with a real example, wherein a 4-digit PIN is first encoded into a vibration pattern (consist-

ing of ON, OFF, and PWM parameters) and then transmitted. A spectrogram composed from the

received accelerometer signal is then used to detect the relevant ON, OFF, and PWM parameters

based on the vibration pulses, which are then used to successfully decode and output the original

PIN.

Input: 5265

ON                500      500   250 250       500         500       250    250   500      250

OFF                     150     150 150    300         300        300     300   150       300

PWM             60        30     100   30        30           20         60      20      30         60

output: 5265

Encode Decode

Figure 3.6: Encoding and decoding of a PIN.

3.3.4 Implementation Hardware

To comprehensively evaluate SkinSense, we implement two different hardware setups. To en-

able an exhaustive investigation of the performance for a variety of fine-grained transmitter and

receiver parameters, we first implement and evaluate SkinSense in a custom hardware setup (Sec-

tion 3.3.4). Then to evaluate SkinSense in a realistic setting, we implement a consumer hardware

setup (Section 3.3.4) comprising of commercially available mobile and wrist wearable devices.
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Custom Hardware Setup

We implement this setup by building custom devices closely resembling transmitters and re-

ceivers on commercial handheld devices (e.g., smartphones) and wrist wearables (e.g., smart-

watches). In this setup, we use Arduino Uno and Nano boards to control the transmitter and the

receiver, respectively. For the transmitting vibration motor, we use an ERM motor (16000 RPM)

connected to the Arduino Uno board via a L298 motor driver [48], powered using a 12V (5 Amp-

Hours capacity) Lead Acid battery. We use a 12V battery to power the motor to achieve longer

operating times for our experiments. However, as the motor operates in the range of 1.5V to 3V it

can also easily be powered using two (1.5V) AAA batteries. We power the Arduino Nano board

(the receiver device) via a 5V USB input. To build the custom handheld device prototype, we use a

consumer level smartphone case (fig. 3.7b) on which we mount the vibration motor. For the custom

wrist wearable prototype, we use a Sony Smartwatch 3 Band (the smartwatch portion removed, see

fig. 3.7b) to mount the motion sensor. For both the custom devices, we use a MPU6050 GY-521

MEMS motion sensor containing a three-axis accelerometer and a three-axis gyroscope. The mo-

tion sensor is also connected with a Micro-SD card using an Arduino Micro-SD card adapter (via

SPI mode) for data recording purposes. As explained earlier (section 3.2), we use a PWM technique

to control the operation of vibration motor. The sampling rate of the motion sensor achieved when

writing to the Micro-SD card is 700 Hz. To evaluate communication in the reverse direction (i.e.

wrist wearable to handheld device), we swap the motor and motion sensor between the two custom

devices.

Arduino

Motor 
Driver

Motor

Battery

Transmitter

Arduino

Motion Sensor 
(MPU6050)

Micro 
SD Card Receiver

(a)

Face-Up Face-Down

(b)

Figure 3.7: (a) Custom hardware architecture, (b) wrist wearable wearing orientations.
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Consumer Hardware Setup

For this setup, we use a Nokia 6 (2017) smartphone as the handheld device and a Sony Smart-

watch 3 as the wrist wearable. The Sony Smartwatch can only achieve a maximum sampling rate

of 200 Hz, in contrast to the sampling rate of 700 Hz that we were able to achieve using the custom

hardware setup. Moreover, in these devices the Android API only provides control of the motor’s

vibration amplitude, but not of the frequency. Similar to Roy et al. [157], we looked into the possi-

bility of modulating the amplitude to encode data. However as mentioned earlier, due to sampling

rate limitations in consumer level smartwatch accelerometers, we were not able to accurately dif-

ferentiate between different amplitudes just by using the accelerometer data. This effectively limits

the full implementation of the SkinSense communication protocol on these devices as we rely on

multiple frequencies to encode data.

3.3.5 Human Subject Data Collection

We perform a comprehensive empirical evaluation of SkinSense using data collected from hu-

man subject participants in realisitic settings and environments. For our data collection study, we

recruited 13 participants in the age group of 18-29 from our university campus. Participants in our

study wore the custom wrist wearable device on the wrist of one hand (preferred by the partici-

pant) and held the custom handheld device (fig. 3.7b) in the palm of the same hand. In this setup,

binary data was communicated from the handheld device to the wrist wearable, and vice versa,

using our proposed vibration-based approach under a variety of different ambient/device settings

and algorithm parameters.

In our first experimental setup, we evaluate the effect of two different orientations of the wrist

wearable device on the performance of the communication scheme. The first orientation is the case

when the wrist wearable is worn facing upwards along the top of the forearm (or wrist), while the

second orientation is when the wrist wearable is facing downwards along the bottom of the wrist

(see fig. 3.7b). As different users may prefer to wear their wrist wearables in different orienta-

tions and, depending on the orientation of the wrist wearable the position of the vibration motor
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and accelerometer on the wrist/forearm may change impacting the performance of SkinSense, it is

important to further analyze these setups. In the second experimental setup, we test the effect of

distance between the transmitter (vibration motor) and receiver (accelerometer) devices on Skin-

Sense’s performance. Accordingly, we mount the motor at three different positions on the custom

handheld device, top (15 cm), middle (7.5 cm) and bottom (2 cm). In the third data collection

setting, participants were asked to walk while holding the custom handheld device and wearing

the wrist wearable while the devices were communicating with each other. The purpose of this

setting was to study how noise introduced (in the accelerometer sensor readings) due to physical

activities such as walking impacts the performance of SkinSense. In the fourth experimental setup,

we tested the reverse direction, in which the wrist wearable (mounted with a motor) acts as the

transmitter and the handheld device (mounted with an accelerometer) act as the receiver. This

setup would evaluate the half-duplex property of SkinSense. Finally, the different orientation and

participant walking setups are repeated for the reverse communication direction as the fifth and

sixth experimental setup. In addition to these experiments, we also conducted an experiment to

test SkinSense using consumer level devices where a set of participants wore a Sony Smartwatch 3

on their wrist while holding a Nokia 6 (2017) smartphone on the palm of the same hand. Similar

to the above experiments, binary data was communicated from the handheld device to the wrist

wearable. In each of these experiments, four 128-bit randomly generated binary strings are used

as test communication (transmission). All data collection was done after obtaining consent from

the participants, and our data collection and analysis procedures were approved by our university’s

Institutional Review Board (IRB).

3.4 Evaluation

In this section, we present a comprehensive empirical evaluation of SkinSense under a variety

of operational settings, algorithm parameters and hardware setups. We evaluate the accuracy and

efficiency of SkinSense using the following standard metrics: (i) Bit Error Rate (BER): BER is the

ratio of the number of incorrectly interpreted bits, (ii) Bit Rate (BR): BR is the transmission speed,
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i.e. the number of bits transmitted per unit time (seconds).

3.4.1 Effect of Distance Between Transmitter (Motor) and Receiver (Motion Sensor)

In order to observe the effect of distance between the transmitter (vibration motor) and receiver

(accelerometer sensor) on system performance, we mount the motor on the phone case at three

different positions. Specifically, the motor is mounted at the top, middle and bottom positions of

the handheld device case, which results in a distance of approximately 15 cm, 7.5 cm, and 2 cm

to the wrist wearable, respectively. We observe that when the motor is at the middle position,

the performance slightly degrades (see fig. 3.8a), while for top and bottom positions the resulting

mean BERs are comparable. We further observe that in the middle motor position, for half the

participants the resulting (BER) values are lower than 0.15 (see fig. 3.9a) with five of them having

BERs lower than 0.05. For the top (farthest from the receiver) motor position, we observe the

best mean BER of 0.10 (σ = 0.13) and that half the number of participants have BERs lower than

0.05. In the bottom position, we have similar performance with a mean BER of 0.12 (σ = 0.10)

and 50% of the participants with a BER less than 0.10. We observed that when the motor is

positioned at the top of the handheld device, although farthest from the receiver (accelerometer),

the vibrations makes the whole handheld device slightly more agitated. This, in turn, results in a

stronger vibration signal reaching the accelerometer at the receiver. A similar effect is observed

when the motor is mounted on the bottom of the handheld device. When the motor is mounted

on the middle of the device, the vibrations are slightly dampened, accompanied by the fact that

human palm is curved in the middle and thus the direct surface area that may be coming in contact

with the hand when vibrating is smaller, which is reflected in the slightly higher BER values. From

fig. 3.9d, which depicts the cumulative probability distribution of BER for each transmitter-receiver

distance, we can see that for nearly 70% of the cases in the top and bottom positions, the achievable

BER is less than 0.15.
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Figure 3.8: Mean BERs: (a) distance between the motor and the motion sensor, (b) wrist wearable
orientation.

3.4.2 Effect of Wrist Wearable Orientation

Next we evaluate the effect of the wrist wearable’s orientation on system performance, with the

communication direction from the handheld device to the wrist wearable (fig. 3.7b). Here, we see

(fig. 3.8b) slightly lower BERs when the wrist wearable is worn facing downwards (accelerometer

located at the bottom of the wrist) compared to when facing upwards (accelerometer located on the

top of the wrist), with BER values of 0.12 (σ = 0.13) and 0.16 (σ = 0.13), respectively. fig. 3.9b

shows that half the participants had BERs less than 0.10 for the face down orientation. We believe

that this is because when the vibration motor and motion sensors are aligned on the same side of

the hand, the vibrations have a more direct path to travel. Further, from fig. 3.9e, we see that for

the face down orientation, close to 70% of the time BER will be lower than 0.2, as opposed to 60%

probability in the face up orientation.

3.4.3 Performance Under Noise

Next we evaluate SkinSense under two different types of movement noise that impact motion

sensor readings. The first type of noise occurs when the user is relatively stationary while traveling

inside a moving vehicle (with vehicle speeds between 16 kmh to 64 kmh). Due to practical limi-

tations, we simulated this experiment by superimposing prerecorded motion sensor data recorded

from the handheld device while inside a moving vehicle, to the motion data collected from partici-
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Figure 3.9: BERs of participants at percentiles 95th, 90th, and median: (a) distance between the
motor and the motion sensor, (b) wrist wearable orientation, (c) effect of different types of noise.
CDF of BER: (d) distance between the motor and the motion sensor, (e) wrist wearable orientation,
(f) effect of different types of noise.

pants in a lab setting. The second type of noise we experimented with occurs due to user movement,

where participants were asked to walk with the handheld device and wrist wearable on the same

hand while SkinSense is executing. The first noise scenario (moving vehicle) shows slightly better

performance with a mean BER of 0.19 (σ = 0.17). Further, 7 out of the 13 participants showed

BERs less than 0.10 (fig. 3.9b), with only 3 participants showing significant degradation of BERs

of over 0.3. This indicates that SkinSense is fairly robust against movement noise resulting from

plane motion, such as traveling inside a vehicle. For the second type of noise scenario (walking),

the BER considerably degrades with an observed mean BER of 0.29 (σ = 0.28). For both the above

scenarios, the communication direction was from the handheld to the wrist wearable. Moreover,

with built-in APIs [69] about user movements on modern mobile operating systems, such as An-

droid and iOS/watchOS, it is also possible to contextually turn off SkinSense when the user is not

stationary.
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3.4.4 Effect of Sampling Rates

To evaluate the impact of reduced motion sensor sampling rates on protocol performance, we

test SkinSense with the accelerometer (at the receiver) sampled at 200 Hz, compared to the 700 Hz

sampling rate which was used previously. We choose a sampling rate of 200 Hz because it is the

maximum sampling rate that is achievable on most modern consumer level mobile and wearable

devices. Based on the results obtained in this setting, we observe that the BER of the communica-

tion scheme degrades to around 0.4 (σ = 0.06) when a lower sampling rate is used. This indicates

that such a low accelerometer sampling rate at the receiver is probably not sufficient for capturing

the range of vibration frequencies that we are utilizing to encode data in our transmission algo-

rithm. With the limitation of not being able to use multiple frequencies, achieving a better BER

would only be possible at the cost of a reduced bit rate.

3.4.5 Half-Duplex Communications

In the experimental settings discussed so far, we have only considered communication in the

direction from the handheld device to the wrist wearable. However, as modern wearable and

handheld devices come equipped with both a vibration motor and motion sensors, it would be

extremely useful to evaluate communication in the reverse direction to what we have evaluated so

far (i.e., from the wrist wearable to the handheld, in our case). If feasible, it would grant a half-

duplex property to the communication channel, which would enable a whole set of applications

that require communication in both directions. As our proposed communication protocol and

hardware setup is amenable to such an evaluation, we also test communications in the reverse

direction, i.e. using the wrist wearable as a transmitter and the handheld device as a receiver.

Overall, the achieved performance results are significantly lower compared to the earlier case, as

seen in the fig. 3.8b and fig. 3.9b with overall BERs dropping to 0.38 (σ = 0.13) for when wrist

wearable is facing upwards and 0.28 (σ = 0.14) for when the wrist wearable is facing downwards.

Similar to the wrist wearable orientation experiment (section 3.4.2), we observe that when the

wrist wearable is facing downwards a lower BER can be achieved. We also conduct the same
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noise-related experiments (similar to section 3.4.3) for this setting and observe a similar pattern

in the performance results where the user movement (walking) experiment degraded the BER to

0.43 (σ = 0.02) while the vehicle movement experiment reduced it to 0.42 (σ = 0.13). These

low performance results can be attributed to the fact that the wrist wearable surface area in contact

with the wrist/hand is much smaller compared to the handheld device. This may result in reduced

perception of the generated vibrations by the the skin/hand, thus resulting in an overall reduced

performance.

3.4.6 Consumer-grade Hardware Setup

Next we discuss the performance of SkinSense when using commercial consumer-grade hard-

ware (as summarized in section 3.3.4). With the highly constrained access to the vibration motor

and motion sensors on commercial mobile and wearable devices, SkinSense when executed on

these devices could only achieve low overall BERs of around 0.4, for both the watch wearing ori-

entations. We believe that one of the main constraints is the software-restricted sampling rates of

motion sensors in commercial smartphones/smartwatches, which limits the maximum allowable

sampling rate to only 200 Hz. Further, the Android API also restricts the frequency modulation

of the vibration motor on these devices, which prevents us from using the embedded motor at its

full operating capacity. These factors restrict us from using the 4 PWM frequency bands (of the

motor) for communication which we used in the custom hardware case. As a result, we are not able

to modulate in the PWM frequency band in the commercial device case, which effectively brings

down the achievable bit rate from 6.6 to 3.3 bps. Although the reduced performance of SkinSense

can be primarily attributed to the software and hardware limitations of existing commercially-

available mobile device hardware, we believe that better motion sensors (with high sensitivity and

sampling rates) and vibration motors in future devices will result in a slightly more favorable out-

come for such vibration-based communication systems.
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Table 3.1: Mean BERs for accelerometer and gyroscope.

Direction Accelerometer Gyroscope
Handheld to wrist wearable 0.16 (σ = 0.13) 0.39 (σ = 0.09)
Wrist wearable to handheld 0.38 (σ = 0.13) 0.41 (σ = 0.10)

3.4.7 Accelerometer vs. Gyroscope

Our preliminary experiments involving both the custom and consumer-grade devices demon-

strated that accelerometers produced better feedback than gyroscopes in our setup. To compre-

hensively compare the impact on performance when a gyroscope is used as a receiver as opposed

to an accelerometer, we perform some additional experiments using our custom hardware setup.

Based on the observed results (see table 3.1), we can conclude that our protocol produces better

performance (lower BER) using the accelerometer. The achievable BER drops from 0.16 to 0.39

when a gyroscope is used as a receiver (when transmitting from the handheld device). In contrast

to accelerometers, gyroscopes measure a device’s angular velocity and it is likely that surface vi-

brations, which are already dampened down as they travel through the human skin/body, do not

produce a significant amount of angular motion to be discernible on a gyroscope.

3.4.8 Failed Transmission Detection

After further scrutinizing the transmitted messages with higher BERs, we observed that these

inaccuracies are mostly caused due to missing bits, which may be due to voluntary or involuntary

hand movements occurring during data transmission. To overcome this, we propose a message

length based verification at the receiver. For this, if we assume that the receiver knows the length

of the incoming message, or that the message length is fixed. Incorrectly or erroneously received

messages can be easily identified (and flagged) based on bit length mismatches. In case of such

a mismatch detection, the receiver can request a re-transmission. We observe that using such a

heuristic significantly improves the BERs in our custom hardware setup, where BERs dropped

below 0.04 when erroneously received messages are correctly identified for re-transmission.
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3.4.9 In-Depth Analysis

Bit Rate vs Error Rate

As discussed before, to gain higher transmission speeds we can reduce the ON times of the

encoding algorithm, but this directly affects the accuracy which can be seen in fig. 3.10a. At

higher bit rates, starting around 7 bps, BER steadily increases. However, we believe that with the

use of more advanced, highly sensitive motion sensors that could be operated at higher sampling

rates, SkinSense could achieve higher transmission speeds while maintaining a low error rate.

Figure 3.11a shows the confusion matrix for PWM-based symbols, and we observe that most

errors occur between adjacent PWMs (e.g. 20 and 30, or 60 and 100). As previously discussed

in section 3.3.2, we chose the PWMs to be 20, 30, 60, and 100 after observing that they have

minimal confusion with each other when decoded via the accelerometer signal. However, when

testing under realistic settings with possible variations in bone structure of hands of different users,

along with variations in the way they hold a handheld device in their palm, we observed that some

of these PWM-based frequency vibrations could get picked up by an accelerometer differently.

Essentially, if we are able to use additional PWMs (i.e. vibration frequencies) as carriers to encode

data, we would be able to achieve a higher bit rate. But due to the fact that accelerometer sensors

are not able to distinctly identify some of the adjacent frequencies, it limits us from achieving

a higher bit rate. In other words, higher bit rates would come at the cost of higher error rates

(BERs). This is further confirmed by Roy et al. [157], who also highlighted in their work that

high energy vibrations, occurring in the resonant frequency band, could potentially interfere with

neighboring frequencies, which also limit the number of usable frequency bands in such vibration-

based communication schemes.

Analysis of Individual Encoding Parameters

We also analyze each of the individual parameter modes in our algorithm which we use to

encode data, i.e. PWMs, ON times and OFF times. We analyze the error rates of these modes
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Figure 3.10: Individual encoding parameters (a) Error rates vs bit rate (bit/s), (b) Error rate com-
parison.

individually to understand which modes work the best, in terms of bit rates or bit error rates.

fig. 3.10b shows individual error rates for each of these modes. We see that the time-based modes

(ON and OFF) perform the best with overall error rates less than 0.02, while the frequency-based

mode (PWMs) show a relatively higher error (0.10). Although the time-based modes work more

reliably than the PWM, the amount of modulation that can be done using time-based modes would

be limited due to them being directly affecting the bit rates/transmission speeds. Figure 3.11b

indicates the error rates for each individual symbol where numbers 1-4 are PWMs, 5 and 6 are ON

times and 7 and 8 OFF times. This further shows that time-based symbols (5-8) perform the best

as opposed to the PWM-based symbols. The observations made in fig. 3.11a is further clarified

here as it can be seen that PWMs 30 and 100 show the highest error rates due to them being

misidentified as 20 and 60, respectively.

3.4.10 Acoustic Side-Channel

Roy et al. [157] recognized the possibility of information leakage via the noise produced during

vibrations, and proposed a mechanism to jam the acoustic side-channel by emitting a noise from

the transmitter to suppress the sound produced by vibrations. They further studied the sound of

vibrations (SoV) for different surfaces that the transmitter may be placed upon, and observed that

glass surfaces cause the highest side-channel leaks, i.e. produces the loudest noise. To understand

64



20 30 60 10
0

Received Symbol

20

30

60

100Tr
an

sm
itt

ed
 S

ym
bo

l

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

(a)

1 2 3 4 5 6 7 8
Symbol

0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r R
at

e

(b)

Figure 3.11: (a) Confusion matrix of transmitted and received symbols. (b) Per symbol error rate.

Table 3.2: Ratio of sound intensity of vibration signals to ambient noise.

Setup Lab Apartment Vehicle Supermarket
Custom hardware setup 2.11 2.20 0.92 0.80
Consumer level smartphone 1.46 1.52 0.63 0.58

the severity of such a vulnerability in our proposed system, we similarly measure the SoV when

a hand is used as the communication medium. Table 3.2 provides the ratio of SoV of our custom

and consumer-grade device setup (recorded 2 ft away from the transmitter) to the ambient noise

at various locations including, a school laboratory, an apartment, inside a moving vehicle and in

a supermarket. The lower the ratio (closer to zero), the quieter the SoV is relative to the ambient

noise, thus, reducing the risk of acoustic leakage. We observe the SoV to ambient noise ratio to

be high in quieter locations such as an apartment or a school lab, while the ratio falls below 1

for louder locations such as a vehicle or a supermarket. This is in contrast to Roy et al.’s [157]

results, where the ratio was around 1.5 for all these locations. Compared to the consumer-grade

smartphone setup, our custom setup (as seen in table 3.2) produces much louder sound ratios,

which is likely because of the vibration motor being mounted on the custom handheld device

without an enclosure. The acoustic leakage from SkinSense is significantly lower when consumer-

grade mobile devices are used due to the enclosed nature of the vibration motor in such devices. We

believe that this threat can be minimized by employing an acoustic jamming mechanism similar to

the one proposed by Roy et al. [157] by utilizing a speaker near the transmitting device.
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3.4.11 Practical Significance of the Bit Rate

To understand the practical usefulness of the bitrate afforded by SkinSense, we further analyze

the transfer time for practical device-to-device secrets such as 4-digit PINs and 8-character pass-

words. For this analysis, we consider the data transfer scenario from the hand-held device to the

wrist-wearable at a distance of 7.5 cm. We observe that transfer of a 4-digit PIN takes a little more

than 5 seconds, while an 8-character password takes approximately 10 seconds. Although these

transfer speeds are considerably slower compared to short-range radio technologies such as Blue-

tooth and NFC, it must be noted that SkinSense is envisioned to be only used as a potential secure

side-channel to supplement traditional radio-based communication channels. Specifically as ob-

served above, SkinSense can enable usage scenarios such as securely proving device co-location or

secure authentication in the absence of reliable radio channels by enabling sharing of short secrets

at reasonable side-channel speeds.

3.4.12 Energy Requirements

To evaluate the energy requirements of SkinSense, we conducted an experiment to measure the

amount of battery energy consumed over time. For the transmitter, we tested on two smartphones

by sending 30 messages over a period of 1 hour. For the receiver, we tested two smartwatches

by running the motion sensor data collection for 30 messages over a period of 1 hour. As seen in

table 3.3, energy consumption is only around 150 mAh for Moto G7 Plus (2019) which is a newer

device with Android 10, compared to the 300 mAh for an older smartphone, Nokia 6 (2016), with

Android 9. The receiver smartwatches show a similar energy consumption pattern with the newer

Ticwatch with only 12 mAh consumption compared to 14 mAh in the older Sony W3.

Table 3.3: Energy consumption.

Device Battery Capacity Energy Consumed
Sony W3 420 mAh 14 mAh
Mobovi Ticwatch E 300 mAh 12 mAh
Nokia 6 3000 mAh 300 mAh
Moto G7 Plus 3000 mAh 150 mAh
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Table 3.4: Comparison with related works.

Related Work Setting Sensors Technique Used Data Rate Performance
VibeRing Ring on finger to device Accelerometer Machine Learning

based
12.5 bps 0.05 (BER)

Ripple 2 devices on a solid sur-
face

Accelerometer Frequency domain
based

200 bps 0.017 (BER)

Vib-Connect 2 devices in direct contact
(mobile phone and laptop)

Accelerometer Time domain thresh-
olding based

Not men-
tioned

100% (Accuracy)

SYNCVIBE 2 devices in direct contact Accelerometer Time domain based 20 bps 0.005 (BER)
SecureVibe Device on top of a im-

planted medical device
Accelerometer Time domain based 20 bps Not mentioned

Skin Sense (this
work)

Between handheld device
to wrist-wearable via skin

Accelerometer Frequency time domain
domain based

6.6 bps 0.10 (BER)

3.4.13 Comparison with Previous Works

Sen and Kotz [167] proposed a vibration-based communication scheme using a smart ring,

where the smart ring act as the vibration transmitter to communicate with Internet-of-Things (IoT)

devices embedded with accelerometers. They were able to achieve a BER of 0.05 with a bandwidth

of 12.5 bps. Similar to many of the above mentioned works, their smart ring transmitter was re-

quired to be in direct contact with the receiver IoT device for reliable communication. The closest

work to ours, in terms of using the human body/skin as the communication medium, is by Ma et

al. [114]. They proposed a Multiple-Input-Multiple-Output (MIMO) communication scheme using

two vibration motors and two piezo transducers. Due to limitations of vibration motors such as

ramping time and the volatile nature of human skin as a channel, they use two motion sensors (ac-

celeromter+gyroscope) embedded at the transmitter side, in order to acquire and utilize additional

Channel State Information (CSI) by employing deep learning. Their MIMO scheme was able to

achieve a MIMO capacity of about 5 bps/Hz, which is more than twice the capacity that could

be achieved using a comparable Single-Input-Single-Output setup. However, there are several

drawbacks in their proposal. First, their scheme is not very practical because it relies on extremely

customized hardware and setup, often not found in commercial mobile and IoT devices. Moreover,

their scheme employs deep learning algorithms that typically require large amounts of training data

for acceptable performance, which may not be trivial to obtain for all communication settings, con-

ditions, and individual users. Lastly, performance evaluation of their scheme was done using data
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from only two human subject participants, and so it is unclear how generalizable their results are.

Another similar work (SecureVibe) which uses skin as a medium was proposed by Kim et al. [94]

using a smartphone vibration motor and a custom made implantable medical device equipped with

an accelerometer. Although, their work achieves bit rates around 20 bps, their setup requires the

smartphone to be directly on top of the implanted device under the skin with only 1 cm distance

between the motion sensor and the smartphone. We demonstrate that SkinSense framework could

be effective up to a distance of 15 cm between the handheld smartphone (vibration motor) and the

wrist wearable (motion sensor). Further, their work was only evaluated using an emulated human

body model and not on actual human subject participants. In contrast, SkinSense is proposed for

two externally held/worn devices, and the communication protocol was tested with human subject

participants. Shah et al. specifically studied the vibration propagation via skin of human arm and

reported that even at a mere distance of 4 cm [169], the vibration intensity drops around 70-80%

and continues to drop over 90% at distances over 8 cm. In contrast, in a rigid medium such as a

wooden board, the authors of Ripple [157], observe that vibration intensity gradually increases up

to 15 cm before attenuating. This allows them to use 10 different vibration amplitudes to transmit

data and still be able to accurately distinguish them during the demodulation to achieve a relatively

higher data rate of 200 bps. It should be noted that on a medium with low rigidity such as the

human skin, propagation of the vibration signal attenuates much more quickly at longer distances.

This makes SkinSense’s design challenge a rather non-trivial one and with the same token makes

adaptation of techniques employed by protocols such as Ripple [157] in this scenario infeasible.

3.5 Discussion

User’s Perception and Preferences. As vibrations carried by the human skin/body is per-

ceptible to the end-user, we deployed a short survey to our 13 participants to gauge their feelings

about the SkinSense protocol. Based on the received survey responses, 38% of the participants

noted that they were not bothered by SkinSense’s operation, while 54% were bothered slightly

and only 8% were highly bothered. Although users can take advantage of SkinSense by easily
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switching (or transfering) the hand-held device to the wrist-wearable device hand, we also studied

users’ preferences regarding SkinSense usage. When asked about which hand they use to hold a

handheld device/smartphone, around 62% answered that they use the same hand as the wrist wear-

able wearing hand followed by 23% who use both the hands. The remaining 15% said that they

use their non-smartphone holding hand to wear the wrist wearable. Findings of this short survey

does indicate that a vibration-based communication protocol such as SkinSense is usable (from an

end-user perspective) in practice, although more extensive usability and user-satisfaction surveys

are needed.

Other Side-channels. In addition to the acoustic side-channel threat, there is a possibility of an

attacker physically attaching an eavesdropping motion sensor to the communication surface [157].

We believe that such a type of threat is unlikely in our proposed communication setup/protocol

because we use the human body/skin as the communication channel. An adversary is unlikely to

be able to directly attach an eavesdropping device to a victim user’s body/skin without their cog-

nizance. The transmitted messages could also be encrypted to further minimize the possibility of a

contact based attack. Further from the security perspective, as SkinSense’s main goal is to provide

a secure channel against external eavesdropping devices, we assume that both the transmitter and

receiver devices are fully trusted, executing only trusted (or non-malicious) apps.

3.6 Related Works

Vibration-based communication techniques that employ vibration motors and motion sensors

(esp. accelerometers) have been previously studied for various forms of underlying communication

mediums (or channels), such as hard surfaces, direct device-to-device contact, and also via human

skin. Yonezawa et al. [203, 204] proposed a mechanism to send information from a smartphone

to a laptop computer and achieved a data rate up to 10 bps. Their proposal encodes information

in a vibration signal emitted by the smartphone, which needs to be kept in physical contact of the

laptop, and the laptop detects the vibrations (with the encoded information) via an embedded or on-

board accelerometer. Lee et al. [98] proposed a similar communication framework (SYNCVIBE)
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where the 2 devices require physical contact using a smartphone as a vibration transmitter and an

external accelerometer device as a receiver attached to it and were able to achieve data rates around

20 bps with a BER of 0.005. Hwang et al. [84] proposed a similar communication mechanism, but

between two smartphones placed on a solid surface, such as a wooden table, metal or plastic shelf,

a stack of paper, and a cushioned chair. Their scheme achieved over 90% accuracy for all the

surfaces when the devices are placed roughly 25 cm from each other. However, the accuracy drops

significantly when the two devices are too close (10 cm) or too far apart.

Roy et al. [157] proposed a similar communication framework, named Ripple, which achieved

a data rate of up to 200 bps by using custom off-the-shelf vibration motors and accelerometer chips,

and up to 80 bps by using consumer smartphones. However, like Hwang et al. [84], they employed

solid surfaces such as wooden and glass tables as the communication medium (or channel) in their

scheme. In a follow-up effort, Roy et al. [156] proposed another vibration-based communication

technique, but this time by using a microphone instead of an accelerometer as the receiver. Eval-

uation of their follow-up proposal showed that a smart ring with a vibration motor can achieve a

bandwidth or data rate of around 7 kbps, while for a smartwatch the bandwidth drops to 2 kbps.

However, an important requirement of their scheme was that the transmitting device had to be in

close proximity to the microphone-based receiver to achieve these bandwidths.

In addition to these wearable device based related works, several other works have explored

cyberphysical systems such as UAVs to propose the use of acoustics of their motors for communi-

cation and fingerprinting [24, 148].

When considering non-radio based body area networks, several other technologies have been

proposed in the literature. One such area is the use of bioacoustics [175, 206]. Zhang et al. [206]

proposed a method for communication by using a bone transducer as a transmitter and an ac-

celerometer as a receiver. However, acoustic based methods are often too sensitive to background

noises and are susceptible to eavesdropping attacks. Apart from acoustics, more recent works have

explored the use of optical based wireless communication [41, 53]. A major drawback in optical

techniques is the line of sight requirement where each device in the body should be in the view of
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the other in order for the communication to succeed.

3.7 Conclusion

In this work we explored a novel form of communication between a handheld device and

a wrist wearable by using a vibration motor transmitter and accelerometer-based receiver with

human skin/hand being used as the communication medium. Since the human hand could have

various anatomical and biomechanical differences among different people, we tested our proposed

scheme under multiple realistic settings with 13 human subjects. Our proposed scheme was able

to achieve a sustainable bandwidth of 6.66 bps while keeping the BER below 0.10. Although, the

current consumer level smartphones and wrist wearables have limitations, resulting in our scheme

not being able to perform optimally, we believe that our work opens up further research in the area

related to vibrations and human body-area communication channels.
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CHAPTER 4: SENSORY SIDE-CHANNEL ATTACKS ON WEARABLES:

HANDWRITING INFERENCE USING WRIST-BASED MOTION

SENSORS REVISITED.

*The contents of this chapter and the reported experimental results have previously been published
in the Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Net-
works (WiSec, 2019), co-authored by Raveen Wijewickrama, Anindya Maiti and Murtuza Jadliwala
(in that order). The contents of the published manuscript has been reproduced here with revisions.

4.1 Introduction

Inference of sensitive user data by employing on-board sensors as information side-channels

has been a significant privacy concern ever since the inception of commercial, consumer-grade

wearable devices such as smart watches and fitness bands. Several proposals in the research lit-

erature have already demonstrated how data from zero-permission wrist-wearable sensors can be

abused to infer keystrokes, user-activities, and behavior [90, 104, 115, 117, 118, 132, 159, 174, 189,

191, 196]. In the same vein, multiple research efforts have also demonstrated the feasibility of

inferring handwritten text using motion sensors (such as accelerometers and gyroscopes) present

onboard these wrist-wearables. Some of the initial efforts in this direction showed the feasibility

of inferring larger handwriting gestures, such as, writing on a whiteboard [19] or using hand/finger

movements to write in the air [8, 9, 199]. More recent efforts have focused on inferring smaller

and more natural handwriting gestures, such as, writing on a paper with pen/pencil [198]. Some

of these works were presented with an adversary in mind, whereas others were presented merely

as a mobile/wearable application or service. In this work, we focus on the problem of inferring

handwritten text primarily from an adversarial point of view.

While these earlier research efforts concluded that their inference/classification frameworks

were able to infer handwritten English letters and words from wrist-wearable motion data in an ac-

curate and feasible manner, we observed that several of the assumptions made by them (implicitly

or explicitly) were either not realistic or impossible to include in an adversarial setting. For exam-
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ple, Amma et al. [9] used specialized motion sensors and custom wrist-wearable hardware in their

inference framework, which could sample at more than 800Hz. However in practice, most com-

mon commercially-available smartwatch and fitness-band motion sensors have maximum (peak)

sustainable sampling rates of around 200Hz. The availability of such specialized sensors and

hardware, and the extremely fine-grained motion data generated by it, may result in an accurate

inference of handwriting, but would be difficult to assume in an adversarial setting where the tar-

get user is probably just wearing a consumer-grade wrist-wearable with sensors that have limited

capabilities. Other limitations of some of the previous works include testing primarily in a person-

alized setting (training and testing data collected from the same participant), vague definition of

segmentation techniques used to separate individual sentences and words, and disregard for vary-

ing writing styles of the same target user. The absence of these factors in their evaluation also gave

us the impression that their data may have been collected in a tightly controlled fashion, which is

not reflective of participants’ natural handwriting and/or writing in a natural setting.

Motivated by these shortcomings of existing research efforts, in this work we attempt to val-

idate if the current empirical results on handwritten text inference using wrist-wearable motion

sensors are generalizable and applicable under more practical adversarial settings and handwriting

scenarios. Broadly, our goal in this work is to evaluate if existing handwriting inference frame-

works are a genuine and realistic threat to a wrist-wearable device user’s privacy and security. In

order to accomplish this goal in a structured fashion, we first closely replicate the four most notable

inference frameworks in this direction, specifically, the ones defined by Xu et al. [199], Arduser et

al. [19], Amma et al. [9], and Xia et al. [198]. Next, by means of contemporary, consumer-grade

wrist-wearables, we collect natural handwriting related motion data from a large number of human

subject participants in an unconstrained and non-restrictive setting for a variety of different writing

scenarios. In order to showcase why it is much more difficult to infer natural handwriting, we

then perform a detailed comparative analysis of our results with those obtained by previous efforts,

across different writing scenarios. Our final contribution is an in-depth discussion on the factors

that affect the success of handwriting inference attacks in real-life, supported by data and results
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obtained from our experimentation.

4.2 Adversary Model and Background

Before outlining details of our replication and validation experiments, let us first provide an

unambiguous description of the adversarial setting and capabilities assumed in this work, followed

by a brief technical background of handwritten text inference. We also provide a detailed review of

the four notable wrist motion-based handwriting inference schemes in the literature and summarize

the key research gaps that we attempt to fill in this work.

4.2.1 Adversary Model

The use of hands (and gestures) to compose lingual texts continues to be one of the most

prevalent methods of communication and many of these handwritten or hand-gestured text may

contain sensitive information, such as personal identifiers and financial credentials. Our adversary

in this work is as a malicious actor or entity whose goal is to infer such private handwritten text

by employing some form of an information side-channel. While there exists several types of infor-

mation side-channels, our focus in this research work is on zero-permission motion sensors (such

as accelerometers and gyroscopes) found on most modern wrist-wearable devices such as fitness-

trackers and smartwatches. Our adversary can gain access to this motion sensor information by

tricking the victim user into installing on its wearable device a Trojan or malicious application

that is masquerading as some useful application (for example, a game or a fitness application).

Once this Trojan application is installed on the victim’s wearable, it can sample and exfiltrate the

motion sensor data back to the adversary using the device’s network connection. The fact that

popular wearable operating systems like Android Wear and watchOS allow third-party applica-

tions unrestricted access to back-end sensors such as gyroscope and accelerometer (thus, the term

zero-permission), enables the malicious Trojan application to sense and exfiltrate this data without

raising any flags or violating any system security policies. By masquerading as an application that

would normally require access to these (motion) sensors for its operation, the malicious Trojan
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application can achieve further stealth.

Once the adversary is able to remotely archive this exfiltrated sensor data, say, on its computa-

tion server, he can analyze it in an offline fashion to infer the actual written information from the

data with as high accuracy as attainable. Such an adversary model is practical and has also been

commonly employed in the literature for studying similar privacy threats due to zero permission

mobile and wearable device sensors [104, 115, 117, 119, 159, 190, 191].

In this work, we limit ourselves to the problem of inferring handwritten text in the English lan-

guage only. This enables us to have a comprehensive and equitable comparison with other research

efforts that have also inferred only English language written text. Additionally, we also assume that

our adversary only employs the victim’s hand movement data while writing, as perceptible on the

victim’s wrist-wearable motion sensors, for the inference attack. The adversary does not employ

additional information, such as contextual dictionaries on the topic of writing and victim’s lan-

guage abilities, in order to improve the accuracy of the inference attacks. This is done to keep the

adversary model practical and to achieve an equitable comparison with the inference frameworks

being evaluated in this work. That being said, the adversary is free to use a generic language

dictionary and well-known spelling correction techniques for improving handwriting inference.

4.2.2 Inferring Handwritten Text from Wrist Movements

Any framework for inferring handwritten text from wrist movements (or wrist motion sen-

sor data) would ideally comprise of the following two key phases: (i) identifying the writing and

non-writing parts in the sensor data stream in order to segment strokes, alphabets, words, and

sentences, and (ii) using the segmented sensor data to perform character, word, or sentence recog-

nition/classification. However, before we outline a concrete technical framework for handwriting

inference from motion sensor data, let us first characterize the different writing styles and writing

elements that may vary from person to person, and sometimes also for the same person. Writing

in English language can be broadly categorized into the following two styles: lower versus up-

per case writing, and cursive versus non-cursive writing [30]. Irrespective of the style, writing in
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Figure 4.1: Generalized attack framework.

English (or any other) language comprises of drawing a series of alphabets, where each alphabet

is nothing but a series of one or more strokes made with a writing apparatus such as a pen. A

stroke can be defined as a continuous line drawn in one go, starting with a “pen-down” action and

ending with a “pen-up” action. The same concept applies to all forms of writing, except that the

pen can be replaced with another writing apparatus. Each handwritten alphabet can be uniquely

described by the number, direction and order of strokes. It is possible to write the same alphabet

in different cases with different number, direction and order of strokes. Even in the same case,

the same alphabet can be written using a different number, direction and order of strokes. As a

matter of fact, a written alphabet comprising of n strokes can have n! different stroke order and

directions depending on the writer. Thus, it is easy to imagine that handwriting related wrist or

hand movements could differ significantly even for the same alphabet. For example, written in

the same case, but with different number, direction, and/or order of strokes. These differences in

movement are reflected on the motion sensors located on writer’s wrist, resulting in different sen-

sor data streams for the same alphabet. This is a significant challenge that must be overcome by

any motion-based handwriting inference framework. It is worth pointing out that wrist movement-

based handwriting inference is significantly different, and more challenging, than traditional image

or pixel-based handwriting recognition [133, 144], primarily because image or pixel data does not

include/consider information about the number, order and direction of strokes.
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4.2.3 Previous Work and Motivation

As noted earlier, we are not the first to investigate handwriting inference threats using wrist-

wearable motion sensors as an attack vector. Multiple previous research papers have demonstrated

the feasibility of inferring different forms of handwritten information from motion data collected

by means of wrist-wearables. We are particularly interested in the following four forms of hand-

writing scenarios that were evaluated earlier, primarily because they are the most commonly ob-

served in real-life situations: (i) pen(cil) and paper writing [198], (ii) whiteboard writing [19], (iii)

finger writing [199], and (iv) air writing [7–9]. In this section, we describe the main strengths and

shortcomings of these earlier research efforts, and outline our primary motivation for revisiting the

problem of handwriting inference using wrist-wearables.

Pen(cil) and Paper Writing: Xia et al. [198] proposed an eavesdropping attack on the classi-

cal pen and paper based writing scenario using motion data recorded from a smartwatch worn on

the writing hand. The threat was accomplished using wrist motion data that was sampled from

the smartwatch’s accelerometer and gyroscope at 200Hz. Most modern smartwatches and fitness

tracker motion sensors do support this sampling rate. The authors’ employed a thresholding based

word-wise segmentation on the continuous accelerometer data followed by an alphabet-wise seg-

mentation using the gyroscope signal before classifying individual alphabets. The authors’ did

study a generalized setting for their classification algorithm, where training and testing data from

different participants was used, making it realistic because it is generally difficult (or impossi-

ble) for an adversary to collect labeled training data from the victim or target. Given the above

strengths, this work also has several shortcomings. First, the proposed inference framework is lim-

ited to non-cursive handwriting, and only lowercase alphabets were evaluated with the argument

that, it can be easily extended for uppercase alphabets. Moreover, the framework is also difficult

to replicate and generalize to other writing scenarios and settings due to the use of fixed thresholds

(during segmentation) and specific features (during alphabet inference).

Whiteboard Writing: Arduser et. al [19] proposed an inference framework that employs ac-

celerometer and gyroscope data from a target victim’s smartwatch to infer text written on a white-
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board. Besides the standard learning-based alphabet classification routine, the inference framework

comprised of a pre-processing routine that first converted the motion data from device coordinates

to whiteboard coordinates, which eliminated the effect of watch orientation when writing on dif-

ferent (top or bottom) areas of the whiteboard. Moreover, the motion data was sampled from

standard consumer-grade smartwatches, which shows that such threats can be executed in the wild

without using any specialized hardware. This research effort also suffers from several significant

shortcomings. First, the proposed inference framework was used to evaluate only uppercase al-

phabets. Moreover, it is unclear whether the proposed framework can be easily replicated and

generalized to other writing scenarios and settings as critical parameters (and description) related

to the coordinate conversion routine and employed sensor sampling rates are unavailable. Lastly,

it is unclear whether the provided empirical results are for a personalized (training and testing data

from the same participant) or a generalized (training and testing data from different participants)

classification setting.

Finger Writing: Xu et al. [199] investigated the problem of alphabet recognition (with each char-

acter approximately 2.5′′× 2.5′′ in size) when writing using the index finger on a surface by means

of a Shimmer [172] device worn on the wrist of the writing hand. One of the most significant

outcome of this research effort was that the authors were able to obtain very high (more than 90%)

inference accuracy for their proposed inference framework. At the same time, one of the biggest

drawback of their work was the use of sophisticated Shimmer devices in the inference framework,

which are not as ubiquitous and popular as commercially available smartwatches and fitness-bands.

In addition to this, the proposed inference framework was used to evaluate only writing of upper-

case alphabet letters. This raises serious concerns about the broad applicability and generalizability

of the proposed framework to other wrist wearable hardware and writing scenarios/settings. Also,

the paper neither mentions the total number of unique participants for which the proposed inference

framework was evaluated, making it hard to understand the statistical significance of the obtained

results, nor does it provide details on whether a personalized or a generalized setting was used for

the classifier evaluation.
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Air Writing: Amma et. al. [7–9] proposed an input mechanism (named airwriting) which de-

tects and classifies hand writing gestures in the air using the motion sensor data collected from a

specialized sensor-integrated hand glove. By comprehensively evaluating their inference frame-

works in both personalized and generalized settings, the authors show that it is possible to obtain

a reasonably high inference accuracy in this writing scenario/setting. However, while the use of

a custom-designed hand glove capable of sampling motion sensors at 819.2Hz is viable for en-

abling novel HCI applications, such kind specialized hardware is not very popular and ubiquitous.

This significantly limits the applicability of the above inference framework and the related results

in an adversarial setting. Moreover, the proposed inference framework was used to evaluate only

uppercase words from a dictionary as it did not include appropriate segmentation algorithms for

separating out the alphabets within each word. This reliance on a dictionary for executing the in-

ference algorithm significantly limits the type of information that can be inferred and is not very

practical or realistic in an adversarial setting.

As evident from the strengths and shortcomings of each of the above research efforts, it was

difficult for us to reasonably estimate whether these threats to users’ handwritten information from

current consumer-grade wrist-wearable sensors is practically feasible or not. And if it is, how

would such an attack perform across a diverse group of users with different and unique handwriting

styles? And, is there a way to develop a unified inference framework that will not only work against

diverse handwriting styles, but also different forms and cases of handwritten text? In order to fully

understand the extent to which end-users must be concerned about the possibility of such attacks

in real-life, it is paramount for us to answer these questions. As outlined earlier, we were unable

to find these answers in the current research literature. In this work, we attempt to seek these

answers by closely replicating the implementation of the above four inference frameworks and re-

evaluating them in realistic adversarial settings. In the next section we give details of the replicated

experiments, and in section 4.4 we present our evaluation results obtained using these replicated

experiments.
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4.3 Experimental Setup

Due to the unavailability of publicly-available code, we replicated the inference frameworks

of the four research efforts discussed above, i.e., pencil and paper writing [198], whiteboard writ-

ing [19], finger writing [199], and air writing [8,9], as closely as possible based on the information

available in the corresponding papers. Below, we provide details of the experiments that we con-

ducted using these replicated implementations of the inference frameworks.

4.3.1 Participants and Data Collection

To account for participant diversity in our experiments (with these frameworks), we recruited

28 participants aged between 18 and 30 (σ = 4) years, seven participants for each form of writ-

ing. 13 out of the 28 participants were male, and remaining 15 participants were female. All 28

participants were recruited using fliers posted around our University campus, and as a result they

were from diverse demographic backgrounds. In order to test generalized inference models as an

adversary would, and in-line with some of the previous works, only right-handed participants were

used for the study (i.e., writing with the right hand). For the same reason, we also enforced non-

cursive writing. In order to minimize bias in the collected motion sensor data, no other restrictions

were imposed on the participants. Participants were not given any time limit to complete their

writing tasks, and were encouraged to write using their normal or accustomed handwriting style.

The entire experiment was also approved by our University’s institutional review board (IRB).

4.3.2 Writing Scenarios

Participants in our experiments were asked to wear a smartwatch (Sony Smartwatch 3 or LG

Watch Urbane, depending on the experimental scenario as detailed later) on their writing hand and

perform the assigned writing tasks (as described below). Both accelerometer and gyroscope data

were recorded at 200Hz from the smartwatch while the participants were undertaking their writing

tasks. Depending on the writing scenario and setting, participants were provided with appropriate

writing apparatus and environment. For example, in the pencil writing scenario participants were
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Figure 4.2: Writing scenarios considered in our experiments.

provided with a pencil, a chair to sit on, and positioned near a table with a sheet of paper on top of

it (used as the writing surface). In the whiteboard writing scenario, participants were provided with

a marker pen to write on a nearby whiteboard mounted on the wall. In the finger writing scenario,

participants were provided with a chair to sit on, and positioned near a table with a touchscreen

tablet computer on top of it (8′′ Samsung GT-N5110 Android tablet, used as the writing surface).

To match with [199], the writing area on the tablet screen was designed to be 2.5′′ × 2.5′′. Lastly,

for the air writing scenario, participants were provided with a chair to sit on, and ample free space

around them to allow free movement of their arm. In all scenarios, the alphabets/words/sentence

to be written were displayed on a nearby tablet screen, except in case of finger writing where the

same tablet computer was used for both displaying the writing task and as the writing surface.

The tablet was also used to record the ground truth alphabets/words, and additional ground truth

spatial data in the finger writing scenario for in-depth empirical analysis of writing characteristics.

Figure 4.2 show the setup of all the four writing scenarios described above.

4.3.3 Writing Tasks

In all of the four writing scenarios outlined above and depicted in fig. 4.2, participants per-

formed the same set of writing tasks, where some of the subtasks were randomized in order to

minimize bias in the writing activity. The design of our writing tasks was carefully undertaken so

as to enable us to perform an equitable comparison of our results with the ones obtained earlier,

while at the same time helping us gain more insight on the impact of different writing character-

istics, settings, scenarios, etc. on the resulting inference accuracy. The writing subtasks were as
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follows:

• Alphabets. Participants wrote individual alphabets one at a time, covering all 26 alphabets

in random order, in both upper and lower cases. Each alphabet was written 10 times, for a

total of 260 alphabets written by each participant.

• Words. Participants wrote 4-8 alphabet words, one at a time, selected random from a vocab-

ulary [68]. Each participant wrote 20 words, in both upper and lower cases.

• Sentence. Participants wrote a sentence covering all alphabets of the English language, "the

five boxing wizards jump quickly", in both upper and lower cases.

In addition to the in-lab writing tasks, we also collected data from 2 participants to evaluate

writing activity recognition among other daily activities. The participants wore a smartwatch for

a day, and were asked to perform writing scenarios belonging to each of the above scenarios at

random times during the day.

4.3.4 Inference Frameworks

We implemented the targeted inference frameworks [9, 19, 198, 199] primarily using Python

3.7, making use of the machine learning library scikit-learn wherever applicable. The specific

implementation details for each of the writing scenarios are presented below.

Pencil Writing: The raw sensor data was pre-processed by using Pauta Criterion [207] to

eliminate outliers in the data, followed by a low pass filter with a range 1Hz to 25Hz. As, our

data collection already contains ground truth, no boundary detection was needed when training

individual letter recognizer models. Then, for each letter sample in the preprocessed gyroscope

data, entropy was calculated for each axis after a Fast Fourier Transform (FFT). For each axis,

amplitudes for each frequency from 1 to 25Hz were computed. The remaining processing included

finding peaks and valleys in the data and then computing features related to first peak and valley,

last peak and the maximum peak. The resulting feature vector from this computation included a

total of 115 features, which were then used to train a Random Forest classifier. Hyper-parameter
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tuning was done by using random search followed by a grid search to generate the best set of

hyper-parameters. In the word detection phase, the top-5 letter predictions for each letter of a word

were used to generate a list of letter sequences, which were then processed by a spell correcter

module based on a comprehensive (100,000 words) dictionary, in order to obtain a list of corrected

words. From the list of corrected words, the most frequently occurring word is selected as the final

predicted word.

Whiteboard Writing: The pre-processing done by Arduser et al. [19] involves converting

the data from device coordinates to whiteboard coordinates. As sufficient information about this

coordinate conversion was unavailable, we were unable to accurately replicate it. To compensate

for this limitation and still have an equitable analysis, our whiteboard writing participants were

asked to maintain a constant height when writing. The individual letters were then directly used in

a Dynamic Time Warping (DTW) algorithm for character recognition. DTW has been traditionally

used for time series alignment and calculation of a similarity distance between two time series

[168]. A part of the collected wrist motion data (of users’ handwriting) was used as templates for

each letter in the alphabet, and these templates were then aligned with the query test sequences to

compute the similarity distance score, where lower score would imply a better match. The results

presented by Arduser et al. considered the presence of a written character in the top-3 predictions

of the corresponding character as a successful inference. To compare against these results, we used

the top-3 predictions for each character from DTW, i.e. the three lowest DTW scores. In the word

detection phase, the audio collected alongside the motion data was used to segment letters within a

word. A vector was constructed by summing the absolute amplitudes between 5 to 10KHz in the

time series. Then, consecutive values greater than a threshold in this vector are combined, where

the first value above the threshold is marked as the starting point and the possible end points are

marked within a 2.5 second window from this start point. The corresponding accelerometer data

between start and end point sequences is then used in the letter recognition, and used as constituents

for word prediction.

Finger Writing: Although no pre-processing step for raw data is mentioned in [199], certain
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Table 4.1: Comparison of alphabet inference accuracies. Empty fields imply that the original work
did not test those setting.

Personalized Generalized
Lowercase Uppercase Lowercase Uppercase

Original Work Our Replication Original Work Our Replication Original Work Our Replication Original Work Our Replication
Pencil Writing (Xia et al.) – 11% – 10% 50% 6% – 5%
Finger Writing (Xu et al.) – 8% 91% 17% – 5% – 7%
Whiteboard Writing (Arduser et al.) – 51% 94% 56% – 20% – 27%
Air Writing (Amma et al.) – 14% 95% 14% – 5% 82% 9%

individual features (from the data) were required to be computed after passing the data through

a low-pass and band-pass filter. A set of features relating to motion energy, shape, posture were

computed for both accelerometer and gyroscope data over all the axes. A detailed description of

these features can be found in [130]. This resulted in a feature vector comprising of 46 features

for each character window. These feature vectors were then used to train Naive Bayes, Logistic

Regression and Decision Tree based classifier models for the character recognition tasks.

Air Writing: In this writing scenario, the raw sensor data was first normalized and then used

to extract the average amplitude for each axis (from both the accelerometer and gyroscope data

stream) resulting in a feature vector comprising of six features. These features were then used

to build and train a separate Hidden Markov Model (HMM) classifier [147] for each letter in the

alphabet, resulting in a total of 26 models. These HMMs were implemented with left to right topol-

ogy and 30 states. A Gaussian Mixture Model with six components was used to obtain observation

probabilities for each state of the HMM.

4.4 Inference Accuracy Results

In this section, we present evaluation results from our evaluation experiments with the repli-

cated inference frameworks discussed above. First, we present inference accuracy results that were

obtained in a generalized setting, followed by results obtained in a personalized setting. A sum-

mary of the inference accuracies obtained in our experiments compared with those obtained in the

original papers of the four handwriting inference schemes can be found in Table table 4.1.
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4.4.1 Generalized Inference Accuracy

The generalized models were tested by using a Leave-One-Out-Cross-Validation (LOOCV)

mechanism, where data from a single participant is used as the test set while the remaining partic-

ipants’ data is used as the training set for the corresponding classification model.

Pen(cil) Writing: The extracted feature sets for each individual alphabets, as described in the

previous section, were used in training a Random Forest classifier. Classification using the trained

Random Forest classifier in the generalized setting yielded an average accuracy for lowercase

alphabets of about 6% (σ = 1%) with alphabet "l" having the highest accuracy at 19% and all

other alphabets had accuracies below 15%. The uppercase alphabets also resulted in similarly poor

average accuracy of only 5% (σ = 2.0%) with alphabets "E" and "L" having the highest accuracy

at 17% and 16%, respectively, and all other alphabets had accuracies below 10%. In comparison,

authors of the original work [198] were able to obtain a mean accuracy of 50% (σ = 17%) for the

lowercase writing scenario. Our poor alphabet-level accuracies were reflected in word prediction

as well (< 1%). In comparison, authors in [198] obtained a word accuracy of about 33%.

Finger Writing: The finger writing inference is done using three classifiers: Decision Tree,

Naive Bayes and Logistic Regression. The classification accuracies of all the three classifiers

turned out to be poor, with only 5% average accuracy (σ = 1%) for lowercase alphabets. Similar

accuracies were also observed for the uppercase alphabets with 7% average accuracy (σ = 3%) for

all the three classifiers. Word prediction was mostly unsuccessful (< 1% accuracy) due to the low

alphabet-level inference accuracy.

Whiteboard Writing: When each participant’s dataset was tested against the templates taken

from all other participants, an average accuracy of 20% (σ = 4%) for lowercase alphabets was

observed. Alphabets "l" and "z" showed the highest accuracies at 55% and 47%, respectively,

while all other alphabet accuracies were below 30%. We were able to obtain an average accuracy

of around 27% (σ = 8%) for uppercase alphabets, where alphabets A, H, L, M, N, W, Z showed over

40% accuracy. We obtained an average accuracy of 39% (σ = 6%) for lowercase alphabets when

top-3 predictions were considered, with alphabet "o" having an accuracy of 87%, followed by "l"
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having 75% accuracy. For uppercase alphabets, an accuracy of 44% (σ = 8%) was obtained with

"L" having the highest accuracy at 72% followed by M, N, H, W, V having accuracies above 60%.

It is unclear whether the results presented by Arduser et. al [19] were obtained in a generalized

setting or a personalized one, but they were able to report a very high average inference accuracy

of around 94%.

Air Writing: In the generalized setting, our average accuracy for the uppercase alphabets was

only 9% (σ = 1%). The mean lowercase alphabet accuracy was a mere 5% (σ = 3%). The

trained HMM-based character models were then concatenated and tested to infer words. The poor

individual character inference accuracies were again reflected in word-level inferences, with less

than 1% word inference accuracy.

4.4.2 Personalized Inference Accuracy

In the personalized setting, the classification models were evaluated by splitting the (motion)

dataset of a participant into a training set and a testing set, and cross-validated wherever applicable.

Pen(cil) Writing: The dataset of each participant was split into training and testing data using

a 60:40 ratio. The alphabet inferences were poor even in the personalized setting, with only an 10%

average accuracy for uppercase and 11% accuracy for lowercase alphabets. The authors in [198]

do not provide any results for a personalized scenario mainly because their scheme was proposed

as an attack. The poor alphabet inference accuracy was insufficient for a word inference, even with

the help of a dictionary to recognize words.

Whiteboard Writing: The whiteboard writing scenario was analyzed in a personalized setting

by using 50% of the alphabet samples per participant as a training set (or set of templates for the

DTW algorithm), while testing was performed using the remaining alphabet samples. This resulted

in a 51% mean alphabet accuracy (σ = 0.13) for the lowercase alphabets, with alphabets c, p, v,

and z having accuracies over 60%. We were able to obtain a 56% mean accuracy for uppercase

alphabets (σ = 12%), with alphabets B, I, M, N, S, Z having accuracies over 70%. Figure 4.3a

shows that alphabets "n" was often misclassified with "h" (and vice-versa). Similarly, letters "i"
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and "j" were also often misclassified with each other due to the high similarity between their

strokes. Figure 4.3b shows that in the uppercase alphabets, "P" and "D" were often misclassified

with each other along with "U" and "V". We also tested the prediction accuracy by considering the

top-3 guesses. This resulted in 73% accuracy (σ = 10%) for uppercase alphabets. The alphabets C,

M, S, Z had over 80% accuracy. For lowercase alphabets, 69% accuracy (σ = 10%) was obtained,

and only the alphabets c, f, k, p, z had accuracies over 75%. In comparison, [19] presented results

only for uppercase alphabets and had a 99% accuracy within 3 guesses.

(a) (b)

Figure 4.3: Confusion matrix for whiteboard writing alphabets (a) lowercase, (b) uppercase.

Finger Writing: For this scenario, all the three classifiers were evaluated with a 60:40 train:test

ratio. We were able to observe an average accuracy of around 8% for all the three classifiers

(σ = 2%) for inferring lowercase alphabets. Inference of uppercase alphabets produced a slightly

higher average accuracy of around 17% (σ = 10%). In comparison, Xu et. al [199] had over

85% accuracy for all the three classifiers for uppercase alphabets. Word prediction was mostly

unsuccessful (< 1% accuracy) in our test due to the low alphabet-level inference accuracies.

Air Writing: For this scenario, the data set for each participant was split using a 65:35 train-

ing:testing ratio. We observed an uppercase alphabet inference accuracy of around 14% (σ = 3%).

Inference of lowercase alphabets also resulted in an average accuracy of around 14% (σ = 5%).

The individual character HMM models were then concatenated to build word models for every
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word in a vocabulary of approximately 1000 words [68]. The word-level data collected per par-

ticipant was then tested against these word models to predict words. The low individual character

accuracies were reflected in the word-level inferences and we obtained an average word-level in-

ference accuracy of less than < 1%.

4.4.3 Writing Activity Detection

Among the four handwriting schemes considered in this work, only [9] (air writing) and [199]

(finger writing) evaluated the problem of detecting writing related gestures/activities among other

activities. In real-life deployment, this step is equally essential for both HCI applications and for

an adversary trying to infer private handwritten data. Xu et al. [199] considered gestures relating

to the index finger, the hand and the arm, and classified them using the same set of features used

for alphabet inference. They obtained true positive rates of over 90%. Amma et al. [9] used

a binary SVM classifier to identify the air writing motion in a continuous motion stream and

achieved a recall of 99% and a precision of 26%. As both of these prior works used specialized

devices, while we only considered wrist motion data available from the smart watches (used in our

experiments), it was challenging to perform an equitable comparative evaluation. We replicated the

handwriting activity detection model used by Xu et al. [199], but tweaked it so that it can be used

to identify any of the four writing scenarios (i.e., pencil writing, whiteboard writing, finger writing

and air writing). In a personalized setting with a user’s labeled data included in the training, our

activity detection model achieved around 56% recall (and 57% precision) for air and finger writing

scenarios while pencil writing achieved 39% recall (47% precision). Whiteboard writing resulted

in the lowest recall value at only 23% (34% precision). When considering each writing scenario

against all the other writing and non-writing activities, whiteboard and finger writing resulted in

over 90% recall with under 40% precision, and air writing and pencil writing resulted in recall

of 78%. A generalized testing of our activity detection model achieved around 35-40% recall for

air writing, whiteboard writing and pencil writing, whereas finger writing resulted in the lowest

recall at just 8%. The whiteboard writing achieved highest precision at 65%, while the other three
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writing scenarios had a lower precision in the range of 20-40%.

4.5 Factors Affecting Inference Accuracy

As evident from section 4.4, our replicated experiments did not perform as well as some of

the previous works. In this section, we analyze the factors that we believe were the main causes

of the poor inference accuracies, which indirectly determines the practicality of such handwriting

inference attacks in real-life settings.

4.5.1 Number of Strokes

One of the main factors that influences a person’s handwriting (and thus, its inference by the

described frameworks) is the number of strokes the person uses to write each alphabet of a lan-

guage. During our experiments, we observed varying writing styles among different participants

which effectively resulted in varying number of strokes (across participants) for writing the same

alphabet. Figure 4.5a and fig. 4.5b shows that the same alphabet is written using different number

of strokes by different participants. For lowercase alphabets, we observed that a, b, d, e, f, g, h, k,

p, q, w, x, y and z have varying number of strokes. For alphabet k, we observed some participants

used just one stroke and some other participants used up to three strokes. Uppercase writing shows

more variation in number of strokes compared to lowercase writing, where except for alphabets C,

H, O, S, U and W, all other alphabets show variations. Notably, the alphabet E was written using

number of strokes ranging from three to four.

We also observed that even the same participant sometimes use varying number of strokes for

the same alphabet. Figure 4.4 shows the mean of variances for the number of strokes calculated

per participants. It is observed that except for alphabets c, o, q and s, all other lowercase alphabets

show some variance in the number of strokes used. In uppercase alphabets, only C, L, O, S, U, V,

W and X were consistent when it comes to the number of strokes used. The high variance of k is

possibly due to the multiple ways that alphabet can be written, in which number of strokes ranging

from one to three can be used to write it. Similarly, for alphabet E, possible methods of writing
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includes using number of strokes ranging from two to four (considering a stroke to be the writing

segment from one pen-down to the next pen-up).
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Figure 4.4: Variance in number of strokes per alphabet per participant, averaged for all partici-
pants.
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Figure 4.5: Number of strokes for the same letter for different participants.

4.5.2 Order of Strokes

Additionally, we also observed that alphabet letters written using more than one stroke intro-

duces another element of confusion, which is the order in which the strokes are written. A simple

example would be writing uppercase alphabet T, in which we predominantly observe two strokes.

These two strokes can be either written as a horizontal stroke followed by a vertical stroke, or vice

versa. Such variations in order of strokes is likely to cause high degree of misclassification during

inference.
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(a) Writing Style 1 (b) Writing Style 2

Figure 4.6: Different ways of writing alphabet uppercase N.

(a) Writing Style 1 (b) Writing Style 2

Figure 4.7: Different ways of writing alphabet lowercase y.

4.5.3 Direction of Strokes

Another important factor, especially considering that we are using motion signals to infer hand-

writing, is the direction of the strokes used to write an alphabet. One common way of writing f is

starting from the curved top and writing the vertical stroke, followed by the horizontal stroke. But,

depending on a person’s writing habit, one could also write f with a vertical stroke from the bottom

and curve it on the top. Figure 4.6 shows how two different participants have written the alphabet

N. One participant started from the bottom of the first vertical stroke and continued the same stroke

to end of alphabet. The other participant started the first vertical stroke from the top and then went

up through the same stroke to complete the alphabet. This is a clear depiction of how even the

direction of strokes differ among various writers. Further, the overall shape of the alphabets also

could differ across participants. Figure 4.7 shows two different styles of writing lowercase y with

a curved style strokes and non-curved strokes. Such variations in direction of strokes is likely to

cause high degree of misclassification during inference.

91



4.5.4 Training Data Relevance

Even the same person can write differently based on the time, location, or some other con-

text. The variations of number of strokes can be assumed as a possible indicator of such context-

depended writing characteristics. For example, while in haste a writer may choose to use lesser

number of strokes than usual for writing an alphabet letter or write certain alphabets differently

than usual, whereas in more leisurely settings, the same writer may be more careful and consistent

in his/her writing. Also, the previous alphabet could affect how the next alphabet is started when

writing in a natural setting. This specific transition motion that occur between alphabets, could

vary mainly based on how the previous alphabet was written, i.e. the number and/or the order of

the strokes. And these transition motions intrinsically could affect alphabet classification, because

the writing motion of an alphabet preceded or followed by the transition motion could easily be

mistaken for a totally different alphabet. To this end, the authors of air writing [9] specified that

they used a separate HMM model for such transitions, but do not provide details on how the data

to train this model was obtained. And as pointed out above, these factors vary based on the writer

and also the writing conditions (time, location, writing surface, pen/pencil used, position, etc.).

Therefore, training such a model would be a complicated task due to the highly irregular nature of

these transitions.

4.5.5 Uppercase vs Lowercase

Most of handwriting inference or recognition related works in the literature consider only one

of the alphabet cases, i.e., lowercase or uppercase, along with claims that their framework can be

easily extended to perform inference in the other case. However, we observed that frameworks

which rely on feature-based parametric classifiers do not extend well into the other case. This

was observed for finger writing and air writing in which the original frameworks only considered

uppercase, and our results indicate slightly better accuracy for uppercase alphabets over lowercase

alphabets. Authors of pencil writing [198] utilized highly specific features designed to assist in the

classification of alphabets normally containing exactly two strokes, such as f, i, j, p, t, and x. As a
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result, it is unclear how such features would perform for uppercase alphabets which can have more

(or less) than two strokes.

4.5.6 Wearables Not on the Writing Wrist

According to an ongoing online study [4] taken part by more than 5667 participants, only about

39.93% users prefer to wear their watch on their dominant hand. This indicates that a majority of

users would wear their (smart)watch or fitness band on their non-dominant hand, or in our context

the non-writing hand. Needless to say, the outlined handwriting inference attacks using wrist-

wearable motion sensors will fail if the eavesdropping smartwatch or fitness-band is not worn on

the writing hand.

4.5.7 Specialized Devices

As mentioned earlier, the original air writing [9] and finger writing [199] works used special-

ized hardware, such as a glove with a much higher sampling rate (more than 800Hz) than that

supported by consumer-grade smartwatches. Such specialized hardware is advantageous to an

attacker since it allows capturing more sensitive and comprehensive information on hand move-

ments. While the requirement of specialized hardware currently limits the scope of handwriting

inference attacks, recently researchers have shown that consumer-grade smartwatches may have

more potential than previously known. For example, Laput et. al. [97] show that consumer-grade

smartwatch OS impose an artificial limit on the sensor sampling rate, which can be bypassed by

modifying the OS kernel. With a modified kernel, Laput et. al. [97] were able to record ac-

celerometer data at 4KHz in order to detect hand gestures and detect objects grasped by the hand.

Therefore, it is possible that in future, sensor sampling rate becomes much higher in smartwatches,

which would allow adversaries to capture more sensitive hand motion data capable of more accu-

rate handwriting inference.

93



4.6 Discussion

4.6.1 Limitations

Our main objective in this work was to investigate whether state-of-the-art wrist motion based

handwriting inference techniques do actually work “as advertised” in realistic (uncontrolled and

unconstrained) writing settings and scenarios. Our overarching goal was to determine if these

schemes pose a significant privacy threat and can be deployed as a feasible adversarial tool to infer

sensitive handwritten text. Although we demonstrate that existing wrist motion-based handwriting

inference techniques do not perform well in realistic writing scenarios using modern consumer-

grade wrist wearable devices and would not be very feasible adversarial tools, our work stops

at that point. In this work, we do not make any attempt to propose novel inference frameworks

that outperform the existing ones considered in the earlier research efforts. However, the lessons

learned from this research effort will definitely be useful in such endeavors in the future.

Despite our best efforts to collect participant handwriting data in a natural and unconstrained

setting, we were obviously not able to capture all possible writing situations. Our data collection

was still in a conventional writing setting and we did not include/evaluate non-conventional scenar-

ios such as writing too quickly (due to one being in a haste) or writing too slowly. Moreover, our

experiments only considered a set of standard and popularly used writing apparatus and surfaces,

and we did not evaluate these existing inference mechanisms for a variety of other alternate writing

tools (such as stylus, marker, chalk, etc.) and surfaces (such as curved or angled writing surfaces).

It should also be noted that while participants were given complete freedom (and recommended)

to write in a natural, unconstrained fashion (with the only limitation being non-cursive), we were

unable to control environmental factors such as preferred ambient light and temperature which can

also potentially impact a person’s natural writing ability or style. Furthermore, all the wrist mo-

tion based handwriting inference schemes analyzed in this work consider only non-cursive writing

scenarios primarily because of the inherent complexity of inferring inter-connected letters within

a word in cursive writing. In addition to this, these schemes only collected data from right-handed
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writers for consistency reasons. In order to accomplish an equitable comparison of the obtained

inference results, we also carried out our data collection experiments only for non-cursive hand-

writing and for right-handed writers. A more comprehensive analysis in this direction should also

include data from left-handed and cursive writers.

4.6.2 Replicability

When trying to replicate the results of previous handwriting inference works, a significant

amount of our efforts went in to re-implementing the inference frameworks and re-collecting data

in realistic unconstrained writing settings. Our research would have been less demanding if au-

thors of these earlier works would have made their research reproducible. Unfortunately, this is not

surprising as replicability has been a significant issue in the security and computer systems com-

munity [47, 88]. To make our research effort more useful to the community, we have made all our

data and source code publicly available. A web link to these artifacts can be found at the end of this

section. Researchers working in the same domain will now be able to comparatively analyze their

proposals to the existing ones in the literature. Artifacts: https://sprite.utsa.edu/art/dewristified

4.7 Conclusion

In this research work, we investigated how frameworks on wrist-wearable motion sensor based

handwriting inference attacks perform in realistic day-to-day writing situations. We carefully an-

alyzed the major factors that bring complexity to wrist motion based handwriting recognition by

highlighting specific ambiguities we observed in the order of the strokes, number of strokes, and

direction of strokes when writing a character, followed by the overall shape of a character. In

addition to these writing characteristics being different among different users, we also observed

inconsistencies within the same user’s handwriting. Our investigation depicts that due to highly

varying nature of handwriting from person to person, wrist motion sensor based inference attacks

are unlikely to pose a substantial threat to users of current consume-grade smartwatches and fitness

bands.
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CHAPTER 5: SENSORY SIDE-CHANNEL ATTACKS ON WEARABLES:

KEYSTROKE INFERENCE USING MULTI-SENSOR DATA FROM

HEADPHONES

*The contents of this chapter and the reported experimental results are currently under review at
The Network and Distributed System Security (NDSS) Symposium 2025, co-authored by Raveen
Wijewickrama, Maryam Abbasihafshejani, Anindya Maiti and Murtuza Jadliwala (in that order).
The contents of the manuscript has been reproduced here with revisions.

5.1 Introduction

A headphone (or earphone) has become a ubiquitous computer peripheral which enables a more

private and personal experience for users in a variety of online communication and entertainment

applications. Similar to other mobile device hardware, modern headphones also come equipped

with a multitude of sensors that play a pivotal role in enhancing the overall user-experience and

functionality (of the hardware). Among these sensors onboard modern headphones, two of them

stand out: (i) accelerometers for their ability to detect motion, and (ii) high-definition microphones

that enable high fidelity voice sensing and recording.

Most modern headphones incorporate multiple microphones and accelerometer sensors to en-

able advanced features and applications such as wearing detection [13], gesture controls [39, 57],

adaptive noise cancellation [183], spatial audio [122], and fitness tracking [145, 151]. However,

integration of advanced sensors on a device such as a headphone also presents potential security

and privacy challenges. Due to their proximity to the user and surrounding devices/peripherals

(e.g., keyboards and mouse), combined with their multi-sensing capabilities, headphones pro-

vide a unique vantage point for surreptitiously capturing sensitive user data such as inputs and

keystrokes. Despite the possibility that headphones could present a novel and attractive attack sur-

face for eavesdropping sensitive information (e.g., keystrokes), the feasibility of such threats has

not received much, if any, attention in the research literature.

Keystroke inference through acoustic eavesdropping has been investigated before. For instance,
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Lie et al. [103] harnessed sound waves produced by typing on a traditional keyboard using a smart-

phone’s microphone. In contrast, Narain et al. [131] and Lu et al.’s KeyListener [112] focused on

touchscreen keyboards, with the latter using an adjacent adversarial phone. Similarly, Bai et al. [22]

applied stereo audio recording from a mobile phone near a physical keyboard for keystroke infer-

ence. These prior works mainly utilized fixed audio recording devices, such as mobile phones or

specific computer microphones controlled by an adversary, to gather the acoustic signals generated

from keystrokes and then use them for the inference task. In practical situations, it’s unlikely that

an individual would overlook unknown devices in their vicinity. Though an intruder could consider

leveraging the victim’s mobile phone (via a malicious app), the unpredictable and user-dependent

placement of the phone relative to a keyboard often diminishes the feasibility of such acoustic-only

inference attacks.

Past research has also explored the use of motion sensors for keystroke inference, often utilizing

mobile phones or wearables such as smartwatches [36, 105, 116, 192]. Marquardt et al. [123] no-

tably employed a smartphone’s accelerometer to detect vibrations from nearby keyboard keystrokes.

However, such methods are limited by the need for close and/or fixed proximity to the keyboard

or require the victim to wear or hold the infiltrated wearable device on their hand, limiting their

practicality (as in the earlier case).

Diverging from these traditional keystroke inference attack scenarios, which typically involve

unpredictable and non-practical placement of explicit recording devices near the target user, we in-

vestigate the feasibility of a more realistic scenario involving a recording device (i.e., a headphone)

that is ubiquitously present on the target user in a predictable location. Many modern headphones

often come equipped with multiple microphones on both ears [13,70], which serve dual purposes:

capturing audio and facilitating noise cancellation. Such a design makes modern headphones an

enticing vector for a keystroke inference attack. Further, prominent Bluetooth-enabled headphone

manufacturers [12, 72, 161] provide smartphone/desktop apps to pair with their headphones. We

speculate that such apps, which may have access to the headphone sensor data, could behave ma-

liciously and exploit this connection to discreetly record and transmit sensor data to carry out
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keystroke inference on unsuspecting users. A probable scenario is where a manufacturer itself is

adversarial and uses its native app to record sensor data to infer sensitive information about the

users.

Even if an adversary is surreptitiously able to record sensor (audio+motion) data from the target

headphone, there are several other non-trivial challenges (in such a keystroke inference attack

scenario) which will need to be overcome. One challenge is that the relative position between the

headphones and the keyboard can vary considerably based on user traits such as height, arm length,

and the distance from the chair to the table. This is compounded by both voluntary and involuntary

head movements during typing. Prior research often utilized dual microphones, heavily relying

on a technique called Time Difference of Arrival (TDoA) which uses time difference that results

when sound travels to the individual microphones, yielding stable results primarily because the data

collection device was either on the same surface as the keyboard or was the input device itself (e.g.,

mobile phone qwerty keypad keystroke inference) [205]. Further, these prior works on acoustic

keystroke inference primarily relied on recording devices that were stationary. In our setting, due

to the motion of the headphone induced by users’ head movements, the recording devices can no

longer be considered to be stationary and may record much more noisier/inconsistent data.

In light of the above challenges, in this paper we propose OverHear, a novel framework to accu-

rately infer keystrokes using acoustic and motion sensor data collected from headphones. While the

accelerometer data alone lacks the granularity to distinguish individual keystrokes, it proves to be

very useful in clustering keys corresponding to each hand. Traditional acoustic-based sound source

localization techniques may not work well for this due to the potentially unsteady movements of

the victims. From the acoustic data, we extract Mel-Frequency Cepstral Coefficients (MFCC) fea-

tures, and train and test different machine learning models to predict individual keystrokes. This

prediction is then further refined using a dictionary-based spell-correction approach to improve the

overall inference success of the typed word. We evaluated our framework with the help of 17 par-

ticipants by using a custom headphone hardware setup and with 5 participants using commercially

available Apple AirPods. Our comprehensive experimental evaluation using data collected from
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these participants shows that OverHear is able to attain a top-5 key prediction accuracy (i.e., the

correct key is among the top five predicted keys) of approximately 80% for mechanical keyboards

and about 60% for membrane keyboards. Furthermore, our framework demonstrated a top-50

word prediction (i.e., the correct word is among the top fifty predicted words) accuracy nearing

50%, and surpassed 70% in top-100 word prediction accuracy across all keyboard types.

Our main contributions can be summarized as follows:

• Development of a new keystroke inference framework which employs data from head-

phone microphones and accelerometers to accurately infer user keystrokes. The framework

also includes a keyboard type identification module to identify the keyboard type used by

the victim (e.g., mechanical or membrane).

• Design of an enhanced word prediction mechanism based on spell-correction to further

improve the efficacy and prediction performance of the proposed framework in the presence

of missing or extraneous keystrokes.

• Comprehensive empirical evaluation of the proposed keystroke inference framework

using data from human participants under realistic/unconstrained settings, spanning across

various environmental/ambient noise scenarios.

5.2 Related Work and Motivation

Analysis of acoustic signals for the purpose of inferring user input on a variety of mobile and

computing devices has been the subject of several studies in recent years, each employing unique

methodologies and achieving varying degrees of accuracy. Asonov and Agarwal [20] in 2004 em-

ployed acoustic data collected using a dedicated PC microphone with a trained neural network that

uses frequency domain features to show that individual key presses can be recognized with an ac-

curacy of 79%. They demonstrated that their inference framework works across multiple different

computer keyboards as well as telephone and ATM key pads. In a similar line of research, Liu

et al. [103] proposed a novel approach for inferring keystrokes on a mobile device by using the

resulting audio signals. They developed a system that utilizes the built-in stereo microphones of
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a smartphone positioned adjacent to keyboard to record sound waves produced by a user’s typing.

By means of a purely non-ML based approach such as Time-Difference-of-Arrival (TDoA), they

were able to identify unique patterns in these recorded acoustic waves and match them to specific

keys (being typed). Their framework was able to produce key inference accuracies close to 85%.

While both the above two research efforts are significant, they were tested under rather restric-

tive conditions and focused solely on individual key presses rather than more complex scenarios

involving word or sentence typing and prediction.

Similar to Asonov and Agarwal [20], Zhuang et al. used a Hidden Markov Model (HMM) to

infer keystrokes from audio signals recorded by a PC microphone, and then employed a language

model to facilitate word prediction. They were able to achieve a prediction accuracy of 88% and

96% for word and keys, respectively. Narain et al. [131] proposed a framework to infer keystrokes

on a touchscreen QWERTY keyboard of a mobile device using acoustic signals. They employed a

Decision Tree based learning algorithm, achieving a fairly high accuracy of close to 95% in a single

attempt. The most notable aspect of this study was its language-agnostic approach, suggesting that

regardless of the language or the content being typed, the methodology can accurately infer the

keystrokes.

Similar to Narain et al.’s approach [131], Lu et al.’s KeyListener [112] attempts to infer keystrokes

on a smartphone touch screen QWERTY keyboard, but with a nearby adversarial smartphone’s mi-

crophone. They used a TDoA based approach, achieving a top-1 word accuracy of around 50%

and a top-10 accuracy of around 90%. Zhu et al. [210] also proposed keystroke inference frame-

work based on TDoA and achieved a key prediction accuracy of 72%. However, their framework

requires at least two malicious mobile phones to be in physical proximity of the victim keyboard,

which makes executing the attack practically challenging. Lastly, Bai et al. [22], drawing parallels

with Lie et al. [103] and Zhu et al. [210], employed stereo audio recordings from a mobile phone

situated near a keyboard to deduce keystrokes. Their methodology integrated TDoA and Power

Spectral Density (PSD) features within a support vector machine (SVM) model and achieved a

top-5 accuracy of 92%. Cecconello et al. [38] proposed an attack that uses audio data collected
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during VoIP application call to infer keystrokes, which is perhaps the closest work to ours in terms

the attack surface/hardware setup. They use microphone data from a laptop, a smartphone and

a traditional headset (with a boom microphone; a single microphone protruding near towards the

mouth) to evaluate their attack. They highlight an attack scenario where the attacker obtains the

victim’s labeled training data through social engineering to achieve a top-5 accuracy of 80%. How-

ever, this accuracy drops below 55% when no training data from the victim is available indicating

potential limitation of their framework due to the reliance of victim’s labeled training data.

Several past studies have also explored the use of motion sensors for keystroke inference [36,

105, 116, 192]. These investigations typically harness motion sensors in mobile phones to deduce

in-device keystrokes or employ smart wearables, such as smartwatches, to infer keystrokes on

physical keyboards. Specifically, Cai and Chen in 2012 highlighted the feasibility of motion-based

keystroke inference attacks, demonstrating that motion data could be exploited to deduce user

keystrokes on touchscreen keyboards of mobile phones [36]. Liu et al. and Maiti et al. proposed

approaches for keystroke inference attacks targeting external QWERTY keyboards using motion

data from collected from victim’s smartwatch achieving word level accuracies over 60% [105,116].

Marquardt et al. [123] introduced (sp)iPhone, where accelerometer data from a smartphone placed

near a physical keyboard could be used to infer keystrokes. For their attack, they capitalized on

the vibrations generated by the keystrokes on the keyboard and transmitted through the table to the

smartphone’s accelerometer.

Our extensive literature review has shown key research gaps, which motivates us to explore

the feasibility of a new attack surface for carrying out keystroke inference attacks (on external

keyboards). First, previous research which employed acoustic and/or motion/vibration signals

for such attacks primarily relied on stationary recording devices, such as attacker-controlled mo-

bile phones or dedicated PC microphones, to capture the sound and/or motion/vibration signals

produced by the keystrokes or they relied on social engineering to obtain labeled victim training

data [38]. In real-world scenarios, it’s unlikely that a victim wouldn’t notice unfamiliar (recording)

devices nearby which makes actually carrying out such attacks challenging. Additionally, relying
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on VoIP calls to obtain labeled data [38], presents practical difficulties. The attacker must depend

on the victim unwittingly providing text samples during the VoIP call, which may not always oc-

cur naturally and can introduce limitations in obtaining comprehensive labeled data, especially for

all the keys/characters. While an attacker might attempt to use the victim’s own mobile phone

(by installing a Trojan app) for such purposes, the unpredictable positioning of the phone near a

keyboard makes this approach less practical. Further, headphones, especially the wireless type,

are ubiquitous and often worn continuously (due to their extra portability) by users in the same

position on the head, even when not in active use (e.g., for noise cancelling purposes). This con-

stant presence and predictable position over the head provides a practically feasible eavesdropping

opportunity, which has not been comprehensively evaluated before. Despite the promise of this

approach, there are unique challenges to overcome. The variability introduced by human behavior,

such as head movements, and individual anatomical differences can affect the consistency of the

acoustic data captured by the headphones. Furthermore, the weaker signal of vibrations reaching

the motion sensors in headphones, as opposed to those in closer contact with the typing surface,

requires a more refined approach. To address these issues, we hypothesize that a combination of

acoustic and motion sensor data, both integral to modern headphones, can significantly improve

the inference accuracy. We seek to validate this hypothesis by developing a multi-sensor keystroke

inference framework.

5.3 Background and Preliminaries

We now provide a brief overview of technical concepts that are critical in the design of our

proposed keystroke inference framework.

5.3.1 Microphones in Headphones

Microphones capture sound waves (or acoustic energy) and convert them into electrical signals

through the vibrations of a diaphragm which can then be recorded and utilized in various audio

applications. There are two main types of microphones based on their conversion mechanisms:
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dynamic (more robust) and condenser (high sensitivity). The two most common polar patterns

(i.e., the directions from which a microphone can pick up sound) used in microphones are omni-

directional and cardioid. In an omnidirectional microphone, sound is picked up equally from all

directions. Conversely, a cardioid microphone is unidirectional, which means it picks up sound

primarily from one direction (usually the front) and rejects it from other directions. In modern

headsets and earbuds where the microphones are built into the earpiece itself (compared to the

ones where a microphone arm protrudes from the earpiece to near the mouth), omnidirectional mi-

crophones are typically used. However, one drawback of using omnidirectional microphones is the

potential for more background noise. To mitigate this, many modern high-end headsets use noise-

cancellation techniques. These often involve multiple microphones within the headphones—one

set for user input and another dedicated to noise cancellation—effectively isolating the user’s voice

and reducing ambient noise [102, 162].

5.3.2 Motion Sensors in Headphones

Headphones are increasingly becoming sophisticated interactive devices with integrated mo-

tion sensors that enhance user-experience. These motion sensors, typically accelerometers and

gyroscopes, facilitate a range of intelligent features by accurately capturing the device’s orienta-

tion and movement in a three-dimensional space. Recent headphone models, such as the Apple

AirPods and Google Pixel Buds [13, 70] have taken this integration to new heights. They em-

ploy accelerometers to enable functionalities such as automatic engagement of microphones for

phone calls and voice assistant access, and they can detect when the headphones are in the user’s

ears, playing sound immediately upon insertion. Users can also interact with their device through

gesture controls, such as double-tapping to play or skip tracks, which the headphones recognize

through these sensors. The on-device motion sensor suite typically comprises of both accelerom-

eters and gyroscopes, and together these sensors can capture holistic movement of the device in a

three-dimensional space along three principal axes (i.e., x, y, and z axes). While accelerometers

capture linear acceleration, encompassing actions such as tilting or straightforward motion, gyro-
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scopes are designed to measure angular velocity capturing rotational movements around the three

principal axes [200].

5.3.3 Multi-Sensor Keystroke Inference

Our particular interest is in the potential application of the above sensors beyond their intended

use, that is specifically for the keystroke inference task. Keyboards possess distinct mechanical

characteristics, resulting in the emission of unique acoustic signatures when keys are pressed and

released. As also observed in earlier research efforts [20,22], these audible vibrations are detectable

by microphones integrated in nearby devices such as headphones. Figure 5.1a shows an example

of a typing related audible vibrations captured by a headphone microphone. Furthermore, as a user

engages with a keyboard, the act of typing creates additional non-acoustic vibrations. These vibra-

tions, originating from keystrokes, could travel through the fingers, palms, and further along the

arms of a user to their head/headphones. Figure 5.1b shows the accelerometer feedback recorded

from a pair of prototype headphones (fig. 5.6a) equipped with accelerometers on each ear piece

during a typing task. The noticeable peaks correspond to the key presses, indicating the potential

feasibility of employing accelerometer data from headphones for keystroke inference. Although

the strength of this signal diminishes with distance, the sensitivity of motion sensors in headphones

might be adept enough to pick up certain subtle motions which could facilitate keystroke inference

when combined with audio data. As a result of the integration of these multiple sensor data streams

from the headphones, our intuition suggests that any potential keystroke detection and inference

mechanisms which incorporate these multiple data sources may be able to overcome the limita-

tions and biases inherent in individual sensors, thereby enhancing the identification/prediction of

keystrokes.

5.4 Overview of our Approach

In this section, we describe the assumed adversary model followed by an overview of our

keystroke inference approach.
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Figure 5.1: Typing captured by a pair of headphones’ sensors, (a) audio, (b) accelerometer.

5.4.1 Adversary Model

The primary objective of an adversary in our attack is to infer sensitive information typed by the

target user on a physical keyboard, such as passwords, credit card numbers, and personal identifi-

cation details. We assume that the adversary has the ability to access and acquire both microphone

(audio) and accelerometer (motion) data from the target user’s headphones. This can be done via

either a Trojan application installed on the paired device such as a desktop computer/laptop or a

mobile phone which will have API access to the headphones. The availability of APIs such as

Apple’s CMHeadphoneMotionManager and AVAudioRecorder greatly simplifies the de-

velopment of such applications [16, 17]. Such an application typically has benign (some useful)

functionality so as not to arouse the suspicion of the target user, but surreptitiously samples the sen-

sor (motion + audio) data and covertly sends it back to the attacker/adversary. While it is true that

on a mobile device, an app that requests permission to access the microphone would automatically

raise suspicion, especially since leading mobile operating systems consider this as a dangerous

permission [71], the application can mask its true intent by providing a useful functionality that re-

quire the headphones/microphones without which the application may not work. Examples of such

apps include voice recording apps, headphone equalizer apps, and virtual assistant apps, which nat-

urally require microphone access and can justify the permission request which are provided by the

headphone manufacturers themselves. Additionally, there may be communication back channels

available to the manufacturers in which these apps might not require explicit permissions but can
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still communicate with the headphones via Bluetooth. This communication can potentially encode

and transmit audio and motion data, effectively bypassing OS-level permission restrictions. An

attack setup such as this, which includes a covert sensor data collection app, is feasible in practice

and can be realized, for instance, by the headphone device manufacturer themselves (acting as the

adversary). There are numerous real world instances [2,27,149,182,184] where such an adversar-

ial scenario has unfolded in real life. In one such instance, a popular headphone manufacturer was

a part of a lawsuit which alleged them of using their headphones and the companion app to collect

user information without the users’ permission [2]. Furthermore, the adversary model can extend

to emerging and cutting-edge technology such as standalone headphones (e.g., STREAMZ Voice

Controlled Headphones [177]). These are self-contained devices that do not rely on a paired de-

vice for functionality and can run applications and collect sensor data independently. An adversary

can exploit these by following a similar scenario as above by using an app which masks its true

intentions, to covertly capture and transmit audio and motion data. This approach is particularly

stealthy as it does not depend on compromising an external device.

We assume that the surreptitiously sampled sensor data is then (covertly) transferred to an

adversary-controlled remote server, where the victim/target data is further processed by pre-trained

inference models to predict the target users’ keystrokes. We also assume that the adversary is

able to employ an advanced keyboard identification technique, such as the one designed by us in

section 5.5.5, to gain knowledge of the type of keyboard (i.e., a mechanical keyboard, membrane

keyboard (external) or a laptop membrane keyboard) the target user is using. The adversary does

not have any other medium of inferring the private text typed by the target user, and must rely

entirely on the microphone and accelerometer data streams originating from the target victim’s

headphones.

5.4.2 Inference Framework

Figure 5.2 illustrates the architecture of our proposed OverHear inference framework . As dis-

cussed in the earlier section, a custom app (pretending to be the malicious companion app associ-
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ated with the target’s headphone) is first used to (covertly) capture data from the target headphone’s

built-in accelerometers and stereo microphones during (the target’s) typing activities. The raw ac-

celerometer and audio data are then transmitted to a remote server, which houses the remaining

components of our inference framework. This server processes the data, constructs trained in-

ference models using labeled data, and validates these trained models with the validation portion

of the dataset. Subsequently, the framework is applied to analyze the victim’s (unlabeled) data,

enabling us to evaluate the model’s effectiveness in a real-world scenario.

Recording Victim Data. Our attack framework starts by first covertly recording the victim’s

sensor data (audio + motion) containing typing activity through their headphones. This data, once

captured, is transmitted to a remote server. Next, the type of the keyboard used by the target user

is identified by employing a custom-designed keyboard identification technique (as outlined in

section 5.5.5) using the raw audio and accelerometer data.

Training Dataset Assembly. Upon identifying the keyboard type from the victim’s data, we then

simulate a similar typing activity input environment by using the same type of keyboard as the

victim. A comprehensive training dataset is curated using acoustic and motion sensor data cap-

tured using headphones. This involves data collection sessions with a select group of participants,

ensuring a diverse and representative sample that captures various typing patterns and styles.

Feature Extraction and Model Training. With the training data in place, the system extracts

a set of features for each keystroke which encapsulates the unique characteristics of keystrokes.
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Figure 5.2: OverHear inference framework overview.
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The keys are then clustered into three groups based on their potential typing hand; left, right and

ambiguous (see section 5.5.3 for more details) and then used to train a machine learning model,

optimizing it for accuracy and generalization across different users/victims.

Prediction on Victim Data. Using the trained inference model from the previous step, the frame-

work now processes unlabeled data from the victim to infer their keystrokes. The audio and motion

sensor data streams captured through victim’s headphones go through pre-processing and segmen-

tation to identify keystrokes (as detailed in section 5.5). The unlabeled keystrokes are then tested

via the trained machine learning models to predict keystrokes. The sequences of keystrokes are

then further processed in a word prediction module with the aid of a spell correcting algorithm to

predict the closest matching words.

5.5 Design and Implementation

In this section, we outline the design of our OverHear framework and discuss the specifics of

its implementation.

5.5.1 Data Pre-processing

Audio Noise Filtering. To ensure the clarity and relevance of our audio data in the context of

keystrokes, we employed filtering to mitigate background noise, which typically occurs at higher

frequencies distinct from those of keystrokes. Through analysis of the audio captured via our

headphone setup, we discerned that keystrokes predominantly occur within the frequency range

of 1200 - 3800 Hz. Consequently, a bandpass filter was tailored to retain information within this

specific range while filtering out extraneous frequencies.

Accelerometer Noise Filtering. The raw accelerometer data very often contains noise, primarily

stemming from involuntary body movements, especially in body-worn devices. Specifically, in

our headphone based attack scenario, this can be attributed to minor head movements as empiri-

cally observed during our controlled experiments. To address this noise, we employed a low-pass

filter designed to eliminate high-frequency noise while preserving the lower-frequency vibrations
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induced by key presses.

5.5.2 Keystroke Segmentation

In this subsection, we detail the process by which the audio signal captured by the headphones’

stereo microphones is segmented into individual keystrokes. This segmentation is critical for dis-

tinguishing the discrete acoustic events that correspond to the key hit and key release actions during

typing. A keystroke consists of two main events: a key hit event and a key release event. An acous-

tic signal resulting from a keystroke is able to capture both these events by producing two distinct

peaks in the signal, each corresponding to the key hit and key release event. fig. 5.3 illustrates the

typical acoustic feedback captured from the stereo microphones on a pair of headphones from a

keyboard key press event. The initial more pronounced peak represents the key hit event, while the

subsequent, lower peak indicates the key release event.

0.20 0.15 0.10 0.05 0.00
Time (s) +1.696618e9

4

2

0

2

4

Am
pl

itu
de

Hit Peak

Release Peak

Left Channel
Right Channel

Figure 5.3: Acoustic waveform of a keystroke.

During our experiments, we observed that the average duration of a keystroke is about 80ms.

We use a sliding window with a size of 1ms (empirically determined) and calculate the energy

(eq. (5.1)), which is the sum of the squares of the audio amplitude values for each window and is
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given by the following formula:

Ex =
∑
n

|x(n)|2 (5.1)

where E is the energy of the signal, n is the index of the audio sample and x(n)2 is the square

of the amplitude of the signal at the nth sample. Energy is a measure of the signal’s strength

and is particularly useful in identifying the stronger fluctuations caused by the keystroke events.

We then pass each window through an adaptive thresholding peak picking algorithm called Music

Structure Analysis Framework (MSAF) [137] which considers a local average to pick the prominent

keystroke related peaks and to discard insignificant noise peaks. The windows with the detected

peaks are then considered to be potential keystroke start points, ps. The consecutive start points

less than 80ms are discarded (as they may belong to the same keystroke). For each start point, we

extract the keystroke as follows:

ksi = (psi − 5ms, psi + 80ms) (5.2)

where, ksi is the ith keystroke in the continuous signal, psi is the start point of the keystroke, and

psi + 80ms is the end point.

5.5.3 Key Group Clustering

One of the main challenges towards executing a successful keystroke inference attack is the

number of potential keys and their arrangement on a keyboard, which can make the prediction task

complex. This is because training a single model to distinguish between each key individually

may require a vast amount of data for each key to achieve reasonable accuracy. By grouping

keys and training for a group rather than individual keys, the dimensionality of the problem can

be reduced, thus making the training and inference processes more efficient. Grouping keys can

improve the robustness of the predictive model by reducing the potential for confusion between

similar sounding keys/keystrokes. In all cases, keys that are physically close to each other on

the keyboard produce acoustically similar signals due to their proximity and the mechanics of the
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keyboard. By clustering keys into groups, we enable our models to become more sensitive to subtle

differences within these clusters. This approach simplifies the overall task by reducing the number

of direct comparisons a model must make, enhancing its ability to accurately discern keystrokes.

We first look into methods used for key grouping in previous acoustic based keystroke inference

works [103, 131] for their applicability in our attack scenario, identify challenges posed by them,

followed by proposing techniques that suits our headphone based inference setting.

Traditional TDoA Based Clustering

We first look into the possibility of using traditional Time Difference of Arrival (TDoA) based

key identification/key group clustering methods to identify similar keystrokes with similar sound

profiles [40]. Time Difference of Arrival (TDoA) is a popular technique often used in acoustic

or radio signals to estimate the location of an object by using two or more microphones. The

overarching principle behind TDoA is the sound produced by a source travels through a medium

(often air) and reaches one microphone before the other, if the sound source isn’t equidistant to

the two microphones. This difference in time that the sound signal takes to reach each microphone

is appositely called the Time Difference of Arrival. We compute TDoA via the cross-correlation

method for the 2-channel audio signal. TDoA estimation using cross-correlation involves finding

the lag (or shift) at which two signals are most similar [22]. The cross-correlation TDoA formula

is as follows:

TDoA = argmax
k

(∑
n

S1[n] · S2[n+ k]

)
(5.3)

where S1[n] is the signal at the first microphone at discrete time n, S2[n + k] is the signal at the

second microphone shifted by k samples and argmaxk indicates the shift k at which the cross-

correlation is maximized (the shift where the two signals look the most similar).

However, the dynamic nature of head movements during typing tasks presented a significant

challenge in maintaining consistent/reliable TDoA calculations for individual keys. Typists fre-

quently shift their gaze, alternating between various sections of the screen and sometimes the

keyboard. This constant change in head orientation rendered TDoA an unreliable metric for
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uniquely determining key positions. This is evident not only for individual users/typists, as shown

in fig. 5.4a, but also when considering multiple users, as depicted in fig. 5.4b. The extensive spread

of data points across all keys or classes further corroborates this observation. Moreover, our at-

tempts to identify distinct key groups/clusters based on similar TDoA values, as was done in some

previous works [40, 103], proved to be unsuccessful. The high variability and inconsistency in

TDoA values, exacerbated by the previously mentioned anatomical differences and head move-

ments of the users, rendered the task of grouping keys with similar acoustic characteristics nearly

impossible. This further highlights the unique challenges posed by our headphone-based setup

compared to previous keystroke inference methodologies [22, 103, 131].
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Figure 5.4: Variability of TDoA values (a) for a single participant, (b) across all participants.

Energy Based Clustering

We next explored other techniques that could aid our framework in identifying key groups.

Specifically, we explored the energy levels of keystrokes in the acoustic signal. As we can ob-

serve in fig. 5.5a, the energy for the keystrokes towards the right of the keyboard is higher on the

right audio channel compared to left channel, and vice versa. Under a setting similar to previous

works [22, 103], where the audio recording happens from a fixed position such as a phone kept

nearby the keyboard, this type of energy based clustering can easily be used to cluster the keys into

left and right groups. However, due to the constantly varying head direction changes that happen
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during typing tasks, which may include either looking at different parts of the screen or looking at

the keyboard and then looking back at the screen, the energy differences for left and right audio

channels also turned out to be not reliable and consistent.
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Figure 5.5: Difference between energy levels of left and right (a) audio channels for keystrokes
when typing the word “wheel”, (b) accelerometer channels when pressing key ‘a’.

Although, the audio channels are affected by the head movements and deemed unreliable for

the use of key clustering, we discovered an alternative in the form of accelerometers embedded on

both sides of the headset. These accelerometers showed potential in estimating whether a keystroke

was made by the right or left hand, based on the motion feedback they recorded. Specifically, the

upward and downward head movements, which often occur during typing (for instance, when

participants glance at the keyboard and then refocus on the screen), is predominantly observed on

the x-axis of the headphone accelerometers. The side-way head movements that may occur during

typing are noticeable on the y-axis. The z-axis was observed to be the most stable axis to capture

the key press vibrations belonging to left or right hand. fig. 5.5b illustrates the accelerometer

feedback captured from our prototype headphone (described in section 5.5.7) when pressing the

key ‘a’ with the left hand. The z-axis energy profile of the left channel is clearly distinct from all

other axes.

With the aforementioned observation on the significance of energy readings from the z-axis

of the accelerometer, we proceed to quantify the distribution of energy between the left and right

accelerometer channels. We achieve this by introducing an energy ratio metric. For each channel,
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the energy E is computed as the sum of the squares of its samples (see eq. (5.1)). The energy

ratio ER is then defined as the proportion of the left channel’s energy to the total energy of both

channels, formulated as:

ER =
Eleft

Eleft + Eright + ϵ
(5.4)

where ϵ is a minuscule constant introduced to prevent division by zero. This metric provides a

relative energy measurement between the two channels. If a key is pressed from the left-hand, the

energy registered on the left accelerometer channel (of the headphones) will be higher than the

right accelerometer, making the ER closer to 1 and if it’s a right-hand pressed key, ER will be

closer to 0. The energy ratio inherently normalizes the values between 0 and 1, making it easier to

adapt the metric across different users. In contrast, the absolute energy values may vary based on

factors such as the distance from the source of vibration/key press (due to anatomical differences),

or even the user’s typing intensity.

Given the energy ratio calculated for each key press, we establish three key groups based on

their spatial positioning on the keyboard and the hand predominantly used to press them.

• G1: Keys predominantly pressed by the left hand, namely {a, s, d, z, x, q, w}.

• G2: Keys predominantly pressed by the right hand, namely {o, p, k, l, n, m, i, j}.

• G3: Ambiguous keys that could be pressed by either hand, namely {r, t, y, u, f, g, h, v, b, c,

e}.

We observed that keys within groups G1 and G2 are predominantly pressed by the left and

right hands, respectively, across different users, especially due to their spatial positioning on the

keyboard (extreme left and extreme right). However, the keys in group G3 presented ambigu-

ity, with the choice of hand varying from one user to another. Such variations could arise from

individual typing habits or a user’s inclination to favor their dominant hand. During the testing

phase on unseen data, the median energy ratio, Emed
R , is computed for all samples for a given test

user/victim. The rationale behind computing the median energy ratio is to account for the vari-
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ability in key pressing intensities among different participants. Different participants may exert

different pressures when pressing keys, leading to variations in the vibrational feedback recorded

by the accelerometers. By using the median, we aim to normalize this variability and achieve an

adaptive clustering mechanism. Keys with an energy ratio greater than Emed
R are classified into G1,

while those with an energy ratio less than Emed
R are classified into G2. Keys with an energy ratio

close to Emed
R , within a threshold γ, are classified as G3.

Later in section 5.5.4 we train three different classification models, one for each group, to

predict exact keys within each group. During this prediction, if a test keystroke is initially classified

into G1 but the prediction probability is below a certain threshold λ, the test keystroke is then also

evaluated by the models for G2 and G3. The final prediction is chosen from the model that yields

the highest prediction probability (see algorithm 5.1).

Algorithm 5.1 Energy Ratio-Based Key Group Classification.

Require: ER, Emed
R , λ

1: if ER > Emed
R then

2: if Prediction Probability of G1 < λ then
3: Evaluate using G2, G3

4: MaxProbability(G1,G2,G3)
5: else
6: classify using G1

7: else if ER < Emed
R then

8: if Prediction Probability of G2 < λ then
9: Evaluate using G1, G3

10: MaxProbability(G1,G2,G3)
11: else
12: classify using G2

13: else
14: if Prediction Probability of G3 < λ then
15: Evaluate using G1, G2

16: MaxProbability(G1,G2,G3)
17: else
18: classify using G3

5.5.4 Feature Extraction and Model Training

After the key clustering step, we then investigate acoustic based features which could be used

to identify individual keys. One such set of features include the Mel Frequency Cepstral Coeffi-
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cients (MFCC), which have been widely used in the field of speech and audio signal processing,

particularly for applications such as speech recognition and speaker identification [6]. However,

more recently MFCC based features have been used in other acoustic related applications such as

keystroke recognition and acoustic activity recognition [103, 154]. The process broadly involves

the following steps: (i) First the acoustic signal is divided into fixed sized frames, and for each

frame Fast Fourier Transform (FFT) is applied to to the acoustic signal to calculate the power

spectrum. (ii) Then, Mel Filter Bank is applied on the power spectrum computed for each frame.

The Mel Filter bank is a set of 20-40 (usually) triangular filters that are spaced according to the

Mel scale, which approximates the human ear’s response more closely than the linearly-spaced

frequency bands. This process converts the frequency power spectrum into Mel spectrum [103].

For our inference framework, we empirically determined the optimal number of Mel Frequency

Cepstral Coefficients (MFCC), extracting 14 coefficients for each audio channel (left and right).

To capture the variability and characteristics of these coefficients, we computed several statisti-

cal measures: mean, standard deviation, skewness, maximum value, median, and minimum value.

This resulted in 14 × 6 = 84 features for each channel. Thus, by combining both channels, we

derived a total of 168 features. In addition to the MFCC features, we also included the Root Mean

Square Energy (RMSE) [194] of each keystroke per channel, bringing the total feature count to

170. Building on this, we tested several models including Random Forest classifier, Decision Tree

Classifier and a Deep Neural Network for our analysis. To optimize its performance, we utilized

a Grid Search Cross-Validation approach for hyperparameter tuning using a hold-out dataset. The

Random Forest Classifier was configured with balanced class weights to counteract the uneven

distribution of class frequencies, enhancing fairness and accuracy in the model’s predictions. It

was set with a maximum depth of 20, and used ‘sqrt‘ for the number of features considered when

looking for the best split. The Decision Tree Classifier employed a gini impurity criterion with

balanced class weights for splits, and a moderate tree depth of 10 to prevent overfitting, alongside

tuned parameters for minimum samples per leaf and split to ensure robust nodes. For the Deep

Neural Network, a sequential architecture was implemented beginning with an input layer of 256
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neurons, followed by a 50% dropout rate to mitigate overfitting. The output layer uses a softmax

activation function to provide a probability distribution across the classes, also addressing class

imbalance by weighting the loss function accordingly. This model was compiled with an Adam

optimizer and categorical cross-entropy loss function, which is particularly suited for multi-class

key classification where class imbalance is a concern. As detailed in section 5.5.3, we utilize three

distinct multi-class classification models corresponding to the key groups G1, G2, and G3. Each

classifier is specifically trained to identify keystrokes from within its designated group. The train-

ing and testing were executed in a Leave-One-Out Cross-Validation (LOOCV) manner, ensuring

that a test/victim participant was excluded in each iteration.

5.5.5 Keyboard Type Inference

A preliminary step for an attacker aiming to execute a keystroke inference attack is to infer the

type of keyboard the victim employs. Given the distinct acoustic signatures produced by different

keyboard types, such as mechanical or membrane, understanding the keyboard type can pave the

way for a more targeted and effective attack. In our study, we gathered data from two distinct

brands for each of the keyboard categories: K1: mechanical, K2: membrane, and K3: laptop-

based membrane keyboards. The rationale behind using two models for each category was to

introduce a level of complexity to the inference task. If the model were trained solely on data from

a single brand for each category, it would trivially classify that brand during testing. Our objective

with keyboard type inference is to generalize across brands and variations within each category,

ensuring the model can identify the overarching category to which they belong. For the purpose

of type inference, we segment the keyboard input audio data into 30-second windows, extract-

ing 6 MFCC features and Root-Mean-Square-Energy or RMSE (eq. (5.1)) for each segment. We

observed during our experiments that, while keystroke inference demands a much more detailed

feature set, keyboard type inference can be effectively achieved with just these 6 MFCC features.

Subsequently, we employ a multi-class logistic regression model trained on this data to predict the

keyboard type. The keyboards tested in our keyboard type inference experiment are as follows:

118



• K1: Monoprice MP810 (with red switches) [129] and Aukey KMG12 (with blue switches) [21].

• K2: Logitech K120 [108] and Dynex DX-PNC2019 [55].

• K3: Tecknet Ultra Slim Compact [181] and the keyboard of the HP Envy x360 15" lap-

top [80].

Algorithm 5.2 Word Prediction with SymSpell.
Require: predictions: top-k letter predictions
Require: topK: number of words to return

1: function SpellCorrection(predictions, topK)
2: Initialize sym_spell and load dictionary
3: possible_combinations← GenerateCombinations(predictions)
4: Initialize predicted_words_with_counts as empty list
5: for each input_term in possible_combinations do
6: Get suggestions for input_term from sym_spell
7: Append unique suggestions to predicted_words_with_counts
8: Sort predicted_words_with_counts by word frequency
9: return First topK words from predicted_words_with_counts

10: end function

5.5.6 Word Prediction

After predicting individual keystrokes, we further look into the possibility of increasing the

effectiveness of our attack in a context aware manner by predicting the possible word (compris-

ing of the inferred keystrokes). To this end, we mainly explored two methods to tackle our word

prediction task. The first approach is a naive dictionary-based method, where each sequence de-

rived from the top-k predicted keys (i.e., the correct key is among the top k predicted keys from

the aforementioned key prediction models) is cross-referenced with a predefined dictionary. If a

sequence matches an entry within the dictionary, it is deemed a valid word. However, this method

has its limitations, especially when the key predictions contain inaccuracies such incorrect key pre-

dictions, missing certain keystrokes or having extra keystrokes. Our second method leverages the

SymSpell algorithm [66]. SymSpell is a spelling correction algorithm that works by pre-computing

possible spelling errors for every word in its dictionary, up to a given edit distance. Instead of

searching for possible corrections during the lookup, it directly utilizes this pre-computed data to
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identify close matches. This design allows for rapid and memory-efficient word predictions and

corrections, making it particularly suitable for our scenario due to the possibility of presence of

missing, incorrect or extra keystrokes. The procedure (see algorithm 5.2) starts by initializing the

SymSpell library and loading a comprehensive frequency dictionary. Next, given a set of top-k

letter predictions, we generate all possible word combinations. For each of these generated terms,

we consult SymSpell to gather the closest matching words in the dictionary. This results in a col-

lection of suggested words, each associated with its frequency of usage. Finally, to provide the

most probable corrections, we sort the accumulated suggestions based on their word frequencies

and return the top-w predictions as the output. The rationale being that words that appear more

frequently in the language (or specific corpus) are more likely to be the intended word when a

spelling error is made. In essence, the frequency of usage helps in prioritizing common words over

less common ones when suggesting corrections.

5.5.7 Experimental Setup

Due to the absence of published publicly-available APIs for accelerometer data extraction in

the current generation of commercial headphones, and the limitations associated with the few

available APIs such as those from Apple, we devised a custom setup to comprehensively evaluate

all the parameters and settings of our framework. Nonetheless, to test the efficacy of our framework

on commercially available hardware, we also conducted some limited experiments using Apple

AirPods.

Our primary experimental setup comprises of a Raspberry Pi, and a 3D-printed over-the-ear

headphone prototype (see fig. 5.6a). To capture audio, we equipped each earpiece with an Adafruit

I2S MEMS Microphone [3] and a MPU-6500 accelerometer [179] to record the motion data. The

audio was sampled at a maximum of 96kHz while accelerometer was sampled at a maximum of

500Hz. The microphones and the accelerometers were connected to the Raspberry Pi via the GPIO

interface and a Python script was used to record the data from each microphone/sensor. For our

tests involving commercially-available hardware, we employed a pair of Apple AirPods Pro (2nd
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Generation) [15] connected to an iPhone SE [18]. We developed an iOS application using Swift,

which utilized the CMHeadphoneMotionManager API [17] to collect motion data (note: this

API does not allow specifying a sampling rate) and captured audio data at a sampling rate of 44kHz,

the maximum permitted. The data processing and inference framework evaluation was done on a

Ubuntu 22.04 virtual machine with 32GB memory and 32 cores using Python 3.10.

(a) (b)

Figure 5.6: A user wearing (a) our custom-built headphone setup, (b) AirPods.

Our experiments included a diverse range of keyboards to ensure a comprehensive evalua-

tion. We used a AUKEY KMG12 [21], a full-sized mechanical keyboard (104 keys) to represent

K1 category. For the K2 category, we utilized a Logitech K120 [108], another full-sized model.

To closely replicate a keyboard of modern laptops a Tecknet Ultra Slim Compact keyboard (68

keys) [181], was used (representing the K3 category). This diversity in keyboard types allowed

us to assess the robustness and adaptability of our framework across different tactile feedback

mechanisms and form factors.

5.5.8 Data Collection

We recruited 17 participants in the age range of 18-38, to collect typing data using our custom

prototype pair of headphones. The participants conducted two experiments across three types

of keyboards while wearing our custom headset (as described in section 5.5.7). The experiments
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were conducted inside a closed office space. For the first experiment, they typed individual English

alphabets displayed on the screen one at a time, where each alphabet is repeated for five times at

random. The second experiment involved them typing 300 English words from a list of 5000

most frequent words, with number of letters (in each word) ranging from three to seven [197].

Participants engaged in the typing tasks using a 24-inch computer monitor. To ensure comfort and

a natural typing posture, they were provided with a height adjustable chair, allowing them to choose

a seating level they found most comfortable. We did not impose any specific typing techniques on

the participants; instead, they were encouraged to type in a manner consistent with their daily

habits. For the additional commercial headphone setup using AirPods, we recruited 5 participants

who performed the same aforementioned experiments on keyboard K1. The participants also filled

out a short survey (see section 5.6.11) at the end of the experiments which included questions

relating to their typing behaviors and headphone usage. Some useful/interesting insights obtained

via the survey are given in section 5.6.12. Our data collection procedures were approved by our

institution’s Institutional Review Board (IRB).

5.6 Evaluation

Next, we present the evaluation results for OverHear under a wide variety of different experi-

mental settings and conditions.

5.6.1 Metrics

We use the following metrics for quantifying the performance of OverHear.

Precision and Recall. Precision measures the number of correctly predicted keystroke segments

out of the total predicted keystroke segments, while recall (or sensitivity) calculates the number of

correctly predicted keystroke segments out of the actual keystroke segments. We also use precision

and recall to measure the prediction performance of our keyboard type inference module.

Top-kkey Accuracy. This metric evaluates the accuracy of the top-k key predictions. Specifically,

if the true label is within the top-k predicted labels, then the prediction is considered correct.

122



We utilized top-kkey accuracy for assessing the performance of our OverHear framework at an

individual key prediction level.

Top-kword Accuracy. Evaluates the accuracy of the top-k word predictions. If the true word is

within the top-k predicted words, the prediction is deemed accurate.

5.6.2 Keyboard Type Inference

Across all keyboard type categories, our keyboard type identification model demonstrated ro-

bust performance, consistently achieving an accuracy exceeding 0.95 when the training data in-

cludes data from the same brand of keyboard. However, when the type inference model is trained

using one keyboard brand for each category, the performance slightly degrades. Nevertheless, ex-

cept for K2 category of keyboards, both the other categories (see table 5.1) demonstrated a recall

over 0.95.

Table 5.1: Keyboard Type Inference Performance.

Keyboard Type Precision Recall
Mechanical (K1) 0.86 0.96

Membrane Type 1 (K2) 0.98 0.76
Membrane Type 2 (K3) 0.88 0.99

5.6.3 Keystroke Detection

Our keystroke segmentation algorithm exhibited consistent performance across various key-

board types (see fig. 5.7a). For keyboard type K1, the precision and recall were both measured

at 0.80 (σ=0.05 and σ=0.08, respectively). For K2, the precision was 0.78 (σ=0.07) and the re-

call was 0.77 (σ=0.07). For K3, we observed a precision of 0.75 (σ=0.08) and a recall of 0.80

(σ=0.06). While these results indicate stability in performance, there are inherent challenges that

contribute to the slightly lower accuracy. One primary challenge arises when keys are pressed

quickly in succession. Particularly with adept typists, the acoustic energy from one key can over-

lap with the subsequent key, complicating the distinction between individual keystrokes. Further,

the unique typing dynamics of each individual introduce variability. Some users exert varied force
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on keys, while others occasionally press two keys nearly concurrently. These issues add layers of

complexity to the detection process.
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Figure 5.7: (a) Keystroke detection performance for different keyboards types. (b) Precision and
recall for keystroke detection vs. user typing speed (WPM) for K1.

5.6.4 Overall Performance

As mentioned earlier, we evaluated OverHear’s performance across three keyboard type cate-

gories, K1, K2, K3. The results revealed that, K1, achieved the highest top-5key accuracy of 0.77

and a top-10key accuracy of 0.88. In comparison, K2, recorded a top-5key accuracy of 0.58, and

K3, had a top-5key accuracy of 0.53. Mechanical keyboards (category K1) tend to produce near

distinct tactile feedback and sound profiles for each key press. This unique acoustic signature for

each key can make it easier for the system to differentiate between keystrokes, leading to higher

accuracy as observed in our results. While larger external membrane keyboards (category K2)

too produce some amount of tactile feedback, the sound profiles might not be as distinct as those

of mechanical keyboards. The smaller membrane keyboards (type K3), which closely resembles

laptop keyboards, typically have keys closer together leading to overlapping or less distinct sound

profiles, especially when keys are pressed in rapid succession. Additionally, the build and material

of such keyboards might dampen the sound further, making it harder to infer keystrokes accurately.

For evaluating the efficacy of our clustering algorithm, we compared the accuracy of our model
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Figure 5.8: Top-kkey accuracy across keyboard types.

with and without the clustering approach. As presented in table 5.2, the clustering algorithm

considerably enhanced the accuracy across all keyboard types. For the mechanical keyboard type,

K1, the top-5key accuracy improved from 0.59 to 0.77. Similarly, for the membrane type, K2, there

was a noticeable increase from 0.41 to 0.58. The membrane type, K3, also saw an enhancement

in accuracy, with top-5key accuracy rising from 0.37 to 0.52. These results shows the effectiveness

of the accelerometer based clustering algorithm in refining the keystroke inference, making it an

important component of OverHear.

Table 5.2: Top-5key accuracy with and without clustering.

Keyboard Type w/o Clustering with Clustering
K1 0.59 0.77
K2 0.41 0.58
K3 0.37 0.53

In our evaluations, the Random Forest classifier consistently outperformed other models across

all keyboard types (see fig. 5.9a). Specifically, for K1, it achieved a top-5key accuracy of approxi-

mately 0.77, while for K2 and K3, the accuracies were 0.57 and 0.53, respectively. In contrast, the

Decision Tree classifier managed a top-5key accuracy of 0.57 for K1 and around 0.33 for both K2

and K3. The Deep Neural Network (DNN) model was the least effective, with accuracies falling

below 0.15 for all keyboard categories. The Random Forest classifier outperformed other models
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likely due to its ensemble nature, effectively capturing complex patterns without overfitting. In

contrast, the Deep Neural Network (DNN) model struggled, likely because DNNs require substan-

tial amount of data for effective training, beyond the dataset that we collected. Moving forward,

exploring alternative models such as single- and few-shot learning techniques could potentially

offer more robust solutions, especially when training data is limited [195].
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Figure 5.9: Top-5key accuracy for different (a) models, (b) sampling rates, (c) types of ambient
noise.

5.6.5 Sampling Rates

In our experiments, we explored the impact of different sampling rates on the performance of

OverHear (see fig. 5.9b), starting from our default rate of 96kHz for the audio signal. Our findings

indicate that the performance at 48kHz is nearly on par with that at 96kHz. However, when the

sampling rate is reduced to 16kHz, we observed a considerable degradation in performance. This

indicates that our framework can work fairly well even at lower sampling rates.

5.6.6 Ambient Noise

We evaluated the robustness of OverHear under various ambient noise conditions. These noise

profiles were separately collected in three different environments and later combined with the

keystroke data from all participants. In a university cafeteria setting, the environment was busy

with people eating, working on their laptops, and background music playing. The open office

space had 2-3 individuals working nearby on computers, accompanied by the typical sounds of

typing, mouse clicks, and the occasional mobile phone ringing. In contrast, the closed office space
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provided a quiet environment with minimal background noise. From the results (see fig. 5.9c), it’s

evident that accuracy is highest in quieter environments, such as a closed office, and decreases with

increasing ambient noise, with the cafeteria setting being the most challenging with accuracies

dropping below 0.45. This trend is consistent across all three keyboard types. This shows that

our framework works well in quieter (ideal) environments, but the accuracy is reasonable even in

noisier (less ideal) environments.

5.6.7 Word Prediction

Our word prediction technique, leveraging the SymSpell library, as seen in fig. 5.10, demon-

strated considerable efficacy, achieving top-50word accuracies nearing 0.50 across all keyboard

categories. Further, K1 reached a 0.76 accuracy for top-100word predictions, while K2 and K3

closely followed with 0.71 and 0.70, respectively. For K1, five out of six, participants achieved

an accuracy exceeding 0.60 for top-50word predictions, with only one participant falling below

the 0.40 mark. In the case of K2 and K3, barring one outlier in each category, all participants

consistently achieved around the 0.50 accuracy level for top-50word predictions. In contrast, the

naive dictionary-based approach, which relies solely on exact matches, lagged behind. Its limited

adaptability to variations in keystroke data meant it consistently registered accuracies below 0.4

for all keyboard types. These results can be attributed to SymSpell’s ability to efficiently handle

typographical errors, which aids in more accurate word suggestions, especially in the presence of

potentially inaccurate key predictions along with extra or missing keystrokes.

5.6.8 Effect of Typing Speeds

Encompassing keystroke segmentation and subsequent processing, our framework demon-

strates consistent key prediction performance across varying typing speeds (see fig. 5.11). While

the majority of participants yielded consistent accuracy, an exception was observed in one par-

ticipant with a typing speed of approximately 35 WPM, who registered an accuracy below 0.5.

Despite this outlier, the overall robustness of the framework across varied typing speeds is evident,
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Figure 5.10: Top-kword accuracies.

highlighting its adaptability to diverse user behaviors.
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Figure 5.11: Typing speeds vs. key-level accuracy.

5.6.9 Factors Affecting Accuracy

In our analysis of the factors that may be affecting accuracy of OverHear, several patterns

emerged. For the key group G2, no major misclassification patterns were observed. However,

there were instances where the key ‘k’ is misinterpreted as ‘i’, and ‘m’ is confused with ‘n’. In

the G3 group, the keys ‘j’ and ‘h’ as well as ‘y’ and ‘r’ are often interchanged. Furthermore, the

128



keys ‘q’ and ‘w’ consistently exhibit lower accuracy rates. In G1 we observed that the key ‘z’

is frequently misclassified as ‘x’, and ‘x’ is often mistaken for ‘s’. Figures 5.13 to 5.15 present

confusion matrices for key predictions across groups G1, G2, and G3. Notably, while G2 and G3

exhibit minimal misclassifications, in G1, most keys surrounding ‘a’ are frequently mistaken for

‘a’. These confusion patterns can be mostly accounted to the spatial closeness of these keys on the

keyboard leading to similar acoustic profiles that can be challenging to distinguish. Figure 5.12a

visualizes this relationship between the frequency of misclassifications and the Euclidean distance

between ground truth and predicted keys on a QWERTY keyboard, categorized into our three key

groups: G1, G2, and G3. A prominent observation from the plot is that misclassifications are more

frequent for keys that are closer in distance, particularly for the G3 group. This suggests that keys

in the G3 group are often confused with their immediate neighbors on the keyboard. The plot

shows the inherent challenge in distinguishing between keystrokes of adjacent keys, emphasizing

the spatial aspect of the misclassification problem on a physical keyboard layout.
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Figure 5.12: (a) Frequency of misclassifications vs. key distance. (b) Participants vs. their median
gyroscope frequency.
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Furthermore, certain users possess the ability to type without glancing at the keyboard, main-

taining a steady gaze on the screen. This consistent posture ensures minimal head movement,

leading to relatively stable acoustic profiles. Conversely, users who frequently look down at the

keyboard introduce regular vertical head movements. These continuous and pronounced shifts

can also influence the acoustic signatures, potentially challenging the models employed by our

framework, to accurately distinguish and classify keystrokes. To get a better understanding of

such head movements and their potential correlation to the accuracy of OverHear, we analyzed the

frequency spectrum of the gyroscope data (collected alongside accelerometer data in our custom

setup). Particularly, we looked at the median frequency of each participant, which can be consid-

ered as the frequency below which 50% of the power of the signal lies. A higher median frequency

in gyroscope data typically indicates more rapid changes in the signal, which can be interpreted as

more intense or faster head movements. As it can be seen in fig. 5.12b, the three participants with

the higher median gyroscope frequency showed the lowest top-5key accuracies with values below

0.70. This could be intuitively attributed to the fact that more intense head movements might intro-

duce more noise or variability in the audio/accelerometer data, making keystroke inference more

challenging.

5.6.10 Performance on Commercial Devices

We tested our inference framework using a pair of Apple AirPods and focused on keyboard

type K1. However, challenges arose due to the accelerometer API provided by iOS, which did not

deliver a consistent data stream. Significant gaps in the accelerometer data collection affected our

ability to utilize this data effectively. Consequently, we were compelled to rely solely on audio

data for our analysis. Despite these limitations, our framework, when tested only with audio data,

achieved a top-5key prediction accuracy of 56% and a top-10key prediction accuracy of 80%. These

results are comparable (despite being slightly lower) to the performance of our framework when

tested without the clustering step using our custom hardware setup (refer to table 5.2). These

results underscore the potential of audio-based keystroke inference using smart headphones, even
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under limiting conditions and despite the noise-cancelling (in the microphones) features inherent

in these commercial headphones’ audio recording functionality.

5.6.11 Participant Survey

Below we present the participant survey the study participants filled out during the data collec-

tion.

1. What is your age?

2. What is your dominant hand?

Right, Left

3. Do you currently own any of the following digital devices?

• Yes, No - Bluetooth Over-the-Ear Headsets

• Yes, No - Bluetooth Earbuds

4. How often do you type on a computer keyboard while wearing a pair of headsets/earbuds?

Never, Rarely, Sometimes, Often, Always

5. How many hours a day do you perform typing tasks in general?

6. How many hours a day do you perform typing tasks while wearing a headset/earbuds?

7. What type of a keyboard do you own?

Membrane, Mechanical,Not Sure

8. Where do you typically perform your typing tasks?

café, library, classroom, home, other (please specify)

9. Do you keep your headphones/earbuds near your computer/ keyboard while not wearing

them?

Yes, No
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10. Have you installed the smartphone app that comes bundled with your headset/earbuds?

Yes, No

11. Are you aware that modern headphones and earbuds have embedded motion sensors in them?

Yes, No

5.6.12 Insights from Participant Survey Responses

Through the responses from our participant survey, we were able to gain the below insights into

the individual typing behaviors and the prevalent patterns of headphone usage among participants.

• A majority of participants (52.94%) often type on a computer keyboard while wearing head-

phones or earbuds, with 17.65% doing so always. On average, 11.76% type for 2.5 hours

per day with these devices on (see fig. 5.16b).

• Regarding awareness of modern headphone technology,

52.94% of participants know that headphones and earbuds often have embedded motion

sensors..

• In terms of keyboard ownership (see fig. 5.16c):

– 47.06% own a membrane keyboard.

– 11.76% own a mechanical keyboard.

– 41.18% are uncertain about their keyboard type.

• A significant 88.24% of participants keep their headphones or earbuds near their computer

or keyboard when not in use, while only 11.76% store them away (see fig. 5.16d).

• As for typing locations, 33.33% of participants typically type at their home or apartment,

and 24.24% prefer the library (see fig. 5.16a).
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Figure 5.16: (a) Distribution of locations for typing tasks. (b) Frequency of typing on a computer
keyboard while wearing headsets/earbuds. (c) Distribution of keyboard types owned. (d) Distribu-
tion participants who do/do not keep their headphones/earbuds near the computer.

5.7 Discussion and Conclusion

Attack Impact. The widespread use of headphones, such as Pixel Buds [70] and Apple Air-

Pods [15], equipped with advanced microphones and motion sensors, underscores the potential

reach of our keystroke inference attack. These features enhance the user experience but also make

the devices susceptible to OverHear. Our results demonstrate high accuracy on both mechanical

and membrane keyboards, confirming the attack’s feasibility in real-world scenarios. Question 7

of the participant survey (section 5.6.11) further corroborates the threat landscape. With 12% of

respondents using mechanical keyboards and 47% on membrane keyboards it’s evident that a large

segment of users could be vulnerable. Specifically, mechanical keyboards have seen a resurgence

in popularity over the past decade, especially among certain demographics, such as, the gaming

community, technology enthusiasts and professional typists [180]. Given the projected Compound

Annual Growth Rate (CAGR) of 6.79% from 2022-2027, it’s evident that this user base is not only

substantial but also expanding [180]. Our inference framework, which demonstrates heightened
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efficacy for mechanical keyboards, poses a notable threat to this growing user base.

Mitigations. Noise-canceling features included in most modern headphones offers a promising

avenue to counteract the threat of acoustic keystroke inference. Originally designed to minimize

ambient sounds, this can be further optimized to specifically target and suppress the key press

sounds. While it’s challenging to completely mute the sound of keystrokes, integrating such tar-

geted noise-canceling features to the headphones can significantly degrade the quality of captured

keystroke sounds, thereby reducing the effectiveness of inference attacks. Using quieter keyboards

such as Scissor keyboards [92], commonly found in laptops, can also mitigate such attacks due to

their minimal key-press noise from their scissor-like hinge structure. Additionally, implementing

system-level monitoring services on paired devices, such as smartphones or computers, can help.

These services would track the volume and frequency of data transmission by apps; any unusual

activity, such as excessive data offloading by a headphone companion app, could then be flagged

for review.

Limitations. Despite promising results, our keystroke inference framework using headphones has

limitations. Accurately predicting complex passwords (mixing alphanumeric characters, symbols,

and cases) remains challenging, especially for unconventional passwords. Additionally, perfor-

mance degrades considerably in very noisy environments (as shown in section 5.6.6).

Conclusion. In this study, we presented OverHear, a framework that adeptly harnesses both acous-

tic and accelerometer data from smart headphones to infer keystrokes, achieving a top-5 key ac-

curacy nearing 80% for mechanical keyboards and 60% for membrane keyboards. Further, we

were able to achieve top-100 word accuracy of over 70% for all categories of keyboards. While

our results highlight the vulnerabilities introduced by modern headphones in real-world scenar-

ios, they also emphasize the importance of understanding and addressing these emerging security

challenges.
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CHAPTER 6: CONCLUSION

The rapid advancement and widespread adoption of smart wearables have revolutionized the

digital landscape, offering users capabilities that extend beyond traditional smartphone features.

These wearable devices, equipped with a diverse array of sensors, provide extensive functionality

but also introduce significant privacy risks. This dissertation explores practical applications using

such sensors and addresses privacy concerns (arising from such sensors) by evaluating the potential

for privacy breaches via sensory side-channels, with a special focus on practical usage scenarios.

This dissertation begins by exploring potential practical applications and communication pro-

tocols for wearable devices using motion sensors. To this end, it first investigates the feasibility of

wrist motion-based user authentication from handwriting. The investigation highlights promising

results from some of the tested schemes; however, practical challenges related to user-dependent

behavior and technique-specific limitations hinder their widespread adoption in mainstream ap-

plications. Then, as another practical application, this dissertation introduces a vibration-based

communication protocol that leverages the human body as a communication medium. This pro-

tocol demonstrates the potential for creating a low-bandwidth and covert communication channel

between mobile and wearable devices, achieving stable bandwidth with low bit error rates.

Next, the dissertation explores sensory side-channel attacks on wearable devices with a fo-

cus on motion sensors. To this end, it first examines the practicality of handwriting inference

using wrist-wearable motion sensors. The findings reveal that accurate and practical handwrit-

ing inference using consumer-grade wrist wearables is challenging due to unique and inconsistent

handwriting behaviors observed in natural writing settings. This dissertation then explores the fea-

sibility of inferring user keystrokes on external keyboards through sensory side-channels in modern

headphones. The proposed framework combines acoustic and motion data to infer keystrokes with

notable accuracy, highlighting the potential privacy risks associated with sensor-equipped modern

headphone devices.

In summary, this dissertation provides comprehensive insights into both the feasibility of prac-
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tical applications and the privacy risks posed by sensory side-channels in smart wearables. The

findings identify threats to user privacy and provide defenses and mitigations, underscoring the

need for continued research and development of secure applications and communication protocols

for wearable devices to safeguard user privacy while leveraging their full potential.
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